WATER-TABLE HYDROGEOLOGY

By Barbara M. Falen, Roman Kaniveksky, and Richard A. Christopher
Minnesotan Geological Survey

CHARACTERISTICS OF THE WATER-TABLE

Water-table contents are based primarily on well measurements obtained during the spring and summer of 1990 using a network of 977 observation wells and 532 other wells located in the county well index (CWI). Lake levels and historical water-level data from the CWI were supplemented with the database where wells were located. Water levels were measured with a graduated dipper, and each well was measured 5 times, due to uncertainty of the land-surface elevations as the well sites were estimated from topographic maps.

The water table is a shallow replica of the land-surface topography. Water levels were measured for lakes and rivers throughout the study area. The study area is divided into several sub-regions based on the location of the water-table. The study area contains more than 2,000 lakes, which are separated into several sub-regions based on the location of the water-table. The study area contains more than 2,000 lakes, which are separated into several sub-regions based on the location of the water-table. The study area contains more than 2,000 lakes, which are separated into several sub-regions based on the location of the water-table.

GROUND WATER CHEMISTRY

Water chemistry samples were taken from 67 Quaternary wells, 5 network wells, 12 surface water bodies, and 5 precipitation sites during the period December 1990 to May 1991. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to estimate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to estimate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to estimate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to estimate recharge mechanisms and estimate the age of groundwater in the study area.

The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area. The results were used to evaluate recharge mechanisms and estimate the age of groundwater in the study area.

WATER WELL DATABASE DISTRIBUTION

By Joyce Meints and Emily L. Bauer
Minnesota Geological Survey

WELL LOG BASE MAP

The locations and density of well drillers' logs used to prepare this regional assessment map are shown on the map. This map serves as a guide to the interpretation and use of the other maps in the study. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area.

WELL DRILLER'S LOGS

A well driller's log is a record of the drilling and construction of a water well. It is the water well contractor's description of the geologic materials encountered during drilling and construction materials used to complete the well. Well driller's logs are the primary source of information about geologic and hydrologic data for the region. The density of logs was prepared for the assessment, distribution of the logs to regions, and to estimate the age of groundwater in the study area.