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SUMMARY OF FINDINGS 
Genetic mark-recapture studies estimate animal abundance using non-invasive DNA 
identification methods to "capture" and subsequently "recapture" individuals that leave genetic 
material at trap sites. Due to the cost of genotypic analysis, researchers often choose to 
process only a subsample of this genetic material. Traditional (non-spatial) mark-recapture 
estimators of abundance have been shown to be biased in this case, especially when 
individuals display a behavioral trap response following initial capture. Less is known about the 
impact of subsampling genetic mark-recapture data when using spatially explicit capture-
recapture (SECR) models to estimate abundance. We are exploring the effect of subsampling 
on SECR estimators using hair-snare data obtained from a 2012 genetic mark-recapture study 
of black bears (Ursus americanus) from the Chippewa National Forest, north-central Minnesota. 
Non-proportional subsampling may be preferable to simple random sampling, despite the 
inherent violations of SECR assumptions that may result. 
INTRODUCTION 
Mark–recapture studies are routinely used by wildlife managers to estimate animal abundance. 
Especially in the case of endangered species and game animals, abundance and its associated 
temporal trends are of critical importance for making informed management decisions. Hair 
snares offer a minimally invasive technique for obtaining capture and recapture samples. 
Specifically, hair left at the trap can be genotyped to identify individuals.  However, the number 
of samples left at barbed wire hair traps typically far exceeds the budget allotted for genetic 
analysis, in part because a single animal often leaves hair on multiple barbs as it passes in and 
out of the corral of wire. Thus, it is common practice to genotype only a subsample of hair, 
knowing that much of it is redundant. Subsampling has been shown to negatively bias density 
estimates in the context of Huggins mark-recapture models because trap-shy animals are 
inadequately represented (Augustine et al. 2014). Less is known regarding the impact of 
subsampling on spatially-explicit capture–recapture models (SECR). 
A fundamental difference between SECR and non-spatial capture–recapture models relates to 
how the estimators make use of multiple captures of the same individual during the same time 
period (trapping session) at different traps. Whereas non-spatial models collapse these into a 
single capture event, SECR models use multiple captures within a session to inform parameters 
that quantify individual movement characteristics (Borchers 2012, Royle et al. 2013). 
Thus, 
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samples that are redundant in a non-spatial model may be of critical importance to SECR 
models. Researchers may limit the number of genetically analyzed hair samples from a single 
trap within a single session because multiple visits by the same individual, hours or days apart, 
are impossible to distinguish from a single visit with genetic sampling alone; hence, multiple 
samples from the same individual at the same site-session are not informative and not worth the 
cost. However, if sites are visited by multiple animals, and the data from these sites are 
subsampled non-randomly or non-proportionally, then the spatial distribution of processed 
samples may result in a biased estimator of the spatial distribution of visits; hence, SECR-based 
density estimators may also be biased.  A number of studies have examined the effects of 
subsampling hair samples on non-spatial capture–recapture estimates of black bears (Tredick 
et al. 2007, Dreher et al. 2009, Laufenberg et al. 2013), but we are not aware of any that have 
investigated effects on SECR-based estimates. 
OBJECTIVES 
1. Compare abundance and density estimates and precision obtained from the 2012 genetic 

capture–mark–recapture (CMR) using different subsamples of data (i.e., derive the best 
estimates from the existing data). 

2. Provide guidance for study design of future genetic CMR estimates of bears in Minnesota. 
METHODS 

Data Collection 
We used data from a 2012 genetic mark-recapture study of American black bears (Ursus 
americanus) mainly within the Chippewa National Forest, northern Minnesota (Noyce and 
Garshelis 2013). We obtained bear hair samples from 121 stationary traps, spaced within grid 
cells of 1 mi2 and checked 6 times at 10-day intervals (trapping sessions) during May–July. 
Traps were constructed of 2 strands of barbed wire encircling a suspended bait of bacon and 
scent lures.  We collected bear hair from 2,784 barbs that occurred in 1,642 separate clusters of 
1–11 adjacent barbs (considering both upper and lower strands of wire). We considered each 
cluster (not the individual barbs) a sampling unit, meaning that at most, we sampled only 1 barb 
from each cluster (although a single barb with hair, not adjacent to any other barb with hair, was 
also considered a cluster). Of these 1,642 clusters, 1,113 were sent to a genetics laboratory for 
genotypic analysis, and 1,019 samples were successfully linked to specific individuals. 

Spatially-Explicit Capture–Recapture Estimators 
Detection probabilities in spatial mark-recapture models are assumed to decrease as a function 
of distance between each trap and an individual’s activity center, a latent variable in the model. 
There are a number of detection functions that can be used to model detection probabilities.  
We fit a half-normal detection function (the default), which in its most simple form has 2 
parameters: g0, which determines the detection probability at the activity center, and σ, which 
controls how quickly detection probabilities decrease with distance from the activity center.  
Intuitively, σ will depend on how much individuals move and will thus be related to home range 
size. 
Either of these parameters can, in turn, be modeled as a function of covariates (e.g., sex) or 
time (sampling session). There are 2 options for how parameters, and thus detection 
probabilities, may depend on time–parameters can vary linearly (on a transformed scale), 
denoted by T, or they may vary in an unstructured way, allowing each sampling session to vary 
independently, denoted by t. In addition, models can allow for a “behavioral effect,” whereby 
parameters for recapture probabilities differ from those for initial capture probabilities. Models 
that allow parameters to change following an initial capture are denoted using the 
following syntax:  b indicates a  



behavioral effect that applies to future capture probabilities at any site, and bk indicates the 
behavioral effect only applies to future capture probabilities at the site (k) where the animal was 
previously captured. 
We fit 4 SECR models to the full data set, each with a different combination of explanatory 
variables:  g0 ~ 1 (i.e., capture probabilities only depend on the distance between a bear’s 
activity center and the trap location), g0 ~ t, g0 ~ bk, and g0 ~ bk + t. For all models, we also 
assumed that σ varied by sex.  Models were fit using the Program R (R Core Team 2015), 
package ‘secr’ for fitting SECR models and packages ‘foreach’ and ‘doParallel’ for optimization 
of model fitting using parallel processing (Revolution Analytics and Weston 2015a,b; Efford 
2017). 

Subsampling Methods 
We are exploring 2 subsampling strategies: simple random sampling (SRS) and a subsampling 
method that gives preference to unique site-sessions, which we refer to as site-session 
preferred (SSP).  With SRS, n samples were chosen at random from the set of hair clusters 
pooled across the different sites and trapping sessions. Alternatively, with SSP, we tried to 
maximize the number of unique site-sessions represented in the subsample. Let m represent 
the number of unique site-sessions with hair in the full dataset. If m ≤ n, we randomly choose n 
unique site-sessions, with 1 sample randomly selected from each of these site-sessions (in the 
survey sampling literature, this is referred to as a 2-stage cluster sample).  When n > m, we 
chose 1 sample at random from each unique site-session and then took a second simple 
random subsample of size n – m from the remaining clusters (from the pooled data) to give a 
total of n samples.  This approach attempts to serve as a compromise between minimizing the 
amount of redundant data (accomplished by sampling an equal, or near equal, number of 
observations from each unique site-session) and maximizing the representativeness of the 
sample (as accomplished by SRS).  
We considered 3 subsample sizes, n = 250, 550, and 850.  For each subsample, we determined 
the number of unique combinations of (individual x site x session). We subtracted this number 
from n to determine the amount of redundant data in the subsample.  We are in the process of 
developing R code that will allow us to fit the same 4 SECR models to each subsampled data 
set.  This will allow us to compare density estimates from the full dataset to those obtained with 
various levels of subsampling. 
RESULTS AND DISCUSSION 

SECR Models Fit to Full Dataset 
The best-fitting SECR model for the full hair-snare data set included a trap-specific behavior 
response and an unstructured time covariate, g0 ~ bk + t. Estimates of recapture probabilities 
were substantially greater than original capture probabilities (Figure 1).  Capture and recapture 
probabilities also varied considerably among the different sampling sessions and decreased 
more quickly with distance for females than for males (Figure 1).  Using this model we estimated 
there were 12.4 bears per 100 mi2 (95% CI = 9.06–16.87, Table 1). 

Effects of Subsampling on Redundancy 
We collected data from m = 377 unique site-sessions with hair.  As the SSP subsampling 
strategy initially collects 1 sample from each unique site-session, subsamples with n ≤ 377 will 
not include any redundant data.  The same is not true for SRS, which may include multiple 
samples from the same individual at the same trap, particularly for site-sessions with many 
clusters of hair.  We found that, at low sample sizes, SSP selected far fewer redundant samples 
than SRS, and that this advantage diminished as sample size increased (Figure 2).  



Future Work 
Our simulations suggest that using a subsampling strategy that maximizes the number of 
unique site-sessions can reduce the likelihood of analyzing redundant samples, but more work 
is required to determine whether this benefit outweighs the inherent loss of movement 
information incurred using this method.  In either case, the optimal strategy likely depends on 
the characteristics of the observed study population with respect to the spacing of the traps. 
Further simulation is needed before we can make general conclusions and recommendations 
regarding the effect of subsampling methodology on SECR estimates.  In the future, we plan to 
fit SECR models to the subsampled datasets.  In addition, we plan to simulate genetic mark-
recapture data with varying degrees of behavioral responses to evaluate subsampling methods 
across a range of scenarios where the true population size is known. 
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Table 1. Density estimates and Aikaike Information Criterion (AICc) scores associated with spatially-explicit capture–
recapture models fit to data from 1,019 genetically-identified hair samples from black bears that visited hair-snares in 
Minnesota, May–July, 2012.  ΔAICc represents the difference from the lowest scoring model and the compared model.  All 
models were fit using Program R and package secr.  For capture probabilities, notation 'bk' represents trap-specific 
behavior,'t' represents a non-linear time effect, and 1 indicates an intercept-only model (i.e., detection depends only on 
distance from the animal’s activity center to the trap).  All 4 models assumed the scale parameter varied by sex, σ ~ sex. 

Model AICc ΔAICc Bears/100 mi2 (95% CI) 

g0 ~bk + t 3082 0 12.36 (9.06–16.87) 

g0 ~bk 3129 47 12.31 (9.02–16.80) 

g0 ~ t 3507 425 12.54 (9.22–17.08) 

g0 ~ 1  3570 488 12.54 (9.21–17.07) 

  



 

 
Figure 1. Estimated capture and recapture probabilities for male (M) and female (F) bears 
modeled as a function of the distance between a bear’s estimated home range (HR) center 
(based on spatial distribution of recapture data) and a given trap.  Estimates were obtained 
using model g0 ~ bk + t, σ ~ sex.  In all graphs, the 6 lines represent, from top to bottom, periods 
2, 4, 3, 5, 1 (no recaptures for 1st period), and 6. Data are from a bear hair-snaring study in the 
Chippewa National Forest, Minnesota, in 2012. 
  



 
Figure 2. Proportion of non-redundant samples (i.e., different site-sessions) versus sample size 
when using simple random sampling (SRS) or site-session preferred sampling (SSP).  
Horizontal line near 0.5 represents the proportion of non-redundant samples in the full data set 
of genetically analyzed samples (which itself was already a subsample of 1,642 clusters of 
barbs with hair).  When sample size is smaller than number of traps on the trapping grid, all 
samples chosen using SPP will, by definition, be non-redundant.  As n increases, the difference 
in sample redundancy between SRS and SPP diminishes, converging to 0 when the full data set 
is utilized (i.e., when n = 1019).  Data are from a bear hair-snaring study in the Chippewa 
National Forest, Minnesota, in 2012. 
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