LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL

David E. Stallknecht2, Clara Kienzle-Dean2,3, Nick Davis-Fields2, Christopher S. Jennelle4, Andrew S. Bowman5, Jacqueline M. Nolting5, Walter M. Boyce6, James M. Crum7, Jefferson J. S. Santos6, Justin D. Brown9, Diann J. Prosser10, Susan E. W. De La Cruz11, Joshua T. Ackerman12, Michael L. Casazza12, Scott Krauss13, Daniel R. Perez2, Andrew M. Ramey14, Rebecca L. Poulson2

ABSTRACT

During 2014, highly pathogenic (HP) influenza A viruses (IAV) of the A/Goose/Guangdong/1/1996 lineage (GsGD-HP-H5) were detected in domestic poultry and wild birds in Canada and the United States. These clade 2.3.4.4 GsGD-HP-H5 viruses included reassortants possessing North American lineage gene segments; were detected in wild birds in the Pacific, Central, and Mississippi flyways; and caused the largest HP IAV outbreak in poultry in United States history. To determine if an antibody response indicative of previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV could be detected in North American wild waterfowl sampled before, during and after the 2014 - 2015 outbreak, sera from 2793 geese and 3725 ducks were tested by bELISA and hemagglutination inhibition tests using both clade 2.3.4.4 GsGD-HP-H5 and North American lineage low pathogenic (LP) H5 IAV antigens. We detected an antibody response meeting a comparative titer-based criteria (two dilution difference in titer) for previous infection with clade 2.3.4.4 GsGD-HP-H5 IAV in only five birds, one blue-winged teal (Spatula discors) sampled during the outbreak and three mallards (Anas platyrhynchos) and one Canada goose (Branta canadensis) sampled during the post-outbreak period. These serological results are consistent with the spatiotemporal extent of the outbreak in wild birds in North America during 2014 and 2015 and limited exposure of waterfowl to GsGD-HP-H5 IAV, particularly in the central and eastern United States.

1Journal of Wildlife Diseases: in press.
2Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 D.W. Brooks Drive, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, USA
3ArunA Biomedical, 425 River Road, Athens, Georgia, 30602. USA
4Minnesota Department of Natural Resources, Wildlife Health Program, 5463 West Broadway Ave, Forest Lake, Minnesota 55025, USA
5The Ohio State University, Department of Veterinary Preventive Medicine, 1920 Coffey Road, Columbus, Ohio 43210, USA
6School of Veterinary Medicine, Wildlife Health Center, University of California Davis, One Shields Avenue, Davis, California 95616, USA
7West Virginia Division of Natural Resources, Wildlife Resources Section, Elkins, West Virginia 26241, USA
8Poultry Disease Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602 USA
9Pennsylvania Game Commission, Animal Diagnostic Laboratory, Wiley Lane, University Park, Pennsylvania 16801, USA
10U.S. Geological Survey, Patuxent Wildlife Research Center, Beltsville Lab, 12100 Beech Forest Road, Laurel, Maryland 20708, USA
11U.S. Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Drive, Vallejo, California 94592, USA
12U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, California 95620, USA
13Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
14U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AL 99508, USA