Cross Section C–C’

A total of 12 wells were sampled for tritium along this cross section from wells ranging in depth from 64 to 270 feet deep.

The scs aquifer deposits occur at scattered locations on top of the sc or nt aquitards. Recent tritium-age water was mapped in this aquifer.

The nt aquifer is typically well protected and mapped as antigens. (Wisconsin Drift) units are overlain by thin aquitards and the sct and nt aquitards are thin. Mixed tritium-age water was mapped in this aquifer. Recent tritium-age water was expected for both aquifers since they are both recharged with high solute concentration. However, the vintage tritium-age water sampled near CSAH 34 may indicate that seawater flow gradients or more competent surficial bedrock recharge in this location.

The scs aquifer is mostly well protected so vintage tritium-age water was mapped. Exceptions include one sample collected just east of CSAH 34 that had a mixed tritium-age result. The presence of vintage water was not expected in this aquifer. It is more likely that the vintage water is recharged from a 50-foot-deep well near the river. The low tritium-age water was determined to be either vintage tritium-age water. These wells also have a high capacity well where lower solute mtr might have induced recharge to greater depths.

Cross Section D–D’

A total of 12 wells were sampled for tritium along this cross section from wells ranging in depth from 50 to 270 feet deep.

The scs aquifer deposits occur at scattered locations on top of the nt aquitard. The highest and thickest aquifers are overlain by a thick surficial sand aquifer (ss) or buried (hs) sands enhance groundwater recharge. Another is on the lake shore. There is a buried location aquitard within the aquifer, and the well is pumping water from below the aquitard. This aquifer is mapped as surficially disconnected so recharge is likely occurring directly into the well from above the well location aquitard.

Groundwater flowpath is unknown. Aquifers to an underlying buried aquifer.

The scs aquifer is typically well protected and mapped as antigens. (Wisconsin Drift) units are overlain by thin aquitards and the sct and nt aquitards are thin. Mixed tritium-age water was mapped in this aquifer. Recent tritium-age water was expected for both aquifers since they are both recharged with high solute concentration. However, the vintage tritium-age water sampled near CSAH 34 may indicate that seawater flow gradients or more competent surficial bedrock recharge in this location.

The scs aquifer is mostly well protected so vintage tritium-age water was mapped. Exceptions include one sample collected just east of CSAH 34 that had a mixed tritium-age result. The presence of vintage water was not expected in this aquifer. It is more likely that the vintage water is recharged from a 50-foot-deep well near the river. The low tritium-age water was determined to be either vintage tritium-age water. These wells also have a high capacity well where lower solute mtr might have induced recharge to greater depths.

Cross Section A–A’

A total of 9 wells were sampled for tritium along this cross section from wells ranging in depth from 64 to 270 feet deep.

The scs aquifer deposits occur at scattered locations on top of the nt aquitard. Recent tritium-age water was mapped in this aquifer.

Cross Section B–B’

A total of 10 wells were sampled for tritium along this cross section from wells ranging in depth from 54 to 237 feet deep.

The scs aquifer deposits occur at scattered locations on top of the nt aquitard. The highest and thickest aquifers are overlain by a thick surficial sand aquifer (ss) or buried (hs) sands enhance groundwater recharge. Another is on the lake shore. There is a buried location aquitard within the aquifer, and the well is pumping water from below the aquitard. This aquifer is mapped as surficially disconnected so recharge is likely occurring directly into the well from above the well location aquitard.

Groundwater flowpath is unknown. Aquifers to an underlying buried aquifer.

The scs aquifer is typically well protected and mapped as antigens. (Wisconsin Drift) units are overlain by thin aquitards and the sct and nt aquitards are thin. Mixed tritium-age water was mapped in this aquifer. Recent tritium-age water was expected for both aquifers since they are both recharged with high solute concentration. However, the vintage tritium-age water sampled near CSAH 34 may indicate that seawater flow gradients or more competent surficial bedrock recharge in this location.

The scs aquifer is mostly well protected so vintage tritium-age water was mapped. Exceptions include one sample collected just east of CSAH 34 that had a mixed tritium-age result. The presence of vintage water was not expected in this aquifer. It is more likely that the vintage water is recharged from a 50-foot-deep well near the river. The low tritium-age water was determined to be either vintage tritium-age water. These wells also have a high capacity well where lower solute mtr might have induced recharge to greater depths.

Cross Section C–D’

A total of 12 wells were sampled for tritium along this cross section from wells ranging in depth from 50 to 270 feet deep.

The scs aquifer deposits occur at scattered locations on top of the nt aquitard. The highest and thickest aquifers are overlain by a thick surficial sand aquifer (ss) or buried (hs) sands enhance groundwater recharge. Another is on the lake shore. There is a buried location aquitard within the aquifer, and the well is pumping water from below the aquitard. This aquifer is mapped as surficially disconnected so recharge is likely occurring directly into the well from above the well location aquitard.

Groundwater flowpath is unknown. Aquifers to an underlying buried aquifer.

The scs aquifer is typically well protected and mapped as antigens. (Wisconsin Drift) units are overlain by thin aquitards and the sct and nt aquitards are thin. Mixed tritium-age water was mapped in this aquifer. Recent tritium-age water was expected for both aquifers since they are both recharged with high solute concentration. However, the vintage tritium-age water sampled near CSAH 34 may indicate that seawater flow gradients or more competent surficial bedrock recharge in this location.

The scs aquifer is mostly well protected so vintage tritium-age water was mapped. Exceptions include one sample collected just east of CSAH 34 that had a mixed tritium-age result. The presence of vintage water was not expected in this aquifer. It is more likely that the vintage water is recharged from a 50-foot-deep well near the river. The low tritium-age water was determined to be either vintage tritium-age water. These wells also have a high capacity well where lower solute mtr might have induced recharge to greater depths.