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SUMMARY OF FINDINGS 
Fishers (Pekania pennanti), martens (Martes americana), and many other wildlife species rely 
on three-dimensional structural habitat characteristics to provide essential resources. Spatially-
continuous data on fine-scale structural habitat features are generally not available across large 
landscapes because passive remote sensing systems are not capable of measuring three-
dimensional characteristics and because it is financially and logistically challenging to collect 
field-data continuously across the landscape.  Light detection and ranging (LiDAR) is an active 
remote sensing technology capable of providing accurate, high-resolution data on three-
dimensional vegetation structure across large spatial extents. Many past studies have 
demonstrated that LiDAR data can be used to map coarse- and fine-scale habitat 
characteristics at the scale of individual trees, field plots, or forest stands.  However, most 
research has focused on forestry applications, and relatively few studies have focused on 
modeling structural variables that serve as basic wildlife habitat indicators. 
We were interested in using LiDAR to supplement field data collected as part of a long-term 
project on fisher and marten ecology in Minnesota. Our objectives were to evaluate the potential 
of LiDAR technology to quantify both coarse- and fine-scale forest habitat metrics and to 
evaluate the effect of pulse density on prediction accuracy. We acquired high-density LiDAR 
data (8 pulses/m2) for a portion of our marten study area and selected 200 random locations 
within that portion to collect detailed vegetation measurements. Random sites were selected 
using a LiDAR-informed stratified random sampling design. We measured vegetation on 189 of 
the 200 plots during summer 2015 and 2016; the remaining plots could not be sampled due to 
wind disturbances that altered forest structure after LIDAR data collection. Statistical analyses 
are ongoing, and we defer reporting results until final analyses are completed. 

INTRODUCTION 
To create and implement effective habitat management plans, wildlife managers depend on 
reliable knowledge of species-specific habitat requirements, accurate information on the current 
abundance and distribution of suitable habitat features, and an understanding of how 
management actions influence habitat suitability over a range of spatio-temporal scales. In 
many situations, having accurate information on abundance and distribution of habitat 
characteristics is necessary for understanding species-specific habitat requirements and 
evaluating how management actions influence habitat use. Forest wildlife species vary in 
their dependence on specific habitat characteristics. For some species, habitat requirements 
may be adequately 
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described using coarse-resolution data such as forest cover type, stand age or successional 
stage, or proximity to permanent water or other specific landscape features. For these species, 
broad-scale forest inventory data and GIS layers derived from passive remote sensing 
technologies (e.g., satellite imagery, aerial photographs) are often adequate to map and monitor 
changes in habitat quality.  However, other wildlife species, including fishers, martens, and 
many forest songbirds, respond to three-dimensional, structural habitat features at fine spatial 
scales.  Spatially-continuous data on fine-scale structural features generally are not available 
because passive remote-sensing systems are not capable of measuring three-dimensional 
characteristics and because it is financially and logistically challenging to collect fine-scale, field-
based measurements continuously across large areas. Instead, habitat models for these 
species typically incorporate information gathered from detailed field-sampling at sites used by 
the species of interest, often for specific purposes (e.g., foraging, nesting, or denning sites).  
While site-level habitat models created from field data provide informative and mechanistic 
insights into a species’ habitat requirements, they are often difficult to apply to larger scales at 
which forest management decisions are generally made.  Regardless of whether a species 
relies on coarse- or fine-scale characteristics, having data on forest characteristics at 
continuous spatial scales is critical for sound habitat management and assessment. 
Light detection and ranging (LiDAR) is an active remote sensing technology capable of 
providing accurate, high-resolution (<1 to >20 laser pulses/m2) data on three-dimensional 
physiographic and vegetative structure over large spatial extents (e.g., entire study areas or 
wildlife management units up to statewide coverage; Merrick et al. 2013, Vierling et al. 2008). 
LiDAR data are collected from a scanner that emits frequent, short-duration laser pulses and 
records the reflected signal returning to the sensor.  As the emitted laser pulse is intercepted by 
an object or surface (e.g., vegetation, building, terrain), a portion of the laser energy is reflected 
and returned to the sensor. Discrete-return LiDAR systems record the spatial coordinates where 
the laser pulse intercepted an object or surface, resulting in a three-dimensional “cloud” of 
interception points or “returns”.  Modern discrete-return LiDAR systems are capable of recording 
≥4 returns per laser pulse (Vierling et al. 2008). 
High pulse density, multiple-return LiDAR data provide the detail necessary to accurately map a 
variety of forest structural attributes including both fine-scale attributes (e.g., canopy height 
[Means et al. 2000], canopy cover [Lefsky et al. 2002], shrub-density [Martinuzzi et al. 2009]) 
and coarse-scale attributes (e.g., forest successional stage [Falkowski et al. 2009]) continuously 
and with high precision across the landscape.  Because of these capabilities, LiDAR is 
increasingly used to analyze forest structure and is becoming an integral part of operational 
forest management (White et al. 2013).  LiDAR can be used to measure biophysical variables at 
the level of individual trees, forest inventory plots, and forest stands (Falkowski et al. 2006, 
White et al. 2013).  Forest inventory metrics that have been successfully predicted at the plot 
and stand level using LiDAR include canopy height (Hawbaker et al. 2009, Thomas et al. 2006), 
canopy density or volume (Lefsky et al. 2002, Martinuzzi et al. 2009), basal area (Means et al. 
2000, Woods et al. 2011), average diameter at breast height (Hawbaker et al. 2009, Jakubowski 
et al. 2013), tree density (Treitz et al. 2012), and forest biomass (Thomas et al. 2006, Treitz et 
al. 2012, Woods et al. 2011).  LiDAR data can be used to make direct estimates for some 
attributes such as canopy cover, canopy height, and canopy volume (Graf et al. 2009, Lefsky et 
al. 2002, Merrick et al. 2013). However, many structural metrics require accurate field-plot data 
that can be used to build predictive models from LiDAR-derived explanatory variables.  Overall, 
studies have focused on forestry-specific metrics and there has been less work focused on 
predicting structural attributes important to wildlife (but see Goetz et al. 2010, Graf et al. 2009, 
Hagar et al. 2014, Martinuzzi et al. 2009).  



The potential for LiDAR to improve wildlife research and management has been recognized for 
some time. LiDAR data can be used to improve wildlife-habitat modeling in 2 different ways 
(Merrick et al. 2013, Vierling et al. 2008).  First, it provides a tool that can be used with telemetry 
data or known species distributions to better understand resource selection.  Forest attributes 
can be measured at fine spatial scales with LiDAR, allowing researchers to assess resource use 
at scales near those at which animals respond to structural attributes (Vierling et al. 2008).  By 
providing spatially-continuous data, LiDAR data allows researchers to directly address how both 
landscape composition and configuration influence habitat selection.  Furthermore, LiDAR can 
be used to investigate resource selection across a wide range of spatial scales including sites 
used for specific behaviors, individual home ranges, and entire wildlife management units or 
other regional units. Second, LiDAR can be used to predict habitat suitability or species 
distributions based on prior knowledge of habitat requirements or life-history characteristics.  
The ability to translate habitat models into spatially-explicit maps is particularly useful for wildlife 
management, for example, by providing accurate predictions of the distribution and abundance 
of suitable habitat or by allowing managers to monitor changes in habitat suitability through time 
with repeated LiDAR acquisitions. 
Fishers and martens are two species that could benefit from LiDAR-based habitat modeling 
because they respond to both coarse- and fine-scale forest attributes (Joyce 2013, Raley et al. 
2012, Thompson et al. 2012), habitat loss from human land use is thought to be a major threat 
to population persistence for both species (Proulx et al. 2004), and continuous data on fine-
scale attributes required by fishers and martens are not currently available.  At coarse scales, 
fishers and martens show strong selection for mature and old-growth forest conditions (Buskirk 
and Powell 1994), although both species have been documented using a variety of seral stages 
(Joyce 2013, Raley et al. 2012, Thompson et al. 2012).  Fine-scale attributes, however, appear 
to drive fisher and marten habitat selection at multiple spatial scales. Both species depend on 
large-diameter cavity trees and other specific forest structures that serve as rest sites and 
reproductive dens (Joyce 2013, Raley et al. 2012, Thompson et al. 2012).  Sites used for resting 
and denning typically have dense overhead cover, abundant coarse woody debris (CWD), and 
large-diameter trees (Aubry et al. 2013, Joyce 2013, Thompson et al. 2012).  CWD provides 
subnivean access (Corn and Raphael 1992) and is a critical component of marten winter 
foraging behavior in the boreal forest (Andruskiw et al. 2008).  At landscape scales, shrub cover 
(Slauson et al. 2007) and canopy cover (Cushman et al. 2011, Shirk et al. 2014) are associated 
with home ranges selected by martens. Furthermore, canopy cover is one of the strongest and 
most consistent predictors of fisher habitat use across spatial scales (Raley et al. 2012). 
Despite the amount of research focused on understanding fisher and marten habitat 
requirements, there are critical aspects of habitat ecology that are not well understood.  For 
example, several studies have suggested that availability of suitable denning habitat could limit 
fisher and marten populations (e.g., Ruggiero et al. 1998), but few studies have investigated 
distribution of suitable denning habitat, in part because continuous fine-scale data are needed to 
apply den-site habitat models across the landscape but are generally not available. 
Furthermore, most studies have focused on landscape composition, but landscape configuration 
likely also drives habitat use (Sauder and Rachlow 2014), and landscape configuration is 
strongly influenced by ownership and management history (Cohen et al. 2002, Kennedy et al. 
2012, Spies et al. 1994).  Because of their dependence on structural features that have been 
accurately predicted using LiDAR, LiDAR data has the potential to provide novel insights into 
fisher and marten habitat ecology and improve habitat management for these species. 
Many of the resources exist for LiDAR data to be incorporated into natural resource 
management in Minnesota.  Minnesota is one of a growing number of states for which statewide 
LiDAR data have already been acquired.  One important question that still needs to be 



addressed to use the statewide data or direct future LiDAR acquisitions is what pulse density is 
required to accurately quantify forest structural attributes at plot and stand levels.  LiDAR 
acquisition costs increase with increasing pulse density (Jakubowski et al. 2013).  Therefore, 
acquiring LiDAR data at the minimum pulse density necessary for accurate predictions will 
enable researchers and managers to maximize gain from finite resources.  Previous research 
has shown that many forest metrics can be accurately predicted at fairly low pulse densities and 
that higher pulse density does not necessarily improve model accuracy, but the effect of pulse 
density on model accuracy depends on the variable of interest (Thomas et al. 2006, Treitz et al. 
2012, Jakubowski et al. 2013). In general, the structural variables measured in these studies are 
strongly biased toward forestry applications.  Although some of the biophysical variables 
evaluated are important indicators of wildlife habitat, a better assessment of how pulse density 
affects wildlife-specific forest attributes (e.g., canopy structure, CWD, shrub cover) is necessary 
before LiDAR can be used in the same operational capacity for wildlife management as it is 
currently being used for forestry. 
Our objective was to evaluate the potential of LiDAR technology to quantify both coarse- and 
fine-scale forest habitat variables and to create applied GIS tools that can be used in day-to-day 
decision-making by forest and wildlife managers.  Additionally, we will evaluate the effect of 
pulse density on prediction accuracy.  This project will provide new information and tools for 
applied habitat management for fishers and martens, and will also increase the value of data 
already collected in ongoing research on fisher and marten ecology.  Combining LiDAR-derived 
estimates of forest structural attributes with location data from radiocollared fishers and martens 
will enable us to address important research questions aimed at improving management of 
these species in Minnesota. 

STUDY AREA 
Marten research has taken place in portions of east-central St. Louis and west-central Lake 
counties in northeastern Minnesota (Figure 1).  The marten study area (~1250 km2) is 
composed of a variety of forest types including upland mixed coniferous-deciduous forest, 
lowland conifer or bog, upland coniferous forest, and regenerating forest, as well as marshes, 
fens, shrublands, and anthropogenic cover types.  We acquired high-density LiDAR data for a 
65 km2 portion within the larger marten study area during spring 2014 (Figure 1).  The location 
of the high-density LiDAR acquisition was chosen because it included a large number of 
locations from radiocollared fishers and martens (i.e., rest sites, dens, and aerial telemetry 
locations), it encompassed ~100 ground-based vegetation survey sites measured previously as 
part of the larger fisher/marten research project, and it contained almost all of the forest types 
and successional stages available throughout the larger marten study area.  Both the marten 
and embedded LiDAR study areas are predominantly public ownership including portions of the 
Superior National Forest, state, and county lands. 

METHODS 
There are two LiDAR datasets available that provide variable coverage of our study area 
(Table 1).  Both datasets are discrete, multiple-return LiDAR data acquired from fixed wing 
aircraft during leaf-off conditions. The first dataset (hereafter, statewide data) was collected 
during spring 2011 as part of the Minnesota elevation mapping project 
(http://www.mngeo.state.mn.us/chouse/elevation/lidar.html) and provides complete coverage for 
Carlton, Cook, Lake, and St. Louis counties.  The second dataset (hereafter, high-density data) 
was acquired in spring 2014 over a 25 square-mile portion of the marten study area.  In general, 
specifications from both datasets (Table 1) match recommendations for forest inventory analysis 
(White et al. 2013).  Those that do not (e.g., scan angle) are consistent with published studies   



that have successfully modeled forest structure using LiDAR (e.g., Treitz et al. 2012 used a 
scan angle of ±20˚). 
Several pre-processing steps are necessary prior to vegetative analysis.  Raw LiDAR return 
points must be classified as ground or non-ground (e.g., vegetation, water, buildings) returns 
and manual quality assurance/quality control (QA/QC) steps must be taken to verify data 
conform to desired specifications.  Digital elevation models (DEMs) are then created from 
ground returns and converted to digital terrain models (DTMs).  Pre-processing steps have been 
completed for statewide data. For the high-density LiDAR data, we are using LP360 (QCoherent 
Software, LLC) for LiDAR point classification and DEM construction. 
We are using the area-based approach to create predictive models of forest structural attributes 
that relate to habitat quality for marten.  The area-based approach combines field-plot and 
LiDAR data to create predictive statistical models that can be projected across an entire 
landscape (White et al. 2013). The area-based approach has 4 main steps: 1) collect and 
summarize field-plot data; 2) extract and summarize LiDAR data corresponding to field sampling 
locations; 3) create and evaluate predictive models; and 4) apply models across the area of 
interest. Additionally, we are evaluating whether LiDAR can be used to directly detect individual 
pieces of CWD.  
We measured forest inventory plots at random sites distributed throughout the high-density 
LiDAR acquisition area.  We used a stratified random sampling design to ensure field sampling 
covers a large range of the forest conditions present on our study area (Hawbaker et al. 2009, 
White et al. 2013).  We calculated mean LiDAR return height (m above ground) and standard 
deviation of return height for each 20- x 20-m cell in the study area to represent the range of 
structural conditions present throughout the landscape (Figure 2).  Each cell in forest condition 
represented a potential sample location. Sample locations were further stratified into upland and 
lowland soil types using ecological landtype classifications from the Superior National Forest’s 
terrestrial ecological unit data to ensure sampling covered a variety of soil types.  For each 
broad soil type category, the available sampling space defined by the two LiDAR metrics was 
divided into 8 quantiles for mean return height and 2-3 quantiles for the standard deviation of 
return height to form 23 sample strata per soil type (Hawbaker et al. 2009).  We selected a total 
of 200 random locations to sample. The number of locations selected per stratum was 
proportional to the total number of available cells in each stratum throughout the entire study 
area. 
At each randomly-selected location, we measured structural variables within a 400-m2 (11.3-m 
radius) circular plot. Plot size was selected to match recommendations for LiDAR-based forest 
inventory modeling (Laes et al. 2011, White et al. 2013) and corresponds to a 20-m pixel for 
landscape-level application of predictive models.  Structural attributes were selected based on 
their importance to marten habitat from published literature (e.g., Andruskiw et al. 2008, Allen 
1982, Raphael and Jones 1997, Slauson et al. 2007) and previous research in Minnesota 
(Joyce 2013; Table 2).  Sampling protocols were largely based on United States Department of 
Agriculture (USDA) Forest Inventory and Analysis program protocols to maintain consistency 
with previous data collected at rest sites and reproductive dens used by radiocollared marten in 
Minnesota (Joyce 2013).  All field measurements were taken in full leaf-on condition, although 
canopy cover and understory density also were sampled during leaf-off condition for a subset of 
field plots.  During field sampling, locations of field plots were recorded using both consumer-
grade (Garmin eTrex 30) and mapping-grade GPS receivers (Geneq SXBlueII+GNSS).  The 
mapping-grade receiver communicated with both GPS and GLONASS satellites and utilized a 
combination of space-based augmentation system (SBAS) and real-time differential correction 
to obtain precise locations without post-processing.  When using the mapping-grade GPS, we 
collected points for ≥30 minutes at a rate of ~20 points/min.  Preliminary data at geo-referenced 



survey markers suggested mapping-grade GPS locations collected this way provided sub-meter 
accuracy under full forest canopy (Joyce, unpublished).  For the consumer-grade GPS, we used 
location averaging for ≥30 minutes. 
LiDAR can be used to directly measure a subset of the forest attributes being measured at field 
plots (e.g., canopy height, canopy cover/closure, canopy structure metrics; Merrick et al. 2013, 
White et al. 2013), and we are currently evaluating whether LiDAR data can be used to detect 
individual pieces of CWD. For remaining attributes, we will create predictive statistical models 
using LiDAR metrics as explanatory variables and attributes summarized from field plot data as 
response variables.  We will use FUSION software (McGaughey 2013) to extract LiDAR point 
clouds corresponding to field plots and summarize statistical properties of individual point clouds 
based on return height, return intensity, or point density for use as explanatory variables in 
statistical modeling. 
The type of statistical model we used depended on the structural characteristic.  We used 
multiple linear regression for continuous variables (e.g., average diameter at breast height).  We 
used Poisson or negative binomial GLM count models for count variables (e.g., tree density). 
Snags were not present at a large number of plots. Consequently, Poisson GLM count models 
and multiple linear regression could not account for inflated zeros, and use of these types of 
statistical models could produce biased estimates of snag characteristics (Russell 2015, Zuur 
and Ieno 2016).  We used zero-altered (hurdle) models for snag density (zero-altered Poisson), 
snag volume (zero-altered gamma), and average snag diameter (zero-altered gamma).  Zero-
altered models have 2 components (Zuur and Ieno 2016). The first component accounts for 
presence/absence of snags, while the second component accounts for snag density, volume, or 
diameter if snags were present. 
Despite differences in model type, we used the same statistical framework for all forest 
structural variables.  There are 3 steps in the statistical framework: 1) model-fitting and model 
selection, 2) model evaluation using cross-validation, and 3) model re-calibration.  First, for each 
response variable, we created a set of candidate models using individual predictor variables or 
combinations of non-collinear predictor variables.  The number of predictor variables included in 
multi-variate models did not exceed sample-size-based recommendations to avoid over-fitting 
data (Babyak 2004, Guidice et al. 2012). Models were fit in Program R (R Development Core 
Team, 2013) using techniques and packages best-suited to the type of model being fit.  
Candidate models were compared using an information-theoretic approach to select the best-
supported model(s) from the candidate set (Burnham and Anderson 2002).  Candidate models 
were chosen based on expected relationships between response variable and individual 
predictor variables. Second, we evaluated how well best-supported models predicted new data 
using a five-fold cross-validation procedure.  We evaluated each cross-validation set using root 
mean squared error (RMSE), R2, and bias.  Finally, we used a bootstrapping procedure to re-
calibrate model coefficients in an effort to reduce the effect of over-fitting and therefore improve 
prediction accuracy (Harrell 2001, Giudice et al. 2012, Fieberg and Johnson 2015). 
To evaluate the effect of LiDAR pulse density on accuracy of predictive models we will 
subsample LiDAR data to obtain 7 different pulse densities (8, 6, 4, 2, 1, 0.5, and 0.25 
pulses/m2) using FUSION software.  Subsampling will be performed in a way that accurately 
simulates data acquired at specific pulse densities (i.e., we wish to thin the density of laser 
pulses rather than the number of returns per pulse).  Predictive models will be created at each 
pulse density, and prediction accuracy will be plotted as a function of pulse density (Jakubowski 
et al. 2013). Prediction accuracy will be assessed using R2, RMSE, and bias.  From these plots 
we will determine the minimum pulse density necessary to create accurate predictive models 
(turning point, sensu Jakubowski et al. 2013) as well as the pulse density corresponding to the 
most accurate predictive model (best accuracy sensu Jakubowski et al. 2013).  Results from 



this analysis will determine which forest attributes can be predicted throughout the entire marten 
study area using statewide LiDAR data (0.45 pulses/m2). 

RESULTS AND DISCUSSION 
Pre-processing steps (QA/QC, point classification, DEM creation and conversion) have been 
completed for the statewide LiDAR data.  High-density LiDAR data were collected during spring 
2014 and delivered from the vendor during fall 2014.  We have completed QA/QC on the high-
density data and classified returns for large portions of the dataset.  We are still refining point 
classification protocols, and final point classification should be complete during summer 2018. 
DEMs will be created and converted to DTMs once we complete point classification.  Additional 
information about point classification and DEM construction is not provided here because 
methodology is still being refined. 
Our 200 randomly-selected field plots included 115 plots in upland soil types and 85 plots in 
lowland soil types.  During summer 2015, we measured 100 forest inventory plots. Data from 
these plots have been entered and checked for errors.  We measured 89 additional plots during 
summer 2016, and completed data entry for all plots.  We were not able to measure all 100 
remaining plots in 2016 because wind storms altered some of the pre-selected plots before we 
could measure them.  The final set of 189 field plots includes 110 plots in upland soil types and 
79 plots in lowland soil types.  We have started preliminary statistical analyses, but we defer 
results until all statistical analyses are completed. 
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Table 1. Specifications for statewide (2011-12) and high-density (2014; portion of St. Louis County) LiDAR datasets 
collected in Minnesota.  
 

Specifications   Statewide High-resolution 

Acquisition Date(s) Spring 2011 & Spring 2012 Spring 2014 

Vendor Wolpert, Inc. AeroMetric, Inc. 

Laser System(s) ALS60, ALS70, and Optech GEMINI ALS70 

Altitude 2000-2300 m 1050 m 

Flight Speed 240 - 278 km/h 278 km/h 

Scan Angle ± 20˚ ± 20˚ 

Side Overlap 25% 50% 

Nominal Point Spacing ≤ 1.5 m ≤ 0.35 m 

Pulse Density 0.45 pulses/m2 8.0 pulses/m2 

Vertical Accuracy 5.0 cm (RMSE) 6.7 cm (RMSE) 

Horizontal Accuracy 1.16 m (95% confidence) 100 cm 

 

Table 2. Partial list of forest attributes that will be estimated using LiDAR data collected in Minnesota from 2011-14. 
Attributes were selected because of their biological significance to martens. 
 

Forest attribute Biological significance Citation(s)a 

Coarse woody debris 
density/volume 

Prey habitat, facilitates prey capture, 
subnivean access, rest and den site 
characteristic 

Andruskiw et al. (2008), Corn & 
Raphael (1992), Joyce (2013) 

Tree diameter at breast height 
(dbh) 

Indicator of stand age, related to arboreal 
denning and resting structures 

Raphael & Jones (1997), Slauson & 
Zielinski (2009) 

Basal area Indicator of stand age, related to arboreal 
denning and resting structures 

Payer & Harrison (2003,2004) 

Canopy closure Open canopy forests and non-forested habitat 
associated with predation risk and low prey 
availability 

Slauson et al. (2007), Moriarty et al. 
(2015) 

Canopy structure/heterogeneity Associated with structural diversity of stands Zielinski et al. (2006), Weir et al. 
(2012) 

Stand height Indicator of developmental stage Bowman & Robitaille (1997) 

Sapling density Provides habitat for prey species (snowshoe 
hare) and may serve as escape cover 

Carreker (1985), Slauson et al. 
(2007), Joyce (2013) 

Shrub density Provides habitat for prey species (snowshoe 
hare) and may serve as escape cover 

Carreker (1985), Slauson et al. 
(2007) 

Snag density/volume Indicator of stand age and vertical complexity Gilbert et al. (1997); Slauson & 
Zielinski (2009) 

Horizontal cover Related to sapling and shrub density; may 
serve as escape cover or provide habitat for 
prey species (snowshoe hares) 

Carreker (1985), Slauson et al. 
(2007) 

aCitation for biological significance of attribute to martens.  



Figure 1. Map of primary marten study area in northeastern Minnesota with the location 
where high-density LiDAR data were acquired in 2014. 

  



 
 
Figure 2. Sampling space for LiDAR-informed stratified random sampling design in a 25 mile2 

portion of St. Louis County, Minnesota. Structural variability within the study area is represented 
by mean and standard deviation in LiDAR return height for each 20 m pixel in the study area 
(gray circles). Black squares represent strata from which a random sample of plots was selected 
(red circles) and surveyed from 2014-16. Stratification was performed separately for areas with 
upland and lowland soil types. 
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