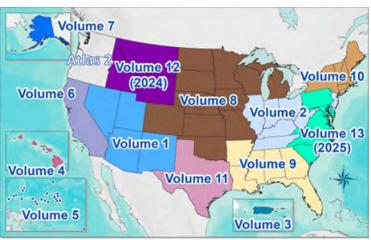
NOAA Atlas 15: National Precipitation Frequency Standard Update

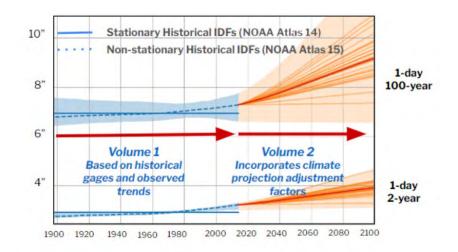
Janel Hanrahan

RTI International, Center for Water Resources

Overview


- 1. What is NOAA Atlas 15?
- 2. Extreme precipitation time series database
- 3. Volume 1 framework
- 4. Volume 2 framework

Towards Updated Precipitation Frequency Estimates


NOAA Atlas 14

- Authoritative precipitation frequency (PF) estimates
- Published in regional volumes
- Assumes climate stationarity
- Present-day PF estimates
- Estimates currently available at hdsc.nws.noaa.gov/pfds/

NOAA Atlas 15

- Updated national precipitation frequency standard
- Seamless estimates across CONUS
- Accounts for climate nonstationarity
- Present-day (Vol 1) and future (Vol 2) PF estimates
- Preliminary CONUS-wide estimates will be available soon

2024

2025

2026

2027

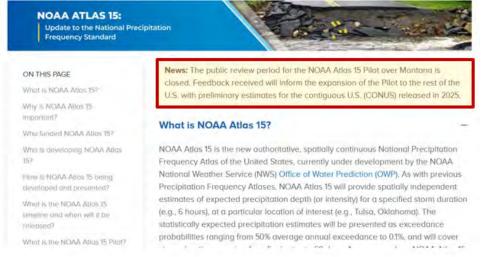
- Jan 2023 Hosted technical workshop with federal partners.
- July 2023 Initiated dataset development.

- Development Evolve framework. Create quality controlled national precipitation database. Evaluate climate model projections
- Aug 2024 Hosted technical workshop with federal partners.
 - Sept 2024 Pilot -Deliver Atlas 15 Vol. 1 and Vol. 2 pilot over Montana

 CONUS - Publish preliminary data

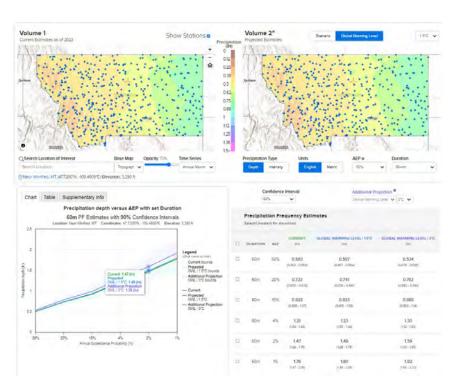
> Initiate 60-day peer review for Atlas 15 Vol. 1 and Vol. 2 for CONUS (lower 48 states).

Collect feedback and adjudicate comments on product.


- CONUS Complete Atlas 15 Vol. 1 and Vol. 2 and publish final estimates, documentation and supplementary products to stakeholders.
- pconus Publish preliminary estimates.

Initiate peer review for oCONUS (e.g. Hawaii, Alaska, Puerto Rico, U.S. Virgin Islands, Guam). oCONUS - Complete
 Atlas 15 Vol. 1 and Vol.
 2 and publish final estimates,
 documentation and supplementary
 products to
 stakeholders.

NOAA Atlas 15 Road Map: CONUS & OCONUS


NOAA Atlas 15 - Pilot released in 2024

Welcome to the NOAA Atlas 15 Informational Page

Montana Pilot public review included:

- Visualization Page
- Quick Start Video
- Pilot Technical Report
- Feedback Google Form

The public-review period for the pilot is now closed.

2024

2025

2026

2027

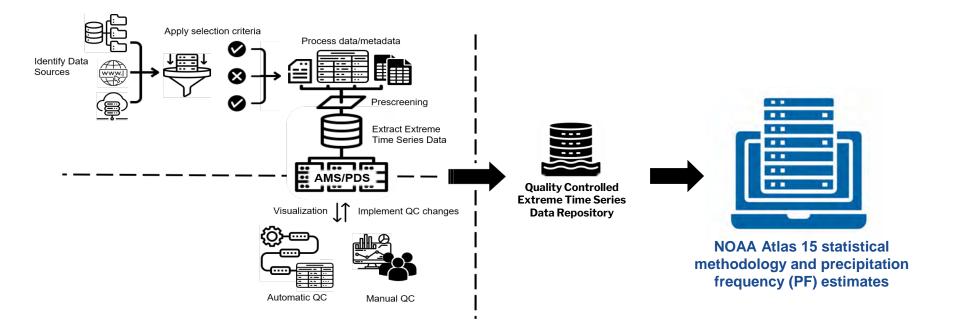
- Jan 2023 Hosted technical workshop with federal partners.
- July 2023 Initiated dataset development.

CONUS (2025)

- Development Evolve framework.
 Create quality
 controlled national
 precipitation
 database. Evaluate
 climate model
 projections
- Aug 2024 Hosted technical workshop with federal partners.
 - Sept 2024 Pilot -Deliver Atlas 15 Vol. 1 and Vol. 2 pilot over Montana.

conus - Publish preliminary data

Initiate 60-day peer review for Atlas 15 Vol. 1 and Vol. 2 for CONUS (lower 48 states).


Collect feedback and adjudicate comments on product.

- CONUS Complete Atlas 15 Vol. 1 and Vol. 2 and publish final estimates, documentation and supplementary products to stakeholders.
- oCONUS Publish preliminary estimates.

Initiate peer review for oCONUS (e.g. Hawaii, Alaska, Puerto Rico, U.S. Virgin Islands, Guam). oCONUS - Complete Atlas 15 Vol. 1 and Vol. 2 and publish final estimates, documentation and supplementary products to stakeholders.

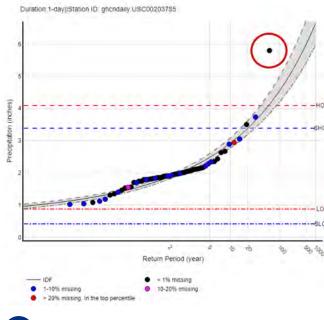
NOAA Atlas 15 Road Map: CONUS & OCONUS

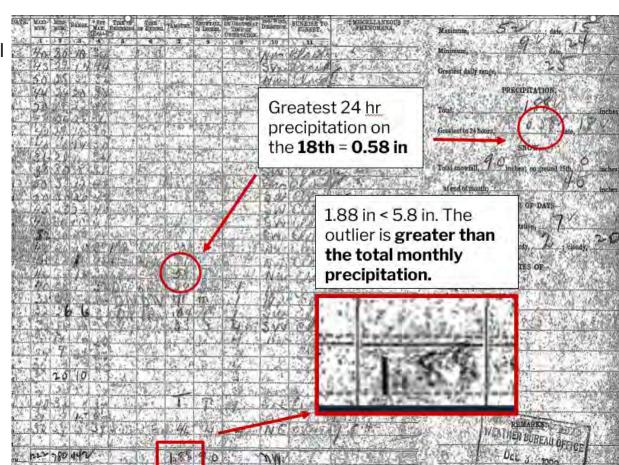
A15 Volume 1 - Extreme precipitation time series data repository

A15 Volume 1 - Data repository

- 78 total datasets collected and formatted (~120K stations)
- Review of additional CONUS datasets will be informed by public feedback
- Data discovery and collection is underway for oCONUS

	DAILY		HOURLY		SUBHOURLY	
	dset	Status	dset	Status	dset	Status
PRIORITY LEVEL I	eccc_daily		eccc_hourly		ncei_asos_1min	
	forts		ncei_coop_hourly		ncei_coop_15min	
	ghondaily		ncei_dsi3240		ncei_dsi3260	
	ntn		ncei_lcd		ncei_uscrn_subhourly	
	scan_daily		ncei_uscrn_hourly		swmp	UPDATED
	smn		raws			
	snotel		scan_hourly			
-			snotel_hourly			
	agrimet_daily	UNDER REVIEW	agrimet_hourly	UNDER REVIEW	chili	
PRIORITY LEVEL II	awdn	UNDER REVIEW	azmet_hourly		coa_15min	
	azmet_daily		cimis_hourly		coagmet_5min	UNDER REVIEW
	cdec_daily	UNDER REVIEW	coa_hourly		fawn_15min	
	cemp_daily		coagmet_hourly		kstate_5min	UNDER REVIEW
	cimis_daily		kstate_hourly	UNDER REVIEW	Icra_15min	
	coagmet_daily		Icra_hourly		njwxnet_5min	
듄	kstate_daily	UNDER REVIEW	ndawn		okmesonet_5min	
Ö	mngage		nevcan	UPDATED	sfwmd_15min	UPDATED
R	ndswc		njwxnet_hourly			
	okmesonet		tva_hourly	UPDATED		
	sfwmd_daily	UPDATED				
	tva	UPDATED				
PRIORITY LEVEL III	ca_alameda_daily	UPDATED	agwxnet_hourly		arl_sord	
	ca_la_daily		nc_econet_hourly	UPDATED	az_alert	
	ca_santa_barbara_daily	UPDATED	nycdep_hourly		ca_marin_1min	
	ca_santa_clara_daily		rcew		ca_san_diego_1min	
	ca_ventura_daily				deos	
	catskill				dugway	
	madcr				hcfcd_5min	
	nycdep_daily				inl	
	ca_san_luis_obispo	NEW			nc_econet	
					nwfwmd_5min	
					ug aemn	

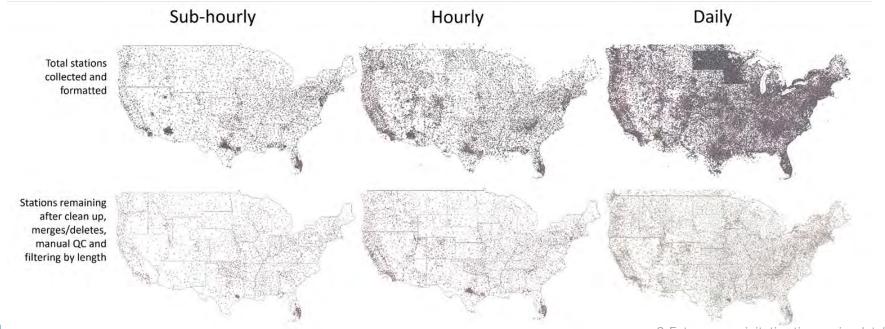

Submit data questions to atlas15.info@noaa.gov attn: Lynne Trabachino



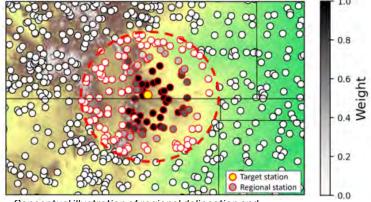
A15 Volume 1 - AMS QC

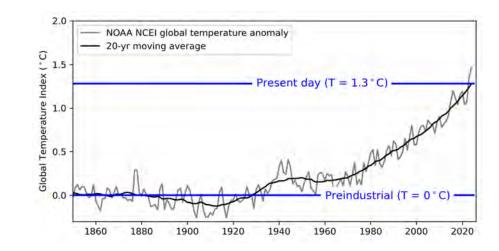
GHCN-Daily Station: Higgins Lake, MI

AMS High Outlier: 5.8 in **Date of Outlier:** 11-18-1928



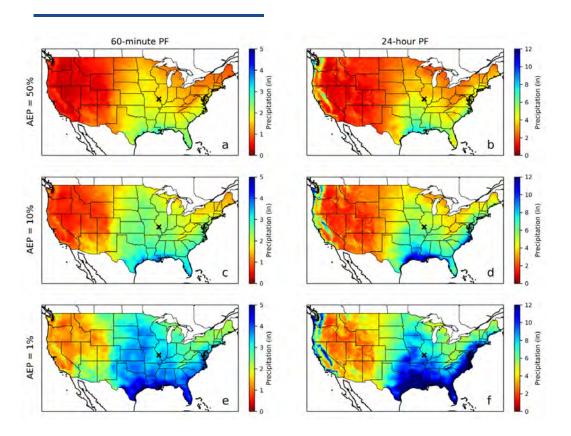
A15 Volume 1 - Data repository

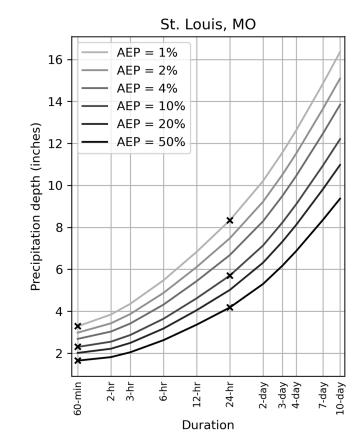

- Extreme time series repository is under development for Atlas 15
- Station data are screened, aggregated temporally, grouped spatially, and merged
- 8,800+ hourly stations and 23,200+ daily stations included in latest repository



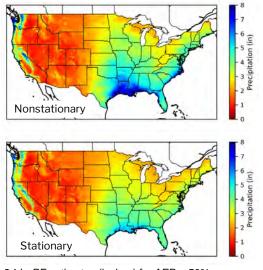
A15 Volume 1 - Framework

- Regional station data weighted based on geographical and meteorological characteristics
- GEV parameters determined via MLE, with location and scale parameters dependent on:
 - Spatial covariate: Mean annual maximum precipitation (MAM)
 - Temporal covariate: Global temperature index (GTI)
- Precipitation frequency (PF) estimates generated at each station location from the GEV, then spatially interpolated




Conceptual illustration of regional delineation and weighting at daily duration for a station in Colorado

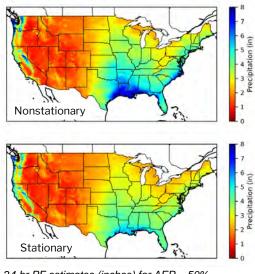
A15 Volume 1 - Preliminary CONUS estimates



A15 Volume 1 - Nonstationary vs stationary estimates

- Stationary estimates can be obtained by omitting temporal covariate terms
- Nonstationary estimates are generally higher than stationary estimates

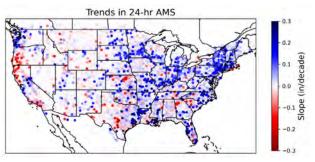
24-hr PF estimates (inches) for AEP = 50%.



Differences (inches) in 24-hr estimates for AEP = 50%.

A15 Volume 1 - Nonstationary vs stationary estimates

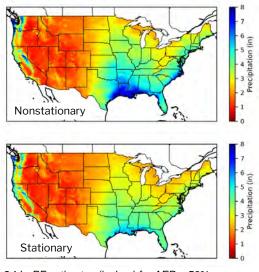
- Stationary estimates can be obtained by omitting temporal covariate terms
- Nonstationary estimates are generally higher than stationary estimates



24-hr PF estimates (inches) for AEP = 50%.

Differences reflect trends in gauge data

Differences (inches) in 24-hr estimates for AEP = 50%.



Observed changes in AMS since 1960. Dark colors indicate significance based on the Mann-Kendall test (p < 0.05).

A15 Volume 1 - Nonstationary vs stationary estimates

- Stationary estimates can be obtained by omitting temporal covariate terms
- Nonstationary estimates are generally higher than stationary estimates

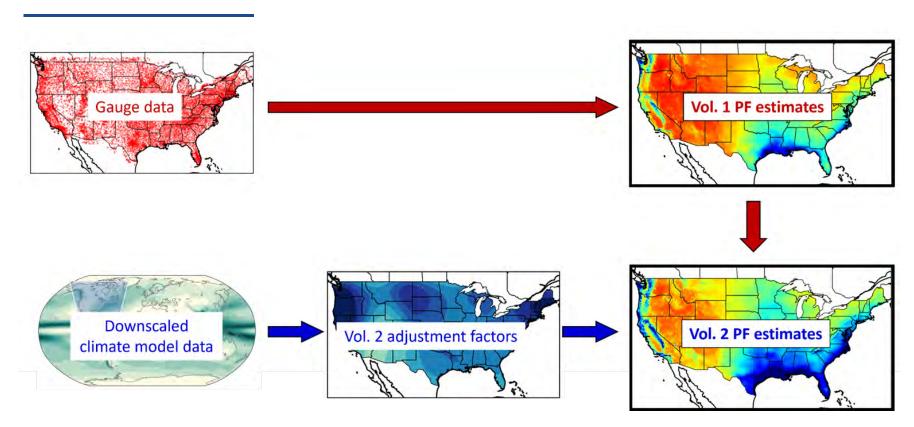


24-hr PF estimates (inches) for AEP = 50%.

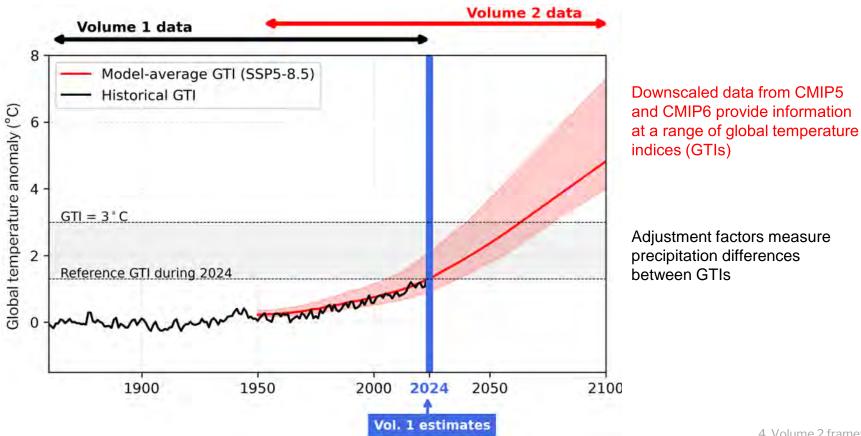
- Differences reflect trends in gauge data
- Large-scale differences between A15 and A14 are partly due to the implementation of a nonstationary framework

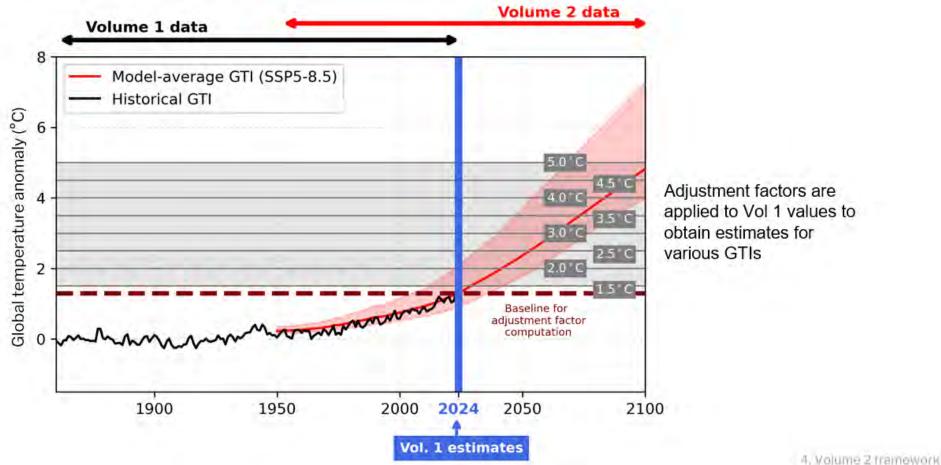
Differences (inches) in 24-hr estimates for AEP = 50%.

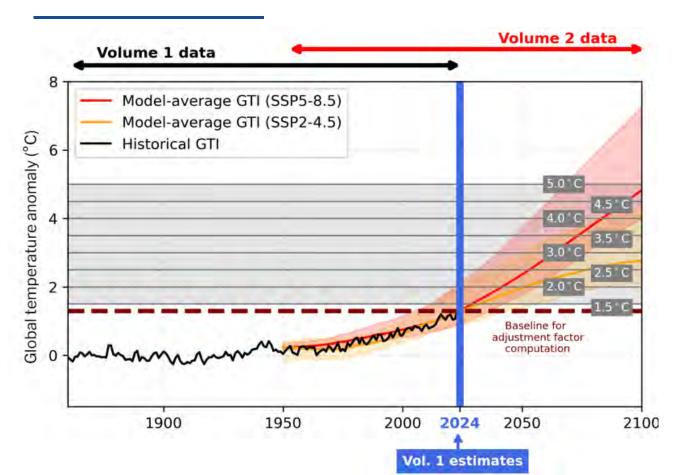
Differences (inches) in 24-hr estimates for AEP = 50%.

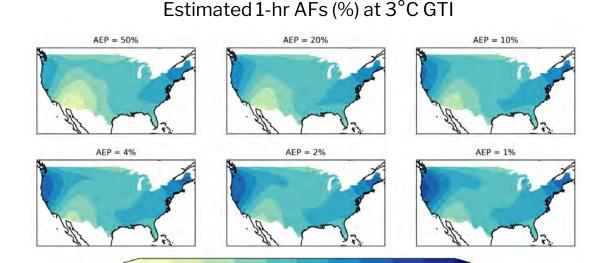


Developing precipitation frequency (PF) estimates




Developing precipitation frequency (PF) estimates





Estimates for various GTIs can be mapped back to any scenario

A15 Volume 2 - Preliminary CONUS adjustment factors

- CONUS AFs developed from a combination of products downscaled from CMIP5 and CMIP6
- Statistical models inform daily AFs: LOCA2¹, STAR², UWPD³
- Dynamical models inform daily and subdaily AFs: CONUS404⁴, NIU⁵, NA-CORDEX⁶, GFDL-SPEAR⁷
- Model spread used to produce confidence intervals

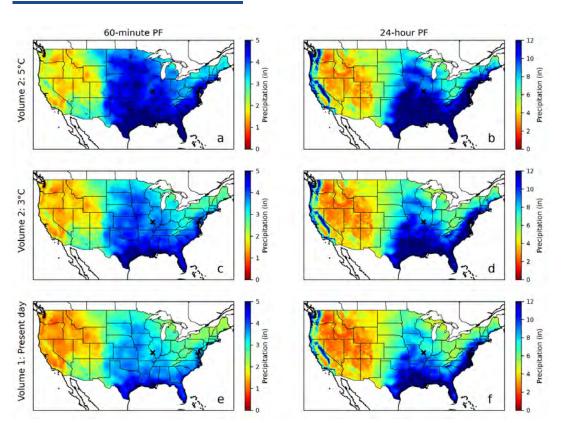
15

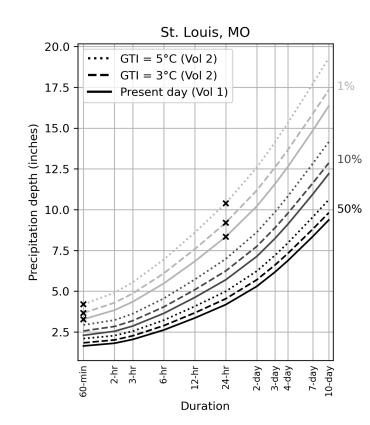
20

10

¹ LOCA2 - Localized Constructed Analog v2

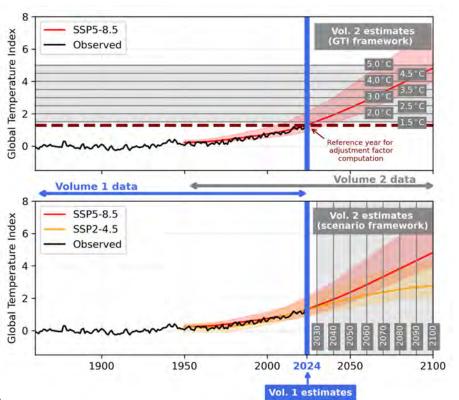
² STAR-ESDM - Seasonal Trends and Analysis of Residuals Empirical-Statistical Downscaling Model


³ UWPD - University of Wisconsin Probabilistic Downscaling


⁴ CONUS404 - USGS CONterminous U.S. 404 high-resolution hydro-climate dataset

⁵ NIU - Northern Illinois University Convection-Permitting

⁶ NA-CORDEX - North American Coordinated Regional Downscaling Experiment


⁷ GFDL-SPEAR - Geophysical Fluid Dynamics Laboratory-Seamless System for Prediction and EArth System Research

A15 precipitation frequency estimates for Volumes 1 and 2

Durations	60-min, 2-hr, 3-hr, 6-hr, 12-hr, 24-hr, 2-day, 3-day, 4-day, 7-day, 10-day		
AEPs	50%, 20%, 10%, 4%, 2%, 1%		
Confidence bounds	5% and 95%		
Spatial resolution	30-arc second grid		
Temporal range	Vol 1: 2024 Vol 2: GTI 1.5 - 5°C Vol 2: 2030 - 2100 (SSP2-4.5 and SSP5- 8.5)		

Acknowledgements

IBSS

Brian Beitler, Kevin Sanchez, Jennifer Marchetti, Alana Shuvalau, Danielle White, David Tedesco, Jacquelyn Crowell, Sydney Lybrand, Victoria Clear, Austin Jordan, Amir Shariatmadari

LAGO Consulting & Services LLC

Marcelo Lago, Idoliris Bacallao, Nestor Hernandez, Maria Bravo, Luis Sorinas

North Carolina State University

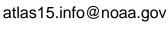
Kenneth Kunkel, Xia Sun, Ligiang Sun, James Anheuser, Parth Katlana, David Easterling

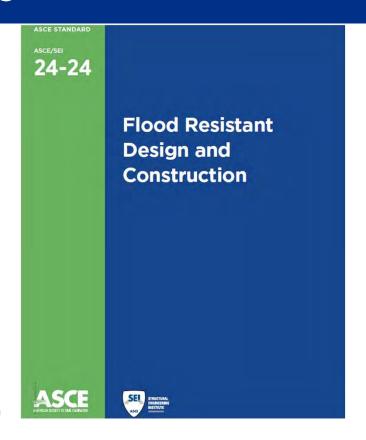
RTI International, Center for Water Resources

Debbie Martin, Sanja Perica, Lynne Trabachino, Janel Hanrahan, Bowen Pan, Joshua Eston, Shu Wu, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Rama Sesha Sridhar Mantripragada

NOAA/NWS Office of Water Prediction Sandra Pavlovic, Greg Fall, Fernando Salas, Fred Ogden

This research was supported by Protech Weather IDIQ and the Cooperative Institute for Research to Operations in Hydrology (CIROH) with funding under award NA22NWS4320003 from the NOAA Cooperative Institute Program.





ASCE 24-24 and the NFIP: Better Together for Flood Resilience

Manny A. Perotin, PE, PMP, CFM

MN DNR Monthly Local Government Units (LGU) Virtual Forum - October 8, 2025

ASCE 24-24 and the NFIP: Better Together for Flood Resilience

Background - why a new standard was needed?

Brief History of ASCE 24

ASCE 24 compared to the NFIP

Key Changes in 24-24 compared to the NFIP

Resources

1.

2.

3.

4.

5.

6.

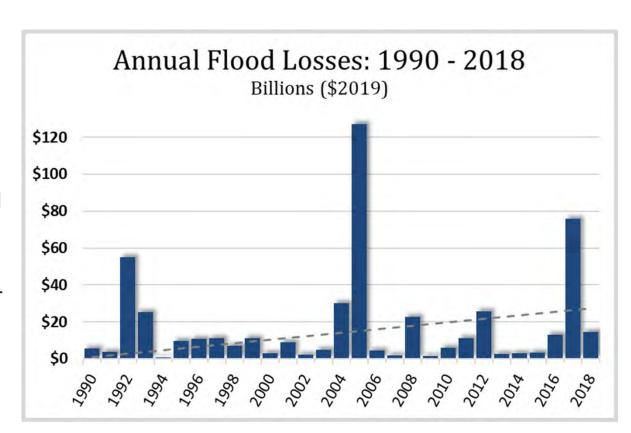
Questions

What percent chance of flooding should newly constructed buildings have over the next 50 years (what is your acceptable risk threshold)?

- **A**) 5%
- **B**) 10%
- **-** C) 20%
- **D)** 30%
- **E)** 40%

Should it vary based on the structure occupancy/use?

- **A**) 5%
- **B**) 10%
- **-** C) 20%
- **D)** 30%
- **E)** 40%



Over a period of 50 years...

- A) 5% ≈ 1,000-year annual chance
- B) 10% ≈ 500-year annual chance
- C) 20% ≈ 225-year annual chance
- D) 30% ≈ 140-year annual chance
- E) 40% ≈ 100-year annual chance

Is flooding getting worse? YES!!!

- Flooding is the number one natural disaster in the United States
- Annual flood losses roughly doubling per decade - now \$40+ billion/yr. \$200 billion in 2021 and 2022.
- 17.7 million properties are at risk of flooding (SFHA + nonmapped + pluvial areas) according to First Street
- New precipitation model shows 1 in 100-year flooding can now be expected every 8 years in some areas

Nationwide historical NFIP Claims for single-family policies

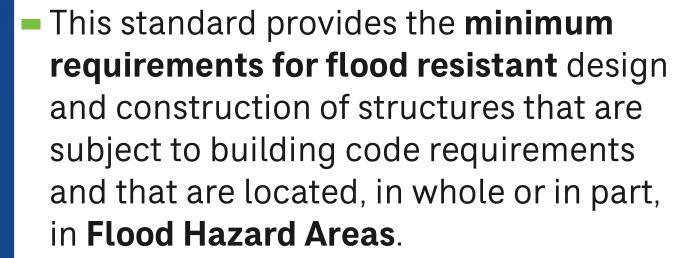
Location of Claim	Quantity	Average Claim	Percent of Quantity
Within SFHA	940,550	\$57,250	74%
Outside SFHA	329,450	\$57,090	26%
Total	1,270,000	≈\$57,200	

*Historical NFIP claims payment were adjusted for inflation using Consumer Price Index (CPI) data sourced from the U.S. Bureau of Labor Statistics. All claim amounts were converted into constant dollars based on the most recent available year of CPI data, which is 2024. This adjustment allows for equitable comparison across claims spanning multiple years.

Source: https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2 (through December 2024)

Nationwide historical NFIP Claims for <u>post 2000</u> single-

family policies


Location of Claim	Quantity	Average Claim	Percent of Quantity
Within SFHA	40,985	\$90,250	70%
Outside SFHA	17,515	\$99,100	30%
Total	58,500	≈\$92,900	

- Newer construction generally has less damage than older, especially compared to pre-1980
- Newer buildings are larger, so higher damages
- Hazard is not binary; flooding in/out of SFHA
- Damage in newer (post 2000) construction within the 500-year floodplain can exceed that of newer (post 2000) buildings within the SFHA; newer within the SFHA incorporate flood resistant design and construction requirements whereas newer construction outside the SFHA does not

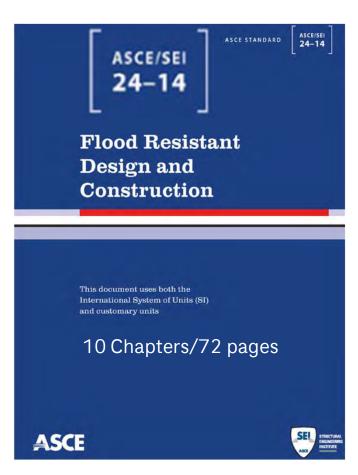
What is ASCE 24?

Flood Resistant
Design and
Construction

A new national flood resilience standard!

Brief History of ASCE 24 (1993 to 2014)

SEI/ASCE 24-98


Structural Engineering Institute
American Society of Civil Engineers

Flood Resistant Design
and Construction

I Engineering Institute
Published by the American Society of Civil Engineers
1801 Alexander Bell Drive
Reston, Virginia 20191-4400

11 Chapters/53 pages

ASCE/SEI 24-05 ASCE/SEI 24-05 American Society of Civil Engineers Flood Resistant Design and Construction This document uses both the International System of Units (SI) 10 Chapters/58 pages ASCE Published by the American Society of Civil Engineers

National Flood Insurance Program (NFIP) Minimum Standards

- 44 CFR part 60
- Originated in the Flood Disaster Protection Act of 1973 which introduced two key requirements:
 - 1. Mandatory Purchase of flood insurance in SFHA
 - 2. Community participation in the NFIP inc. Adoption, administration and enforcement of NFIP minimum standards
- NFIP minimum standards largely unchanged in 52 years since

Question: What have we learned in 52 years about effective floodplain management?

ASCE 24 and the National Flood Insurance Program (NFIP)

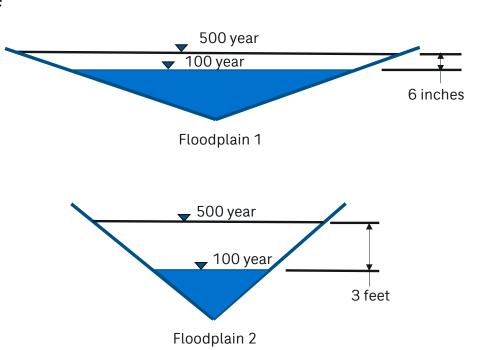
- The provisions of ASCE 24 are consistent with NFIP building performance requirements
 - Commentary C1.1 Scope "Any conflicts or differences between this standard and other applicable regulations should be resolved such that compliance with the NFIP requirements is equaled or exceeded."
- ASCE 24 provisions generally meet or exceed NFIP minimum standards.
- In comparison with minimum NFIP minimum standards, ASCE 24:
 - 1. Provides more specific requirements
 - 2. Requires new construction to meet higher standards
 - 3. Requires Substantial Improvement/Substantial Damage construction to meet higher standards

Key Change: Required Minimum Elevation & Risk Based Freeboard

Evaluating the protection provided by traditional

freeboard

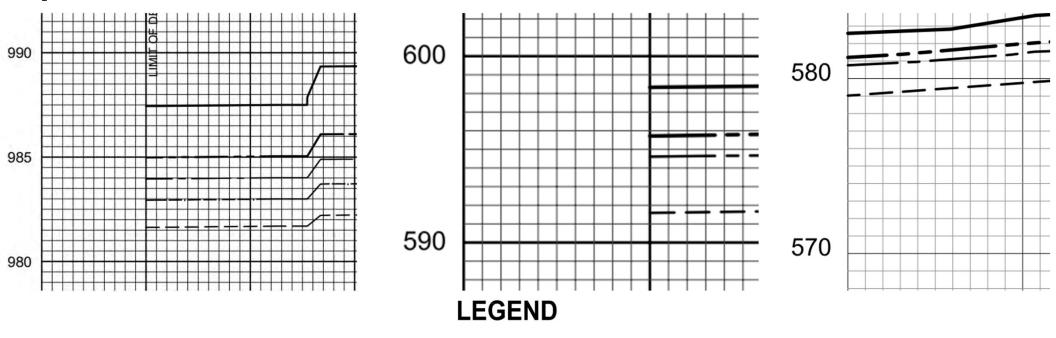
The protection provided by ASCE 2414 <u>varies greatly</u>
<u>depending</u> on the floodplain


--
--
--
100 year

| The protection | The provided by ASCE 24|--| 14 varies greatly | The provided by ASCE 24| 14 varies greatly | The provided by ASCE 24| 14 varies greatly | The provided by ASCE 24| 14 varies greatly | The provided by ASCE 24| 14 varies greatly | The provided by ASCE 24| 16 varies greatly | The provided by ASCE 24| 17 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18 varies greatly | The provided by ASCE 24| 18

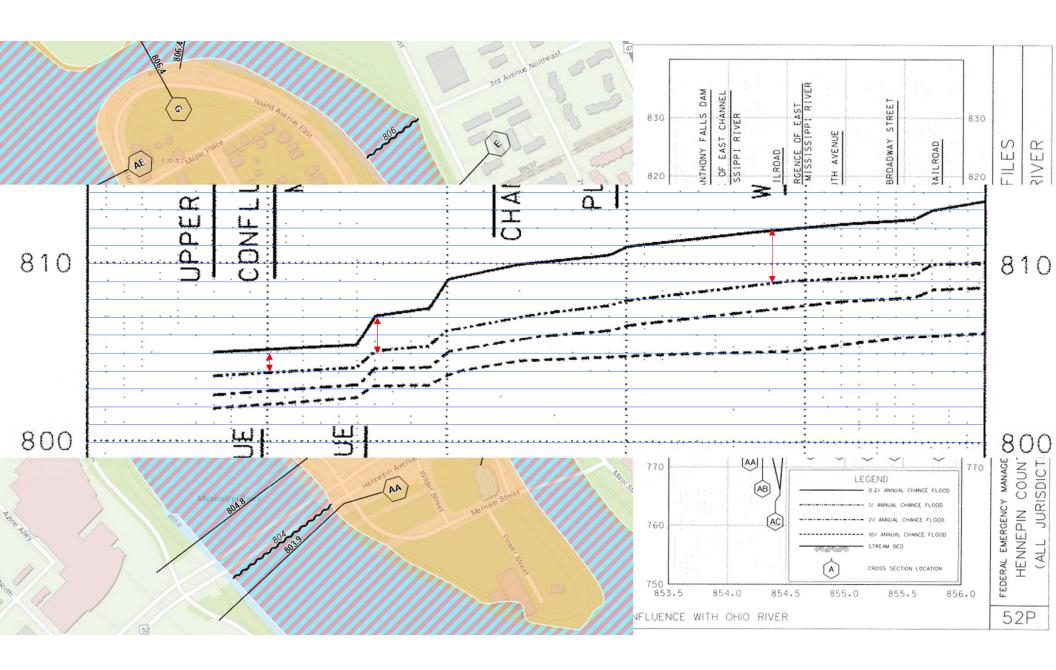
Difference between 500-year and 100-year	Approx. MRI (year) Provided by Freeboard in a Representative Floodplain			
flood elevations in feet	BFE + 1	BFE + 2		
1	500	2500		
2	225	500		
3	170	290		
4	150	225		
5	140	190		
6	130	170		
7	125	160		
8	120	150		

- We have used Freeboard which is a value above the Base Flood Elevation (BFE or 100-year flood event)
- Traditional freeboard (BFE + 1ft) provides varying levels of protection across floodplains and communities
- When considering risk, elevation should be calculated on an MRI basis – this provides consistent levels of protection across floodplains
- Allows regulation of the same risk across:
 - The entire community regardless of floodplain characteristics
 - Within Flood Design Classes


Risk Based Freeboard

- Adjusts flood parameters based on Risk Category and associated Mean Recurrence Interval (MRI) aligning it with ASCE 7-22-S2
- Risk Category I: Agricultural, temporary, storage structures
- Risk Category II: Most residential, commercial, industrial structures
- Risk Category III: Nursing homes, schools and similar structures that could pose risk of harm/loss of life
- Risk Category IV: Critical or essential facilities (fire stations, EOCs, power plants)

ASCE 7-22-S2 Design Flood MRIs


Mean
Recurrence
Interval
(MRI)
[years]
100
500
750
1,000

Traditional freeboard (BFE + 1ft) provides varying levels of protection

0.2% ANNUAL CHANCE FLOOD
 - - - 1% ANNUAL CHANCE FLOOD
 - - 2% ANNUAL CHANCE FLOOD
 - - - 10% ANNUAL CHANCE FLOOD

Key Change: Floodplain Extent

ASCE 24-24 – floodplain extent

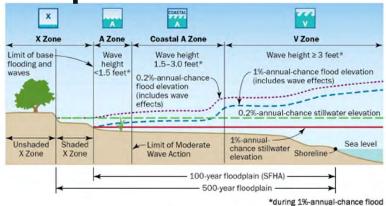
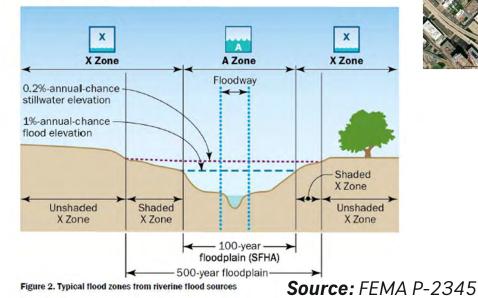
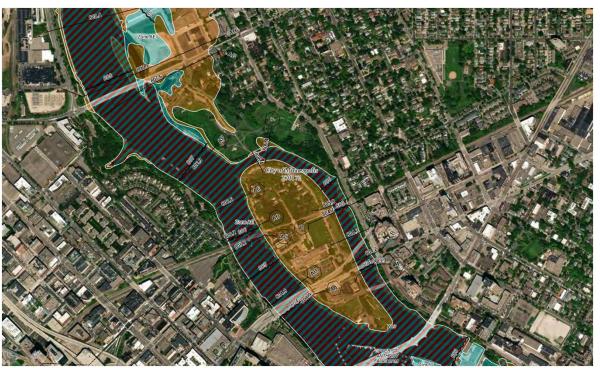
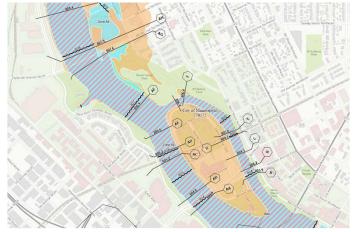
Design Flood: Flood corresponding to the elevations specified in Section 1.5.2 and acting over the flood hazard area specified in Section 1.3 of this standard or otherwise legally designated. In no case shall the design flood be taken as less restrictive than the base flood.

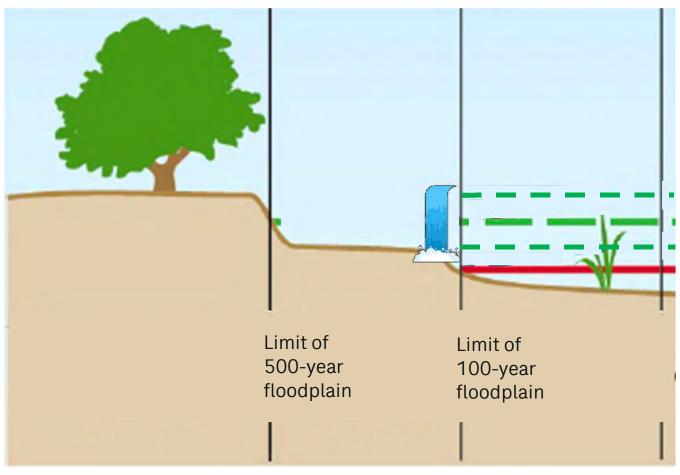
1.3 IDENTIFICATION OF FLOOD HAZARD AREAS

For Flood Design Classes 2, 3, and 4 structures, the flood hazard area shall be the larger of (1) the lands within the mapped 500-year floodplain (0.2% or greater chance of flooding in any year, including the 1% floodplain) on a FIRM, and (2) those lands designated as a flood hazard area on the community's flood hazard map, or otherwise legally designated (this includes the 1% floodplain).

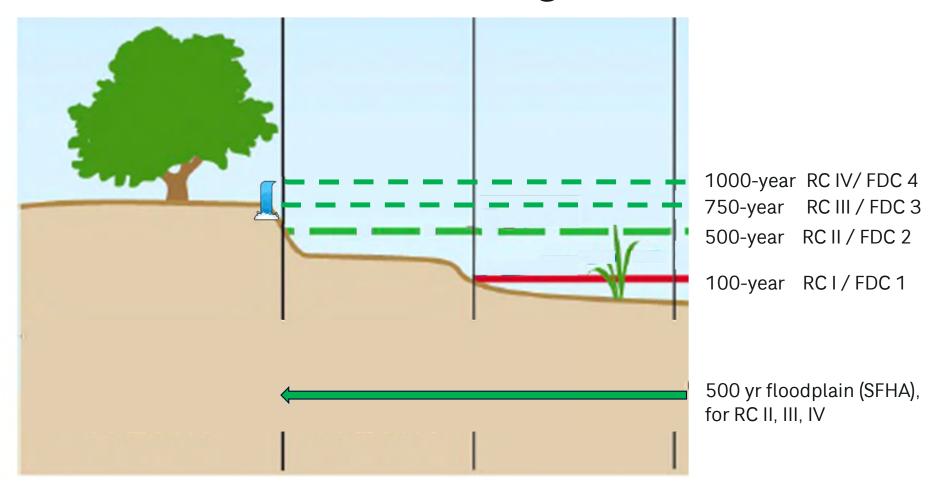
For Flood Design Class 1 structures, the flood hazard area shall be the larger of (1) the lands within the mapped 100-year floodplain (1% or greater chance of flooding in any year) on a FIRM, and (2) those lands designated as a flood hazard area on the community's flood hazard map, or otherwise legally designated.

Floodplain extent


Figure 1. Typical flood zones from coastal flood sources

The Waterfall Effect



Base flood + 3 ft Base flood + 2 ft Base flood + 1 ft

100-year flood (base flood elevation)

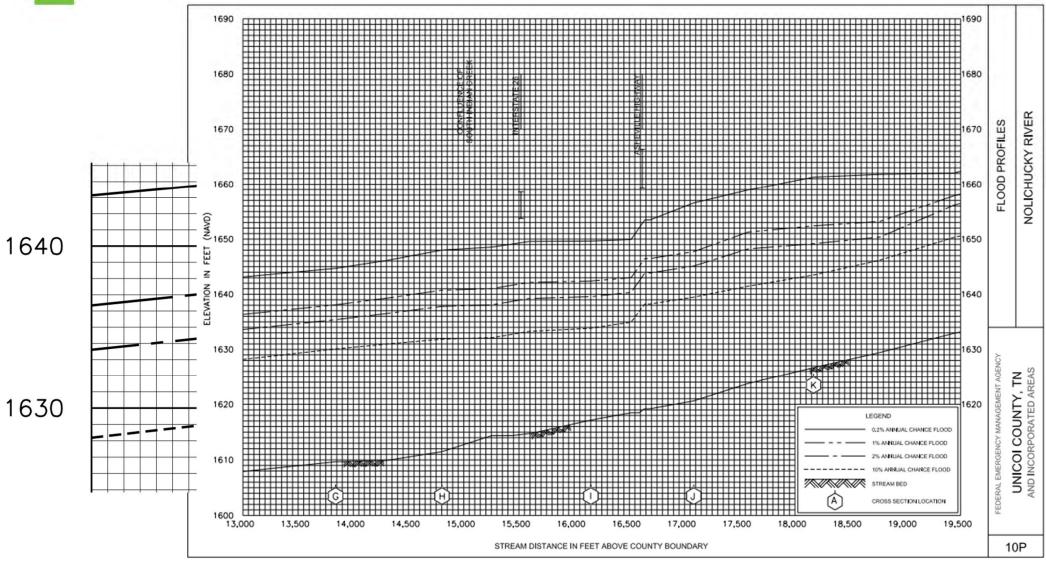
Source: Dr. Dan Cox

Risk-based Design

Source: Dr. Dan Cox

RC = Risk Category of structure

Unicoi County Hospital - Erwin, TN


Unicoi County Hospital - Erwin, TN

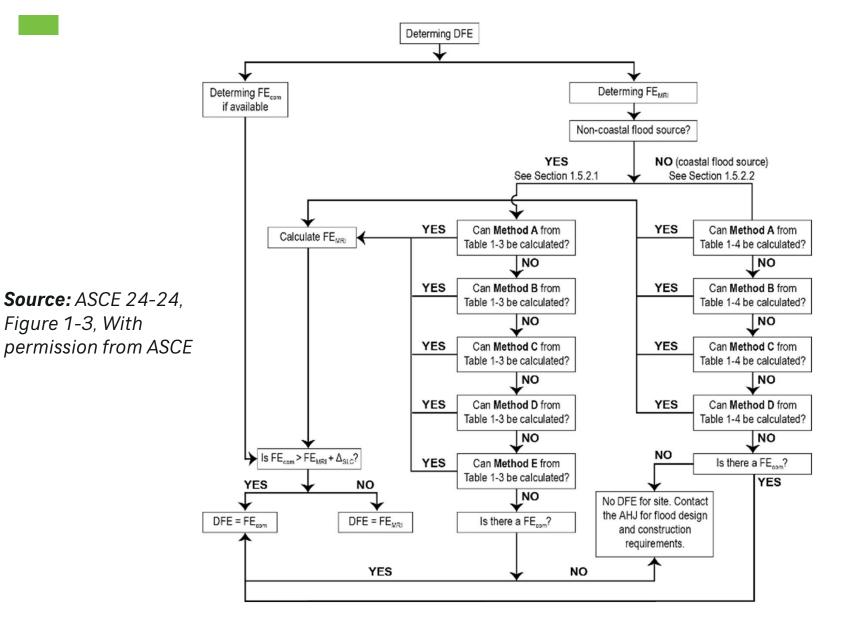
ASCE 24-24 & ASCE 7-22 Supplement 2 – align required minimum elevation

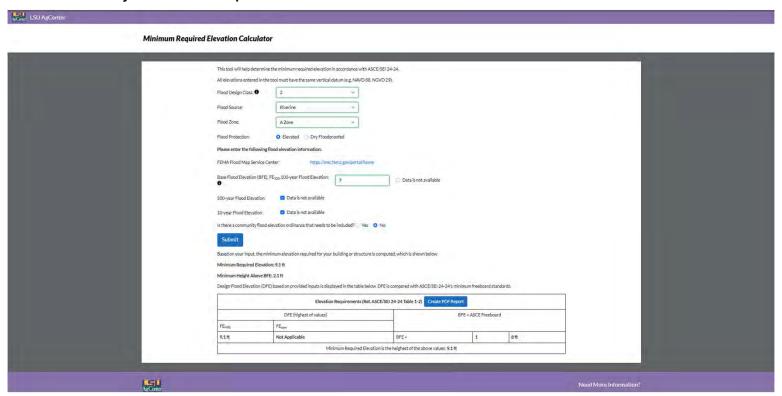
Table 1-3. FE_{MRI} for Flood Hazard Areas with Noncoastal Flood Sources.

Flood Design Class	MRI	Method A: MRI Data are Available or Site-Specific/ Local Study is Prepared	Method B: 100-Year and 500-Year Flood Elevations are Available	Method C: Only 100-Year and 10-Year Flood Elevations are Available	Method D: Only 100-Year Flood Elevation is Available	Method E: 100-Year Flood Elevation is Not Available
1	100-Year	FE ₁₀₀	FE ₁₀₀	FE ₁₀₀	FE ₁₀₀	100 _{com}
2	500-Year	FE ₅₀₀	FE ₅₀₀	$FE_{100} + 0.70(FE_{100} - FE_{10})$	$FE_{100} + 2.1 \text{ ft } (0.6 \text{ m})$	$100_{\text{com}} + 2.1 \text{ ft}$ (0.6 m)
3	750-Year	FE ₇₅₀	FE ₁₀₀ + 1.25(FE ₅₀₀ - FE ₁₀₀)	FE ₁₀₀ + 0.90(FE ₁₀₀ - FE ₁₀)	FE ₁₀₀ + 2.6 ft (0.7 m)	$100_{\text{com}} + 2.6 \text{ ft}$ (0.8 m)
4	1000-Year	FE ₁₀₀₀	FE ₁₀₀ + 1.43(FE ₅₀₀ - FE ₁₀₀)	FE ₁₀₀ + (FE ₁₀₀ – FE ₁₀)	$FE_{100} + 3.0 \text{ ft } (0.9 \text{ m})$	$100_{\text{com}} + 3.0 \text{ ft}$ (0.9 m)

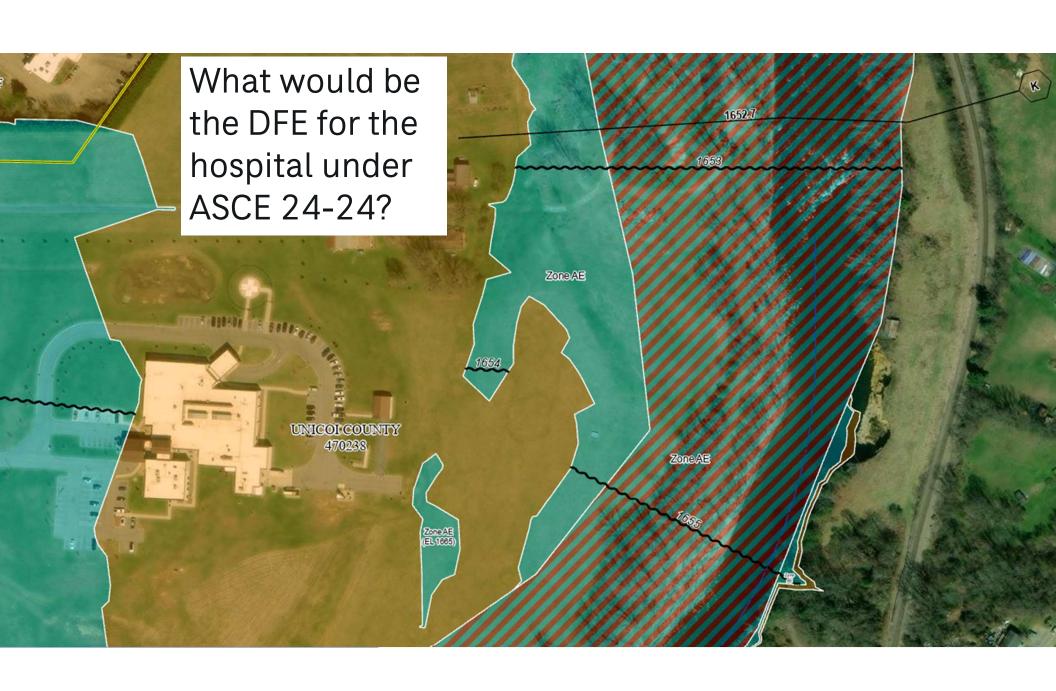
FE100, FE500, FE750, and FE1000 are the flood elevations for the indicated MRIs.

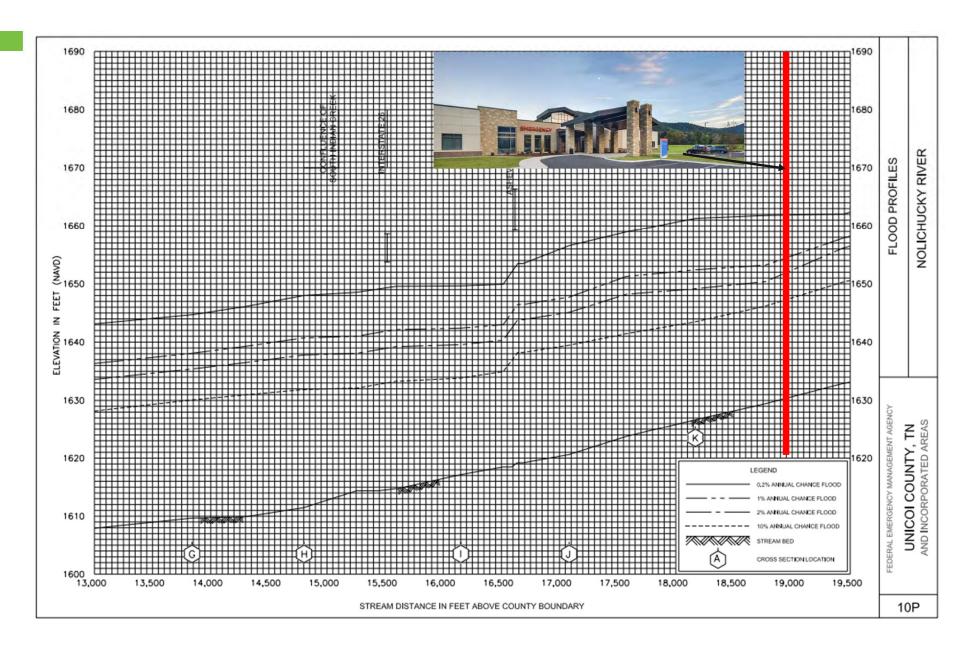
Source: ASCE 24-24, With permission from ASCE

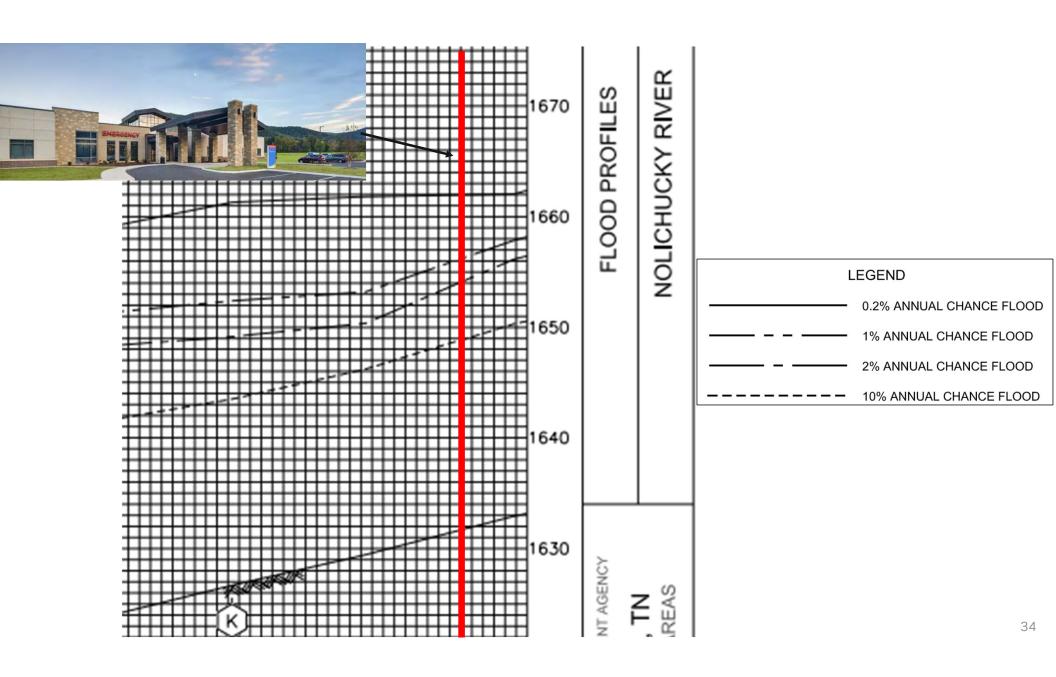


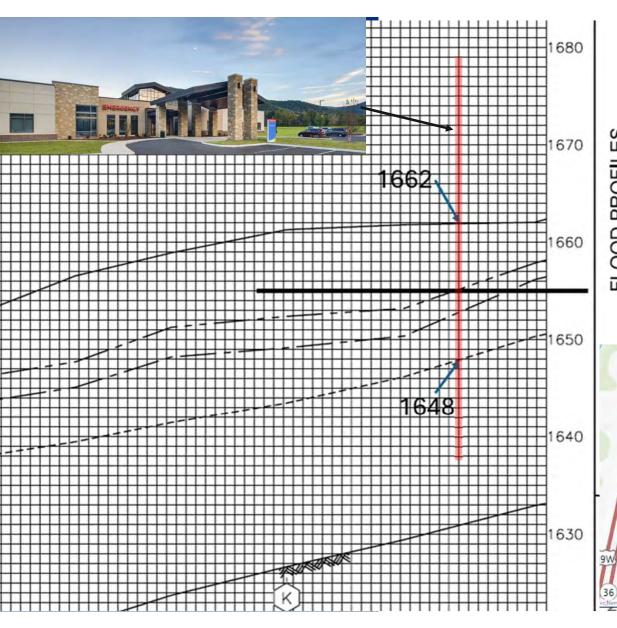

Figure 1-3, With

Job Aid: Web Based Elevation Calculator




Pilot tool - ASCE 24-24 Minimum Required Elevation Calculator

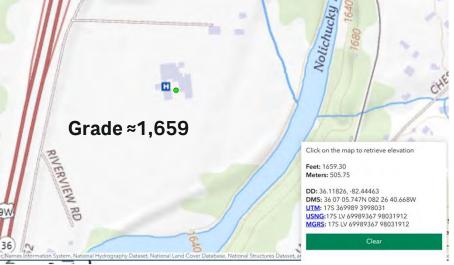

- This product was developed by the LSU Ag Center, not ASCE
- This <u>may</u> eventually be incorporated into the ASCE Hazard Tool



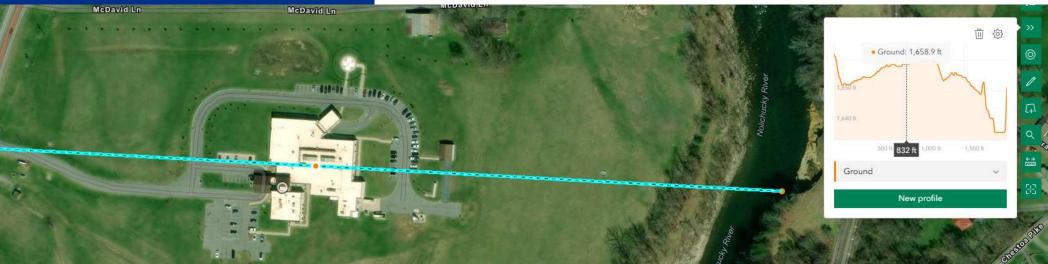
https://www.lsuagcenter.com/floodelev

FLOOD PROFILES NOLICHUCKY RIVER

LEGEND

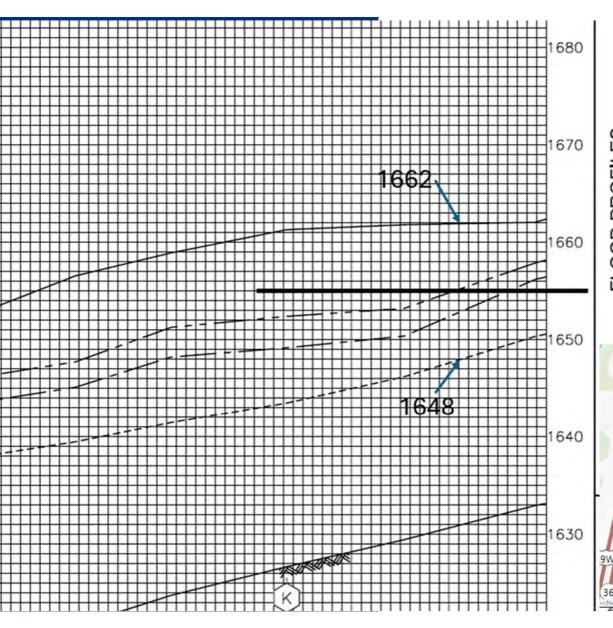

0.2% ANNUAL CHANCE FLOOD

1% ANNUAL CHANCE FLOOD


2% ANNUAL CHANCE FLOOD

10% ANNUAL CHANCE FLOOD

0.2% annual chance (500-year) is 1,662 1% annual chance (100-year) is 1,655 10% annual chance (10-year) is 1,648

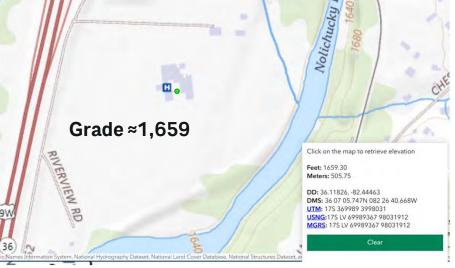


	mine the minimum required elevation in accordance with				
All elevations entered in	n the tool must have the same vertical datum (e.g., NAVD 8	8, NGVD 29).			
Flood Design Class: 1	4 ~				
Flood Source:	Riverine V				
Flood Zone:	Shaded X ~				
Flood Protection:	Elevated				
Please enter the follow	ing flood elevation information:				
FEMA Flood Map Servio	ce Center: https://msc.fema.gov/portal/ho	me	0.2%	annual chance (500-year)) is 1,6
Base Flood Elevation (B	FE), FE ₁₀₀ ,100-year Flood Elevation: 1655	☐ Data is not available		nnual chance (100-year) is annual chance (10-year) is	
1000-year Flood Elevat	ion: 🗷 Data is not available				
500-year Flood Elevation	on: Data is not ava	ilable			
Is there a community flo	ood elevation ordinance that needs to be included? O Yes	O No			
Submit					
Based on your input, the	e minimum elevation required for your building or structur	re is computed, which is shown below.			
Minimum Required Ele	vation: 1665 ft				
Minimum Height Above	e BFE: 10 ft				
Design Flood Elevation	(DFE) based on provided inputs is displayed in the table be	elow. DFE is compared with ASCE/SEI 24-24	4's minimum freeb	oard standards.	
	Elevation Requirements (Re	f. ASCE/SEI 24-24 Table 1-2) Create PD	FReport		
	DFE (highest of values)		BFE + ASCI	E Freeboard	
FE _{MRI}	FE _{com}				
1665 ft	Not Applicable	BFE+	2	1657 ft	

	3	~			
Flood Source:	Riverine	~			
Flood Zone:	A Zone	~			
Flood Protection:	Elevated	d			
Please enter the following	flood elevation information:				
FEMA Flood Map Service C	enter: https://msc.fema.	gov/portal/home			
Base Flood Elevation (BFE), Elevation: ①	FE ₁₀₀ ,100-year Flood	555	☐ Data is not available		
750-year Flood Elevation:	Data is not available		0.2% annual chan	ce (500-year) is 1,662	
500-year Flood Elevation:	1662	Data is not available		e (100-year) is 1,655	
Is there a community flood	elevation ordinance that needs to be inc	luded? Yes O No	10% annual chanc	ce (10-year) is 1,648	
Submit			, which is shown below.		
	nimum elevation required for your build	ing or structure is computed	A Committee of the Comm		
		ing or structure is computed			
Based on your input, the mi	on: 1663.8 ft	ing or structure is computed			
Based on your input, the mi Minimum Required Elevati Minimum Height Above BF	on: 1663.8 ft E: 8.8 ft		mpared with ASCE/SEI 24-24's minimum free	board standards.	
Based on your input, the mi Minimum Required Elevati Minimum Height Above BF	on: 1663.8 ft E: 8.8 ft E) based on provided inputs is displayed		mpared with ASCE/SEI 24-24's minimum free	board standards.	
Based on your input, the mi Minimum Required Elevati Minimum Height Above BF	on: 1663.8 ft E: 8.8 ft E) based on provided inputs is displayed	in the table below. DFE is co	mpared with ASCE/SEI 24-24's minimum free 1-24 Table 1-2) Create PDF Report	board standards. CE Freeboard	
Based on your input, the mi Minimum Required Elevati Minimum Height Above BF	on: 1663.8 ft E: 8.8 ft E) based on provided inputs is displayed Elevation Requ	in the table below. DFE is co	mpared with ASCE/SEI 24-24's minimum free 1-24 Table 1-2) Create PDF Report		

FLOOD PROFILES NOLICHUCKY RIVER

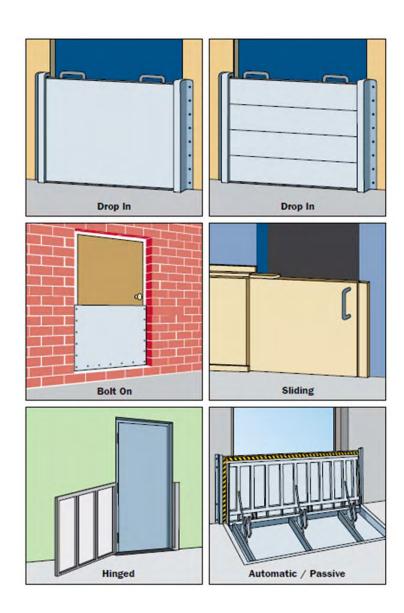
LEGEND


0.2% ANNUAL CHANCE FLOOD

1% ANNUAL CHANCE FLOOD

2% ANNUAL CHANCE FLOOD

10% ANNUAL CHANCE FLOOD


0.2% annual chance (500-year) is 1,6621% annual chance (100-year) is 1,65510% annual chance (10-year) is 1,648

Key Change: Dry Floodproofing Requirements

Dry Floodproofing requirements

- New/Modified Definitions
- Allowable Shield Types
- ANSI/FM 2510
- Opening barrier vs "temporary floodwall"
- Marking and identification
- Planning and Inspection Requirements

Dry Floodproofing - Allowable Shield Types

	Flood Design Class	- Permanent FixedPassive- PermanentAutomatic Passive- Permanent Active	Contingent Active (stored on site)	Contingent Active (stored on or off site)
	1	✓	✓	√
New	2	✓	✓	<mark>X</mark>
Construction	3	✓	✓	<mark>X</mark>
	4	✓	X	X
	1	/	J	J
Substantial	2	√	√	√
Improvement	3	√	√	X
	4	✓	X	X

Source: ASCE 24-24, Table 6-1, With permission from ASCE

Permanent

(barrier permanently next to opening)

- Slide/swing gate
- Passive gate

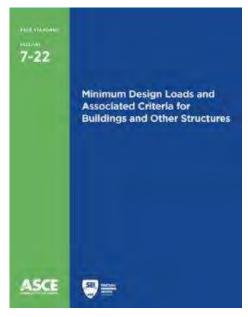
Contingent (removeable)

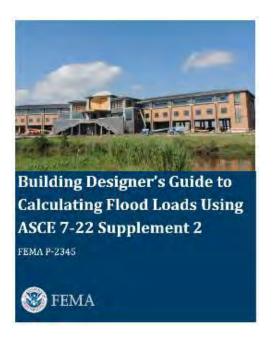
- Stop logs
- Removeable panels

Image Source: FEMA

Dry Floodproofing requirements - Shields must meet ANSI/FM 2510

- The shields and all necessary accessories for the shields shall be tested to and certified to meet the applicable requirements of the <u>American National Standard</u> for Flood Mitigation Equipment, ANSI/FM 2510, including, but not limited to, the general component and water performance testing requirements for opening barrier applications.
- In an existing building where substantial improvement is triggered, when an available ANSI/FM 2510 tested and certified shield does not meet the required maximum width or water depth specifications for a particular installation, a licensed design professional shall evaluate on a case-by-case basis to determine the acceptability of increasing the size of an available ANSI/FM 2510 tested and certified shield. The design professional must have a minimum of 5 years' experience in flood resistant design, and such specifications are restricted to substantial improvements rather than new construction.


Dry Floodproofing requirements - Planning and Inspection Requirements


- Required plans Inspection, Maintenance, and Operations
- Annual inspection and full-scale deployment
- Time required to implement the measures is less than
 - 12 hours for Flood Design Class 1 and Flood Design Class 2,
 - 8 hours for Flood Design Class 3, and
 - 4 hours for Flood Design Class 4
- For structures with permanent automatic passive measures the plan should include an audio or visual device to alert the building owner or designated representative as well as occupants that the measures have been implemented and additional steps in the operations plan may be triggered

Other Changes

ASCE 7-22 Supplement 2 - Flood Loads

- 1.6 LOADS IN FLOOD HAZARD AREAS
 - 1.6.1 General Design of structures within flood hazard areas shall be governed by the loading provisions of ASCE/SEI 7.
 - ASCE 7-22 Supplement 2

Other (some of the 29 items in the 24-24 Preface highlighting changes from 2014 to 2024 that we did not get to)...

- The elevation requirements have been relocated and modified to Chapter 1.
- Clarifications were made to the FDC applicable to Hospitals, Health Care and Ambulatory Care
 Facilities.
- Exceptions in the location of flood openings for buildings on sloped sites and interior areas with a single exterior wall.
- Criteria for helical piles and anchors have been added.
- Door at DFE above elevated buildings with enclosures.
- Criteria for the distinction between columns and walls have been added.
- New buildings and structure shall not be supported by or bear on bulkheads, seawalls, revetments, and other erosion control structures.
- Glass Fiber Reinforced Polymer (GFRP) reinforcement has been added to Chapter 5 Materials.
- Dry floodproofing limited to areas with velocity less than 5 feet per second, removed
- Attendant utilities and equipment serving residential buildings and residential portions of mixed-use buildings are not permitted in dry floodproofed enclosures.
- Automatic pressure control valves are required for flammable gas and fuel supply lines.
- Self-supporting decks and porches shall be located to avoid obstructing the free flow of floodwater under structures.
- Tents and membrane structures have been added to Chapter 9.

Summary and Resources

ASFPM members have access to ASCE 24-24

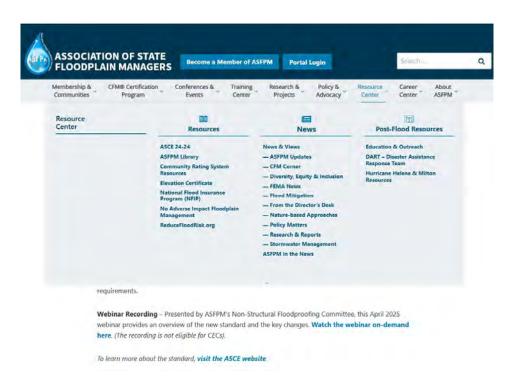
Exclusive Member Benefit: Free Access to ASCE 24-24

New flood standard is now free for ASFPM members (a \$165 value)

ASFPM is proud to offer members free digital access to the new **ASCE** 24-24: Flood Resistant Design and Construction, which establishes minimum requirements for building structures in flood hazard areas.

Published by the American Society of Civil Engineers, the new ASCE 24-24 redefines how we design and build in flood hazard areas — aligning with the latest data and practices to help communities reduce risk and future losses.

"This may be the most significant upgrade in the nation's flood loss reduction standards since the creation of the NFIP minimums in 1973."


Chad Berginnis, CFM, Executive Director, ASFPM

The 2024 edition provides new, recommended minimum standards for flood resistant design and construction of structures that are subject to building code requirements, floodplain management regulations, or other requirements that cite this standard. While not a requirement to be adopted under the NFIP at this time, the new standard nonetheless represents an opportunity for communities to adopt a new national standard that has been through a rigorous consensus process.

Model Floodplain Ordinance Language

- ASFPM is developing model ordinance language to incorporate key elements of ASCE 24-24 – it will be posted to our website and included in ASFPM's updated Higher Standards Guide
- ASFPM can assist on an as needed basis – contact our policy team

At Committee Action Hearing #1 in Orlando earlier this year, the ASCE Proposal to incorporate ASCE 7-22-Supplement 2 and ASCE 24-24 into the 2027 International Building Code (supported w/ 13 of 14 votes).

The ASCE Proposal to incorporate ASCE 7-22-Supplement 2 and ASCE 24-24 into the 2027 <u>International</u> <u>Residential Code</u> (w/ 7 of 10 votes disapproving of the proposal)

If today we are building to yesterday's standards, we are building tomorrow's problems

- Nationwide, average annual flood losses have doubled each decade since the 1990's.
 Annual losses now average over \$40 billion/year. Yesterday's standard aren't good enough
- Every floodplain is not created equal/the same
 - MRI basis provides consistent levels of protection across floodplains
 - Extent, Depth, Velocity, etc.
- FEMA's Flood Maps/Products only illustrate historic flood risk
- You however should be building for the lifespan of the asset
- Code minimums often only consider structural damage and contents damage
- Consider downtime and other factors like the impact of future flood conditions on insurability and your credit rating
- Build right the first time, because future retrofits can be prohibitively expensive

Flood Resistant Design and Construction

- Background why change/upgrade the standard?
- Brief History of ASCE 24
- ASCE 24 compared to the NFIP
- Key Changes in 24-24 compared to the NFIP
- Resources

Manny A. Perotin, PE, PMP, CFM 813.262.8853 perotinma@cdmsmith.com

