Sustainable Flow Requirements: Balancing Water for Humans and Nature

Stream Habitat Program Division of Ecological and Water Resources Minnesota Department of Natural Resources

Thresholds Project Stakeholder Meeting 2 September 30, 2015

Principles:

1. Hydrology drives ecosystems;

Principles: 2. Water is naturally variable in space and time (& limited);

BLUE EARTH RIVER NEAR RAPIDAN, MN

Hydrology is variable within a year, and across years

Principles:3. All parts of the hydrograph are functionally important;

пIII et al. (1995)

Important Links of Hydrologic Variability to Biology

 \bigcirc

from Bunn and Arthington (2002)

Principles:

4. Surface water and Groundwater are connected – a single resource.

Our Charge and Rationale:

- 1. Sustainability accounts for ecosystems and future generations,
- 2. Identifying a threshold for ecological health/sustainability is a key task,
- Management prescriptions are developed to maintain the threshold and thereby, ecosystem health and sustainability.

Our Charge and Rationale:

- 1. Sustainability accounts for ecosystems and future generations
- Sustainability standard: " . . . use is sustainable to supply the needs of future generations and the proposed use will not harm ecosystems, degrade water, or reduce water levels beyond the reach of public water supply and private domestic wells . . ."MN Statute 103G.287 Subd.5. (2014)

MN Statutes	Headnotes		
116B.01 and .02.	 Environmental rights; no adverse impairment 		
103G.265. Subdivision 1.	Assurance of supply; to meet long 2. range seasonal requirements		
103G.271. Subdivision 3	No restriction of amount authorized in a permit for agricultural land		
103G.285. Subdivision 2.	 Surface water appropriations; limits appropriations during periods of 3. specified low flows 		
103G.287. Subdivision 2.	 Groundwater appropriations; relationship to surface water resources 		
103G.287. Subdivision 3.	Protection of groundwater supplies 4.		
103G.287. Subdivision 5.	Sustainability standard		

Our Charge and Rationale:

2. Identifying a **threshold for ecological health/sustainability** is a key task

(adapted from Karr and Chu 1999).

Baseline Ecological Condition (Undepleted/<u>unregulated flow</u>)

* see Acreman and Ferguson (2010) ** see Carlisle et al. (2010), Acreman et al. (2008)

Day of Year

10% Alteration of Baseline Condition (Undetectable Ecosystem Impact)*

* see Acreman and Ferguson (2010) ** see Carlisle et al. (2010), Acreman et al. (2008)

10% Alteration of Baseline Condition (Undetectable Ecosystem Impact)*

20% Alteration of Baseline Condition (Ecosystem Alteration Detected and System Change Probable)**

* see Acreman and Ferguson (2010) ** see Carlisle et al. (2010), Acreman et al. (2008)

10% Alteration of Baseline Condition (Undetectable Ecosystem Impact)*

20% Alteration of Baseline Condition (Ecosystem Alteration Detected and System Change Probable)**

* see Acreman and Ferguson (2010)
** see Carlisle et al. (2010), Acreman et al. (2008)

Our Charge and Rationale:

3. Management prescriptions are developed to maintain the threshold and thereby, ecosystem health

Management prescriptions: essentially, what hydrology will maintain the desired state of ecosystem health?

Minimum Flow Thresholds

1

 \bigcirc

Statistically Based Standards

Flow Components and Needs: Major Tributaries

10000 Example: 01543500 Sinnemahoning Creek at Sinnemahoning, PA (685 sq mi)

Susquehanna River Basin Ecological Flow Management Study, Phase 1: example of flow needs associated with high, seasonal, and low flows in major 2 tributaries.

Percentage of Flow

- Conceptually simple
- Can provide a high degree of protection for natural
 - flow variability
- Relatively simple to implement

Illustration of Percentage of Flow Approach

 \bigcirc

Percent of what flow? August

- August is a biologically critical month in Minnesota;
 - low flow month
 - part of growing season (June-Sept)
 - determinant of species richness

40 Predictors length utmx utmy domsub width 30 mean august Q Model R2=0.61 20 10 0 d Turn 100 10 15 20 25 0 5

Observed Richness

Predicted Richness N=797 Richness (number) of fish species is predicted by habitat conditions and discharge.

Sample Locations for Richness (F

Statewide Stream Richness

Figure 6: Effect of mean August discharge (restricted cubic spline with 5 knots) on richness estimated by the fitted model with 95% CI with other variables adjusted to their median. Blue dots represent the density of points along the x-axis. The overall F-test is provided at the top of graph.

Change in August Discharge from 100 [cfs or %]

Figure 2: Change in predicted richness with decreasing discharge starting with 100 cfs while holding other predictor variables at their median.

Why use fish data to determine ecological impact?

- We have information on them, across the state
- Fish are used as surrogates for sustaining the ecosystem
 - Sustain fish, sustain opportunities for future users

MNDNR STREAM HABITAT PROGRAM HABITAT PREFERENCE CURVES

49 rivers/147 survey sites/ 9607 samples >223,000 fish observations 129 species / 345 species-life stages > 500 mussel observations 150 fish species-life stage habitat preference curves 9 mussel species habitat preference curves

References

For more information contact: Stream Habitat Program MN DNR 500 Lafayette Rd St. Paul, MN 55155 651.259.5113 Email: ann.kuitunen@state.mn.us

 \bigcirc

Habitat/flow relationships for 20 specieslife stages (8 species) in the Straight River, a trout stream in north-central Minnesota.

 \mathcal{D}

Habitat Time Series

Date

╋

Brown Trout Adult

Habitat Time Series

Relation of Habitat to Flow Depletion

 \bigcirc

Cation	Ecological Goal	Cumulative allowable depletion	Considerations	Decision process	
Florida (SWFWMD)	Avoid significant ecological harm (maximum 15% habitat loss)	8-19% of daily flows	Seasonally variable extraction limit; 'hands- off' flow (no withdrawals below)	Scientific peer review of site-specific studies	
Michigan	Maintain baseline or existing condition	6-15% of August median flow	Single extraction limit for all flow levels	Stakeholders with scientific support	E> po
Maine	Protect class AA: 'outstanding natural resources'	10% of daily flow	Single extraction limit for all flow levels above a 'hands-off' flow level	Expert derived	aj ac
Massachusetts	Sustainable management of water resources that balance human and ecological needs	Basin safe yield: 55% of annualized Q90 For sub-basins, maximum level of August median streamflow alteration ranges from 3-10% for Categories 1 and 2 for each season.	Seasonal extraction limit based on category	Expert, scientific support	m (f) al ac Th re
Rhode Island	Maintain habitat conditions essential to a healthy aquatic ecosystem	6 Bioperiods and 5 classes Summer Period Class 1-3 streams can deplete 10, 20, and 30% of the 7Q10, respectively	Allocation limited by cumulative streamflow depletion Identify allowable depletion limit even during dry conditions	Scientific support, stakeholders, public process	su al
European Union	Maintain good ecological condition	7.5-20% of daily flow 20-35% of daily flow	Lower flow; warmer months; 'hands-off' flow Higher flow;cooler months	Expert derived	

xamples of the ercent of flow pproach ctively being sed for water nanagement *from* Richter et l. 2011, with dditions). hese examples estrict both round and urface water llocation.

Management Prescription Proposed for Minnesota streams:

15% August Median low flow & Q₉₀ Protected Flow . . .

Are There Any Questions?

