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SUMMARY OF FINDINGS  
We evaluated the feasibility of using roadside distance-sampling surveys to generate a reliable 
and cost-effective population monitoring metric for white-tailed deer (Odocoileus virginianus) in 
Minnesota’s farmland zone. Here we report on surveys conducted in the spring of 2018, 2019, 
2022, and 2023 (note: we did not conduct surveys in 2020 or 2021 due to the COVID 
pandemic). Our study area included 4 deer permit areas (DPAs = 252, 253, 296, and 299) in 
southern Minnesota’s farmland zone. Estimated deer density (deer/mi2 of land, to be consistent 
with units used in population modeling) based on spring distance sampling was 8.9 deer/mi2 in 
2018 (85% CI: 7.0-11.4), 7.5 deer/mi2 in 2019 (85% CI: 6.0-9.5), 10.6 deer/mi2 in 2022 (85% CI: 
8.6-13.0) and 10.6 deer/mi2 in 2023 (85% CI: 8.6-13.0). Distance sampling estimates were 
similar (overlapping CIs) but consistently higher than aerial survey estimates in the winters of 
2018-19 (6.5 deer/mi2, 85% CI: 5.1-7.9), 2019-20 (6.5 deer/mi2, 85% CI: 5.3-7.7), 2021-22 (7.7 
deer/mi2, 85% CI: 6.6-8.9) and 2022-23 (8.3 deer/mi2, 85% CI: 6.6-10.0). Likewise, precision of 
our distance-sampling estimates (mean CV = 15%; range: 14-17) was slightly inferior to aerial 
estimates (mean CV = 13%; range: 11-15). However, 75-80% of the variation in roadside deer 
counts was due to among-sampling-unit differences rather than day-to-day variation in the 
observation process. We can address this type of variation, and improve precision, by 
increasing the number of sampling units in operational surveys. Conversely, the presence of 
large day-to-day variation in deer observations would require replicate surveys, which would not 
be feasible in operational surveys due to staff and cost constraints and the spatial scale of our 
monitoring program. Our analysis suggested we would need a sample of 20-25 primary 
sampling units (PSU; 36-mi2 hexagons) to obtain a target CV of 13% given 1 survey/year in 
operational surveys. This level of sampling effort would require 10-13 survey nights and 216-
281 h of staff time (over a 1-month period in spring, excluding survey preparation and 
analysis/write-up tasks, assuming 2 survey crews with 2 individuals/vehicle capable of surveying 
1 PSU/crew/night on average). Thus, although our results suggest that roadside distance 
sampling has the potential to provide a biologically reasonable and more frequent metric (vs. 
aerial surveys) for monitoring deer population trends in the farmland zone of Minnesota, it would 
require a significant investment of time that might be better addressed through seasonal labor 
contracts (vs. using area managers). Given current seasonal labor costs, the estimated cost to 
implement roadside distance-sampling surveys is $8K-$10K per survey area/year (including 
fleet and equipment, but excluding MNDNR staff time devoted to survey preparation, training 
and supervising contractors, and analyzing/writing-up the data). Contract labor accounts for 
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about 70% of this estimate. In comparison, the 2023 aerial survey of the study area cost about 
$28K (excluding staff time).   
INTRODUCTION 
Road-based surveys (e.g., spotlight, thermal imaging) are commonly used for deer population 
monitoring (McCullough 1982, Mitchell 1986, Focardi et al. 2001, Collier et al. 2007, DeYoung 
2011, Kaminski et al. 2019). Unfortunately, the counting process can be highly variable in 
roadside surveys (see Collier et al. 2013), possibly as a function of variation in deer distribution 
and resource use, which has limited the reliability of roadside indices. Applying distance-
sampling methods (Buckland et al. 1993, 2004) to road-based surveys might provide a means 
to calibrate the counting process and make annual comparisons more reliable. However, some 
important statistical issues remain (Anderson et al. 1979, Burnham et al. 1980, Marques et al. 
2010, McShea et al. 2011, Green et al. 2022). For example, convenience sampling violates the 
assumption that transects are randomly placed (or that animals are randomly located with 
respect to transects), which can make it difficult to obtain unbiased estimates of abundance via 
distance-sampling theory (e.g., Green et al. 2022). However, if that bias is relatively small and 
constant, then these surveys can provide a reasonable index for population monitoring.  
White-tailed deer (Odocoileus virginianus) hunting-season recommendations should use the 
most reliable information available to determine the status of the deer population relative to 
goal. In Minnesota, we use estimates of deer abundance and trends to inform annual deer 
season-setting recommendations for each deer permit area (DPA). The primary source of 
information used by the Minnesota Department of Natural Resources (MNDNR) to inform 
decision-making is a harvest-based population model. Currently, the MNDNR collects annual 
data on winter severity, hunter-reported harvest, and hunter effort (license sales) at the DPA 
scale. Reliability of harvest-based models can be improved by incorporating annual information 
on spatial and temporal variation in vital rates and other model parameters. However, collection 
of such data is generally cost-prohibitive at the DPA scale, especially given the large number of 
DPAs in Minnesota. 
An alternative approach would be to collect independent recurrent information on population 
abundance or trends, which we could use to calibrate the existing population model or as input 
into an integrated population model (IPM). For example, the MNDNR has tried to use winter 
aerial surveys to calibrate harvest model estimates. However, financial, logistical, and 
environmental (e.g., snow cover, conifer cover) constraints prevent recurrent use of aerial 
surveys for all DPAs, at least at a frequency that is useful for model calibration. Moreover, 
comparisons involving aerial surveys may not be reliable in DPAs where seasonal migration is 
suspected to violate closure assumptions (e.g., when comparing winter surveys to harvest-
based population models). Thus, we need alternative, cost-effective, large-scale monitoring 
methods. One potential approach in the farmland zone is road-based distance-sampling surveys 
(e.g., LaRue et al. 2007, Stainbrook 2011, Haus et al. 2019).  
OBJECTIVES 
Our goal was to evaluate the feasibility of using roadside distance-sampling surveys to generate 
a reliable (potentially biased but reasonably precise and repeatable) and cost-effective 
population monitoring metric for white-tailed deer in Minnesota’s farmland zone. Because we 
envisioned that area managers and research biologists would be involved with survey 
preparation, execution, and analysis, we focused on an evaluation of standard distance-
sampling methods rather than more complicated theoretical methods (e.g., based on integrating 
resource selection functions, viewshed analyses, and multiple estimators) that would require 
high levels of statistical and geographic information system (GIS) expertise. Our specific 
objectives were: 



1. Decompose variation in annual deer counts due to spatial variation (among sampling 
units) and temporal variation (among survey days within the same sample units). If total 
variation is mostly due to among-unit variation, then we can potentially address this 
issue via increased sample sizes. Conversely, if total variation was mostly due to 
among-day variation, then we would likely need to conduct replicate surveys within each 
sampling unit, which could be prohibitive in terms of staff time and overall cost.   

2. Compare distance-sampling and aerial-survey estimates of deer density. If aerial-survey 
estimates are the gold standard (on average, closer to the truth), then the difference is 
an index of bias (albeit confounded by sampling uncertainty in both estimates). The 
primary questions of interest are the magnitude of bias (index) and the degree to which it 
varies over time. 

3. Identify factors (covariates) that cause the detection function, g(x), to vary over space or 
time, and determine whether those factors appreciably affect density estimates. 
Similarly, identify g(x) covariates that we might need to measure in future operational 
surveys.   

4. Investigate the critical distance-sampling assumptions that a) all animals on the line are 
detected perfectly and b) the g(x) function has a “shoulder” at distance zero (i.e., g(x) 
has an asymptote at distance zero but eventually declines with increasing distance). 
Violation of these assumptions (either by animals moving away from the transect 
centerline or not being randomly distributed around the transect lines) can result in 
biased estimates of density (see Green et al. 2022). However, if the shape of the g(x) 
function is reasonably consistent across time (replicate surveys and sampling years), 
then the resulting density estimates might still serve as a useful monitoring index.    

5. Use empirical data and simulation methods to investigate study-design tradeoffs 
involving buffer sizes around deer-cover polygons, secondary-sample allocation (road 
segments) among habitat strata, and sample-size requirements (primary sampling units) 
needed to achieve a target CV of 13%. This information will be used to guide future 
survey-design recommendations.  

6. Summarize survey times, travel times, and equipment and staff needed to complete 
each survey, which we will use to quantify the feasibility (with respect to dollars and staff 
time) of implementing operational distance-sampling surveys in the farmland region.   

METHODS 
Study Area 

Our 2,787-mi2 (7,218-km2) study area consisted of 4 DPAs (252, 253, 296, and 299) in southern 
Minnesota (Figure 1) within the North Central Glaciated Plains section of the Ecological 
Classification System (MNDNR 2019). Topography is level to gently rolling, with the steepest 
topography along the Minnesota River. Row-crop agriculture (71%), primarily corn (Zea mays) 
and soybeans (Glycine max) characterize the region, with remaining areas comprised of 
grassland (12%), urban/developed (7%), wetland (5%), woodland (3%), and open water (2%) 
cover types (Rampi et al. 2016). Mean pre-fawn deer density ranged from 9–26 deer/mi2 (4–10 
deer/km2) across the 4 DPAs (Michel and Giudice 2022). 

Sampling Design 
This project was iterative in that we used what we learned in one year to guide the sampling 
design the next year. Part of that process involved evaluating 2 buffer distances (and associated 
stratification schemes) around deer-cover polygons.  



250-m buffer  

We used a GIS (ArcGIS v. 10.4, Environmental Systems Research Institute, Inc., Redlands, CA) 
to stratify land-cover into high and low strata based upon expected deer density. We defined 
high-density polygons as being within a 250-m buffer of woodland, grassland (permanent to 
semi-permanent, excluding pasture), and wetland cover classes. Low-density polygons were the 
remaining areas (e.g., agricultural land, open water, and urban/developed areas). Data sources 
for deer-density polygons included Minnesota Land Cover Classification and Impervious 
Surface Area by Landsat and Lidar: 2013 update – Version 2 (woodlands), a compilation of 
public/private grassland layers (e.g., Waterfowl Production Areas, Wildlife Management Areas, 
conservation easements, etc.), and the National Wetlands Inventory for Minnesota (wetlands). 
We then overlaid the study area with a grid of township-sized hexagons (size = 36 mi2 [93.5 
km2]). Hexagons with >50% of their area inside the study area served as our primary sampling 
units (PSU). We chose a township-sized PSU based on the limits of what we could survey in a 
4–6 hr period each night. We randomly selected a spatially balanced sample (Stevens and 
Olsen 2004) of 16 PSUs, but discarded 1 PSU that contained the city of Mankato and few rural 
roads. Thus, our final design contained 15 PSUs (Figure 2A). We then used a GIS and the 2012 
Roads of Minnesota database to identify and classify all secondary (e.g., county and township) 
roads within each PSU, defined by juxtaposition to deer-density strata (high, low). The final 
secondary sampling frame consisted of 3,339 mi (70%) of road segments in the low stratum and 
1,412 mi (30%) in the high stratum. We then randomly selected road segments (pooled over all 
PSUs) using an equal allocation of effort by stratum (~200 mi [322 km] per stratum), which 
resulted in a higher sampling rate in the high stratum (14% vs. 6%). The allocation of 200 mi of 
road segments/stratum was an arbitrary choice based on the amount and distribution of 
secondary sampling units available within the 15 PSUs and the need to obtain enough deer 
observations in the low stratum to make informed decisions about the detection process and the 
potential to modify our stratification and allocation schemes. Although we randomly selected 
secondary sampling units from the pooled sampling frame, each of the randomly selected PSUs 
contained a combination of high- and low-strata road segments (mean high = 12.9 miles, range: 
1.5-21.9; mean low = 13.1 miles, range: 8.4-21.2). We surveyed the same sample of PSUs and 
road segments each year (2018, 2019, 2022, 2023), which is how we envision an operational 
survey being conducted. Note: we did not conduct roadside surveys in 2020 or 2021 due to the 
Covid19 pandemic.  

500-m buffer 

Similar to above, we stratified land cover into 2 classes, except we defined high-density 
polygons as being within a 500-m buffer of woodland, grassland (permanent to semi-permanent, 
excluding pasture), and wetland cover classes (Figure 2B). We retained 10 of the original 15 
PSUs (due to time constraints) with this new design but selected new secondary road 
segments. We duplicated all remaining design aspects from the 250-m buffer scheme. The 
secondary sampling frame for the 500-m buffer consisted of nearly equal miles of low- and high-
stratum road segments (52% vs. 48%, respectively), which resulted in similar sampling rates in 
each stratum (4.3 vs. 5.0%). As with the 250-m sampling scheme, each of the 10 PSUs 
contained a combination of high- and low-strata road segments (mean high = 14.4 miles, range: 
9.3-20.5; mean low = 13.9 miles, range: 6.3-23.1). We only surveyed the 500-m buffer scheme 
in 2019 (concurrently with the 250-m scheme), which we used to inform a simulation study of 
design tradeoffs involving buffer distances (250 vs 500 m), PSU sample sizes, and stratified 
allocation of secondary sampling units (see below).  



Field Protocols 
During 2018-2022 we surveyed each PSU 2–3 times, with survey dates being close in time 
within a PSU (i.e., variation in survey dates was greater among than within PSUs). We did this 
to quantify day-to-day variation in counts and to separate this from spatial variation (i.e., among 
PSUs). Thus, replicate surveys (hereafter, runs) overlapped in terms of start and stop dates, but 
the survey of PSUs was randomly ordered. By 2023, we had a good handle on design tradeoffs 
and the primary source of variation in deer counts. Therefore, in 2023 we only conducted a 
single survey of PSUs (similar to an operational survey).  
We based the start of the survey season on anecdotal information on spring dispersal of deer 
(from wintering areas to spring-summer-fall range). It was important that deer were on their 
spring-summer-fall range to ensure consistency among years and to match the modeled 
population. We began surveys approximately 1 hour after sunset and each crew surveyed 1–2 
PSUs per night. We conducted surveys with 2-member crews (driver and observer) using 
extended-cab pickup trucks. We used 1-2 crews/night in 2018 and 2023, and 1-3 crews/night in 
2019 and 2022. We detected deer using 2 FLIR Scout III 640 (FLIR Systems, Inc., Wilsonville, 
OR) hand-held infrared (IR) sensors attached to the rear windows (1 sensor per window) of the 
vehicle with window mounts. We viewed images on dual computer monitors attached to the 
front passenger seat using customized mounts. The vehicle’s electrical system supplied power 
to the monitors. The observer searched for deer along both sides of the survey route within 
each PSU. We initially oriented sensors at 30- and 330-degree angles from the direction of 
travel, but we adjusted them as needed to account for visual obstruction due to variable terrain, 
woody cover, buildings, etc. Survey speed ranged from 5–30 mi/hr (8–48 km/hr) depending 
upon vegetative cover density. When we identified a deer group (≥1 individual), the observer 
directed the driver to an approximate perpendicular angle (i.e., 90- or 270-degree angle to the 
transect) from the group to minimize sighting distance and counted group size. Then, while the 
observer illuminated the animal(s) with a spotlight, the driver measured distance and angle to 
the approximate center of each group using a laser rangefinder and digital protractor, 
respectively. We used a real-time, moving-map software program (DNRSurvey; Haroldson et al. 
2015) coupled to a global positioning system (GPS) receiver and convertible tablet computer, to 
guide route navigation and record survey metrics (e.g., PSU, run, timestamp, deer and vehicle 
location, distance, bearing, count, cover type) to GIS shapefiles. Cover type designations 
included woodland, wetland, grassland, pasture, standing crop, harvested crop, roadside, 
farmstead, and other. We recorded weather data (temperature, wind speed, cloud cover, 
precipitation) at the beginning, middle, and end of each survey route. Beginning in 2019, we 
also recorded information on activity (lying, standing, moving) of the first deer detected in each 
group and relative topography (low, med, high) between the survey vehicle and each deer 
group. 

Aerial Surveys 
During the winters of 2018-19, 2019-20, 2021-22 and 2022-23 we also conducted helicopter 
surveys of the study area using a quadrat-based design (Haroldson and Giudice 2013), where 
quadrats were delineated by Public Land Survey (PLS) section (1 mi2 [259 ha]) boundaries. We 
stratified quadrats into 3 density categories (high, medium, low) using the local wildlife 
manager’s knowledge of deer abundance and distribution. Using optimal allocation (based on 
previous aerial surveys), we randomly selected a spatially balanced sample (Stevens and Olsen 
2004) of 160 plots to survey. A pilot and 2 observers searched for deer along transects spaced 
at 270-m intervals until they were confident all available deer were observed within each plot. To 
maximize sightability, we completed surveys when snow cover measured ≥6 in (15 cm) and we 
varied survey intensity as a function of cover and deer numbers (Gasaway et al. 1986). We 
intensively resurveyed a subset of plots each year to estimate a sightability correction factor 



(i.e., via a double-sampling estimator). The survey was designed to generate reasonably 
precise (target CV = 13%) density estimates for the study area, but we were also able to 
generate less precise estimates at the DPA scale using a domain analysis. The focus here was 
on comparing winter population estimates (aerial surveys) to distance sampling estimates from 
the subsequent spring. 

Data Analysis 
Data cleaning 

A variety of quality-control checks were run on the distance datasets to identify questionable 
observations and computed distances, including visually inspecting deer locations and survey 
breadcrumb trails in GIS and comparing observed (laser range finder) to computed 
perpendicular distances (based on snapping a line to the nearest roadside segment). For 
example, we identified and removed deer observations that were later determined to be off 
transect or probable duplicate counts. Based on quality-control checks, we removed between 
1% (2023) and 10% (2018) of deer-group observations from annual 250-m datasets and 11% 
from the 2019 500-m dataset. The higher removal rates in 2018 and 2019 reflect the first year of 
surveys (250 and 500 m, respectively) and adaptive learning about which road segments were 
unavailable for sampling. We would expect similar issues in the first year of surveys in new 
areas (i.e., until survey segments are verified and the GIS layer is cleaned and standardized). 
Furthermore, there is likely to be some annual variation in survey effort (road segments 
surveyed) due to road closures, impassible road segments, vehicle or equipment issues, etc.   

Sources of variation 

Temporal variation in the observation process is an especially important concern. If the 
observation process is highly variable over time (either within or among years), then a single-
effort (non-replicated) operational survey may be unreliable. Conversely, if most of the count 
variation is spatial (among PSUs), we could address this through our sampling design (e.g., by 
increasing the PSU sample size). We used ANOVA and linear mixed-effects methods to 
decompose the sampling variance of deer counts by PSU and run (day-to-day variation). We 
also compared distance sampling density estimates by year. Harvest and population-modeling 
data suggested the target population was stable to increasing slowly during the study period. 
Thus, we expected density estimates from distance sampling to be very similar in 2018 and 
2019, and slightly increased in 2022 and 2023. Large differences in density estimates would 
likely reflect annual variation in the observation process, which would raise questions about the 
reliability of the method. 

Data truncation 

A useful rule of thumb in distance sampling is to right truncate (i.e., exclude) at least 5% of the 
data for robust estimation of the detection function (Buckland et al. 1993:106). The 95th 
percentile of our distance data was 322 m for the 250-m buffer surveys (pooled over years and 
runs) and 330 m for the 500-m buffer survey (pooled over runs). We set the truncation distance 
w = 300 m, which resulted in 6% and 7% of deer-group observations being excluded from the 
250- and 500-m datasets, respectively. We also considered left truncation because the peak in 
observation distances was consistently 60-80 m away from the road. However, the peak likely 
reflects road avoidance rather than animal movement (e.g., due to disturbance, which is unlikely 
in this case because crews used IR sensors for initial detection). Thus, left-truncation methods 
would not resolve the underlying issue that animals are not randomly distributed with respect to 
the transect line. Left-truncation at some distance x from the road (e.g., 100 m), with rescaling, 
would improve model fit by creating the desired asymptote at distance zero. However, one 
would then need to generate a separate ad hoc estimate of abundance for the sampling space 



that is within distance x of the road transect. Thus, for this application, it seemed prudent to set 
left truncation = 0 and focus on evaluating the consistency of the detection function g(x). 
Although the resulting density estimate is likely biased (Stainbrook 2011, Marques et al. 2013), 
it may still serve as a useful monitoring index if the bias is reasonably consistent over space and 
time. 

Detection function and density estimates 

We used pooled distance data (over years and runs) from our 250-m buffer survey to fit and 
evaluate various detection functions, g(x). If g(x) did not vary appreciably by run, year, or strata, 
we could apply the pooled g(x) function to each annual dataset to generate density estimates by 
year and run (i.e., via a Horvitz-Thompson type estimator). The potential benefit of this 
approach is our g(x) function would be more precise than if we had to fit a g(x) function to each 
individual dataset (year and run), which would be based on much smaller sample sizes. We 
focused on the 250-m buffer surveys for g(x) development because we had data from 15 PSUs 
and 3 runs each year (excluding 2023) whereas the 500-m buffer survey was based on a subset 
of PSUs, 2 runs, and only 1 year of data. The latter dataset’s primary utility was in examining 
design-choice tradeoffs via a Monte Carlo simulation (below). 
We used a sequential approach to fit and evaluate g(x) models based on the pooled 250-m 
dataset. We fit our g(x) models with the R (ver. 4.3.2) package Distance (Miller et al. 2019, R 
Core team 2023) and compared models using AIC (via the aictabCustom function in the 
AICcmodavg package; Mazerolle 2023) and a crude estimate of density based on dividing the 
estimated total by the number of years and runs in the pooled data. In step 1, we fit two 
conventional distance sampling (CDS) models (without covariates or adjustment terms) based 
on the half-normal (HN) and hazard-rate (HR) key functions. We restricted our analysis to these 
estimating functions because they are robust (Buckland et al. 1993, 2004) and allow the 
inclusion of covariates (later modeling steps). We also fit and evaluated a binned-distance 
model to address the lack of a shoulder in our distance data. We used the following distance 
bins: 0-100, 101-150, 151-200, 201-250, 251-300 m. Our primary interest here was whether a 
CDS model based on binned distance data would generate a different or more precise density 
estimate than a comparable CDS model based on continuous data. In step 2, we evaluated 
whether our best-supported base model could be improved by adding polynomial or cosine 
adjustment terms. In step 3, we explored if there was support for multiple covariate distance 
sampling (MCDS) models that allowed g(x) to vary by year, run, stratum, cover type (pooled into 
short/open vs. tall/dense types; hereafter open vs. dense), or group size (a common issue in 
distance sampling). It is in this step that we determined whether using a pooled g(x) estimating 
function was feasible by looking for evidence that g(x) varied by year, run, or stratum. Step 4 
was an exploratory step where we restricted the analysis to 2019, 2022, and 2023 in order to 
evaluate two additional g(x) covariates: activity (reclassified into stationary vs. moving) and 
topography (reclassified into low vs. med/high). We did not measure these covariates in 2018. 
Our estimates of precision may be optimistic in terms of expectations for single-effort 
operational surveys in new areas. For example, at least initially, sample sizes for estimating g(x) 
will likely be smaller in operational surveys. Furthermore, with only 15 PSU, we might be 
underestimating among-PSU variation. Thus, to get a more realistic estimate of expected 
precision for future operational surveys, we bootstrapped (with replacement) deer-group 
observations by year, PSU, and run to better capture both within- and among-PSU sources of 
variation. We fit a g(x) (HR null model) to each bootstrapped annual dataset rather than using 
our pooled g(x), which should better reflect sample size and g(x) limitations in the first few years 
of operational surveys. We computed a population estimate for each annual bootstrap replicate 
(B = 100/year), and then computed the mean, SD, and CV (SD/mean) for each year. 



Monte Carlo simulation 

In 2018, we used a post-stratification analysis to examine an alternative stratification scheme 
based on a 500-m buffer and equal allocation of effort. However, in this application, the number 
of observations for estimating g(x) is fixed and secondary sample allocation is confounded with 
the stratification scheme. Thus, a post-stratification analysis has limited utility for answering the 
question of “which stratification scheme and allocation of effort will produce the most precise 
estimate?” Obtaining a reliable answer to this question requires a more sophisticated analysis 
that involves simulating the distribution of deer and detection distances in a computer-generated 
landscape (sensu Buckland et al. 2004:226–228). In 2019, we collected independent survey 
data from both a 250- and 500-m buffer design, which allowed us to construct simulated 
distance sampling datasets (deer detections) drawn randomly from all possible PSUs and road 
segments in the study area. Our focus was on examining the relative precision of the density 
estimates rather than quantifying bias because we did not know true density. That is, we only 
had estimates of 1) the distribution of perpendicular sighting distances, 2) mean encounter rate 
(deer groups per survey mile) and variance by stratum, and 3) mean group size and variance. 
We simulated the entire sampling and model-fitting process 500 times for both the 250- and 
500-m buffer designs using n(PSU) = {15, 20, 25, 30} and allocation of secondary sample units 
(road segments) to the high stratum = {0.30, 0.50, 0.65}. Proportional allocation would be 
approximately 0.70:0.30 (L:H) in the 250-m buffer design and 0.50:0.50 in the 500-m buffer 
design. We summarized the results graphically to illustrate how expected precision varied as a 
function of sampling-design choices. 
RESULTS 

Descriptive Statistics 
250-m buffer surveys (2018-2023) 

We completed 1-3 replicate surveys of 15 PSUs with an average of 26 miles (range: 15–34 mi) 
of road segments/PSU using 1-3 crews/night, which required an average of 17.8 survey 
nights/year (range: 10-23). The average time needed to survey a PSU, including travel time, 
was 5.4 hr (range: 2.8-8.5). Start dates ranged from 28 March to 9 April and end dates ranged 
from 26 Apr to 6 May (Table 1). Survey effort/run is more difficult to quantify because we 
conducted replicate surveys concurrently. That is, replicate surveys were designed to be 
conducted within PSUs within a few days of each other (median = 1 day, mean = 3.8, range: 1-
22) to evaluate day-to-day variation in counts. However, based on total unique survey dates 
divided by number of runs, a single-effort operational survey of 15 PSUs would require 6-8 
survey nights to complete using 2 survey crews (see “Days per run” in Table 1). Crews detected 
an average of 305 deer groups/survey.  
Our pooled dataset contained 3,047 deer-group observations (annual range: 329-989), with 
84% of the observations from high-stratum road segments (Table 1). Average group size was 
3.6 deer/group (range: 1-42) and was similar among years (range: 3.3-3.9). Mean perpendicular 
detection distance was 116 m (median = 86, range: 0-679) and the distribution of distances was 
remarkably consistent among years, including a consistent peak at 60-80 m from the road 
(Figure 3). Deer-group observations were an average of 70 m from deer-habitat polygons 
(annual range: 66-78 m; Table 1), but as expected, deer observations tended to be closer to 
cover in the high stratum (mean = 3 m, range = 0-372 m) compared to the low stratum (mean = 
422 m, range = 0 m to 2.7 km). We classified 61% of deer groups as being in open cover types 
(e.g., harvested crops, pasture, farmsteads, roadsides), which was reasonably consistent 
among years (Table 1) but varied by stratum (e.g., low = 81%, high = 58%). Furthermore, 69% 
of deer-group observations were in areas with low topographic relief (i.e., flat to gently rolling 
terrain), which is expected given the location of our study area. Finally, 89% of initial detections 



(first deer) involved stationary deer (lying or standing). Summary statistics for the 250-m buffer 
surveys were also reasonably similar among runs (Table 2).  

500-m buffer surveys (2019 only) 

Survey crews completed 2 replicate surveys of 10 PSUs and 283 miles of road segments over 
14 nights during 6 April to 3 May 2019 (Table 3). We observed 318 deer groups, and sample 
statistics were similar for the 2 runs (Table 2), as well as when compared to 250-m surveys 
conducted on the same subset of 10 PSUs (Table 3).  

Sources of variation in deer counts 

Among-plot variation accounted for 75–80% of total variation in deer-group counts. Thus, 
variation in counts within PSUs (due to survey day) was relatively small compared to variation 
among PSUs. This is important because large day-to-day variation in the observation process 
could result in an unreliable estimator (e.g., one that is not highly repeatable). Conversely, we 
can address large among-plot variation through design choices such as increasing the number 
of PSUs sampled. 

Detection Function and Density Estimates 
The HR function fit our pooled distance data considerably better (∆AIC = 59.7) than a HN 
function (Table 4: Step 1). Not surprisingly, an HR model with binned distance data fit the data 
better (Chi-square = 2.455, 2 df, P = 0.293) than a similar model based on continuous data, but 
this simply reflected the lack of a shoulder in our distance data. Furthermore, the two models 
generated very similar density estimates (9.4 vs. 9.5 deer/mi2; Table 4: Step 1). Therefore, 
rather than being limited to a set of distance bins for exploring density estimation and evaluating 
covariates, we elected to retain the more general model with continuous distance data for Step 
2. In Step 2, we found the base HR model fit the data better than models with either cosine 
(∆AIC = 5.8) or polynomial (∆AIC = 5.9) adjustment terms; thus, we carried the base HR model 
to Step 3 where we examined multiple g(x) predictor variables (MCDS models). In Step 3, we 
found that an additive model with cover type (open vs. dense) and group size fit the data better 
than the base HR model (∆AIC = 58.9) or MCDS models containing stratum, run, year, or 
year+run (∆AIC > 49.6; Table 4: Step 3). As predicted, probability of detection was positively 
associated with group size and was higher in open cover types (predicted mean = 0.598; range: 
0.585-0.784) than in dense cover types (predicted mean = 0.462; range: 0.452-0.640; see 
Figure 4). In Step 4, we had to exclude data from 2018 because we did not measure activity or 
topographic relief in 2018. Thus, step 4 was exploratory. We found that the top model structure 
from Step 3 (COVER2 + SIZE) was improved (∆AIC = 54.7) by adding ACT2 (activity 
reclassified as stationary vs. moving) and TOPO2 (topographic relief reclassified as low vs. 
med/high) to the detection function. The model suggested that probability of detection was 
negatively associated with moving deer and higher for deer in areas with medium-to-high 
topographic relief. However, only 11% of detections involved moving deer and 69% of 
detections were in areas of low topographic relief (with 89% of the remainder in areas with 
medium relief). Because we only had 3 years of data for these covariates and the sample 
distributions were highly unbalanced, we elected to use our top g(x) model from Step 3 
(COVER2 + SIZE) for estimating deer densities. However, we recommend continuing to 
measure and evaluate activity and topographic relief as potential covariates in future operational 
surveys. 
Deer density estimates from initial runs (similar to an operational survey) averaged 4.4, 21.3, 
and 9.4 deer/mi2 in the low stratum, high stratum, and study area, respectively (Table 5). 
Relative precision was better in the high stratum (mean = 15%) compared to the low stratum 
(mean = 34%), but this mostly reflects differences in stratum weights (expansion factors) and 



the unbalanced distribution of deer-group observations (after right truncation) by stratum (189-
263 observations/year in the high stratum vs. 46-55 observations/year in low stratum). Overall, 
precision was reasonably good at the study-area scale (mean = 15%; range: 14-17%; Table 5), 
although it was slightly above our target level (CV <13%) for operational surveys. Furthermore, 
we caution that the precision reported here is likely optimistic because we used a pooled 
detection function (whereas operational surveys will only have data from one run/year) and 
future surveys in other parts of the Minnesota farmland could have lower deer densities (which 
would also affect precision via fewer deer observations). Precision was much lower (CV ≈ 20%) 
when we bootstrapped distance data using year, PSU, and run (surrogate for survey date). This 
is probably a more realistic expectation of precision for a single-effort operational survey with a 
250-m buffer, n = 15 PSUs, and approximately equal allocation of survey effort in each stratum, 
at least for the first few years. 
Density estimates did not vary appreciably by run within years, but they were consistently higher 
than aerial survey estimates (Figure 5). Unfortunately, due to the COVID-19 pandemic, we only 
have 3 years (2019, 2022, 2023) of paired distance and aerial survey estimates, which makes it 
difficult to predict the magnitude of bias in future surveys, especially in new areas. 

Expected Precision vs. Design Choices 
A common target level of desired precision for management surveys is CV ≈ 13% or a 95% CI 
bound of ±25% (Robson and Regier 1964 as cited in Krebs 1999:29). To achieve this level of 
precision with our current design (250-m buffer and 50:50 allocation), and assuming a single-
effort operational survey, would require increasing the number of PSUs from 15 to ~25 (Figure 
6). However, choices related to the stratification scheme and allocation of secondary sampling 
units are important too. Our Monte Carlo simulation indicated that the 250-m buffer design with 
50:50 allocation (low:high) of secondary units resulted, on average, in similar precision to the 
500-m buffer design with 35:65 allocation (Figure 6). Conversely, the 250-m buffer with 35:65 
allocation and the 500-m buffer with 50:50 allocation tended to produce more imprecise density 
estimates. Increasing the buffer distance from 250 m to 500 m resulted in approximately equal 
stratum weights (0.53 vs. 0.47 in low vs. high stratum, respectively), but the low stratum had 
significantly fewer deer-group detections (see Table 3) and a very low estimated deer density 
(1.1 deer/mi2 in 2019, 85% CI: 0.4-2.9). Thus, for the 500-m buffer design, it makes sense to put 
more sampling effort into the high stratum to increase precision of the estimate (i.e., you get 
more “bang for your buck” because >90% of deer are in the high stratum). However, with so few 
deer observations in the low stratum, it becomes difficult to determine whether g(x) varies by 
stratum and one must pool data over strata to estimate g(x). Conversely, the low stratum in the 
250-m buffer design is relatively large (70% of study area). Deer densities are still relatively low 
(3.9-4.8 deer/mi2) in the low stratum, but because of its size, it is important to put relatively more 
effort into surveying the low stratum. Thus, for the 250-m design the 50:50 allocation generates 
a more precise estimate and provides more data to evaluate potential variation in g(x). 
However, it is important to note that we are still putting relatively more effort into the high 
stratum with 50:50 allocation because the high stratum only comprises 30% of the sampling 
frame. These tradeoffs are not necessarily straightforward and would be difficult to ascertain 
without some type of simulation.   

Resource Requirements and Estimated Cost of Operational Surveys 
Resources needed to implement road-based distance sampling surveys include investments in 
labor, fleet, and equipment. Based on survey results and simulation analysis, we need to 
complete 1 survey within 20-25 PSUs/survey area to obtain target precision goals (CV ~13%).  
Assuming 2 survey crews with 2 individuals/vehicle capable of surveying 1 PSU/crew/night, we 
would need 10-13 survey nights and 216-281 h of staff time (excluding survey preparation and 



analysis/write-up tasks) to complete surveys in each area. Because surveys occur over about a 
1-month period in spring, managers may be preoccupied with spring burning activities and 
unavailable to complete survey tasks. An alternative labor source could be temporary 
technicians (NR Tech). Given projected NR Tech salary rates ($27/h, excluding insurance), the 
estimated labor cost (excluding MNDNR staff time devoted to survey preparation, training and 
supervising contractors, and analyzing/writing-up the data) is approximately $6K-$8K per survey 
area/year. This estimate excludes housing and lodging costs. 
This same level of sampling effort would also require driving 2,400-3,000 miles. Given projected 
fleet rates ($0.77/mi), the estimated fleet cost is approximately $1,850-2,310 per survey 
area/year (assuming fleet vehicles are centrally located within each survey area). 
Purchase of all required equipment (e.g., thermal sensors, monitors, spotlights, camera mounts, 
power inverters.) would require an investment of approximately $5K/vehicle. However, much of 
this equipment is already on-hand and, as a result, estimated equipment cost is approximately 
$250/vehicle. 
In total, the estimated cost to implement road-based distance sampling surveys is approximately 
$8K-$10K per survey area/year. Contract labor accounts for about 70% of this estimate.  

Data Collection and Management Challenges: Lessons Learned 
We tested 2 types of infrared sensors in 2018 - Nightsight PalmIR 250 (Raytheon Systems 
Company, Dallas, TX) and FLIR Scout III 640 (FLIR Systems, Inc., Wilsonville, OR). Although 
deer were detected using both systems, there were important feature differences. With the 
Nightsight sensor, video gain and level settings could be manually adjusted (overriding auto 
settings) to improve contrast between deer and background features. This can be important 
when conditions are such that deer “blend” into the background and are difficult to detect. 
However, during most surveys, image contrast was not an issue and gain/level setting 
adjustments were rarely needed. Conversely, detector resolution (i.e., image clarity) of the FLIR 
sensor was twice that of the Nightsight sensor, where images were grainy and pixilated. Finally, 
the FLIR sensor was significantly smaller and lighter than the Nightsight sensor. After testing 
both sensors during multiple surveys, we ultimately discontinued use of the Nightsight sensor in 
favor of the FLIR sensor. 
After detecting deer with IR sensors, we used 12-volt rechargeable (Stanley SL10LEDS, 
Towson, MD) or corded (Lightforce SL2406, Hindmarsh, South Australia, Australia) spotlights to 
illuminate deer and measure distance from observer. The rechargeable spotlights worked well 
only at short distances (<~200 m) and when deer were facing the light. We needed the corded 
spotlights at longer distances and when deer were facing away from the light. 
Perpendicular distance is a measure of the shortest distance between the observer and target 
animal (deer) and is a required metric in distance sampling analysis. We can measure this value 
directly using a laser rangefinder or indirectly using target distance and angle metrics. Visual 
obstruction or animal disturbance can inhibit direct measurement. One of the assumptions 
associated with distance sampling is that target animals do not move prior to being detected. In 
2018, we initially stopped and measured target distance as soon as we detected a deer, 
regardless of target distance or angle. However, after completing a few surveys, we observed 
that most deer detected close to the road (e.g., bedded within or adjacent to the road ditch) did 
not move in response to our presence. Thereafter, we attempted to minimize target distance 
before stopping. This is important because measurement errors are less significant at shorter 
distances. 
Our sample of road segments consisted of county and township roads within each PSU. 
Because of classification errors within the road database, some municipal and private roads 



(e.g., driveways and field roads) were included in the sample. We used a combination of aerial 
photo inspection and on-site visits to identify misclassified roads. We then subjectively selected 
new road segments to replace the misidentified segments. Despite these efforts, we discovered 
additional driveways and field roads while conducting surveys in 2018. These segments were 
excluded, without replacement, and segment lengths were subsequently deleted from total 
sample road length during all survey years. Although identification of misclassified roads is time 
consuming, it should occur during survey setup to allow for road replacement, maintain a 
consistent sample of road segments, and minimize landowner disturbance on municipal and 
private roads. 
Poor road conditions via spring flooding also negatively affected availability of road segments 
for sampling. For example, 2 and 9 road segments were impassable due to spring flooding in 
2018 and 2019, respectively. These flooded segments (or portions thereof) were not sampled 
and segment lengths were deleted from total road length, but only during years when they were 
not surveyed. In addition, although road construction did not occur along sample roads during 
this study, it certainly could occur during future surveys. Poor road conditions are inevitable 
during spring roadside surveys in northern latitudes due to melting snow. By documenting 
changes to annual sampling effort, post-survey adjustments can be made during data analysis. 
DISCUSSION  
The results from our feasibility study are encouraging. We identified and resolved several data 
collection and survey design challenges (see above) and developed detailed field protocols to 
ensure consistency in data collection. Furthermore, we found that variation in deer counts was 
mostly due to among-PSU variation rather than day-to-day variation. We can address among-
PSU variation by increasing the number of PSUs sampled, whereas large day-to-day variation 
in counts would be difficult to deal with from a design and analysis perspective and could result 
in an unreliable monitoring metric.  
Our distance sampling density estimates were consistently higher but within a reasonable range 
of the aerial survey estimates (Figure 5). However, we need more than 3 years of paired 
estimates (2019, 2022, 2023) to confirm this observation and improve our understanding of how 
it might vary over space and time, and the implications of that bias for our ability to make good 
management decisions. Past research has shown sampling along roads can result in biased 
detection rates and density estimates, with the direction of the bias dependent upon whether 
transects follow landscape features preferred (Anderson et al. 2013, Beaver et al. 2014, Green 
et al. 2022) or avoided (Ruette et al. 2003, Ward et al. 2004, Stainbrook 2011, Green et al. 
2022) by target animals. We observed fewer groups of deer on and immediately adjacent to 
roads than areas further away, resulting in a “detection trough” near the transect lines (Figures 3 
and 4). Fewer detections can occur if animals are missed, animals move in response to 
observers, or animals avoid areas near roads (Buckland et al. 1993). Regardless of the reason, 
a lack of observations near roads would lead to biased density estimates (Stainbrook 2011, 
Green et al. 2022). However, if the shape of the detection function is reasonably consistent 
across time, then the resulting density estimates might still serve as a useful monitoring index. 
Our detection function, g(x), did not vary appreciably over sampling years, replicate surveys, or 
strata. As a result, we were able to use a pooled g(x) to estimate deer densities, which improved 
precision of density estimates.  
In conclusion, the road-based distance sampling survey method has potential to provide a 
useful and more frequent (vs. aerial surveys) deer-monitoring metric (index) for the farmland 
zone of Minnesota. However, it will require a significant investment of resources (including staff 
time) to setup and conduct the survey in each target area, and those areas will need to be larger 
than individual DPAs in most cases due to sample-size requirements (in terms of both deer 



observations and number of PSUs). Moreover, the roadside distance-sampling method may be 
a stopgap approach because eventually crewed or uncrewed aerial vehicles with high-end 
detection hardware (cameras and thermal sensors) will likely become the standard tool for 
surveying wildlife over large areas (e.g., Beaver et al. 2020, Delisle et al. 2022).  For example, 
recent research in Indiana (Delisle et al. 2022) suggests that aerial surveys with thermal 
sensors and cameras might be more cost-effective than labor-intensive ground-based methods 
(e.g., camera-trap sampling and pellet surveys), especially when replicated over multiple 
management units such as DPAs. However, this would require careful evaluation in Minnesota’s 
diverse landscapes, including the farmland region. We might be in a position to evaluate the 
cost-benefit tradeoffs of this alternative because MNDNR will be purchasing a new aircraft with 
a high-end thermal imaging/camera system in 2024.   
RECOMMENDATIONS 
If road-based distance sampling surveys are implemented within additional survey areas (e.g., 
DPA aggregations) throughout Minnesota’s farmland zone, we suggest the following: 

• Incorporate the 250-m habitat buffer design and 50:50 (low:high) sample allocation of 
secondary roads to obtain a sufficient sample of deer to estimate density in the low 
habitat stratum. 

• Within each survey area, decrease the number of replicate surveys from 3 to 1/year and 
increase the number of PSUs from 15 to 20-25 to obtain a target CV of ~13%. 

• Continue measuring and evaluating deer activity and topographic relief as potential 
model covariates. 

• Continue flying aerial surveys on a subset of survey areas to improve our understanding 
of how roadside distance sampling estimates compare to aerial survey estimates over 
space and time. 
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Table 1. Summary statistics for 250-m buffer surveys by year from roadside distance sampling surveys of white-tailed deer in southern Minnesota during spring 2018, 2019, 2022, and 
2023. Data incorporate 1–3 replicate surveys (Runs) of 15 primary sampling units (PSU). 

Year Number 
of PSUs 

Total 
miles/stratum Runs Start 

date 
End 
date 

Survey 
days 

Days 
per 
run 

Deer groups 
/stratum Total 

deer 

Mean 
group 
size 

(range) 

Mean 
perpendicular 
distance (m); 

(range) 

Mean 
distance 
(m) to 
habitat 

Prop 
open 
cover 

Prop 
low 
topo 
relief 

Prop 
stationary 

Low High Low High 

2018 15 589 582 3 1-Apr 6-May 23 7.7 140 759 3,137 3.5 (1-42) 117 (0-679) 71 0.626 --- --- 

2019 15 589 571 3 2-Apr 2-May 20 6.7 138 692 2,710 3.3 (1-21) 117 (0-617) 66 0.687 0.713 0.880 

2022 15 589 586 3 28-Mar 5-May 18 6.0 155 834 3,813 3.9 (1-41) 120 (0-650) 70 0.553 0.650 0.910 

2023 15 196 195 1 9-Apr 26-Apr 10 10.0 58 271 1,203 3.7 (1-21) 98 (0-406) 78 0.578 0.729 0.866 

Pooled 15 1,963 1,934 10 28-Mar 6-May 71 7.1 491 2,556 10,863 3.6 (1-42) 116 (0-679) 70 0.614 0.687 0.891 

 
  



Table 2. Summary statistics by year, buffer distance (250-m, 500-m), and run (replicate survey) from roadside distance sampling surveys of white-tailed deer in southern Minnesota during 
spring 2018, 2019, 2022, and 2023. Data incorporate 1–3 replicate surveys (Run) of 10–15 primary sampling units (PSU). 

Year Buffer-
Run 

Number 
of PSUs 

Start 
date 

End 
date 

Survey 
days 

Deer groups 
/stratum Total 

deer 

Mean 
group size 

(range) 

Mean 
perpendicular 
distance (m); 

(range) 

Mean 
distance 
(m) to 
habitat 

Prop 
open 
cover 

Prop 
low 
topo 
relief 

Prop 
stationary Low High 

2018 250-1 15 1-Apr 4-May 14 49 247 1,045 3.5 (1-30) 128 (0-679) 80 0.635 --- --- 

2018 250-2 15 2-Apr 5-May 15 39 218 1,003 3.9 (1-42) 107 (0-496) 70 0.619 --- --- 

2018 250-3 15 4-Apr 6-May 15 52 294 1,089 3.1 (1-25) 115 (0-490) 65 0.624 --- --- 

2019 250-1 15 2-Apr 22-Apr 10 52 201 864 3.4 (1-18) 115 (1-423) 61 0.743 0.759 0.889 

2019 250-2 15 5-Apr 25-Apr 10 47 204 891 3.5 (1-21) 121 (0-547) 69 0.781 0.705 0.853 

2019 250-3 15 23-Apr 2-May 8 39 287 955 2.9 (1-20) 116 (0-617) 69 0.571 0.684 0.893 

2019 500-1 10 6-Apr 24-Apr 7 12 156 594 3.5 (1-21) 123 (0-610) 42 0.762 0.661 0.893 

2019 500-2 10 7-Apr 3-May 7 17 133 482 3.2 (1-20) 119 (0-468) 49 0.673 0.627 0.893 

2022 250-1 15 28-Mar 3-May 10 56 270 1,283 3.9 (1-41) 123 (0-551) 61 0.589 0.629 0.902 

2022 250-2 15 31-Mar 4-May 11 51 288 1,239 3.7 (1-26) 119 (0-559) 79 0.499 0.646 0.903 

2022 250-3 15 1-Apr 5-May 11 48 276 1,291 4.0 (1-28) 117 (0-650) 70 0.574 0.676 0.926 

2023 250-1 15 9-Apr 26-Apr 10 58 271 1,203 3.7 (1-21) 98 (0-406) 78 0.578 0.729 0.866 

 
Table 3. Summary statistics for 500-m buffer surveys and comparable data for 250-m buffer surveys of the same 10 primary sampling units (PSU) from roadside distance sampling 
surveys of white-tailed deer in southern Minnesota during spring 2019. 

Year Buffer Number 
of PSUs 

Total 
miles/stratum Runs Start 

date 
End 
date 

Survey 
days 

Days 
per 
run 

Deer groups 
/stratum Total 

deer 

Mean 
group 
size 

(range) 

Mean 
perpendicular 
distance (m); 

(range) 

Mean 
distance 
(m) to 
habitat 

Prop 
open 
cover 

Prop 
low 
topo 
relief 

Prop 
stationary 

Low High Low High 

2019 500 10 278 288 2 6-Apr 3-May 14 7.0 29 289 1,076 3.4 (1-21) 121 (0-610) 45 0.720 0.645 0.893 

2019 250 10 269 261 2 2-Apr 22-Apr 12 6.0 75 320 1,402 3.5 (1-21) 120 (0-547) 57 0.777 0.747 0.861 



Table 4. Detection function models examined to evaluate roadside distance sampling surveys of white-tailed deer in 
southern Minnesota, fit to the 2018, 2019, 2022, and 2023 pooleda dataset. Number of model parameters (K), log likelihood 
(LL), Akaike’s Information Criterion (AIC) values, change in AIC values relative to the top model (ΔAIC), AIC weights 
(AICWt), and deer density estimates (𝐷𝐷�) are also presented. 

Step Key 
function Adj Dist 

data Covariatesb K LL AIC ∆AIC AICWt 𝐷𝐷�c 
Model 

Step 1           

1.1 HR None Cont ~1 2 -15678 31359 0.0 1.000 9.4 

2.1 HN None Cont ~1 1 -15709 31419 59.7 0.000 9.9 

3.1 HR None Bin ~1 2 -3266 --- --- --- 9.5 

Step 2           

1.2 HR None Cont ~1 2 -15678 31359 0.0 0.903 9.4 

2.2 HR COS Cont ~1 5 -15678 31365 5.8 0.049 9.4 

3.2 HR POLY Cont ~1 5 -15678 31365 5.9 0.048 9.4 

Step 3           

8.3 HR None Cont ~COVER2 + SIZE 4 -15646 31301 0.0 0.726 9.1 

6.3 HR None Cont ~COVER2 3 -15648 31302 1.9 0.274 9.3 

5.3 HR None Cont ~STRATUM 3 -15672 31350 49.6 0.000 9.2 

4.3 HR None Cont ~YEAR + RUN 7 -15669 31352 51.5 0.000 9.4 

7.3 HR None Cont ~SIZE 3 -15675 31356 55.1 0.000 9.1 

2.3 HR None Cont ~YEAR 5 -15673 31356 55.4 0.000 9.4 

1.3 HR None Cont ~1 2 -15678 31359 58.9 0.000 9.4 

3.3 HR None Cont ~RUN 4 -15676 31361 60.0 0.000 9.4 

Step 4           

6.4 HR None Cont ~COVER2 + SIZE + ACT2 + TOPO2 6 -10889 21789 0.0 0.998 9.5 

5.4 HR None Cont ~COVER2 + SIZE + TOPO2 5 -10896 21802 12.4 0.002 9.4 

4.4 HR None Cont ~COVER2 + SIZE + ACT2 5 -10912 21834 45.0 0.000 9.4 

3.4 HR None Cont ~COVER2 + SIZE 4 -10918 21844 54.7 0.000 9.3 

2.4 HR None Cont ~COVER2 3 -10921 21847 57.7 0.000 9.6 

1.4 HR None Cont ~1 2 -10941 21887 97.5 0.000 9.7 

aFor steps 1-3, we pooled data over 4 years (2018, 2019, 2022, 2023) and 1-3 replicate surveys (runs)/year. For step 4, 
we pooled data over 3 years (2019, 2022, 2023) and 1-3 runs/year because ACT2 and TOPO2 were not measured in 2018. 

bDetection function covariates: ~1 (intercept only); COVER2 (cover types: short/open vs. tall/dense); SIZE (group size); 
STRATUM (deer density: low vs. high); RUN (replicate survey); ACT2 (deer activity: stationary vs. moving); TOPO2 
(topographic relief: low vs. med/high).  

cApproximate deer/mi2 based on dividing estimated total deer by study-area size.  



Table 5. Estimated deer densities (per mi2) and 85% CIs by density stratum and year derived by applying a multiple 
covariate detection function (COVER2 + SIZE model) to roadside distance sampling surveys conducted in southern 
Minnesota during spring 2018, 2019, 2022, and 2023. Estimates are based on the 250-m stratification design (buffer around 
deer habitat) from the initial replicate (run 1) survey of 15 primary sampling units. 

Year Stratum Density estimate LCL85 UCL85 CV 

2018 Low 4.0 2.3 7.1 0.383 

2018 High 20.5 16.1 26.2 0.162 

2018 Total 8.9 7.0 11.4 0.165 

2019 Low 3.9 2.5 6.3 0.314 

2019 High 16.0 12.4 20.7 0.171 

2019 Total 7.5 6.0 9.5 0.159 

2022 Low 4.8 2.7 8.3 0.378 

2022 High 24.2 20.9 28.0 0.097 

2022 Total 10.6 8.6 13.0 0.139 

2023 Low 4.7 3.0 7.2 0.291 

2023 High 24.6 19.5 30.9 0.152 

2023 Total 10.6 8.6 13.0 0.139 

 

  



 

 
Figure 1. Deer permit area delineation of the study area boundary for roadside distance 
sampling surveys and aerial quadrat surveys of white-tailed deer in southern Minnesota during 
2018, 2019, 2022, and 2023. 
 

  



 
Figure 2. Sampling frame (deer permit areas 252, 253, 296, 299), primary sampling units (PSU; 
hexagons), and secondary sampling units (road segments; red = high-density stratum, blue = 
low-density stratum) for roadside distance sampling surveys of white-tailed in southern 
Minnesota during A) spring 2018, 2019, 2022, and 2023 (250-m buffer surveys) and B) spring 
2019 (500-m buffer surveys). Grey areas denote deer-cover polygons (>2 ac) consisting of 
woodland, grassland, and wetland cover types with a 250-m or 500-m buffer. 
 



 

 
Figure 3. Distribution of perpendicular sighting distances from roadside distance sampling 
surveys of white-tailed deer in southern Minnesota during spring 2018, 2019, 2022, and 2023. 
Data include distance measurements collected during 1-3 replicate surveys of 10-15 primary 
sampling units using 2 stratification schemes (250- and 500-m buffers around deer habitat). 
Blue vertical lines denote the median and red vertical lines denote the 95% quantile. 
 

 



 
Figure 4. Pooled detection-function estimator, g(x), overlaid on a histogram of deer-group 
observations as a function of perpendicular sighting distance during roadside surveys of white-
tailed deer in southern Minnesota, spring 2018, 2019, 2022, and 2023. The solid curved line 
denotes the average detection function. The dotted lines denote detection curves for single deer 
(lower line), a group of 4 deer (middle line; average group size), and a group of 42 deer (upper 
line; max observed group size) observed in short/open cover types (pasture, farmstead, 
harvested crops, roadsides, other). The bold dashed lines denote detection curves for a single 
deer (lower line), a group of 4 deer (middle line), and a group of 42 deer (upper line) in 
tall/dense cover types (grassland, woodland, standing crops, wetland).  
 

  



 

 

Figure 5. Estimated white-tailed deer density (per mi2) and 85% CIs from winter aerial quadrat 
surveys and spring roadside distance sampling surveys in southern Minnesota during 2018-
2023. 
 

  



 

 
Figure 6. Expected precision of population estimates as a function of sample size (number of 
primary sampling units; PSU), stratification scheme (250- vs. 500-m buffer around deer-habitat 
polygons), and allocation of secondary sampling units (road segments) to strata. Estimates 
were derived from a Monte Carlo simulation with 500 replicates based on data from roadside 
distance sampling surveys of white-tailed deer in southern Minnesota, spring 2018, 2019, 2022, 
and 2023. The gray dashed horizontal line denotes a common target level of precision for 
management surveys. Observed estimates of precision were based on a null detection function 
model (no detection covariates) to be consistent with the model structure used to generate 
simulated estimates.  
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