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SUMMARY OF FINDINGS 

Shallow lakes can quickly transition between 2 alternative stable states: a clear state dominated 
by submerged aquatic vegetation, which provides critical habitat for waterfowl, and a turbid state 
characterized by extreme algal blooms, sparse submerged vascular plants, and poor habitat 
quality. Theoretical models suggest that critical nutrient thresholds differentiate highly resilient 
clear lakes, lakes that may switch between clear and turbid states following system 
perturbations (e.g., weather events, zooplankton community changes), and highly resilient turbid 
lakes. Lake managers need decision tools to help guide and prioritize future lake projects. We 
are developing models to identify combinations of factors responsible for lake deterioration, to 
assess management potential of individual lakes, and to help gauge the relative risk of state 
transitions for shallow lakes. We have developed an integrated modeling framework to (1) 
identify critical nutrient (TP) thresholds, (2) classify attracting lake states, and (3) estimate state-
dependent relationships between TP and measures of algal abundance (Chla). Here, we 
provide a modified version of our model that utilizes repeated lake measurements. We plan to 
use these and other study products to develop an interactive decision support tool that will help 
managers identify lakes needing special protection, fine-tune management needs of individual 
lakes, and rank lakes as candidates for future lake management efforts. 

INTRODUCTION 

Shallow lakes generally conform to one of 2 alternative stable states: a clear state with primary 
production dominated by submerged aquatic vegetation (SAV) and a turbid state with 
phytoplankton dominating over SAV (Scheffer et al. 1993). Excessive nutrient inputs from 
current and historical land use, food web-mediated influences and sediment disturbance caused 
by planktivorous and benthivorous fish, and wind all drive transitions to, and affect the resilience 
of, turbid states (Scheffer 1998). Shallow lakes with high nutrient levels are prone to explosive, 
unhealthy phytoplankton “blooms,” especially when phosphorus (P) is readily available (Scheffer 
1998). Submerged aquatic vegetation, which sustains the diverse invertebrate communities that 
provide important food sources for waterfowl, is reduced in this turbid, algae-dominated state 
(Hargeby et al. 1994). Parasites associated with amphibian malformations likely have higher 
prevalence in turbid lakes (Johnson and Chase 2004) and nitrogen may accumulate at higher 
rates (Zimmer et al. 2003). It is not surprising that key goals for shallow lake management are to 
prevent shifts from clear to turbid states, to induce shifts from turbid to clear states, and to 
maintain the natural resilience of clear-water shallow lakes. 
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Complex ecological and physical mechanisms are responsible for maintaining the stability of 
each alternative state, such as competition between primary producers. When SAV declines, 
phytoplankton abundance typically increases, limiting light reaching the lake bottom and further 
restricting SAV in a positive-feedback loop (Scheffer et al. 1993). Additionally, when SAV is 
sparse, sediments are easily disturbed by benthivorous fish and waves. Suspended sediments 
further increase turbidity, and mobilized P stimulates even higher phytoplankton growth rates 
(Scheffer 1998). In contrast, in clear-state lakes, SAV remains widely distributed and helps 
maintain water clarity by stabilizing sediments and taking up nutrients (Søndergaard et al. 
2003). Charophytes (Chara) often accompany clear-water conditions in Minnesota lakes and 
are believed to release algal toxins (Berger and Schagerl 2004) and provide refuge for 
zooplankton, which may further reduce the phytoplankton population and help stabilize clear-
water conditions.  

Shallow lakes are notoriously difficult to restore after shifting from clear to turbid states, with 
turbid conditions frequently returning within 5-10 years following lake management 
(Søndergaard et al. 2007, Hanson et al. 2017). Theoretical models are useful for understanding 
how nutrients influence whether lakes will tend toward turbid or clear water states in the long 
run. For example, Figure 1 shows a bifurcation diagram derived from a model describing 
shallow lake dynamics. At low nutrient levels (left of “tip down” threshold in Figure 1), lakes can 
only exist in the clear stable state. At high nutrient levels (right of the “tip up” threshold in Figure 
1), lakes only exist in the turbid state. In between these 2 thresholds, the system exhibits 
hysteresis in which 2 different steady states are possible under the same nutrient conditions, 
depending on whether the initial turbidity levels lie above or below the unstable state in this 
region of bistability (dashed line in Figure 1). 

The bifurcation diagram is also useful for understanding temporal dynamics and shifts between 
stable states. If a lake is in the clear state with high SAV (lower solid line) and nutrient input 
increases beyond the “tip up” bifurcation point, the lake will likely transition quickly to the turbid 
state with low SAV (upper solid line). Once SAV is lost, the internal loading of nutrients 
increases and becomes hard to control, and external nutrient loading must be substantially 
reduced to the lower “tip down” bifurcation point to reverse the state shift (Scheffer and 
Carpenter 2003). In practice, such drastic nutrient reduction may not be possible or may only be 
accomplished over long time periods. Alternatively, managers may attempt to induce a state 
shift by forcing the system across the unstable line, e.g., by decreasing the planktivore and 
benthivore populations with rotenone (if nutrients can at least be reduced to the region of 
bistability) (Jeppesen et al. 2009). These resulting transitions are typically short-lived, however, 
because perturbations to the system (e.g., fish colonization, destruction of submerged 
vegetation) can force the lake back to the turbid state. For instance, Lake Christina, a large 
shallow lake in Minnesota, has been rehabilitated with fish toxicants three times in recent 
decades in an effort to improve habitat quality for migrating waterfowl. In each case, improved 
water quality and clear-state characteristics followed lake management, but the lake persistently 
transitioned back to turbid conditions 5-10 years after treatment (Hanson and Butler 1994, 
Hansel-Welch et al. 2003, Hobbs et al. 2012). Clear water conditions in Danish and Dutch lakes 
have also been observed to start deteriorating five years following biomanipulation (Meijer et al. 
1994). Similarly, Hanson et al. (2017) showed that 8 shallow lakes in Minnesota did not 
transition to stable clear-state conditions during a period 2-4 years after management. Returns 
to turbid conditions following biomanipulation suggest that some shallow lakes may have 
nutrient levels beyond the “tip up” threshold in Figure 1 where only the turbid state is possible, 
or that observed clear states may have little ecological resilience such that small perturbations 
easily push the lakes back into the basin of attraction of the turbid state. These patterns are also 
consistent with paleolimnological findings of Ramstack Hobbs et al. (2016) who suggested that 



some shallow Minnesota lakes never recovered after crossing from clear- to turbid-state 
ecological regimes. 

Failed attempts to manage turbid lakes illustrate that managers need better tools to predict 
whether their efforts will maintain clear conditions in high quality lakes, whether clear lakes are 
approaching thresholds and thus are likely to transition to turbid conditions, or if management 
will succeed in improving highly deteriorated lakes. Theoretical models and empirical studies 
suggest that we need to more accurately predict implications of changing nutrient levels and 
biological community features on attracting states and the likelihood that lakes will flip to turbid 
states. Such information will help managers prevent undesirable state shifts in shallow lakes, 
identify lakes that are good candidates for rehabilitation, and inform future conservation 
strategies for both lakes and adjacent watershed areas. 

As a first step toward addressing these information gaps, we have successfully developed an 
integrated modeling framework (Vitense et al. 2016) using Bayesian latent variable regression 
(BLR) models to: 1) classify attracting lake states (clear vs. turbid); 2) estimate deterministic 
steady state relationships between total phosphorus (TP) and chlorophyll a (Chla); and 3) 
identify critical TP thresholds that differentiate highly resilient clear lakes, lakes that can 
transition between clear and turbid states following perturbations, and highly resilient turbid 
lakes. However, our previously developed BLR model assumes each lake has been sampled 
only once, but it is common for researchers to have 1-3 years of data for a set of lakes. 

Several possibilities exist for handling multiyear data for a population of lakes within our 
framework: 1) within-lake observations could be assumed to be independent after conditioning 
on TP and state, and data could simply be pooled (similar to Wang et al. (2014)); 2) the BLR 
model can be fit separately to each year of data and then summarized across years (similar to 
Zimmer et al. (2009)); 3) correlated errors for repeated lake measurements can be built into the 
BLR model; e.g., a multivariate normal distribution could be used to describe the distribution of 
Chla with state-dependent within-lake correlated errors specified via a non-diagonal variance-
covariance matrix; 4) a hierarchical approach can be employed with lake-level regression 
coefficients assumed to be random variables arising from a population-level distribution; 5) state 
transitions could be built into the model to create a hidden Markov model for individual lake 
dynamics. The most appropriate approach will likely depend on the data and underlying 
research questions or intended use of the model. 

We illustrate options 2 and 4 here – i.e., we summarize separate model fits to each year of data, 
and we also fit a model that includes random intercepts in the logistic regression between SAV 
and latent state. We discuss advantages and disadvantages of both approaches, but we 
ultimately find that threshold estimates and conclusions for our set of lakes in Minnesota are 
similar for both approaches. 

METHODS 
Data 

The MDNR surveyed 130 lakes once in July during each of three consecutive years, 2009-2011. 
Measures of TP (μg/L), Chla concentration (μg/L), and SAV abundance (kg/sample) were 
obtained in each year. Nine lakes were sampled in only one or two years, and all lakes had 
maximum depths less than 5 m. Water samples for TP were collected at two stations in each 
lake-year and frozen until analysis with persulfate digestion and ascorbic acid colorimetry. Two 
samples for Chla were collected at the same time and place as TP by filtering water through 
GF/F filters. The filters were frozen until analysis for Chla by acetone extraction and flourometric 
analysis. The average Chla and TP values for each lake-year were used for analysis. 



Submersed aquatic macrophytes were sampled with a weighted plant rake using methods 
modified from Deppe & Lathrop (1992). Plants were sampled at 15 stations in each lake by 
dragging the rake across 3 m of lake bottom and weighing plant biomass (wet weights) 
collected on the rake. The average plant biomass across the 15 stations for each lake-year was 
used for analysis. 

Bayesian Latent Variable Regression (BLR) Model 

Our BLR model describes relationships between the natural logarithms of TP and Chla with 
linear models with state-dependent intercepts, slopes, and normally distributed errors 
(Equations 1-3). Lake state (Si) is estimated as a latent variable that follows a Bernoulli 
distribution (Equation 4). The probability that lake i is in the turbid state (denoted by Si=1) 
depends on both its TP and SAV values (Equation 5). If the lake’s TP level falls below the lower 
TP threshold (π1 on the log scale), its probability of being turbid is 0; i.e., the lake is classified as 
clear. If the lake’s TP level falls above the upper TP threshold (π2 on the log scale), its 
probability of being turbid is 1; i.e., the lake is classified as turbid. If the lake’s TP level falls 
between the thresholds, logistic regression is used to model its probability of being turbid as a 
function of SAV abundance. 

   (1) 
   (2) 
   (3) 

   (4) 

   (5) 

We chose priors that ensured the slopes describing the relationships between Chla and TP 
were positive and that the probability of a lake being turbid decreased as its abundance of SAV 
increased. All other priors were weakly informative: 

   (6) 

Finally, we included a constraint to force the line connecting the turbid line at  to the 
clear line at to have a negative or flat slope to reflect the “S”-shape of Figure 1: 

   (7) 

Fitting and Summarizing Separate Model Fits 

We fit the BLR model above to each of the three years of Minnesota shallow lake data 
separately. We ran the models in JAGS (Plummer 2003) using the R package ‘R2jags’ (Su and 
Yajima 2015). For each year, we ran three chains for 10,000,000 iterations with a burn-in of 
2,000,000 and thinning rate of 2,400. We examined convergence using trace plots and the 
Gelman-Rubin convergence statistic (Gelman and Rubin 1992). Within each year, we classified 



a lake as turbid (clear) if over half of the sampled states from the Markov chain Monte Carlo 
(MCMC) chains were turbid (clear) for that lake. We estimated regression coefficients and TP 
thresholds using medians and modes of the posterior distributions, respectively, and computed 
95% credible intervals for the regression coefficients and TP thresholds for each year. 

We summarized the fits across the 3 different years in a heat map of the state classifications in 
all 3 years, and we used median TP threshold estimates across the 3 fits as overall TP 
threshold estimates. 

Random Parameter Extension to BLR Model 

Our BLR model is flexible, and random parameters can be incorporated to account for 
correlation among repeated measurements or to allow certain relationships to vary among 
lakes. We highlight a model that includes random intercepts in the logistic regression describing 
how the probability a lake is turbid changes with SAV (Equation 12). This model formulation 
reflects that the lakes’ inherent chance of being turbid in the bistable region may vary because 
of factors not accounted for here (e.g., zooplankton community characteristics), but changes in 
SAV abundance are assumed to have the same effect on the probability of being turbid for all 
lakes (i.e., γ1 in Equation 12 is a fixed effect). The random logistic intercept model we fit is 
formulated as follows, where i, j denotes the jth observation from lake i: 

   (8) 

   (9) 

   (10) 

   (11) 

   (12) 

   (13) 

    (14) 

We ran the random logistic intercept model in JAGS, examining the model for convergence. We 
computed parameter estimates and state classifications using the same approach outlined 
above. Chains were run for 1,000,000 iterations with a burn-in of 200,000 and thinning rate of  
240. 

RESULTS 

The BLR model produced reasonable fits to each of the 3 years of shallow lake data treated 
separately and together (Figure 2). The fitted models resemble bifurcation diagrams with no 
evidence for lack of convergence. 



The separate fits to the 3 years of data depict sampling variability between years. The heat map 
of state classifications across the 3 years (Figure 3) suggests that an approximate Chla 
threshold of 20 μg/L separates clear and turbid lakes in the bistable region. Indeed, roughly 
equal proportions of clear and turbid lake-years in the bistable region are divided by a Chla 
threshold of 19.9 μg/L. Across all lake-years, 53.7% of lake-years fall below the median lower 
TP threshold (49.97 μg/L), 43.7% fall in the bistable region, and 2.6% fall above the median 
upper TP threshold (366.36 μg/L). Across the 3 fits, 64.6% of lakes were classified as clear in all 
available years, 15.4% were turbid in all available years, and 20% transitioned at least once. 

TP threshold posterior distributions and credible intervals are narrower for the random logistic 
intercept model compared to the separate fits (Table 1, Figure 2). We note that the upper TP 
threshold estimate for the random logistic intercept model is reduced to ~355 μg/L from ~437 
μg/L if one influential observation from year 2009 is removed. For the random logistic model, the 
estimated unstable line ranges over Chla levels 15.0-19.9 μg/L. Additionally, roughly equal 
proportions of clear and turbid lake-years in the bistable region are divided by a Chla value of 
19.8 μg/L, which is similar to the Chla threshold estimated using the 3 separate fits. For TP 
threshold estimates from the random logistic intercept model, 50.3% of lake-years fall below the 
lower threshold estimate (44.29 μg/L), 47.9% fall in the bistable region, and 1.9% fall above the 
upper threshold estimate (437.03 μg/L). Additionally, 65.4% of lakes were clear in all available 
years, 13.8% were turbid in all available years, and 20.8% transitioned at least once for 
classifications from the random logistic intercept model. These proportions are similar to those 
using classifications and median threshold estimates from the separate fits to the 3 different 
years. 

DISCUSSION 

Our Bayesian latent variable model (BLR) provides a formal modeling framework that can be 
adapted to allow for additional data features, such as repeated measures or more extensive 
time series. We illustrated both how separate model fits across different years can be 
summarized, as well as how multi-year data can be aggregated and the model extended to 
incorporate random parameters. The hierarchical modeling approach has the advantage of 
providing a single model fit for multi-year data and narrower TP threshold posterior distributions 
compared to the separate yearly model fits. However, summarizing across separate yearly fits 
reduces the influence of outlying data points and elucidates sampling variability between years. 
Future researchers may decide whether and which random parameters are appropriate for 
inclusion given their data and study systems. 

Critical threshold estimates were similar, regardless of which approach was used. Chla levels of 
19.8-19.9 μg/L separated clear and turbid lakes in the estimated bistable region into roughly 
equal proportions of clear lakes falling below and turbid lakes falling above these values for both 
approaches. The lower TP threshold estimates were also similar. The upper threshold estimate 
of the random logistic BLR model is similar to the median estimate of the separate yearly fits if 
one influential observation from 2009 is removed when fitting the hierarchical model; otherwise, 
the upper threshold for the hierarchical model is similar to the estimate in year 2009. 

These threshold estimates provide important information to help managers make decisions 
about whether and how to treat different shallow lakes, and also help to define realistic 
expectations when attempting to rehabilitate a lake. Shallow lakes with TP levels below the 
lower estimated critical TP threshold may be deemed high priority clear lakes, with efforts 
focused on protecting adjacent watersheds or other features contributing to their pristine 
conditions. Indeed, the majority of the lakes in our study are highly stable clear lakes. On the 
other end, lakes with TP levels that are frequently above the upper TP threshold can be 
considered lower priority turbid lakes. The internal P loads can be so great in these lakes 



because of historically high nutrient inputs that the lakes will persistently return to turbid water 
conditions following management actions (Hobbs et al. 2012, Hanson et al. 2017, Ramstack 
Hobbs et al. 2016). Fortunately, a very low proportion of lakes in our study fall in this category. 
Finally, lakes that tend to fall in between the two thresholds are those for which active 
management is likely to be most practical, and our results suggest that 44-48% of the lake-
years in our study fell in the bistable region. Lakes that tend to exist in this bistable region are 
highly dynamic, and managers may force these lakes from the turbid to clear stable state 
through actions such as biomanipulation of fish stocks or water level drawdowns. Additionally, 
the relative resilience of different lakes in the bistable region can be used to help prioritize lakes 
for management. For example, lakes can be placed on an estimated bifurcation diagram, and 
resilience can be estimated by each lake’s proximity to TP thresholds or as the estimated 
distance between a lake’s steady state and the unstable line or critical Chla threshold. 

Finally, the BLR framework can be modified to include state transitions in which the trajectories 
of lakes crossing thresholds are directly modeled, which would likely allow for better 
identification of critical nutrient thresholds. Future research will be focused on model extensions 
for lake transitions to understand key factors driving changes to lake nutrient levels and top-
down influences (e.g., fish and invertebrates) that drive regime shifts. These models will help to 
further refine predictions regarding which lakes are most likely to undergo successful 
rehabilitations and help to prioritize lakes for management. 
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Table 1. Estimated total phosphorus (TP) thresholds with 95% credible intervals from the fit of Bayesian latent variable 
regression models to 3 different years (2009-2011) of shallow lake data collected in July in Minnesota, USA. These 
thresholds determine which lake states are possible for a specific value of TP (only the clear state is possible when TP is 
less than the lower threshold, only the turbid state is possible when TP is higher than the upper threshold, and either state is 
possible for TP values between the 2 thresholds). The model fit to all 3 years of data included random logistic intercepts for 
each lake. 

Year Lower TP threshold (μg/L) Upper TP threshold (μg/L) 
2009 96.03  (41.87, 107.82) 434.93  (410.94, 644.15) 
2010 49.97  (32.61, 124.21) 350.01  (330.02, 639.69) 
2011 30.27  (19.22,   50.97) 366.36  (341.68, 622.97) 
All Years 44.29  (42.30,   52.29) 437.03  (410.42, 480.20) 
 

 

Figure 1. Bifurcation diagram from a theoretical model describing shallow lake dynamics. At low 
nutrient levels (left of “tip down” threshold), only the clear stable state exists (lower solid line). At 
high nutrient levels (right of the “tip up” threshold), only the turbid stable state exists (upper solid 
line). In between the 2 thresholds, 2 different stable states are possible under the same nutrient 
conditions, depending on whether initial turbidity levels lie above or below the unstable state 
(dotted lie) in this region of bistability. 

 



  

Figure 2. Bayesian latent variable regression (BLR) estimated steady state relationships 
between total phosphorus (TP) and chlorophyll a (Chla) for 3 different years (2009-2011) of 
shallow lake data collected in July in Minnesota, USA. Black solid (dashed) lines represent 
average (2.5th, 97.5th quantiles) estimated steady state relationships across all Markov chain 
Monte Carlo (MCMC) samples. Steady state lines end at the TP threshold point estimates, 
and gray bands represent 95% credible intervals for TP thresholds. Circular points 
represent lakes classified as clear (>50% of MCMC sampled states were clear), and 
triangular points represent lakes classified as turbid (>50% of MCMC sampled states were 
turbid). The average MCMC sampled state for each lake is shown on a blue to green color 
gradient (0=clear, 1=turbid). Point size is proportional to submerged aquatic vegetation 
(SAV, units: average kg/sample). The model fit to all 3 years of data included random 
logistic intercepts for each lake. 



 

 

Figure 3. Heat map of all lake-year state classifications from separate fits to 3 different 
years (2009-2011) of shallow lake data collected in July in Minnesota, USA. Lakes are more 
frequently classified as clear (turbid) in blue (green) regions, where 0=clear and 1=turbid. 
The heat map was created using each lake’s state on a continuous scale from 0-1 
representing the proportion of Markov chain Monte Carlo (MCMC) samples in which the 
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