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SUMMARY OF FINDINGS 
This project was designed to evaluate the feasibility of using roadside distance-sampling 
surveys to generate a reliable and cost-effective population monitoring metric for white-tailed 
deer (Odocoileus virginianus) in Minnesota’s farmland zone.  Here we report on results from the 
2018 and 2019 surveys.  Our study area included 4 deer permit areas (DPAs = 252, 253, 296, 
and 299) in southern Minnesota’s farmland zone.  We used a geographic information system 
(GIS) to classify land-cover polygons into high and low strata based upon expected deer 
density.  As part of this exercise, we evaluated 2 buffer sizes (250 and 500 m) around potential 
deer cover (woodland cover, permanent to semi-permanent grasslands, and wetland cover) to 
delineate high-density polygons. We then overlaid the study area with a hexagonal grid (size = 
36.1 mi2), which served as our primary sampling unit (PSU).  We randomly selected a spatially 
balanced sample of 15 PSUs and used a GIS to identify all secondary roads within each PSU.  
We then classified each road segment based on their juxtaposition to deer-density polygons 
(low, high).  Finally, we randomly selected road segments (secondary sampling units) using an 
equal allocation of effort by stratum, which generated ~200 survey miles per stratum.  We 
surveyed each PSU 2–4 times/year in spring and based the start of the survey season on 
anecdotal information on spring dispersal of deer.  We began surveys approximately 1 hour 
after sunset and we surveyed 1–2 PSUs per night.  We conducted surveys with 2-member 
crews using hand-held infrared sensors.  For each deer group (≥1 animal) detected, the survey 
team recorded perpendicular sighting distance, group size, and covariate information.  In 2018, 
we collected survey data using the 250-m buffer design and used a post-hoc simulation to 
evaluate the 500-m buffer design.  In 2019, we collected survey data using both the existing 
250-m design plus a new 500-m design.  Within the latter, we generated separate secondary 
sampling units (road segments) and conducted independent surveys within a subset of 10 
PSUs.  The approach used in 2019 allowed us to disentangle the effects of buffer size and 
secondary-sample allocation, which is important for guiding future design considerations.  The 
best-supported distance-sampling models for the 250-m buffer design generated similar 
estimates of mean deer density in 2018 (8.2 deer/mi2; 95% CI = 5.8–11.7) and 2019 (8.0 
deer/mi2; 95% CI = 5.7–11.3).  Likewise, the distance model based on the 500-m buffer design 
generated a similar estimate of mean deer density in 2019 (8.5 deer/mi2; 95% CI = 5.5–13.2).  
These density estimates were slightly higher than the 2018-19 and 2019-20 winter aerial-survey 
estimates (6.5 deer/mi2, 95% CI = 4.9–8.1; 6.5 deer/mi2, 95% CI = 5.1–7.9, respectively), which 
is consistent with findings that distance-sampling estimates tend to be positively biased.  
However, from a management perspective, the point estimates were reasonably similar.  
Furthermore, annual variation in distance-sampling estimates was small (albeit we only have 2 
years of data) and most (>80%) of the variation in replicate counts was due to among-PSU 
differences rather than day-to-day variation in the observation process.  Finally, the poor 
precision of our distance-sampling estimates is worth noting, but we could address this through 



design modifications. The simplest modification would be to increase the sample of PSUs from 
15 to 25, but only conduct a single survey/year, which should produce, on average, estimates 
with precision similar to our aerial surveys (i.e., CV ≈ 13%).  Design choices related to the buffer 
size and secondary-sample allocation are more complicated, but similar point estimates and 
precision would likely be obtained with 1) a 250-m buffer and 50:50 sample allocation (low:high) 
or 2) a 500-m buffer with 35:65 allocation.  Another year of data collection with consistent 
protocols in the same study area will be helpful for evaluating the ultimate question of whether a 
distance-sampling metric can be effectively and reliably used to help monitor white-tailed deer 
populations in Minnesota’s farmland zone. 
INTRODUCTION 
White-tailed deer (Odocoileus virginianus) hunting-season recommendations should use the 
most reliable information available to determine the status of the deer population relative to 
goal.  In Minnesota, estimates of deer abundance and trends are used to inform annual deer 
season-setting recommendations for each deer permit area (DPA).  The primary source of 
information used by the Minnesota Department of Natural Resources (MNDNR) to inform 
decision-making is a harvest-based population model.  Currently, the MNDNR collects annual 
data on winter severity, hunter-reported harvest, and hunter effort (license sales) at the DPA 
scale.  Reliability of harvest-based models can be improved by incorporating annual information 
on spatial and temporal variation in vital rates and other model parameters.  However, collection 
of such data is generally cost-prohibitive, especially at the DPA scale. 
An alternative approach would be to collect independent recurrent information on population 
abundance or trends, which could be used to calibrate the population model.  For example, the 
MNDNR has used winter aerial surveys to calibrate harvest model estimates.  However, 
financial, logistical, and environmental (e.g., snow cover, conifer cover) constraints prevent 
recurrent use of aerial surveys for all DPAs.  Moreover, comparisons involving aerial surveys 
may not be reliable in DPAs where seasonal migration is suspected to violate closure 
assumptions (e.g., when comparing winter surveys to harvest-based population models).  Thus, 
alternative, cost-effective, large-scale monitoring methods are needed.  One potential approach 
in the farmland zone is road-based distance-sampling surveys. 
Road-based surveys (e.g., spotlight, thermal imaging) are commonly used by managers for deer 
population monitoring (McCullough 1982, Mitchell 1986, Focardi et al. 2001, Collier et al. 2007, 
DeYoung 2011, Kaminski et al. 2019).  Unfortunately, the counting process can be highly 
variable in roadside surveys, possibly as a function of variation in deer distribution and resource 
use, which has limited the reliability of roadside indices.  Applying distance-sampling methods 
(Buckland et al. 1993, 2004) to road-based surveys might provide a means to calibrate the 
counting process and make annual comparisons more reliable.  However, some important 
statistical issues remain (Anderson et al. 1979, Burnham et al. 1980, Marques et al. 2010, 
McShea et al. 2011).  For example, convenience sampling violates the assumption that 
transects are randomly placed (or that animals are randomly located with respect to transects), 
which can make it difficult to obtain unbiased estimates of abundance via distance-sampling 
theory.  However, if that bias is relatively small and constant, then road-based distance-
sampling surveys may still provide a reasonable index for population monitoring, calibrating the 
existing MNDNR population model, or as part of an integrated population model (IPM).  
OBJECTIVE 
Our objective was to evaluate the feasibility of using roadside distance-sampling surveys to 
generate a reliable (potentially biased but reasonably precise and repeatable) and cost-effective 
population monitoring metric for white-tailed deer in Minnesota’s farmland zone. 



METHODS 
Study Area and Sampling Design 
2018 (250-m buffer surveys) 

The 7,218-km2 study area consisted of 4 DPAs (252, 253, 296, and 299) in southern Minnesota 
(Figure 1A).  We used a geographic information system (GIS; ArcGIS v. 10.4, Environmental 
Systems Research Institute, Inc., Redlands, CA) to stratify land-cover within the sampling frame 
into high and low strata based upon expected deer density.  We defined high-density polygons 
as being within a 250-m buffer of woodland, grassland (permanent to semi-permanent, 
excluding pasture), and wetland cover classes.  Low-density polygons were the remaining areas 
(e.g., agricultural land, open water, and urban/developed areas).  Data sources for deer-density 
polygons included Minnesota Land Cover Classification and Impervious Surface Area by 
Landsat and Lidar: 2013 update – Version 2 (woodlands), a compilation of public/private 
grassland layers (e.g., Waterfowl Production Areas, Wildlife Management Areas, conservation 
easements, etc.), and the National Wetlands Inventory for Minnesota (wetlands).  We then 
overlaid the sampling frame with a hexagonal grid, with township-sized hexagons (size = 36.1 
mi2) having >50% of their area inside the sampling frame serving as our primary sampling units 
(PSUs).  We chose this size because it represented the approximate area that could be 
surveyed within a 4–6 hour period each night.  We randomly selected a spatially balanced 
sample (Stevens and Olsen 2004) of 16 PSUs, but discarded 1 PSU that contained the city of 
Mankato but few rural roads.  Thus, our final design contained 15 PSUs (Figure 1A).  We then 
used a GIS to identify all secondary (e.g., county and township) roads within each PSU, defined 
by juxtaposition to deer-density strata (low, high).  Finally, we randomly selected road segments 
(pooling roads >0.25 miles from all PSUs) using an equal allocation of effort by stratum (~200 
miles per stratum).  Thus, each PSU contained a combination of low- and high-strata road 
segments.  We derived road data from the Roads of Minnesota, 2012 database.  For the 
purposes of the pilot study, we were interested in obtaining sufficient observations in the low 
stratum to make informed decisions about the detection process and the potential to modify the 
stratification and allocation scheme. 

2019 (250- and 500-m buffer surveys) 

In 2019, we used 2 sampling frames.  In addition to the existing 250-m stratification scheme 
described above, we also generated a 500-m stratification scheme by defining high-density 
polygons as being within a 500-m buffer of potential deer cover (woodland, grassland, and 
wetland cover classes; Figure 1B).  As before, low-density polygons were the remaining areas 
(e.g., agricultural land, open water, and urban/developed areas).  Within this new design, we 
retained 10 of 15 PSUs, but selected new secondary road segments.  We duplicated all 
remaining design aspects from 2018.  We added this second design to determine whether 
precision of the population estimate might be improved by modifying the stratification scheme. 

Field Protocols 
We surveyed each PSU 2–4 times, with survey dates being close in time within a PSU (i.e., 
variation in survey dates was greater among than within PSUs).  We did this because we were 
primarily interested in day-to-day variation in counts and wanted to separate this from variation 
in counts among PSUs and over the extended survey season.  We based the start of the survey 
season on anecdotal information on spring dispersal of deer (from wintering areas to spring-
summer-fall range).  To be consistent among years and to match the “modeled population”, it 
was important that deer were on their spring-summer-fall range.  We began surveys 
approximately 1 hour after sunset and we surveyed 1–2 PSUs per night.  We conducted 
surveys with 2-member crews (driver and observer) using extended-cab pickup trucks.  We 



detected deer using FLIR Scout III (FLIR Systems, Inc., Wilsonville, OR) hand-held infrared (IR) 
sensors attached to the rear windows of the vehicle with window mounts.  We viewed images 
on dual computer monitors attached to the front passenger seat using customized mounts.  The 
vehicle’s electrical system supplied power to the monitors.  The observer searched for deer 
along both sides of the survey route within each PSU.  We initially oriented sensors at 45- and 
315-degree angles from the direction of travel, but we adjusted them as needed to account for 
visual obstruction due to variable terrain, woody cover, buildings, etc.  Survey speed ranged 
from 8–48 km/hour depending upon vegetative cover density.  When we identified a deer group 
(≥1 individual), the observer directed the driver to an approximate perpendicular angle (i.e., 90 
or 270 degrees) from the group to minimize sighting distance and counted group size.  Then, 
while the observer shined the animal(s) with a spotlight, the driver measured distance and angle 
to the group using a laser rangefinder and digital protractor, respectively.  We used a real-time, 
moving-map software program (DNRSurvey; Haroldson et al. 2015), coupled to a global 
positioning system receiver and convertible tablet computer, to guide route navigation and 
record survey metrics (e.g., PSU, run [survey replicate], deer and vehicle location, distance, 
bearing, count, cover type) to GIS shapefiles.  Cover type designations included woodland, 
wetland, grassland, pasture, standing crop, harvested crop, other, and unknown classes.  We 
recorded weather data (temperature, wind speed, cloud cover, precipitation) at the beginning, 
middle, and end of each survey route. 
During the winters of 2018-19 and 2019-20, we also conducted helicopter surveys of the study 
area using a quadrat-based design, where quadrats were delineated by Public Land Survey 
(PLS) section (259 ha) boundaries.  We stratified quadrats into 3 density categories (low, 
medium, high) using the local wildlife manager’s knowledge of deer abundance and distribution.  
Using optimal allocation, we randomly selected a spatially balanced sample (Stevens and Olsen 
2004) of 160 plots to survey.  Within each plot, a pilot and 2 observers searched for deer along 
transects spaced 270-m intervals until they were confident all available deer were observed.  To 
maximize sightability, we completed surveys when snow cover measured ≥15 cm and we varied 
survey intensity as a function of cover and deer numbers (Gasaway et al. 1986). 

Data Analysis 
Data truncation 

A useful rule of thumb in distance sampling is to right truncate at least 5% of the data for robust 
estimation of the detection function (Buckland et al. 1993:106).  The 95th percentile of our 
distance data was 284 m in 2018 and 327 m in 2019 (250-m and 500-m buffer surveys 
combined).  We set the truncation distance w = 300 m, which resulted in 3.7% and 6.4% of the 
data being truncated in 2018 and 2019, respectively.  We also considered left truncation 
because the peak in observation distances was consistently away from the road (Figure 2).  
However, the peak likely reflects road avoidance rather than animal movement (e.g., due to 
disturbance, which is unlikely in this case because crews used IR sensors for initial detection).  
Thus, left-truncation methods would not resolve the underlying issue that animals are not 
randomly distributed with respect to the transect line.  Left-truncation at some distance x from 
the road (e.g., 100 m), with rescaling, would improve model fit by creating the desired shoulder 
at distance zero.  However, one would then need to generate a separate ad hoc estimate of 
abundance for the sampling space that is within distance x of the road transect.  Thus, for this 
pilot-study application, it seemed prudent to set left truncation = 0 and focus on evaluating the 
consistency of the detection function g(x).  Although the resulting density estimate is likely 
biased (Stainbrook 2011, Marques et al. 2013), it may still serve as a useful monitoring index if 
the bias is reasonably consistent over space and time. 



Distance-sampling models 

The half-normal and hazard-rate key functions are robust estimating functions and allow the 
inclusion of covariates (Buckland et al. 1993, 2004).  Therefore, we focused on these 2 key 
functions for the initial 2018 analysis.  Our base models included no adjustments or covariates.  
We then added a cosine adjustment to each base model.  Finally, we evaluated 2 covariates 
(with adjustment = NULL) for detection function g(x).  The first covariate, STRATA, was used to 
test whether g(x) varied by deer density strata.  The second covariate, COV2, was an indicator 
variable for tall/dense cover types (grassland, woodland, standing crop, wetland) vs short/open 
cover types (pasture, farmstead, harvested crop, roadsides, other).  Our goal was to determine 
if COV2 could explain additional uncertainty in the detection function, including why g(x) might 
vary among strata.  If COV2 could accomplish the latter, then we could pool distance data over 
strata to generate a more precise detection function while still generating separate density 
estimates for each stratum (i.e., a stratified distance-sampling estimator; Buckland et al. 
1993:99–103, Miller et al. 2019).  Conversely, if g(x) varied significantly by stratum, then we 
would need stratum-specific distance functions. 
Based on what we learned in 2018, we fit all of our 2019 models using a hazard-rate function.  
We started by pooling the 2018 and 2019 datasets (250-m buffer surveys) and fitting some 
simple distance models to determine if there was evidence that g(x) varied significantly by year 
(annual variation), run (among-day variation), stratum, or cover type (binary indicator variable = 
COV2).  Based on what we learned from the pooled-data analysis, we focused on fitting some 
simple distance models to the 2019 dataset.  More specifically, we restricted our analyses to 
data from run 1 (similar to 2018) and used a stratified distance-sampling structure to evaluate 
the effect of COV2 and some new covariates that we measured in 2019 (relative topography 
[low, med, high], activity [lying, standing, moving], % visual obstruction [10 ordinal classes]). 

Sources of variation 

Temporal variation is especially important in this application.  If counts and resulting population 
estimates are highly variable over time (within and among years), then a single-effort (non-
replicated) operational survey might not be reliable.  Conversely, if most of the variation in 
counts is due to among-PSU differences, we could address this through our sampling design 
(e.g., by increasing PSU sample size).  We used ANOVA and linear mixed-effects methods to 
decompose the sampling variance of raw deer counts by PSU and run to determine if run was a 
significant source of variation. We also compared distance-sampling density estimates by year.  
Harvest and population-modeling data suggested the target population was reasonably stable 
during the 2-yr comparison period.  Thus, we expected density estimates from distance 
sampling to be very similar in 2018 and 2019.  Large differences in density estimates would 
likely reflect substantial annual variation in the observation process, which would raise 
questions about the reliability of the method. 

Sampling-design choices 

In 2018, we used a post-stratification analysis to examine an alternative stratification scheme 
based on a 500-m buffer and equal allocation of effort.  However, in this application, the number 
of observations for estimating g(x) is fixed and sample allocation is confounded with the 
stratification scheme.  Thus, a post-stratification analysis has limited utility for answering the 
primary question of interest: “which stratification scheme and allocation of effort will produce the 
most precise estimate?”  Obtaining a reliable answer to this question requires a more 
sophisticated analysis that involves simulating the distribution of deer and detection distances in 
a computer-generated landscape (sensu Buckland et al. 2004:226–228).  In 2019, we collected 
independent survey data from both a 250- and 500-m buffer design, which allowed us to 
construct simulated distance-sampling datasets (deer detections) drawn randomly from all 



possible PSUs and road segments in the study area.  Our focus was to examine the relative 
precision of the density estimates rather than to quantify bias because we did not know true 
density.  That is, we only had estimates of 1) the distribution of perpendicular sighting distances, 
2) mean encounter rate (deer groups per survey mile) and variance by stratum, and 3) mean 
group size and variance.  We simulated the entire sampling and model-fitting process 500 times 
for both the 250- and 500-m buffer designs using n(PSU) = {15, 20, 25, 30} and allocation of 
secondary sample units (road segments) to the high stratum = {0.35, 0.50, 0.65}.  We 
summarized the results graphically to illustrate how expected precision varied as a function of 
sampling-design choices. 
RESULTS AND DISCUSSION 

Summary Statistics 
2018 (250-m buffer surveys) 

We completed 48 surveys on 15 PSUs during 23 nights from 1 April to 6 May 2018.  Median 
start time was 2058 hours (0.9 hours post-sunset) and mean survey duration was 4.1 hours.  
We surveyed all PSUs 3 times and we surveyed 3 PSUs 4 times.  Within each PSU, we 
completed 3 runs within a maximum 8 days and all runs within 35 days.  In total, we detected 
931 deer groups (clusters) consisting of 3,194 individual deer.  Of the 931 groups detected, 84% 
were along road segments in the high-density stratum.  We observed a similar number of deer 
in runs 1–3 (total deer/run for all PSUs = 1,038, 1,002, and 1,082, respectively).  Mean group 
size (observed) was 4.1 in the low-density stratum (range = 1–41, median = 3), 3.3 in the high-
density stratum (range =1–42, median = 2), and 3.4 overall.  Group size was not correlated with 
distance (r = 0.025, 95% CI = -0.039 to 0.089), which suggests we may not need an adjustment 
for group-size bias in our distance-sampling estimator (a common issue in distance sampling).  
In the low stratum, 62% of group detections were located in harvested crop fields.  Conversely, 
only 42% of detections were in harvested crop fields in the high stratum, with relatively more 
detections in grasslands (24% vs. 13%) and woodlands (12% vs. 8%).  For deer groups 
observed along low-density road segments, the mean distance to a high-strata deer-cover 
polygon was 446 m (median = 345 m, range = 0–2,387 m).  As expected, mean perpendicular 
sighting distance was greater in the low stratum (135 m; range = 0–679) compared to the high 
stratum (108 m; range = 0–503).  Additionally, the highest density of deer detections occurred 
~100 m from the road (Figure 2A).  We observed a similar pattern in both strata. This could 
result in a biased population estimate because the mean probability of detection (the area under 
the detection curve) can be difficult to estimate accurately if objects are not distributed randomly 
with respect to transect lines, as potentially indicated by a distribution of detection distances that 
increases rather than decreases from the transect line.  This is a common and valid criticism of 
convenience sampling from roadways.  However, if the bias is consistent over space and time, 
then the distance-sampling estimator might still generate a useful long-term and large-scale 
monitoring metric. 

2019 (250-m buffer surveys) 

We completed 45 surveys on 15 PSUs during 20 nights from 2 April to 2 May 2019.  Median 
start time was 2110 hours (1.0 hours post-sunset) and mean survey duration was 3.5 hours.  
Within each PSU, we completed 3 runs with 2 surveys occurring a median of 1 day apart (range 
= 1–4) and the third survey occurring a median of 20 days (range = 10–23) after the first survey.  
We detected 830 deer groups (clusters) consisting of 2,710 individual deer.  Of the 830 groups 
detected, 83% were along road segments in the high-density stratum.  The total deer count 
increased with each run (864, 891, 955), but mean group size was similar among runs (3.4, 3.5, 
2.9) and strata (3.6 in low vs. 3.2 in high).  The overall group size was 3.3 deer (range = 1–21).  
Group size was weakly positively correlated with distance (r = 0.138, 95% CI = 0.071 to 0.204).  



In the low stratum, 63% of group detections were located in harvested crop fields.  Conversely, 
only 37% of detections were in harvested crop fields in the high stratum, with relatively more 
detections in grasslands (23% vs. 7%) and woodlands (12% vs. 8%).  For deer groups observed 
along low-density road segments, the mean distance to a high-strata deer-cover polygon was 
388 m (median = 254 m, range = 0–2,666).  The mean perpendicular sighting distance was 
greater in the low stratum (136 m; range = 1–537) compared to the high stratum (109 m; range 
= 0–562).  Similar to 2018, the distribution of detection distances increased from the road to 
~100 m and then decreased (Figure 2B). We observed a similar pattern in both strata. 

2019 (500-m buffer surveys) 

We completed 22 surveys on 10 PSUs during 14 nights from 6 April to 3 May 2019.  Median 
start time was 2103 hours (0.9 hours post-sunset) and mean survey duration was 3.3 hours.  All 
PSUs were surveyed 2 times and 2 PSUs were surveyed 3 times, with the surveys occurring a 
median of 1 day apart (range = 1–12).  We detected 318 deer groups (clusters) consisting of 
1,076 individual deer.  Of the 318 groups detected, 91% were along road segments in the high-
density stratum.  The total deer count was slightly higher for the first run (594 vs. 482), but mean 
group size was similar among runs (3.5 vs. 3.2) and strata (2.8 in low vs. 3.4 in high).  The 
overall group size was 3.4 deer (range = 1–21).  Group size was weakly positively correlated 
with distance (r = 0.148, 95% CI = 0.038 to 0.254).  Compared to the 250-m buffer surveys, 
there were fewer meaningful differences in the distribution of deer-group observations among 
cover types when using the 500-m buffer.  For example, 59% and 46% of group detections in 
the low and high strata, respectively, were located in harvested crop fields.  For deer groups 
observed along low-density road segments, the mean distance to a high-strata deer-cover 
polygon was 484 m (median = 390 m, range = 0–1,945).  The mean perpendicular sighting 
distance was greater in the low stratum (125 m; range = 29–540) compared to the high stratum 
(116 m; range = 0–608).  Again, the distribution of detection distances increased from the road 
to ~100 m and then decreased (Figure 2C); the pattern was similar in both strata. 

Variability in Deer Counts 
Among-plot variation accounted for 80–95% of total variation in raw deer counts.  Thus, 
variation in counts within PSUs (due to survey day) was relatively small compared to variation 
among PSUs.  This is important because large day-to-day variation in the observation process 
could result in an unreliable estimator (e.g., one that is not highly repeatable).  Conversely, we 
can address large among-plot variation through design choices such as increasing the sample 
of PSUs.   

Model Comparisons and Density Estimates 
2018 (250-m buffer, run 1) 

Raw deer counts and density estimates did not vary appreciably by run. Therefore, we focused 
on data from run 1 (i.e., similar to an operational survey).  Our top-supported model (lowest AIC) 
was based on the hazard-rate key function and included the COV2 covariate (Table 1).  Models 
with STRATA as a covariate did not fit the data well, which suggests that g(x) did not vary 
significantly between the 2 strata.  The hazard-rate detection function is described by the 
following equation: 

𝑔𝑔(𝑥𝑥) = 1 − exp [−(𝑥𝑥/𝜎𝜎)−𝑏𝑏] 
where the parameter b is a shape parameter, σ is a scale parameter, and x is the perpendicular 
sighting distance (which may be standardized).  Covariates enter the detection function via the 
scale parameter (e.g., 𝜎𝜎 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝐶𝐶𝐶𝐶2).  The detection function parameters from our top 
model were 𝑏𝑏� = 1.000 (SE = 0.188), �̂�𝛽0 = 4.739 (SE = 0.138), and �̂�𝛽1 = 0.382 (SE = 0.141).  



Given these parameters, mean detection probability was 0.602 (SE = 0.037, CV = 6.1%), which 
describes the area under the detection curve (e.g., Figure 3).  When adjusted for the covariate 
COV2, the mean predicted probability of detection was 0.596 for deer located in tall/dense cover 
types and 0.621 for deer in short/open cover types.  The density estimate from our top model 
was 8.2 deer/mi2 (95% CI = 5.8–11.7; Table 1).  However, density estimates from the other 
models were similar (Table 1).  More specifically, the choice of a key function and g(x) 
covariates did not appreciably effect the density estimate.  Likewise, the density estimates when 
data from each stratum were analyzed separately (not shown) were nearly identical, which 
supports the decision to use a stratified estimator where data are pooled across strata to 
estimate g(x). 

Pooled data (2018 and 2019, 250-m buffer, runs 1-3) 

As in 2018, the detection function g(x) varied as a function of COV2, our binary indicator 
variable for cover type (tall vs short).  Conversely, we failed to find evidence that g(x) varied by 
year, run, or strata (Table 2).  Models based on pooled data were not useful for predicting deer 
density, but helped guide the 2019 analysis. 

2019 (250-m buffer, run 1) 

We focused on data from run 1, which is consistent with an operational survey and our 2018 
and pooled-data analyses.  Our top models for 2019 included COV2, but 5 additional models 
had ΔAIC values <2, including the null (intercept only) model (Table 3).  This may partly reflect 
the challenge of quantifying the suite of interacting factors that likely influence variation in the 
detection process (i.e., in addition to perpendicular sighting distance).  This is especially true in 
this application because detection is based on IR imaging rather than the usual ocular process 
(e.g., where visual obstruction is often an important and simple detection covariate).  However, 
more importantly, estimates of deer density did not vary appreciably among models (Table 3). 

2019 (500-m buffer, run 1) 

For consistency, we again focused on data from run 1 for estimating deer density.  Because we 
had a smaller dataset (n = 10 PSUs), attempts to examine detection covariates were 
uninformative.  Therefore, we used the COV2 model for consistency.  The estimated deer 
density was 8.5 deer/mi2 (95% CI = 5.5–13.2; Table 4).  For a more direct comparison, we used 
data from the same 10 PSUs to refit the 250-m buffer model (Table 4).  The estimated deer 
density from this model was 8.8 deer/mi2 (95% CI = 6.1–12.7).  Thus, the slightly higher density 
estimates probably reflect sampling variation (i.e., due to surveying a subset of PSUs). 

2019 and 2020 (aerial survey) 

The deer density estimates from our winter aerial surveys were both the same and equaled 6.5 
deer/mi2 (95% CI = 4.9–8.1 in 2019; 95% CI = 5.1–7.9 in 2020; MNDNR, unpublished data), 
which is slightly lower than distance-sampling estimates from 2018 and 2019.  This is consistent 
with findings by others, where distance sampling tended to generate higher density estimates 
compared to other methods (Beaver et al. 2014, Kaminski et al. 2019).  However, from a 
management perspective, the difference is negligible, especially if trends from these metrics are 
strongly positively correlated. 

Expected Precision vs. Design Choices 
Precision of density estimates from our 250-m buffer design were reasonably good (CV = 17–
18%), but this is likely optimistic because it may not adequately reflect variation due to survey 
date.  Not surprisingly, precision was much lower (mean CV = 25%) when we bootstrapped 
distance data using PSU and run (surrogate for survey date).  This is probably a more realistic 
expectation of precision for an operational survey with a 250-m buffer, n = 15 PSUs, and 



approximately equal allocation of survey effort in each stratum.  A common target level of 
desired precision for management surveys is CV ≈ 13%.  To achieve this level of precision with 
our current design (250-m buffer and 50:50 allocation) and assuming a single (non-replicated) 
operational survey would require increasing the number of PSUs from 15 to ~25.  However, 
choices related to the stratification scheme and allocation of secondary sampling units may be 
important too.  Our Monte Carlo simulation indicated that the 250-m buffer design with 50:50 
allocation (low:high) of secondary units resulted, on average, in similar precision to the 500-m 
buffer design with 35:65 allocation (Figure 4).  Conversely, the 250-m buffer with 35:65 
allocation and the 500-m buffer with 50:50 allocation tended to produce more imprecise density 
estimates.  Increasing the buffer distance from 250 m to 500 m resulted in approximately equal 
stratum weights (low = 54% of study area, high = 46% of study area), but the low stratum now 
had significantly fewer deer-group detections (11 vs. 39) and very low estimated densities (1.1 
deer/mi2; see Table 4).  Thus, it makes sense to put more sampling effort into the high stratum 
to increase precision of the estimate. However, with so few deer-group observations in the low 
stratum, it becomes difficult to determine whether g(x) varies by stratum and one must pool data 
over strata to estimate g(x).  Conversely, the low stratum in the 250-m buffer design is relatively 
large (70% of study area).  Deer densities are still relatively low (3.7–4.2 deer/mi2) in the low 
stratum (Table 4), but because of its size, it is important to put relatively more effort into 
surveying the low stratum.  Thus, in the 250-m design, the 50:50 allocation generates a more 
precise estimate and provides more data to evaluate potential variation in g(x).  However, it is 
important to note that we are still putting relatively more effort into the high stratum with 50:50 
allocation because the high stratum only comprises 30% of the sampling frame.  These 
tradeoffs are not necessarily straightforward.  However, we now have 2 years of data from the 
250-m buffer design.  Therefore, for consistency, we plan to continue using the 250-m buffer 
design with 50:50 allocation of secondary sampling units. 

CONCLUSIONS 
The results from the first 2 years of the pilot study are encouraging.  We identified and resolved 
several data collection and survey-design challenges and developed detailed field protocols to 
ensure consistency in data collection.  Most importantly, density estimates were slightly higher 
but within a reasonable range of the aerial survey estimate, and annual variation in g(x) and the 
density estimates was negligible.  Furthermore, we were able to use the first 2 years of data to 
explore questions about sampling-design tradeoffs.  Another year of data collection on the same 
study area will strengthen our inferences and help determine if 1) g(x) and the distribution of 
deer relative to roads and cover is relatively consistent over time and space, and 2) the effect of 
variation in spring dispersal can be minimized by using observational cues to inform the start of 
the survey. 
ACKNOWLEDGMENTS 
We thank M. Diamond, G. Gehring, E. Jones, T. Klinkner, M. Orr, A. Strzelczyk, B. Wagner, and 
J. Westfield for conducting the surveys.  N. Davros reviewed an earlier draft of this report.  This 
project was funded in part by the Wildlife Restoration (Pittman-Robinson) Program. 
LITERATURE CITED 
Anderson, D. R., J. L. Laake, B. R. Crain, and K. P. Burnham. 1979. Guidelines for line transect 

sampling of biological populations. Journal of Wildlife Management 43:70–78. 
Beaver, J. T., C. A. Harper, R. E. Kissell Jr, L. I. Muller, P. S. Basinger, M. J. Goode, F. T. Van 

Manen, W. Winton, and M. L. Kennedy. 2014. Aerial vertical-looking infrared imagery to 
evaluate bias of distance sampling techniques for white-tailed deer. Wildlife Society 
Bulletin 38:419–427. 



Buckland, S. T., D. R. Anderson, K. P. Burnham, and J. L. Laake. 1993. Distance sampling: 
estimating abundance of biological populations. Chapman and Hall, London, reprinted 
1999 by RUWPA, University of St. Andrews, Scotland. 

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas. 
2004. Advanced distance sampling: estimating abundance of biological populations. 
Oxford University Press, Oxford, United Kingdom. 

Burnham, K. P., D. R. Anderson, and J. L. Laake. 1980. Estimation of density from line transect 
sampling of biological populations. Wildlife Monographs 72. 

Collier, B. A., S. S. Ditchkoff, J. B. Raglin, and J. M. Smith. 2007. Detection probability and 
sources of variation in white-tailed deer spotlight surveys. Journal of Wildlife Management 
71:277–281. 

DeYoung, C. A. 2011. Population dynamics. Pages 147–180 in D. G. Hewitt, editor. Biology and 
management of white-tailed deer. CRC Press, Boca Raton, Florida, USA. 

Focardi, S., A. M. De Marinis, M. Rizzotto, and A. Pucci. 2001. Comparative evaluation of 
thermal infrared imaging and spotlighting to survey wildlife. Wildlife Society Bulletin 
29:133–139. 

Gasaway, W. C., S. D. Dubois, D. J. Reed, and S. J. Harbo. 1986. Estimating moose population 
parameters from aerial surveys. Biological Papers of the University of Alaska 22, 
Fairbanks, Alaska, USA. 

Haroldson, B. S., R. G. Wright, and C. Pouliot. 2015. DNRSurvey User Guide 2.30.01.  
<http://www.dnr.state.mn.us/mis/gis/DNRSurvey/DNRSurvey.html>. 

Kaminski, D. J., T. M. Harms, and J. M. Coffee. 2019. Using spotlight observations to predict 
resource selection and abundance for white-tailed deer. Journal of Wildlife Management 
83:1565–1580. 

Marques, T. A., S. T. Buckland, R. Bispo, and B. Howland. 2013. Accounting for animal density 
gradients using independent information in distance sampling surveys. Statistical Methods 
and Applications 22:67–80. 

Marques, T. A., S. T. Buckland, D. L. Borchers, D. Tosh, and R. A. McDonald. 2010. Point 
transect sampling along linear features. Biometrics 66:1247–1255. 

McCullough, D. L. 1982. Evaluation of night spotlighting as a deer study technique. Journal of 
Wildlife Management 46:963–973. 

McShea, W. J., C. M. Stewart, L. Kearns, and S. Bates. 2011. Road bias for deer density 
estimates at 2 national parks in Maryland. Wildlife Society Bulletin 35:177–184. 

Miller, D. L., E. Rexstad, L. Tomas, L. Marshall, and J. L. Laake. 2019. Distance sampling in R.  
Journal of Statistical Software 89:1–28. 

Mitchell, W. A. 1986. Deer spotlighting census: section 6.4.3, U.S. Army Corp of Engineers 
wildlife resources management manual. U.S. Army Engineer Waterways Experiment 
Station Technical Report EL–86–53, Vicksburg, Mississippi, USA. 

R Core Team.  2020. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. <https://www.R-project.org/>, accessed 15 May 
2020. 



Stainbrook, D. P. 2011. Methods of estimating white-tailed deer abundance at Gettysburg 
National Military Park: testing assumptions of distance sampling. Thesis, School of Forest 
Resources, Pennsylvania State University, University Park, USA. 

Stevens, D. L. Jr., and A. R. Olsen. 2004. Spatially balanced sampling of natural resources. 
Journal of the American Statistical Association 99:262–278. 

 
  



Table 1. Distance sampling models used to evaluate roadside surveys of white-tailed deer in southern Minnesota, fit to the 
2018 dataset.  Data were collected during April and early May. For all models, we restricted survey data to the initial run 
(replicate) of the 15 primary sampling units, after right truncation (300 m).  Analysis was restricted to the half-normal (HN) 
and hazard-rate (HR) key functions.  Covariates included deer density strata (STRATA = low, high) and tall (i.e., grassland, 
woodland, standing crops, wetland) vs short (i.e., pasture, farmstead, harvested crops, roadsides, other) cover types 
(COV2).  Number of model parameters (K), Akaike’s Information Criterion (AIC) values, change in AIC values relative to the 
top model (ΔAIC), AIC weights (ω), log likelihood (LL), density estimates (deer/mi2), and 95% confidence intervals (CI) are 
also presented. 

Model Key function Covariates K AIC ΔAIC ω LL Density 95% CI 

M7 HR ~COV2 3 3103.0 0.0 0.815 -1548.5 8.2 5.8-11.7 

M8 HR ~STRATA 3 3107.1 4.1 0.106 -1550.5 8.1 5.7-11.6 

M5 HR ~1 2 3109.1 6.1 0.039 -1552.5 8.3 5.7-12.0 

M3 HN ~COV2 2 3110.1 7.1 0.023 -1553.1 8.6 6.1-12.3 

M6 HR+Cos2 ~1 3 3111.1 8.1 0.014 -1552.5 8.3 5.3-13.0 

M2 HN+Cos2 ~1 2 3115.9 12.9 0.001 -1555.9 8.0 5.3-12.0 

M1 HN ~1 1 3116.2 13.2 0.001 -1557.1 8.7 6.1-12.5 

M4 HN ~STRATA 2 3116.4 13.4 0.001 -1556.2 8.5 6.0-12.1 

 

 

 

 

 

 

Table 2.  Distance sampling models used to evaluate roadside surveys of white-tailed deer in southern Minnesota, fit to the 
2018-2019 pooled dataset.  Data were collected during April and early May. For all models, we restricted data to the 250-m 
buffer surveys, after right truncation (300 m).  Analysis was restricted to the hazard-rate (HR) key function.  Covariates 
included year (YEAR), survey replicate (RUN), deer density strata (STRATA = low, high), and tall (i.e., grassland, woodland, 
standing crops, wetland) vs short (i.e., pasture, farmstead, harvested crops, roadsides, other) cover types (COV2).  Number 
of model parameters (K), Akaike’s Information Criterion (AIC) values, change in AIC values relative to the top model (ΔAIC), 
AIC weights (ω), and log likelihood (LL) are also presented. 

Model Key function Covariates K AIC ΔAIC ω LL 

P5 HR ~COV2 3 17930 0.0 0.999 -8962.0 

P4 HR ~STRATA 3 17945 14.5 0.001 -8969.3 

P1 HR ~YEAR 3 17960 30.4 0.000 -8977.2 

P2 HR ~RUN 4 17961 30.5 0.000 -8976.3 

P0 HR ~1 2 17961 30.9 0.000 -8978.4 

P3 HR ~YEAR * RUN 7 17963 33.4 0.000 -8974.7 
 

 

 

 

 

 

 



Table 3. Distance sampling models used to evaluate roadside surveys of white-tailed deer in southern Minnesota fit to the 
2019 dataset.  Data were collected during April and early May. For all models, we restricted survey data to the initial run 
(replicate) of the 15 primary sampling units of the 250-m surveys, after right truncation (300 m).  Analysis was restricted to 
the hazard-rate (HR) key function.  Covariates included tall (i.e., grassland, woodland, standing crops, wetland) vs short (i.e., 
pasture, farmstead, harvested crops, roadsides, other) cover types (COV2), relative topography (TOPO = low, medium, 
high), deer activity (ACTIVITY = lying, standing, moving), and % visual obstruction class (OBSTR).  Number of model 
parameters (K), Akaike’s Information Criterion (AIC) values, change in AIC values relative to the top model (ΔAIC), AIC 
weights (ω), log likelihood (LL), density estimates (deer/mi2), and 95% confidence intervals (CI) are also presented. 

Model 
Key 

function Covariates K AIC ΔAIC ω LL Density 95% CI 

M1 HR ~COV2 3 2647.5 0.0 0.219 -1320.7 8.0 5.7-11.3 

M6 HR ~COV2+TOPO 5 2648.2 0.7 0.155 -1319.1 8.1 5.7-11.5 

M7 HR ~COV2+ACTIVITY 5 2648.5 1.1 0.130 -1319.3 8.1 5.7-11.4 

M2 HR ~1 2 2649.3 1.8 0.088 -1322.6 8.0 5.6-11.5 

M8 HR ~COV2+OBSTR 4 2649.3 1.9 0.087 -1320.7 8.0 5.7-11.3 

M5 HR ~COV2+TOPO+ACTIVITY 7 2649.3 1.9 0.085 -1317.7 8.1 5.7-11.5 

M9 HR ~TOPO 4 2650.0 2.5 0.061 -1321.0 8.1 5.6-11.7 

M4 HR ~COV2+TOPO+OBSTR 6 2650.1 2.7 0.058 -1319.1 8.1 5.7-11.5 

M11 HR ~ACTIVITY 4 2650.4 2.9 0.051 -1321.2 8.1 5.7-11.5 

M3 HR ~COV2+TOPO+OBSTR+ACTIVITY 8 2651.2 3.8 0.033 -1317.6 8.1 5.7-11.5 

M10 HR ~OBSTR 3 2651.3 3.8 0.033 -1322.6 8.0 5.6-11.5 
 

 

 

 

Table 4.  Top distance sampling models by year and buffer size used to evaluate roadside surveys of white-tailed deer in 
southern Minnesota, spring 2018 and 2019.  For all models, we restricted survey data to the initial run (replicate) of the 10 or 
15 primary sampling units (PSU), after right truncation (300 m).  Summary statistics include number of PSU, stratum weight 
(proportion of study area defined as low deer density [Wt (L)]), transect length (Tran [mi]) by deer density strata (L=low, 
H=high), number of deer groups observed (Groups) by strata, mean detection probability (P), density estimates (deer/mi2) by 
strata, 95% confidence intervals (CI), and coefficient of variation(CV). 

Year 
 Buffer 

(m) PSU 
Wt 
(L) 

Tran 
(L) 

Tran 
(H) 

Groups 
(L) 

Groups 
(H) g(x) P 

Density 
(L) 

Density 
(H) 

Density 
(Total) 95% CI CV (%) 

2018 250 15 0.70 196 193 46 234 HR(COV2) 0.602 3.7 19.0 8.2 5.8-11.7 17.6 

2019 250 15 0.70 196 189 50 191 HR(COV2) 0.537 4.1 17.2 8.0 5.7-11.3 17.1 

2019 250 10 0.70 135 130 39 155 HR(COV2) 0.558 4.2 19.7 8.8 6.1-12.7 17.8 

2019 500 10 0.54 139 144 11 143 HR(COV2) 0.532 1.1 17.2 8.5 5.5-13.2 20.1 
  



 
Figure 1.  Sampling frame (deer permit areas 252, 253, 296, 299), primary sampling units (PSU; 
hexagons), and secondary sampling units (road segments; red = high-density stratum, blue = 
low-density stratum) for roadside distance-sampling surveys of white-tailed deer in southern 
Minnesota during A) spring 2018 and 2019 (250-m buffer surveys) and B) spring 2019 (500-m 
buffer surveys).  Grey areas denote deer-cover polygons (>2 ac) consisting of woodland, 
grassland, and wetland cover types with a 250-m or 500-m buffer. 
 



 
Figure 2.  Distribution of perpendicular sighting distances from roadside distance-sampling 
surveys of white-tailed deer in southern Minnesota during A) spring 2018 (250-m buffer 
surveys), B) spring 2019 (250-m buffer surveys), and C) spring 2019 (500-m buffer surveys).  
Data include distance measurements collected during 2–4 replicate surveys of 10–15 primary 
sampling units. 
 

 
Figure 3. Estimated detection function from our top pooled distance-sampling model overlaid on 
a histogram of deer-group observations as a function of perpendicular sighting distance during 
roadside surveys of white-tailed deer in southern Minnesota, spring 2018 and 2019.  The solid 
curved line denotes the average detection function.  The lower line of circles denotes the 
detection curve for deer groups observed in tall/dense cover types (grassland, woodland, 
standing crops, wetland) and the upper line of circles denotes the detection curve for deer 
groups observed in short/open cover types (pasture, farmstead, harvested crops, roadsides, 
other). 
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Figure 4.  Expected precision of population estimates as a function of sample size (number of 
primary sampling units; PSU), stratification scheme (250- vs. 500-m buffer around deer-habitat 
polygons), and allocation of secondary sampling units (road segments) to strata.  Estimates 
were derived from a Monte Carlo simulation with 500 replicates based on data from roadside 
distance-sampling surveys of white-tailed deer in southern Minnesota, spring 2018 and 2019. 
The gray dashed horizontal line denotes a common target level of precision for management 
surveys. 
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