
Minnesota Department of Natural Resources  
Investigational Report 562, November 2018 

 

Large-scale Habitat Factors Affecting Fish Populations in Minnesota Lakes and a 
Proposed Habitat Classification 

 

Timothy K. Cross 

Minnesota Department of Natural Resources 
Division of Fish and Wildlife 

20596 Highway 7 
Hutchinson, MN  55350, USA 

 

 

Abstract. — Habitat has long been considered a keystone for fisheries management in Minnesota lakes, 
but until recently much of the requisite information on regional and watershed lake habitat factors were not 
amenable to analysis.  In this study, current data describing these large-scale habitat (LSH) factors were 
compiled and matched with data describing populations of fish in Minnesota lakes surveyed by the 
Minnesota Department of Natural Resources (MNDNR) Section of Fisheries.  A hierarchical decision tree 
classification procedure was used to identify 11 classes of lakes with relatively homogeneous LSH 
conditions.  This classification accounted for 4 to 41 percent of the variation among lakes in catch per effort 
(CPE) of various fish species commonly assessed with MNDNR lake surveys.  Additional analysis of 
variation remaining within individual lake classes using machine learning methods (regression tree analysis 
and random forest) applied to selected fish species revealed more precise fish habitat relationships.  
Regression tree models for individual lake classes were shown to collectively explain 57 percent of the 
statewide variation among lakes in Walleye CPE.  Random forest models revealed the relative importance 
and response of fish populations to each habitat factor.  In combination, lake classification and machine 
learning tools are potentially useful to managers faced with acquiring information needed to guide decisions 
on protection, regulation, restoration, or enhancement of fish habitat in Minnesota lakes at both statewide 
and local levels. 
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INTRODUCTION 
 Habitat has long been considered a keystone 
for fisheries management in Minnesota lakes 
(Moyle 1945, Moyle 1956, Schupp 1992, and 
MNDNR 1993).  A renewed emphasis has been 
placed on fish habitat including regional and 
watershed habitat factors that have changed from 
historical levels (MNDNR 2013a).  Problems in 
downstream water bodies are often symptomatic of 
problems upstream in the watershed (Williams et 
al. 1997).  However, information on large-scale 
habitat factors (factors described by watershed, 
ecoregion, and lake physical-chemical attributes) 
have historically been inadequate for identifying 
specific impacts and appropriate management 
actions (Rahel and Jackson 2007, Soranno et al. 
2009).  Large-scale approaches using comparisons 
of otherwise similar lakes have been useful for 
predicting effects of these habitat factors (Jackson 
et al. 2001).  Such an approach is especially 
applicable for Minnesota lakes given the large 
number of lakes and diversity of habitats and fish 
communities. 

Although each lake has a unique combination 
of habitat attributes that function to determine the 
composition of its fish community, comparisons 
among similar lakes using classification and 
predictive modeling can provide useful 
information for directing appropriate efforts aimed 
at protecting or enhancing habitats for sustaining 
quality angling.  Standardized fish and habitat 
surveys have been done on Minnesota lakes for 
over a half century.  However, few systematic 
efforts to identify specific effects of key habitat 
variables determining the composition of fish 
communities have occurred since survey 
procedures were revised in 1993.  Blann and 
Cornett (2008) and Osgood et al. (2002) reviewed 
existing classifications of Minnesota lakes.  Blann 
and Cornett (2008) concluded that “hierarchical 
landscape classifications appear to explain the 
dominant gradients in species presence and lake 
chemistry and trophic status.  The local-scale 
macrohabitat classification is also important, but 
explains less variance in lake attribute response 
variables and species data”.  This observation of 
the importance of landscape scale relative to site-
scale macrohabitat (substrate and plant cover) 
was documented with bluegill abundance in 
Minnesota lakes by Cross and McInerny (2005).  
Minnesota lakes occur across very heterogeneous 

 
environments that potentially influence their fish 
communities.  A landscape classification accounts 
for much of the variation that groups of similar 
lakes have in common, while the remainder is 
assumed to represent part of the range of natural 
variation of local habitat factors associated with a 
given lake.  However, a more lake-specific 
modeling landscape approach can also be used to 
address additional variation (Hawkins et al. 2010).  
Efforts to predict benchmarks for ecological and 
water-quality assessments have increasingly 
moved toward site-specific modeling approaches 
as a way to improve both accuracy and precision of 
predictions (Hawkins et al. 2010). 

Minnesota provides a useful setting for 
classifying lakes and modeling specific habitat 
influences due to numerous  lakes  occurring 
over diverse large-scale habitat conditions.  
Furthermore, standardized assessments of fish 
abundance and lake habitats are available for most 
lakes with fish communities managed by the 
MNDNR (1993).  This allows for more informative 
analysis than available with presence-absence data 
in that differences following abundance gradients 
likely relate to habitat requirements for fish.  
Schupp (1992) identified key physico-chemical 
variables that could be used to classify lakes based 
on ecological similarities provided a basis for 
exploring environmental influences on fish 
communities.  Emmons et al. (1999) found that 
using a hierarchical decision tree methodology to 
classify lakes by environmental factors was more 
effective at explaining variation among Wisconsin 
lakes than a classification scheme modeled after 
Schupp (1992).  More recently Wherely et al. 
(2012) showed how multivariate regression tree 
analysis could be used to derive a classification of 
lakes based on how fish communities in Michigan 
lakes were affected by environmental factors.   
Recursive partitioning machine learning 
algorithms are potentially useful for addressing 
nonlinear relationships and interactions among 
environmental factors likely to affect fish 
communities.  Ecologically meaningful decision 
making requires an understanding of interactions 
and threshold effects that are rarely modeled 
(Pittman and Brown 2011).  In Minnesota lakes, 
interactions are likely between fish communities 
and lake morphology and watershed 
characteristics.  Significant interactions between 
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land use and ecoregions influencing lake 
phosphorus levels in Minnesota lakes were 
documented by Cross and Jacobson (2013). 

This study focused on differences in long-term 
(1993-2011) average fish populations among lakes 
resulting from responses to large-scale habitat 
variables describing lake morphology, geographic 
setting, watershed attributes, and other regional 
characteristics.  Study objectives were to describe 
large-scale habitat (LSH) influences on fish 
communities affecting Minnesota lakes statewide.  
Secondly, to derive a spatial hierarchical lake 
classification to identify groups of lakes with 
similar LSH influences on fish communities.  
Finally, to determine some specific influences of 
habitat on primary fish species assessed in 
Minnesota lakes.  These objectives were addressed 
using fish catches from standardized surveys 
analyzed simultaneously with LSH attributes.  A 
decision tree hierarchical classification of lakes 
was performed using habitat criteria at each step 
to explain among lake variation in fish catches.  
This hierarchical classification was then used for 
identifying more detailed responses of individual 
species to habitat influences among lakes within 
each constructed LSH lake class.  This process 
filters through habitat processes operating at 
various scales down to lake specific physical 
characteristics significantly affecting fish 
communities. 

METHODS 
Fish data.–A dataset of MNDNR standardized 

lake surveys and population assessments was 
compiled by querying the statewide MNDNR 
Fisheries Lake Survey database for catches in 
experimental gill nets net and ¾ inch double frame 
trap netting performed for standardized 
assessments (MNDNR file data).  Netting was 
conducted during the period from June 1 through 
August 31 from 1993 through 2011 with a resulting 
mean Julian sampling date of 196 (July 15 for non-
leap years).  MNDNR standardized trap and gill net 
sampling is effective for assessing adult 
populations of larger fish including most sport fish 
species (MNDNR 1993) and consequentially our 
analysis focused these species.  Only lakes with 
both gill and trapnet data were used which limited 
the dataset to 1916 lakes. 

Catch-per-effort (CPE) was summarized for 
each gear type and lake by calculating the mean of 
all surveys and assessments completed during the

study period.  Commonly each lake had three to 
five annual surveys performed during the study 
period, but they ranged from a single survey to 
annual surveys depending on management 
objectives of each lake.  CPE calculations averaged 
over the period were assumed to be representative 
of equilibrium densities in each lake.  The study 
period was assumed to be recent enough to 
characterize current habitat conditions, primarily 
with respect to climate and land use. 

Catch-per-effort data was compiled and 
analyzed using correlation and principal 
component analysis (PCA).  First, descriptive 
statistics were calculated separately for trapnet and 
gillnet datasets for all species captured.  Mean CPE 
data was transformed prior to correlation and PCA 
using (log10+1) to normalize distributions and 
increase linearity of relationships.  Correlation 
analyses were performed separately on trapnet and 
gillnet datasets for all commonly captured fish 
species (usually captured in at least 1% of the 
lakes).  Both ordered and hierarchical correlation 
analysis procedures contained in the rattle package 
in R (Williams 2009) were performed to identify 
fish community patterns.  Principal components 
analysis was performed on a correlation matrix of 
CPE data on 14 fish species (5 species with gillnet 
CPE and 9 with trapnet CPE).  The 14 species 
selected were field identifiable, vulnerable to 
capture by either gill or trap nets, and common 
enough to be captured in at least 30% of surveyed 
lakes.  In addition we used a combined CPE of all 
salmonids and coregonids which we coded as 
COLD to represent cold-water species.  PCA was 
performed in JMP 10 using orthogonal varimax 
rotation on two factors to reduce the dimensionality 
of the dataset (SAS 2012). 

Large-scale habitat data.–A comprehensive 
dataset of large-scale variables describing habitat 
conditions was compiled for Minnesota fishing 
lakes.  Criteria for a lake to be included were that 
they be naturally formed with a surface area > 4 ha, 
have a watershed contained entirely within 
Minnesota, and at least one MNDNR Fisheries 
standardized survey between 1993 and 2011.  
Lakes created by impoundment or artificially 
constructed (excavated) were excluded, but lakes 
with minor water level control structures were 
included.  Habitat variables selected for the study 
were restricted to those judged as most readily 
available, interpretable, and reliably measured.  For 
each lake, maximum depth, surface area, shoreline 
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perimeter, shoreline development index (SDI), 
and Secchi depth were obtained from MNDNR 
and MPCA files.  Geographic lake center points 
were used to assign estimates of lake temperature, 
groundwater recharge, and ecoregion scheme to 
each lake.  Air temperatures used as a surrogate 
for lake water temperature were the estimated July 
average daily maximum temperature for the 
month of July for the period 1981-2010 obtained 
from the Oregon State University PRISM model  
(Daly et al. 2008). Also, the USGS base-flow 
index (BFI) estimated for each lake location was 
used as a surrogate for ground-water contribution 
to lakes since direct estimates were not available 
for most Minnesota lakes.  The BFI is the ratio of 
estimated annual base flow to total flow volume 
for a given year modeled on data from unregulated 
rivers and streams (Wolock 2003).  Omernik 
Environmental Protection Agency (EPA) 
ecoregion classifications (Omernik 2004), were 
assigned to each lake to characterize the influence 
of the surrounding template of climate, 
geomorphology, and land cover/land use. 

Lake watersheds were identified using GIS 
catchment delineations developed for the Midwest 
Glacial Lake Program by Minnesota DNR staff 
(Lyn Bergquist MNDNR, personal communication; 
MNDNR 2012).  These catchments were delineated 
based on height of land using GIS to derive 
hydrologic corrected digital elevation models and 
flow networks.  Individual lake catchments are 
hydrologic units nested in a multi-level, 
hierarchical drainage system.  These same 
hydrologic units fold into the national standards 
defining the Watershed Boundary Dataset (USGS 
2012).  Total lake watersheds were identified for 
each lake by summing all upstream hydrologic 
units draining into the lake.  The total area of the 
watershed was calculated for each lake and used to 
calculate the ratio of total watershed area to lake 
area.  The surface area of each land cover type 
defined in the 2001 National Land Cover Dataset 
(NLCD; Homer et al. 2004) were extracted for each 
hydrologic unit polygon.  NLCD classes 21, 22, 23, 
and 24 were used to represent development; 41, 42, 
43, and 52 to represent forest; and 82 to represent 
cropped agricultural land use.  Anthropogenically 
disturbed land use was calculated as the sum of 
developed, mining, and cultivated agriculture land 
use.  Stream contribution to each lake was 
computed by summing all stream segments within 
contributing catchments for each lake from 

the Strahler stream order layer (MNDNR 2013b).  
Finally, a lake order was assigned each lake based 
on a determination of the Strahler stream order 
(Strahler 1952) of the largest outlet.  If a lake was 
landlocked with no outlet the lake order was 
assigned to zero.  These assignments were based on 
the DNR Strahler stream layer along with 
inspection of USGS 24K digital topographical 
maps and FSA areal imagery for multiple years 
digitally overlayed on the stream and catchment 
layers using GIS.  An attempt was also made to 
characterize lakes with outflows and inflows 
through wetlands or bogs, but this proved too 
difficult to consistently classify. 

Highly correlated habitat variables were 
identified to guide subsequent modeling efforts for 
which it was helpful to limit the redundancy of 
explanatory habitat variables.  As with fish 
community data, both ordered and hierarchical 
correlation analysis procedures were performed using 
the rattle package (Williams 2009) to facilitate 
identification of variables correlated with each other.  
Also, for both categorical variables (ecoregion and 
lake order) a series of one-way analysis of variance 
tests were performed to determine R2 fit with each 
continuous habitat variable. 

Data analysis.–The 1916 lakes in the dataset 
were randomly divided into a model development 
dataset of 1533 lakes and a model validation 
dataset of 383 lakes.  First, a statewide LSH 
classification of lakes based on fish communities 
was performed to aggregate lakes with LSH 
resulting in similar fish communities.  A decision 
tree approach was used combining multivariate 
modeling of fish communities simultaneously with 
a series of dichotomous splits using regression tree 
analysis of habitat factors.  This analysis was 
patterned after previously successful lake 
classification strategies developed for Wisconsin 
lakes by Emmons et al. (1999) and Michigan lakes 
by Wehrly et al. (2012).  The first Principal 
Component (PC) calculated from PCA describing 
fish communities was used to guide each step of a 
hierarchical decision tree instead of the 
environmental variables used by Emmons et al. 
(1999).  In regard to using lake habitat factors to 
classify lakes based on fish community criteria 
with a RTA algorithm our classification procedure 
is similar to the multivariate regression tree 
approach used by Wehrly et al. (2012).  The initial 
split of the data was based on PC1 scores resulting 
from a run on the entire model dataset (n=1533). 
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PC1 is the linear combination of the standardized 
original variables that has the greatest possible 
variance (SAS 2012).  These PC1 scores were 
then assigned as the dependent variable to base a 
split using RTA performed with LSH habitat 
explanatory variables (Outlet, DEPTH, L-AREA, 
Region, W-AREA, SDI, JTEM, BFLOW, 
SECCHI, ALK, FOR, DEVL, AG, and WET).  
RTA was performed in JMP 10 (SAS 2012) and 
checked for agreement with the rpart package 
implemented in R (The R Development Core 
Team 2013).  Variable importance values used to 
evaluate the contribution of each explanatory 
variable were generated from the RF procedure 
implemented in the rattle package (Williams 
2009) in R (The R Development Core Team 
2013).  However, in all cases the habitat variable 
with the highest RF importance provided the first 
split of the data with the JMP RT model, which 
matched rpart model results.   For subsequent 
splits different assemblages of fish usually 
became prominent.  Therefore, PCA was repeated 
on each set using fish CPE data including only 
species captured in over half of the lakes to avoid 
problems of using species with high numbers of 
zero catches from biasing PCA results (McCune 
and Grace 2002).  The final number of nodes (lake 
classes) was determined using criteria 
recommended for RTA analysis by Williams 
(2011).  Ideally, study objectives are best 
addressed with a model that explains a maximum 
amount of variability in fish communities with a 
minimum number of LSH lake classes and 
maintain class sizes with enough lakes to provide 
an adequate dataset for species specific CPE 
models within each class.  Consequently we set a 
minimum decision node size of 50 and an R2 of 
0.12 explaining variation in PC1 (fish component) 
and RTA (habitat component) models used for 
each split.  In addition five-fold cross validated R2 
values were used to determine if the decision tree 
split was over-fitting the data (Williams 2011).  
Finally, because the primary modeling objective 
was to develop habitat criteria for key fish species 
managed by the MNDNR we used the CPE of 
these key fish species in a one-way analysis of 
variance  and  used  the  R2  statistic  to  judge  the 
fit  and  used  this  as  criteria  to  trim  or  “prune” 
the classification.  The final decision tree model 
was  evaluated  using  the  validation  dataset  of 

383 lakes excluded from the model dataset.  Again 
we used the CPE of key fish species in a one-way 
analysis of variance and calculated R2 to judge the 
fit of the LSH classification to the verification 
dataset.  In addition we calculated AIC and BIC 
statistics for comparison to those calculated using 
a one-way analysis of variance with Ecological 
Lake Classification (Schupp 1993) instead of LSH 
class as the independent variable. 

LSH effects on Walleye Sander vitreus and 
Largemouth Bass Micropterus salmoides  CPE 
were modeled using RF and RTA.  These species 
were selected because much of their habitat 
requirements are known and because of the high 
intensity of management efforts directed at these 
popular sportfish.  All species habitat modeling 
was done using 10 LSH variables (Table 9) 
selected on the basis of data availability and 
minimizing redundancy (variables highly 
correlated with each other).  Hence, we used only 
2 land cover variables; land cover disturbance 
(PDIST), which has a strong inverse correlation 
with forest cover (FOR), and a land cover factor 
indicative of the influence of the influence of the 
total area of open water in the watershed 
(WATER).  Maximum depth instead of geometry 
ratio and total watershed area instead 
watershed:lake area were used to avoid redundant 
use of lake area in these ratios.  Also, stream 
length and outlet stream order (lake order) were 
not used because they were strongly correlated 
with watershed area.  In addition to habitat 
variables, sampling date was included to reduce 
spurious habitat relationships that might be 
influenced by seasonal gear bias.  Both RF and 
RTA models were applied to the entire statewide 
dataset as well as individual LSH lake classes.  
Random forest modeling was performed using the 
RF routine implemented in R (The R 
Development Core Team 2013) using Rattle 
(Williams 2009) with model defaults for the 
number of trees and variables.  The overall model 
fit (R2) and importance values (percent mean 
square error and included node purity) of each 
habitat variable were generated from the model to 
use in evaluating the contribution of habitat to 
variation in Walleye and Largemouth Bass CPE.  
Also, partial dependence plots based on RF 
models were used to illustrate the relationship 
between the response and a specific predictor after 
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accounting for effects of other predictors.  
Regression tree analysis is well suited for 
analysis of ecological data because it is a robust 
nonparametric method that handles both 
categorical and continuously distributed data 
while providing the ability to reveal interactions 
in the data (Olden et al. 2008).  RTA was 
implemented with the rpart package contained in 
the Rattle routine (Williams 2009) using a 
minimum split size of 20, minimum bucket of 7, 
and complexity parameter set to 0.03.  The 
overall model fit was assessed using R2 and a 
second R2 generated with five-fold cross-
validation implemented using the partition 
procedure in JMP 10 (SAS 2013).  Regression 
tree analysis provided a quantitative model that 
accounts for interactions and is easy to 
understand, however, RF models produce models 
exhibiting less bias and variance than a single 
decision tree (RTA model; Williams 2011; Cutler 
et al. 2007).  Finally, individual LSH lake class RT 
models of Walleye CPE were combined to form a 
statewide predictive model of Walleye CPE in 
lakes based on LSH (LSH-RT).  Walleye CPE 
predicted by the LSH-RT model were compared to 
predictions made using a multiple regression model 
using the same 10 LSH variables used as input to 
RTA, ELC lake classes, and LSH lake classes.  
Suitability of each model was judged based on the 
amount of variation explained by the models (R2), 
the distribution of residual values plotted on maps, 
and the amount of spatial autocorrelation 
(nonrandom spatial distribution of model residuals) 
quantified by global Moran’s I index values  and 
Getis-Ord Gi* statistics calculated using ArcMap 
10 (ESRI 2012).  In addition z-scores were 
calculated for both Moran’s index and Getis-Ord 
Gi* scores to evaluate statistical significance of 
spatial correlation. 

RESULTS 
Fish.–A total of 32 fish species and hybrids 

were captured in at least one percent of the 
Minnesota lakes sampled with both standardized 
trap and gill net assessments and are listed in 
Tables 1 and 2 along with abbreviated species 
codes and scientific names.  Species occurring 
most frequently in lakes sampled with gillnets 
were NOP and YEP and with trapnets the most 
frequently sampled fish species were BLG and 

BLC.  Highest catch rates were found for yellow 
perch in gill nets and bluegill in trap nets.   Fifteen 
species sampled in over 30% of the lakes were 
considered for inclusion in subsequent PCA 
analysis.  In addition, because of the paucity of 
cold water species, we combined Salmonid and 
Coregonid species as a cold water species group 
(COLD).  Also, SMB were included because of 
the status as a prominent piscivorous sport 
species despite occurring in < 30% of lakes.  Gill 
net data was used for indexing LMB, SMB, NOP, 
WAE, WTS, YEP, and COLD (Table 1).  Trap 
net CPE was used for indexing BLB, YEB, BLC, 
BLG, BOF, GSF, CAP, PKS, and RKB (Table 2).  
GOS, BRB, and HSF were not selected for 
subsequent PCA analysis despite their occurrence 
in >30% of the surveyed lakes.  Correlation 
matrices and PCA revealed species with similar 
distributions among lakes (Figures 1, 2; 
Appendix I).  The first two PC’s explain over one 
third of the overall variation among lakes (Table 
3).  The most obvious assemblage was shown 
with positive correlations among LMB, BLG, 
PMK, YEB, NOP, and BOF that resulted in high 
PC1 scores (Table 3).  A second group with 
highly correlated species abundances, BLB-CAP-
BLC, was shown with low PC1 scores, but high 
PC2 scores (Table 3).  Two less distinguishable 
groups are characterized by low PC2 scores.  
Those with a tendency for low PC1 scores WAE-
WTS-SMB and those with higher PC1 scores 
COLD-RKB.  Additional correlation matrices 
calculated using all species captured in at least 
one percent of Minnesota lakes showed less 
ubiquitous species often correlate with those used 
in PCA which provides an indication of the 
robustness of the fish community gradients 
defined by PCA.   

Habitat.–Large-scale habitats are highly 
variable among Minnesota fishing lakes.  Lakes 
are located across three major Ecoregions (EPA 
level I) and run the gamut from soft to hard water 
and from oligotrophic to hyper-eutrophic.  Lake 
area ranges over 3 orders of magnitude and 
differs in maximum depth by more than 64 m and 
in Secchi transparency more than 15 m (Table 4).  
Watershed area ranges over 4 orders of 
magnitude and land cover ranges from highly 
forested (97%) to highly agricultural (95%) to 
highly developed (92%; Table 4).  
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TABLE 1.  Statistical summary of average lake gill net catch-per-effort (number/net) 1993-2010 for Minnesota fishing lakes 
(N=1916). 

Code Common name Scientific name Occurrence (%) Median Mean SD 
NOP Northern Pike  Esox lucius 93.37 5.871 4.888 1.183 
YEP Yellow Perch Perca flavescens 89.04 5.950 5.982 2.744 
BLC Black Crappie Pomoxis nigromaculatus 80.22 1.113 1.742 1.716 
BLG Bluegill  Lepomis macrochirus 76.88 1.661 2.148 1.882 
WTS White Sucker  Catostomus commersoni 76.88 0.750 1.158 1.228 
WAE Walleye Sander vitreus 75.99 1.618 1.838 1.501 
LMB Largemouth Bass Micropterus salmoides 64.14 0.208 0.429 0.557 
BLB Black Bullhead  Amieurus natalis 60.75 0.197 2.184 3.918 
PMK Pumpkinseed Sunfish  Lepomis gibbosus 58.72 0.167 0.574 0.845 
YEB Yellow Bullhead Amieurus melas 54.18 0.111 0.954 1.591 
BRB Brown Bullhead  Amieurus nebulosus 47.44 0 0.374 0.811 
RKB Rock Bass  Ambloplites rupestris 32.36 0 0.294 0.716 
HSF Hybrid Sunfish  Lepomis hybrid 31.94 0 0.135 0.380 
CAP Common Carp Cyprinus carpio 23.75 0 0.250 0.897 
COLD Cold-water species Cold-water species COLD 23.20 0 0.135 1.047 
TLC Tullibee (Cisco) Coregonus artedi 21.09 0 0.274 0.832 
GOS Golden Shiner  Notemigonus crysoleucas 20.62 0 0.132 0.500 
SMB Smallmouth Bass  Micropterus dolomieu 12.63 0 0.064 0.268 
GSF Green Sunfish  Lepomis cyanellus 8.72 0 0.019 0.159 
RHS Redhorse spp.  Moxostoma spp. 8.72 0 0.033 0.182 
WHC White Crappie Pomosix annularis 6.84 0 0.054 0.326 
CCF Channel Catfish  Ictalurus punctatus 6.00 0 0.042 0.255 
BIB  Bigmouth Buffalo  Ictiobus cyprinellus 5.58 0 0.049 0.068 
BOF Bowfin Amia calva 5.58 0 0.050 0.345 
TMUE Muskellunge hybrid  Esox hybrid 4.91 0 0.012 0.093 
FRD Freshwater Drum Aplodinotus grunniens 4.02 0 0.069 0.502 
BUB Burbot  Lota lota 3.86 0 0.002 0.028 
MUE Muskellunge Exox masquinongy 3.44 0 0.009 0.085 
LKW Lake Whitefish  Coregonus clueaformis 2.61 0 0.014 0.143 
RBT Rainbow Trout Oncorhynchus mykiss 1.57 0 0.023 0.241 
WHB White Bass White Bass WHB 1.46 0 0.009 0.121 
OSS Orange-spotted Sunfish  Orange-spotted Sunfish  1.41 0 0.007 0.076 
BNT Brown Trout  Salmo trutta 0.68 0 0.002 0.054 
BKT Brook Trout  Salvelinus fontinalis 0.57 0 0.006 0.034 
LAT Lake Trout  Salvelinus namaycush 0.26 0 0.001 0.049 
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TABLE 2.  Statistical summary of average lake trap net catch-per-effort (number/net) 1993-2010 for Minnesota fishing lakes 
(N=1916). 

Code Common name Scientific name Occurrence (%) Median Mean SD 

NOP Northern Pike  Esox lucius 90.66 0.556 0.603 0.396 

BLG Bluegill Lepomis macrochirus 88.83 15.811 11.365 3.131 

YEP Yellow Perch Perca flavescens 86.12 0.556 0.923 1.046 

BLC Black Crappie Pomoxis nigromaculatus 86.06 1.317 1.917 1.573 

PMK Pumpkinseed Sunfish  Lepomis gibbosus 80.85 1.649 0.104 1.240 

LMB Largemouth Bass Micropterus salmoides 74.22 0.222 0.387 0.469 

WAE Walleye Sander vitreus 66.18 0.137 0.300 0.448 

HSF Hybrid Sunfish  Lepomis hybrid 62.73 0.111 0.626 1.038 

YEB Yellow Bullhead Amieurus melas 62.27 0.062 0.977 1.236 

BLB Black Bullhead  Amieurus natalis 56.99 0.444 1.244 3.047 

WTS White Sucker  Catostomus commersoni 56.26 0.042 0.274 0.567 

BRB Brown Bullhead  Amieurus nebulosus 52.92 0.037 0.327 0.696 

BOF Bowfin Amia calva 38.99 0 0.225 0.382 

RKB Rock Bass  Ambloplites rupestris 38.15 0 0.324 0.656 

GSF Green Sunfish  Lepomis cyanellus 31.68 0 0.125 0.428 

CAP Common Carp Cyprinus carpio 30.38 0 0.247 0.730 

GOS Golden Shiner  Notemigonus crysoleucas 28.76 0 0.094 0.352 

SMB Smallmouth Bass  Micropterus dolomieu 8.87 0 0.025 0.148 

RHS Redhorse spp.  Moxostoma spp. 8.14 0 0.040 0.213 

WHC White Crappie Pomosix annularis 7.93 0 0.064 0.400 

BIB  Bigmouth Buffalo Ictiobus cyprinellus 7.67 0 0.288 0.173 

CCF Channel Catfish  Ictalurus punctatus 4.91 0 0.014 0.094 

FRD Freshwater Drum Aplodinotus grunniens 4.12 0 0.040 0.277 

OSS Orange-spotted Sunfish  Orange-spotted Sunfish  3.86 0 0.023 0.236 

TMUE Muskellunge hybrid  Esox hybrid 3.44 0 0.004 0.028 

BUB Burbot  Lota lota 1.20 0 0.001 0.006 

RBT Rainbow Trout Oncorhynchus mykiss 1.15 0 0.005 0.065 

WHB White Bass White Bass WHB 1.15 0 0.004 0.051 

BKT Brook Trout  Salvelinus fontinalis 0.37 0 0.002 0.065 
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FIGURE 1.  A matrix of Pearson correlation coefficients for primary species sampled by 
standardized gill and trap net assessments in 1916 Minnesota lakes.  Negative values depicted in 
red and positive values depicted in blue.  Stronger correlations are indicated more color intensity 
and symbol elongation.  Actual correlation coefficients are listed in Appendix I. 
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FIGURE 2.  The first two principal components calculated on fish CPE dataset with 
corresponding LSH variables mostly highly correlated with each PC. 

 

TABLE 3.  Pearson correlations between CPE of fish species and principal components 
1 and 2. 

Species PC1 PC2 
LMB 0.52 0.01 
NOP 0.60 0.11 
WAE -0.26 -0.28 
WTS -0.34 -0.44 
YEP -0.25 -0.01 
SMB -0.10 -0.44 
COLD 0.13 -0.52 
BLB -0.49 0.55 
BLC -0.16 0.64 
BLG 0.69 0.29 
BOF 0.41 0.15 
CAP -0.48 0.47 
GSF -0.04 0.20 
RKB 0.28 -0.60 
YEB 0.60 0.27 
PMK 0.69 0.11 
Percent of variance explained  18.6 14.2 
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TABLE 4.  A statistical summary of large-scale habitat variables characterizing Minnesota fishing lakes.  Temperature is the 
average daily maximum air temperature for July (1981-2010) from the PRISM model (Daly et al. 2008).  

Variable Abbreviation N Minimum Maximum Median Mean SD 
Lake        
Max. depth (ft) DEPTH 1856 4 213 31 37.2 25.21 
Area (acres) L-AREA 1916 10 39,272 214 500.3 1266.73 
Geometry Ratio - 1160 0.47 34.63 3.32 4.82 4.249 
Perimeter (km) PERIM 1916 0.87 549.6 5.6 8.60 15.505 
Shoreline development SDI 1916 1.02 12.98 1.68 1.87 0.762 
Temperature (C)  JTEMP 1905 22.24 28.78 26.50 26.62 1.158 
Alkalinity (mg/l CaCO3) ALK 1688 1.2 786 111.4 107.9 69.1 
Total phosphorus (ppb) TP 1477 4 722 27 49.5 64.52 
Secchi (m) SECCHI 1903 0.14 15.29 2.40 2.60 1.492 
Watershed        
Area (acres) W-AREA 1916 40 950,764 3084 19,697 68,110.8 
Watershed:Lake area W:L 1916 1.47 2356.73 12.47 56.58 169.478 
Baseflow %  BFLOW 1916 31 76 55 55.9 7.00 
Stream length (km) STRM 1916 0 3067.03 5.87 63.81 228.83 
Water % WATER 1916 0 66.3 13.6 15.3 10.25 
Developed % DEVL 1916 0 92.3 3.7 7.2 14.41 
Bare % - 1916 0 24.5 0 0.1 0.95 
Forest % FOR 1916 0 97.0 45.7 44.0 28.80 
Grass % GRASS 1916 0 30.4 1.6 2.4 3.14 
Agriculture % AG 1916 0 94.8 10.1 23.7 26.36 

Large-scale lake habitat variables are frequently 
inter-correlated (Table 5; Figure 3). Secchi transparency 
is strongly correlated with TP.  Lakes tend to have 
higher TP and alkalinity in areas with warmer mean 
July maximum temperatures and with higher 
percentages of agriculture and development land 
cover.  Conversely, lakes tend to have lower TP when 
they are deeper and have more forested watersheds 
with greater groundwater input (baseflow).  The 
physical dimensions of lakes and watersheds are also 
frequently correlated.  Lake area is strongly correlated 
with lake perimeter, SDI, and watershed area which 
was strongly correlated with stream length and 
watershed to lake area ratio.  Lake order defined by 
outlet stream order corresponds closely to length of 
tributary streams and watershed area. Level IV EPA 
ecoregions are strongly associated with watershed land 
cover and ground water inputs explaining their strong 
association with lake trophic status variables Secchi 
transparency and TP. 

Fish community gradients shown with PC1 and 
PC2 (Figure 2) were strongly correlated lake trophic 
and climatic variables (Secchi, TP, July temperatures) 
in addition to variation in watershed landcover and 
groundwater input (Table 5).  PC1 which differentiated 
lakes with higher abundances of sunfish species, LMB, 
NOP, and YEB from lakes with higher abundances of 
BLB and CAP was strongly correlated with trophic 
status (TP and Secchi), depth, and groundwater 
contribution.  Lakes that favored high abundances of 
the sunfish group tend to be deeper with lower fertility 
and more groundwater input (Figure 2).  With variation 
attributed to PC1 removed, PC2 differentiated between 
lakes with higher abundances of BLC from those 
characterized by higher abundances of RKB and 
COLD water species.  PC2 was most correlated with 
temperature and land cover in addition to trophic status.  
Lakes that favored higher abundances of COLD and 
RKB were found in less fertile lakes exposed to cooler 
July temperatures and more forest cover (Figure 2). 
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TABLE 5.   Pearson correlation coefficients estimated by pairwise method for dataset of 1916 Minnesota fishing lakes. 

Variable PC2 JTEMP DEVL AG ALK TP GRASS PC1 WET WATER BFLOW SECCHI W:L DEPTH FOR W-SHED L-AREA PERIM SDI 

PC2 1.00 0.64 0.46 0.49 0.25 0.52 0.26 0.00 0.07 -0.07 -0.21 -0.48 -0.04 -0.31 -0.58 -0.17 -0.20 -0.24 -0.21 

JTEMP 0.64 1.00 0.67 0.69 0.57 0.51 0.31 0.03 -0.02 -0.08 -0.10 -0.38 0.03 -0.03 -0.79 0.05 0.04 -0.05 -0.18 

DEVL 0.46 0.67 1.00 0.28 0.39 0.30 0.12 0.07 -0.10 -0.03 -0.10 -0.23 0.02 0.01 -0.57 -0.05 -0.10 -0.15 -0.16 

AG 0.49 0.69 0.28 1.00 0.59 0.48 0.49 -0.03 -0.02 -0.20 -0.09 -0.35 0.08 -0.08 -0.78 0.17 0.16 0.05 -0.15 

ALK 0.25 0.57 0.39 0.59 1.00 0.26 0.35 0.08 -0.07 -0.09 0.13 -0.10 0.16 0.15 -0.53 0.29 0.25 0.13 -0.13 

TP 0.52 0.51 0.30 0.48 0.26 1.00 0.07 -0.56 -0.06 -0.14 -0.45 -0.78 0.12 -0.55 -0.58 0.08 -0.04 -0.08 -0.08 

GRASS 0.26 0.31 0.12 0.49 0.35 0.07 1.00 0.18 0.14 -0.13 0.02 -0.05 0.14 0.07 -0.30 0.17 0.09 0.04 -0.07 

PC1 0.00 0.03 0.07 -0.03 0.08 -0.56 0.18 1.00 0.20 0.02 0.53 0.57 -0.02 0.50 0.18 0.03 0.07 0.03 -0.06 

WET 0.07 -0.02 -0.10 -0.02 -0.07 -0.06 0.14 0.20 1.00 -0.11 -0.03 -0.06 0.16 0.02 0.02 0.24 0.17 0.11 -0.02 

WATER -0.07 -0.08 -0.03 -0.20 -0.09 -0.14 -0.13 0.02 -0.11 1.00 -0.10 0.13 -0.52 0.03 -0.05 -0.28 0.19 0.14 -0.01 

BFLOW -0.21 -0.10 -0.10 -0.09 0.13 -0.45 0.02 0.53 -0.03 -0.10 1.00 0.46 0.12 0.38 0.34 0.16 0.10 0.08 0.01 

SECCHI -0.48 -0.38 -0.23 -0.35 -0.10 -0.78 -0.05 0.57 -0.06 0.13 0.46 1.00 -0.12 0.65 0.47 -0.09 0.01 0.03 0.05 

W:L -0.04 0.03 0.02 0.08 0.16 0.12 0.14 -0.02 0.16 -0.52 0.12 -0.12 1.00 -0.02 0.13 0.73 -0.07 -0.02 0.08 

DEPTH -0.31 -0.03 0.01 -0.08 0.15 -0.55 0.07 0.50 0.02 0.03 0.38 0.65 -0.02 1.00 0.19 0.12 0.21 0.20 0.09 

FOR -0.58 -0.79 -0.57 -0.78 -0.53 -0.58 -0.30 0.18 0.02 -0.05 0.34 0.47 0.13 0.19 1.00 0.03 -0.10 0.01 0.19 

W-AREA -0.17 0.05 -0.05 0.17 0.29 0.08 0.17 0.03 0.24 -0.28 0.16 -0.09 0.73 0.12 0.03 1.00 0.63 0.61 0.32 

L-AREA -0.20 0.04 -0.10 0.16 0.25 -0.04 0.09 0.07 0.17 0.19 0.10 0.01 -0.07 0.21 -0.10 0.63 1.00 0.92 0.38 

PERIM -0.24 -0.05 -0.15 0.05 0.13 -0.08 0.04 0.03 0.11 0.14 0.08 0.03 -0.02 0.20 0.01 0.61 0.92 1.00 0.69 

SDI -0.21 -0.18 -0.16 -0.15 -0.13 -0.08 -0.07 -0.06 -0.02 -0.01 0.01 0.05 0.08 0.09 0.19 0.32 0.38 0.69 1.00 

Outlet* 0.00 0.02 0.01 0.02 0.00 0.04 0.02 0.01 0.06 0.09 0.01 0.05 0.42 0.00 0.01 0.58 0.15 0.15 0.06 

Region* 0.54 0.91 0.59 0.72 0.57 0.45 0.40 0.45 0.23 0.12 0.67 0.41 0.04 0.27 0.77 0.06 0.10 0.07 0.07 

*Coefficients for these categorical variables are R2 values from least squares one-way analysis of variance.  
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FIGURE 3.  A matrix of Pearson correlation coefficients among large-scale habitat variables using 1916 
Minnesota lakes.  Negative values depicted in red and positive values depicted in blue.  Stronger 
correlations are indicated with more color intensity and symbol elongation. 
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Classification.–The first PC calculated on each 
dataset formed with binary splits used for 
constructing a lake classification decision tree had 
R2 values ranging from 16.0 to 28.7 (Table 6).  A 
total of 16 species (including COLD) were used for 
PCA at each binary split, of which seven (NOP, 
WAE, WTS, YEP, BLG, BLC, and PMK) were 
ubiquitous and used at every split.  Among the 10 
splits, five different LSH variables were selected 
with RTA for splitting criteria.  Ecoregion criteria 
were involved with three of the initial splits, lake 
area for three splits, latitude for two splits, and 
temperature and Secchi for a single split.  
Additional exploratory analysis revealed that 
temperature could be substituted for the two 
latitude splits while explaining only slightly less 
variation with a similar split of lakes. 

Variation in fish communities among lakes 
defined by PC1 at each split explained by LSH 

variables ranged from 13.1% for split 2A1 to 
76.8% for split 2A (Table 7).  Split 2A1 also had 
the poorest cross-validation R2, but cross-
validation R2 values at other splits matched closely 
to the model R2 values.  The NLF ecoregion 
contains the highest density of surveyed lakes in 
our dataset and this was reflected by inclusion of 
six of ten LSH lake classes.  Geographic centers of 
class H and F lakes (split from the other NLF lakes 
based on lower Secchi measurements) are located 
more southerly than other LSH classes in the 
ecoregion (Figure 4).   Classes M (clear lakes > 450 
a) and K (clear lakes 63 to 450 a) had geographic 
centers in close proximity near the northernmost 
edge of the NLF ecoregion.  In contrast, similar 
lakes classified with less water clarity (N and L) 
had geographic centers near the center of the NLF 
ecoregion (Figure 4) indicating a latitudinal 
gradient in water clarity.

 
TABLE 6.   Pearson correlation coefficients of fish species catch-per-effort (CPE) to principal component one (PC1) used as the 
dependent value subjected to regression tree analysis at each split of the data.  The number of fish species used at each split 
is totaled at the bottom along with the number of lakes (N) and the amount of fish CPE variation explained by PC1.  

 Decision Tree Split  

Species 1  2A 2A1 2A11  2B 2B1 2B2 2B21 2B212 2B22 
Gillnet                  
LMB 0.32 0.28 0.20 -0.07 0.20 0.01 0.63 
NOP 0.35 

 
-0.13 0.48 -0.09 

 
0.28 0.58 -0.11 0.55 0.51 0.45          

SMB -0.08 0.49 -0.23 
WAE -0.12 

 
0.21 -0.14 0.07 

 
0.14 0.31 0.77 0.34 -0.58 -0.53   

WTS -0.18 -0.30 -0.17 -0.39 0.04 0.17 0.76 0.17 -0.65 -0.66 
YEP -0.11 0.28 0.26 -0.4 0.01 0.55 0.63 0.21 -0.49 -0.65 

  

COLD 0.09 
  

-0.34 0.3 
 

0.25 
 

0.46 
  

-0.38 
Trapnet             

BLB -0.30 
 

0.52 
   

-0.38 -0.12 -0.08 -0.17 
 

0.06   
BLG 0.40 0.47 0.35 0.78 -0.33 0.49 -0.08 0.67 0.39 0.67   
BLC -0.10 0.17 0.45 0.55 0.24 0.14 -0.32 -0.01 0.08 0.32      
BOF 0.23 0.12 0.55 0.10 0.43 0.34 0.13        
CAP -0.29 0.49 -0.33 0.01 0.20 
GSF -0.02 -0.31 0.02 0.12 0.19 0.14 
PMK 0.40 -0.09 0.45 -0.06 0.35 0.59 0.10 0.63 0.55 0.25 

  
      

    
RKB 0.18 0.07 0.75 0.36 0.70 0.34 0.46 -0.36      
YEB 0.34 0.69 -0.10 0.61 0.44 0.55  0.26 

 9 10 10 14 
  

Number 15 13 14 13 12 16 
Variation % 19.7 28.7 22.3 21.4 18.3 17.7 17.3 16.0 17.5 19.2   

  

N 1533 313 214 157 1220 388 832 608 512 224 
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TABLE 7.  Decision tree splitting criteria and fit to principal component 1 (PC1) at each hierarchical split of 1533 Minnesota 
fishing lakes using large-scale habitat variables.  The number of lakes at each split, mean PC1 value, percent of variation 
accounted for with the split (R2), and an R2 calculated with 5-fold cross validation of the model.  Split identification code 
can be referenced to Table 1 and Figure 4. 

Split Criteria N 
Mean 
PC1 R2 X-fold R2 

1A Ecoregion (46k,48a,47b,46e,47c,47g,50t,50n,48d,50p,49b) 313 -1.967 0.336 0.334 

 (50a,51h,49a,51i,51a,50o,50s,50m,50r,51k,51j,50b,51l,50q) 1220 0.505   
2A Ecoregion (50t,50n,50p,49b,48d) 214 -0.956 0.768 0.763 

 (47g,46e,48a,46k,47b,47c) 99 2.066   
2A1 Ecoregion (50n,50t) 157 -0.334 0.138 0.0877 

 Level4(50p,48d,49b) 57 0.919   
2A11 Average July maximum daily temperature <25.08 C 92 -0.710 0.336 0.324 

 >=25.08 C 65 1.005   
2B Secchi <1.93 m 388 -1.373 0.343 0.340 

 >=1.93 m 832 0.640   
2B1 Lake area <150.36 acres 148 -0.841 0.190 0.181 

 >=150 acres  240 0.519   
2B2 Lake area <450.29 acres 608 -0.497 0.277 0.272 

 >=450.29 acres 224 1.349   
2B21 Lake area <63.22 acres 96 -1.352 0.165 0.157 

 >=63.22 acres 512 0.254   
2B212 UTM-northing>=5183025 239 -0.638 0.170 0.163 

 <5183025 273 0.559   
2B22 UTM-northing>=5199308 93 -1.182 0.324 0.320 

 <5199308 131 0.840   
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FIGURE 4.  Decision tree of Minnesota lakes classified by LSH attributes.  Lake classes shown as terminal nodes in rectangles color 
coded to match ecoregion membership.  
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Aside from ecoregional and geographical differences, 
LSH lake classes differed widely in other habitat 
attributes.  Six key habitat variables including 3 LSH 
variables used as splitting criteria (lake area, Secchi, and 
temperature) characterize these habitat differences (Figure 
5).  Compared to other lake classes A, B, and C had lower 
alkalinities and temperatures and class D lakes which had 
higher alkalinities, temperatures, and TP levels.  
Considerable  differences  in  depth  also occur  among 
lake classes with Class D lakes being very shallow. 

Differences in Secchi transparency mirror TP for lake 
classes including the large difference between NLF classes 
F, H and other lake classes split at 2B.  Also, large 
differences in NLF ecoregion lakes are apparent from 
splits on lake area differentiating small and larger lakes 
with low Secchi transparency and small, mid, and large 
size lakes with high Secchi transparency.  In the NLF 
ecoregion, lakes with low Secchi transparency (F, H) tend 
to be shallower than lakes in other lake classes mirroring 
differences in watershed land cover (Figures 5 and 6). 
 

 
FIGURE 5.  Box plots of the distribution of selected large-scale habitat variables in lake classes.  The 
line within the box represents the median, the ends of the box are first and third quartile, and the 
whiskers represent a computed outlier range. 

17 



 
FIGURE 6.  Average proportion of lake watersheds in five major land cover categories by lake habitat class. 
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Lake classes with lower Secchi have more 
agriculture and less forest cover.  Interestingly, 
differences between the northern NLF classes (M,K) 
and the southern NLF classes (N,L) correspond to 
differences in Secchi that also correspond to land 
cover differences (Figure 6).  In fact, both land cover 
(ratio of AG to FOR) and Secchi follow a latitudinal 
gradient that is also evident with Secchi except that 
the CSSH lakes have slightly lower Secchi values 
than northern NLF lakes. 

Large-scale habitat lake classes explained a 
large amount of variation in the CPE of individual 
fish species among lakes.  Depending on the species, 
one-way analysis of variance using LSH lake classes 
as the independent variable explained 4 to 41% of 
the variation in CPE (Table 8).  Additional 
subdivision 

of the LSH class into 14 classes (H14) improved R2 
values slightly, but the added complexity of 
additional classes was not justified based on 
interpretability and reduction in BIC (Table 8).  By 
comparison, the widely used Minnesota Ecological 
Lake Classification (ELC, Schupp 1992) provided a 
poorer fit for most species (Table 8).  However, ELC 
provided a better fit for cool and cold-water species 
(WAE, RKB, SMB, and TLC).  Differences in fish 
abundances corresponding to LSH classification 
appear consistent with existing knowledge of habitat 
requirements.  For example, WAE were shown to be 
more abundant in LSH classes characterized by 
larger lake area and higher fertility and BLG most 
abundant in smaller and less eutrophic classes 
located at lower latitudes (Figure 7). 

TABLE 8.   Fit of one way analysis of variance models for estimating gill and trap net CPE of selected fish species using Ecological 
Lake Class (ELC), Large-Scale Habitat Lake Class with 14 classes (H14), and Large-Scale Habitat Lake Class with 11 classes (LSH).  
Model fit estimated with R2, AIC, and BIC criteria and R2 is totaled at the bottom of each column to represent combined fit for all 
species. 

 Model Lakes (N=1533)  Verification Lakes (N=380)  
 R2    AIC    BIC   R2  AIC  BIC 

Species ELC H14 LSH 
 

ELC H14 LSH 
 

ELC H14 LSH    ELC LSH 
 

ELC LSH
 

ELC LSH 

LMB 0.14 0.22 0.22 
 

-1002 -1172 -1172 
 

-770 -1092 -1108 
 

0.05 0.14 
 

-55 -127 
 

93 -81 

NOP 0.16 0.23 0.20 
 

822 672 723 
 

1054 752 787 
 

0.13 0.17 
 

232 180 
 

380 227 

SMB 0.14 0.09 0.09 
 

-2805 -2744 -2750 
 
-2573 -2664 -2686 

 
0.10 0.16 

 
-632 -690 

 
-484 -643 

TLC 0.30 0.16 0.16 
 

-206 49 44 
 

26 129 107 
 

0.25 0.12 
 

-41 -18 
 

107 29 

WAE 0.35 0.29 0.28 
 

919 1029 1032 
 

1151 1109 1096 
 

0.31 0.29 
 

289 264 
 

437 310 

WTS 0.24 0.26 0.25 
 

744 670 692 
 

976 750 756 
 

0.26 0.24 
 

214 186 
 

362 232 

YEP 0.13 0.20 0.19 
 

2454 2293 2314 
 

2687 2372 2378 
 

0.10 0.18 
 

692 624 
 

840 670 

BLB 0.45 0.44 0.41 
 

1928 1925 2001 
 

2160 2005 2065 
 

0.47 0.39 
 

537 553 
 

685 600 

BLC 0.24 0.27 0.27 
 

1259 1159 1154 
 

1491 1239 1218 
 

0.24 0.26 
 

362 551 
 

510 597 

BLG 0.38 0.39 0.38 
 

2255 2158 2165 
 

2487 2238 2229 
 

0.34 0.32 
 

573 551 
 

721 597 

BOF 0.13 0.17 0.16 
 

-1784 -1881 -1875 
 
-1552 -1802 -1811 

 
0.05 0.13 

 
-441 -508 

 
-293 -462 

CAP 0.36 0.45 0.36 
 

-696 -957 -731 
 

-464 -877 -667 
 

0.36 0.34 
 

-132 -153 
 

16 -107 

GSF 0.03 0.04 0.04 
 

-1257 -1307 -1303 
 
-1024 -1227 -1239 

 
0.08 0.03 

 
-464 -476 

 
-316 -429 

PMK 0.20 0.25 0.24 
 

852 709 725 
 

1084 788 789 
 

0.24 0.26 
 

219 176 
 

367 222 

RKB 0.35 0.28 0.28 
 

-882 -756 -761 
 

-650 -676 -698 
 

0.40 0.34 
 

-252 -255 
 

-104 -208 

YEB 0.20 0.30 0.29 
 

883 645 672 
 

1115 725 736 
 

0.11 0.24 
 

230 136 
 

378 183 

Total 3.80 4.04 3.82 
 

       
 

3.49 3.61 
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FIGURE 7.  Distribution of log transformed mean lake gillnet walleye and trapnet bluegill catch-per-effort (by habitat 
lake class. 

Fish response to habitat factors.–Random 
forest models provided more detailed 
information on WAE response to LSH.  
Statewide variation in WAE CPE using LSH 
variables revealed lake area having the highest 
variable importance (Table 9).  Log transformed 
WAE CPE increased linearly with lake area on a 
log scale to around 4000 acres (Figure 8).  
However, for some northern  lakes  (B,  C,  and  
M)  and  prairie  lakes (D) the effect on WAE 
CPE seems to reach a maximum at significantly 
smaller lake areas (400  to  1000  acres).   Also, 
for  lake  classes  D,  K,  L,  and  C  it  is  obvious 
that WAE abundance is very limited when lake 
area is < 300 acres (Figure 8).  The effect of lake 
depth on WAE CPE differed even more among 
LSH classes.  Walleye CPE in class A lakes 
sharply decreases with  increases  in  maximum  
depth  up  to 15 feet; whereas, the opposite 
occurs in class D lakes(Figure 9).  This 
difference perhaps relates to the risk of winter 
mortality which decreases with increased 

 

depth in shallow prairie lakes, whereas Class A 
lakes are much less susceptible to winterkill so 
increases  in  depth  are associated  with  a  loss 
of productive littoral habitats that support higher 
WAE densities.  Walleye RF models for class N 
and  D  lakes  further  demonstrate  differences 
in the influence of habitat among LSH lake 
classes.  SDI appears to be much more 
influential in Class N model than in either the 
statewide or Class D models.  Also, Secchi was 
much more influential in Class D lakes than in 
the statewide or Class N models.  Interestingly, 
despite the high influence of Secchi in the Class 
D model, disturbed land cover which generally 
correlates highly with Secchi, had only a small 
influence.  Because virtually all Class D lake 
watersheds are highly agricultural it is likely the 
range of disturbance is insufficient to influence 
the model.  Conversely, for class N and 
statewide models disturbance was a much 
stronger factor influencing WAE CPE than 
Secchi. 
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TABLE 9.  Importance values (MSE % = percent included mean square error and Purity = included node purity) for large-
scale habitat (LSH) predictors (ranked top to bottom in decreasing importance) in Random forest models of mean lake 
Walleye catch-per effort for all 1916 Minnesota lakes (statewide; R2 = 44.2), lake habitat class N lakes (N = 130; R2 = 37.8, 
and lake habitat class D lakes (N=99; R2 =6.4).  The percent watershed area with agriculture or development land cover is 
abbreviated as Pdist and day of the year fish sampled as Sday.  All other predictors are previously used (LSH) variables. 

  Statewide   Class N   Class D  

Variables MSE % Purity Variables MSE % Purity Variables MSE % Purity 

L-area  76.4 56.86 L-area  20.15 1.65 L-area  11.8 2.41 

Sday  28.1 16.08 Pdist  17.2 0.96 Secchi 7.9 2.37 

W-area  27.6 19.69 SDI  10.0 0.76 Water 4.9 1.19 

Pdist  27.4 13.13 Water 9.0 0.59 W-area 4.6 1.52 

Jtemp  26.3 12.11 Jtemp  5.5 0.68 Depth  2.5 1.57 

Bflow 17.8 11.53 Sday 2.1 0.43 Bflow  0.1 1.00 

Water 17.7 11.35 W-area 1.7 0.38 SDI  0.0 1.08 

SDI  14.5 10.77 Secchi  1.4 0.37 Jtemp -0.5 0.94 

Depth 9.4 10.72 Bflow 1.1 0.23 Pdist -1.1 0.89 

Secchi 9.4 11.46 Depth 0.8 0.46 Sday -1.7 0.73 
 
 

Walleye RT models for class D and N lakes 
depict how LSH factors interact uniquely within 
lake classes to affect CPE (Figure 10).  
Regression tree models for class D resulted in 
seven subclasses explaining 45% of the 
variation in WAE CPE among lakes, and for 
class N lakes ten subclasses explaining 60% of 
variation in WAE CPE.  Classes D and N both 
have high WAE CPE compared to other MN 
lakes (Figure 7).  As in RF models, lake area was 
the most influential RT habitat factor affecting 
WAE, but the effect on class N lakes extends to 
4000 acres, whereas the effect on class D lakes 
extends to < 500 acres.  In larger class D lakes 
(> 340 acres), maximum depth appears to be 
most influential on WAE CPE; in the smaller 
lakes (< 340 acres), water clarity is most 
influential (Figure 10).  The R2 fit of RT cross 

 

validation and RF models of class D WAE CPE 
were 0.30 and 0.09, respectively.  This indicates 
the RT model likely overfits the dataset and has  
limited reliability as a predictive model perhaps 
indicative of their high level of disturbance 
(land use, winterkill ...).     A better and more 
reliable fit was found with the class N RT model.  
For this class, RT cross validation and RF model 
R2 were 0.49 and 0.38, respectively.  Large class 
N lakes (> 1778 acres) had the highest WAE 
CPE.  In mid-sized lakes (727 to 1778 acres) 
WAE were predominately influenced by lake 
shape (SDI) with higher CPE favored by a more 
circular perimeter.  Finally, for small class N 
lakes (< 1778 acres) land cover disturbance was 
most influential with WAE CPE highest in lakes 
with more than 48% land cover disturbance 
(Figure 10). 
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FIGURE 8.  Response of log transformed walleye CPE to lake surface area (acres) in the 
statewide random forest model and in random forest models for selected lake classes.  The 
x-axis scale reflects the distribution of lakes in each model (10% quantiles shown on x-axis). 
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FIGURE 9.  Response of walleye log transformed mean lake gill net catch-per-effort to maximum lake depth in lake 
habitat class A and D lakes.

Combining individual RT models of WAE 
CPE  for  all  11  LSH  classes  resulted  in  62 
classes explaining 57% of the variation in WAE 
CPE (Table 10).  The amount of nonrandom 
spatial autocorrelation of residuals was also 
reduced  using  RT  subclasses, thus  improving 
the models accuracy (Table 10).  Despite 
improvements spatial distribution of model 
residuals was still clumped  with  underestimates  
for lakes  in central Minnesota and overestimates 
to the west (Appendix III and IV).  Spatially 
autocorrelated residual hotspots are indicative 
missing explanatory variables; however, missing 
variables may not relate to a habitat factor. 

Largemouth Bass RF models revealed that 
water clarity (Secchi) was the most influential 
LSH factor.  Other influential LSH variables in 
order of importance in the statewide RF model 
were temperature, baseflow, and land cover 
disturbance (Table 11).  These three factors 
relate strongly to geographic and ecoregional 
factors defining differences among LSH classes.  
Although the influence of Secchi on LMB was 
similar among LSH classes (mostly increasing 

 

between 3 to 5 m) many other differences in 
LMB response to habitat factors among LSH 
classes were evident (Figure 11; Table 11).  For 
example, class M lakes were characterized with 
relatively high LMB CPE responding 
negatively to watershed area and lake area 
(above 900 acres), but the influence of these 
two factors is much less in statewide or class N 
models. 

Differences between LSH influences in class 
N and class M lakes are also evident in LMB RT 
models (Figure 12).  Both class N and M are 
comprised of larger mesotrophic lakes (lake area 
> 450 acres and Secchi  > 1.9 m) located in the 
NLF ecoregion.  However, the class N RT model 
explaining 39% of the variation in LMB CPE 
showed increased CPE with increased Secchi.  
The class M RT model explained 43% of the 
variability in LMB CPE among lakes with the 
highest CPE occurring in lakes between 626 and 
910 surface acres with watershed areas < 16,522 
acres (a ten-fold greater LMB CPE than in lakes 
with large watersheds located in areas of low 
baseflow). 
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FIGURE 10.  Regression tree of large-scale habitat predictors of Walleye log transformed mean lake gill net 
catch-per-effort for habitat class N (top;  N=131, R2=0.60, 5-fold cross validation R2=0.49) and habitat class D 
(bottom;  N=99, R2 = 0.45, 5-fold cross-validation R2=0.30). 
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TABLE 10.  Fit statistics for models predicting walleye catch-per-effort (CPE) in Minnesota lakes.  The R2 statistic was 
used to explain the amount of variation explained by the model and the Morans Index was used to assess the spatial 
distribution of the variation to see if the pattern is clustered, dispersed or random.  The lower the Morans index and 
corresponding z score the more random the distribution.   

Model R2 Morans index z score 

Multiple regregession 0.41 0.116 19.323 

Decision Tree 0.29 0.093 11.789 

Decision Tree -RTA 0.57 0.056 7.113 

Ecological Classification 0.36 0.095 11.944 

TABLE 11.  Importance values (MSE % = percent included mean square error and Purity = included node purity) for large-
scale habitat (LSH) predictors (ranked top to bottom in decreasing importance) in random forest models of mean lake 
Largemouth Bass catch-per effort for all 1916 Minnesota lakes (statewide; R2 = 30.6), lake habitat class N lakes (N = 130; 
R2 = 8.6, and lake habitat class M lakes (N=93; R2 = 16.2).  The percent watershed area with agriculture or development 
land cover is abbreviated as Pdist and day of the year fish sampled as Sday.  All other predictors are previously used 
(LSH) variables. 

   Statewide   Class N   Class M  

Variables MSE % Purity Variables MSE % Purity Variables MSE % Purity 

Secchi 41.6 7.56 Secchi 11.2 0.39 W-area 11.2 0.27 

Jtemp 28.9 4.35 Bflow 8.6 0.28 L-area 9.7 0.23 

Bflow 23.7 4.25 Jtemp 5.8 0.20 Secchi 4.7 0.20 

Pdist 18.6 3.23 W-area 5.3 0.26 Water 3.7 0.16 

Depth 18.2 3.31 Pdist 3.3 0.17 Pdist 2.5 0.12 

Sday 17.7 3.62 Sday 2.9 0.26 SDI 1.9 0.10 

Water 16.1 3.78 Water 1.6 0.24 Jtemp 1.4 0.14 

W-area 12.1 3.29 L-area 0.4 0.19 Depth 1.3 0.12 

L-area 12.1 3.07 Depth -2.5 0.22 Bflow 0.1 0.08 

SDI 2.9 2.12 SDI -2.7 0.14 Sday -0.5 0.09 
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FIGURE 11.  Response of Largemouth Bass log transformed mean lake gill net catch-per-effort to large-
scale habitat variables in random forest models for all Minnesota lakes (Statewide n=1916), lake habitat 
class N (N=131), and lake habitat M (N= 123). The x-axis scale reflects the distribution of lakes in each 
model (10% quantiles shown on x-axis). 
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FIGURE 12.  Regression tree of large-scale habitat predictors of Largemouth Bass gill net catch-per-effort for 
habitat class M (top; R2 = 0.43, 5-fold cross-validation R2=0.33) and habitat class N (bottom; R2=0.39, 5-fold 
cross validation R2=0.30). 
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DISCUSSION 
Large-scale habitat factors explained a 

significant amount of variation in baseline (18-y 
average) fish abundances among Minnesota lakes.  
Hierarchal decision tree classification of lakes by 
LSH attributes identified primary habitat 
influences on the type and abundance of fish in 
Minnesota lakes.  This classification facilitated 
further comparisons among lakes because it 
identified classes of lakes with similar LSH 
influences that were relatively robust to 
interactions and nonrandom spatial variability 
affecting fish abundance.  Models developed 
from this study should be useful for setting goals 
for  fish  population  maintenance,  restoration,  
or  enhancement  actions  based  on  habitat  and 
for troubleshooting and development of new 
hypotheses when goals are not met. 

Data mining and GIS analysis of an updated 
(1993-2011) dataset of standardized MNDNR lake 
surveys reinforced previous studies by Moyle 
(1956) and Schupp (1992) showing lake 
morphology, fertility, and temperature influencing 
the species and abundance of fish present in 
Minnesota lakes.  GIS provided spatial analytical 
capabilities to use with ecoregion, watershed, and 
other geographical attributes for obtaining a more 
quantitative description of factors contributing to 
lake fish community differences.  Moyle (1956) 
and Schupp (1992) concluded that key fish habitat 
factors follow a general geographical gradient from 
northeast to southwest in Minnesota which is 
largely responsible for differences in fish 
communities among Minnesota lakes.  This study 
showed that much of this geographical variation is 
quantified by differences among aquatic 
ecoregions which have an additional advantage of 
over other variables because they are widely 
recognized with concisely mapped geographical 
boundaries. Aquatic ecoregions identify 
geographical areas with LSH attributes in common, 
meaning that differences in geomorphology, 
(including some lake morphology), climate, soils, 
and plant cover are relatively uniform within areas 
defined by ecoregions (Omernik et al. 2004).  The 
Level IV EPA ecoregion scheme used in this study 
characterizes influences on water body chemistry 
and places emphasis on hydrology (Omernik et al. 
2000).  Differences in fertility among Minnesota 
lakes correspond closely with ecoregion units 
(Heiskary and Wilson 2008; Cross and Jacobson 
2013).  Lake temperatures were not specifically 

 
measured in this study, but much can be inferred 
with surrogate measures used in this study such as 
mean July maximum air temperature, latitude, and 
ecoregion.  Once again these findings confirmed 
basic observations made by Moyle (1956) and 
Schupp (1992) while providing more spatial 
resolution.  While temperature was an influential 
variable for describing differences in fish 
communities among Minnesota lakes, it appeared 
less influential relative to other habitat variables 
used by Wehrly et al. (2012) to analyze Michigan 
lakes.  Also, Wehrly et al. (2012) used modeled 
lake temperatures as opposed to surrogate values 
and described fish community differences in terms 
of species presence rather than abundance. 

An 11-class hierarchical decision tree using 
geographical location (ecoregion and latitude), lake 
morphology (surface area), and trophic status 
(Secchi) successfully explained a substantial 
amount of among lake variation in fish abundance.  
For most fish species, more variation was 
explained by the 11 LSH classes than with the 43 
lake classes developed by Schupp (1992).  Schupp 
(1992) did not use fish community gradients to 
guide or supervise lake classification and it 
represents a purer grouping of lakes with respect to 
commonalities in physico-chemical attributes.  
However, hierarchical decision tree methodology 
yielded a highly interpretable LSH lake 
classification guided by dominant fish community 
gradients assimilating species interactions.  Among 
others, Robinson and Tonn (1989) demonstrated 
the importance of acknowledging species 
interactions in small lakes where predation was 
more important than habitat factors in structuring 
the composition of fish communities.  Still, using 
fish community gradients simultaneously with 
LSH factors to classify lakes could complicate 
interpretation of habitat factors if communities are 
altered by management practices (stocking, 
fishing, etc.) or habitat degradation (shoreline 
development, agriculture, etc.).   However, post 
hoc analysis can be used to address these factors.  
Validation of the LSH lake classification scheme 
was demonstrated with the fit to WAE CPE which 
was also congruent with habitat relationships 
reported in the literature for that species (Bozek et 
al. 2011).  Despite being widely stocked, 
relationships between WAE abundance and lake 
size and productivity conform to general 
descriptions of habitat provided by Scott and 
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Crossman (1973) as well as scientific reports on 
North American lakes studied by Kitchell et al. 
(1977), Johnson et al. (1977), Lester et al. (2004), 
as well as those specific to Minnesota lakes 
(Schupp 1992; Jacobson and Anderson 2007).  
Most prominent is the habitat need of WAE for 
larger lakes consistent with a “Lebensraum 
requirement” stated by other investigators 
(Johnson et al. 1977; Jacobson and Anderson 2007) 
which was shown in Figure 8. 

Although the use of fish communities to 
supervise lake classification resulted in good R2 
values for CPE of most fish species, the relative 
paucity of fish survey data for northeastern 
Minnesota lakes (CSSH ecoregion) limited the 
analysis.  Consequently, analysis of lake habitats in 
northeast Minnesota was limited, likely 
contributing to a poorer fit of the LSH classes 
relative to ELC classes for cooler water species 
such as TLC, WAE, and RKB.  Nineteen lake 
classes are devoted to lakes in the three 
northeastern counties in the ELC system where 
only three LSH classes occur in those same 
counties. 

Large-scale habitat lake classes were modeled 
using fish community criteria so fish species 
interactions were implicit in the classification.  
Similar correlations with fish community PC 
scores were observed for both WAE and YEP at 
every split except 2A1 and 2A11 (northern 
ecoregions; Table 6, Figure 4); whereas dissimilar 
correlations were observed for WAE and NOP with 
PC scores at every split except 2B1 and 2B21 (lake 
area; Table 6, Figure 4).  General associations of 
WAE and YEP are well documented in the 
literature as well as interactions with NOP 
predation (Colby et al. 1987; Jacobson and 
Anderson 2007).  However, few actual experiments 
have ever been done to prove the existence of 
species interactions.  Another species interaction of 
concern to fisheries managers is that between WAE 
and BLC.  Colby et al. (1987) indicated an inverse 
relationship between these species was strongest in 
moderately deep clear central Minnesota lakes and 
speculated that it was due to greater macrophyte 
densities that favored BLC in these lakes.  Indeed, 
a strong inverse WAE-BLC interaction based on 
Secchi depth in NLF lakes was observed for the PC 
defining split 2B2 (Table 6; Figure 4).  However, 
there was also a strong inverse WAE-BLC 
relationship indicated with PC splits 2B22 and 
2B212 that did not correspond with Secchi, but 

instead described a latitudinal split within the NLF 
ecoregion lakes suggesting conditions favoring 
BLC over WAE in more southerly lakes(Tables 6 
and 7; Figure 4).  In general, more southerly 
latitudes and associated warmer water 
temperatures are thought to favor Crappie over 
WAE (Hokanson 1977; Kitchell et al. 1977). 

Modeling of species abundances within 
individual LSH lake classes described more precise 
relationships than explained using the statewide 
classification alone.  Although ecoregion 
membership served as useful criteria for LSH lake 
classification, they are based on spatially correlated 
landscape/climate variables so the contributions 
of individual variables were less apparent.  
However, WAE and LMB responses to specific 
habitat variables modeled within LSH lake 
classes using RF yielded response curves more 
precisely described influences of individual 
variables (i.e. land use disturbance, groundwater, 
and temperature).  Modeling within individual 
LSH lake classes helped eliminate confounding 
influences of LSH factors of little relevance for 
a specific class.  For example, models developed 
for Minnesota prairie lakes (LSH class D) were 
less confounded by lake depth > 30 feet and 
baseflow > 54% conditions not applicable to that 
class.  The stark contrast between class D and A 
lakes in WAE CPE response to lake depth (Figure 
9) illustrated the importance of modeling habitat 
responses for each lake class separately.  Individual 
lake class specific models also showed contrasting 
WAE response to lake size (Figure 8).  Lake class 
specific species–habitat relationships provided 
additional insight into fish community interactions.  
This was illustrated by the negative influence of 
watershed size and lake area on Largemouth Bass 
CPE in LSH lake class M (northerly NLF lakes > 
450 acres and < 1.9 m Secchi) in contrast to the 
positive influence both these habitat factors have 
on competing predator species (NOP and WAE).  
Lake class specific models provided more specific 
information describing habitat relationships than 
that provided using statewide classifications alone. 

Habitat models developed in this study were 
subject to data and methodological limitations that 
potentially lead to poor interpretations if not fully 
examined.  Fish data were subject to bias inherent 
with the nonrandom lake selection process used to 
establish the survey database and sampling 
methods.  Rather than random sampling, lakes 
represented in the MNDNR lake survey database 
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are sampled in proportion to management priorities 
influenced by demographic and lake quality 
factors.  Sampling gear (trap net and gill net) 
efficiencies differ for different species and sizes of 
fish and do not necessarily accurately reflect true 
population densities in lakes.  Furthermore, catch 
efficiencies can differ with sampling date (Grant et 
al. 2004).  Sampling date was included in lake class 
specific modeling to control for seasonal variation, 
but not in the LSH lake classification.  Also, fish 
data used in classification and modeling were 
restricted to an 18 year average or baseline CPE 
and did not include factors describing biomass and 
mean individual size (though generally correlated 
with CPE).  Analysis of average conditions do not 
reflect temporal variation, so lakes suspected to 
have high annual variation (e.g. shallow or 
disturbed lakes) could have fish communities 
different from those predicted by habitat models 
if the number of surveys in the study period were 
few.  Shallow lakes are more likely to have 
regime  shifts and  are  vulnerable  to  differences 
in temperature, DO, and water levels (Scheffer 
2001).  Furthermore, all lakes are subject to 
changes in climate and watershed land use 
factors that could contribute to a shifting baseline 
condition. 

Regression tree classification of lakes was 
predicated on the ability of LSH variables 
describing differences in fish communities 
quantified by PCA.  Therefore, it is important to 
recognize that PCA performs best on datasets with 
abundant species and linear correlations.  Also, 
outliers  can  potentially have  a  large influence  
on correlations (McCune and Grace 2002).  
Regression tree models are transparent and easy to 
interpret, but are known to be susceptible to 
overfitting and can sometimes change with small 
differences in the data (Prasad et al 2006).  
However, RT models were verified with RF 
models that are generally more accurate, do not 
overfit the data, and provided variable importance 
indices and response curves (Prasad et al. 2006; 
Cutler et al. 2007).  Furthermore, both linear and 
nonlinear responses to habitat factors were shown 
with RF variable response curves which can be 
useful for evaluating what if scenarios, an 
invaluable tool for diagnosing past performance 
problems or projecting future responses.  In a 
review of similar studies, Hawkins et al. (2010) 
found “substantial variation in biota associated 
with natural environmental gradients even after 

modeling or adjusting for the effects of natural 
environmental variation”.  In support of this 
observation, they cited the recent USA National 
Wadeable Stream Assessment (USEPA 2006) that 
used RF models to show that up to 30% more 
variation in biological index variables for 
individual ecoregions were associated with natural 
environmental gradients.  Machine learning 
algorithms such as RF models provide a relatively 
objective method for showing fish responses to 
habitat.  That being said, the accuracy of the 
models is only as good as the data supplied them 
which heavily relies on the appropriate selection of 
explanatory variables as discussed in the previous 
paragraph.  Key habitat components are not always 
known and oftentimes habitat variables are 
correlated, both of which can affect model 
outcomes.  These factors were addressed with 
preliminary exploratory analysis using correlation 
matrices to identify relatively independent 
variables and mapping of model residuals to look 
for spatial clumping that can often identify 
environmental factors absent in the model. 

Many earnest attempts to “improve” habitat 
conditions for fish have failed due to a lack of 
understanding of the effects of LSH factors on fish 
communities (Ziemer 1997).  This lack of 
understanding could be partially addressed with 
relationships revealed with models such as those 
demonstrated in this study or subsequent efforts to 
advance them.  Still, LSH models are only helpful 
if applied correctly in recognition that they are 
most applicable to lakes within the range of habitat 
conditions used as input taking into account factors 
not explicitly modeled, including various human 
influences and species interactions.  Deviation 
outside the naturally occurring normal range of 
habitat conditions for a particular water body 
elevates the risk of unanticipated consequences.  
That being said, anthropogenic stresses can push 
habitat conditions outside the normal range forcing 
a need to address these situations despite the risk.  

Management Implications and Needs for 
Additional Research.–Habitat management issues 
confronting authorities are daunting and 
continually require decisions to protect, regulate, 
restore, or enhance to attain fish community and 
sport  angling  goals.  Lake  classification based 
on LSH can be used by managers to identify 
lakes at a statewide scale with relatively 
homogeneous  habitat  influences  from  which  
to draw comparisons.  Like the ecological lake 
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classification (Schupp 1992), the LSH lake 
classification could be used to identify 
management units of similar lakes for targeting 
management actions, for stratifying lakes to gain 
statistical power, and for extrapolating results from 
more intensive or mechanistic investigations on 
specific lakes to a broader population of lakes.  
According to Bakelaar et al. (2004) GIS 
classification, analysis, and habitat modeling 
should play a pivotal role in the assessment of 
conservation planning issues.  For Minnesota 
lakes such work can augment ongoing monitoring 
efforts aimed at predicting and planning for 
potential changes in sport fish populations 
resulting from climate and landscape changes that 
affect land cover and connectivity of aquatic 
habitats.  Also, LSH lake classification could be 
used by sampling programs seeking to optimize 
the distribution of effort by stratifying lakes with 
similar habitats. 

Habitat models specific to individual lake 
classes and fish species can be used to objectively 
identify and diagnose habitat related problems.  
Modeling within lake classes removes much of the 
variation associated with spatial autocorrelation at 
the statewide scale allowing for more direct 
habitat specific answers.  Managers should find 
the use of open source machine learning tools, 
such as those contained in the Rattle package 
implemented in the R platform, useful to facilitate 
the analysis.  They provide a means to perform the 
analysis with the transparency and robustness 
helpful for dealing with the type of data, 
interactions, and nonlinear relationships common 
to ecological systems. 

Additional research directed at habitat 
classification and modeling could broaden the 
scope and applicability of this study including 
specific efforts directed at different spatial and 
temporal scales along with additional habitat 
factors.  Fish habitat relationships differ across 
spatial scales and this study only addressed 
variation at the statewide and level IV ecoregion 
scales.  Additional knowledge regarding larger 
scale factors can be obtained from integration with 
multi-state and international models and finer scale 
factors from spatial units smaller than level IV 
ecoregions.  Factors such as climate, land cover, 
geomorphological, and lake productivity factors 
that have a similar pattern of spatial correlation 
within Minnesota could be discriminated better at 

larger spatial scales.  Documentation of large-scale 
spatially robust relationships to habitat factors are 
potentially helpful because it infers that a 
knowledge gained from one lake can be more 
easily transferred to another lessening the need for 
costly additional data and evaluation.  Conversely, 
more detailed relationships influenced by more 
local interactions unique to smaller spatial units are 
described better at a smaller scale.  This includes 
the integration of more casual and mechanistic 
modeling of habitat such as those involving aquatic 
plant communities, phosphorus dynamics, and 
dissolved oxygen demand, and winterkill-
summerkill risks moderated by climate. 

There are still numerous information gaps that 
need to be addressed with further exploration of 
habitat classification and models of fish habitat 
relationships.  This study was limited to fish 
communities described by larger ubiquitous fish 
species sampled with trap and gill nets, so 
sampling with a broader array of gear reflecting 
all fish species occurring in Minnesota lakes could 
add much needed insight comparable to modeling 
done by Wehrly et al. (2012).  Also this additional 
analysis could better account for habitat needs of 
sensitive species and not just the more common 
habitat generalists analyzed in this study. 

Additional studies should be done to relate 
LSH to physical substrates and aquatic plant cover 
(e.g. emergent, fine-leaf, broad-leaf, invasive 
classes  identified  by  Cross  and  McInerny  2006 
or  Reschke  et  al.  2005)  and  to  determine  the 
extent that Secchi acts as surrogate variable for the 
amount/depth  of  plant  cover.  Currently,  there 
are few quantitative descriptions available 
showing  how  fish  communities  are  affected  
by  inshore  substrates.  Furthermore,  there  is  
no spatial analysis of substrate occurrence among 
Minnesota lakes corresponding with spatial 
variation in fish and plant abundance.  Mechanistic 
models of the relationship between wind-wave 
energy (lake morphometry, topography, wind) and 
mud boundaries or deposition zone (e.g. Cooley 
and Franzin 2008) would be useful applied to 
Minnesota lakes.  Finally, knowledge of habitat 
interactions with stocking and exploitation 
would be useful for identifying specific effects 
of habitat on fish communities in addition to 
retrospective analysis showing the effect on fish 
communities from historical changes in lake 
habitat conditions.

31 



REFERENCES 

Bakelaar, C. N., P. Brunette, P. M. Cooley, S. E. 
Doka, E. S. Millard, C. K. Minns, and H. A. 
Morrison. 2004.  Geographic information systems 
applications in lake fisheries.  Pages113-152 in 
W. L. Fisher and F. J. Rahel, editors. Geographic 
information systems in fisheries.  American 
Fisheries Society, Bethesda. 

Blann, K., and M. Cornett.  2008.  Identifying lake 
conservation priorities for The Nature Conservancy 
in Minnesota, North Dakota and South Dakota.  The 
Nature Conservancy.  Arlington, VA. 

Bozek, M. A., T. J. Haxton, and J. K. Raabe.  2011.  
Walleye and sauger habitat.  Pages 133-197 in B. 
A. Barton, editor.  Biology, management, and 
culture of walleye and sauger.  American Fisheries 
Society, Bethesda, Maryland. 

Colby, P. J., P. A. Ryan, D. H. Schupp, and S. L. 
Serns.  1987.  Interactions in north-temperate lake 
fish communities.  Canadian Journal of Fisheries 
and Aquatic Science 44:104-128. 

Cooley, P. M., and W. G. Franzin.  2008.  Predicting 
the spatial mud energy and mud deposition 
boundary depth in a small boreal reservoir before 
and after draw down.  Lake and Reservoir 
Management 24:261-272. 

Cross, T. K., and P. C. Jacobson.  2013.  Landscape 
factors influencing lake phosphorus concentrations 
across Minnesota.  Lake and Reservoir Management 
29:1-12.   

Cross, T. K., and M. C. McInerny.  2005.  Spatial 
habitat dynamics affecting bluegill abundance in 
Minnesota bass-panfish lakes.  North American 
Journal of Fisheries Management 25:1051-1066. 

Cross, T. K., and M. C. McInerny. 2006.  
Relationships between aquatic plant cover and 
fish populations based on Minnesota lake survey 
data. Minnesota Department of Natural 
Resources, Division of Fisheries, Investigational 
Report Number 537.  St. Paul. 

Cutler, R. D., T. C Edwards, K. H. Beard, A. Cutler, 
K. T. Hess, J. Gibson, and J. J. Lawler.  2007.  
Ecology. 88:2783-2792. 

Emmons, E. E., M. J. Jennings, and C. Edwards.  
1999.  An alternative classification method for 
northern Wisconsin lakes.  Canadian Journal of 
Fisheries and Aquatic Sciences 56: 661-669. 

 

Esri.  2012.  ArcMap10.  Esri.  Redlands, CA.  C. Daly, 
M. Halbleib, J. I. Smith, W. P. Gibson, M K. 
Doggett, G. H. Taylor, J. Curtis, and P. A. Pasteris. 
2008. Physiographically-sensitive mapping of 
temperature and precipitation across the 
conterminous United States. International Journal 
of Climatology, 28: 2031-2064. 

Grant, G. C., Y. Schwartz, S. Weisberg, and D. H. 
Schupp.  2004.  Trends in abundance and mean 
size of fish captured in gill nets from Minnesota 
lakes, 1993-1997.  North American Journal of 
Fisheries Management 24.417-428. 

Hawkins, C. P., R. R. Olson, and R. A. Hill.  2010.  
The reference condition:  Predicting benchmarks 
for ecological and water-quality assessments.  
Journal of the North American Benthological 
Society 29:312-343. 

Heiskary, S. A., and C. B. Wilson.  2008.  Minnesota’s 
approach to lake nutrient criteria development.  
Lake and Reservoir Management 24:282-297. 

Hokanson, K. E. F.  1977.  Temperature requirements 
of some percids and adaptations to the seasonal 
temperature cycle.  Journal of the Fisheries 
Research Board of Canada 34:1524-1550. 

Homer, C., C. Huang, L. Yang, B. Wylie, and M. 
Coan.  2004.  Development of a 2001 national 
land-cover database for the United States.  
Photogrammetric Engineering and Remote 
Sensing 70:829-840. 

Jackson, D. A., P. R. Peres-Neto, and J. D. Olden.  
2001.  What controls who is where in freshwater 
fish communities - the roles of biotic, abiotic, and 
spatial factors.  Canadian Journal of Fisheries and 
Aquatic Sciences 58:157-170. 

Jacobson, P. C., and C. S. Anderson.  2007.  Optimal 
stocking densities of walleye fingerlings in 
Minnesota lakes.  North American Journal of 
Fisheries Management 27:650-658. 

Johnson, M. G., and J. H. Leach, C. K. Minns, and 
C.H. Olver.  1977.  Limnological characteristics 
of Ontario lakes in relation to associations of 
walleye (Stizostedion vitreum vitreum), northern 
pike (Esox lucius), lake trout (Salvelinus 
namaycush), and smallmouth bass (Micropterus 
dolomieui).  Journal of the Fisheries Research 
Board of Canada 34:1592-1601. 

 

32 



Kitchell, J. F, M. G. Johnson, C. K.  Minns, K. H. 
Loftus, L. Greig, and C. H. Olver.  1977.  Percid 
habitat: The river analogy.  Journal of the Fisheries 
Research Board of Canada 34:1936- 1940. 

Lester, N. P., and A. J. Dextrase, R. S. Kushneriuk, 
M. R. Rawson, P. A. Ryan.  2004.  Light and 
temperature: key factors affecting walleye 
abundance and production.  Transactions of the 
American Fisheries Society 133:588-605. 

McCune, B., and J. B. Grace.  2002.  Analysis of 
ecological communities.  MjM Software Design.  
Gleneden Beach, Oregon. 

Minnesota Department of Natural Resources 
(MNDNR).  1993.  Manual of instructions for 
lake survey.  Minnesota Department of Natural 
Resources Section of Fisheries Special 
Publication 147, St. Paul. 

Minnesota Department of Natural Resources 
(MNDNR).  2012.  DNR Watersheds - DNR 
Level 09 - DNR AutoCatchments, Originator: 
Minnesota DNR - Fisheries Publication Date: 
9/13/2012. 

Minnesota Department of Natural Resources 
(MNDNR).  2013a.  Fish habitat plan:  A strategic 
guidance document.  Minnesota Department of 
Natural Resources, Section of Fisheries. St. Paul. 

Minnesota   Department   of   Natural   Resources 
(MNDNR)   2013b.    Streams  with  Strahler 
stream order.  Available online at  
http://deli.dnr.state.mn.us/metadata.html?id=L39
0005970202.   Last  accessed  on  April 1,  2013. 

Moyle, J. B.  1945.  Some chemical factors influencing 
the distribution of aquatic plants in Minnesota.  
American Midland Naturalist 34:402-420. 

Moyle, J. B.  1956.  Relationships between the 
chemistry of Minnesota surface waters and 
wildlife management.  Journal of Wildlife 
Management 20:303-320. 

Olden J. D., J. J. Lawler, and J. L. Poff.  2008.  
Machine learning methods without tears: a primer 
for ecologists.  83:171-193. 

Omernik J. M., S. S. Chapman, R. A. Lillie, R. T. 
Dumke.  2000.  Ecoregions of Wisconsin.  The 
Wisconsin Academy of Sciences 88:77-103.  

Omernik, J. M.  2004.  Perspectives on the nature and 
definition of ecological regions.  Environmental 
Management 34:S27-S38. 

Osgood, R.A., P.L. Brezonik, and L. Hatch.  2002.  
Methods for classifying lakes based on measures 
of development impacts.  University of Minnesota 
Water Resources Center Technical Report 143. 

Pittman S. J., and K. A. Brown.  2011.  Multi-scale 
approach for predicting fish species distributions 
across coral reef seascapes. PLoS ONE 6(5): 
e20583. 

Prasad A. M., L. R. Iverson, and A. Liaw.  2006.  Newer 
classification and regression tree techniques: 
bagging and random forest for ecological 
prediction.  Ecosystems 9:181-199. 

R Development Core Team.  2013.  R: A language and 
environment for statistical computing. R foundation 
for statistical computing.  Vienna, Austria.  
Available from http://www.R-project.org/. 

Rahel, F. J., and D. A. Jackson.  2007.  Watershed 
level approaches.  Pages 887-946 in C. S. Guy 
and M. L. Brown, editors.  Analysis and 
interpretation of fisheries data.  American 
Fisheries Society, Bethesda. 

Reschke, C., G. E. Host, and L. C. Johnson.  2005. 
Evaluation of DNR aquatic vegetation surveys: 
Data summaries and comparative analysis.  
Minnesota Department of Natural Resources 
CFMS Contract Number A61156, St. Paul. 

Robinson, C. L. K., and W. M. Tonn.  1989.  Influence 
of environmental factors and piscivory in structuring 
fish assemblages of small Alberta lakes.  Canadian 
Journal of Fisheries and Aquatic Science 46:81-89. 

Schupp, D.  H.  1992.  An ecological classification of 
Minnesota lakes with associated fish 
communities.  Minnesota Department of Natural 
Resources, Section of Fisheries Investigational 
Report Number 417, St. Paul. 

Scheffer, M.  2001.  Ecology of shallow lakes.  
Kluwer Academic Publishers. Boston. 

Scott, W.B., and E.J. Crossman.  1973.  Freshwater 
fishes of Canada.  Fisheries Research Board of 
Canada, Ottawa. 

Soranno, P. A., K. E. Webster, K. S. Cheruvelil, and 
M. T. Bremigan.  2009.  The lake landscape-
context framework: linking aquatic connections, 
terrestrial features and human effects at multiple 
spatial scales.  Verh. Internat. Verein. Limnol. 
30:695-700. 

SAS Institute Inc. 2012. JMP 10 modeling and 
multivariate methods. SAS Institute Inc. Cary, NC. 

Strahler, A. N. 1957. Quantitative analysis of watershed 
geomorphology. Transactions of the American 
Geophysical Union 38:913-920. 

United States Geological Survey (USGS).  2012.  
Federal standards and procedures for the National 
Watershed Boundary Dataset (WBD).  U.S. 
Geological Survey, Reston. 

 

33 

http://deli.dnr.state.mn.us/metadata.html?id=L390005970202
http://deli.dnr.state.mn.us/metadata.html?id=L390005970202


Wehrly, K. E., J. E. Breck, L. Wang, L. Szabo-Kraft.  
2012.  A landscape-based classification of fish 
assemblages in sampled and unsampled lakes.  
Transactions of the American Fisheries Society 
141:414-425. 

Williams, G. J. 2009.  Rattle: A data mining GUI for 
R.  The R Journal 1: 45-55. 

Williams, G. J. 2011.  Data mining with Rattle and R:  
The art of excavating data for knowledge 
discover.  Springer, New York. 

Williams, J. E., C. A. Wood, and M. P. Dombeck, 
editors.  1997.  Watershed restoration:  Principles 
and practices. American Fisheries Society, 
Bethesda. 

Wolock, D. M.  2003.  Base-flow index grid for the 
conterminous United States.  U.S. Geological 
Survey Open-File Reprt Issue Identifiation: 03-
263. Reston.  Accessed March 15, 2003 
http://water.usgs.gov/lookup/getspatial?bfi48grd. 

Zeimer, R. R.  1997.  Temporal and spatial scales.  
Pages 80-95 in J. E. Williams, C. A. Wood, and 
M. P. Dombeck, editors.  Watershed restoration: 
principles and practices. American Fisheries 
Society, Bethesda. 

 

34 

http://water.usgs.gov/lookup/getspatial?bfi48grd


APPENDIX I.  A matrix of Pearson correlation coefficients for primary species sampled by standardized gill and trap net assessments in 1916 Minnesota 
lakes. 

 WTS BLB CAP YEP BLC GSF COLD SMB WAE BOF RKB NOP YEB PMK BLG LMB 

WTS 1.00 -0.07 0.05 0.27 -0.13 -0.09 0.09 0.11 0.35 -0.09 0.13 -0.08 -0.17 -0.15 -0.28 -0.19 

BLB -0.07 1.00 0.52 0.20 0.33 0.17 -0.21 -0.12 0.07 -0.09 -0.27 -0.19 -0.09 -0.17 -0.15 -0.17 

CAP 0.05 0.52 1.00 0.17 0.40 0.06 -0.14 -0.06 0.20 0.03 -0.19 -0.14 -0.03 -0.26 -0.13 -0.17 

YEP 0.27 0.20 0.17 1.00 0.10 0.00 -0.06 0.01 0.35 0.01 0.07 0.00 -0.07 0.06 -0.07 -0.13 

BLC -0.13 0.33 0.40 0.10 1.00 0.05 -0.23 -0.10 -0.02 0.06 -0.24 -0.08 0.02 0.01 0.22 -0.08 

GSF -0.09 0.17 0.06 0.00 0.05 1.00 0.02 -0.04 -0.04 -0.03 -0.04 -0.11 0.02 0.04 0.09 -0.04 

COLD 0.09 -0.21 -0.14 -0.06 -0.23 0.02 1.00 0.10 0.05 0.09 0.40 -0.08 -0.01 0.05 -0.02 -0.03 

SMB 0.11 -0.12 -0.06 0.01 -0.10 -0.04 0.10 1.00 0.18 -0.06 0.26 -0.11 -0.13 -0.10 -0.07 -0.03 

WAE 0.35 0.07 0.20 0.35 -0.02 -0.04 0.05 0.18 1.00 -0.01 0.25 -0.12 -0.03 -0.11 -0.10 0.00 

BOF -0.09 -0.09 0.03 0.01 0.06 -0.03 0.09 -0.06 -0.01 1.00 0.05 0.25 0.36 0.22 0.24 0.04 

RKB 0.13 -0.27 -0.19 0.07 -0.24 -0.04 0.40 0.26 0.25 0.05 1.00 0.09 0.02 0.19 0.15 0.14 

NOP -0.08 -0.19 -0.14 0.00 -0.08 -0.11 -0.08 -0.11 -0.12 0.25 0.09 1.00 0.35 0.40 0.32 0.22 

YEB -0.17 -0.09 -0.03 -0.07 0.02 0.02 -0.01 -0.13 -0.03 0.36 0.02 0.35 1.00 0.37 0.43 0.24 

PMK -0.15 -0.17 -0.26 0.06 0.01 0.04 0.05 -0.10 -0.11 0.22 0.19 0.40 0.37 1.00 0.50 0.24 

BLG -0.28 -0.15 -0.13 -0.07 0.22 0.09 -0.02 -0.07 -0.10 0.24 0.15 0.32 0.43 0.50 1.00 0.34 

LMB -0.19 -0.17 -0.17 -0.13 -0.08 -0.04 -0.03 -0.03 0.00 0.04 0.14 0.22 0.24 0.24 0.34 1.00 
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APPENDIX  II.  Mean, median, first and third quantiles of catch-per-effort for primary fish species captured in standardized MNDNR lake survey gill and 
trap-nets (1993-2011) by large-scale habitat (LSH) lake class. 

         Gillnet         

 
  

LMB 
   

NOP 
   

WAE 
   

SMB 
  

CLASS N Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 

A 107 0.07 0.00 0.00 0.00 2.33 2.75 0.00 5.42 2.51 3.00 0.00 7.83 0.18 0.00 0.00 0.00 
B 85 0.10 0.00 0.00 0.04 3.30 3.47 1.82 5.75 2.55 2.87 0.00 6.53 0.34 0.08 0.00 0.67 
C 71 0.13 0.00 0.00 0.17 3.83 4.39 2.50 8.00 1.75 1.00 0.00 4.50 0.09 0.00 0.00 0.00 
D 131 0.14 0.00 0.00 0.03 1.64 1.13 0.11 4.96 5.33 7.00 1.00 15.42 0.01 0.00 0.00 0.00 
F 187 0.19 0.00 0.00 0.25 3.49 4.00 1.50 8.00 0.48 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
H 311 0.25 0.12 0.00 0.36 5.08 5.38 3.12 8.65 2.40 2.63 0.83 5.00 0.02 0.00 0.00 0.00 
J 119 0.46 0.25 0.00 0.75 3.81 5.00 1.75 8.50 0.20 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
K 306 0.68 0.50 0.12 1.25 6.74 7.50 4.50 10.42 1.25 1.00 0.17 2.88 0.06 0.00 0.00 0.00 
L 334 0.71 0.52 0.24 1.25 7.24 8.00 5.32 11.00 1.09 0.95 0.11 2.18 0.01 0.00 0.00 0.00 
M 116 0.48 0.37 0.04 0.93 6.43 7.43 3.72 9.64 5.57 6.35 3.78 8.99 0.20 0.00 0.00 0.18 
N 164 1.03 0.94 0.48 1.76 6.88 7.19 4.71 11.32 4.43 5.02 2.70 7.28 0.15 0.00 0.00 0.02 
 

  
YEP 

   
TLC 

   
WTS 

      

CLASS N Mean Median Q25 Q75  Mean Median Q25 Q75  Mean Median Q25 Q75 
    

A 107 5.05 4.87 1.83 12.75 0.03 0.00 0.00 0.00 6.27 7.39 2.28 14.40 
    

B 85 4.75 5.00 0.91 11.05 0.56 0.00 0.00 0.68 2.53 3.04 0.51 5.60 
    

C 71 6.37 6.77 2.30 15.96 0.002 0.00 0.00 0.00 2.84 3.25 0.86 7.25 
    

D 131 15.84 16.39 7.78 38.67 0.00 0.00 0.00 0.00 0.94 0.17 0.00 2.33 
    

F 187 2.89 2.00 0.00 9.17 0.00 0.00 0.00 0.00 0.64 0.33 0.00 1.25 
    

H 311 12.61 13.40 5.14 28.90 0.08 0.00 0.00 0.00 1.35 0.83 0.17 3.22 
    

J 119 2.46 1.00 0.00 7.75 0.07 0.00 0.00 0.00 0.31 0.00 0.00 0.25 
    

K 306 5.72 5.20 1.60 14.19 0.45 0.00 0.00 0.35 0.96 0.67 0.08 2.17 
    

L 334 2.80 1.97 0.29 7.28 0.31 0.00 0.00 0.00 0.51 0.29 0.00 1.00 
    

M 116 20.50 22.40 11.15 41.87 1.53 1.44 0.01 4.07 2.11 2.27 1.16 3.84 
    

N 164 5.622 5.65 1.51 15.48 0.64 0.13 0.00 1.30 1.09 1.05 0.34 1.84 
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APPENDIX  II  continued. 
         Trapnet         

 
  

BLC 
   

BLG 
   

GSF 
   

PMK 
  

CLASS N Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 

A 107 0.07 0.00 0.00 0.00 0.28 0.00 0.00 0.09 0.02 0.00 0.00 0.00 0.23 0.00 0.00 0.03 

B 85 1.04 0.56 0.00 2.99 2.66 1.62 0.00 9.54 0.03 0.00 0.00 0.00 0.37 0.00 0.00 0.57 

C 71 1.05 0.67 0.00 2.74 2.66 2.29 0.00 12.72 0.01 0.00 0.00 0.00 1.12 0.84 0.00 2.74 

D 131 5.38 5.55 0.63 17.13 2.20 0.80 0.02 5.19 0.27 0.03 0.00 0.20 0.16 0.00 0.00 0.02 

F 187 4.60 4.67 1.50 9.46 14.07 16.50 6.11 39.50 0.22 0.00 0.00 0.11 1.30 1.22 0.17 2.67 

H 311 4.45 3.94 1.61 9.55 15.08 18.75 6.79 36.30 0.11 0.00 0.00 0.07 1.64 1.42 0.38 3.29 

J 119 1.45 1.06 0.00 3.11 10.12 15.67 1.67 33.00 0.11 0.00 0.00 0.00 1.86 1.67 0.00 4.75 

K 306 1.28 1.06 0.44 2.22 16.62 18.19 8.79 39.17 0.06 0.00 0.00 0.00 2.36 2.12 0.93 4.44 

L 334 1.50 1.17 0.56 2.71 27.64 29.37 15.66 52.68 0.22 0.00 0.00 0.22 3.03 2.83 1.50 5.55 

M 116 0.75 0.58 0.23 1.04 10.34 11.95 4.49 23.76 0.05 0.00 0.00 0.00 2.71 2.72 1.53 3.98 

N 164 1.18 1.00 0.51 1.81 26.72 30.45 17.96 41.81 0.12 0.03 0.00 0.15 2.86 2.90 1.76 4.39 

 
  

BLB 
   

YEB 
  

 RKB 
   

CAP 
  

CLASS N Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 Mean Median Q25 Q75 

A 107 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

B 85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.27 0.00 1.50 0.00 0.00 0.00 0.00 

C 71 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.14 0.00 0.00 0.00 0.00 

D 131 9.92 47.00 10.67 99.00 0.00 0.04 0.00 0.85 0.00 0.00 0.00 0.00 0.28 2.61 0.31 0.00 
F 187 1.12 0.78 0.00 9.00 0.01 0.17 0.00 1.48 0.03 0.00 0.00 0.00 0.04 0.00 0.00 0.00 

H 311 1.23 1.54 0.16 9.00 0.11 1.04 0.11 2.81 0.07 0.00 0.00 0.00 0.09 0.26 0.00 0.00 

J 119 0.19 0.00 0.00 0.00 0.08 0.00 0.00 1.24 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

K 306 0.10 0.00 0.00 0.00 0.08 0.11 0.00 1.33 0.64 0.43 0.00 1.17 0.00 0.00 0.00 0.00 

L 334 0.19 0.10 0.00 0.00 0.37 2.75 0.68 6.11 0.24 0.00 0.00 0.25 0.00 0.00 0.00 0.00 

M 116 0.02 0.00 0.00 0.00 0.04 0.39 0.05 1.60 1.64 1.44 0.59 3.12 0.00 0.00 0.00 0.00 

N 164 0.06 0.11 0.02 0.00 0.15 2.45 0.97 4.44 0.90 0.78 0.07 1.81 0.00 0.02 0.00 0.00 
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APPENDIX III.  Spatial distribution of residuals of from four models prediction walleye CPE in Minnesota lakes ( Ecological Lake 
Classification-ELC, Multiple regression-MR, Decision Tree-DT, and Decision Tree with Regression Tree Analysis-DT-RTA). A high positive 
standard deviation indicates lakes with observed CPE much higher than that predicted by the model. 
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APPENDIX IV.  Results of ArcMap hot spot analysis performed on residuals of four models ( Ecological Lake Classification-ELC, Multiple 
regression-MR, Decision Tree-DT, and Decision Tree with Regression Tree Analysis-DT-RTA) using Getis-Ord Gi* statistic Z score For 
quantifying lakes differing from a geographic random distribution pattern.  A high standard deviation indicates more intense clustering 
of lakes with high residual values. 
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STUDY ADDENDUM  
 
A geographical lake classification (7 classes) of 
Minnesota lakes derived from large-scale habitat 
classification (11 classes).  
 

Analysis of large-scale factors that structure fish 
communities in lakes across Minnesota prompted a 
more intuitive geographically based lake classification 
developed as a tool for analyzing and communicating 
intrinsic habitat related differences in fish populations. 
There is considerable merit in technically defined 
classifications that separate lakes into larger numbers 
of highly defined lake classes; however, potential 
applications can also be confounded in these systems 
due to small class sizes and interclass differences that 
may not be relevant or significant to the application. 
For example, the effects of changing climate conditions 
generally differ geographically and a large number of 
lakes can be required to achieve the statistical power to 
overcome the high amount of natural and seasonal 
variation associated with detecting change in 
ecological indicators (Sondergaard et al. 2016).  The 
concept for a geographic-based classification follows 
pioneering work by Moyle (1956, Figure  A1), Schupp 
(1992, Figure A1) and others (Peterson 1974) that 
describe influence on fish populations in lakes using 
empirically derived geographical regions.  This 
concept is still widely used by the Minnesota DNR, 
PCA, and other conservation organizations to 
characterize differences in fish communities among 
lakes.  Modern advances in geographic descriptions of 
land and water characteristic and improved 
assessments of fish populations have provided a means 
to update this concept with a discrete classification 
using widely adopted ecoregion boundaries as related 
to fish communities. 
 
APPROACH 

We sought to simplify the 11-class large-scale 
habitat (LSH) classification of Minnesota lakes 
developed in this Investigational Report, while 
retaining most of the predictive/explanatory power 
describing differences in fish communities among 
lakes quantified with principle component analysis 
(PCA).  The LSH classification was derived as a 
classification tree that could be easily simplified by 
pruning the lower branches explaining the least 
amount of fish community variation among lakes. 
We began with eliminating two terminal splits of 
lakes in the Northern Lakes and Forest ecoregion 
defined by latitude.  Latitude explained only a 
minor amount of the overall variation in fish 

 
 

communities among lakes and likely served 
primarily as a proxy for water temperature.  A similar 
rational was used to prune the terminal split of lakes 
in the LSH classification Canadian Shield and 
Superior Highlands ecoregion defined by air 
temperature.  Finally, because the LSH classified 
Northern Lakes ecoregion had low membership and 
was spatially disjunct, the split was eliminated to 
effectively combine lakes located in EPA Level IV 
Toimi Drumlins ecoregion (50p) with the Canadian 
Shield and Superior Highlands ecoregion (EPA level 
IV 50n and 50t) to cover most of the northeast 
Minnesota arrowhead region.  This modified 
ecoregion was termed Northeast Forest (Figure A2).  
Also, the few Northern Lakes ecoregion lakes 
located outside of the Toimi Drumlins were 
combined with LSH classified Northern Lake and 
Forest lakes, which were more aligned and in close 
proximity. This modified ecoregion was termed the 
Northcentral Forest (Figure A2).  Together these 
changes resulted in a more intuitive and coherent 
spatial distribution with minimal loss in the amount 
of explained variation in fish communities.  The 
three regions based on EPA level IV assignments and 
the final pruned geographic classification are 
depicted in Figures A2 and A3 respectively. 

Using the set of data previously described for 
LSH analyses (this Investigational Report) we 
calculated descriptive statistics summarizing large-
scale habitat variables and net catches for each 
geographical lake class. Median values were 
calculated for selected large-scale habitat variables 
and median values, along with quantiles, were 
calculated for fish species commonly assessed in 
gill and trap nets.  Also, random forest modeling 
implemented in R (The R Development Core Team 
2013) similar to that described for LSH analyses (this 
Investigational Report).  For each geographic lake 
class we modeled gill net CPE of Northern Pike, 
Walleye, Yellow Perch, and Black Crappie and trap 
net CPE of Bluegill using 10 predictor habitat 
variables (lake surface area, maximum depth, 
shoreline development/geometry, alkalinity, 
phosphorus, Secchi, average July maximum air 
temperature, watershed area:lake area ratio, watershed 
disturbance, and baseflow).  The percent of variation 
in fish catches explained by each model were used to 
assess model fitness and importance values (scaled 
average of prediction accuracy) for each predictor 
variable were used to identify variable influence in 
the model. 
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FIGURE A1.  Maps characterizing the geographic distribution of lake types defined by fish associations (on right; Moyle, 1956) and physical-chemical criteria 
(on left; Schupp 1992). 
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FIGURE A2.  Map of lake ecoregions used to define geographic lake classes. Fine black lines show EPA level 
IV ecoregion boundaries, bold black lines are county boundaries, and blue lines are outlines of major rivers. 
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FIGURE A3.  Classification tree used to define seven geographic lake classes of Minnesota lakes using lake ecoregion (from Figure 2), trophic status 
(Mesotrophic Secchi < 1.9m and Eutrophic > 1.9m), and lake area (eutrophic - < and > 150 acres; oligo-mesotrophic - < 63, 63-450, and > 450 
acres). 
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RESULTS AND DISCUSSION 
Variation in both large-scale physical habitat 

and corresponding fish communities in Minnesota 
lakes follows a geographical gradient from 
southwest to northeast defined by classification 
tree analysis.  A terminal node of lakes defined by 
the EPA IV prairie ecoregions (Prairie;P) located 
in southwest Minnesota are characteristically 
shallow, turbid, alkaline, and have watersheds that 
are highly agricultural (71% median row crop land 
cover in watershed; Table A1).  Fish communities 
in these lakes have abundant Black Bullhead and 
Common Carp, but can also have high abundances 
of Walleye, Black Crappie, and Yellow Perch 
(Table A2).  Another geographic lake class was 
defined at the opposite end of the geographic 
gradient with EPA level IV ecoregions confined to 
the Arrowhead region of northeast Minnesota 
(Northeast Forest).  These lakes are often bog 
stained and characteristically very low alkalinity 
with a median air temperature (July average 
maximum) 3°C cooler than lakes in the Prairie 
class (Table A1).  Lakes in the Northeast Forest 
class (NEF) also have watersheds with much less 
human disturbance and higher proportion of 
forested land cover than is typical of other 
Minnesota geographic lake classes (Table A1).  
Northeast Forest lakes characteristically contain 
fewer species and lower abundances with the 
exception of White Sucker (Table A2).  Many lakes 
in the region contain coldwater fish species 
(notably Lake Trout). However, coldwater species 
had little influence on the classification due the low 
frequency of occurrence in the net types used in 
our analyses.  Lakes in the Northeast Forest were 
also recognized as being distinct from other 
Minnesota lakes by Schupp (1993) who 
consequently classified them with a separate 
analysis.  A similar approach would likely provide 
a greater number of defined lake classes in the 
Northeast Forest.  A presence-absence analysis 
may be more appropriate than using PCA on 
continuously distributed CPE data for rarely 
occurring species.  

The large, center of the geographic southwest 
to northeast Minnesota geographical lake gradient 
was identified by a group of EPA Level IV 
ecoregions and collectively termed Northcentral 
Forest.  This geographically defined area contains 
a majority of Minnesota lakes, many of which 
rank as the most popular and highly used lakes in 

 
the state (Keeler et al. 2015).  Corresponding to 
differences in fish assemblages assessed with PCA, 
five different geographical lake classes were 
identified in the Northcentral Forest by classification 
tree analysis. Northcentral Forest lakes were 
separated based on differences in surface area and 
Secchi summarized in Figure A4.  The 1.9 m Secchi 
breakpoint corresponds with a Carlson Trophic State 
Indicator (TSI) value characterizing the break 
between mesotrophic and eutrophic conditions 
previously associated with changes in fish species 
composition in MNDNR fish surveys (Schupp and 
Wilson 1993). The three clear Northcentral Forest 
classes (Large Clear - LC, Medium Clear - MC, 
Small Clear - SC) have lakes located farther north, in 
areas of cooler air temperature, and have watersheds 
with less disturbance and higher forest cover (Table 
1) than the two turbid Northcentral Forest lake classes 
(Large Turbid - LT, Small Turbid - ST).  The three 
clear lake classes had fish communities with 
proportionately high abundances of bass, sunfish, 
Northern Pike, and Yellow Bullhead than the two 
turbid lake classes (Table A2). Finally, Northcentral 
Forest lakes classed with larger surface area 
contained proportionately more Yellow Perch and 
Walleye than the smaller lakes and also tended to 
have higher overall abundance of fish across more 
species (Table A2). 

Because a PCA defined fish assemblage 
gradient was used to identify geographic lake 
classes it is logical for these classes to account for 
significant differences in the relative abundance 
(Catch per Effort; CPE) of individual fish species 
used in the PCA. The amount of variation in the 
relative abundance of most fish species (CPE) 
explained with the 7-class geographic classes was 
very similar to that explained by the 11-class LSHC 
and for most species this was comparable to 
variation explained with the 1993 Ecological 
Classification (this Investigational Report 562, 
Table 8).  Species specific information on habitat 
relationships within each geographical lake class 
was demonstrated using random forest models with 
habitat variables to model CPE abundances for five 
selected common species of fish (YEP, WAE, 
BLC, BLG, and NOP).  The percent of variation in 
abundance accounted by random forest models for 
each species and variable importance ranking of 
each habitat variable helped identify the relevance 
of factors controlling the abundance of each 
species within each geographic lake class. 
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TABLE A1.  Number of lakes by geographic lake class and median values of selected large-scale habitat variables. N = number of lakes, SDI = shoreline development 
index, TA = total alkalinity. 

 N 
Depth 

(ft) 
Area 

(acres) 
Watershed: 
Lake Area SDI Forest Ag Disturbance 

UTM 
northing 

UTM 
easting 

Secchi 
(m) 

T.A. 
(mg/l) 

Average July 
Max. Air 

Temp. (C) 

LC 374 54 690.7 11.6 1.9 49% 9% 14% 5183025 379009 3.3 139 26.3 

LT 339 23 340.4 16.1 1.7 19% 41% 52% 5058439 435044 1.4 125 27.7 

MC 536 40 149.7 11.2 1.7 51% 8% 14% 5177440 408408 3.3 110 26.3 

NEF 248 19 133.2 10.3 2.0 80% 0% 0% 5292061 603147 2.2 19 24.9 

P 131 10 298.6 7.5 1.6 1% 64% 71% 4906701 331395 0.6 174 27.9 

SC 80 37 35.0 12.1 1.4 57% 4% 13% 5174143 445146 3.1 76 26.2 

ST 201 25 74.0 26.9 1.4 22% 12% 54% 5026008 468899 1.4 90 27.9 
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TABLE A2.  Median, 25% quantile, and 75% quantile of MNDNR Lake Survey gill net catch per effort (CPE) for selected fish species in Minnesota lakes by geographic class. 

GILL NET  

Median BLB BLC BLG BOF CAP CCF LMB MUE NOP PMK RKB SMB TLC WAE WHC WTS YEB YEP 
LC 0.07 0.81 3.67 0.00 0.00 0.00 0.75 0.00 7.47 1.25 0.97 0.00 0.21 4.68 0.00 1.33 2.06 9.13 
LT 7.03 4.54 2.17 0.00 0.06 0.00 0.12 0.00 5.67 0.14 0.00 0.00 0.00 2.68 0.00 0.83 0.37 12.33 
MC 0.04 1.00 3.00 0.00 0.00 0.00 0.50 0.00 7.75 0.33 0.00 0.00 0.00 0.50 0.00 0.33 0.50 3.00 
NEF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.30 0.00 0.00 0.00 0.00 2.61 0.00 4.35 0.00 5.16 
P 52.33 1.95 0.00 0.00 2.67 0.00 0.00 0.00 1.12 0.00 0.00 0.00 0.00 7.00 0.00 0.17 0.00 16.39 
SC 0.00 0.33 1.37 0.00 0.00 0.00 0.00 0.00 4.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.70 
ST 4.00 3.50 1.05 0.00 0.00 0.00 0.00 0.00 4.30 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 2.50 

25% Quantile                   
LC 0.00 0.33 1.17 0.00 0.00 0.00 0.22 0.00 4.71 0.35 0.10 0.00 0.00 2.10 0.00 0.39 0.39 2.50 
LT 0.33 1.72 0.46 0.00 0.00 0.00 0.00 0.00 3.07 0.00 0.00 0.00 0.00 0.83 0.00 0.17 0.00 4.70 
MC 0.00 0.25 0.67 0.00 0.00 0.00 0.17 0.00 4.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 
NEF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.26 0.00 0.00 0.00 0.00 0.00 0.00 1.02 0.00 1.72 
P 22.29 0.08 0.00 0.00 0.17 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 7.78 
SC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
ST 0.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 1.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

75% Quantile                   
LC 0.81 1.90 8.31 0.00 0.00 0.00 1.39 0.00 10.28 2.82 2.70 0.02 1.98 7.54 0.00 2.55 6.47 22.62 
LT 36.82 12.90 7.65 0.00 0.75 0.00 0.38 0.00 8.72 0.72 0.00 0.00 0.00 4.97 0.00 3.11 2.00 28.14 
MC 0.92 2.39 7.33 0.00 0.00 0.00 1.25 0.00 11.00 1.33 0.25 0.00 0.00 1.79 0.00 1.11 3.56 10.03 
NEF 0.00 0.33 0.17 0.00 0.00 0.00 0.00 0.00 6.15 0.06 0.15 0.25 0.00 6.47 0.00 10.24 0.00 13.31 
P 109.67 10.03 0.46 1.11 9.69 0.31 0.03 0.00 4.96 0.00 0.00 0.00 0.00 15.42 0.07 2.33 0.00 38.67 
SC 2.40 2.00 4.31 0.00 0.00 0.00 0.67 0.00 7.73 0.59 0.00 0.00 0.00 0.00 0.00 0.25 0.17 8.28 
ST 26.97 10.33 6.94 0.00 0.06 0.00 0.25 0.00 8.39 0.33 0.00 0.00 0.00 1.00 0.00 1.33 0.50 9.97 

TABLE A2 continued on next page.
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TABLE A2 continued. 

TRAP NET 

Median BLB BLC BLG BOF BRB CAP CCF LMB NOP PMK RKB SMB WAE WTS YEB YEP 
LC 0.04 0.81 22.56 0.27 0.19 0.00 0.00 0.56 0.61 2.73 0.83 0.00 0.27 0.07 1.52 0.68 
LT 1.22 3.62 18.50 0.27 0.17 0.22 0.00 0.18 0.55 1.42 0.00 0.00 0.25 0.11 1.02 0.71 
MC 0.00 1.16 24.28 0.00 0.07 0.00 0.00 0.44 0.60 2.72 0.00 0.00 0.04 0.00 0.87 0.33 
NEF 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.33 0.52 0.00 0.78 
P 47.00 5.55 0.80 0.00 0.00 2.61 0.00 0.00 0.32 0.00 0.00 0.00 1.25 0.17 0.04 1.55 
SC 0.00 0.89 9.41 0.00 0.00 0.00 0.00 0.22 0.22 1.11 0.00 0.00 0.00 0.00 0.00 0.15 
ST 0.78 4.65 15.97 0.00 0.00 0.00 0.00 0.11 0.44 1.03 0.00 0.00 0.00 0.00 0.17 0.28 

25% Quantile                 
LC 0.00 0.41 11.44 0.00 0.04 0.00 0.00 0.23 0.34 1.59 0.22 0.00 0.12 0.00 0.33 0.22 
LT 0.11 1.33 6.80 0.00 0.00 0.00 0.00 0.06 0.30 0.44 0.00 0.00 0.03 0.00 0.11 0.22 
MC 0.00 0.44 12.33 0.00 0.00 0.00 0.00 0.12 0.33 1.11 0.00 0.00 0.00 0.00 0.00 0.08 
NEF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.06 0.00 0.22 
P 10.67 0.63 0.02 0.00 0.00 0.31 0.00 0.00 0.01 0.00 0.00 0.00 0.17 0.00 0.00 0.54 
SC 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
ST 0.00 1.43 6.18 0.00 0.00 0.00 0.00 0.00 0.17 0.17 0.00 0.00 0.00 0.00 0.00 0.00 

75% Quantile                 
LC 0.18 1.53 37.20 0.72 0.58 0.04 0.00 1.02 0.91 4.25 2.08 0.00 0.49 0.28 3.81 1.65 
LT 11.03 8.55 35.47 0.80 0.80 1.11 0.00 0.40 0.91 3.32 0.00 0.00 0.56 0.48 2.89 1.85 
MC 0.22 2.53 46.78 0.50 0.44 0.00 0.00 0.89 0.94 5.28 0.67 0.00 0.19 0.06 3.67 1.03 
NEF 0.00 1.11 3.15 0.00 0.00 0.00 0.00 0.04 1.25 0.65 0.39 0.04 0.80 1.77 0.00 1.86 
P 104.23 17.13 5.19 0.00 0.00 5.81 0.08 0.11 0.91 0.02 0.00 0.00 2.47 0.77 0.85 4.04 
SC 1.65 2.83 30.05 0.00 0.11 0.00 0.00 0.67 0.67 4.71 0.00 0.00 0.00 0.06 0.71 1.57 
ST 12.00 9.13 39.19 0.27 0.33 0.33 0.00 0.40 0.83 2.67 0.00 0.00 0.17 0.27 1.50 1.15 
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FIGURE A4.  Distribution of lakes of the five Northcentral Forest Ecoregion geographic lake classes by lake area 
(acres) and Secchi depth (meters).  The dashed lines indicate lake area and Secchi depth criteria defining 
membership in each of the five classes. 
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For NOP we found that large-scale habitat variables 
could account for little additional variation in CPE 
within geographic lake classes (Table A3).  In contrast, 
a large amount of variation in Walleye CPE within 
geographic lake classes was explained with lake area, 
except in Northcentral Forest ecoregion lake classes 
defined with small lake area (SC and ST) and the Prairie 
lake class.  Most Prairie lakes are heavily stocked with 
Walleye, which combined with sporadic winterkill, 
likely cloud many habitat associations.  Variation in 
bluegill CPE within three Northcentral Forest ecoregion 
lake classes (LT, LC, and MC) and in the Northeast 
Forest lake classes primarily corresponded with air 
temperature differences.  Similarly, air temperature was 
ranked with relatively high importance in random forest 
models of Black Crappie and Yellow Perch CPE in 
Northeast Forest lakes and large Northcentral Forest 
lakes.  In addition, in large Northcentral Forest lakes, 
alkalinity was a factor of high importance for both Black 
Crappie and Yellow Perch while Secchi also relatively 
important in Black Crappie models and lake area in YEP 
models.  Lake area was also a variable with high 
importance explaining variation in YEP abundance in 
Northeast Forest lakes, along with maximum lake depth.  
In summary, large-scale factors can account for 
variation in CPE of some fish species not explained by 
the geographic lake class, but it is significant to note that 
these habitat relationships are often not constant across 
lake classes. Consequently, knowledge of different 
species - habitat associations within the different 
geographic lake classes could increase efficiencies in 
research or management strategies.  For example, 
Yellow Perch and Black Crappie management strategies 
might be changed based on alkalinity, temperature, and 
Secchi differences in LT and LC geographic lake classes. 

Previous studies addressing habitat factors 
influencing fish populations in Minnesota lakes have 
identified strong relationships with lake depth, 
alkalinity, and temperature (Moyle 1956; Peterson 
1974; Schupp 1992; Stefan et al. 1996; and Valley et al. 
2004).  In general, these variables are strongly 
associated with “geographic” habitat variables 
describing variation in MN lake fish communities 
(ecoregion, lake area, and Secchi).  These geographical 
differences are most obvious between lakes in the 
Northeast Forest and Prairie ecoregions that strongly 
correspond to vast differences in alkalinity, 
temperature, and depth (Moyle 1956, Heiskary and 
Wilson 2008).  Also, differences among Northcentral 
Forest lake classes defined by Secchi, correspond 
closely with depth (deeper lakes with deeper Secchi)  

and temperature (cooler lakes with deeper Secchi). 
Strong associations between Secchi and depth, land 
cover, and geo-climatic factors are well documented by 
Johnston and Shmagin (2006).  Although geographically 
defined lake classes were effective at explaining general 
differences in fish communities found across Minnesota 
lakes, the influence of specific large-scale habitat factors 
on the relative abundance  of individual fish species was 
also important (e.g. Bluegill abundance strongly 
associated with temperature differences within Northeast 
Forest and Northcentral Forest large and medium size 
lakes).  While considerable variation in fish community 
composition can be characterized at a broad geographic 
scale, any attempt to understand the abundance of 
individual species must account for more specific 
habitat influences and interactions with other fish 
species.  The geographic lake classification was based 
on observational data describing fish communities, so 
cause and effect habitat relationships cannot be 
explicitly identified.  However, causal inferences can be 
made with increased confidence when knowledge of 
geographic lake class differences is combined with other 
studies (e.g. Jacobson et al. 2017). 

In summary, seven geographically defined lake 
classes explain variation in fish communities more 
parsimoniously than the 11 classes resulting from 
previous analyses of key large-scale habitat influences 
on Minnesota lake fish communities.  A distinct 
advantage of the 7-class geographical scheme is that its 
descriptor variables are commonly used and widely 
available to both technical and nontechnical audiences.  
All three descriptors, location (ecoregion), size, and 
trophic status (Secchi) are featured in datasets marketed 
to the public at MNDNR LakeFinder.  Although a large 
amount of variation among lakes is explained with 7 
lake classes, relationships expressed on a general 
geographical bases still contain exceptions as stated by 
Moyle (1956). Nonetheless, geographic lake classes 
document a quantitative breakdown of lakes 
characterizing associations between habitat and fish 
assemblages.  Consequently, geographic classes provide 
a template for examining differences between lakes 
relating to perturbation or management activities on a 
more comparative basis.  In essence, because 
geographical lake classes are based on fish assemblage 
similarities they are well suited for use as stated by 
Schupp (1992) for ecological lake classes:  “Analyzing 
results from a holistic viewpoint rather than from the 
single species approach so common until now should 
lead to management recommendations that have a 
higher probability of success.” 
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TABLE A3.  Variable importance and percent of variation explained in random forest models using ten large-scale 
habitat variables to explain variation in CPE of five selected fish species by geographic lake class. 

 LC MC SC LT ST P NEF 

  Yellow Perch    
Lake Area 22.4 2.8 1 9.1 7.9 0.3 20 
Maximum Depth 9.7 15.3 0.9 7.4 4.1 0.5 27.4 
Shoreline Development 6.2 -0.4 5 7.5 6 -4 1.1 
Alkalinity 21.6 23.6 3.9 15.1 5.6 0 8.2 
Phosphorus 21.3 3.7 3.2 6.5 1.8 -1.3 2 
Secchi 12.1 8.8 0.6 5.6 2.7 -0.9 12.1 
Air Temperature 29.3 25.3 11 9.1 12.6 5.4 3.3 
Watershed Area 3.4 1.1 -1.2 5.2 -1.9 3.9 -2.7 
Watershed Disturbance 11.6 11.9 3.7 7.4 8.1 5.7 0.8 
Baseflow 6.4 17.2 4.3 1.6 -1.8 2.4 6.8 
% Variation 34.4 19 8.1 13.1 7.7 -10.3 22.9 

  Bluegill    
Lake Area 9.2 2.2 2.2 4.5 10.7 -0.3 12.7 
Maximum Depth 5.6 5 -0.2 13.1 -0.2 13.5 3.6 
Shoreline Development 2 -0.3 -1.7 3.2 2.4 -0.4 7.9 
Alkalinity 13.2 9 2.2 12.2 9.2 1.2 13.1 
Phosphorus 15.8 4.6 -0.4 14 0.4 6.2 5.5 
Secchi 8.3 8.9 -4.6 9.4 -0.1 9.4 3.2 
Air Temperature 30.2 27.7 -2 33.1 12.3 5 22.7 
Watershed Area 9.1 9.5 -3.5 13 3.5 3 2.5 
Watershed Disturbance 11.7 12.9 2.7 16.6 17.4 -1.6 11.1 
Baseflow 4.2 13.3 -1.5 6.2 1.6 20.3 21.3 
% Variation 24.4 18 -11.7 37.3 21.4 30.7 34.4 

  Black Crappie    
Lake Area 4.8       
Maximum Depth 16 7.9 -0.8 8.1 -1.1 -1.8 6.2 
Shoreline Development 2.1 4.5 1.1 2.2 -0.1 2.6 5.7 
Alkalinity 18.2 16.7 4 20.4 4.3 0.2 4 
Phosphorus 4.8 2 4.6 1 10 0.1 -0.3 
Secchi 14.8 13 -3.8 16.8 5.6 0.6 3.9 
Air Temperature 14.8 9 1.4 29.2 4.5 -1.5 10.4 
Watershed Area 4.8 3 -3 11.1 4.2 -3.2 -1.4 
Watershed Disturbance 11.4 5.2 1.5 12.5 7.5 1.2 9.1 
Baseflow 10.8 6.6 -2.3 5.8 2.1 7.3 9.6 
% Variation 26.9 10 -14.1 36.1 6.8 -10.6 10.1 
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TABLE A3 continued. 

 LC MC SC LT ST P NEF 

  Walleye    
Lake Area 34.5 24.4 -2.1 28.5 9.5 7.9 34.6 
Maximum Depth 10.2 -0.6 3.4 -1.1 -0.2 4.7 2.7 
Shoreline Development 13.5 16.9 -1.2 4.4 1.6 -3.2 8 
Alkalinity 23.3 13.1 2.7 9.9 3.1 0.4 3.2 
Phosphorus 7 6.7 0.4 5 1.7 4 9.6 
Secchi 8.1 5 -0.4 -0.9 -1.2 2.3 1 
Air Temperature 13 13.5 10.8 3.4 7.7 -0.5 4.6 
Watershed Area 1.4 5.4 1.4 2.8 -4 1 1.3 
Watershed Disturbance 11.2 3.8 -1.1 7.3 5.6 3 6.3 
Baseflow 6.2 8.7 2.1 3 0.8 0.9 3.8 
% Variation 33.7 19 4.8 14.4 -1.5 2.3 29.2 

  Northern Pike    
Lake Area 7.3 3.8 0.1 -1.1 24 1 4.2 
Maximum Depth 12.8 8.8 -3.1 5.4 -0.6 -0.8 10.4 
Shoreline Development 3.1 -2.1 3.1 2.4 0.9 2 0.7 
Alkalinity 13.9 4.8 9.6 5.3 1.4 -2.3 11.2 
Phosphorus 1.5 3.2 -0.9 10.9 0.1 0 2.3 
Secchi 2.5 1.5 3 4.8 0.3 -2.2 9.9 
Air Temperature 11.3 4.9 13.5 6.7 3.2 -1.1 0 
Watershed Area 4.4 3.3 4.8 1.2 2.1 13.1 2.7 
Watershed Disturbance 5.1 5.7 2.1 7.2 5.2 -0.3 2.3 
Baseflow 10.7 7.8 1.9 5.3 -6 5.4 7.5 
% Variation 8.5 1.8 13.7 1.2 10.9 1.2 8.5 
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