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Technical Reference
Maps were compiled and generated in a geographic information system. Digital data products are available on

the DNR County Geologic Atlas Program webpage (mndnr.gov/groundwatermapping).

Maps were prepared from DNR and other publicly available information. Every reasonable effort has been
made to ensure the accuracy of the factual data on which the report and map interpretations were based.
However, the DNR does not warrant the accuracy, completeness, or any implied uses of these data. Users may
wish to verify critical information. Sources include both the references here and information on file in the
offices of the MGS and the DNR. Every effort has been made to ensure the interpretations conform to sound
geologic and cartographic principles. These maps should not be used to establish legal title, boundaries,
or locations of improvements.

Base maps were modified from MGS, Wright County Geologic Atlas, Part A, 2013. Universal Transverse
Mercator projection, zone 15, North American Datum of 1983. North American Vertical Datum of 1988.

Conversion Factors
1 inch per hour = 7.056 x 10® meters per second
1 part per million = 1 milligram per liter
1 part per billion = 1 microgram per liter
1 milligram per liter = 1000 micrograms per liter
1 gallon per day per foot = 0.1337 foot? per day.
1 foot? per day = 7.48 gallons per day per foot
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Geologic Atlas of Wright County, Minnesota, Part B

By John D. Barry

Introduction

This report and the accompanying plates are Part B
of the Wright County Geologic Atlas. Part B describes
the hydrogeology and is produced by the Minnesota
Department of Natural Resources (DNR). It builds on
the geology described in Part A of the atlas, which
was previously published by the Minnesota Geological
Survey (MGS).

The purpose of this atlas is to illustrate groundwater
hydrogeologic setting, aquifer distribution, pollution
sensitivity, groundwater recharge, and subsurface flow
within the county. This information can be used to make
land-use decisions that take aquifer sensitivity, water
quality, and sustainability into account.

This report details the methods, results, and
interpretations for the county. Plate 7 illustrates the
water chemistry; Plates 8 and 9 use hydrogeologic
cross sections to show groundwater flow directions
and residence time within the buried sand and gravel
aquifers and bedrock aquifers. The following describes
the sections incorporated into this atlas.

Physical setting and climate describes the location of the
county, summarizes the county’s average temperature
and precipitation, and lays the framework for how these
influence groundwater recharge.

Geology and physical hydrogeology describes
characteristics of the geologic units in the county. Aquifers
and aquitards are identified by their hydrostratigraphic
characteristics and corresponding geologic units from
Part A. Groundwater elevation maps give a broad look
at the direction of groundwater flow in unconfined
conditions (water-table elevation) and confined conditions
(potentiometric surface elevation).

Water chemistry provides information about the water
source, flow path, travel time, and residence time of
groundwater. The groundwater chemistry supports the

results of the pollution sensitivity models and is used
to identify areas of interest, such as those with high
pollution sensitivity or elevated levels of potentially
harmful chemicals.

Pollution sensitivity is modeled for the following:

1) The sensitivity of near-surface materials is an estimate
of the time it takes for water to infiltrate the land surface
to a depth of 10 feet. This model is based on hydrologic
soil groups and surficial geologic matrix textures.

2) The sensitivity of buried sand and gravel aquifers and
the bedrock surface is based on the cumulative thickness
of fine-grained sediment (aquitard material) overlying an
aquifer or the bedrock surface. The pollution sensitivity
ratings are compared to tritium and carbon-14 data for
residence time, and to inorganic chemistry constituents.
These comparisons are used to evaluate the model results.

Hydrogeologic cross sections illustrate groundwater
flow, residence time, and distribution of chemicals. Cross
sections help define areas of interest, such as locations of
important groundwater recharge, discharge, and sensitivity
to pollution.

Aquifer characteristics and groundwater use summarize
specific capacity tests, aquifer tests, and water-use records
for each aquifer, where available. DNR groundwater
level monitoring data is also used to characterize aquifer
recharge in the county.

A Geologic Atlas User’s Guide is available from the MGS
for additional information on the history and purposes
of the County Geologic Atlas program, various atlas
applications, and descriptions of the Part A components
(Setterholm, 2014).

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30
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Physical setting and climate

Wright County is located in south-central Minnesota and
is characterized by varied landforms with hummocky
terrain and numerous lakes and wetlands. The landscape
was primarily shaped by processes during the most recent
glacial period.

The county is bordered by three river systems. The
Clearwater River forms the northwestern border, the
Mississippi River forms the northeastern border, and the
Crow River forms roughly two-thirds of the eastern border.
The North Fork Crow River crosses the entire county
from Meeker County in the west to the confluence with
the South Fork Crow River in Rockford. Surface-water
flow is influenced by elevation and landform and drains
toward three separate subbasin-level surface watersheds
(Figure 4) which ultimately flow southeast to the
Mississippi River basin. Detailed explanations that illustrate
how the landforms were shaped by glacial processes are
available in Part A, Plate 3.

Minnesota is a headwaters state where surface water and
shallow groundwater systems are replenished solely by
precipitation. Because of this, water levels and availability
fluctuate with wet and dry years. Water levels in deeply
buried aquifer systems often don’t track directly with
precipitation, as water takes longer to travel to these
systems. Water that doesn’t percolate underground leaves
the state by a network of rivers that flow north into the
Red River basin, east to the Great Lakes basin, southwest
to the Missouri River basin, or southeast to the Mississippi
River basin.

Wright County is characterized as a cool subhumid climate
with a large temperature differential between summer
and winter. Summers are relatively short with an average
temperature of approximately 69 degrees Fahrenheit (°F)
(NOAA, 2017). The typical growing season is approximately
150 days from May to October with an average daily air
temperature over 45°F (Figure 2). Evaporation increases
dramatically during the growing season through plant
uptake and transpiration, reducing the amount of
precipitation that ultimately becomes groundwater.

Average winter temperatures are typically below freezing
and the ground is frequently covered with snow from
November through March. The soil frost depth often
ranges from 3 to more than 5 feet for approximately
4 to 5 months of the vyear, limiting the amount of
precipitation that can infiltrate and become groundwater
during the winter.

Average annual precipitation is approximately 29 inches,
falling in the middle of the statewide range of 20 to
36 inches. Most precipitation occurs in June, July, and
August (MCWG, 1981-2010). Only a small fraction of this
precipitation eventually becomes groundwater because of
evaporation, transpiration, and overland runoff to streams
and wetlands.

The majority of groundwater recharge occurs in the spring,
when snowmelt and precipitation infiltrate the land
surface prior to the growing season. Hydrographs from
groundwater level monitoring wells illustrate this pattern
and are presented in the discussion of groundwater level
response in the “Aquifer characteristics and groundwater
use” section of this atlas (p. 56-57).

80 [~ -1 5.0

60 |-

50 -

40 |-

Average temperature (°F)
(sayour) uonenddaid a8esany

20 -

10 |~

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 2. Average temperature and precipitation
Minnesota Climate Division 5, which includes Wright County
(1971-2000, 30-year record; NOAA, 2017).
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Geology and physical hydrogeology

Surficial aquifers

The surficial geology of Wright County is dominated by
New Ulm Formation sediments that were deposited by
glacial ice of the Des Moines Lobe (Part A, Plate 3). These
sediments are primarily fine grained in texture (clay and
silt) and are depicted with a brown hue in Figure 3. The
coarse-grained sand and gravel deposits depicted with a
light tan hue in Figure 3 are where the Des Moines lobe
reworked earlier Superior lobe deposits in what is now
northern Wright County. The term texture qualitatively
refers to the physical size of soil particles, ranging from
coarse grained, such as sand and gravel, to fine grained,
such as silt and clay.

Additional coarse-grained terrace deposits occur along
the modern-day Mississippi River and within the main
valleys of the North Fork Crow, South Fork Crow, and Crow
rivers. Where saturated, these coarse-grained sediments
make up the surficial sand and gravel aquifer, which will
be referred to as the surficial sand aquifer for the rest of
this atlas. The texture of these surficial deposits influences
the rate and amount of precipitation that infiltrates from
the land surface downward and eventually becomes
groundwater. A detailed explanation of the county’s glacial
history and how it relates to present-day surficial geologic
deposits is available in Part A, Plate 3 of this atlas.

Water table

The water table is the surface between the unsaturated
and saturated zones where the water pressure equals
atmospheric pressure. The water table occurs in both
aquifer and aquitard sediment across the entire county.
The water table is shown as a static surface in this atlas but
actually varies with time (Figure 4 and 5).

Water-table elevation was estimated in this atlas using
several sources of data as described in Methods for
estimating water-table elevation and depth to water table
(DNR, 2016a). The primary data sources used to estimate
the water table were the following:

e Elevation of surface-water bodies (e.g., rivers, perennial
streams, lakes, and wetlands)

e Static water levels in surficial sand wells obtained from
the County Well Index (CWI) database (converted to
elevations*)

e Estimates of wet soil conditions from the Natural
Resources Conservation Service (NRCS) county soil
survey (converted to elevations*)

*Data were converted to elevations using a digital elevation

model derived from LiDAR (Light Detection and Ranging)
technology.

Figure 4 shows the approximate elevation of the water
table throughout the county. The water table is generally
a subdued expression of the surface topography. In Wright
County it is highest in the northwest and southwest;
it is lowest along the northeastern and southeastern
borders and within the main valley of the North Fork Crow
River near Rockford. At county scale, groundwater flow
is from water-table elevation highs to regional discharge
areas, such as the Mississippi, North Fork Crow, South
Fork Crow, and Crow rivers. At more localized scales,
groundwater flow in the water-table aquifer is from local
highs to river tributaries, lakes, and wetlands.

The stippled area shown in Figure 3 and 4 show areas where
the surficial sand aquifer is present. These are areas where
the aquifer has sufficient saturated thickness and yield to
provide a reliable source of water. Countywide, less than
7 percent of permitted wells are constructed in the surficial
sand aquifer, with the majority of these wells located in
the stippled area. Less than 1 percent of permitted wells
(approximately 70), use the surficial sand aquifer for
nondomestic use, such as irrigation or monitoring.

Many wells completed in the surficial sand aquifer are notin
the database (A. O’Hare, Wright SWCD, written commun.,
2017). These drive point wells are less than 30 feet deep
and use the water-table aquifer for domestic use. Their
number and distribution is unknown. Drive point wells are
colloquially known as “sand points.”

The water-table maps provide useful baseline information
for applications, such as water resource protection,
planning, modeling, and site investigations, but additional
site-specific information, such as soil borings should be
used to refine information at local scales. Certain conditions
affect the fluctuation of the water table and can create
locally different results from the maps in this atlas. These
conditions include seasonal weather conditions, extent and
composition of surficial geology units, land-use practices,
vegetation composition and distribution, and pumping of
large capacity wells.

Depth to water table was derived by subtracting the
water-table elevation from the land-surface elevation
(DNR, 2016a).

Shallow water-table conditions (0—10 feet) are common in
the county (Figure 5). Exceptions are areas where coarse-
grained outwash deposits form topographic highs, such
as around Annandale and Monticello, or areas along the
valley edges of the county’s larger river systems.

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30
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Buried aquifers

Sand and gravel

Underlying the surficial geologic deposits are alternating
layers of older sand and gravel and fine-grained
deposits from previous glacial advances. These may form
aquifers where saturated. Unconsolidated deposits are
up to 500 feet thick in portions of the county (Part A,
Plate 6). The stratigraphic column shown in Figure 6
correlates the Part A geologic unit with the Part B unit
names and map labels. Unit names are based on the
underlying till unit described in Part A; geologic descriptions
are generally classified as sand and gravel or till. These
are converted into the hydrogeologic descriptions of
aquifer or aquitard, respectively.

The Part B units are represented as follows (Figure 6,
Plates 8 and 9):

o Aquifers are represented with patterns.

e Aquitards are shown as shades of gray, representing the
relative hydraulic conductivity. Lighter shades represent
units with more sand, implying a higher hydraulic
conductivity. The shades of gray are based on the average
sand content of the aquitard, which is determined from
the portion of the matrix that is less than 2 millimeter
grain size.

¢ Units of undifferentiated sediment with an unknown or
unnamed texture are shown in brown.

The buried sand and gravel aquifers will be referred to
as buried sand aquifers for the rest of this atlas.

Bedrock

Under the glacial deposits is an assemblage of saturated
bedrock units (Part A, Plate 2). The physical and mechanical
properties of these rocks dictate their ability to make good
aquifers. In general, the county’s best bedrock aquifers
are from the Paleozoic era sedimentary rocks and the
underlying Mesoproterozoic sedimentary rocks. Those in
Wright County are on the edge of an extensive basin across
southeast Minnesota of gently dipping layers of sandstone,
shale, and carbonate rock (Part A, Plate 2).

The older metamorphic and igneous rocks underlying
the county typically do not have properties conducive for
aquifer use, but there may be limited use where these rocks
have endured extended weathering (Runkel and others,
2006). The weathering process also enhanced permeability
in sedimentary rocks, which can be beneficial in aquifers
but can undermine the protective character of an aquitard.

The younger-aged Mesozoic era sedimentary aquifers are
used to a lesser extent across the county. Where present,

the uppermost coarse-grained layers are more conducive
for storage and transmittal of groundwater.

Figure 7 categorizes generalized hydrostratigraphic
attributes of the bedrock aquifers and aquitards based
on their relative permeability (Part A, Plate 2). Layers
assigned as aquifers are permeable and easily transmit
water through porous media, fractures, or conduits as
in sandstone aquifers, such as the Jordan, Wonewoc,
Mt. Simon, and underlying Mesoproterozoic aquifers
(Runkel and others, 2003). Layers assigned as aquitards
have lower permeabilities that vertically restrict flow, but
still can yield quantities of water sufficient for domestic
well use through high permeability bedding plane fractures,
such as the St. Lawrence Formation (Runkel and others,
2014). Although the St. Lawrence Formation acts as an
aquitard on a regional level in the Twin Cities Metropolitan
area, it is primarily eroded away in Wright County and
offers little protection to underlying aquifers. Groundwater
movement in the Upper Tunnel City aquifer mainly moves
through enlarged fractures or macropores (Runkel and
others, 2006).

Potentiometric surfaces

Potentiometric surfaces show the direction of groundwater
flow. In confined aquifers, pressure causes water in a well
to rise above the aquifer. The levels are measured and
contoured to create a map of the potentiometric surface
for each aquifer. These groundwater elevation maps show
changes in water levels similar to how topographic maps
show changes in land-surface elevations.

The potentiometric surface of an aquifer represents the
potential energy that is available to move groundwater. As
groundwater moves from higher to lower potentiometric
elevations it flows perpendicular to the potentiometric
elevation contours. Flow directions are shown on the maps
and hydrogeologic cross sections.

Groundwater flows from recharge areas through aquifers
to discharge locations within a wide continuum of depth,
distance, and time. Flow into, through, and out of shallow
aquifers can take days to weeks to travel distances of up to a
mile. Flow through deeper aquifers and aquitards can take
centuries to millennia to travel tens of miles. In aquitards
vertical flow is typically slow; horizontal flow through the
same aquitard may be more rapid.

When combined with other information, high elevation
areas on the potentiometric surface can indicate important
recharge areas. River valleys are typically low elevation
groundwater discharge areas.
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Potentiometric surface maps (Figures 8-21) were created
from static water-level data from CWI, measurements
made by DNR staff, and river elevation points along major
rivers and streams. The CWI records represent water levels
affected by various climatic and seasonal conditions over
four decades ending in 2014. This data variability creates
some uncertainty in potentiometric surface elevations.
Major river and stream elevation points were included

Part A Part B
surficial sand and gravel ha wmt
Heiberg (loam till) hbt
sand and gravel nts f \D:;dics
Villard/Twin Cities (loam till) nt nt
sand and gravel ms ms
Moland (sandy loam till) mt mt
sand and gravel cg %
St. Croix (sandy loam till) ct ct
sand and gravel cgl cgl
Emerald (sandy loam till) ctl ctl
sand and gravel hs %s
Hewitt (sandy loam till) hwt hwt
sand and gravel scs 5CS
Sauk Centre (loam till) sct
sand and gravel mls mls
Meyer Lake (loam till) mlt
sand and gravel prs 711){9‘ T
St. Francis (loam till) prt prt
sand and gravel pws 1}111““911}
W sequence (loam till) pwt
sand and gravel* psu
sediment* pu pu
basal sand and gravel* zus L‘:‘T{F : ‘}‘
*undifferentiated
Percent sand in aquitard
>60%
>50% and <60%
>40% and <50%
>30% and <40%
<30%

Figure 6. Hydrostratigraphy of unconsolidated sediment

Correlation of Part A and B unit names and map labels as described
on page 8.

in the processing because these features are typically
groundwater discharge locations for the relatively shallow
buried sand aquifers.

Potentiometric surfaces shown for aquifers located below
the scs aquifer are less certain than the others because of
the limited numbers of wells in these units.

< £3 Geologic Unit Hydrogeologic Hydrogeologic
o %g eologic Uni Unit Unit Properties
Low to moderate
N § intergranular permeability.
§ § Dakpta Kd aquifer | _Thm sandstone_es are
S& Formation (Kd) "~ linterlayered with siltstone
Of &5 1 and claystone. Probably
g low yielding aquifer.
g g “ Low intergranular
o I T
53 Unnamed unit ) perm_eab|l|ty. .Mudstone
e (Ka) /ﬁ_a,qwtjm/ and siltstone interlayered
50 with thin sandstone. Low
§ o yielding aquifer.
Relatively high
Jordan Jord if intergranular permeability
Sandstone ordan aquIter | yith high permeability
fractures.
aguitard Generally low permeability
St. Lawrence .
- Formation aquitard Generally low permeability
(1]
5 Mazomanie| | .
€ | a Formation Relatlvely low to mode'rgate
S 3 \ Upper intergranular permeability
5 | & Tunnel City with high permeability
s |z aquiter fractures.
o | S| LoneRock
ol © Formation
8 s aquitard Generally low permeability
o E
o =
g
Wonewoc . Moderate intergranular
Sandstone Wonewoc aquifer | permeability
Eau Claire aquitard Generally low permeability
Formation
f
S
5
£
S
B Mt. Simon Mt. Simon Moderate intergranular
K Sandstone aquifer permeability
=
Z1|Q
g § Hinckley Sandstone,| Mesoproterozoic [Moderate intergranular
oS Fond du Lac and aquifers permeability
<§E 2 Solor Church
ol3 formations
x|
NN\ NS

Generalized high
permeability bedding fracture

Figure 7. Bedrock stratigraphy and hydrostratigraphy

Geologic stratigraphic units and correlated hydrogeologic units.
Generalized hydrogeologic units are shown as aquifers (blue) and
aquitards (gray). Figure not to scale.
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Water chemistry (Plate 7)

The types of dissolved elements and compounds in
groundwater provide information about the recharge
areas, the geologic layers that the water has flowed
through, and approximately how long the water has
been underground (residence time). All groundwater
originated as precipitation or surface water that seeped
into the ground, through the soil layer, and into the pores
and crevices of aquifers and aquitards. Water moves in
complicated but definable patterns: into the aquifers as
recharge, through the aquifers, and out of the aquifers as
discharge. Water chemistry is used to provide information,
such as the following:

e Groundwater recharged from surface water can be
identified by interpreting data of the isotopes of hydrogen
and oxygen.

e Groundwater residence time is estimated from tritium
and carbon-14 isotopes. Tritium identifies water that has
moved into the subsurface since the 1950s. Carbon-14
is used to determine groundwater residence times of
centuries to millennia.

e The occurrence of some naturally occurring trace
elements can indicate areas where groundwater
consumption may adversely affect human health.

Water sampling

To better understand groundwater movement and
pollution sensitivity in the county, samples were collected
from wells in aquifers most important for domestic water
supply. Wells were selected for sampling based on their
aquifer characteristics and distribution. All water samples
were collected according to the protocols outlined in
Appendix A. Chemical data from well-water samples were
used along with physical measurements (static water level
and aquifer tests) to understand water movement.

An ideal well-sampling network for a county atlas is evenly
distributed across the county, includes populated areas,
and targets surface water and groundwater interaction
near lakes and larger rivers. However, the final well-
sampling network distribution was dependent on citizen
willingness to participate. Approximately 1,000 well
owners were contacted to determine if they were willing to

participate. Approximately 30 percent gave permission for
sampling. The DNR collected water samples and standard
field parameters from 90 wells and 16 lakes. The sampling
approach targeted wells distributed along seven east-west
cross sections in the county at a variety of depths.

The analytical results from these samples were combined
with the results from a number of wells sampled by the
Minnesota Department of Health (MDH) and Minnesota
Pollution Control Agency (MPCA). Results from the MDH
came from two separate databases: Minnesota Drinking
Water Information System (MNDWIS), a compliance
monitoring database which emphasizes treated water,
and a noncompliance chemistry database (WCHEM).
Results from the MPCA came from data collected as part
of the Ground Water Monitoring and Assessment Program
(GWMAP).

Groundwater recharge sources

As water moves from precipitation to groundwater,
chemical changes occur that can be used to determine
whether groundwater was recharged directly from
precipitation, lake water, or a mixture of the two. Stable
isotopes of oxygen and hydrogen were used for determining
groundwater and surface-water interactions (Kendall and
Doctor, 2003). Oxygen and hydrogen each have two main
stable isotopes: 0 and °0, and 2H and H. The different
mass of the isotopes causes them to evaporate at different
rates, which results in fractionation, leaving behind
different ratios of heavy to light isotopes. This results in
isotopic signatures that are unique to groundwater with
different recharge sources.

e Groundwater infiltrated directly from precipitation
exhibits a meteoricisotopic signature. It infiltrates directly
into the ground, leaving the isotopic ratio unchanged.

¢ Groundwater recharged from surface water, such as lakes
or open-water wetlands, exhibits an evaporative isotopic
signature. It has been subjected to fractionation where
lighter isotopes evaporated, leaving a ratio favoring
heavier isotopes.

To identify the source of a groundwater sample
(precipitation or surface water), oxygen and hydrogen
isotopic data were plotted against each other (Figure 22).
The x-axis represents the oxygen isotope value (6*®0) and
the y-axis represents the hydrogen isotope value (6%H). The

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30



measured ratio in the sample is divided by the ratio in a
standard (Vienna Standard Mean Ocean Water [VSMOW]).

Definition of delta (6)

The stable isotope composition of oxygen and hydrogen are reported
as 6 values. 6 (°/o0) = (R(/Rs-1)*1000 where R represents the ratio of
the heavy to light isotope, *0/*0 or ?H/*H and Rx represents the
ratio of the sample, and Rs represents the ratio in VSMOW. Delta
values are reported in units of parts per thousand (°/o or permil)
relative to VSMOW.

Wright County samples plotted on a stable isotope graph
fall near the intersection of the meteoric water line and the
evaporation line, with a significant portion trending along
the evaporation line.

25
Wells with a characteristic evaporative signature are
located throughout the northern and eastern regions of
the county where there is a prevalence of geologic deposits
with coarse-grained textures coupled with a large number
of lakes and open water wetlands. These data demonstrate
the connectivity of area lakes to the groundwater system,
and highlight their importance in providing groundwater
recharge to aquifers in this area, including deep bedrock
aquifers. Well locations symbolized in red in Figure 23 and
encased in red circles in Plate 7 represent groundwater
samples with at least 50 percent of the maximum
evaporative lake signature.

-20
-30
-40 |
Global meteoric
water line
50 Evaporation
;E line
&
Do)
-60
-70
Source
e Lake
@ Water-table aquifer
-80 € Unconfined buried sand aquifer
A  Confined buried sand aquifer
Bl Bedrock aquifer
_90 L L L L L
-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

5"0 (%o)

Figure 22. Graph of stable isotope values from groundwater samples

Precipitation values from rapid infiltration generally plot along the meteoric water line. The Global meteoric water line was developed using
precipitation samples from around the world (Craig, 1961) and is described by the following equation: 6°H = 8.0 60 + 10.0.

Groundwater that was partially recharged from surface water plots along an evaporation line. Samples with at least 50 percent of the maximum
evaporative lake signature are shown in the oval. The local evaporation line is described by the following equation: 6H = 5.2 60 — 16.9.
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Groundwater residence time indicators

Groundwater residence time is the approximate time
that has elapsed since water infiltrated the land surface
to the time it was pumped from a well or discharged to
a lake, river, wetland, or spring. Short residence times
generally suggest high recharge rates and/or short travel
paths; long residence times suggest low recharge rates
and/or long travel paths. In this atlas, the residence time of
groundwater was estimated using isotopic analysis of the
radioactive elements tritium and carbon-14.

Tritium
Groundwater residence time can be interpreted from the
concentration of tritium. Although tritium is a naturally
occurring isotope of hydrogen, concentrations were greatly
increased from atmospheric testing of nuclear weapons
between 1953 and 1963 (Alexander and Alexander, 1989).
Tritium concentrations were used to estimate groundwater

residence time using the known half-life of 12.32 years
(Lucas and Unterweger, 2000).

Tritium concentrations and other groundwater chemistry
(such as nitrate and chloride values) were compared with
estimated pollution sensitivity. The interpretations were
used in maps for pollution sensitivity and the hydrogeologic
cross sections. The concentrations are presented in
tritium units (TU) and are referred to as tritium age in the
following categories.

¢ Cold War era: water entered the ground from the peak
period of atmospheric tritium concentration from nuclear
bomb testing, 1958-1959 and 1961-1972 (greater than
15 TU).

e Recent: water entered the ground since about 1953
(8 to 15 TU).

e Mixed: water is a mixture of recent and vintage
(greater than 1 TU to less than 8 TU).

e Vintage: water entered the ground before 1953
(less than or equal to 1 TU).

The breakpoint for recent tritium age is based on the results
of two lake water samples from this project and 4 years of
data (2012-2016) from a climate monitoring station in the
Twin Cities (Appendix B).

Carbon-14

Residence time can be estimated for selected vintage
and mixed tritium-age samples using the carbon-14 (**C)
isotope. This naturally occurring isotope has a half-life of
5,730 years, and is used to estimate groundwater residence
time ranging from 100 to 35,000 years (Alexander and
Alexander, 1989). Samples with a carbon-14 residence time
of less than 100 years are labeled in this atlas as recent.

Inorganic chemistry of groundwater

As soon as precipitation infiltrates the soil layer and
becomes groundwater, the water begins dissolving minerals
in the soil, sediment, and bedrock. It also may transport
pollutants. Inorganic chemical analysis of samples is used to
characterize changes in chemistry as water moves deeper.
Water quality describes contaminants that are potentially
harmful to humans (natural or manmade) and aesthetics
(hardness, taste, odor, color). The following guidelines
from U.S. Environmental Protection Agency are used in this
atlas (EPA, July 2017; EPA, March 2017).

¢ Maximum Contaminant Level (MCL): legally enforceable
federal standards that apply to public water systems, to
limit the levels of contaminants in drinking water.

e Maximum  Contaminant Level Goal (MCLG):
nonenforceable health goals set on possible health risks
from exposure over the course of a lifetime.

e Secondary Maximum Contaminant Level (SMCL):
nonenforceable guidelines for contaminants that may
cause aesthetic effects or taste and odor problems in
drinking water.

This report includes analyses of water samples for
inorganic chemistry, including major cations and anions
generally found in parts per million (ppm), and select
elements that are typically found in trace amounts of
parts per billion (ppb).

Several major cations and anions commonly found in
groundwater are listed below with brief descriptions about
their sources and characteristics.

e Calcium, magnesium, and sodium cations and
bicarbonate anions are dissolved out of the glacial
sediment and bedrock by groundwater. The calcium,
magnesium, and bicarbonate constituents are derived
from limestone and dolomite bedrock sources (Hem,
1989) and are common in groundwater in glacial
sediment aquifers. Sodium is often present in deep
aquifers or at mineral interfaces. As groundwater moves
through aquifer systems, calcium and magnesium ions
are exchanged for sodium ions (Hounslow, 1995).
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e Sulfate is largely naturally occurring. High concentrations
in groundwater can negatively affect taste and may act as
a laxative (SMCL 250 ppm).

e Chloride can occur naturally at low concentrations in
groundwater but elevated concentrations (25 ppm) may
come from road salts, water softener salts, and fertilizers
(SMCL 250 ppm).

¢ Nitrate-nitrogen (nitrate) can occur naturally at low
concentrations but elevated concentrations (=1 ppm)
are typically from fertilizer and animal or human waste
(MDH, 1998). The MCL for nitrate is 10 ppm. Nitrate
concentrations lessen with time (denitrification) when
there is little oxygen in groundwater. In Minnesota,
groundwater with a long residence time typically has
little available oxygen and low to no nitrate.

Organic chemicals were not studied but can be found in
reports from other state agencies (pesticides and their
breakdown products, solvents, degreasers, etc.).

Results

Plotting sample chemistry using a Piper diagram allows
hydrologists to assign a water type to a sample. This
graphically represents a water sample relative to the
most common ionic constituents in natural waters. The
relative proportions of dissolved ions differ depending on

the water’s interaction with the atmosphere, the aquifer,
and subsequent interactions with anthropogenic sources
(if present).

Figure 24 is a Piper diagram of groundwater samples
analyzed as part of this report. Positively charged
major ions (cations) are shown in the lower left ternary
diagram and negatively charged major ions (anions)
are shown in the lower right. The analytical results of
each sample are represented by one point in the cation
portion and one point in the anion portion. These points
are projected to the diamond-shaped portion to assign a
hydrogeochemical classification.

The bulk of the Wright County water samples are
characterized as calcium bicarbonate, which is typical
for central and southern Minnesota. The outlined arrow
in Figure 24 highlights waters with long travel times
determined through tritium and carbon-14 analysis. Along
the path of this arrow, as groundwater residence time
generally increases, calcium and magnesium ions are
exchanged with sodium and potassium ions. A small subset
of samples are of the sodium + potassium chloride type,
which is consistent with waters that may have interacted
with brine associated with Cretaceous seas (Olcott, 1992).
Additional information and analysis using chloride and
nitrate can be found in the section on pollution sensitivity.

Tritium age
Symbol color indicates tritium age of water sample.

@ Recent: water entered the ground since about
1953 (8 to 15 tritium units [TU]).

@ Mixed: water is a mixture of recent and
vintage (greater than 1 TU to less than 8 TU).

@ Vintage: water entered the ground before
1953 (less than or equal to 1 TU).

© Not sampled for tritium.

Chemistry

Calcium (Ca%)
Magnesium (Mg?)
Sodium (Na*)
Potassium (K*)
Bicarbonate (HCO,)
Sulfate (SO,*)
Chloride (CI)
Nitrate (NO,)

&

% 2
-

Ca
Cations
Percent of total milliequivalents per liter

Figure 24. Piper diagram of groundwater
samples from the DNR and MPCA
Groundwater residence time generally
increases along the path of the red arrow.

Cl+NO,
Anions
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Naturally occurring elements of health concern

Some chemicals present in water may be naturally
occurring, but elevated concentrations can potentially
pose a risk to human health.

Arsenic

Arsenic is a naturally occurring element in Minnesota
groundwater. The MDH advises domestic well owners
to treat drinking water if arsenic is detected at any
concentration (MDH, 2018). For more information search
“Arsenic in Drinking Water” on the MDH website.

Current science cannot predict which wells will have high
arsenic concentrations, therefore newly constructed wells
are tested for arsenic if they are used for drinking water
(Minnesota Administrative Rules 4725.5650, 2008). The
EPA MCLG for arsenic is zero; the MCL is 10 ppb.

The factors affecting elevated arsenic concentrations in
groundwater are not completely understood. There is a
strong correlation with glacial sediments derived from
rocks northwest of Minnesota, from the Riding Mountain
provenance (Erickson and Barnes, 2005a). High arsenic
concentrations are believed to be caused by naturally-
occuring arsenic-bearing minerals that are associated with
small shale particles in these tills. Some of this arsenic
was previously released and then adsorbed to surfaces of
mineral crystals and other small particles during earlier
oxidizing conditions. This surface-adsorbed arsenic (the
most chemically available form) is released to groundwater
under reducing conditions (Erickson and Barnes 2005b;
Nicholas and others, 2011; Thomas, 2007). Research also
indicates that arsenic concentrations are increased in
wells that have short-screened sections near the boundary
of an aquitard and aquifer (Erickson and Barnes, 2005a;
McMahon, 2001).

The Riding Mountain provenance tills in Wright County
have higher average relative percentage of Cretaceous
shale deposits than the tills associated with other glacial
advances, pointing to these tills as a possible arsenic
reservoir (Part A, Plate 4, Table 1). Elevated arsenic
(22 ppb) is common in the county and is likely due to the
origin of the till units that lie at the surface and serve as
aquitards for the buried sand aquifers. A total of 168
groundwater samples were analyzed for arsenic, collected

from water-table, buried sand, and bedrock aquifers.
Of these, 105 samples were elevated; 51 were greater
than or equal to the MCL of 10 ppb (Figure 25). The
majority of elevated arsenic samples were collected from
buried sand aquifers. However, six samples from bedrock
aquifers had elevated arsenic levels, likely from recharge
from overlying buried sand aquifers.

Manganese

Manganese is a naturally occurring element in groundwater
across Minnesota. Low levels of manganese are beneficial
to humans, but high levels may harm the nervous system.
In addition to health effects, elevated manganese
concentrations (>50 ppb) can cause negative secondary
effects, such as poor taste, odor, and water discoloration
(stained laundry and plumbing fixtures). For more
information search “Manganese in Drinking Water” on the
MDH website.

There are currently no MCLs for manganese, but the MDH
has determined the following guidance values as Risk
Assessment Advice (RAA): 100 ppb for infants (<1 year old),
300 ppb for children and adults (MDH, 2012a). RAAs are
advice from studies or newer methodologies that have not
been formally adopted as a rule.

Statewide, manganese concentrations were greater than
100 ppbindrinking-water wells for 57 percent of water-table
aquifers and 63 percent of buried sand aquifers sampled
(MDH, 2012b). Although there are no clear patterns of
manganese distribution across most of Minnesota, the
MDH has found that southeastern Minnesota tends to have
low levels of manganese (below 50 ppb) and southwestern
Minnesota tends to have high levels (some over 1,000 ppb)
(MDH, 2017).

A total of 156 groundwater samples were analyzed for
manganese, collected from the water-table, buried sand,
and bedrock aquifers. Of these 140 samples were greater
than or equal to the RAA for infants (100 ppb), 77 were
greater than or equal to the RAA for children and adults
(300 ppb), and 146 exceeded the SMCL (50 ppb).

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30



30

's||am pajdwes jo juadiad gz Ajerewixosdde uj punoy aiam (qdd QT) spiepueis Jalem SupjuLIp |[B4SPa} PAPIXS JO Pajenba 1By} SUOIIEIIUIIUOD DJUSSIY

S9N[BA J1UBSIE JD}EMPUNOID *GZ NS4

Jajinbe pues |eppyins

[

SYILINOTN 6 8 L9 SV E€ECTOT

= 4 =2 = HHA

SAMINSs v € ¢ T 0 1T

I = — HHH

000 00€-T 31VIS

Ja1em jo Apog %o&
(g 1Med) uondassson joaury ,g—g ,wov .
‘qdd QTZ S| UOLIBIIUIIUOD ‘UMOYS Jl :DIUBSIY 9| &@oM% Il ~ vL . 2'0€
umouun anjea aspald ‘qdd g>ouasly o 9 E3 . e 'w._‘_‘u o 8¢ "b
D
J1UasIe 40} PO|dWEeS 10U |9 o O@;ocm_oo*
® . : :
s|aqe| pue sjoquws cl Le 4 w‘wmm,wzt‘
oA O (@) QUC:CCS_O i’ GNS 238 A
@, 113
Y43 . hiopoy 9% zLL ¢k ©
9
stesi< @
o o gc - 6°0C _‘F.
ST-01% -
® ‘A T e Zt @ 7
sod ¢ (114
01>z O o k910 w
91"
> ®
N o a
*(qdd) anjen s1uasie 0} oreyn 62l C
|euoniodoud si 10]0d pue 3zis [oqWAS . - .IO. Y olenng ) —~ o : Q.u a
9l . +e 6 LEL o
X @)
)
)o0J4pag
%w (A4’ |
E) \de
puespaung () 1 P .lv'w@.w_‘ @) 6.2 D)
sigersazemy /\ vz A
S w_‘.mmv uBUUY
134inby * e N . @u
e .
O * o/ Q s Q USABE (Ih0S
aules8-asieo) y o e
P g = * Il& O OTEITTUY @ ﬁq P - q
pauress-aury [ ] ®o €0}
S2NIX3L .
o o0 ®
co
° N
Vg Ol Y
@

JoIBWIES

@

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30



31

Pollution sensitivity

Pollution sensitivity maps were generated on a county scale
to assist citizens and local government in protecting and
managing groundwater resources. Pollution sensitivity is
defined asthe potential forgroundwaterto be contaminated
because of the properties of the hydrogeologic material.
Migration of contaminants dissolved in water through
unsaturated and saturated sediment is a complex process
that is affected by biological degradation, oxidizing or
reducing conditions, and other factors. The methods used
to interpret pollution sensitivity included the following
general assumptions:

¢ Flow paths are vertical and downward from the land
surface through the soil and underlying sediment to
an aquifer.

e A contaminant is assumed to travel at the same rate
as water.

¢ A contaminant that is dissolved and moving within water
from the surface is not chemically or physically altered
over time.

River valleys can be important groundwater discharge
areas (see “Hydrogeologic cross sections”). Local upward
groundwater movement is characteristic of these areas
and the actual pollution sensitivity may be less than rated.

Two models were used to estimate the pollution sensitivity,
based on the different properties of the aquifer materials.
The following assumptions applied.

¢ Near-surface materials (to a depth of 10 feet): sediment
texture is the primary property used to create a sensitivity
map. The permeability of the sediment matrix texture is
estimated based on hydrologic theory and empirical data
to establish a downward flow rate. The vertical travel
time is then estimated using the downward flow rate
multiplied by the vertical travel distance.

¢ Buried aquifers: sediment above and between buried
sand aquifers is fine grained with low hydraulic
conductivity. The method only considers the cumulative
thickness of fine-grained sediment overlying aquifers.
It does not consider differences in sediment texture or
permeability of aquitard materials.

The central concept for both types of pollution sensitivity
maps is the relative rate of groundwater movement. This
is described as infiltration in the unsaturated zone, and
recharge in the saturated zone. Smith and Westenbroek
(2015) found that soil properties and land cover have
the largest effect on potential recharge. Their statewide
analysis included land cover, soil properties, and daily
meteorological information.

Recharge maps can be used as a tool for planning aquifer
recharge projects using high-quality water. Areas with high
infiltration rates or focused recharge may indicate locations
for further investigation.

Chemical indicators of pollution sensitivity

The pollution sensitivity model results were authenticated
by comparing to select chemistry from water samples
from the mapped aquifers. The following can indicate
anthropogenic sources of contamination and moderate to
high pollution sensitivity.

e Recent and mixed tritium age indicates that at least a
portion of the groundwater has been recharged since
the 1950s.

e Nitrate concentrations =1 ppm are greater than
background conditions (MDH, 1998; Wilson, 2012).

e Chloride concentrations =5 ppm with high chloride/
bromide ratios are greater than background
conditions. Although elevated chloride is commonly
human caused it can also occur naturally, likely
from a deep natural source, such as residual brine.
The chloride source can be distinguished using chloride/
bromide ratios. In general ratios below 300 are likely
from natural sources. (Davis and others, 1998; Panno and
others, 2006).
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Near-surface materials

Methods

The pollution sensitivity of near-surface materials is an
estimate of the time it takes for water to infiltrate the land
surface, travel through the unsaturated zone, and reach
the water table, which is assumed to be 10 feet below land
surface. The first 3 feet of the unsaturated zone is assumed
to be soil and the next 7 feet (3—10 feet) is assumed to
be surficial geological material. If there are no soil data,
the transmission rate is based on 10 feet of the surficial
geologic unit.

The transmission rate will vary depending on the texture. In
general, coarse-grained materials have faster transmission
rates than fine-grained materials. The two primary inputs
used to estimate transmission rate are the hydrologic soil
group and the surficial geologic matrix texture. Attributes
of both are used to estimate the time of travel (Table 1)
(USDA-NRCS, 2016; Part A, Plate 3). Further details of how
the near-surface pollution sensitivity map was created are
available in Methods to Estimate Near-Surface Pollution
Sensitivity (DNR, 2016b).

The time of travel through near-surface materials varies
from hours to approximately a year (Figure 26).

e Areas with a relatively short time of travel (hours to a
week) are rated high sensitivity.

e Areas with a longer time of travel (weeks to a year) are
rated low or very low.

e Areas with travel times of more than a year are rated
ultra low, but are not present in Wright county.

Results

Low sensitivity, associated with loam and silt loam,
is prevalent throughout the majority of the county
(Figure 27). Elsewhere, high sensitivity, associated with
sand and gravel, exists in the northern and eastern portions
of the county and within the main valleys of the North Fork
Crow, South Fork Crow, and Crow rivers. Smaller areas of
moderate sensitivity exist around Lake Maria State Park in
the northern portion of the county. No water chemistry
was collected from shallow water-table aquifers.

Hour Day Week Month Year Decade
g D Moderate
©
>
> | Low
2 Very
A Low
Ultra Low »
l l l l
0 1 2 3 4 5
Groundwater travel time, in log,  hours

Figure 26. Geologic sensitivity rating for near-surface materials

Table 1. Transmission rates used to assess the pollution sensitivity rating of near-surface materials

Hydrologic Soil Group Surficial Geologic Texture
(0-3 feet) (3-10 feet)
Transmission e Transmission rate Surficial geology map unit
*
Group rate (in/hr) Classification (in/hr) (Plate 3)
gravel, sandy gravel, silty gravel 1 cg, ng, tco, wmt
A, A/D 1
sand, silty sand 0.71 Not mapped in county
silt, loamy sand 0.50 Not mapped in county
B, B/D 0.5
sandy loam, peat 0.28 ct
silt loam, loam 0.075 ht, htw, nlc, nls, tct, vt, vtw
C,C/D 0.075
sandy clay loam 0.035 Not mapped in county
D 0.015 clay, clay loam, silty clay loam, sandy clay, silty clay 0.015 Not mapped in county
-- -- glacial lake sediments of Lake Agassiz 0.000011 Not present in county

Note that peat is used as an overlay on the map due to variable and typically unknown thicknesses.
*The Natural Resources Conservation Service (NRCS) defines hydrologic soil groups primarily based on texture and the occurrence of low permeability layers

(USDA-NRCS, 2009):

Group A: water is freely transmitted. Soils are more than 90 percent sand and gravel.

Group B: soils are less permeable but water transmission is still unimpeded.
Group C: water transmission is somewhat restricted.
Group D: water movement is restricted or very restricted.

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30
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Buried sand aquifer and bedrock surface

Methods

The sensitivity rating for the buried sand aquifers and the
bedrock surface is based on estimated vertical travel times
defined by the Geologic Sensitivity Workgroup (1991).
Travel time varies from hours to thousands of years. Areas
with ratings of high or very high have relatively short
travel times of less than a few years. Areas rated low or
very low have estimated travel times of decades or longer
(Figure 28).

The DNR developed a pollution sensitivity model that
represents how precipitation infiltrates the land surface
and recharges portions of deeper aquifers. The central
concept is that focused (relatively rapid) recharge
occurs where aquifers overlap and are connected by
complex pathways. The model assumes that the thickness
of fine-grained sediment overlying an aquifer is inversely
proportional to the sensitivity of an aquifer. The thicker
the fine-grained sediment, the longer it takes for water to
move through it (Figure 29).

GIS software was used to calculate cumulative thickness of
the sediment layers based on digital elevation models of
sand and till distribution developed by Knaeble and others
(2013), and the bedrock surface developed by Steenberg
and Chandler (2013). Thicknesses of 10 feet or less were
rated very high sensitivity, thicknesses greater than 40 feet
were rated very low, and intermediate thicknesses had

intermediate sensitivity ratings. More details are available
in Procedure for buried aquifer and bedrock surface
pollution sensitivity based on cumulative fine-grained
sediment (CFGS) thickness (DNR, 2016c).

The model results were combined with groundwater
flow directions derived from potentiometric surfaces
to help understand the distribution of particular
chemical constituents. The pollution sensitivity values
and spatial distributions were compared to the tritium
age of groundwater.

Hour Day Week Month Year Decade Century
Time range for
carbon-14
Time range for tritium studies studies
1 L
-— 0 I
3
c 10 L .
- High (H)
? 20 | >10-20ft _ |Moderate
g (M)
3 30 | >20-30 ft
s Low (L)| very
8 40 | >30-40ft| Low
g (VL)
o 50 | >40 ft
1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Groundwater travel time, in log,, hours

Figure 28. Geologic sensitivity rating for the buried sand aquifers

and the bedrock surface

Sensitivity is defined by vertical travel time. The numbers following
each rating represent the cumulative fine-grained sediment (CFGS)
thickness overlying an aquifer.

1090 —
1080

1070 4 fine-grained Surfye,
sediment 1 5 a/sano,
1060 FQuife,

1050 buried sand 1

1040

1030 buried sand 2

Elevation (feet)

W)@ undifferentiated sediment

1010
1000 bedrock
990

980

VL

buried sand 1

buried sand 2

Figure 29. Cross section showing examples of pollution sensitivity ratings
Sensitivity ratings are based on the cumulative thickness of overlying fine-grained sediment. Each vertical black line is labeled with the
thickness of fine-grained sediment. The letter at the base of the line indicates the sensitivity rating.
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Groundwater conditions

Groundwater recharge, presumed flow paths, and
discharge can be evaluated using the combination
of the concentrations of tritium-age water samples,
equipotential contours, water chemistry, and relative
hydraulic conductivity. The following conditions provide
a way of linking pollution sensitivity with residence
time and anthropogenic indicators (tritium, anthropogenic
chloride and nitrate).

(® Water from the surface moves through a thin
layer of overlying fine-grained material to an
underlying aquifer.

Groundwater moves from an overlying surficial aquifer
to a buried aquifer.

Groundwater moves from an overlying buried aquifer
to an underlying buried aquifer.

Groundwater flows laterally.

Tritium concentration may be artificially elevated by
high capacity pumping.

Groundwater flowpath is unknown.

@ @6 ©® 6

Groundwater discharges to a surface-water body.

In general, conditions 1, 2, 3, and the associated tritium-age
water (recent and mixed) match the type of vertical
groundwater flow and focused recharge that is assumed in
the pollution sensitivity model. These conditions provide
some validation of the model in areas of moderate to very
high sensitivity.

Limitations of the model are represented by conditions L
and U. Lateral flow of groundwater often results in recent
or mixed tritium-age water in aquifers with low to very low
sensitivity (condition L). The model can’t always predict
the origin of recent or mixed tritium-age water in deep,
isolated, or protected settings (condition U).

The conditions are displayed on the pollution sensitivity
figures and cross section plates. Conditions vary across the
state and may not be present in every county.
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Groundwater flow interpretations

Interpretations of groundwater flow and groundwater
conditions are shown on the cross sections by coupling
geologic texture, pollution sensitivity, estimated
groundwater residence time, groundwater chemistry,
equipotential lines, groundwater flow direction, and
groundwater recharge and discharge areas.

Figure 30 is a hypothetical cross section that integrate data
elements used to understand groundwater flow. In this
figure, sandy geologic materials (lighter grays) dominate
the land surface, increasing recharge potential and near-
surface pollution sensitivity in these areas. Moderately
sandy till is present at the land surface in the central region
of the cross section, which lessens groundwater recharge.

In the extreme western portion of the cross section, the
till at the land surface has limited sand content, which
decreases both groundwater recharge and pollution
sensitivity. Groundwater residence time determined using
tritium concentration varies widely across the cross section.

The hypothetical conditions described below appear from
west to east in Figure 30.

e Condition 1: water moves through a thin layer of overlying
fine-grained material to an underlying aquifer.

e Condition U: recent tritium-age water at this well
is found below aquifers with vintage and mixed
tritium-age signatures, therefore the groundwater flow
path is unknown.

e Condition P: near the City, recent tritium-age water is
found at a depth greater than should occur in a natural
state. High-volume groundwater pumping in this area has
likely steepened gradients bringing recent tritium-age
water to this depth.

¢ Condition 2: east of the City, groundwater moves from an
overlying surficial aquifer to an underlying buried aquifer.

e Condition L: recent tritium-age water is likely from lateral
flow from an upgradient source.

e Condition 3: focused recharge from interconnected
sands imparts a mixed tritium-age signature on the well
that is additionally reflected in elevated levels of chloride
and nitrate.

e Condition D: regional groundwater flow is both vertically
downward and east toward the River. Groundwater
discharges to the river system.

Groundwater conditions for Wright County are presented
on Plates 7-9; groundwater flow interpretations are
described on Plates 8 and 9.
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Water from the surface moves through a thin
layer of overlying fine-grained material to an
underlying aquifer.

Groundwater moves from an overlying surficial
aquifer to a buried aquifer.

Groundwater moves from an overlying buried
aquifer to an underlying buried aquifer.

Groundwater flows laterally.

Tritium concentrations may be artificially
elevated by high capacity pumping.

Groundwater flowpath is unknown.

Groundwater discharges to a surface-water body.
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Chloride: if shown, concentration is 25 ppm.
Nitrate: if shown, concentration is 21 ppm.
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Tritium age

Darker color in small vertical rectangle (well screen
symbol) indicates tritium age of water sampled in well.
Lighter color indicates interpreted age of water in aquifer.

Recent

EEE

Quaternary unconsolidated sediment

Aquifer (interpreted tritium age is indicated by
background color)

Aquitard (grouped by texture ranging from highest
[light gray] to lowest sand content [dark gray]
indicating relative hydraulic conductivity)

Undifferentiated sediment

@
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Aquifer (interpreted tritium age is indicated by
pattern color)

Aquitard

Figure 30. Hypothetical cross section illustrating groundwater conditions
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Results

These results describe the buried aquifers in stratigraphic
order from shallowest to deepest, and include the depth,
thickness, spatial distribution, and pollution sensitivity.
This information is compared with the tritium age of
groundwater and the presence or absence of anthropogenic
chemical indicators. Higher sensitivity is associated with
the following:

e Recent or mixed tritium age.
e Nitrate concentrations 21 ppm

¢ Chloride concentrations 25 ppm with chloride/bromide
ratios 2250.

nts aquifer (Figure 31)

Sensitivity: The nts aquifer is used by approximately
3 percent of wells in the county and has a wide extent
over the northern and central portions. In the north, large
areas of the aquifer intersect the land surface. The majority
of the aquifer is located between the land surface and
35 feet, with a mean depth of 18 feet. Its proximity to the
land surface and lack of a thick overlying till results in an
overall very high pollution sensitivity. The buried portions
of the aquifer are predominately overlain by till (hbt) of the
Heiberg Member of the New Ulm Formation. The loamy
texture of the hbt provides a protective layer where the
thickness is adequate.

Chemistry: 1 groundwater sample was collected from
this aquifer in a confined condition. The sample had a
mixed tritium age which is consistent with the highly
variable sensitivity of the aquifer near the well. The
sample had elevated chloride and recent (<100) carbon-14
residence time.

ms aquifer (Figure 32)

Sensitivity: The ms aquifer is used by approximately
13 percent of wells in the county and has a widespread
areal extent. The aquifer is located at depths between 15
and 90 feet below the land surface, with a mean depth of
52 feet. Sensitivity is variable due to its varying proximity
to the land surface, intermittent connections to the
overlying nts aquifer, and wide range of depth. It varies
from moderate to very high sensitivity in large areas
where the aquifer is near the overlying nts aquifer. The
sensitivity is very low elsewhere in the county, where
overlying till provides more protection. The overlying till
(nt) of the Villard Member of the New Ulm Formation has a
predominately sandy loam to loam texture that provides a
protective layer where the thickness is adequate.

Chemistry: 20 groundwater samples were collected
from this aquifer. Of these, 16 were analyzed for tritium:
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10 had mixed tritium age and 6 had vintage tritium age.
The mixed tritium-age samples were generally located
in areas mapped with high to very high sensitivity, or
downgradient of such areas. All of the vintage tritium-age
samples were located in areas mapped as very low
sensitivity. Of the 17 samples tested for chloride, 8 had
elevated concentrations. Of the 18 samples tested for
nitrate, none were elevated.

cg aquifer (Figure 33)

Sensitivity: The cg aquifer is used by approximately
7 percent of wells in the county. It has limited areal extent,
predominately occurring in the north and northeastern
portions of the county and intermittently in the south-
central portion. The aquifer is at the land surface in a few
places in the northeastern portion of the county. Elsewhere
its depth is between 20 and 90 feet, with a mean depth of
58 feet. Large portions have moderate to very high pollution
sensitivity due to its proximity to the land surface and direct
connections to the overlying ms aquifer. The sensitivity
rating is very low where protection is provided by the
aquifer’s depth and the relatively thick sandy loam till (mt) of
the overlying Moland Member of the New Ulm Formation.

Chemistry: 12 groundwater samples were collected from
this aquifer. Of these, 11 were tested for tritium: 3 had
recent tritium age, 5 had mixed tritium age, and 3 had
vintage tritium age. In general, the recent and mixed
tritium-age samples were located in areas mapped with
high to very high sensitivity, or downgradient of such areas.
The 3 vintage tritium-age samples were collected in south
central Wright County where the aquifer is mapped as
having very low sensitivity. A groundwater residence time
of 2,000 years was determined using carbon-14 analysis
for a well in an area mapped as very low sensitivity. Of
the 12 samples analyzed for chloride, 5 had elevated
concentrations. Of the 12 samples analyzed for nitrate,
1 was elevated (3.4 ppm). This sample also had elevated
chloride (59 ppm) with a chloride/bromide ratio of 1,218
that suggests anthropogenic influences.

cgl aquifer (Figure 34)

Sensitivity: The cgl aquifer is used by approximately
26 percent of wells in the county and has widespread areal
extent, except in the southwestern portion. It is located at
depths between 50 and 140 feet below the land surface,
with a mean depth of 85 feet. Large portions of the
aquifer have very low sensitivity. Elsewhere the sensitivity
increases from moderate to very high where the aquifer
is connected with overlying sands. In these locations, the
overlying sandy loam till (ct) of the Cromwell Formation,
St. Croix phase, is absent or discontinuous.
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Chemistry: 36 groundwater samples were collected from
this aquifer. Of these, 26 were analyzed for tritium:
1 had recent tritium age, 19 had mixed tritium age, and
6 had vintage tritium age. In general, samples with recent
and mixed tritium age were from wells located in areas
mapped with high to very high sensitivity, or downgradient
of such areas. The 6 vintage tritium-age samples were
spread throughout the central and eastern border of the
county where the mapped sensitivity ranges from very
low to moderate. A vintage tritium-age sample collected
near Albertville was from a part of the aquifer that was
likely influenced by old regional groundwater flow that
was discharging to the Mississippi River. Elsewhere,
a groundwater residence time of 3,000 years was
determined using carbon-14 analysis for a well located in
an area mapped as very low sensitivity. Of the 32 samples
analyzed for chloride, 16 had elevated concentrations. Of
the 33 samples analyzed for nitrate, 5 were elevated.

hs aquifer (Figure 35)

Sensitivity: The hs aquifer is used by approximately
12 percent of wells in the county. It has moderate areal
extent, primarily in the central portion of the county.
The majority of the aquifer is located between 70 and
160 feet below the land surface, with a mean depth
of 107 feet. Large portions of the aquifer have very
low pollution sensitivity, except in the South Haven,
Clearwater, Lake Maria, and Rockford areas. In these areas,
the sensitivity increases from moderate to very high where
the aquifer is connected to overlying sands. Here the
sandy loam tills (ct and ctl, respectively) of the overlying
Cromwell Formation, St. Croix and Emerald phases are
absent or discontinuous.

Chemistry: 23 groundwater samples were collected
from this aquifer. Of these, 17 were analyzed for tritium:
5 had mixed tritium age and 12 had vintage tritium age.
In general, mixed tritium-age samples were located in
areas mapped with high to very high sensitivity, or
downgradient of such areas. There was not a clear reason
for the mixed tritium-age sample from a well southwest of
Delano. The 12 vintage tritium-age samples were spread
throughout the central and southeastern portions of
the county where the mapped sensitivity was very low.
Of the 17 samples analyzed for chloride, 4 had elevated
concentrations. Of the 19 samples tested for nitrate,
2 were elevated.

scs aquifer (Figure 36)

Sensitivity: The scs aquifer is used by approximately
9 percent of wells in the county. It has fragmented areal
extent in the northern and central portions of the county,
but is relatively laterally continuous in the southwestern
portions. The aquifer is located at depths between 60 and
150 feet, with a mean depth of 105 feet. Large portions
have very low sensitivity with fragmentary areas having
moderate to very high sensitivity. In these areas, the sandy
loam till (hwt) of the overlying Hewitt Formation is absent
or discontinuous.

Chemistry: 24 groundwater samples were collected
from this aquifer. Of these, 22 were analyzed for tritium:
4 had recent tritium age, 3 had mixed tritium age, and
15 had vintage tritium age. In general, mixed tritium-age
samples were located in areas mapped with high to very
high sensitivity, or downgradient of such areas. Three
recent tritium-age samples were located near Annandale
where the mapped sensitivity is very low. This cluster of
recent values is anomalous for this area. One possible
explanation is that buried sand layers may be present that
were not mapped in the overlying MGS buried sand extent
and thickness information (Part A, Plate 5). Note that a
mixed tritium-age sample was collected in this area in the
overlying aquifer. Another explanation is that high-volume
municipal groundwater pumping may be steepening the
groundwater flow gradients in the area bringing recent
tritium-age water to greater depths. A recent tritium-age
sample was collected near Lake Maria State Park that was
close to a mixed tritium-age sample and areas mapped
as high to very high sensitivity. In this location, it appears
the areal extent of the scs aquifer and likely pathways to
overlying aquifers was not accurately represented in the
model. The 15 vintage tritium-age samples were spread
throughout the aquifer but were primarily located in the
southwestern area near Cokato and Howard Lake. Modeled
carbon-14 residence time for the aquifer ranged between
500 and 5,000 years, which was consistent with the
modeled pollution sensitivities near the collected samples.
Of the 18 samples analyzed for chloride, 4 had elevated
concentrations. Of the 20 samples analyzed for nitrate,
1 was elevated.

mls aquifer (Figure 37)

Sensitivity: The mls aquifer is used by approximately
3 percent of wells in the county. It has a limited areal extent
and is fragmentary where present. The majority of the
aquifer is located at depths between 85 and 180 feet, with
a mean depth of 135 feet. The majority of the aquifer has
very low sensitivity, with limited areas of moderate to very
high sensitivity. In these areas, the overlying loam till (sct)
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of the Sauk Centre Member of the Lake Henry Formation
(Winnipeg provenance) is absent or discontinuous.

Chemistry: 8 groundwater samples were collected from
this aquifer. Of these, 6 were analyzed for tritium: 2 had
mixed tritium age and 4 had vintage tritium age. One mixed
tritium-age sample was from a well north of Buffalo in an
area mapped with sensitivity ranging from very low to
very high. The other mixed tritium-age sample was near
Annandale where the mapped sensitivity was very low,
but recent and mixed tritium was found in overlying
aquifers (see scs). Four vintage tritium-age samples were
spread throughout the aquifer in areas mapped with very
low sensitivity. Three were near Cokato and one was north
of Lake Maria State Park. Of the 8 samples analyzed for
chloride, 2 had elevated concentrations. Of the 8 samples
tested for nitrate, none were elevated.

prs aquifer (Figure 38)

Sensitivity: The prs aquifer is used by approximately
3 percent of wells in the county. It has limited areal extent
in the northern and northeastern portions of the county
and is fragmentary around Buffalo and Maple Lake.
The aquifer is located at depths between 85 and 140 feet,
with a mean depth of 116 feet. The majority of the aquifer
has very low sensitivity, however parts of the aquifer
located north of Monticello and northeast of Albertville
range from very low to very high sensitivity. In these areas,
the loam till (mlt) of the overlying Meyer Lake Member
of the Lake Henry Formation (Winnipeg provenance) is
absent or discontinuous, which increases the sensitivity of
the aquifer.

Chemistry: 3 groundwater samples were collected from
this aquifer. Of these, 2 were tested for tritium: each had a
mixed tritium age. The samples were located in areas with
mapped sensitivity ranging from very low to moderate.
These wells were located downgradient and were near
areas with higher mapped sensitivities. Of the 2 samples
analyzed for chloride, 1 had elevated concentrations. Of
the 2 samples analyzed for nitrate, none were elevated.

pws aquifer (Figure 39)

Sensitivity: The pws aquifer is used by less than 1 percent of
wells in the county. It has limited areal extent in the central
portion of the county. The majority of the aquifer is located
at depths between 115 and 220 feet, with a mean depth of
155 feet. The aquifer has very low sensitivity, with a limited
area near Delano having moderate sensitivity. In this area,
the loam till (prt) of the overlying pre-Wisconsinan Superior
provenance is thin and discontinuous.

Chemistry: 3 groundwater samples were collected from
this aquifer and analyzed for tritium. Two near Delano
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had vintage tritium age and one near Buffalo had recent
tritium age. The recent tritium-age sample was located in
an area that was primarily mapped as very low sensitivity,
but also had moderate to high sensitivity mapped within
500 meters. Of the 3 samples analyzed for chloride, 1 had
an elevated concentration. Of the 3 samples analyzed for
nitrate, none were elevated.

psu aquifer (Figure 40)

Sensitivity: The psu aquifer is used by approximately
8 percent of wells in the county. It has wide areal extent, but
is primarily present as discontinuous bodies. The majority
of the aquifer is located at depths between 80 and 200 feet,
with a mean depth of 140 feet. The aquifer has very low
sensitivity, except in areas near Rockford, Monticello, and
Clearwater where it ranges from moderate to very high.
In these areas, the loam till (pwt) of the overlying mixed
Rainy and Winnipeg provenance is thin and discontinuous,
resulting in higher sensitivity.

Chemistry: 18 groundwater samples were collected from
this aquifer. All were analyzed for tritium: 6 had mixed
tritium age and 12 had vintage tritium age. In general, the
mixed tritium-age samples in the northeastern area were
located either near or downgradient of areas with higher
sensitivities. Elsewhere, the pollution sensitivity model
did not neatly predict the elevated tritium values. The
12 vintage tritium-age samples were spread throughout
the aquifer. Carbon-14 residence time for a sample in the
aquifer was 2,000 years, which was consistent with the
modeled pollution sensitivity. Of the 14 samples analyzed
for chloride, 1 had an elevated concentration. Of the
14 samples analyzed for nitrate, none were elevated.

zus aquifer (Figure 41)

Sensitivity: The zus aquifer is used by approximately
3 percent of wells in the county. It has wide areal extent
but is primarily present as discontinuous bodies. The
aquifer is located at depths between 160 and 280 feet,
with a mean depth of 210 feet. It has very low sensitivity,
except for limited moderate sensitivity near the Crow River
northeast of Rockford and a small area near Clearwater.
In these areas, there is limited information on the
overlying sediment texture and provenance. The overlying
undifferentiated sediments (pu) may include sand and
gravel deposits that are not explicitly incorporated into the
pollution sensitivity model.

Chemistry: 13 groundwater samples were collected
from this aquifer. All samples were analyzed for tritium:
3 had mixed tritium age and 10 had vintage tritium age.
The pollution sensitivity model did not precisely predict
the elevated tritium values of the 3 mixed tritium ages. The
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10 vintage tritium-age samples were spread throughout
the aquifer. Carbon-14 residence time for the zus aquifer
ranged between 1,700 and 1,800 years, which was
consistent with the very low pollution sensitivity calculated
for the aquifer.

Of the 13 samples analyzed for chloride, 1 had an elevated
concentration. Of the 13 samples analyzed for nitrate,
none were elevated.

Bedrock surface (Figure 42)

Sensitivity: Bedrock aquifers are used by approximately
13 percent of wells in the county, with most of these
located in the eastern portion. Wells completed in bedrock
aquifers vary widely in depth, ranging from 65 feet to
1,038 feet below the land surface. In general, the top of
the bedrock surface has very low sensitivity, except for
moderate to high sensitivity regions along the edges
of river valleys. In these areas, sand and gravel terrace
deposits overlie the bedrock surface with few intervening
till layers to provide protection.

The bedrock surface represents the boundary from
overlying unconsolidated sediments (sand, gravel, silt,
clay) to underlying sedimentary and crystalline bedrock.
Generally, the bedrock surface of Wright County can be
differentiated into three primary groups, two of which
are water bearing. One group consists of Cretaceous
sandstones, siltstones, and mudstones that are primarily
located in the southwestern and south-central areas of
the county and in a large area near South Haven in the
northwest (Steenberg and Chandler, 2013). These deposits
are water-bearing, especially in the more predominately
sandy Dakota Formation. Another group consists of

aquifers and aquitards that are Upper Cambrian through
Mesoproterozoic in age (Figure 7). This group is present in
the central and eastern portions of the county. The final
generalized group consists of low permeability igneous and
metamorphic crystalline rock of Precambrian age. Although
wells can be completed in crystalline rock, they typically
have lower yield than wells completed in sedimentary
bedrock aquifers.

Chemistry: 42 groundwater samples were collected from
bedrock aquifers. Of these, 35 were analyzed for tritium:
2 had recent tritium age, 6 had mixed tritium age, and 27
had vintage tritium age. One recent tritium-age sample
was collected north of Monticello where the modeled
sensitivity was high to very high. The other occurred east
of Albertville where the modeled sensitivity was very low.
It is unclear why this sample had a recent tritium age.
In general, the mixed tritium-age samples were near high
volume pumping. In these areas, recent tritium-age water
may have been brought to deeper than expected depths
or was located downgradient of areas with higher
sensitivities. The 27 vintage tritium-age samples are
spread throughout the county and fit well with the
estimated sensitivity. Calculated carbon-14 residence time
ranges from recent (<100 years) to 19,000 years, which
is consistent with the modeled pollution sensitivity. The
recent carbon-14 residence time has a vintage tritium
age, suggesting that the residence time is greater than
65 years. Of the 30 samples tested for chloride, 3 had
elevated concentrations. Of the 32 samples tested for
nitrate, 1 was elevated.
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Hydrogeologic cross sections (Plates 8 and 9)

The hydrogeologic cross sections shown on Plates 8 and 9
illustrate the horizontal and vertical extent of aquifers and
aquitards, the relative hydraulic conductivity of aquitards,
general groundwater flow direction, areas of groundwater
recharge and discharge, and groundwater residence time.
The cross sections were chosen to incorporate existing
data collected by the MDH, to align with groundwater level
monitoring wells, and to intersect areas with high volume
municipal pumping.

The seven cross sections were selected from a set of 50
regularly-spaced (1 kilometer) west-to-east cross sections
created by the MGS. The cross sections were constructed
in GIS using a combination of well data from CWI and the
following sections of Part A: Bedrock Geology (Plate 2),
Surficial Geology (Plate 3), and Quaternary Stratigraphy
(Plate 4). The well information for each cross section was
projected onto the trace of the cross section from distances
no greater than one-half kilometer.

Relative hydraulic conductivity

Hydraulic conductivity is a function of the porosity (volume
of pores) and permeability (connectedness of pores) of a
sediment or rock layer. Percent sand content in the glacial
sediment matrix is a proxy for permeability because coarse
grains typically add permeability to sediment. Glacial
aquitards with a higher sand content are assumed to
have higher hydraulic conductivity. This assumption does
not account for the occurrence of larger clasts (pebbles,
cobble, and boulders), compaction from overlying ice
and sediment, the potential for fine sediment to fill pore
spaces, or fractures in the shallow till units.

Glacial sediment layers that act as aquitards (till units)
are shown as shades of gray on Plates 8 and 9. Lighter
shades indicate aquitards with higher relative hydraulic
conductivity. The percent sand in each of the aquitards is
based on the average matrix texture of each glacial aquitard
or till (Part A, Plate 4, Table 1).

Groundwater flow direction

Groundwater moves from areas with higher potential
energy to areas with lower potential energy. The
direction of groundwater movement is interpreted from
the equipotential contours constructed from measured
water levels in wells. These contours can be used to
identify groundwater flow direction, recharge zones, and
discharge zones.

Groundwater recharge and discharge

Precipitation is the source of recharge to the glacial
sediments covering the county, which then provide
recharge to deep aquifers. Important recharge areas exist
primarily in the north and east of the county where sandy
surficial sediment allows for higher infiltration. In other
regions recharge is limited because the less permeable
surficial geologic units have higher clay and silt content.

Recharge to the surficial aquifers ranges from 1.5 to 10.5
inches per year (Smith and Westenbroek, 2015). Recharge
tothe buried sand aquifers and bedrock aquifers is generally
less than 1 percent of average precipitation, or roughly
0.3inches peryear (Delin and Falteisek, 2007). This estimate
is dependent upon the matrix texture and thickness of the
glacial sediment. Recharge rates are also influenced by
high-volume groundwater appropriation centers, which
have the potential to locally steepen groundwater gradients
and increase recharge.

The Mississippi River is the major groundwater discharge
feature for the buried sand and bedrock aquifers of the
county. Groundwater is also discharged to other surface-
water bodies, such as the Clearwater, North Fork Crow,
and South Fork Crow rivers, and some wetlands and lakes.
Stable isotopic data collected for this atlas demonstrates
that lakes and open water wetlands serve an important
recharge function in the northern portion of the county
(Figure 22 and 23).
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Aquifer characteristics and groundwater use

Aquifer specific capacity and transmissivity

Aquifer characteristics, such as specific capacity and
transmissivity, are used to describe how water is
transmitted by an aquifer. Larger values of each of these
parameters indicate more productive aquifers.

Specific capacity is the pumping rate per unit depth of
drawdown. It is typically expressed in gallons per minute
per foot (gpm/ft) and is determined from short-term
pumping or well-development tests performed after a well
is drilled.

To ensure that the specific-capacity values reflect actual
pumping (not air-lifting), the pumping-test data were
obtained from CWI for wells with the following conditions:

¢ The casing diameter was at least 8 inches.
¢ The well was pumped for at least 4 hours.

e The pumping-water level was inside the well casing,
at least 2 feet above the well screen or open hole.

The specific capacity values of 48 wells in Wright County
met these conditions: 1 in the water-table aquifer,
1 in an unconfined buried sand aquifer, 22 in confined
buried sand aquifers, and 24 in bedrock aquifers (Table 2
and Figure 43). The highest mean specific capacity of

150 gpm/ft was calculated for a bedrock well completed
with an open hole across the St. Lawrence Formation
through the Eau Claire Formation (the Upper Tunnel City
and Wonewoc aquifers) (Table 2).

Transmissivity is an aquifer’s capacity to transmit water.
It provides a more accurate representation of the aquifer
properties than specific capacity because it is from longer-
term and larger-scale aquifer tests. It is determined by
multiplying the thickness of the aquifer by the hydraulic
conductivity of the aquifer material (the rate groundwater
flows through a unit cross section).

A number of consulting firms and state agencies have
completed aquifer tests in Wright County, but the
documentation is insufficient to include the results in this
report. Transmissivity values for nine aquifer tests with
robust documentation are shown in Table 2. These tests
include 7 buried sand aquifers and 2 bedrock aquifers.
Transmissivity for the buried sand aquifers averaged
21,900 ft?/day, and ranged from 5,800 ft?/day to
49,200 ft?>/day. Transmissivity for the bedrock aquifers
averaged 37,500 ft2/day, and ranged from 28,600 ft?/day
to 46,300 ft?/day.

Table 2. Specific capacity and transmissivity of selected wells

Specific capacity (gpm/ft) Transmissivity (ft?/day)
Aquifer dizf::."(‘ign.) Mean Min Max NO::;::; di:ra'rilr(‘ign.) Mean Min Max '::rt:ts):;
Unconsolidated aquifers
Water table 8 13 13 13 -- - - - -
Unconfined buried sand 10 32 32 32 -- - - - -
Confined buried sand 8-20 32 3 102 22 6-20 21,900 5,800 49,200 7
Bedrock aquifers
Cretaceous undifferentiated 8 0.3 0.3 0.3 1 - -- -- - -
St. Lawrence—Wonewoc 10 32 32 32 1 - - - -- --
St. Lawrence—Eau Claire 10 150 150 150 1 - - -- -- --
Tunnel City—Wonewoc 12 6 4 8 2 -- - - - -
Tunnel City—Eau Claire 12 5 5 5 1 -- - - . -
Tunnel City—Mt. Simon 10 75 75 75 1 -- -- -- -- -
Wonewoc—Mt. Simon 8 8 8 8 1 - - - - -
Wonewoc 18 7 11 2 -- -- -- - -
Eau Claire—Mt. Simon 8 20 20 20 1 12 37,500 28,600 46,300 2
Mt. Simon 8-24 16 2 26 4 -- - - - -
Mt. Simon—Hinckley 14-20 25 2 57 3 -- - - - -
Mt. Simon—Fond du Lac 12 8 8 8 1 -- -- - - -
Mt. Simon-red clastics 8-18 10 2 21 3 -- -- -- - -
Hinckley 10 5 5 5 1 - - - - -
Hinckley—Fond du Lac 12 17 17 17 1 * - - - -

Specific capacity data adapted from the CWI; gpm/ft, gallons per minute per foot.

Transmissivity data are from aquifer test data compiled by the DNR; ft?/day, --, no data.
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Groundwater level monitoring

The DNR maintains a statewide groundwater level
monitoring program for assessing groundwater
resources, determining long-term trends,
interpreting impacts of pumping and climate,
planning for water conservation, evaluating
water conflicts, and managing water resources.

Well nests consist of closely spaced wells that are
constructed in different aquifers. Long periods
of record from multiple aquifers are useful for
determining trends and provide insight into
how aquifers respond to recharge events,
climatic conditions, and pumping stresses.
The hydrographs shown in Figure 44 and 45
were produced from data retrieved from the
DNR’s Cooperative Groundwater Monitoring
(2017) program.

Figure 44 shows the groundwater elevation
hydrographs of four monitoring wells from two
nests located north and south of Howard Lake.
Groundwater elevation in Figure 44 and 45 is
compared to daily precipitation collected at
National Weather Service Reporting Station
212500 located in Elk River, MN.

e Well 773243 is constructed to a depth of
118 feet in the cg aquifer and shows annual
groundwater elevation increasing in response
to snowmelt and precipitation followed by
declines over the winter months.

e Well 777349 is constructed to a depth
of 142 feet in the cgl aquifer and shows
responses similar to well 777243.

e Well 773244 is constructed to a depth of
530 feet in the Mt. Simon aquifer and shows
muted responses to annual precipitation.

e Well 777348 is constructed to a depth of
450 feet in the Hinckley aquifer and also shows
muted responses to annual precipitation.

Groundwater elevation differences for these
aquifers show the hydraulic gradient is downward
from the cg and cgl aquifers to the Mt. Simon.
These data also show that the Hinckley aquifer in
this area of the county has greater pressure head
than the overlying Mt. Simon aquifer.

Figure 44. (Right) Hydrographs of groundwater-level
monitoring wells north and south of Howard Lake
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Figure 45 shows the groundwater elevation hydrographs of
three monitoring wells located in northeast Buffalo Township
near the west side of Pelican Lake.

e Well 735008 is constructed to a depth of 10 feet in the water
table and shows rapid annual responses to precipitation
events that decline in winter months.

e Well 797086 is constructed to a depth of 158 feet in the zus
aquifer and shows annual groundwater elevation increases in
response to snowmelt and precipitation that are more muted
than those in the water-table aquifer.

e Well 795509 is constructed to a depth of 293 feet in the
Mt. Simon aquifer and shows muted responses to annual
precipitation similar to the zus aquifer.

Groundwater elevation differences for these aquifers show
there is little vertical hydraulic gradient in this area between the
water-table aquifer, the zus aquifer, and the Mt. Simon aquifer.

Figure 45. (Right) Hydrographs of groundwater-level monitoring wells
near Pelican Lake.
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Groundwater use

A water-use appropriation permit is required from the
DNR for groundwater users withdrawing more than 10,000
gallons of water per day or 1 million gallons per year. This
provides the DNR with the ability to assess which aquifers
are being used and for what purpose. Permits require
annual water-use reporting. This information is recorded
using Minnesota Permitting and Reporting System (MPARS),
which helps the DNR track the volume, source aquifer, and
type of water use.

Reported water use of large capacity users for 2015
is categorized in Table 3 and in Figure 46 and 47 by
type of water use and aquifer type (MPARS, 2015).
Municipal and public water supply dominates permitted
groundwater use with approximately 77 percent of the
total usage. The majority is extracted from buried sand
aquifers. In general, high-volume use is centered near
large cities, such as Albertville, Monticello, and Buffalo.
The second largest (11 percent) is crop irrigation.

Over half of this water comes from buried sand aquifers
and primarily occurs in the northern portion of the county
where coarse-textured soils do not readily retain moisture.
The third largest use category (4 percent) is golf course
irrigation, which is distributed fairly evenly from Quaternary
and bedrock aquifers. These three water uses collectively
made up 92 percent of the permitted water used in 2015.

There are no reporting requirements in Minnesota for
well owners that use less than 10,000 gallons per day
or 1 million gallons per year, but the CWI maintains data
for well use type and aquifer type for these wells. This
report included nearly 10,000 wells in the analysis. The
majority of wells are used for domestic use (94 percent),
followed by public supply (2 percent), and irrigation
(1 percent). Of the wells with identified aquifers, most
are completed in the buried sand aquifers (73 percent),
followed by bedrock aquifers (13 percent), and finally
surficial sand aquifers (7 percent).

Table 3. Reported 2015 water use from DNR groundwater permit holders

Use category
il s 2 2
. | o 2 1. RN 3% _ | wS -
T s c6Q | & £ o 5 W | £5 Sg
2 2> |65 = a w 5 = >4 | ® 58~ c S
Aquifer o« <o |B80¢c w ] L 2 & S50 | o 0w Q2% — T
5 =2 |5 2 S T c = s S o 85 oL & 5%
= o3 |£E£T > o S c S © 700 | cw | QYobaS € QT
3 S. |=3s| 8 S 28 e 9, |s82 | 8BS 2558 £ 2z
IS = QC @ = T o £ n T35 ,,q_),zg T < CIJ}E;,,_. = =0
S o o ~ < c = © = €2 |So 17} 8 Sa
2 | S2 585 8 | & mE| 3 | =@ 8% g% |5£828| B | &R
Quaternary aquifers
Water table 32 185.3 135 15.6 - - -- 5.6 2.7 26.1 -- 370.3 | 9.75%
Buried sand 121 | 1879.3 | 255.7 52.4 93.6 -- 42.6 20.4 27.2 -- 0.7 2371.9 | 62.5%
Bedrock aquifers
Cretaceous 1 4.5 - - - - - - - - - 4.5 0.1%
Upper Paleozoic? 3 -- -- - - 55.1 - - -- - 7.9 63 1.7%
Lower Paleozoic? 14 457 304 76 - 3.4 - 13 - - - 568.1 15.0%
Mesoproterozoic? 2 17.7 2.6 -- - - - - -- - - 20.3 0.5%
Multiple* 10 366.3 - - -- -- - 12.8 - -- 20.2 399.3 | 10.5%
Total (mgy) - 2910.1 | 423.7 144 93.6 58.5 42.6 40.1 29.9 26.1 28.8 3797.4 -
Total (percent) - 77% 11% 4% 2% 2% 1% 1% 1% >1% >1% -- 100% °
Highest annual use by
permit 2011-2015 3541.3 | 748.1 | 243.1 | 104.5 69.8 56.6 40.1 36.1 29.9 41.7

Data from MPARS; mgy, million gallons per year; dash marks (--) indicate no use in those categories]

1. Upper Paleozoic aquifers includes Jordan and Upper Tunnel City
2. Lower Paleozoic aquifers includes Wonewoc and Mt. Simon
3. Mesoproterozoic aquifers include the Hinckley and Hinckley—Fond Du Lac

4. Multiple aquifer wells extract water from more than one Paleozoic or Mesoproterozoic aquifer

5. Percentage may not equal 100 due to rounding.
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Summary

The climate of Wright County is characterized as a cool
subhumid climate, which is strongly influenced by its
position within the northern continental United States.
There is a large temperature differential between summer
and winter, with winter temperatures typically below
freezing from November through March, and short
summers with an average temperature of approximately
69 degrees Fahrenheit. Soil frost at depth frequently limits
the amount of precipitation that can infiltrate into the
soil column and become groundwater during the winter
months. Average annual precipitation is approximately
29 inches, with most falling in June, July, and August.

The water table is a subdued expression of surface
topography. Its elevation is highest in the northwestern
and southwestern portions of the county and lowest
along the northeastern and southeastern borders within
river valleys. The depth to water table map shows that the
water table is within 10 feet of the surface across most of
the county, except in areas where there are topographic
highs from glacial deposits and within valley edges.
At county scale, groundwater flow is from water-table
elevation highs to regional discharge areas including the
Mississippi, North Fork Crow, South Fork Crow, and Crow
rivers. At more localized scales, water-table flow is from
local highs to river tributaries, lakes, and wetlands.

Potentiometric surface maps, compiled mostly from
static water level data in Wright County, indicate a
pattern of generalized groundwater flow toward the
Mississippi River valley and larger perennial tributaries,
such as the North Fork Crow and South Fork Crow rivers.
Potentiometric surfaces of the deeper buried sand aquifers
and bedrock aquifers indicate regional groundwater flow
to the southeast.

Water chemistry was used to determine areas where
influences from human activities were evident in
groundwater, to identify areas where naturally occurring
elements of concern are elevated, such as arsenic and
manganese, and to determine the relative residence time
of groundwater using isotopes of tritium and carbon.

Elevated levels of nitrate and chloride and recent
tritium-age waters were present in the northern
portions of the county. Groundwater residence time
varies throughout the county, but vintage tritium age is
typically found at depths greater than 200 feet below the
land surface. Calculated carbon-14 residence time for
samples with vintage tritium age ranges between 500 and
19,000 years. Elevated levels of naturally occurring arsenic
and manganese are common in the county.

Groundwater recharge sources were differentiated
through stable isotope analysis. Samples plotted along both
the global meteoric water line and a local evaporation line
indicate that a portion of groundwater recharge is through
surface waters, such as lakes and open water wetlands.

Pollution sensitivity of aquifers varied widely throughout
the county dependent on the depth of the aquifer and the
overlying geologic materials. In general, buried aquifers
located close to the land surface have higher sensitivities
than those located at greater depths. The pollution
sensitivity of the bedrock surface is mostly very low, but
has areas that are rated high to very high in small areas
located near river valleys.

Permitted groundwater use is dominated by municipal
and public water supply, which accounts for approximately
77 percent of the water used. The majority is extracted from
buried sand aquifers. High volume use is centered near
large cities, including Albertville, Monticello, and Buffalo.
Crop irrigation is the second most common use category
(11 percent) and primarily occurs in the northern portion
of the county where coarse-textured soils do not readily
retain moisture. The third most common use category
(4 percent) is golf course irrigation, which is distributed
almost evenly from Quaternary and bedrock aquifers.
These three water uses collectively made up 92 percent of
the permitted water used in 2015.
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Glossary

anion—a negatively charged ion in which the total number
of electrons is greater than the total number of protons,
resulting in a net negative electrical charge.

anthropogenic—relating to or resulting from the influence of
humans on nature.

aquifer—an underground layer of water-bearing permeable
rock or unconsolidated materials (sand and gravel) from
which groundwater can be extracted using a water well.

bedrock—the consolidated rock underlying unconsolidated
surface materials, such as soil or glacial sediment.

buried aquifer—a body of porous and permeable sediment or
bedrock which is separated from the land surface by low
permeability layer(s).

cation—a positively charged ion in which the total number
of electrons is less than the total number of protons,
resulting in a net positive electrical charge.

County Well Index or Minnesota Well Index—a database
developed and maintained by the Minnesota Geological
Survey and the Minnesota Department of Health
containing basic drilled in
Minnesota. Information includes location, depth, static
water level, construction, and geological information.
The database and other features are available through
the Minnesota Well Index online mapping application.

information for wells

deuterium (*H)—one of two stable isotopes of hydrogen.
The nucleus of deuterium contains one proton and
one neutron.

equipotential line—a line along which the pressure head
of groundwater is the same. Groundwater flow (shown
on cross sections) is perpendicular to these lines in the
direction of decreasing pressure.

formation—a fundamental unit of lithostratigraphy.
A formation consists of a certain number of rock
strata that have a comparable lithology, facies or other

similar properties.

fractionation—a separation process in which a certain
quantity of a mixture (solid, liquid, solute, suspension,
or isotope) is divided into a number of smaller quantities
(fractions) in which the composition varies according to a
gradient. Fractions are collected based on differences in
a specific property of the individual components. Stable
isotopes are fractionated by mass.

groundwater—water that collects or flows beneath the
surface of the earth, filling the porous spaces below the
water table in soil, sediment, and rocks.

half-life—the time required for one half of a given mass of a
radioactive element to decay.

hydrogeology—the study of subsurface water, including its
physical and chemical properties, geologic environment,
role in geologic processes, natural movement, recovery,
contamination, and use.

hydraulic—relating to fluid movement.

hydraulic conductivity—the rate at which groundwater flows
through a unit cross section of an aquifer.

infiltration—the movement of water from the land surface
into the subsurface under unsaturated conditions.

isotope—variants of a particular chemical element.
All isotopes of an element share the same number of
protons but have a different number of neutrons.

LiDAR—an acronym for Light Detection and Ranging.
It defines a surveying technique used to develop land
surface elevation models.

meteoric—relating to or derived from the earth’s atmosphere.

observation well—a well that is used to monitor the water
level of groundwater.

Paleozoic—an era of geologic time from approximately
542 to 251 million years ago.

potentiometric surface—a surface representing the total
head of groundwater in an aquifer, defined by the levels
to which water will rise in tightly cased wells.

provenance—the place of origin of a glacier.

Quaternary—geologic time period that began 2.588 million
years ago and continues to today. The Quaternary Period
comprises the Pleistocene and Holocene epochs.

radioactive—a property of an element that spontaneously
decays or changes to a different element through the
emission of radioactive particles.

residence-time indicators—chemical and/or isotopes used to
interpret groundwater residence time.

stable isotope—chemical isotopes that are not radioactive.

static water level—the level of water in a well that is not
affected by pumping.

stratigraphy—a branch of geology that studies rock layers and
layering (stratification). It is primarily used in the study of
sedimentary and layered volcanic rocks.

till—unsorted glacial sediment deposited directly by ice.
It is derived from the erosion and entrainment of rock
and sediment.
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tritium (3H)—a radioactive isotope of hydrogen that has a
half-life of 12.32 years. The nucleus of tritium contains
one proton and two neutrons. It is used to identify
groundwater that entered the ground since the 1950s.

tritium unit (TU)—one tritium unit represents the presence
of one tritium atom for every 10 hydrogen atoms.

unconfined—an aquifer that has direct contact with the
atmosphere through an unsaturated layer.

watershed—the area of land that drains into a specific
downstream location.
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Appendix A

Groundwater samples were collected from an outside
faucet or hydrant. The wells were purged prior to sampling
to remove stagnant water from the well bore and plumbing
system. Samples were collected after the following field
parameters had stabilized: temperature, dissolved oxygen,
conductivity, oxidation reduction potential, and pH.
Each was filtered and preserved according to protocols

Samples were analyzed by DNR staff; the University of
Minnesota, Department of Earth Sciences Laboratory
(U of M); or the University of Waterloo Environmental
Isotope Laboratory (Waterloo).

The well owners received a copy of the results, including
some background reference information regarding their
meaning.

listed below and submitted to laboratories for analysis.

Groundwater field sample collection and handling details

H 18,
Parameter Em"n_:hed 20 Cations Anions Tr'ace Alkalinity 14c
Tritium H constituents
Lab Waterloo Waterloo Uof M Uof M Uof M DNR Staff Uof M
. 500 ml 60 ml 15ml >0ml 15 ml 500 ml 30 gallon
Sample container HDPE HDPE Fisherbrand Argos Sarstedt lastic barrel
BLUEcap | BLACK bottle*** RED cap P
Head space yes yes yes yes yes NO yes
Rinse no no yes* yes* yes* yes** no
Filter no no yes yes yes no yes
Preservative no no 1 drop no > drops no NH4OH added
6N HCl 15N HNO; to adjust pH
Refrigeration no no es es es Yes, if not no
g y y y analyzed onsite
Shelf life long long 2-3 weeks 2-3 weeks 2-3 weeks 24-48 hours years
Field 1 for every 1 for every 1 for every 1 for every 1 for every none none
duplicate 20 samples | 20 samples | 20 samples 20 samples 20 samples
Field blank none none ! ;c:)r*iﬁry ! ;%r*i\ﬁry ! ;%r*i\ﬁry none none
Storage duplicate yes yes no no no no no

*Sample bottle was rinsed three times with sample water prior to collecting the sample (filtered water if sample was filtered). Rinsing process was filling
the bottle with sample water and then pouring the contents out over the cap.

**Rinsed the bottle three times with sample water prior to collecting the sample. Bottle was filled by submerging with cap in hand, and sealed submerged
to ensure no remnant bubbles.

*** 50 ml anion bottle was filled, unless filtering was very difficult. All bottles were filled to at least 1/3 full.

****Deionized (DI) water was used for field blanks. DI water was poured into the back of filtering syringes when the plunger was removed. Bottles were
filled by forcing water through filter.
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Appendix B

Samples were analyzed for enriched tritium by the
University of Waterloo Environmental Isotope Laboratory
for determination of recent tritium values. Samples came
from two main sources: precipitation composites collected
at a Minnesota DNR MNgage climatology monitoring
station in Maplewood, and lake water samples collected

from two lakes in Wright County. Precipitation samples
were composited over the course of 30-day periods
between the seasons of spring and fall over the years
2012 through 2016. Lake water samples were collected
from a boat in the limnetic zone using a one-meter length
integrated sampler (groundwater bailer).

Location of Wright County lakes sampled for tritium and MNgage precipitation station

A
Lake
Wright 0 Pulaski
County °
< Waverly
Lake
SCALE 1:750 000
[=———— ———— ]
5 0 5 10 15 MILES
HHH —— ]
5 0 5 10 15 KILOMETERS

MNgage
precipitation
station

L]
Ramsey

° County

MNgage precipitation station enriched tritium results

Sample Date Range Tritium | Analytical Error Sample Type
05/21/2012-06/20/2012 8.7 0.7 Precipitation composite
09/30/2012-10/30/2012 6.7 0.7 Precipitation composite
05/09/2014-06/09/2014 7.0 0.7 Precipitation composite
10/01/2014-10/31/2014 6.7 0.7 Precipitation composite
05/01/2015-05/31/2015 5.3 0.6 Precipitation composite
08/17/2016-09/16/2016 8.3 0.8 Precipitation composite

Wright County lake water enriched tritium results

Sample Date | Sample Location Tritium Analytical Error | Sample Type
09/05/2014 Waverly Lake 7.4 0.7 Limnetic Zone
09/17/2014 Lake Pulaski 7.8 0.7 Limnetic Zone

For additional tritium information, visit the County Geologic Atlas program page (mndnr.gov/groundwatermapping).

For additional weather station information, visit the MNgage page (climateapps.dnr.state.mn.us/HIDENsityEdit/HIDENweb.htm).

Geologic Atlas of Wright County, Minnesota, Part B, County Atlas Series C-30
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