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SUMMARY OF FINDINGS 
This project was the first year of a 2-year pilot study designed to evaluate the feasibility of using 
roadside distance-sampling (DS) surveys to generate a reliable and cost-effective population 
monitoring metric for white-tailed deer (Odocoileus virginianus) in Minnesota’s farmland and 
transition zones.  In spring 2018, we surveyed 15 primary sampling units (PSUs) ≥3 times to 
assess temporal variation in deer population estimates; we observed a similar number of deer 
across replicates 1–3 (total deer/replicate for all PSUs = 1,038, 1,002, and 1,082, respectively).  
PSUs included high- and low-density road segments based upon juxtaposition to deer cover.  
Mean perpendicular sighting distance was greater in the low-density stratum (135 m) compared 
to the high-density stratum (108 m).  As expected in convenience sampling from roadways, deer 
detections spiked away from the road, which likely reflected road avoidance rather than animal 
movement.  Among-plot variation accounted for approximately 89% of total variation in raw deer 
counts.  Thus, variation due to survey day (run) was relatively small compared to variation in 
counts among PSUs.  Among the 8 DS models fit to the survey data, the 2 best-supported 
models included a covariate for relative visual obstruction (RVO).  Models with strata as a 
covariate did not fit the data well, which suggests that the detection function [g(x)] did not vary 
significantly among the 2 strata.  The deer density estimate from the top model was 8.6 deer/mi2 
(95% CI = 6.1–12.2).  Estimates from the other models were similar.  Likewise, the density 
estimate when data from each stratum were analyzed separately was nearly identical (𝐷𝐷� = 8.5, 
~95% CI = 5.5–11.3), which supports the decision to use a stratified DS estimator where data 
are pooled across strata to estimate g(x).  The density estimate from a winter aerial survey (𝑥𝑥 = 
6.4, 95% CI = 5.1–7.7) was comparable.  Precision of the density estimate from our top model 
was reasonable (CV = 17.1%), but likely optimistic because it may not adequately reflect 
variation due to survey date.  Precision was much lower (mean CV = 24.8%) when we 
bootstrapped distance data using PSU and run (surrogate for survey date).  Overall, density 
estimates seem reasonable and precision was better than expected.  We have identified and 
resolved several data collection and survey-design challenges and have developed detailed 
field protocols to ensure consistency in data collection.  Another year of data collection will be 
helpful for evaluating the ultimate question of whether a DS metric can be effectively and 
reliably used to help monitor white-tailed deer populations in Minnesota’s farmland and 
transition areas. 
INTRODUCTION 
White-tailed deer (Odocoileus virginianus) hunting season recommendations should use the 
most reliable information available to determine the status of the deer population relative to 
goal, while prioritizing objectivity.  Because hunting season recommendations are made 
annually, this information needs to be collected on an annual basis.  Currently, the only 
objective annual data the Minnesota Department of Natural Resources (MNDNR) collects at the 



deer permit area (DPA) scale is winter severity, hunter-reported harvest, and hunter effort.  
Although these data can provide inference about population trends, they require subjective user 
inputs that can result in incorrect inference.  Objectivity and reliability of harvest-based models 
can be improved by collecting annual information to model variation of non-harvest vital rate 
parameters or any other model parameters that vary annually (e.g., harvest reporting rates).  A 
potentially more cost-efficient and alternative approach would be to collect annually recurrent 
information to independently estimate population trends.  Winter aerial surveys can provide this 
index, but financial and environmental (e.g., snow cover, conifer cover) constraints limit their 
use to every 5- to 10-years for each DPA; moreover, they are not considered reliable across 
western Minnesota where seasonal migration is suspected to violate DPA closure assumptions 
between winter surveys and fall hunting seasons.  Several Midwestern states have explored the 
use of recurrent roadside observation surveys for monitoring deer population trends (Rolley et 
al. 2016).  Variation in the observation process, possibly as a function of annual variation in deer 
distribution and resource use, has limited the reliability of these indices.  DS methods can be 
used to statistically model the detection probability and calibrate annual variation in the 
observation process.  However, problems have been identified with sampling deer from 
roadside surveys.  Further research is needed to identify an optimal sampling design and 
evaluate robustness of roadside observation surveys to assumption violations. 
Our objective was to evaluate the feasibility of using roadside DS surveys to generate a reliable 
(potentially biased but reasonably precise and repeatable) and cost-effective population 
monitoring metric for white-tailed deer in Minnesota’s farmland and transition zones. 
METHODS 

Sampling Design 
The 2,787-mi2 sampling frame consisted of 4 DPAs (252, 253, 296, and 299) in southern 
Minnesota (Figure 1).  We used a geographic information system (GIS; ArcGIS v. 10.4, 
Environmental Systems Research Institute, Inc., Redlands, CA) to stratify land-cover within the 
sampling frame into “high” and “low” strata based upon expected deer density.  We defined 
high-density polygons as being within a 250-m buffer of woodland, grassland (permanent to 
semi-permanent, excluding pasture), and wetland cover classes.  Low-density polygons were 
the remaining areas (e.g., agricultural land, open water, and urban/developed areas).  Data 
sources for deer-density polygons included Minnesota Land Cover Classification and 
Impervious Surface Area by Landsat and Lidar: 2013 update – Version 2 (woodlands), a 
compilation of public/private grassland layers (e.g., Waterfowl Production Areas, Wildlife 
Management Areas, conservation easements, etc.), and the National Wetlands Inventory for 
Minnesota (wetlands).  We then overlaid the sampling frame with a hexagonal grid, with 
township-sized hexagons (size = 36.1 mi2) having >50% of their area inside the sampling frame 
serving as PSUs.  We chose this size because it represented the approximate area that could 
be surveyed within a 4–6 hr period each night.  We randomly selected a spatially balanced 
sample (Stevens and Olson 2004) of 16 PSUs, but discarded 1 PSU that was on the edge of the 
sampling frame and contained the city of Mankato.  We then used a GIS to identify all 
secondary (e.g., county and township) roads within each PSU, defined by juxtaposition to deer-
density strata (high, low).  Finally, we randomly selected road segments (pooling roads >0.25 mi 
from all PSUs) using an equal allocation of effort by stratum (~200 mi per stratum).  Thus, each 
PSU contained a combination of high- and low-strata road segments.  We derived road data 
from the Roads of Minnesota, 2012 database.  For the purposes of the pilot study, we were 
interested in obtaining sufficient observations in the low stratum to make informed decisions 
about the detection process and the potential to modify the stratification and allocation scheme; 
however, we envision putting more sampling effort into the high-density stratum in an 
operational survey. 



Field Protocols 
We surveyed each PSU 3–4 times, with repeated survey dates being close in time within a PSU 
(i.e., variation in survey dates was greater among than within PSUs).  We did this to evaluate 
daily variation in counts while minimizing the confounding effect of among-PSU differences in 
counts.  We based the start of the survey season on anecdotal information on spring dispersal 
of deer (from wintering areas to spring-summer-fall range).  To be consistent among years and 
to match the “modeled population”, it was important that deer were on their spring-summer-fall 
range.  We began surveys approximately 1 hr after sunset and we surveyed 1–2 PSUs per 
night.  We conducted surveys with 2-member crews (driver and observer) using extended-cab 
pickup trucks.  We detected deer using FLIR Scout III (FLIR Systems, Inc., Wilsonville, OR) 
hand-held infrared (IR) sensors attached to the rear windows of the vehicle with window 
mounts.  We viewed images on dual computer monitors attached to the front passenger seat 
using customized mounts.  Monitor power was supplied via the vehicle’s electrical system.  The 
observer searched for deer along the survey route within each PSU.  We initially oriented 
sensors at 45- and 315-degree angles from the direction of travel, but we adjusted them as 
needed to account for visual obstruction due to variable terrain, woody cover, buildings, etc.  
Survey speed ranged from 5–30 mph depending upon vegetative cover density.  When a deer 
group (≥1 animal) was identified, the observer directed the driver to an approximate 
perpendicular angle (i.e., 90 or 270 degrees) from the group to minimize sighting distance and 
counted group size.  Then, while the observer shined the animal(s) with a spotlight, the driver 
measured distance and angle to the group using a laser rangefinder and digital protractor, 
respectively.  We used a real-time, moving-map software program (DNRSurvey; Haroldson et 
al. 2015), coupled to a global positioning system receiver and convertible tablet computer, to 
guide route navigation and record survey metrics (e.g., PSU, run [replicate], deer and vehicle 
location, distance, bearing, count, cover type) to GIS shapefiles.  Cover type designations 
included woodland, wetland, grassland, pasture, standing crop, harvested crop, other, and 
unknown classes.  We recorded weather data (temperature, wind speed, cloud cover, 
precipitation) at the beginning, middle, and end of each survey route. 
We also conducted a winter helicopter survey of the DS study area using a quadrat-based 
design, where quadrats were delineated by Public Land Survey section (640 ac) boundaries.  
We stratified quadrats into 3 density categories (high, medium, low) using the local wildlife 
manager’s knowledge of deer abundance and distribution.  Using optimal allocation, we 
randomly selected a spatially balanced sample (Stevens and Olson 2004) of 162 plots to 
survey.  Within each plot, a pilot and 2 observers searched for deer along transects spaced at 
270-m intervals until they were confident all “available” deer were observed.  To maximize 
sightability, we completed surveys when snow cover measured ≥6 in and we varied survey 
intensity as a function of cover and deer numbers (Gasaway et al. 1986). 

Data Analysis Objectives 
1. Perform an exploratory data analysis (EDA) on the 2018 survey dataset (year 1). 
2. Fit, evaluate, and compare DS models for estimating deer abundance and density in the 

sampling frame. 
3. Decompose variation in counts due to among-plot (PSU) and within-plot (run or survey 

date) sources of variation.  Also, compare DS models and population estimates from 
different runs (replicated surveys within PSUs).  Temporal variation is especially 
important in this application because if counts and resulting population estimates are 
highly variable over time, then a single-effort operational survey (non-replicated counts) 
may not be reliable. 

4. Conduct a power analysis to help evaluate the feasibility of using roadside DS surveys 
to estimate deer density in Minnesota’s farmland and transition zones.  More 



specifically, determine how many PSUs would be required to obtain a target level of 
precision given the current stratification and allocation scheme and observed among-
plot (PSU) and within-plot (survey date) sources of variation in roadside counts. 

5. Evaluate an alternative stratification scheme (using a 500-m buffer vs. the current 250-
m buffer around deer-cover polygons) by re-stratifying road segments (sample only) 
and deer observations.  This is an exploratory post-stratification analysis to determine 
whether the precision of the population estimate might be improved by modifying the 
stratification scheme to identify more uniform strata (both in terms of the detection 
process and relative deer densities). 

RESULTS AND DISCUSSION 
Summary Statistics and EDA 

We completed 48 surveys during 23 nights from 1 April to 6 May 2018.  Mean start time was 
2055 hours (0.8 hr post-sunset) and mean survey duration was 4.1 hours.  All 15 PSU were 
surveyed 3 times and 3 PSU were surveyed 4 times.  Within each PSU, we completed 3 
replicates within 8 days and all replicates within 35 days.  In total, we detected 931 deer groups 
(clusters) consisting of 3,194 individual deer (596 deer along low-density road segments and 
2,598 deer along high-density road segments).  We observed a similar number of deer in 
replicate surveys 1–3 (total deer/replicate for all PSUs = 1,038, 1,002, and 1,082, respectively).  
Mean group size (observed) was 4.1 in the low-density stratum (range = 1–41, median = 3), 3.3 
in the high-density stratum (range =1–42, median = 2), and 3.4 overall.  Group size was not 
correlated with distance (r = 0.025, 95% CI = -0.039–0.089), which suggests we may not need 
an adjustment for group-size bias in our DS estimator (a common issue in DS).  In the low 
stratum, 62% of group detections were located in harvested crop fields.  Conversely, only 42% 
of detections were in harvested crop fields in the high stratum, with relatively more detections in 
grasslands (24% vs. 13%) and woodlands (12% vs. 8%).  As expected, mean perpendicular 
sighting distance was greater in the low stratum (135 m; range = 0–679) compared to the high 
stratum (108 m; range = 0–503).  Additionally, there was a spike in deer detections away from 
the road (Figure 2).  We observed a similar pattern in both strata, although the peak was shifted 
right in the low stratum, likely because road segments in the low stratum had less deer cover 
adjacent to roads.  As Stainbrook (2001) noted, this could result in a negatively biased 
population estimate in DS because the mean probability of detection will be overestimated 
based on the assumptions that g(0) = 1 and objects are distributed randomly with respect to 
transect lines.  This is a common and valid criticism of convenience sampling from roadways.  
However, if the bias is consistent over space and time, then the DS estimator might still 
generate a useful long-term and large-scale monitoring metric. 

Fit and Evaluate DS Models 
Data truncation 

A useful rule of thumb in DS is to right truncate at least 5% of the data for robust estimation of 
the detection function (Buckland et al. 1993:106).  The 95th percentile of our distance data was 
289 m; therefore, we set w = 300 m which resulted in 4.3% of the data being truncated.  We 
also considered left truncation because the peak in observations was away from the road 
(Figure 2).  However, the peak likely reflects road avoidance rather than animal movement (e.g., 
due to disturbance, which is unlikely in this case because crews used IR cameras for initial 
detection).  Thus, left-truncation methods would not resolve the underlying issue that animals 
are not randomly distributed with respect to the transect line.  Left-truncation with rescaling 
would (and did) improve the fit of the model(s) to the data because we now have a shoulder at 
g(0).  However, one would then need to generate a separate ad hoc estimate of abundance for 
the sampling space that is within some distance x of the road transect.  Thus, for this pilot-study 



application, it seemed prudent to set left truncation = 0 and focus on evaluating the consistency 
of the detection function (i.e., recognizing that the resulting density estimate is likely biased 
[Stainbrook 2001, Marques et al. 2013], but it may still serve as a useful monitoring index if the 
bias is reasonably consistent over space and time). 

Model structure 

The half-normal and hazard-rate key functions are robust estimating functions and allow the 
inclusion of covariates (Buckland et al. 1993, 2004).  Therefore, we focused on these 2 key 
functions for this analysis.  Our base models included no adjustments or covariates.  We then 
added a cosine adjustment to each base model.  Finally, we evaluated 2 covariates (with 
adjustment = NULL).  The first covariate, strata, was used to test whether the detection function 
varied by strata.  The second covariate, RVO, was a surrogate for relative visual obstruction 
(low vs. high) based on mean detection distance by cover type.  The “high” visual-obstruction 
category included woodland, grassland, standing crop, and “other” cover types and contained 
487 deer clusters with a mean detection distance of 90 m (range = 0–412).  The “low” visual-
obstruction category included harvested crop, pasture, wetland, and “unknown” cover types and 
contained 444 deer clusters with a mean detection distance of 136 m (range = 14–679).  The 
goal here was to determine if RVO could help explain some uncertainty in the detection 
function, including why g(x) might vary among strata.  If RVO could accomplish the latter, then 
distance data could be pooled over strata to generate a more precise detection function while 
still generating separate density estimates for each stratum (i.e., a stratified DS estimator; 
Buckland et al. 2013:99–103, Miller et al. 2016).  Conversely, if g(x) varied significantly by 
stratum (after accounting for RVO), then we would need stratum-specific distance functions.  
We tested this by comparing density estimates from our top model (where distance data were 
pooled to compute one detection function) to estimates from a similar model structure but where 
strata were analyzed separately. 

Among-plot and within-plot variation 

We decomposed the sampling variance of raw deer counts by PSU and run to determine if “run” 
(survey date) was a significant source of variation.  This is an important consideration because 
large variation or uncertainty due to “run” would be difficult to control statistically or through 
survey design, whereas variation due to PSUs could, in theory, be reduced by increasing the 
sample size.  Among-plot variation accounted for approximately 89% of total variation in raw 
deer counts.  Thus, variation by survey day was relatively small compared to variation in counts 
among PSUs.  Consequently, we restricted subsequent DS analyses, including model 
comparisons, to run #1.  Next, we used a bootstrap procedure (with replacement where 
samples were drawn from both PSU and run) to obtain a more realistic estimate of Var(D) that 
included among-plot (PSUs) and within-plot (survey date or runs) sources of variation.  This 
should be more reflective of how an operational survey would likely be conducted (i.e., using a 
single, non-replicated survey).  We also used the bootstrap routine to examine precision of the 
population estimate as a function of sample size (PSUs | allocation is approximately 50:50).  
This will be useful for evaluating the “feasibility” of conducting an operational survey given some 
target level of precision.  The true expected precision of the estimate is likely somewhere 
between our top DS model and the bootstrap routine because we cannot completely separate 
allocation from stratification in either case.  To properly estimate total sampling uncertainty, we 
would need to replicate the entire sampling process, which includes selection of PSUs, road 
segments within PSUs, and survey dates. 

Model comparisons and parameter estimates 

We fit 8 DS models to survey data from both strata but restricted to run #1, which provided 281 
deer-cluster observations after right truncation (Table 1).  We fit all models using the “ds” 



function in the R library “Distance” (Miller et al. 2016, Miller 2017; R Core Team 2018).  The top-
supported model (lowest AIC; model 7), was based on the hazard-rate key function and 
included the RVO covariate.  The next-best model (ΔAIC= 9.5; model 3) also included the RVO 
covariate but was based on the half-normal key function.  Models with strata as a covariate did 
not fit the data well, which suggests that g(x) did not vary significantly among the 2 strata.  On 
the other hand, RVO was useful for describing variation in g(x) associated with cover type 
(Figure 3), with the underlying mechanism likely being the relative amount of visual obstruction 
between the observer and the first deer detected.  Because relatively more deer were located in 
harvested cropland in the “low” stratum, RVO also described differences in g(x) between the 2 
strata (i.e., 64% of deer groups in the “low” stratum were located in the “low” RVO class, 
whereas 55% of deer in the “high” stratum were located in the “high” RVO class).  The hazard-
rate detection function is described by the following equation: 

𝑔𝑔(𝑥𝑥) = 1 − exp [−(𝑥𝑥/𝜎𝜎)−𝑏𝑏] 
where the parameter b is a shape parameter, σ is a scale parameter, and x is the perpendicular 
sighting distance (which may be standardized).  Covariates enter the detection function via the 
scale parameter (e.g., 𝜎𝜎 = 𝛽𝛽0 + 𝛽𝛽1𝑅𝑅𝑅𝑅𝑅𝑅).  The detection function parameters from our top model 
were 𝑏𝑏� = 1.154 (SE = 0.174), �̂�𝛽0 = 5.302 (SE = 0.100), and �̂�𝛽1 = -0.544 (SE = 0.128).  Given 
these parameters, mean detection probability was 0.594 (SE = 0.033, CV = 5.6%), which 
describes the area under the detection curve.  When adjusted for the covariate RVO, the 
predicted mean probability of detection was 0.491 for deer located in cover types with relatively 
“high” levels of visual obstruction versus 0.764 for animals with relatively “low” levels of visual 
obstruction. 
The density estimate from model 7 was 8.6 deer/mi2 (95% CI = 6.1–12.2).  Estimates from the 
other models were similar (Table 1).  Likewise, the density estimate when data from each 
stratum were analyzed separately was nearly identical (𝐷𝐷� = 8.5, ~95% CI = 5.5–11.3), which 
supports the decision to use a stratified DS estimator where data are pooled across strata to 
estimate g(x).  Finally, the deer density estimate from the Jan 2019 aerial survey was 6.4 
deer/mi2 (95% CI = 5.1–7.7; MNDNR, unpublished data), which is reasonably similar to the DS 
estimates given the time lag (spring vs. winter) in surveys. 

Precision vs. Sample Size 
Precision of the density estimate from our top model was reasonably good (CV = 17.1%), but 
this is likely optimistic because it may not adequately reflect variation due to survey date.  Not 
surprisingly, precision was much lower (mean CV = 24.8%) when we bootstrapped distance 
data using PSU and run (surrogate for survey date).  This is probably a more realistic 
expectation of precision for an operational survey with n = 15 PSUs and approximately equal 
allocation of survey effort in each stratum.  A common target level of desired precision for 
management surveys is CV ≈ 15%.  To achieve this level of precision with our current design 
(stratification scheme and allocation) and assuming a single non-replicated operational survey 
would likely require increasing the number of PSUs from 15 to approximately 30 (Figure 4).  
Whether this is a feasible option is unknown at this point in time, and an additional year of data 
is needed to better inform these types of questions. 

Post-Stratification Analysis 
The above estimates of precision are based on the current stratification and allocation scheme.  
We anticipate putting more effort into the high-density stratum in an operational survey, which is 
consistent with DS design recommendations (Buckland et al. 1993).  We elected to use an 
equal allocation of effort in the pilot study to ensure we collected sufficient distance data to 
evaluate g(x) in the low-density stratum.  Finally, our initial stratification scheme, based on a 



250-m buffer around deer-cover patches >2 ac, was exploratory and we have since developed 
some alternative stratification schemes based on modifying minimum patch size and buffer 
distance.  Unfortunately, it is challenging to evaluate these new schemes using existing distance 
data (i.e., post-stratification analysis).  For example, reclassifying the 2018 distance data using 
a minimum patch size of 2 ac but with a larger buffer (500 m) did not appreciably change 
relative precision (17.6%), although it unexplainably generated a larger density estimate (9.2 
deer/mi2; 95% CI = 6.4–13.2).  In theory, stratification should improve precision if the 
stratification scheme is effective, whereas the point estimate should be similar among sampling 
designs (i.e., it should be design unbiased).  However, it is more complicated in DS because we 
are also dealing with the detection function.  And in a post-stratification analysis, the number of 
observations for estimating g(x) is fixed and sample allocation is confounded with the 
stratification scheme.  Thus, a post-stratification analysis has limited utility for answering the 
primary question of interest: “which stratification scheme and allocation of effort will produce the 
most precise estimate?”  Obtaining a reliable answer to this question will require a more 
sophisticated analysis that will likely involve simulating the distribution and DS of deer in a 
computer-generated landscape (sensu Buckland et al. 2004:226–228).  Again, another year of 
data collection would be helpful for constructing such an analysis/simulation. 
CONCLUSIONS 
The results from the first year of the pilot study are encouraging.  Density estimates seem 
reasonable and precision was better than expected.  We identified and resolved several data 
collection and survey-design challenges and developed detailed field protocols to ensure 
consistency in data collection.  Another year of data collection will be helpful for evaluating the 
ultimate question of whether a DS metric can be effectively and reliably used to help monitor 
white-tailed deer populations in Minnesota’s farmland and transition areas.  More specifically, 
we will be evaluating whether: (1) g(x) and the distribution of deer relative to roads and cover is 
relatively consistent over time and space; (2) the effect of variation in spring dispersal can be 
minimized by using observational cues to inform the start of the survey; and (3) can we afford 
(staff time and cost) to collect a sufficient sample of distance data in an operational survey to 
generate a reasonably precise density index for monitoring purposes. 
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Table 1.  Distance sampling models based on Akaike’s Information Criterion (AIC) used to evaluate roadside surveys of 
white-tailed deer (Odocoileus virginianus) in southern Minnesota, spring 2018.  For all models, we restricted survey data to 
the initial run (replicate) of the 15 primary sampling units, after right truncation.  Analysis was restricted to the half-normal 
and hazard-rate key functions.  Covariates included deer density strata (Strata) and a relative measure of visual obstruction 
(RVO).  Mean detection probability, deer density estimates, and summary statistics (CI, CV) are also presented.  Confidence 
intervals for deer density estimates were based on α = 0.05. 

Model Key function Covariates AIC ΔAIC 
Detection 

probability (𝑥𝑥) 
Density 

(deer/mi2) 95% CI CV (%) 

7 Hazard-rate RVO 3097 0.0 0.594 8.6 6.1–12.2 17.1 

3 Half-normal RVO 3107 9.5 0.555 9.2 6.5–13.0 17.1 

8 Hazard-rate Strata 3116 18.4 0.606 8.5 5.9–12.1 17.6 

5 Hazard-rate Null 3117 20.2 0.614 8.6 6.0–12.5 18.3 

6 Hazard-rate + cosine Null 3117 20.2 0.614 8.6 6.0–12.5 18.3 

2 Half-normal + cosine Null 3123 25.5 0.630 8.4 5.6–12.7 20.6 

1 Half-normal Null 3124 26.8 0.575 9.2 6.4–13.3 18.0 

4 Half-normal Strata 3124 26.8 0.573 9.0 6.3–12.8 17.7 

 



 
Figure 1.  Sampling frame (deer permit areas 252, 253, 296, 299), primary sampling units (PSU; 
hexagons), and secondary sampling units (road segments; red = high-density stratum, blue = 
low-density stratum) for roadside distance-sampling surveys of white-tailed deer (Odocoileus 
virginianus) in southern Minnesota, spring 2018.  Grey areas denote deer-cover polygons (>2 
ac) consisting of woodland, grassland, and wetland cover types with a 250-m buffer.  The 
northeast PSU was dropped prior to beginning surveys because it was on the edge of the 
sampling frame, contained the city of Mankato, and included few rural roads. 



 
Figure 2.  Histogram of deer-cluster observations as a function of perpendicular sighting 
distance from roadside distance-sampling surveys of white-tailed deer (Odocoileus virginianus) 
in southern Minnesota, spring 2018.  Data include distance measurements collected during 
replicate surveys of 15 primary sampling units.  

 
Figure 3.  Estimated detection function g(x) from the best-fit model (model 7; based on Akaike’s 
Information Criterion) overlaid on a histogram of deer-cluster observations as a function of 
perpendicular sighting distance from roadside distance-sampling surveys of white-tailed deer 
(Odocoileus virginianus) in southern Minnesota, spring 2018.  We restricted survey data to the 
initial replicate of the 15 primary sampling units, after right truncation.  The solid curved line 



denotes the average detection function.  The open circles describe the effect of the covariate 
RVO, which was a binary indicator variable for cover classes where visual obstruction was 
relatively high (lower line of circles; e.g., woodland and grassland cover) versus where visual 
obstruction was relatively low (upper line of circles; e.g., harvested cropland and pasture). 

 
Figure 4.  Precision of population estimates as a function of sample size (number of primary 
sampling units; PSU) from roadside distance-sampling surveys of white-tailed deer (Odocoileus 
virginianus) in southern Minnesota, spring 2018.  Estimates are based on bootstrapping of 
PSUs and replicate surveys (survey date) where land cover was stratified (high, low) according 
to expected deer density and survey effort was allocated approximately equally within each 
stratum.  The red circle denotes the current sample size.  The red dashed horizontal line 
denotes a common target level of precision for management surveys. 
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