“Splash” Multidisciplinary Classroom Activities

Teachers guide for the Young Naturalists article “Splash” by Mary Hoff, with illustrations by Bill Reynolds. Published in the September–October 2013 Minnesota Conservation Volunteer, or visit www.mndnr.gov/young_naturalists/splash.

Young Naturalists teachers guides are provided free of charge to classroom teachers, parents, and students. This guide contains a brief summary of the article, suggested independent reading levels, word count, materials list, estimates of preparation and instructional time, academic standards applications, preview strategies and study questions overview, adaptations for special needs students, assessment options, extension activities, Web resources (including related Minnesota Conservation Volunteer articles), copy-ready study questions with answer key, and a copy-ready vocabulary sheet and vocabulary study cards. There is also a practice quiz (with answer key) in Minnesota Comprehensive Assessments format. Materials may be reproduced and/or modified to suit user needs. Users are encouraged to provide feedback through an online survey at www.mndnr.gov/education/teachers/activities/ynstudyguides/survey.html.

*S All Minnesota Conservation Volunteer articles published since 1940 are now online in searchable PDF format. Visit www.mndnr.gov/magazine and click on past issues.

Summary

“Splash” begins with a brief description of the natural water cycle. Readers are then walked, step-by-step, through the technology of rural and urban domestic water systems. The article concludes with water conservation strategies in pictures and words. Note: “Splash” connects especially well with fourth and eighth grade earth and space science standards for the water cycle and human interaction with it.

Suggested reading levels: Third through middle school grades

Total words: 1,632

Materials: “The Wonder of Water” Young Naturalists article (See Related Reading); free materials from the Minnesota Department of Health on the hydrologic cycle, drinking water, and water contamination (See Web Resources); paper, poster board, colored pencils, crayons, pens, markers; print and online resources your media specialist may provide

Preparation time: One to two hours, not including time for extension activities

www.mndnr.gov/young_naturalists/splash
Estimated instructional time:

One or two 50-minute class periods (not including extensions)

“Splash” may be applied to the following Minnesota Department of Education standards:

Language Arts

Reading Benchmarks

Informational Text 3–8
- Key Ideas and Details
- Craft and Structure
- Integration of Knowledge and Ideas
- Range of Reading and Level of Text Complexity

Writing Benchmarks 3–8
- Text Types and Purposes
- Writing Process
- Research to Build and Present Knowledge
- Range of Writing

Reading Benchmarks: Literacy in Science and Technical Subjects 6–8
- Key Ideas and Details
- Craft and Structure
- Integration of Knowledge and Ideas
- Range of Reading and Level of Text Complexity

Writing Benchmarks: Literacy in History/Social Studies, Science and Technical Subjects 6–8
- Text Types and Purposes
- Writing Process: Production and Distribution of Writing
- Research to Build and Present Knowledge
- Range of Writing

Science

Grades 4, 5, and 7
- Life Science
 - 5.4.2.1.2; 5.4.4.1.1; 7.4.2.1.2;
 - 7.4.2.1.3;
- The Nature and Science of Engineering
 - 4.1.2.1.1; 6.1.2.1.1; 6.1.3.1.1;
 - 8.1.3.3.3;
- Earth and Space Science
 - 4.3.2.3.1; 4.3.4.1.1; 5.3.4.1.3;
 - 8.3.2.1.3; 8.3.2.3.1; 8.3.2.3.2;
 - 8.3.4.1.2
- Physical Science
 - 6.2.1.2.1; 6.2.1.2.3

Arts

Grades K–12
- 1. Artistic Foundations: Visual Arts
- 2. Artistic Process: Create or Make: Visual Arts
- 3. Artistic Process: Perform or Present: Visual Arts
- 4. Artistic Process: Respond or Critique: Visual Arts

Current, complete Minnesota Academic Standards are available at www.education.state.mn.us. Teachers who find other connections to standards are encouraged to contact Minnesota Conservation Volunteer.
Preview

(1) Ask students to preview the illustrations in “Splash.” Follow with class discussion of water and water use. Ask students to predict what they will learn from the article. (2) Another preview strategy is KWL (Ogle, 1986). To find out what your students already know (K) about water, water use, the water cycle, and water treatment, ask small groups to brainstorm their ideas. Then combine the groups’ data to make a class list. Repeat step one by asking what students would like to learn (W). As you read and discuss the article you will begin to compile the (L) list, or what they learn while reading the article and related materials and participating in extension activities. Display your K and W ideas on poster board or paper. See www.teach-nology.com/web_tools/graphic_org/kwl for a KWL generator that will produce individual organizers for your students. KWL gives you the opportunity to introduce interdisciplinary connections you will make during extension activities. If you use the article in math or art class, you may wish to focus your prereading discussion on academic standards that apply for that class. (3) You may access prior knowledge with a brainstorming web. You may download a printable web at www.teachervision.fen.com/tv/printables/TCR/0743932080_007.pdf.

Vocabulary preview

See the copy-ready vocabulary list included in this guide. You may wish to modify the list based on your knowledge of your students’ needs or the subject you are teaching. Pretesting vocabulary individually, in small groups, or with your entire class can be an effective vocabulary preview strategy. You may then post-test at the conclusion of this activity (see Assessment section below). Italicized words are not generally included on the list or in the study cards. Pay particular attention to italicized words, most of which are defined within the article.

You may wish to use the study cards found at the end of this guide. Cut along the horizontal line, fold in the middle, and tape or staple. Study cards (see Strategic Tutoring, Hock, Deshler, and Schumaker 2000) can be applied to any subject area. On one side of the card, in large letters, write a key word or phrase students are expected to know. In smaller letters, frame the word or phrase in a question or statement. On the other side of the card, in large letters, write the answer to the question. Finally, in smaller letters, frame the answer in a question or statement. Blanks are provided to allow you or your students to add new words or phrases.

Study questions overview

Study questions parallel the story (the answer to the first question appears first in the article, followed by the second, and so on). Preview the questions with your class before you read the article. You may wish to read the story aloud and complete the study questions in class, in small groups, or as an independent activity. The questions may be assigned as homework, depending on the reading ability of your students. Inclusion teachers may provide more direct support to special needs students (see Adaptations section). The study questions may be also used as a quiz. Note: Some items simply require finding the answer. Items with an asterisk require varying degrees of critical thinking.

Adaptations

Read aloud to special needs students. Abbreviate the study questions or highlight priority items to be completed first. If time allows, remaining items may be attempted. Peer helpers, paraprofessionals, or adult volunteers may lend a hand with the study questions. With close teacher supervision, cooperative groups can also offer effective support to special needs students, especially for extension activities.

Assessment

You may use all or part of the study guide, combined with vocabulary, as a quiz. Other assessment ideas include: (1) Students may compare and contrast self-contained systems most often used in rural residences and businesses with urban water systems. See compare and contrast tools in Web resources. (2) Students may write
Assessment continued

multiple-choice, true-false, or short-answer questions. Select the best items for a class quiz. (3) Students may write essays on a main idea, such as the water cycle, country water, or city water. (4) Poster presentations may supplement or take the place of essays. Students may work in small groups with each group focusing on a main idea from the article.

Extension activities

1. “The Wonder of Water,” also by Mary Hoff, is an excellent companion piece for “Splash.” See Related Articles for link.
2. Schedule a visit to your local water treatment/waste treatment facility. Your students will be amazed at what they see (and smell). Most public water/waste facilities welcome visitors. The U.S. Environmental Protection Agency offers a virtual tour of a water treatment plant on its website, and the Minnesota Department of Health and Minnesota Pollution Control Agency offer online resources you can use in conjunction with your field trip. See Web Resources for links.
3. The Clean Water Act was landmark legislation when it passed in 1972. Challenge your students to connect the consequences of the act with current water use/pollution issues. See Web Resources for links.
4. The availability of fresh water resources around the world is a limiting factor for human development. See the NASA website under “Web Resources” for a classroom activity that will help your students understand just how precious fresh water is.
5. The Minnesota Pollution Control Agency is our state’s primary protector of environmental quality. Explore the MPCA website (www.pca.state.mn.us) for water-related information, including the link to EPA’s Safe Drinking Water Query.
6. Analyze your school’s water use and develop a plan to conserve water. The water conservation links below will help you get started.

Web resources

DNR
www.dnr.state.mn.us/healthyrivers/index.html
www.dnr.state.mn.us/adoptriver/index.html
www.dnr.state.mn.us/waters/index.html

Minnesota Pollution Control Agency
www.pca.state.mn.us/index.php/water/index.html

Domestic water
ga.water.usgs.gov/edu/wudo.html

Water conservation
www.csa.com/discoveryguides/water/overview.php
wateruseitwisely.com/100-ways-to-conserve/
www.epa.gov/oaintrnt/water/

Water towers
www.howstuffworks.com/water.htm
Web resources continued

Water treatment
water.epa.gov/learn/kids/drinkingwater/watertreatmentplant_index.cfm
water.epa.gov/learn/kids/drinkingwater/gamesandactivities.cfm
water.epa.gov/drink/tour/index.cfm (virtual tour of water treatment plant)
www2.epa.gov/nutrientpollution/problem

Clean Water Act
www.epa.gov/agriculture/lcwa.html
water.epa.gov/action/cleanwater40/
www.eoearth.org/view/article/151133/

Freshwater resources
www.globalchange.umich.edu/globalchange2/current/lectures/freshwater_supply/freshwater.html
www.unwater.org/statistics_res.html
ga.water.usgs.gov/edu/earthwherewater.html
pmm.nasa.gov/education/browse?type=lesson_plan (classroom activity)

Compare and contrast
www.readwritethink.org/files/resources/interactives/compcontrast/
www.manatee.k12.fl.us/sites/elementary/samoset/rcccon1.htm
www.readingquest.org/strat/compare.html

Minnesota DNR teacher resources
www.mndnr.gov/education/teachers/index.html
www.mndnr.gov/dnkids/index.html

*Note: All websites were active at the time of this guide’s publication. However, some may no longer be active when this guide is accessed.

Related Articles
In addition to the related YN articles listed below, every Minnesota Conservation Volunteer article published since 1940 is now online in searchable PDF. See webapps8.dnr.state.mn.us/volunteer_index.

March–April 1990
“Ten Ways to Save Minnesota’s Wetlands”
webapps8.dnr.state.mn.us/volunteer_index/past_issues/article_pdf?id=1466

May–June 1991
“A River is a Watershed”
webapps8.dnr.state.mn.us/volunteer_index/past_issues/article_pdf?id=92

January–February 1995
“Wastewater Woes”
webapps8.dnr.state.mn.us/volunteer_index/past_issues/article_pdf?id=1781
Related Articles

July–August 2000
“Muscle Bound in Minnesota” (Young Naturalists article)
www.dnr.state.mn.us/young_naturalists/mussels/index.html

July–August 2005
“The Wonder of Water” (Young Naturalists article with teachers guide)
www.dnr.state.mn.us/young_naturalists/water/index.html

March–April 2008
“Gauging Groundwater”
webapps8.dnr.state.mn.us/volunteer_index/past_issues/article_pdf?id=3590

July–August 2008
“A Most Amazing River” (Young Naturalists article with teachers guide)
www.dnr.state.mn.us/young_naturalists/mississippi/index.html

March–April 2010
“Water Opinions”
webapps8.dnr.state.mn.us/volunteer_index/past_issues/article_pdf?id=5488

References

Study Questions

1. You and everyone in your family use about _____ to _____ gallons of fresh water every day.

2. Most of the water in Minnesota’s lakes, wetlands, streams, rivers, and aquifers arrives in the form of __________ or __________.

3. The illustration on page 35 depicts the natural water cycle. Describe the water cycle in your own words.
 __
 __
 __
 __

4. True or false? Most of Minnesota’s water is found in lakes. True False

5. Explain why water is necessary for all plants and animals. ____________________________________
 __

6. Is water more important to aquatic or nonaquatic plants and animals? Explain your answer.
 __
 __
 __

7. What is the purpose of a septic system? __
 __

8. Number the following in the correct sequence:
 _________ Water flows out of a faucet.
 _________ An electric pump is attached to the well pipe.
 _________ A well is drilled to tap water from an aquifer.
 _________ A pressure tank fills pipes with water.
 _________ A pump draws water from the well into a pressure tank.

9. Minneapolis and St. Paul get their water from __
10. Draw lines to connect the terms in the left hand column with its matching term in the right hand column:

- water main
- fluoride
- drinking water treatment
- chloride
- floc
- water tower
- process for cleaning water
- clumps of dirt particles
- kills germs in the water
- large pipe
- stores clean water
- helps prevent tooth decay

11. What force of nature moves clean water from a water tower to your home? ________________

12. Write the following terms in the correct column:

septic tank - sewer - wastewater treatment plant - drain field -
distribution box - 13-foot-diameter pipes - millions of gallons per day - hundreds of gallons per day

<table>
<thead>
<tr>
<th>Rural Waste</th>
<th>Urban Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____________</td>
<td>_____________</td>
</tr>
</tbody>
</table>

13. What is a “natural filter,” and how does it work? __
__
__

14. Select an example of water conservation from page 40. Explain how your example saves fresh water.

Example: __

How it saves water: __
__

15. What does the third example on page 41 mean? ___
__
__

Challenge: How may air pollution be related to water pollution? _______________________________
__
__

MINNESOTA CONSERVATION VOLUNTEER
1. You and everyone in your family use about 80 to 100 gallons of fresh water every day.

2. Most of the water in Minnesota’s lakes, wetlands, streams, rivers, and aquifers arrives in the form of rain or snow.

*3. The illustration on page 35 depicts the natural water cycle. Describe the water cycle in your own words. Answers may vary. The big idea is the unbroken sequence of precipitation, runoff/infiltration, and evapotranspiration/evaporation.

4. True or false? Most of Minnesota’s water is found in lakes. True False

5. Explain why water is necessary for all plants and animals. Animals need water to transport nutrients, energy and oxygen to every part of their bodies, and to flush wastes from their bodies. Plants need water to transport food from roots to shoots. For aquatic plants and animals water is an essential part of their habitats.

*6. Is water more important to aquatic or non aquatic plants and animals? Explain your answer. Answers will vary. Encourage creativity.

7. What is the purpose of a septic system? A septic system returns wastewater from a rural home or business to the ground.

*8. Number the following in the correct sequence:

5 Water flows out of a faucet.
2 An electric pump is attached to the well pipe.
1 A well is drilled to tap water from an aquifer.
4 A pressure tank fills pipes with water.
3 A pump draws water from the well into a pressure tank.

9. Minneapolis and St. Paul get their water from the Mississippi River.

*10. City water system match. Draw lines to connect the terms in the left hand column with its matching term in the right hand column:

water main - large pipe
fluoride - helps prevent tooth decay
drinking water treatment - process for cleaning water
chloride - kills germs in the water
floc - clumps of dirt particles
water tower - stores clean water

11. What force of nature moves clean water from a water tower to your home? gravity

*12. Write the following terms in the correct column:

Rural Waste: septic tank, drain field, distribution box, hundreds of gallons per day
Urban Waste: wastewater treatment plant, sewer, 13-foot-diameter pipes, millions of gallons per day

13. What is a “natural filter,” and how does it work? A natural filter is a wetland that collects runoff and removes soil and nutrients, or porous sand and gravel that filters pollutants as water flows toward the aquifer.

*14. Select an example of water conservation from page 40. Explain how your example saves fresh water. Example: Answers will vary.

How it saves water: Answers will vary.

*15. What does the third example on page 41 mean? Do not pour medicine down the drain.

*Challenge: How may air pollution be related to water pollution? Refer to the water cycle. Pollutants, such as mercury from coal-fired power plants, fall to Earth in rain and snow.
“Splash”—Teachers Guide

Minnesota Comprehensive Assessments Practice Items
Teachers guide for the Young Naturalists article “Splash” by Mary Hoff, with illustrations by Bill Reynolds. Published in the September–October 2013 Minnesota Conservation Volunteer, or visit www.mndnr.gov/young_naturalists/splash.

Name ___ Period _________ Date_________________

1. To conserve fresh water use in your home you can
 A. chill drinking water in the refrigerator.
 B. use a rain barrel to collect water for your garden.
 C. take a shower instead of a bath.
 D. do all of the above.

2. What is a distribution box?
 A. A distribution box sends messages to the septic tank.
 B. A distribution box sends water to pipes in the drain field.
 C. A distribution box sends water to the septic tank.
 D. None of the above

3. Sand and gravel are _____________ filters.
 A. carbon
 B. active
 C. biological
 D. natural

4. Describe how a country water system works. __
 __
 __
 __

5. An aquifer is found
 A. far underground.
 B. in cumulus clouds.
 C. in large coolers.
 D. at the bottom of deep lakes.
1. To conserve fresh water use in your home you can D. do all of the above.

2. What is a distribution box? B. A distribution box sends water to pipes in the drain field.

3. Sand and gravel are D. natural filters.

4. Describe how a country water system works. There are three main components of a rural water system: a well, a pump, and a pressure tank. The pump draws water from the well into the pressure tank. Pressure from the tank pushes water through pipes in the house and out the faucets.

5. An aquifer is found A. far underground.
“Splash”—Teachers Guide

Teachers guide for the Young Naturalists article “Splash” by Mary Hoff, with illustrations by Bill Reynolds. Published in the September–October 2013 *Minnesota Conservation Volunteer*, or visit www.mndnr.gov/young_naturalists/splash.

<table>
<thead>
<tr>
<th>Vocabulary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>aquatic</td>
<td>living in or near water</td>
</tr>
<tr>
<td>chlorine</td>
<td>chemical derived from salt, used in water treatment to prevent</td>
</tr>
<tr>
<td></td>
<td>waterborne diseases</td>
</tr>
<tr>
<td>condensation</td>
<td>change from gas to liquid state</td>
</tr>
<tr>
<td>diameter</td>
<td>length of a line through the center of a circle</td>
</tr>
<tr>
<td>evaporation</td>
<td>process whereby water changes from liquid to vapor</td>
</tr>
<tr>
<td>evapotranspiration</td>
<td>sum of evaporation from Earth’s surface from the soil and</td>
</tr>
<tr>
<td></td>
<td>plants</td>
</tr>
<tr>
<td>fluoride</td>
<td>salt compound added to drinking water to help prevent tooth</td>
</tr>
<tr>
<td></td>
<td>decay</td>
</tr>
<tr>
<td>gravity</td>
<td>natural force that gives weight to objects with mass and causes</td>
</tr>
<tr>
<td></td>
<td>them to fall to the ground</td>
</tr>
<tr>
<td>habitat</td>
<td>home environment of a plant or animal</td>
</tr>
<tr>
<td>infiltration</td>
<td>when water from precipitation or snowmelt enters the soil</td>
</tr>
<tr>
<td>nutrients</td>
<td>chemicals that plants and animals need to live and grow</td>
</tr>
<tr>
<td>runoff</td>
<td>precipitation and snowmelt not absorbed by the soil</td>
</tr>
<tr>
<td>water cycle</td>
<td>(hydrologic cycle or the H₂O cycle) the continuous movement</td>
</tr>
<tr>
<td></td>
<td>of water on, above and below the surface of Earth</td>
</tr>
<tr>
<td>What are aquatic organisms?</td>
<td>Organisms that live in or near water are</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>What is chlorine?</td>
<td>A chemical derived from salt, used in water treatment to prevent waterborne diseases, is</td>
</tr>
<tr>
<td>Condensation is</td>
<td>To change from a gas to a liquid state is</td>
</tr>
<tr>
<td>The diameter of a circle is the</td>
<td>The length of a line through the center of a circle is its</td>
</tr>
<tr>
<td>What is evaporation?</td>
<td>The process whereby water changes from liquid to vapor is called</td>
</tr>
<tr>
<td>Evapotranspiration is the sum of</td>
<td>The sum of evaporation from Earth’s surface from the soil and plants is</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>What is fluoride?</td>
<td>A salt compound added to drinking water to help prevent tooth decay is called</td>
</tr>
<tr>
<td>What is gravity?</td>
<td>A natural force that gives weight to objects with mass and causes them to fall to the ground is called</td>
</tr>
<tr>
<td>What is a habitat?</td>
<td>The home environment of a plant or animal is its</td>
</tr>
<tr>
<td>Water infiltration happens when</td>
<td>When water from precipitation or snowmelt enters the soil it is called</td>
</tr>
<tr>
<td>Question</td>
<td>Answer</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>What are nutrients?</td>
<td>Chemicals that plants and animals need to live and grow are called</td>
</tr>
<tr>
<td>What is runoff?</td>
<td>Precipitation and snowmelt not absorbed by the soil is called</td>
</tr>
<tr>
<td>The water cycle is</td>
<td>The continuous movement of water on, above, and below the surface of Earth is the</td>
</tr>
</tbody>
</table>