STATE OF MINNESOTA **DEPARTMENT OF NATURAL RESOURCES DIVISION OF ECOLOGICAL AND WATER RESOURCES**

FIGURE 5. Locations of aquifer tests described in Table 1.

Low: 537

INTRODUCTION

This plate describes the distribution of bedrock aquifers, groundwater flow, aquifer properties, and the connection between groundwater and surface water. The most used aquifers in Carver County are the Prairie du Chien, Jordan, Upper Tunnel City, Wonewoc, and Mt. Simon aquifers. In most of the county, the groundwater in these bedrock aquifers has very long residence times, typically thousands of years. However, recent tritium-age groundwater was sampled from both the Jordan and St. Lawrence aquifers in the Minnesota River valley, where the fine-grained glacial sediment that covers most of the bedrock aquifers in Carver County has been eroded and replaced by surficial sand.

POTENTIOMETRIC SURFACES OF MAJOR BEDROCK AQUIFERS

The eight bedrock aquifers in Carver County are the Ka (based on the geologic unit shown as PMu on Plate 2, Part A), the St. Peter, the Prairie du Chien, the Jordan, the Upper Tunnel City, the Wonewoc, the Mount Simon, and the Hinckley–Fond du Lac. The sequence of bedrock geologic units, hydrogeologic units, and hydrogeologic properties is shown in Figure 1. The confining units generally have low vertical permeability, but may have relatively high horizontal permeability along bedding fractures. In contrast, the bedrock aquifers have good vertical and horizontal permeability. The St. Peter, Wonewoc, Mt. Simon, and Hinckley aquifers are sandstones in which groundwater moves primarily through intergranular flow. Groundwater in the Prairie du Chien and Upper Tunnel City aquifers moves mainly through fractures. Groundwater in the Jordan aquifer moves through a combination of intergranular and fracture flow. Groundwater flow in the Fond du Lac aquifer is not well studied, but probably comprises both intergranular and fracture flow.

Potentiometric surfaces are shown in Figures 2, 3, and 4 for the three major bedrock aquifers in Carver County: the combined Prairie du Chien and Jordan aquifers, the combined Upper Tunnel City and Wonewoc aquifers, and the Mt. Simon aquifer. Synoptic water-level measurements in these three aquifers were collected by the U.S. Geological Survey (USGS) in March and August 2008 (Sanocki and others, 2009). In that study, the USGS considered the Prairie du Chien and Jordan aquifers to be one aquifer and the Upper Tunnel City and Wonewoc aquifers to be one aquifer. The potentiometric surfaces in this report are based on the March 2008 synoptic measurements reported by Sanocki and others (2009), modified by adding additional well data from the County Well Index (CWI) for wells drilled in the year 2000 or later.

The Prairie du Chien and Jordan aquifers are shown as a single unit in Figure 2. The blue color represents the elevation of the top surface of the Prairie du Chien aquifer where it is present and the top surface of the Jordan aquifer elsewhere. The potentiometric surface contours are based on combined water levels from both aquifers. These two aquifers are discontinuous because faulting offset the layers, rivers then eroded the area, and finally it was buried by glacial sediment. The Prairie du Chien aquifer is present in about 9 percent of the county and the Jordan aquifer is present in about 32 percent of the county. The potentiometric surface of the combined Prairie du Chien and Jordan aquifers varies from 925 feet above mean sea level in the northwest part of Carver County to 750 feet in southeast Carver County. The groundwater in these aquifers moves from northwest to southeast and eventually discharges to the Minnesota River.

The potentiometric surface contours for the combined Upper Tunnel City and Wonewoc aquifers are shown in Figure 3. The blue color represents the elevation of the top of the Upper Funnel City aquifer where it is present. The Upper Tunnel City aquifer is also discontinuous because of faulting and subsequent erosion. The combined Upper Tunnel City and Wonewoc aquifers are present in approximately 82 percent of the county. The potentiometric surface of the combined aquifers varies from 925 feet above mean sea level in the northwest part of the county to 725 feet above mean sea level in the southeast. The groundwater in these aquifers moves from northwest to southeast and eventually discharges to the Minnesota River.

The potentiometric surface contours for the Mt. Simon aquifer are shown in Figure 4. The blue color represents the elevation of the top of the Mt. Simon aquifer. The Mt. Simon aquifer is also discontinuous because of faulting and subsequent erosion. The Mt. Simon aquifer is present across almost all of Carver County because it is stratigraphically deep and only partially eroded. The potentiometric surface of the Mt. Simon aquifer is highest in the northwest part of the county and lowest in the southeast; it varies from 900 feet above mean sea level to 700 feet above mean sea level. The groundwater in the Mt. Simon aquifer moves from northwest to southeast and eventually discharges to the Minnesota River.

AQUIFER SPECIFIC CAPACITY AND TRANSMISSIVITY

Table 1 shows specific capacity and transmissivity for the mapped Quaternary aquifers on Plate 6 and the bedrock aquifers on this plate. The specific-capacity data were determined from short-term pumping or well-development tests performed when the well was drilled. The pumping-test data for specific capacity were obtained from the CWI for wells with the following conditions: (1) a casing diameter of at least 12 inches, (2) pumped at least 4 hours, (3) the pumping water level was inside the well casing, at least 2 feet above the well screen or open hole. Transmissivity data were calculated from longer term and larger scale aquifer tests that provide a

TABLE 1. Specific capacity from well development tests and transmissivity from aquifer tests for selected large-capacity wells.

Specific Capacity (gpm/ft) ¹					
Aquifer	Well Diameter (inches)	Mean	Minimum	Maximum	No. Tes
Buried sand and gravel					
sdv					-
sr					-
sb					-
sg					-
SX	12–14	74	38	111	2
su	14	69	69	69	
Unnamed	18	47	35	60	2
Bedrock					
Prairie du Chien–Jordan ⁴	12–18	50	15	83	2
Jordan	16–24	16	14	17	2
Upper Tunnel City–Wonewoc ⁴	12–18	6	1	12	3
Upper Tunnel City–Mt.Simon ⁴	12	10	10	10	
Wonewoc-Mt.Simon ⁴	16	11	9	13	2
Mt. Simon	12–18	16	7	26	2
Mt. Simon–Fond du Lac ⁴	12–16	9	5	12	3

Data adapted from the County Well Index. See Figure 5 for locations of aquifer tests.

Data adapted from a compilation of aquifer test data from Minnesota Department of Natural Resources, Minnesota Department of Health, and the U. S. Geological Survey. Well constructed across more than one aquifer

better test of the aquifer properties. Transmissivity data provide more accurate aquifer parameters groundwater samples plot on a slightly lower slope than the meteoric water line, which indicates than specific-capacity values determined at individual wells. that the water has undergone some fractionation during evaporation. This evaporative trend As indicated in Table 1, five wells constructed in buried sand and gravel aquifers had specific crosses the meteoric water line at the average value for precipitation in the county. The slope of capacities that ranged from 35 to 111 gallons per minute per foot (gpm/ft) with a combined mean the evaporative trend and the location where it meets the meteoric water line depend on the local specific capacity of 62 gpm/ft. The 19 bedrock wells tested had specific capacities ranging from climate, primarily the average temperature and humidity (Kendall and Doctor, 2003). The groundwater samples that plot on the evaporative trend line away from the meteoric 1 to 83 gpm/ft. Wells constructed across the Prairie du Chien and Jordan aquifers had the highest water line have undergone some evaporative fractionation, which means that part of this specific capacity of the bedrock aquifers, averaging 50 gpm/ft. Wells constructed across the Upper Tunnel City and Wonewoc aquifers had the lowest specific capacity, averaging 6 gpm/ft. groundwater was recharged from lake water. These samples are shown in Figure 7 as symbols with colors indicating an evaporative isotopic signature. The locations of these wells are shown Aquifer tests to determine aquifer transmissivity were conducted using four wells constructed in Figure 8 as large well symbols. Groundwater samples that were recharged directly from in Quaternary buried sand and gravel aquifers, one well constructed across the Prairie du Chien precipitation plot on the meteoric water line. These samples are plotted on Figure 7 as small gray and Jordan aquifers, and seven wells constructed across the Upper Tunnel City and Wonewoc symbols and the well locations are shown in Figure 8 as small symbols. aquifers. The transmissivity in buried sand and gravel aquifers varied from 89,800 gallons per day Groundwater flow paths cannot be determined by hydrologic data or isotopes alone. Water per foot (gpd/ft) to 273,000 gpd/ft. The transmissivity of the bedrock aquifers varied from 4,700 may take a complex path through the watershed, part on the surface and part in the subsurface. to 52,700 gpd/ft. The mingling of groundwater and surface water is most clearly seen by the continuum of values of stable isotope samples along the evaporative trend line. Recharge from surface water forms an **GROUNDWATER LEVEL, PRECIPITATION,** AND GROUNDWATER RESIDENCE TIME important component of groundwater in northeastern Carver County, where there are many lakes, and in southeastern Carver County, near the Minnesota River valley. Recharge to groundwater by surface water is not common elsewhere in the county where groundwater is more typically The Department of Natural Resources, in cooperation with the Carver County Environmental recharged by direct infiltration of precipitation to the subsurface.

Services Department, actively measures five deep groundwater-level monitoring wells in Carver County. Hydrographs from two groundwater-level monitoring wells constructed in the Jordan aquifer, 10002 and 10003, are shown in Figures 6a and 6b respectively; the map locations of these wells are shown on Figure 2. Hydrographs from the other three wells are not shown because they had an insufficient period of record. Both hydrographs show annual variations in water level of 3 to 5 feet, which are due to seasonal pumping. The average annual water level has varied during the period of record, but has stayed within a few feet of the long-term average. The hydrographs for wells 10002 and 10003 do not show short-term changes in response to annual precipitation changes. This lack of response of groundwater levels in those wells to precipitation changes also means that these deeper aquifers are not quickly recharged by local precipitation. The residence time of groundwater in the Jordan aquifer near these two wells is thousands of years. The City of Mayer well number 2, which is 750 feet southwest of monitoring well 10002 and is also constructed in the Jordan aquifer, had a carbon-14 age of 4000 years. A domestic well, which is 1.5 miles south of monitoring well 10003 and constructed in the Prairie du Chien aquifer, had a carbon-14 age of 8000 years. Groundwater from the underlying Jordan aquifer should have a similarly long residence time.

In the Minnesota River valley in southeastern Carver County, recent tritium-age groundwater samples were collected from two bedrock wells; one well is constructed in the Jordan aquifer and the other is constructed in the St. Lawrence Formation. In the broad valley of the Minnesota River and in the surrounding bluffs, these shallow bedrock aquifers are overlain by the surficial sand aquifer. Unlike other areas in the county where fine-grained glacial sediment is at the land surface, precipitation rapidly infiltrates through the surficial sand aquifer to deeper aquifers.

STABLE ISOTOPE ANALYSIS OF **GROUNDWATER AND SURFACE WATER**

Isotopic chemical changes as water moves from precipitation to surface water and groundwater are complex but can be reconstructed to help determine whether groundwater was sample from Lake Zumbra.

Common hydrogen has only one proton; its stable isotope, deuterium (hydrogen-2 or ²H), has one proton and one neutron. Because of this difference, deuterium has approximately twice the mass of common hydrogen. Oxygen-16 (¹⁶O) contains eight protons and eight neutrons, and its stable isotope, oxygen-18 (18O), contains 8 protons and 10 neutrons; thus, oxygen-18 has slightly more mass than oxygen-16. This mass difference causes the stable isotopes of hydrogen and oxygen to fractionate or separate during evaporation (Ekman and Alexander, 2002). The lighter isotopes will evaporate more easily than the heavier isotopes. Because lake water is exposed to the atmosphere, evaporation causes significant fractionation of the stable isotopes of hydrogen and oxygen; as a result, lake water contains more of the heavier isotopes than are found in precipitation. Groundwater is more isolated from the atmosphere, however, so negligible fractionation occurs.

Figure 7 is a plot of the stable isotopes of hydrogen and oxygen in sampled groundwater and sampled lake water. The value on the x-axis represents the ratio of oxygen-18 to oxygen-16 in the sample divided by the same ratio in a standard. The value on the y-axis represents the ratio of deuterium to hydrogen in the sample divided by the same ratio in a standard. Values to the left on the x-axis or to the bottom on the y-axis indicate relatively more of the lighter isotope, while values to the right or to the top indicate more of the heavier isotope.

Regional background precipitation values for the stable isotopes of hydrogen and oxygen generally plot along a trend called the meteoric water line shown in Figure 7 (IAEA/WMO, 2002). The stable isotope values of the water samples from Lake Zumbra and some of the

Prepared and Published with the Support of the MINNESOTA ENVIRONMENT AND NATURAL RESOURCES TRUST FUND and the CLEAN WATER FUND

GIS and cartography by Todd Petersen, Shana Pascal, and Greg Massaro. Edited by Neil Cunningham

Zumbra sample was highly fractionated by evaporation. The regression line of these samples shows the evaporative fractionation trend in Carver County. The groundwater samples shown by gray symbols represent groundwater directly recharged by precipitation. The dashed " 2σ " lines show the statistical variation of stable isotope precipitation values used to derive the North American meteoric water line (IAEA/WMO, 2002).

REFERENCES CITED

Ekman, J. and Alexander, S., 2002, Technical appendix to Part B, Regional Hydrogeologic Assessment, Otter Tail area, west-central Minnesota: Regional Hydrogeologic Assessment Series RHA-5, Minnesota Department of Natural Resources, St. Paul, 13 p. IAEA/WMO, 2002, Global network of isotopes in precipitation: The GNIP Database, available

at URL: http://www.iaea.org/water. Kendall, C. and Doctor, D., 2003, Stable isotope applications in Hydrologic studies, Holland, H.D. and Turekian, K.K., editors, chap. 11 of v. 5, Surface and ground water, weathering, and soils, in Treatise on geochemistry: Amsterdam, The Netherlands, Elsevier, Inc.,

p. 319-364. Sanocki, C.A., Langer, S.K., and Menard, J.C., 2009, Potentiometric Surfaces and Changes in Groundwater Levels in Selected Bedrock Aquifers in the Twin Cities Metropolitan Area, March-August 2008 and 1988-2008: U.S. Geological Survey Scientific Investigations Report 2009-5226, 67 p.

ACKNOWLEDGEMENTS

I received much help from my colleagues at DNR. Jan Falteisek provided assistance and guidance throughout the project. Shana Pascal, Greg Massaro, and Neil Cunningham made the plates more understandable through their GIS, layout, and editing. Joe Enfield of Carver County Environmental Services provided many years of historical groundwater chemistry data. Jim Berg provided geologic insight and data from his "South-Central Minnesota Groundwater Monitoring of the Mt. Simon Aquifer" report that was funded by the Minnesota Environment and Natural Resources Trust Fund. John Barry reviewed the final report. Thanks are due also to my colleagues recharged directly from precipitation, lake water, or a mixture of the two. Stable isotopes of at other agencies who provided excellent suggestions during peer review: Bob Tipping and Barb hydrogen and oxygen were analyzed for 79 groundwater samples from wells and one lake-water Lusardi of the Minnesota Geological Survey; Rich Soule of the Minnesota Department of Health; and Madeline Seveland of Carver County Water Management Department. I would like to thank Scott Alexander of the University of Minnesota, Department of Earth Sciences for collecting the carbon-14 water samples for analysis and interpreting the results.

GEOLOGIC ATLAS OF CARVER COUNTY, MINNESOTA