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GEOLOGIC SENSITIVITY TO POLLUTION OF NEAR-SURFACE GROUND WATER

INTRODUCTION

Prevention of ground-water contamination is an
important part of water resource management. An important
first step is to recognize where ground water is particularly
sensitive to pollution. The 1989 Minnesota Groundwater
Protection Act requires the Minnesota Department of Natural
Resources (DNR) to map geographic areas defined by natural
features where there is a significant risk of ground-water
degradation from activities conducted at or near the land
surface. This plate describes the sensitivity to pollution of
the shallow portion of near-surface ground-water systems,
including surficial aquifers. The sensitivity map depicts the
relative potential for ground-water contamination by using
categories of travel time. The travel time categories, ranging
from Very High to Very Low, describe the time needed for
water-borne contaminants to travel from the land surface to
the shallow portion of the near-surface ground water. The
map shows that areas mapped as sand and gravel at or near
the surface are more susceptible to rapid transport of
contaminants than are areas mapped as glacial till and lake
sediments. The information on this plate allows planners to
include ground-water quality concerns in land-use decisions.
The pollution sensitivity map is also useful for directing
fiscal resources to areas of greater potential for ground-
water contamination.

GEOLOGIC SENSITIVITY
DNR Geologic Sensitivity Guidelines

Geologic sensitivity as described in the DNR guidelines
(Geologic Sensitivity Workgroup, 1991) is used to assess
pollution sensitivity and prepare maps depicting areas
sensitive to pollution. The guidelines focus on travel time:
the time it takes for water-borne contaminants to vertically
travel from the land surface to the water table. Travel time
primarily depends on the permeability and thickness of
geologic materials between the land surface and the water
table. Geologic materials with the lowest vertical permeability
are assumed to have the greatest capacity to retard the vertical
movement of contaminants, resulting in the longest travel
times. Conversely, geologic materials with the highest
vertical permeability are assumed to be least capable of
retarding the vertical movement of contaminants, resulting
in the shortest travel times. The geologic sensitivity criteria
are shown in Figure 1 as five overlapping classes of travel
times. Each class is assigned a relative geologic sensitivity
rating from Very High to Very Low. The ranges of travel
time for each class overlap because of the uncertainty of
travel-time estimates. Short travel times do not mean that
ground water is or will be contaminated, and long travel
times do not ensure that ground water in these areas is or
will remain uncontaminated.

Assessing geologic sensitivity requires several
simplifying assumptions: (1) contaminants are chemically
inert and move with the water, (2) contaminants are released
at or near the land surface and move vertically downward,
(3) estimates of permeability can be made based on the
general knowledge of saturated permeabilities for broad
groups of geologic materials, and (4) surficial geologic map
units from Plate 1 in Part A are representative of the geologic
materials from the land surface to the water table.

Modifications of Vertical Travel Time Concept

Ground-water flow occurs through voids (pores) in the
geologic material, which are categorized as either primary
or secondary porosity. Primary porosity represents the pore
space between grains already present when the glacial
sediments were deposited, and secondary porosity is the
pore space resulting from fractures, joints, worm burrows,
and root traces that developed after the sediments
were deposited.

Estimates of travel times to the water table are based
on an assumption that flow rates through unsaturated geologic
materials are equal to or slower than flow rates through the
same materials under saturated conditions. The presence of
secondary porosity, however, makes this assumption
inaccurate. Several studies from the Midwest and Canada
show order of magnitude increases in transmission rates for
water as a result of secondary porosity. Although secondary
porosity probably accounts for only a small percentage of
the total sediment porosity, it can be the route by which a
significant percentage of the total recharge reaches the
water table.

The presence of secondary porosity significantly
decreases or disappears below the water table. In this study,
geologic sensitivity is defined as the time it takes water-
borne contaminants to travel vertically from the land surface
to a target zone, a zone extending from the water-table
surface to a depth of 20 feet below the water table (Figure 2).
The objective for extending the sensitivity target depth an
additional 20 feet below the water table was to ensure that
the target zone included geologic material that is not
influenced by secondary porosity.

Well drillers and geologists have noted that there is a
color change in glacial till sediments at depth. As shown in
Figure 2, the upper oxidized zone has lighter brown, yellow,
or gold sediments that overlie unoxidized darker gray, blue,
or black sediments. As water containing dissolved oxygen
enters the till, various minerals in the till are oxidized causing
the till color to change. Much of the color change probably
can be attributed to the oxidation of iron. As the water moves
through the till, microbes remove oxygen from the water.
The dissolved oxygen content decreases as water moves
deeper into the till until no oxygen is available to oxidize
minerals. An approximate median oxidized zone thickness
was determined to be 22 feet for this study area based on
well log information from the County Well Index (CWI)
data base maintained by the Minnesota Geological Survey.

The significance of the oxidized zone is that most till
fractures are associated with that zone. Studies by Ruland
and others (1991), Hendry (1988), and others have used
parameters such as isotopes, general water chemistry, water
level measurements, and pump test data to evaluate the
hydrogeology of glacial tills. The results show that the
oxidized zone can be orders of magnitude more transmissive
than the underlying unoxidized till. A study by Grisak and
others (1976) determined that fractures could increase a
till’s ability to transmit water by approximately two orders
of magnitude. Fracture density in till is usually greatest near
the surface and decreases with depth. The fractures may
extend into the unoxidized zone, but their numbers and
effectiveness for transmitting water are significantly reduced.

An analysis of depth to water information from the
CWI database shows that for most of the study area, the
water table probably occurs in the oxidized zone. Because
of the presence of fractures in the oxidized zone, there is
concern that contaminants could be rapidly transmitted from
the surface to the water table and below. However, the role
of fractures in ground-water hydrology decreases significantly
a few feet below the water table; therefore, a depth of 20 feet
below the water table was chosen to define the maximum
depth of the target sensitivity zone.

PREPARATION AND INTERPRETATION OF THE
SENSITIVITY MAP

The surficial geologic map units from Plate 1 in Part
A are the source of geologic information for the sensitivity
map. Important textural information can be found in the
detailed descriptions of the surficial geologic map units.
Additionally, the “Correlation of Map Units” groups various
geologic map units according to their mode of deposition
and geologic age.

The first group, “ice deposits,” contains the following
eight mapped glacial till deposits: Qthd, Qtmd, Qtad, Qtfd,
Qtld, Qtsd, Qtfr, and Qtbr. The texture of these mapped units
ranges from loam to clay. The textures vary not only between
the various mapped till units but also within each mapped
till unit. The percentage of clay in tills in the study area,
reported in Table 1, Plate 2, Part A, ranges from 10 to
40 percent with most tills averaging more than 20 percent.
A clay content of 15 to 20 percent was determined to mark
a threshold above which hydraulic conductivities are
uniformly low (Stephenson and others, 1988). The term
hydraulic conductivity refers to the geologic material’s
ability to transmit water. In a ground-water study involving
12 aquifer tests near the Pomme de Terre and Chippewa
rivers, Delin (1986) reported an average vertical hydraulic
conductivity for glacial till of 0.025 foot per day. Additionally,
a review of water-level data from wells in the region shows
that vertical hydraulic gradients are commonly 0.3 or less.
Ground-water flow occurs through the pores, which constitute
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an estimated volume of 30 percent of the total till matrix.
If these values are representative of tills in the study area,
the calculated flow rate of water through till probably ranges
from a few inches to as much as 10 feet per year. The travel
time for contaminants moving with water from the land
surface to the lower part of the target zone would best be
described by a Moderate sensitivity rating for these sediments.
This fact means that water-borne contaminants would take
from several years to a decade to travel from the surface to
the lower part of the target zone. These estimated flow rates
are several orders of magnitude slower than flow rates
through sand and gravel deposits.

The second group of deposits, “stream deposits,”
includes the following six geologic map units: Qssd, Qsd,
Qsld, Qdb, Qsw, and Qsh. These are generally sorted sand,
gravel, and silt-sized sediments that are capable of
transmitting water from tens to hundreds of feet per day.
Horizontal hydraulic gradients in areas not under the influence
of pumping wells are generally low; therefore, actual flow
rates are more likely to be from inches to a few feet per day,
with most flow moving horizontally. Most of these deposits
were rated Very High sensitivity, which means contaminants
could reach the lower part of the target zone within a month
and possibly within a few hours or days.

Not all of the stream sediments are simply sand and
gravel deposits; other factors were considered when assigning
a geologic sensitivity rating. Some of the mapped stream
deposits are associated with unsorted or fine-grained
sediments that are interbedded with or overlie the mapped
stream sediments. For example, map unit Qsld is overlain
by up to 10 feet of clay, silt, fine sand, and organic deposits.
These deposits provide some additional protection, so the
sensitivity rating was reduced from Very High to High.
Additionally, if Qoh (organic deposits) overlies or is adjacent
to stream sediments, a Very High sensitivity rating was
assigned. There are also sand and gravel deposits that may
be locally unsaturated. For example, map unit Qssd is
interpreted as stream sediment that was deposited in channels
walled by glacial ice. After the ice melted, these deposits
remained as ridges of sand and gravel, which may be
unsaturated as a result of gravity drainage. Another stream
sediment that may also be locally unsaturated is the glacial
River Warren (Qsw) sand and gravel that primarily forms
terrace deposits along the Minnesota River. Since insufficient
information is available to determine whether a water table
is present for all mapped Qsw and Qssd sediments, the water
table was assumed to occur within these mapped units, and
they were assigned a geologic sensitivity rating of Very High.

The mapped stream sediments, which compose
approximately 25 percent of the study area, were all classified
as either Very High or High sensitivity. Where these sediments
occur, contaminants could rapidly move into the subsurface
and contaminate ground water. In some places, a potential
pathway for contaminants could exist where a hydraulic
connection exists between surficial and buried sand and
gravel deposits. Another concern is lateral migration of
contaminants. Even though transport of contaminants is
vertically restricted by underlying, lower permeability
material, they could move laterally through higher
permeability sediments until discharging into nearby lakes,
wetlands, and streams.

In the third group, four geologic map units (Qgl, Qlb,
Qlh, and Qoh) make up the “lake deposits” category. The
most widespread deposits are associated with glacial Lake
Benson (Qlb), which consists of clay, silt, and some fine
sand. The texture of Qoh does not significantly restrict
ground-water movement. However, where Qoh occurs within
other lake deposits or glacial till, it was assigned a Moderate
sensitivity rating. This rating was based on the assumption
that the surrounding geologic material also underlies Qoh
and best represents the degree of protection provided to
shallow ground water. Insufficient information is available
concerning the hydrologic characteristics for the remaining
three map units (Qgl, Qlb, and Qlh). The textures of these
sediments are generally fine grained; therefore, they were
assumed to provide a degree of protection similar to the
glacial tills in the study area and were thus rated a Moderate
geologic sensitivity.

The fourth group is characterized by one map unit
(BA), the “bedrock” category. Outcrops of these rocks are
found in the Minnesota River valley where removal of
overlying sediment and weathered rock has exposed various
granite and gneiss bedrock. These rock units are characterized
by very little primary porosity. Most of the water found in
these rocks occurs where fracturing has created secondary
porosity. Because the rocks have the potential to rapidly
transmit contaminants through fractures and because these
rocks are found close to stream sediment (Qsh), they were
rated a Very High geologic sensitivity.

USING THE POLLUTION SENSITIVITY MAP

The sensitivity map portrays information that is
generalized according to the scale at which it is shown.
Enlarging the map could result in a false indication of
precision. The sensitivity map does not account for changes
in sensitivity as a result of human activities, such as
improperly constructed or abandoned wells that may
accelerate transport of contaminants to the water table.
Additionally, map unit boundaries are a product of the
geologic sensitivity assessment model and do not represent
absolute differences in sensitivity. Each map unit represents
a predominant sensitivity rating; therefore, this map should
not be considered a substitute for site-specific information.

EVIDENCE SUPPORTING THE SENSITIVITY
INTERPRETATIONS

The pollution sensitivity map is divided into regions
having a range of estimated times for contaminants to travel
from the land surface to the lower part of the target zone.
Verifying the mapped ratings directly is difficult, so
measurements of ground-water residence time and water
quality are used as indirect tests. Residence time is the
approximate time that ground water has resided below the
land surface until it is discharged or pumped from an aquifer.
Radiometric dating using isotopes of hydrogen or carbon
provides estimates of ground-water residence times
(Alexander and Alexander, 1989). Tritium (3H), as discussed
on Plate 3, is an isotope of hydrogen that is an indicator of
recently recharged precipitation. If a ground-water sample
has no detectable tritium, the sample is dominated by
precipitation that entered the subsurface prior to 1954.
Conversely, samples containing detectable tritium have some
component of post-1953 recharge.

The wells sampled in this study are plotted on the
sensitivity map along with their aquifer type and interpreted
tritium results. The tritium information is useful for estimating
how deeply water has vertically infiltrated during the last
45 years. The thickness and permeability of geologic materials
between the land surface and the aquifer significantly affect
the vertical flow rates. Labels posted for each well on the
map include the sampling interval, confining score, and
depth to the aquifer. This additional information is necessary
to clarify the role of various geologic materials in providing
protection for aquifers in the study area.

The sampling interval represents the depth to the top
and bottom of the well screen through which the sampled
water enters the well. The confining score is a calculated
value that represents the cumulative thickness of low-
permeability material between the land surface and the top
of the aquifer. When each well was drilled, the driller
recorded the thickness and type of geologic materials and
other well construction information on a well log. To calculate
a confining score, a value of 1 was assigned for every foot
of low-permeability sediment (clay, shale, or till). Sand and
gravel offer little protection and were assigned a zero value.
Therefore, the confining score is a numerical value
representing the cumulative thickness in feet of low-
permeability material above the sampled aquifer. The last
value reported on the label is the depth in feet below land
surface to the top of the aquifer.

Mapped surficial sand and gravel deposits in the study
area were interpreted as either Very High or High sensitivity.
Several residents with wells completed in these deposits
have reported rapid water-level changes that are occasionally
associated with muddied water soon after a rain event.
Additionally, water samples from these surficial aquifers
generally have rather low concentrations of dissolved solids,
elevated levels of dissolved oxygen, and detectable tritium.
Surficial aquifers are also more likely to have elevated nitrate
concentrations. All of these observations indicate rapid
infiltration and support the Very High and High geologic
sensitivity ratings.

REGIONAL HYDROGEOLOGIC ASSESSMENT SERIES
RHA-4, PART B, PLATE 4 OF 4
Geologic Sensitivity to Pollution of Near-Surface Ground Water
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time. Ratings are based on the time required for water at or near the

surface to travel vertically to the water table or other ground water of

interest. Longer travel times imply a lower sensitivity to pollution. Dye
trace, tritium, and carbon-14 studies can indicate the relative ages of

ground water.

water table surface.

REGIONAL HYDROGEOLOGIC ASSESSMENT

FIGURE 2. Schematic illustration of target zone of geologic sensitivity. The target zone extends from the water table
downward 20 feet. Fractures and joints in till are illustrated in the close-up view. Arrow points and blue dashed line indicate

UPPER MINNESOTA RIVER BASIN, MINNESOTA

FIGURE 3. Schematic illustration of subsurface conditions in the upper Minnesota River basin. The illustration shows the vertical distribution of tritium
and the factors that may reduce travel time and enhance ground-water recharge. Modified from cross section A-A', Plate 2, Part A. Not drawn to scale.
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