

NorthMet Project

Geotechnical Data Package Volume 2 - Hydrometallurgical Residue Facility

Version 6: Certified

Issue Date: July 11, 2016

This document was prepared for Poly Met Mining Inc. by Barr Engineering Co.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Contents

Certification

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of Minnesota

Thomas J. Radue Thomas J. Radue, P.E.

07/11/2016

Date

Thomas J. Radue, P.E. MN PE #: 20951 Senior Geotechnical Engineer

Table of Contents

1.0		Introduction 1			
	1.1	Outline	1		
2.0		Regulatory Basis	3		
3.0		Existing Facilities and Site Conditions	5		
	3.1	Existing Former LTVSMC Emergency Basin (Emergency Basin)	5		
	3.2	Site Conditions	6		
		3.2.1 Bedrock Geology	6		
		3.2.2 Surficial Geology	7		
		3.2.3 Hydrology and Hydrogeology	8		
		3.2.4 Seismicity and Ground Motion	8		
4.0		Physical Properties of Materials	12		
	4.1	Permeability Parameters	13		
	4.2	Stress-Deformation Parameters	16		
		4.2.1 Linear-Elastic Materials	16		
		4.2.2 Modified Cam-Clay (MCC) Materials	18		
		4.2.3 Stress-Deformation Parameter Summary	20		
	4.3	Unit Weight and Shear Strength Parameters for Slope Stability Analysis	22		
	4.4	Density Parameters for HRF Sizing and Settlement Analysis	23		
5.0		Geotechnical Models for HRF Design	28		
	5.1	HRF Facility Configuration	28		
	5.2	HRF Facility Cross-Sections for Geotechnical Modeling	29		
	5.3	Seepage Analysis	31		
	5.4	Stress-Deformation Analysis	32		
		5.4.1 Preload	33		
		5.4.2 Residue Consolidation Model	35		
	5.5	Slope Stability Analysis	37		
		5.5.1 Slope Stability Analysis Methods	38		
		5.5.2 Probabilistic Seismic Hazard Analysis	38		
6.0		Geotechnical Modeling Results for HRF Design	41		
6.1		Stress-Deformation	41		
		6.1.1 Residue Consolidation	43		

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Contents

	6.1.2	Strain in Liner System	44		
6.2 Slope Stability		Stability	. 46		
	6.2.1	Global Slope Stability	46		
	6.2.2	Infinite Slope Stability	47		
	6.2.3	Blast Induced Vibrations and Slope Stability	48		
6.3	Draina	ge and Leakage Collection Systems	. 49		
	6.3.1	Drainage Collection System	49		
	6.3.2	Leakage Collection System	53		
6.4	Chemi	cal Compatibility of GCL with Leakage from Hydrometallurgical Residue	. 56		
7.0	Revisi	on History	. 58		
8.0	Refere	nces	. 59		
List of Tables			. 62		
List of Figures		. 62			
List of La	List of Large Figures				
List of At	ist of Attachments				

Acronyms, Abbreviations and Units

Acronym	Stands For		
ESSA	Effective Stress Stability Analysis		
GCL	geosynthetic clay liner		
HDPE	high-density polyethylene		
JTL	JTL Laboratories, Inc.		
Lakefield	SGS Lakefield Research Laboratories		
LLDPE	linear low-density polyethylene geomembranes		
LTVSMC	LTV Steel Mining Company		
MCC	Modified Cam-Clay		
MDNR	Minnesota Department of Natural Resources		
MGS	Minnesota Geological Survey		
OCR over-consolidation ratios			
PolyMet Poly Met Mining Inc.			
PSHA	Probabilistic Seismic Hazard Analysis		
QA/QC quality assurance/quality control			
tsf tons per square foot			
USGS	United States Geological Survey		
WWTP	Waste Water Treatment Plant		

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 1

1.0 Introduction

This Geotechnical Data Package – Volume 2 presents the geotechnical data used by the Residue Management Plan (Reference (1)). In this data package, Tailings Basin is the existing former LTV Steel Mining Company (LTVSMC) tailings basin, Emergency Basin is the existing former LTVSMC Emergency Basin, and Residue is the NorthMet combined hydrometallurgical residue. In addition, Hydrometallurgical Residue Facility is designated HRF and Flotation Tailings Basin is designated FTB. If changes in facility operating methods warrant HRF design updates, revisions will be made to this document if needed based on those HRF design updates.

The HRF will be a lined basin designed for storage of the Residue produced during the 20 years of ore processing at the Process Plant. The HRF will be located to the northwest of the Process Plant and will be constructed on top of the Emergency Basin (Large Figure 1). Portions of the South Dam of Tailings Basin Cell 2W (also referred to as the HRF North Dam in this data package) will be used as the northern side of the HRF. Natural high ground located to the southwest and southeast of the HRF will serve as HRF perimeter dams. New dams will be constructed in the lower areas between the natural high ground and HRF North Dam to complete the perimeter of the HRF. A more detailed description of the HRF is provided in Section 5.1. Overall HRF development, operations, monitoring and reclamation information is presented in the Residue Management Plan (Reference (1)).

The HRF must be configured to contain the stored Residue. The HRF design must include dam slopes capable of achieving the required slope stability factor of safety, and the HRF liner system must be designed and constructed in a manner that maintains hydraulic containment of the process water used to transport the Residue to the HRF for permanent storage. This document presents the site exploration information, the slope stability analysis and the settlement analysis on which the HRF design is based and on which the HRF foundation preparation procedures are based. In addition to the geotechnical analyses and associated design recommendations for the HRF, experience-based HRF design and construction considerations are also reflected in the proposed design of the HRF.

1.1 Outline

The outline of this document is as follows:

- Section 2.0 Regulatory basis for HRF design.
- Section 3.0 Description of existing facilities and site conditions.
- Section 4.0 Data on physical properties of materials included in geotechnical analyses for the HRF.
- Section 5.0 Description of geotechnical modeling performed for HRF design.
- Section 6.0 Results of geotechnical modeling performed for HRF design.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 2

This document may evolve through the environmental review, permitting, operating and closure phases of the Project. A Revision History is included at the end of the document.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 3

2.0 Regulatory Basis

The requirements for the HRF geotechnical modeling are based on requirements of the Minnesota Department of Natural Resources (MDNR) Division of Ecological and Water Resources, Dam Safety Unit (hereinafter "Agency") and outlined in Attachment A (NorthMet Geotechnical Modeling Work Plan), which describes the required methods of geotechnical analysis and the required slope stability safety factor outcomes.

The HRF dams must be constructed in accordance with applicable requirements of Minnesota Administrative Rules, parts 6115.0300 through 6115.0520 – Dams. Portions of the rules are applied to dams universally, while applicability of some rule requirements is dependent on the hazard classification of the dams. The following rule excerpt aids in establishing the hazard classification of the HRF dams:

6115.0340 CLASSIFICATION OF DAMS

All existing and proposed dams shall be classified by the MDNR Commissioner into the following three hazard classes: those dams where failure, misoperation, or other occurrences or conditions would probably result in:

- A. Class I: any loss of life or serious hazard, or damage to health, main highways, highvalue industrial or commercial properties, major public utilities, or serious direct or indirect, economic loss to the public;
- B. Class II: possible health hazard or probable loss of high-value property, damage to secondary highways, railroads or other public utilities, or limited direct or indirect economic loss to the public other than that described in Class III; and
- C. Class III: property losses restricted mainly to rural buildings and local county and township roads that are an essential part of the rural transportation system serving the area involved.

Any dam whose failure, misoperation, or other occurrences or conditions would result only in damages to the owner and would not otherwise affect public health, safety, and welfare as described in Classes I, II, and III, shall not be subject to this hazard classification. A dam that is not classified as a hazard Class I, II, or III dam, and those which are not included in the definition of dam in part 6115.0230, subpart 5, definition of dam, shall be subject to applicable provisions of parts 6115.0200 to 6115.0260, and shall not be subject to these dam safety rules. Changes in development in the vicinity of the dam may result in future reclassification.

There is a large, sparsely populated land area to the south and west of the proposed HRF. Poly Met Mining Inc. (PolyMet) property and infrastructure is located immediately to the north and east. As provided by the rules, the MDNR Commissioner must establish the hazard classification for the dams. The classification is subsequently used to define HRF dam

Version: 6	Page 4
Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility

permitting, inspection and reporting requirements, notwithstanding requirements of other rules, such as the MDNR Permit to Mine. In particular, the stability of the dams must be evaluated for liquefaction, shear failure, seepage failure, and overturning, sliding, overstressing and excessive deformation. The HRF dams have been evaluated for those factors that are applicable as agreed with the MDNR Division of Ecological and Water Resources, Dam Safety Unit, and outlined in Attachment A and the analysis and results are presented in this document.

Minnesota Rules do not explicitly prescribe allowable flow rates through liner systems. Maximum allowable permeabilities of equal to or less than $1 \ge 10^{-7}$ cm/sec are typically required by the Minnesota Pollution Control Agency for liner systems.

The State of Minnesota requires submittal, review, and state approval of a quality assurance/quality control (QA/QC) program for liner systems prior to construction. In addition, the State requires submittal of a construction documentation report that summarizes the details of the facility construction and presents the results of the quality assurance testing. The facility design engineer and a qualified independent testing laboratory most often perform quality assurance testing. Quality assurance for facilities like the HRF typically includes:

- density testing of compacted dam fill materials
- peel and shear strength testing of seams in the geomembrane liner systems
- electrical leak location surveys for liner systems, to the extent possible and extent applicable to the type of liner system installed
- overall confirmation of compliance of construction materials with specifications
- construction surveying to confirm facility line and grade compliance with specifications
- maintenance of construction observation records and a photographic record of construction activities

Permit issuance for the facility depends on compliance with the approved QA/QC plan. A template construction QA/QC plan is provided as an attachment to Reference (1).

3.0 Existing Facilities and Site Conditions

This section describes the Emergency Basin, historic seismic activity in Minnesota, and the geology and hydrogeology of the HRF site. Large Figure 1 shows the location of the Tailings Basin Cells 1E and 2W, and Plant Area, as well as the proposed HRF; located partially above the Emergency Basin. The former Emergency Basin Footprint is also evident as the gray-brown area within the HRF footprint on Large Figure 2.

3.1 Existing Former LTVSMC Emergency Basin (Emergency Basin)

The Emergency Basin is constructed in a topographic low area. Its southern tip initiates near the central portion of the proposed HRF, widening and deepening into a former ravine that trended to the north. The original purpose of the Emergency Basin was to contain taconite tailings discharge from the main LTVSMC Tailings Thickeners in the event of a power failure. Accidental overflows, spillage, and floor drainage from the former LTVSMC Concentrator Building also reached the Emergency Basin. These materials were deposited hydraulically through an underground Emergency Tunnel terminating at the southeast side of the Emergency Basin. Overflow from sumps in LTVSMC booster pump house Number 1 was also directed into the Emergency Basin. Material flowed by gravity into the Emergency Basin and was placed hydraulically. Material in the basin consists of slimes, fine tailings, coarse tailings, and concentrate (Reference (2)).

The starter dam of the Tailings Basin Cell 2W South Dam (same as proposed HRF North Dam) was constructed in 1970-1971. Prior to its construction, the Emergency Basin extended roughly 3,000 feet north into the current area of Cell 2W. Kaiser Engineering correspondence indicates the Cell 2W starter dam was constructed over the unconsolidated tailings in the Emergency Basin. A geotechnical drilling investigation during the winter of 1970 revealed approximately 24 to 32 feet of fine tailings and slimes in the deepest portions of the ravine along the alignment of the starter dam (Reference (3), Reference (4)).

The North Dam is approximately 160 feet in height from the surface of the Emergency Basin. It has an overall slope angle of 4 horizontal to 1 vertical (4H:1V) with mid-slope benches. An upstream construction method was used to construct the dam whereby the height of the dam was advanced by incrementally constructing a berm on the crest of the dam. The tailings basin was then filled nearly up to the crest of the new berm and the process was repeated. To maintain adequate width and stability, the base of the berm was extended onto weaker material in the basin. Upstream construction results in a shell of relatively strong material encapsulating weaker material. The North Dam is comprised of a shell of LTVSMC coarse tailings with occasional inclusions of LTVSMC fine tailings and LTVSMC slimes (Reference (5)).

A railroad track is located along the western perimeter of the area. The rail bed is visible on Large Figure 2. It extends from the south between the southwest and southeast high ground areas and runs along the base of the southwest high ground area (west of the Emergency Basin) before passing between the southwest high ground area and the HRF North Dam. This track is

abandoned shortly beyond this area and now serves only industries located at the former LTVSMC site. A plan is being developed to revise the track serving these industries so that the portion impacted by the HRF can be removed.

Drainage of the Emergency Basin occurs to the northwest between Cell 2W and the railroad grade. A railroad embankment (Hinsdale Bridge Approach) is located to the southeast and east of the HRF at an elevation higher than the HRF. The track embankment consists of undisturbed granite outcropping to the south and blast rock derived from original plant construction activities. The HRF is located west and downhill from the rail embankment. There are no proposed changes to this rail line and the HRF is not anticipated to effect the rail embankment. Likewise, the use of this rail line is not anticipated to affect the performance of the HRF. The structural fill to be used for HRF dam construction, due to it being placed in thin lifts and compacted and being constructed to relatively flat slopes, will not be sensitive to nearby rail traffic.

Existing materials in the Emergency Basin, which will serve as the foundation materials for portions of the HRF, have experienced relatively small amounts of consolidation since cessation of LTVSMC operations in early 2001. This is due to the hydraulic placement of the material and hydrostatic pressures resulting from impounded water in the Emergency Basin. As a result, settlement is expected when the Emergency Basin is loaded by the HRF. As described in Section 5.4.1, to minimize the amount of strain on the HRF liner caused by deformation and differential settlement of the foundation materials, it is recommended that a preload (surcharge) be placed on the Emergency Basin to increase the pre-consolidation pressure of the material. Wick drains, discussed in Section 4.1, can be incorporated into the preload construction to reduce consolidation time but should be considered optional. Wick drains may not be of value if HRF construction can occur over several construction seasons, thereby allowing sufficient time for pre-consolidation of foundation materials to occur without wick drain addition.

3.2 Site Conditions

3.2.1 Bedrock Geology

The Emergency Basin is entirely underlain by quartz monzonite and monzodiorite of the Neoarchean Giant's Range batholith (Reference (6)). These pink to dark-greenish gray, hornblende-bearing, coarse-grained rocks are referred to collectively as the "Giant's Range granite". The granite has been scoured by glaciers, creating local depressions, linear valleys, and neighboring hills and ridges that make up the highest topography in the area; such as the Embarrass Mountains, located due west of the emergency basin shown in Large Figure 3.

The location of linear valleys is sometimes interpreted to correspond with the location of faults in the bedrock. For example, the Minnesota Geological Survey (MGS) has inferred but not confirmed the presence of a north-south trending fault to underlie the proposed HRF (Reference (6)), Large Figure 4). A bedrock geological map compiled in 2003 by M.A. Jirsa and T.J. Boerboom of the MGS depicts the same area without an inferred fault (Reference (7)).

Version: 6	Page 7
Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility

3.2.2 Surficial Geology

In general, the Quaternary geology of the region is a thin (0-30 feet, but locally thicker with a range of 0 to 150 feet) blanket of glacial deposits including till, lacustrine materials, and outwash (Reference (8)). Lehr and Hobbs mapped the area as part of the Wampus Lake Moraine (Reference (9)). Minnesota Geologic Survey Map 164 (Reference (10)) categorizes all glacial deposits in the area as Rainy Lobe till and resedimented glacial deposits, overlain locally by post-glacial peat. Test pits for preliminary NorthMet engineering studies and informal observations of sumps and other small excavations confirm the description above. Glacial deposits in most areas consist of unsorted sand, silt, and clay with cobbles and boulders. Boulders on the ground surface can be greater than 10 feet in size and there may be a boulder lag horizon (a surface with a high concentration of boulders) just below the ground surface in some areas. Based on borings completed by Braun in 1976, the till is described as heterogeneous fine-to-medium-grained clayey-to-silty sand with gravel and boulders (Reference (11)).

In the area of the proposed HRF, bedrock is generally within 25 feet of the existing ground surface, except where surface materials have been built up either to support the former LTVSMC facilities or where tailings or plant overflow materials have been deposited in the Emergency Basin, as shown in Large Figure 5.

A series of geological cross-sections have been established through the Emergency Basin. The locations of the geological cross-sections are shown in Large Figure 2. They are defined as follows:

- Cross-Section A-A' and B-B': Large Figure 6
- Cross-Section C-C' and D-D': Large Figure 7
- Cross-Section E-E', F-F', and G-G': Large Figure 8
- Cross-Section H-H': Large Figure 9

Native surficial deposits, which have been sampled and logged at boring locations in and around the emergency basin, have been limited to silty sands with interbedded coarser-grained alluvial deposits and peat, also referred to as muskeg. There is a thin layer of peat below the fill in the Emergency Basin and the toe of the Tailings Basin that was encountered at borings 70-ST -13, -14, -15 and -16, and DH96 -9, -10, -11, and -13. The underlying silty sand consists of brown to dark grayish brown silty sand with gravel (SM), gravelly sand with silt (SP-SM), and silty clay with gravel (CL-ML). At boring locations 10-04, and -05 and BH-B, -C, and -G, alluvial material is present and consists of tan to gray to brown medium- to coarse-grained sand with gravel (SP) or coarse-grained gravel with sand (GP) underlying the silty sand. Boring logs within the Emergency Basin are included in Attachment B. Boring locations are shown on Large Figure 2. Some borings are for environmental work conducted in the Emergency Basin and do not include standard penetration testing.

3.2.3 Hydrology and Hydrogeology

The Rainy Lobe glacial deposits form the major surficial aquifer in the region that encompasses the Emergency Basin. Underlying the glacial deposits is Precambrian crystalline and metamorphic bedrock. Neither the glacial deposits nor the bedrock is a reliable source of water and the ground-water potential is poor (Reference (12).

In some locations, discontinuous peat deposits have been encountered between the tailings and the glacial deposits. On top of the glacial deposits are numerous wetlands and minor surfacewater drainages. Low spots are generally peat bog or open wetland. Topography is subdued and drainage is poor. These features generally represent surficial expressions of the water table.

Regionally, groundwater flows primarily northward, from the Embarrass Mountains to the Embarrass River. As the Tailings Basin was built over time, a groundwater mound formed beneath the basin due to seepage from the basin, altering local flow directions and rates. Active seeps have been identified along the South Dam. The number of active seeps has declined since the January 2001 termination of tailings deposition activities. In addition to the visible seeps, groundwater likely flows out from beneath the Tailings Basin into the surrounding glacial till (Reference (13)).

Groundwater elevations based on measurements and modeling results presented in Reference (13) are shown in Large Figure 10. These elevations are generalized based on modeling, can be expected to vary locally and seasonally, and have limited impact on HRF design other than for base grade selection and construction considerations.

3.2.4 Seismicity and Ground Motion

Northern Minnesota is not a highly active seismic zone. In fact, Minnesota has one of the lowest levels of earthquake occurrence in the United States. As of the initiation of work on this Data Package, only 20 small to moderate quakes had been reported in Minnesota since 1860. Table 3-1 summarizes this earthquake history. The earthquakes listed in Table 3-1 are associated with minor reactivation of ancient faults in response to stress changes. It can be seen that only 9 out of the 20 earthquakes have been recorded, whereas 11 are based on the magnitude intensity from felt reports.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 9

Table 3-1 Historical Seismicity of Minnesota¹

Epicenter (nearest town)	Mo/day/yr	Lat.	Long.	Felt area (km²)	Maximum intensity	Magnitude (M)
1 Long Prairie	1860-61	46.1	94.9	-	VI-VII	5.0
2 New Prague	12/16/1860	44.6	93.5	-	VI	4.7
3 St. Vincent	12/28/1880	49.0	97.2	-	II-IV	3.6
4 New Ulm	2/5-2/12/1881	44.3	94.5	v.local	VI	3.0-4.0
5 Red Lake	2/6/1917	47.9	95.0	-	V	3.8
6 Staples	9/3/1917	46.34	94.63	48,000	VI-VII	4.3
7 Bowstring	12/23/1928	47.5	93.8	-	IV	3.8
8 Detroit Lakes	1/28/1939	46.9	96.0	8,000	IV	3.9-3
9 Alexandria	2/15/1950	46.1	95.2	3,000	V	3.6
10 Pipestone ⁽¹⁾	9/28/1964	44.0	96.4	-	-	3.4
11 Morris ⁽¹⁾	7/9/1975	45.50	96.10	82,000	VI	4.8-4.6
12 Milaca ⁽¹⁾	3/5/1979	45.85	93.75	-	-	1.0
13 Evergreen ⁽¹⁾	4/16/1979	46.78	95.55	-	-	3.1
14 Rush City ⁽¹⁾	5/14/1979	45.72	92.9	-	-	0.1
15 Nisswa ⁽¹⁾	7/26/1979	46.50	94.33	v.local		1.0
16 Cottage Grove	4/24/1981	44.84	92.93	v.local	III-IV	3.6
17 Walker	9/27/1982	47.10	97.6	v.local	II	2.0
18 Dumont ⁽¹⁾	6/4/1993	45.67	96.29	69,500	V-VI	4.1
19 Granite Falls ⁽¹⁾	2/9/1994	44.86	95.56	11,600	V	3.1
20 Alexandria ⁽¹⁾	4/29/2011	45.88	95.47	-	-	2.5

(1) Asterisks denote earthquakes that were recorded instrumentally. All others and their associated magnitudes are based solely on intensity data from felt reports.

See Reference (14) for Historical Seismicity of Minnesota – Events 1 through 19. Event 20 based on United Press International report; April 29, 2011.

Magnitude measures the energy released at the source of the earthquake. Magnitude is determined from measurements on seismographs. Intensity measures the strength of shaking produced by the earthquake at a certain location relative to the epicenter of the earthquake. Intensity is determined from effects on people, structures, and the natural environment. The abbreviated Modified Mercalli Intensity Scale is:

- **I.** Not felt except by a very few under especially favorable conditions.
- **II.** Felt only by a few persons at rest, especially on upper floors of buildings.
- **III.** Felt quite noticeably by persons indoors, especially on upper floors of buildings. Many people do not recognize it as an earthquake. Vehicles may rock slightly. Vibrations similar to the passing of a truck.
- **IV.** Felt indoors by many, outdoors by few during the day. At night, some awakened. Dishes, windows, doors disturbed; walls make cracking sound. Sensation like heavy truck striking building. Vehicles rocked noticeably.
- **V.** Felt by nearly everyone; many awakened. Some dishes, windows broken. Unstable objects overturned. Pendulum clocks may stop.
- **VI.** Felt by all, many frightened. Some heavy furniture moved; a few instances of fallen plaster. Overall damage slight.
- **VII.** Damage negligible in buildings of good design and construction; slight to moderate in well-built ordinary structures; considerable damage in poorly built or badly designed structures; some chimneys broken.
- VIII. Damage slight in specially designed structures; considerable damage and/or partial collapse in ordinary substantial buildings. Damage great in poorly built structures. Fall of chimneys, factory stacks, columns, monuments, walls. Heavy furniture overturned.
 - **IX.** Damage considerable in specially designed structures; well-designed frame structures thrown out of plumb. Damage great in substantial buildings, with partial collapse. Buildings shifted off foundations.
 - **X.** Some well-built wooden structures destroyed; most masonry and frame structures destroyed. Some rail lines bent.
 - **XI.** Few, if any (masonry) structures remain standing. Bridges destroyed. Most rail lines bent substantially.
- **XII.** Damage total. Lines of sight and level are distorted. Objects thrown into the air.

Per the data in Table 3-1, the strongest documented earthquakes were associated with the 1860 Long Prairie earthquake (M5.0) and the 1917 Staples earthquake (M4.3). Near their epicenters, these earthquakes caused objects to fall, cracked masonry, and damaged chimneys. A more recent, though less dramatic event was the 1993 Dumont earthquake. The magnitude of this earthquake was M4.1. It affected an area of approximately 27,000 square miles with associated intensity of V-VI near the epicenter. However, no injuries or serious damage occurred (Reference (14)).

For the HRF a seismic risk calculation of ground motion was prepared based on United States Geological Survey (USGS) web site data

(<u>http://earthquake.usgs.gov/research/hazmaps/interactive/index.php</u>), which contains information about seismicity in the United States. The result of the USGS report is summarized in Table 3-2, which summarizes the ground motions for different probabilities of exceedance.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility		
Version: 6	Page 11		

Table 3-2 Summary of Seismic Risk Calculation

Peak Ground Acceleration vs. Probability of Exceedance									
Peak Ground Acceleration - gravity [g]	k Ground Acceleration - 0.006 0.012 0.024								
Per Annum Probability of Occurrence	0.0021	0.0010	0.0004						
Probability of Occurrence in 50 Years	10%	5%	2%						
Return Period [years]	475	975	2,475						

It can be seen from the data in Table 3-2 that the peak ground acceleration of 0.024g at the site occurs at a 2% probability of exceedance in 50 years. This corresponds to a 0.0004 probability of exceedance per year, or a return period of once every 2,475 years. In summary, the historical record indicates that a severe earthquake is highly unlikely in Minnesota. Weak to moderate earthquakes do occasionally occur, though the threat from such events is small.

4.0 Physical Properties of Materials

Physical properties for the LTVSMC coarse and fine tailings, LTVSMC slimes, LTVSMC bulk tailings, glacial till, and compressed peat have been updated several times, as additional geotechnical evaluations have been performed. Parameters used in this analysis combine recent in situ and laboratory testing and historic data to support the design parameters. The development of these parameters is discussed in Reference (15). Because the schedule of updates to Reference (15) is not exactly synchronized with updates to this Geotechnical Data Package, occasional discrepancies can be expected in the data used in the corresponding analyses. Discrepancies are small and will be reconciled only on an as-needed basis (i.e., when discrepancies are such that factors of safety would likely fall below design criteria upon reanalysis using updated design parameters).

This Geotechnical Data Package – Volume 2 – Version 5, does not incorporate results of the 2014 geotechnical investigations. Those results will be presented in the update to Geotechnical Data Package – Volume 1 (Reference (15)). The hydraulic conductivity findings for glacial till and for bedrock as updated in Geotechnical Data Package – Volume 1 – Version 5 (Reference (15)) have not been incorporated because they are expected to be largely inconsequential to the geotechnical modeling outcomes for HRF design. The hydraulic conductivity of the glacial till derived from recent slug testing differs by less than one-half order of magnitude from the hydraulic conductivity used in the analysis, and the hydraulic conductivity of the fractured bedrock is nearly 100 times lower than the hydraulic conductivity of the surficial deposits (Reference (16)). Given this disparity in hydraulic conductivity values, the majority of flow beneath the HRF will occur in the Glacial Till, consistent with the assumptions of the HRF design modeling. The updated hydraulic conductivities may have some effect on the time required for preload (Section 5.4.1). This will be addressed through preload monitoring.

Structural fill used to construct dams in lower areas between natural high ground may consist of blasted rock, sand, glacial till, LTVSMC coarse tailings, or other engineer specified and Agency approved fill. Geotechnical properties for the LTVSMC bulk tailings were used in modeling of regions of structural fill. The LTVSMC Bulk Tailings properties provide a reasonable basis on which to compute slope stability factor of safety. LTVSMC Bulk Tailings have a lower friction angle than the LTVSMC Coarse Tailings anticipated for use in dam construction and only a slightly higher friction angle than the Glacial Till that may be used in dam construction. Detailed specifications for structural fill that yield a fill having the geotechnical properties used for geotechnical modeling will be provided in construction specifications for Agency reference prior to construction. At minimum these specifications will define acceptable material types, overall material placement methodology requirements (e.g., structural fill shall be placed in thin lifts not to exceed an as-yet to be determined specified thickness), and density requirements (e.g., structural fill shall be compacted to equal or greater than 95-percent of the maximum dry density determined by ASTM Specification D-698, Standard Proctor Method).

As discussed in Sections 3.1 and 3.2.2, materials in the Emergency Basin range from LTVSMC coarse tailings to LTVSMC slimes. Materials discharged to the basin deposited based on particle

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility		
Version: 6	Page 13		

size and weight, so that there are gradual trends of differing material composition. To account for this variability, the generalization was made that all materials in the Emergency Basin would be classified as LTVSMC slimes. For computation of foundation compressibility and wick drain design, this assumption is conservative because the LTVSMC slimes are the weakest and most compressible tailings in the Emergency Basin. The following section presents the parameters used specifically for HRF geotechnical modeling. Locations of recent field-testing completed within the proposed footprint of the HRF are shown in Large Figure 2.

In addition to Residue, the HRF may receive gypsum from the Waste Water Treatment Plant, lime for residue pH neutralization (if necessary), and materials from the former LTVSMC Coal Ash Landfill. These materials, if placed in the HRF, are estimated to represent up to approximately 5% to 10% of the facility solid volume. The chemical and physical properties of any non-residue materials proposed to be stored in the HRF will be tested prior to placement, to confirm they meet standards set for liner, leakage collection system, and drainage collection system compatibility and performance. Any materials not meeting these standards would not be placed in the HRF. Also, the volume of these additional materials will be compared to the remaining design capacity of the HRF prior to disposal, to ensure that the additional volume will not exceed the design capacity.

4.1 Permeability Parameters

Seepage analysis is required for the slope stability modeling and the stress-deformation analysis for the HRF. Permeability is the key parameter for the seepage analysis. The values of permeability for the various types of materials at the HRF were estimated through in-situ testing during geotechnical investigations (cone penetration test (CPTu) dissipation tests) and laboratory testing on bulk or undisturbed material samples. Laboratory material testing results and detailed explanations of the permeability values used in previous analyses and the process for choosing parameters can be found in Geotechnical Data Package – Volume 1 (Reference (15)). Permeability parameters reported in Reference (15) have been used for the geotechnical analysis of the HRF presented herein. For the bedrock underlying the site, the permeability used for this analysis was developed during the water-balance and geochemical modeling (Reference (13)). The values of permeability used in the seepage model are summarized in Table 4-1. The method used to derive permeability values for the LTVSMC slimes and compressed peat with wick drains installed is described following Table 4-1.

(1)

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 14

Table 4-1 Summary of Material Permeabilities

Material	Permeability (ft/sec)	Permeability (cm/sec)
LTVSMC Coarse Tailings	8.00E-05	2.44E-03
LTVSMC Fine Tailings	6.56E-07	2.00E-05
LTVSMC Slimes	3.15E-08	9.60E-07
LTVSMC Bulk Tailings	2.63E-06	8.02E-05
Glacial Till	1.65E-04	5.03E-03
Sand	3.28E-04	1.00E-02
Residue (used for rate of drainage computation – quantity vs. time)	1.12E-06	3.40E-05
Residue (used for computation of time for drainage to occur)	1.80E-07 ⁽¹⁾	5.50E-06 ⁽¹⁾
Compressed Peat	1.18E-07	3.60E-06
Bedrock	2.81E-09	8.56E-08
LTVSMC Slimes – Wick	7.69E-08	2.34E-06
Compressed Peat – Wick	2.87E-08	8.75E-07

To account for anticipated consolidation (densification) of the residue within the cell and corresponding reduction in residue permeability, average permeability used to estimate time for drainage to occur is assumed.

The LTVSMC slimes and the compressed peat underlying the HRF location have the potential to develop excess pore water pressures and reduced strength as stresses are imposed on these materials by construction of the overlying HRF. Installation of wick drains is an option available to PolyMet to minimize the time required for pore water pressures to reach equilibrium as HRF development proceeds. Wick drains are advantageous because they reduce the drainage path distance excess pore water pressure must travel to reach equilibrium. The most common application of wick drains is to accelerate consolidation in areas where preload will be applied (Reference (17)) as proposed for the HRF.

Wick drains are long flexible rectangular plastic bands encased by a geotextile fabric. Wick drains are mechanically inserted vertically into soil strata to provide additional avenues for relief of excess soil pore-water pressure. The outer geotextile allows excess pore water pressure from surrounding materials to flux through it, but prevents the highly permeable inner plastic core from clogging with native material. Wick drains are most effective in saturated normally to slightly over-consolidated soils. Wick drains are designed to perform in the presence of vertical and lateral loads. Although the drains will bend in response to soil compression, they maintain a continuous flow path and conduit for relief of excess pore water pressure from the surrounding soil.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 15

Because wick drains are manufactured of synthetic materials they have a long life, but for this Project, their benefit would be early in the life of the Project during the pre-loading process and foundation preparation. They would be installed throughout the Emergency Basin to account for potential material variability in the foundation soils.

Wick drains are delivered on reels and have lengths ranging from 450 to 1,000 feet. They are usually installed with static, vibratory, or combination static-vibratory force. A wide variety of field equipment can be adapted to accommodate wick drain installation. An excavator equipped with a sliding mandrel, capable of reaching the design depth, usually performs installation. Installation begins by attaching the lead end of the wick drain to the mandrel. The mandrel protects the lead end of the wick drain while it is forced into the soil. Once the design depth has been reached, the wick drain is anchored in place and the mandrel is retracted. The final step is to cut the wick drain from the reel leaving an ample length above the surface, which is then connected into a drainage collection system. The drainage collection system would accumulate water from the wick drain system and direct it away from the site (to northwest via current drainage paths). A typical drainage collection system consists of a highly permeable granular drainage blanket, horizontally placed wick drains, piping system, or some combination of these features.

Composite permeabilities were given to LTVSMC slimes and compressed peat in the Emergency Basin where wick drain installation could occur. The installation process tends to smear material around the perimeter of the wick drain decreasing permeability. However, because of wick drain installation the hydraulic gradient is greatly increased and this compensates for the diminished permeability. The increase of hydraulic gradient is due to the shortening of the excess pore water pressure drainage path. Equation 4-1 is a variation of Darcy's law, which is used to illustrate flow through a saturated soil.

$$\boldsymbol{v} = \boldsymbol{k}\boldsymbol{i}$$
 Equation 4-1

where: v = discharge velocity

k = permeability (also called hydraulic conductivity)

i = hydraulic gradient

Equation 4-2 illustrates computations for hydraulic gradient and shows that decreasing the drainage path length will result in an increase of hydraulic gradient.

$$i = \frac{\Delta h}{L}$$
 Equation 4-2

where: Δh = head loss

L = drainage path length

The calculation used to determine composite permeabilities of the LTVSMC slimes and compressed peat with wick drains is described in the example Bangkok Field Study of Vertical Wick Drains on the GeoStudio website (http://www.geo-slope.com). The general steps to calculate a composite permeability are as follows:

- Calculate the equivalent drain thickness based on preliminary wick drain type and design parameters,
- Calculate the plane strain permeability,
- Establish the radius of the smear zone based on mandrel dimensions, and
- Calculate the governing permeability.

A wick drain spacing of approximately 5.0 feet in a triangular pattern was used to calculate the permeability. A typical wick drain size of 4 inches by 0.16 inches was used to calculate the equivalent drain thickness. The mandrel size was assumed to be 1.8 inches by 4.9 inches to calculate the smear zone.

As previously noted, use of wick drains as a means to accelerate consolidation of HRF foundation materials may not be warranted if construction of the first lift of the HRF can be extended over several construction seasons, thereby allowing sufficient time for preconsolidation of foundation materials to occur by pre-loading without wick drain addition. If it is ultimately determined by PolyMet that HRF construction can be extended over multiple years, then any material properties described in this section, and analyses elsewhere in this Geotechnical Data Package that include wick drains will be reviewed and revised where necessary to confirm analysis outcomes.

4.2 Stress-Deformation Parameters

The HRF liner system must be designed to withstand the stresses and strains (deformation) due to differential settlement in the HRF foundation. The deformation of the foundation is a result of weaker material in the Emergency Basin consolidating under the load of the Residue being placed in the HRF. Stress-deformation parameters were assigned to each material used in the analysis. Two types of stress-deformation constitutive models were used: linear-elastic and Modified Cam-Clay (MCC). A constitutive model defines a stress-strain path for a material, such that each strain along the stress-strain path corresponds to a specific stress. The two constitutive models used in this analysis vary in stress-strain path shape and in the parameters used to define each stress-strain path. In general, the linear-elastic model is used for highly consolidated materials, and the MCC model is used for lightly to unconsolidated materials.

4.2.1 Linear-Elastic Materials

The linear-elastic constitutive model uses a direct proportion to relate stress and strain. Figure 4-1 illustrates the stress (σ) strain (ϵ) relationship in a linear-elastic material model.

Figure 4-1 Linear-Elastic Stress-Strain Diagram

The linear-elastic material model is defined by the elastic modulus, E, and Poisson's Ratio, μ . The elastic modulus is the slope of the line shown in Figure 4-1. This slope is the stress-strain path for a given material. The second parameter needed to define a linear-elastic constitutive model is Poisson's Ratio. Poisson's Ratio is the relationship between horizontal and vertical strain. For typical soils, the horizontal to vertical strain is 0.30 (i.e., if a cube of soil is compressed vertically 1 inch, it will expand horizontally 0.3 inches).

e

Linear-elastic models are best suited for materials with large over-consolidation ratios (OCR) (Reference (18)). The term OCR refers to the relationship of a material's maximum past effective pressure, or pre-consolidation pressure, to its present effective pressure. Materials having an OCR greater than 1 are considered over-consolidated. Glacial till, LTVSMC coarse tailings (due to compaction during construction), Giant's Range granite, sand (due to compaction during construction) are all considered over-consolidated and were defined using linear-elastic models.

Stress-deformation parameters for Giant's Range granite were estimated using Reference (19). Stress-deformation parameters for sand were estimated using Reference (20). Poisson's Ratio was assumed to be 0.30 for all linear-elastic materials, except for Giant's Range granite, which used a value of 0.18 presented in Reference (19). Giant's Range granite is relatively incompressible compared to other materials in the model. The elastic modulus for glacial till, LTVSMC coarse tailings, and LTVSMC bulk tailings were developed through an iterative process using triaxial test data and a finite element modeling program. The following steps present the first iteration:

1. Incremental strain-modulus plots were developed using laboratory results from triaxial testing.

- 2. Initial moduli seed values were selected from the incremental strain-modulus plots for the finite element modeling program.
- 3. Maximum strains were calculated for each material using results from the finite element modeling program.
- 4. New moduli were selected from the strain-modulus plots using the strains calculated from the finite element modeling program.
- 5. The new moduli were analyzed in the finite element model.

This process was repeated until the moduli used to calculate strain in the finite element model matched the moduli selected from the strain-modulus plots.

4.2.2 Modified Cam-Clay (MCC) Materials

The MCC constitutive model is an elasto-plastic strain hardening/softening model. The MCC constitutive model is most appropriately applied to saturated normally to slightly overconsolidated soils, which experience significant non-reversible volume changes when compressed (Reference (18)). Residue, LTVSMC fine tailings, LTVSMC slimes, LTVSMC slimes - wick, compressed peat, and compressed peat - wick were assigned MCC parameters. Figure 4-2 illustrates the stress (σ) strain (ϵ) relationship in a MCC material model.

There are two distinct regions of the MCC constitutive model: (1) an elastic region at lower strains and (2) a plastic region at higher strains. The term elastic relates to non-permanent deformation; a material will spring back to its initial shape. The plastic region of the stress-strain curve is the range of higher strain values that will cause permanent deformation in a material. The transition between these regions is termed the yield point. Moving to the right of the yield point, the additional strain will cause an increase in stress (strain hardening) or a decrease in

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 19

stress (strain softening.) Strain hardening is typical for normally to slightly over-consolidated material. Strain softening is common in highly over-consolidated material.

There are three major curves that define consolidation shown in Figure 4-3: over-consolidation, normal consolidation, and rebound. It is common practice to approximate consolidation curves as lines to simplify calculations. The terms over-consolidation and normal consolidation are used to label the behavior of soils at the HRF. Over-consolidated materials can be defined by a single curve, represented as (1) in Figure 4-3, in a linear elastic model. These materials, if not stressed beyond their previously experienced highest effective stress, will not reach an effective stress sufficient to cause normal consolidation. Normally consolidated materials are materials that have not experienced an effective stress greater than their current effective stress. Consolidation for these materials begins along the normal consolidation line, illustrated as (2) and (5) in Figure 4-3.

Every material has a unique consolidation curve. For a given material, its normal consolidation curve always has a slope greater than its over-consolidation curve. When effective pressure (stress) is removed from a material, i.e. glacial retreat and removal of overburden, the void ratio will increase at a rate less than the rate at which it decreased during normal consolidation. The soil will retain a particle configuration similar to that at its past maximum effective pressure as it rebounds along portion (3) of the rebound curve in Figure 4-3. If the effective stress again increases on the material, it will compress again, following a curve similar to that of the rebound curve (4) in Figure 4-3. Once an effective stress similar to its maximum past effective stress is reached, consolidation will diverge to the normal consolidation curve illustrated as (5) in Figure 4-3. It is customary to define the over-consolidation curve (1) and portions (3) and (4) of the rebound curve as the same rate (Reference (21)).

Figure 4-3 Consolidation Curve

Two key parameters that define a MCC constitutive model are the compression index and swell index, given the symbols λ (C_c) and κ (C_s), respectively. The compression index and swell index

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 20

are shown in Figure 4-3. The compression index is the slope of the normal consolidation curve, which is similar to the strain path of the strain-hardening curve in the plastic region of Figure 4-2. The swell index is the slope of the rebound curve, which is comparable to the over-consolidation curve and linear-elastic portion of Figure 4-3 and Figure 4-2, respectively.

The difference between C_c - C_s and λ - κ values relates to the log-scale upon which effective stress is plotted. It is customary for soil testing laboratories to develop the C_c and C_s from an isotropic one-dimensional compression test in terms of an effective stress base 10 log-scale. However, it is typical for modeling programs to use the analogous terms λ and κ , upon which effective stress is plotted, on a natural log-scale.

4.2.3 Stress-Deformation Parameter Summary

Laboratory and field data obtained in 1996 (Reference (22)), and 2005 and 2007 (Reference (15)) geotechnical investigations were used to establish stress-deformation parameters. Seepage parameters discussed in Section 4.1 and shear strength parameters discussed later in Section 4.3 were also required for the stress-deformation analysis. Further information concerning the historical values and selection of the seepage and shear strength parameters used in the analysis can be found in Reference (15). Table 4-2 summarizes the stress-deformation properties used in the analyses.

Material	Model	Unit Weight (pcf)	Elasticity modulus, (psf)	φ, (deg) ⁽¹⁾	Poisson's ratio, μ	Normal Consol. line slope, λ	Swelling line slope, κ	Initial Void Ratio, e _o
Glacial Till	Linear Elastic	135	5.00E+05	-	0.30	-	-	-
LTVSMC Coarse Tailings	Linear Elastic	135	8.40E+05	-	0.30	-	-	-
LTVSMC Fine Tailings	Soft Clay (MCC)	130	-	33	0.30	0.05	0.01	1.07
LTVSMC Slimes	Soft Clay (MCC)	120	-	34	0.30	0.07	0.01	1.14
LTVSMC Slimes – Wick	Soft Clay (MCC)	120	-	34	0.30	0.07	0.01	1.14
Residue ⁽²⁾	Soft Clay (MCC)	115	-	30	0.30	0.18	0.03	1.92

Table 4-2 Summary of Stress-Deformation Parameters

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 21

Material	Model	Unit Weight (pcf)	Elasticity modulus, (psf)	φ, (deg) ⁽¹⁾	Poisson's ratio, μ	Normal Consol. line slope, λ	Swelling line slope, κ	Initial Void Ratio, e _o
Giant's Range Granite	Linear Elastic	165	1.69E+09	-	0.18	-	-	-
Sand	Linear Elastic	120	6.00E+05	-	0.30	-	-	-
LTVSMC Bulk Tailings	Linear Elastic	130	1.00E+06	-	0.30	-	-	-
Bedrock – Blasted	Linear Elastic	135	1.00E+06	-	0.30	-	-	-
Compressed Peat	Soft Clay (MCC)	85	-	30	0.30	0.70	0.09	3.84
Compressed Peat - Wick	Soft Clay (MCC)	85	-	30	0.30	0.70	0.09	3.84

(1) The term M (the slope of the critical state line) can be defined by the equation: $M = \frac{6 \sin \phi^2}{3 - \sin \phi}$

(2) In stress-deformation models other than the Residue Settlement Column (Large Figure 15), Residue is modeled using placeholder linear elastic parameters. These models only require the thickness and unit weight of the Residue to be valid. Residue consolidation is considered in the Residue Settlement Column analysis (Section 5.4.2.)

All MCC materials were assumed to be normally consolidated and assigned an OCR of 1.0, allowing normal consolidation to begin immediately. This creates the greatest amount of deformation and produces the most conservative model. The initial void ratio was determined through laboratory testing. The drained angle of internal friction was used to define the transition from over-consolidation to normal consolidation (Reference (18)). Further information concerning the void ratio and drained angle of internal friction values can be found in Reference (15). Poisson's Ratio was assumed to be 0.30 for all MCC materials.

The MCC parameters λ and κ were calculated using the compression index, C_c, and swell index, C_s. Triaxial tests, a 3-dimensional isotropic compression test, and 1-dimensional compression tests were performed to determine C_c and C_s for the LTVSMC fine tailings, LTVSMC slimes, and compressed peat. Wick drains were assumed not to affect the stress-deformation parameters.

Residue parameters were established based on material collected from the SGS Lakefield Research Laboratories (Lakefield) pilot plant testing (Section 4.4). Following Hydrometallurgical Plant start-up, a re-assessment of the Residue parameters will be conducted using Residue produced by the Hydrometallurgical Plant to determine any variations with the Lakefield pilot plant. If warranted, the geotechnical analysis of the HRF will be updated using the new Residue information.

4.3 Unit Weight and Shear Strength Parameters for Slope Stability Analysis

An Effective Stress Stability Analysis (ESSA) was performed to evaluate HRF dam slope stability. The ESSA condition uses the unit weights and long-term shear strengths of materials. Material shear strength properties used in the analyses were determined by interpreting data from subsurface explorations performed in the Tailing Basin and the Emergency Basin. The data include in situ testing conducted in 1996 (Reference (22)), 2005 and 2007 (Reference (15)), as well as recent and historical laboratory test results. Testing results, a detailed discussion of historical values, and selection of shear strength parameters used in this analysis can be found in Reference (15).

Residue density characteristics are described in Section 4.4. Residue shear strength parameters were not tested due to their limited role in determining dam stability for the HRF. However, to facilitate stability modeling, model input values for the Residue were selected using the Stark and Eid (Reference (23)) fully softened friction angle chart. Based on liquid limit, the minimum ESSA friction angle was determined to be 30 degrees as shown on Large Figure 11.

Sand shear strength parameters were estimated using Reference (20). LTVSMC slimes - wick and compressed peat - wick shear strength parameters were assumed to be similar to LTVSMC slimes and compressed peat, respectively. Table 4-3 summarizes the material properties used in the slope stability analyses.

	Unit W	/eight	ESSA	
Material ⁽¹⁾	Saturated (pcf)	Moist (pcf)	c' (psf)	φ' (deg)
LTVSMC Coarse Tailings	135	130	-	39
LTVSMC Fine Tailings	130	125	-	33
LTVSMC Slimes/ LTVSMC Slimes - Wick	120	120	-	34
Compressed Peat/ Compressed Peat - Wick	85	80	500	30
Glacial Till	135	130	-	37
Sand	120	120	-	30
LTVSMC Bulk Tailings	130	125	-	37.5
Residue (for use in stability analysis)	115	110	-	30
Bedrock – Blasted	135	125	-	33
Bedrock	N/A		Impen	etrable

Table 4-3 Unit Weight and Shear Strength Parameters for HRF Slope Stability Analysis

(1) Material parameters listed in Table 4-3 are consistent with material parameters used in NorthMet Geotechnical Data

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 23

	Unit Weight		ESSA	
Material ⁽¹⁾	Saturated (pcf)	Moist (pcf)	c' (psf)	φ' (deg)

Package - Volume 1- Version 3 (Reference (15). Variations from values reported in more recent versions of Geotechnical Data Package – Volume 1 may occur. As reported herein, computed slope stability safety factors are well above required values and minor increases or decreases in material friction angle (ϕ ' (deg)) and/or unit weights would not have a substantive effect on computed slope stability safety factors relative to required values.

Structural fill for the HRF dams will be free draining (modeled as LTVSMC bulk tailings) and will be placed and compacted in a uniform manner; typically to 95% of Standard Proctor Maximum Dry Density (ASTM Method D-698). Because the compacted tailings can be expected to be densely packed and non-contractive it is appropriate to assume that liquefaction of the structural fill will not occur. Standard quality control and assurance, by means of field density measurements, will be implemented during construction to confirm that compaction specifications are achieved.

4.4 Density Parameters for HRF Sizing and Settlement Analysis

Pilot plant testing was done at Lakefield in Lakefield, Ontario. The Residue from the Lakefield pilot plant was visually classified using the Unified Soil Classification System (USCS). The USCS yields a general understanding of the Residue's physical characteristics, which in turn were used in evaluation of HRF liner and cover designs. Results of the Residue classification are presented in Attachment C. The visual classification of the Residue was confirmed by grain-size and hydrometer analysis (by ASTM Method D422) on a composite sample of the Residue (Attachment C). The analysis confirmed the predominance of silt-size particles and results are summarized as follows:

- Sand Content: 15% by weight
- Silt Content: 84% by weight
- Clay Content: 1% by weight

Additional laboratory testing, summarized below, was performed to supplement the visual classification and grain-size analysis of the material, and to understand the physical characteristics of the Residue. This supplemented the chemical characteristics data from the Lakefield pilot plant testing and the Residue characterization performed for groundwater flow modeling presented in Reference (13). Table 4-4 presents the general Residue characteristics, which is followed by a more detailed summary of testing results. The recommended design values shown in the right hand column of Table 4-4 were used in the HRF sizing and residue settlement analysis.

Table 4-4 Summary of Residue Characteristics for HRF Sizing and Settlement Analysis

Characteristic	Value Obtained in the Literature Search	Residue as Tested	Recommended Design Values
Specific Gravity	-	-	2.75 (see Table 4-5 for G _s approximation)
Assumed Beach Slope above the water line ⁽¹⁾	0.4 to 1 %	-	0.5%
Assumed Beach Slope below the water line ⁽²⁾	2 to 4%	-	3%
In-place Dry Density vs. Confining Stress ⁽³⁾	-	58.1 pcf @ 0.01 tsf	Design Values for Liner Strain and/or Slope Stability Analysis:
	-	61.5 @ 0.1 tsf	Dry Unit Wt. = 80 pcf
	-	71.0 @ 1.0 tsf	Sat. Unit Wt. = 115 pcf
	-	76.5 @ 2.0 tsf	Design Values for Initial Cell
	-	77.1 @ 3.0 tsf ⁽⁴⁾	Sizing: Dry Unit Wt. = 73 pcf

(1) The term "Beach" refers to the surface of the deposited Residue, extending from the perimeter of the HRF to the interior of the facility. The Residue surface or beach can be described as being exposed in some areas (the Residue above the water line) and submerged in other areas (the Residue below the water line).

(2) The beach slope below water line was estimated from soundings performed on water-deposited flyash at ash pond facilities. The residue (primarily gypsum) is anticipated to have characteristics similar to flyash (for utilities where the flyash is primarily gypsum).

(3) Pounds per cubic foot are "pcf". Tons per square foot are "tsf".

(4) In-Place density at 3.0 tsf is estimated from projection of Void Ratio vs. Log of Pressure Curve to 3.0 tsf (Attachment C).

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 25

Table 4-5 Computed Specific Gravity of Hydrometallurgical Residue

Residue Component	Tons/Year (approximation) ⁽¹⁾	% of Total	Specific Gravity	Tons/Year x Specific Gravity
Gypsum	208,326	66.6%	2.33	485,400
Natrojarosite	67,158	21.5%	3.30	221,621
Hematite	18,548	5.9%	5.30	98,304
Plagioclase	6,183	2.0%	2.75	17,003
Talc	4,157	1.3%	2.75	11,432
Quartz	3,804	1.2%	2.65	10,081
Brucite	2,975	1.0%	2.40	7,140
Geothite	1,542	0.5%	3.80	5,860
Halite	107	0.0%	2.17	232
Subtotal	312,800			857,073
Hydrometallurgical Residue Weighted Average Specific Gravity =				2.74

(1) Reference (1)

As noted for Table 4-4, a consolidation test (ASTM Method D2435) was performed on a sample of the Residue to estimate the possible range in density of the Residue, under an assumption of in-pond disposal. A sample of the Residue was placed in a cylindrical load cell and pressure was applied incrementally to a maximum of 2 tons per square foot (tsf); a pressure estimated to be roughly two thirds the pressure that the Residue will experience at the bottom of the facility (roughly 80 feet in maximum depth). The 2-tsf maximum test pressure was selected and the consolidation test was performed at a time when a shallower HRF was contemplated.

The time-rate of consolidation curves show that the tested Residue sample consolidated slowly. This is somewhat counter to the typically rapid consolidation of non-cohesive silt-size materials. Had the testing time been extended and had the maximum test load been increased to 3-tsf, some additional densification of the sample would have occurred. For design purposes, an average dry density in the range of 70 to 80 pounds per cubic foot is recommended. Values near the low end of this range should be used for estimating cell-sizing requirements to accommodate the roughly 313,000 tons per year of Residue projected to be generated. A saturated unit weight calculated using dry density values near the upper end of this range should be used for stress-strain related evaluations (i.e., settlement and slope stability). Using the upper end of the dry density range of values yields a higher saturated unit weight. In this analysis, use of a higher unit weight will apply more downward pressure on the liner system, thus increasing the strain in the liner and creating a more conservative model for evaluation of liner stress-strain performance. The saturated unit weight value of 115 pounds per cubic foot (rounded up from 113 pounds per cubic foot) was calculated using Equation 4-3.

$$\gamma_{sat} = \left(1 - \frac{1}{G_s}\right) * \gamma_d + \gamma_w$$

Equation 4-3

where: $\gamma_{sat} = saturated unit weight$

 G_s = specific gravity

 $\gamma_d = dry unit weight$

 $\gamma_w = unit weight of water$

Bateman Engineering has projected (by METSIM Model Version U3) an in-pond dry density of Residue solids of 66.5 percent solids by weight. On this basis, and using an average specific gravity of solids of 2.75, the average in–pond dry density of Residue solids is 72 pounds per cubic foot. This value is similar to the average dry density obtained from consolidation testing, thereby confirming the appropriateness of use of such values for sizing of the HRF. Use of higher values for specific gravity of solids would yield higher in-pond dry densities, which in turn would yield smaller estimates of cell size requirements.

The plasticity limits of the sample of the Residue were evaluated using the Atterberg Limits test (ASTM Method D4318). The resulting Plasticity Index (a measure of soil cohesion) was 2.3 percent, indicating that the Residue sample had low cohesion.

It is worth noting here that the geotechnical test methods used for Residue testing were developed and are applicable to natural soil materials that are physically and chemically unaltered by precipitation processes such as those from which the components of the Residue are derived. The Residue components consist of agglomerations of particles caused by chemical addition intended to force separation and settling of specific materials within a treatment process. The results of this testing are considered in initial sizing of the HRF, but subsequent in-situ experience gained from full-scale operations may lead to a need for future adjustments in HRF sizing. The HRF will be configured to accommodate minor sizing adjustments (facility footprint and dam height) without significant changes to the connected infrastructure (i.e., piping and pumping systems). For the HRF, with average east-west and north-south dimensions measuring over 1,000 feet, even noticeable changes in facility height (e.g., 5 feet) will have a small effect on overall facility footprint dimensions.

Additional HRF sizing considerations are the potential for water treatment plant solids (gypsum) to be disposed of within the HRF and for coal combustion residuals (coal ash) to be relocated to the HRF from an existing coal ash landfill near FTB Cell 1E. Water treatment plant design is ongoing but initial projections are that overall solids volume to be disposed of within the HRF will increase about 1% to 2% with the addition of water treatment plant solids. This small increase in HRF capacity requirement will be confirmed once water treatment plant design is being finalized. The coal ash landfill is estimated to contain a total of approximately 260,000 cubic yards of materials, of which approximately 250,000 cubic yards are coal ash that would be relocated to the HRF. This represents about 4% of the currently proposed HRF capacity. For

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility	
Version: 6	Page 27	

purposes of this Geotechnical Data Package, a 5% to 6% increase in solids volume is negligible and does not affect the analysis or conclusions presented herein.

5.0 Geotechnical Models for HRF Design

The HRF must provide safe, long-term storage of Residue. Thus, the geotechnical design must encompass adequate storage for the proposed 20-year operating life of the Project (HRF operations begin after Mine Year 2, which results in an 18-year HRF life) and meet Project regulatory requirements. The analysis of the HRF includes seepage, stress-deformation and slope stability modeling. The 2007 GeoStudio software suite was used to perform the analyses. The critical cross-sections (the cross-sections anticipated to yield the lowest slope stability safety factor) of the HRF were analyzed. The following sections describe the cross-sections selected for analysis and the analysis in detail.

5.1 HRF Facility Configuration

The HRF is a single cell structure with an 18-year design capacity of approximately 6,400,000 cubic yards for Residue and an additional 3-foot minimum freeboard (14-foot maximum freeboard at a Residue surface slope of 0.5 percent). The HRF design and operating plans are presented in Reference (1). The perimeter will have an irregular shape consisting of the North Dam, natural high ground, and new dams. The dams will be constructed from natural soil and quarried bedrock obtained from the high ground on the southeast and southwest sides of the HRF. Some LTVSMC coarse tailings may also be utilized for dam construction. The HRF will be located on top of the Emergency Basin. New dams will be located beyond the extent of the emergency basin and will be founded on existing silty sand, gravel glacial till, and Giants Range granite. Foundation preparation for all new dams will consist of removal of surficial peat (if any) until bedrock or glacial till is encountered. Both materials provide a suitable dam foundation. With this construction process, further subsurface exploration at this time is not warranted. Such exploration may be warranted at a future date if it were determined that such information would aid construction contractors in preparation of bids for dam construction. An outline of the proposed HRF configuration is shown on each geological cross section (Large Figure 6 through Large Figure 9). Boring logs and locations in reference to the geological cross sections are discussed in Section 3.2.2.

The interior of the HRF dams will be sloped at 4 horizontal to 1 vertical (4H:1V). Thirty-foot horizontal benches will be placed at elevations of 1,600 and 1,630 feet. Dam construction material will be placed as needed to maintain the constant slope and bench widths around the inner perimeter of the facility, which will include some blasting of the natural high ground on the site perimeter. This geometry will allow for the placement of the geosynthetic liner in increments as HRF development progresses vertically and horizontally over the life of the facility.

HRF dams will be constructed using a downstream construction method. To advance in height using the downstream construction method, material is added to the crest and the downstream slope (exterior slope) of the dam. While the material is placed, it will be compacted to the design density. The maximum height of the proposed dams is approximately 85 feet with a crest elevation of 1650 feet. The exterior, downstream, face of the dams will be constructed at a slope of 4H:1V. Structural fill used to construct the dams is discussed in Section 4.0.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 29

To contain the process water used to transport the Residue to the HRF, the HRF will use a multilayered geosynthetic liner system to create hydraulic isolation between the Residue and surrounding material. The liner system components, listed in order from bottom to top, will consist of: (1) a geosynthetic clay liner (GCL), (2) lower geomembrane, (3) geocomposite (geonet), and (4) upper geomembrane. Leakage through the upper geomembrane will be collected via the geonet and routed to a leakage collection system for recycling. This system will limit the hydraulic head on the lower liner system, thereby substantially limiting liquid loss from the HRF.

During LTVSMC operations, active seeps were observed along the southern toe of Tailings Basin Cell 2W. The seeps have diminished since the termination of tailings deposition in the cell. Flotation Tailings will be deposited only in Cell 1E and 2E. Because tailings will not be added to Cell 2W, the active seepage along the toe of the south dam is expected to remain negligible. The design of the HRF requires additional LTVSMC coarse tailings and/or bulk tailings to be added to the toe of the south dam of Cell 2W. Similar to the existing tailings in the south dam, these additional fill materials will provide adequate drainage (Table 4-1 for permeability values) to dissipate pore water pressure in the event seeps reform. The tailings will be supplemented with a seepage collection pipe to aid in dissipation of any excess pore water pressure below the liner due to seeps. Collection pipe water will be managed in the same manner that FTB seepage is managed (Reference (24)). Pore water pressure dissipation, should any pore water pressures develop, will also be provided by the drainage layer proposed beneath the HRF pre-load fill. Finally, the contents of the HRF will act as a buttress and counterweight on the south side of Cell 2W, thereby further preventing any pore water pressure impacts on the HRF liner system should pore water pressures ever become temporally elevated in this area.

5.2 HRF Facility Cross-Sections for Geotechnical Modeling

HRF dams will be constructed of compacted structural fill placed to meet construction specification requirements. There will be little variability from one dam area to another; only the HRF subgrade conditions will vary. Due to the flat slope angles selected for the dams, each dam section is anticipated to yield similar slope stability factors of safety.

The choice of cross sections for geotechnical modeling considered the entirety of the HRF in combination with the surrounding features (hillsides, wetland areas, existing tailings basin, and emergency basin conditions). Two cross sections (A-A' and C-C') were selected for analysis, at locations where the combination of foundation conditions and dam height are expected to yield the lowest factor of safety in slope stability analysis. Numerous borings, CPT soundings, and aerial images were compiled to establish cross-section geometry.

Cross-section A-A' begins south of the future southern dam and terminates near the crest of the HRF North Dam. It follows the same path as geological cross-section A-A' shown in Large Figure 2, which approximates the base of the former ravine discussed in Section 3.2. This cross-section, shown in Large Figure 6, incorporates the thickest sections of low strength material. The material in this region includes a layer of LTVSMC slimes overlying a thin peat

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 30

layer. This cross-section also intersects the middle of the previous tailings disposal area through the thickest section of compacted tailings and silty sand. In addition, there are no Giant Range Granite extrusions that would provide additional support such as in most of the other geological cross-sections shown in Large Figure 2. This cross-section encompasses native materials and the existing Emergency Basin, existing Tailings Basin dams, and new dam construction. Large Figure 12 and Large Figure 13 show the Existing Conditions Geometry and End of Operations (Year 20) Geometry, respectively at cross-section A-A'. Geotechnical modeling outcomes for the southern dam of cross-section A-A' for each lift (Lifts 1 through 3) of dam development are presented in Section 6.2 of this report.

Development of the HRF will buttress and improve slope stability safety factor for the existing southern dam of Cell 2W (the northern dam of the HRF). Slope stability will increase as development of the HRF proceeds through additional lifts to higher elevations. This is due to the continued buttressing and overall reduction in slope height and slope angle that will result in the southern dam of Cell 2W as HRF development proceeds. However, for cross-section A-A' the first lift of the northern dam of the HRF (the southern dam of Cell 2W) was included in the slope stability evaluation as a point of comparison to the factor of safety values being computed for the other HRF dams.

Although expected to yield similar modeling outcomes, to evaluate variability between crosssections, the final lift (Lift 3) of the northwestern dam of cross-section C-C' was also modeled to evaluate slope stability (Large Figure 7). Cross-section C-C' begins northwest of the future northwest dam and terminates near the existing rail embankment to the southeast. It follows the same path as geological cross-section C-C' shown in Large Figure 2. The material underlying this cross-section is primarily silty sand with gravel and Giant's Range Granite, and these materials are incorporated into the geotechnical modeling for cross-section C-C'.

The coordinate system used in the models was based on vertical elevation and horizontal distances. Left and right distances, and lower bound elevations of -2800, 660, and 1,400 feet, respectively, were considered to be far enough from the areas of interest to not influence the HRF modeling results. Slope stability model results are presented in Section 6.2.1.

In summary, the following sections are modeled for evaluation of slope stability factor of safety:

- Cross-Section A-A'
 - Southern Dam Lifts 1, 2 and 3
 - Northern Dam Lift 1
- Cross-Section C-C'
 - Northwestern Dam Lift 3

For cross-section A-A' a finite element model was used to calculate stress-deformation effects during the life span of the HRF. The finite-element mesh for End of Operations (Year 20) is shown in Large Figure 14. The finite element mesh size was optimized, so it was fine enough to capture important soil behavior yet coarse enough to make the analysis computationally efficient. The majority of elements had a maximum mesh size of 17 feet, but mesh size in the Emergency Basin was reduced by roughly an order of magnitude to 1.7 feet to provide greater definition of flow and consolidation.

5.3 Seepage Analysis

The seepage analysis was conducted using SEEP/W, part of the GeoStudio 2007 Version 7.19 software package. SEEP/W uses the finite-element model to compute groundwater movement and pore water pressure distribution within porous materials, such as soil and rock. This program can analyze both simple and highly complex seepage problems, including saturated and unsaturated flow, steady state and transient conditions, and a variety of boundary conditions. Product integration allows the use of seepage files in stress-deformation and slope stability analyses.

The following assumptions were applied to the seepage analysis:

- The phreatic surface in the Emergency Basin is maintained at an elevation of 1,560 feet.
 - Currently, water in the deepest areas of the Emergency Basin is estimated to be 3 to 5 feet in depth. Surficial water will be pumped or drained away from the Emergency Basin before the sand drainage blanket is placed and the wick drains are installed.
 - The wick drains and sand, which act as a drainage blanket above the wick drains, will allow pore water pressures to reach equilibrium at an elevation of 1560 feet. Any seepage from Cell 2W seeps will be removed by high permeability structural fill and a seepage collection pipe as previously described in Section 5.1.
- An upstream phreatic surface was not included in the models.
 - A seepage collection system along the toe of the North Dam will maintain the phreatic surface at an elevation near 1560 feet.
- The liner system forms an impermeable boundary. The HRF is effectively hydraulically independent of the surrounding material and liquid within the HRF cannot seep through the liner system into the HRF dams.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 32

In addition, effects of precipitation are negligible. Most precipitation is expected to run off from the exterior face of the HRF dams, will be diverted away from the HRF via drainage swales and/or will fall into the lined HRF and be incorporated with other process water contained within the HRF. The area tributary to the HRF is limited by the perimeter dam of the HRF so is small such that the impact of even a large rain event would result in a small increase in the already existing pond depth.

As discussed in Section 4.1, wick drains are long flexible plastic bands encased in geotextiles. Equation 4-2 shows that wick drains increase the hydraulic gradient by reducing the drainage path for dissipation of excess pore water pressure. Wick drains were incorporated into the analysis by assigning constant head parameters to line segments. Wick drain line segments were set at 5-foot horizontal intervals in a triangular arrangement. This pattern was selected because it is the average recommended configuration and will provide a quick response to alleviate excess pore water pressure (Reference (17)) in HRF foundation materials. The wick drain line segments extended from the surface of the Emergency Basin through the LTVSMC slimes and compressed peat, terminating in the glacial till. A constant head of 1560 feet was assigned to each line, as well as the base of the sand drainage blanket. LTVSMC slimes and compressed peat in the emergency basin were assigned new seepage parameters to account for the proposed installation of wick drains. The new seepage parameters were discussed in Section 4.1. Seepage parameters were not changed in the glacial till, because the wick drains do not extend fully through the unit, but rather only penetrate into the unit.

The installation of wick drains in a triangular 5-foot horizontal pattern reduces the maximum drainage path from approximately 60 feet to 2.5 feet thus increasing the hydraulic gradient as shown in Equation 4-2. If it is ultimately determined by PolyMet that HRF construction can be extended over multiple years, then any analyses described in this section and elsewhere in this Geotechnical Data Package that include wick drains will be reviewed and revised where necessary to confirm analysis outcomes.

5.4 Stress-Deformation Analysis

A design consideration for the HRF is the deformation occurring along the interface between the Emergency Basin materials (the HRF foundation materials) and the HRF. It is assumed that strain along this interface directly correlates to strain in the HRF liner system. The geomembrane and geosynthetic components of the liner system perform adequately within a manufacturer-specified range of strains. Using cross-section A-A', analyses were completed to estimate the deformation of the Emergency Basin materials in their existing form due to the load applied by the HRF, and the strain that could result in the liner system. A coupled pore water pressure and deformation model was used for this analysis.

The stress-deformation analysis was conducted using SIGMA/W, part of the GeoStudio 2007 Version 7.19 software package. Pore water pressures computed in SEEP/W were imported into the SIGMA/W analysis to compute initial stress conditions in the model. SIGMA/W was then used to model pore water pressure generation and dissipation associated with external loading

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 33

and/or unloading. A series of transient analyses were run consecutively to simulate changes in pore water pressure and deformation over time. This approach accounts for time-dependent settlement of materials, as it is related to seepage and deformation parameters of each material.

Time allotments were assigned to each step of the transient analysis. The transient analysis was divided into 10 steps. The preload was modeled in five steps or five lifts. Two additional steps were given to (1) the placement of a sand drainage layer before the preload steps and (2) the removal of the preload. Fourteen-day periods were assigned to the sand drainage blanket and to each preload lift; the minimum expected time to form each lift. The preload removal was assigned 28 days. Three steps were used for the fill time of the HRF. The three filling steps of the HRF correspond to bench elevations of 1600 feet and 1630 feet and the crest elevation of 1650 feet. The cumulative times to fill the HRF to elevations of 1600, 1630 and 1650 feet were modeled at 4, 13, and 20 years, respectively. Actual times will vary and be somewhat less than the 13 and 20 year increments modeled (i.e., HRF facility operating life is projected at 18 years total) but as illustrated by the model results subsequently described, stress-deformation response is relatively rapid and model outcomes are unaffected by the extended time frame utilized in the modeling. A final 100-year period was used to analyze the total amount and decaying rate of consolidation of the Residue.

The following assumptions were applied to simplify the stress-deformation analysis:

- The entire addition/removal of a preload/Residue lift takes place at the beginning of each step.
- The sand unit will be 3 feet thick, as recommended in Reference (17).
- Five preload lifts will be 10 feet thick. This will result in a 50-foot high preload embankment. The final height will be adjusted on the basis of the data gathered from settlement gauges and piezometers used to monitor settlement and pore water pressure during placement of the preload.
- Material used to construct the dams in lower areas between natural high ground will be specified to be placed and compacted in a uniform manner to achieve consistent density and strength.

5.4.1 Preload

A preload imparts increased stress on underlying material, causing consolidation to occur. Once the underlying material is adequately consolidated, an additional preload lift is added and the process is repeated or the preload is removed. Pre-consolidation has occurred when the preload is removed and the underlying material has a maximum past effective stress greater than the present effective stress, which results in an OCR greater than 1.0.

As described in Section 4.2.2, normally consolidated soils are materials in which the present effective stress is equal to the maximum past effective stress. An example of a normally

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 34

consolidated soil is deposits of material in river deltas. Over-consolidated soils are materials in which the present effective stress is less than the past maximum effective stress. Soils once below glaciers are typically over-consolidated, due to the tremendous weight on soils imparted by the glacier. Normally consolidated materials experience greater compression (consolidation) when subjected to an increase in stress than over-consolidated materials.

Consolidation is also a function of a materials' void ratio and unit weight. Void ratio is the ratio of the volume of voids to the volume of solids in a unit volume. Normally consolidated materials generally have higher void ratios than similar over-consolidated materials. Increasing the effective stress on soil consolidates the underlying material by decreasing its void ratio and creating a denser particle configuration indicated by a higher unit weight. After a preload is removed, the underlying soil will rebound slightly. If additional weight is added to the soil, the new displacement will closely follow the rebound curve to the normal consolidation curve. Once the rebound curve is passed, further increases in effective stress will cause greater deformation.

Figure 4-3 shows a typical consolidation curve. As shown, effective stress increase on an overconsolidation curve causes a lesser change in the void ratio than a similar stress increase on the normal consolidation curve. A rebound curve is shown as a part of the consolidation curve. The numerical sequence shows: (1) over-consolidation curve, (2) normal consolidation curve, (3) unload curve, (4) rebound curve, and (5) normal consolidation curve.

The preload proposed for the HRF will pre-consolidate material in the Emergency Basin by creating an over-consolidated soil. Settling plates or strain gauges and piezometers will be installed on top of the Emergency Basin prior to placing the preload. Settlement and pore water pressure values will be compared to modeling results. Plots of settlement and pore water pressure versus time will be maintained to determine the time-rate of settlement and used as a guide to indicate when the next preload lift will be placed. If warranted, the initial modeling will be reviewed and updated. After the preload is removed a rebound curve will form, which must be followed upon the addition of future load. Because material in the Emergency Basin is normally consolidated, consolidation will begin along the portion of the curve shown as (2) in Figure 4-3. To achieve maximum consolidation, excess pore water pressure must dissipate from the Emergency Basin foundation before the preload is removed. The addition of wick drains in the Emergency Basin would reduce the time required to relieve all excess pore water pressure. Relief of excess pore water pressure can also be achieved by extending the time allowed for consolidation in response to placement of each preload load, prior to placement of the next load increment. After adequate consolidation has occurred, the preload will be removed, and consolidation will progress to (3) on Figure 4-3. At this point material in the Emergency Basin will be slightly over-consolidated. It is expected that the majority of the material used for the preload can be used in the new perimeter dams for the HRF. Some preload material will be required for the foundation of the HRF to be leveled to the design elevation. As Residue is added to the HRF, the consolidation path will follow the rebound curve shown as (4) in Figure 4-3. Eventually, the weight of the Residue will create an effective stress equal to the maximum past effective stress caused by the preload. At this point the consolidation will begin following the normal consolidation curve path, identified as (5) in Figure 4-3.

		NorthMet Project
	Date: July 11, 2016	Geotechnical Data Package (Volume 2)
		Hydrometallurgical Residue Facility
$P \underset{M I N I N G}{O L Y M E T}$	Version: 6	Page 35

Modeled consolidation results of the LTVSMC slimes within the Emergency Basin were corroborated using Equation 5-1 and Equation 5-2 to approximate the settlement of the LTVSMC slimes in the Emergency Basin due to the preload before it is removed. Equation 5-1 is illustrated in Figure 4-3 as line segment (2). A second equation is required to calculate additional settlement due to the stress induced by the HRF. Equation 5-2 approximates the settlement of the LTVSMC slimes in the Emergency Basin due to the HRF after the preload has been removed. This equation is represented in Figure 4-3 as line segments (4) and (5). The primary consolidation results, S_c, are additive due to the principle of superposition with the conservative assumption that no net loss of settlement due to the removal of the preload occurred, such that segment (3) in Figure 4-3 is ignored. Because the LTVSMC slimes are normally consolidated, line segment (1) in Figure 4-3 is not a portion of the settlement path.

$$S_c = \frac{C_c * H}{1 + e_o} * \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_o}$$
 Equation 5-1

 S_c = consolidation settlement

 C_c = compression index (Figure 4-3)

H = thickness of LTVSMC slimes

 $e_{\rm o}$ = initial void ratio

 σ'_o = effective overburden pressure at H/2

 $\Delta \sigma$ = effective uniform distributed load applied at the ground surface

$$S_c = \frac{C_s * H}{1 + e_o} * \log \frac{\sigma'_c}{\sigma'_o} + \frac{C_c * H}{1 + e_o} * \log \frac{\sigma'_o + \Delta \sigma'}{\sigma'_c}$$
Equation 5-2

Where:

 C_s = swell index (Figure 4-3) σ'_c = pre-consolidation effective pressure at H/2

5.4.2 Residue Consolidation Model

Following the termination of Residue placement, a dewatering program will begin to remove and treat water from the HRF (Reference (25)). At this point, the Residue is expected to be fully saturated to an elevation of 1650 feet. As water migrates to the dewatering outlet, pore water pressures will reduce and the effective stress on the Residue will increase, as shown in Equation 5-3.

$$\sigma = \sigma' + u$$
 Equation 5-3

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 36

Where: $\sigma = \text{total stress}$ $\sigma' = \text{effective stress}$ u = pore water pressure

Because water is incompressible relative to the compressibility of soil, settlement is expected within a soil stratum as pore water pressure is removed and the effective stress on the soil increases.

Consolidation (settlement) is based on effective stress and void ratio (Figure 4-3.) In a geotechnically homogeneous material, which the Residue is taken to be for purposes of this evaluation, the amount of consolidation will coincide with the depth of material. In the HRF, the greatest depth of Residue is approximately 80 feet. To reduce computational effort and time, the Residue settlement model was truncated to a 5-foot wide by 80-foot tall column. The column is shown in Large Figure 15.

The following assumptions were applied to the stress-deformation analysis:

- Infiltration due to precipitation was not included. Temporary cover and then final cover will be placed over the HRF to minimize infiltration due to precipitation.
- Potential future variations in climate were not included in this analysis and are not warranted for the short 20-year duration of the project.
- All foundation settlement in the Emergency Basin is expected to be complete at the termination of Residue placement.
- Residue consolidation is expected to occur throughout the operating life of the facility but for this analysis was assumed to begin at the End of Operations (Mine Year 20). This simplifying assumption yields a conservatively high estimate of the residue consolidation and HRF surface settlement that will occur after cessation of HRF operations.
- Pore water pressure will approach zero pounds per square foot during Residue dewatering. This assumption yields a conservatively high estimate of the residue consolidation and HRF surface settlement that will occur after cessation of HRF operations.

The consolidation is comprised of three modeling events: 1) a steady state seepage analysis corresponding to the point in time at which residue discharge into the HRF is completed, 2) an instantaneous stress evaluation in which gravity is applied to the model and initial stresses are determined, and 3) a transient coupled stress/pore water pressure analysis in which results from the first and second modeling events are coupled together and allowed to change with time. The third event incorporates a zero pressure-head boundary condition at the base of the facility, thereby allowing pore water pressures greater than zero to dissipate from the base of the residue

column, which reduces the pore water pressure in the system and therefore changes effective stress. A detailed explanation of this modeling approach can be found in the SIGMA/W user manual (Reference (18)). Estimations can be updated as residue samples are obtained from full-scale operations. Closure planning can correspondingly be updated in conjunction with required periodic updates to reclamation plans.

Residue consolidation modeling reflects End of Operations (Mine Year 20) conditions. During operations, pond depth soundings will occasionally be taken to compute facility capacity consumption rates and for confirming the timing of construction of the next vertical lift of the facility. Further, during operations, newly generated Residue is placed over existing Residue, creating capacity by consolidation of the underlying Residue. The Residue discharge location into the facility will be relocated as needed throughout the life of the facility to fill the facility to as uniform a Residue depth as possible, while also creating a final Residue surface that matches desired final contours to the extent possible.

Several factors could extend the time necessary to achieve zero pore water pressure, including lower than expected hydraulic conductivity of the consolidated residue, or drainage system malfunction. If malfunctions of the drainage system could not be repaired, then alternate dewatering techniques would be explored and/or alternate cover system designs would be considered. For example, an alternate dewatering technique may include installation of wick drains into the residue to aid consolidation and dewatering. Alternate cover system designs may include thicker geogrid reinforced or geotextile reinforced cover soil layer components to facilitate equipment access, and incorporation of a drainage layer immediately below the cover to facilitate collection and removal of residue consolidation water. HRF functionality would not be affected but final design details may change and timing of final cover placement could be delayed.

5.5 Slope Stability Analysis

The slope stability analysis was conducted using SLOPE/W, part of the GeoStudio 2007 Version software package. SLOPE/W uses the limit equilibrium theory to compute the factor of safety of earth and rock slopes. In the limit equilibrium approach, material is assumed to be at the state of limiting equilibrium and a factor of safety is computed. The state of limit equilibrium occurs when the soil and reinforcement strengths are reduced by the factor of safety (i.e., the system is at the verge of failure), meaning at this state the soil and reinforcement mobilize their respective strengths simultaneously. SLOPE/W is capable of using a variety of methods to compute the factor of safety of a slope while analyzing complex geometry, stratigraphy, and loading conditions.

Spencer's method was used as the search technique to determine the factor of safety in the stability analysis. Spencer's method is considered an adequate search technique because it satisfies all conditions of static equilibrium and provides a factor of safety based on both force and moment equilibrium. In addition, the analysis searches for the presence of tension cracks, and if found, incorporates them into the calculations. A minimum slip surface depth of 5 feet was

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 38

used in the analysis. For the HRF, slope instabilities (failure surfaces) less than 5 feet in depth are considered superficial, and maintenance issues only.

In SLOPE/W, the critical failure surface was analyzed using the grid-and-radius circular searching technique where the grid of the center of slip circles (or center of blocks) and radii (or ends of blocks) are established by the user. Once the critical slip surface was found, the technique optimizes the solution of the circular surface, yielding the lowest factor of safety.

5.5.1 Slope Stability Analysis Methods

In accordance with the MDNR-approved Geotechnical Modeling Work Plan (Attachment A), the HRF perimeter dams were designed to meet a minimum factor of safety of 1.5 for ESSA. The ESSA is performed to analyze slopes in which slow loading or unloading, or no external loading is in progress. In these instances, the drained shear strength of the materials is mobilized and no shear-induced pore water pressures are developed.

The slope stability analysis was performed for the intermediate lifts of the HRF development and for the End of Operations (Mine Year 20) configuration of the HRF. As agreed by the MDNR and PolyMet during development of Attachment A, slope stability with respect to excess pore water pressure in the South Dam of Cell 2W (north side of the HRF) was not analyzed and such analysis was deemed unnecessary due to a number of factors including:

- the slow filling rate of the HRF occurring over an 18-year time-frame and the resulting slow rate of stress increase in the underlying soils,
- the creation of a buttress on the South Dam of Cell 2W via construction of the HRF and the resulting increase in slope stability,
- the planned borrow of coarse tailings from the crest of the slope on the south dam of Cell 2W which will further reduce driving forces within the slope, and
- the hydraulic separation of the HRF and associated liquids and precipitation from the surrounding soils via the HRF liner system, thereby further limiting the potential for increases in the phreatic surface.

Evaluation of stability for liquefied soil strength conditions also was excluded from requirements in Attachment A due to the planned foundation preparation and dam construction techniques described herein, that remove the potential for soil liquefaction to occur.

5.5.2 Probabilistic Seismic Hazard Analysis

The seismic risks associated with the site were evaluated by performing a Probabilistic Seismic Hazard Analysis (PSHA). This is a site-specific seismic analysis that assesses the potential local and regional seismic sources that could affect the site, models their attenuation to the site, and provides a probabilistic response for conditions at the site. Seismicity at the site is likely to be

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 39

governed by one of two conditions: (1) nearfield events, which are low-level earthquakes with epicenters in the Midwest, and (2) farfield events, which are higher magnitude earthquakes caused by the New Madrid Seismic Zone. The New Madrid Seismic Zone contains the nearest active fault and is approximately 920 miles south of the site near New Madrid, Missouri.

Evaluation of the nearfield, farfield, and combined (combination of the nearfield and farfield events) seismically induced forces on the FTB geo-structures revealed negligible effects on the stability of FTB dams (Reference (15)). The constructed HRF with its relatively flat slopes and compacted structural fill for embankments is inherently even more stable than the FTB. Therefore, a PSHA was not conducted for the HRF.

The configuration of the HRF will use the South Dam of Cell 2W, natural high ground (bedrock) located to the southwest and southeast, and new downstream constructed dams in the lower areas between the natural high ground to complete its perimeter. The HRF will form a buttress on the South Dam of Cell 2W. Buttressing this slope will increase the effective stress on the Emergency Basin and the toe of the South Dam of Cell 2W. The natural high ground (bedrock) is not prone to seismic hazards due to its massive crystalline structure. The newly constructed dams in the low areas between the natural high ground are less susceptible to seismic hazards due to their coarse permeable nature, which will encourage drainage. The HRF is hydraulically separated from the surrounding soils due to its liner system, which will prevent an elevated phreatic surface from forming in the surrounding soils. Structural fill material will be placed in thin lifts and will be mechanically compacted to a high percentage of Standard Proctor maximum dry density. The new dams will be constructed in a downstream construction configuration (Section 5.1) with relatively flat slopes (4H:1V) historically accepted by the Agency for mine slopes in northern Minnesota. As shown in Large Figure 4, there is an inferred (by the MGS) fault underlying the HRF. Though this may be a potential source of excess pore water pressure, the fault's existence has not been confirmed and as previously noted in Section 3.2.1, is not depicted in recent geologic mapping of the area. Further, the HRF will be underlain by a granular drainage layer with ductile pipes, constructed as part of the pre-load fill. The drainage system will suffice in relieving any excess pore water pressure that could develop along this inferred fault. In addition, the proposed foundation preparation activities and dam construction will effectively fill any surface voids in the inferred fault zone. In summary, seismic hazards are improbable considering the following:

- PSHA evaluation of the FTB geo-structures revealing negligible effects on the stability of FTB dams,
- buttress addition increasing the effective stress applied on the Emergency Basin and toe of the South Dam of Cell 2W,
- removal of material from the crest of the South Dam of Cell 2W, reducing driving forces acting to destabilize the slope,
- lack of saturated soils surrounding the HRF,

- a granular drainage layer underlying the HRF to expedite the transfer of excess pore water pressure in a controlled manner, and
- construction methodology planned for new dam construction, including:
 - Removal of unsuitable foundation materials,
 - Fill being placed in thin lifts and mechanically compacted to a high percentage of Standard Proctor maximum dry density,
 - Downstream construction, and
 - Relatively flat dam side slopes (4H:1V).

6.0 Geotechnical Modeling Results for HRF Design

The results of the seepage, stress-deformation, and slope stability analyses for the HRF are presented in the following sections. Also included is geotechnical-related design information for the HRF drainage and leakage collection system and chemical compatibility information related to the residue and geosynthetic clay component of the HRF liner system.

6.1 Stress-Deformation

As shown in Large Figure 16, the greatest amount of deformation in the liner system foundation occurs at a node 280 feet away from the toe of the South Dam. This point will be referred to as "Node A" for the remainder of this document. Fine tailings and slimes in this area are the thickest at approximately 50 feet and yield the greatest vertical displacement in the foundation after the HRF is filled.

Due to their quantity, it is potentially impractical to excavate and replace the foundation materials with structural fill to support the HRF. Further, excavation of the materials to significant depth may lead to instability of the Tailings Basin South Dam, which relies on the material in the Emergency Basin for foundation support. Any excavation and replacement plan for existing foundation materials would require further analysis and design. For the scenario of leaving the Emergency Basin materials in place, to reduce the deformation potential of the foundation materials before the liner system is installed, the design of the HRF proposes that a preload be applied to the Emergency Basin. This will pre-consolidate material in the Emergency Basin, thereby limiting the potential future strains as discussed in Section 5.4.1. Model solutions after the removal of the preload are shown in Large Figure 16 to Large Figure 20. They are defined as follows:

- Vertical displacement: Large Figure 16
- Pore water pressure: Large Figure 17
- Total head pressure: Large Figure 18
- Total vertical stress: Large Figure 19
- Effective vertical stress: Large Figure 20

Node A, the point of greatest vertical displacement along the interface between the Emergency Basin and the HRF, was tracked throughout the analysis. Both vertical displacement and pore water pressure were monitored. Large Figure 21 and Large Figure 22 show the vertical displacement and pore water pressure change during the preload (surcharge) loading and removal, respectively. Because of the assumption that the preload was applied all at once in the model, but in actuality will take time to construct, the displacement response and pore water pressure magnitudes in Large Figure 21 and Large Figure 22, respectively, are exaggerated.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 42

Vertical displacement will generally occur at a slower rate and spikes in pore water pressure will have smaller magnitudes during actual construction. Lateral displacement was minimal and only considered during liner strain calculations, discussed in Section 6.1.2.

The initial displacement shown in Large Figure 21 relates to the placement of the sand drainage blanket associated with preparation for preload construction. The next five steps indicate displacement due to preload lifts. The first lift has the greatest impact on displacement. Change in displacement diminishes with each subsequent preload lift as expected because change in stress will be less as fill height increases. When the preload lift is removed, Node A rebounds up an estimated nine percent. The aggregate settlement of Node A during pre-loading is estimated at 3.9 feet.

Large Figure 22 illustrates the variations in pore water pressure due to the preload. Similar to Large Figure 21, the first spike in pore water pressure relates to the placement of the sand layer. Subsequent spikes in pore water pressure correlate to the additions and removal of the preload. As noted previously, pore water pressure magnitudes are exaggerated by the geotechnical model and in the resulting figures due to the modeled instantaneous placement of the preload lifts.

Model solutions for End of Operations (Mine Year 20) are shown in Large Figure 23 to Large Figure 27. They are defined as follows:

- Pore water pressure: Large Figure 23
- Total head pressure: Large Figure 24
- Total vertical stress: Large Figure 25
- Effective vertical stress: Large Figure 26
- Vertical displacement: Large Figure 27

Node A, which experienced the greatest variation in displacement and pore water pressure during the pre-loading, was tracked again during the filling operation of the HRF. The cumulative vertical displacement and pore water pressure variations are shown in Large Figure 28 and Large Figure 29, respectively. The time interval shown for Large Figure 28 and Large Figure 29 begins after the removal of the preload and ends at End of Operations (Mine Year 20).

As shown in Large Figure 28, the vertical displacement at Node A begins at -3.9 feet, after the rebound caused by the removal of the preload, and ends with a final displacement of -5.3 feet. The aggregate additional displacement is -1.4 feet after the liner system has been installed. Because of the assumption that the load was applied all at once in the model, but in actuality will take time to construct, the displacement response and pore water pressure magnitudes in Large Figure 28 and Large Figure 29, respectively, are exaggerated. Vertical displacement will occur at a slower rate and spikes in pore water pressure will have smaller magnitudes.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 43

Large Figure 30 and Large Figure 31 illustrate the change in vertical displacement with respect to effective stress for Node A. Initially, vertical displacement is shown to increase steadily as the effective stress (preload) increases. Once the preload is removed, the displacement follows the rebound curve. As Residue is added to the HRF, the consolidation path follows the rebound curve. Once the in situ effective stress in the Emergency Basin exceeds the maximum past effective stress, at an approximate elevation of 1600 feet, an increase in vertical displacement occurs. The vertical displacement path for Node A is similar to the effective stress versus void ratio plot shown in Figure 4-3. Without a preload, an estimated displacement of -5.3 feet would be expected. As a result of applying a preload to the Emergency Basin, the maximum vertical settlement estimated for the HRF is reduced to -1.4 feet.

Modeled settlement values were corroborated with settlement calculations based on Equation 5-1 and Equation 5-2. Settlement calculations were based on stress acting at Node A. The estimated settlement of the LTVSMC slimes before removal of the preload is 2.7 feet, compared to the modeled value of 4.1 feet. Equation 5-2, used to model additional settlement due to the increased weight of the HRF, estimates a settlement of 1.2 feet. Using the principle of superposition and assuming no rebound, the settlement equations calculate a total displacement of 3.9 feet compared to the aggregate modeled value of 5.3 feet. Because the saturated unit weight of Residue was used for this analysis, incorporation of precipitation into this analysis would have no effect on the outcomes.

6.1.1 Residue Consolidation

Residue consolidation will occur after cessation of Residue discharge to the HRF, as cell dewatering occurs. Over time, the rate of consolidation will reduce. Once pore-water pressure has reached equilibrium (when drainage is complete after approximately 10 years – ref. Section 6.3.1), primary consolidation will be complete and further consolidation will be negligible. Large Figure 31 illustrates the decaying trend of consolidation modeled in the HRF. Total settlement of the Residue surface in areas with the greatest depth of Residue is estimated via modeling to be 9.6 feet. As a check on model results, based on the change in void ratio correlating to the change in effective stress, the settlement was also calculated to be approximately 9.6 feet (Attachment D). As the depth of Residue decreases near the edge of the HRF, less settlement will occur. The resulting deformed surface of the HRF will be concave with the greatest deformation in areas of greatest Residue thickness.

Residue consolidation and settlement values presented above are estimates based on the assumptions that:

• The entire residue column is placed instantaneously, at which point settlement of the residue begins. In reality, residue will be placed in the HRF continuously and as it settles, newly placed residue will fill space vacated due to settlement.

• The residue column is homogeneous and settles uniformly. In reality, some components of the residue may settle faster than others, leading to a somewhat non-homogeneous residue mix with some zones that settle more than other zones.

On similar large, deep disposal facilities of this type (consisting primarily of coal ash and gypsum disposal facilities), it is Barr's experience that material settles quickly (a predominance of immediate settlement and limited consolidation settlement).

Final HRF capacity will be selected to provide adequate capacity for storage of all Residue produced by the Hydrometallurgical Plant during operations and for the small quantity of water treatment plant residue and coal ash expected to be disposed of within the HRF. Additional storage capacity can be achieved by increasing construction lifts from 3 to 4 feet if needed based on experience gained from full-scale operations. The increased heights will not adversely affect the stability of the facility due to the relatively flat slope angles being used and the downstream dam configuration being utilized.

The current design/management plan for the HRF utilizes an in-cell pond for sedimentation of the residue solids for clarification of the residue transport water prior return of the water to the hydrometallurgical plant for recycling. The plan does not include recirculating liquid to the surface of the HRF, via the drainage collection system, during plant operation and the placement of Residue. Due to the size and depth of the HRF, it is assumed that drainage recovery and recirculation at a rate required to generate a sizeable downward gradient and increased effective stress in the residue to affect additional residue consolidation would be impractical (large pumping and piping systems) and cost prohibitive. However, following the end of plant operation, pumps installed in the drainage collection sump will begin dewatering the HRF and any resulting densification of the residue due to progressively increasing effective stress will occur as drainage collection and removal progresses. Precipitation falling on the Residue is unlikely to have a significant impact on pore water pressure within the Residue; the annual depth of precipitation is small relative to the total depth of the HRF. Therefore, precipitation is unlikely to affect the overall settlement of the Residue.

6.1.2 Strain in Liner System

Strain in the HRF liner system will be the result of differential settlement between points along the liner interface with the HRF foundation materials. Strain along this interface is considered to correlate to the strain that will be induced in the HRF liner system. Large Figure 32 shows the estimated percent strain in the liner as a function of horizontal distance in the model. Positive strain values indicate axial extension, and negative strain values indicate axial compression. Axial extension, or stretching of the liner system, is of importance whereas axial compression is not. The maximum strain in the liner system is estimated to be 0.20 percent. This value is well within tolerable limits of most geosynthetics. In several areas of the liner, the model calculated a non-intuitive axial compression. However, considering the strains in a complex discretized stress-deformation model, node movement may not be as expected. A general cumulative elongation is expected to occur in the liner system.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 45

Strain capacity will remain relatively constant in the liner system. Any fluctuation in strain capacity will be most noticeable along the seams between geomembrane sheets. Manufacturers typically do not report maximum allowable strain for geomembrane seams. Rather, lengths of welds made in the field are tested in a laboratory to determine an index of expected minimum tensile strength. Liner systems are designed so that the critical failure is not due to peeling or shearing of the seams. Typically, laboratory tests result in a large amount of sheet elongation near the seam being tested, but not a rupture of the seam itself. Laboratory strain capacity results are used by the engineer to assess the need to replace inferior seams during construction. The testing method that addresses the evaluation of geomembrane seams is described in ASTM D6392-08.

The structural fill underlying the liner will be compacted to achieve uniform density. Consolidation and settlement of the structural fill underlying the liner can be expected to be negligible. On the south side of Cell 2W (north side of the HRF), placement of structural fill below the liner system is expected to result in uniformly distributed downward settlement, causing compression in the liner system rather than extension. Therefore, no excess strain is anticipated in the liner system along the south side of Cell 2W.

Table 6-1 lists the allowable strain and elongation at break percentages for several GSE Lining Technology, LLC high-density polyethylene (HDPE) and linear low-density polyethylene geomembranes (LLDPE). The allowable strain in the HDPE geomembrane is 12 percent. Because LLDPE is more ductile than HDPE and the LLDPE has an elongation at break strain value greater than 500 percent, the allowable strain for LLDPE can be assumed to be at least 12 percent or greater. The allowable strain in the GCL portion of the HRF liner is in the range of 1 to 19 percent, depending on the GCL type and installation procedures.

Name ⁽³⁾	Allowable Strain, %	Elongation at Break, %	Tensile Strength at Break Ib/in
GSE HD Textured Geomembrane (60 mil)	12	100	115
GSE HD Textured Geomembrane (80 mil)	12	100	155
GSE Ultra Flex (LLDPE) Textured Geomembrane (60 mil)	N/A	500	168
GSE Ultra Flex (LLDPE) Textured Geomembrane (80 mil)	N/A	500	224
Geosynthetic Clay Liner	1 to 19 ^{(1),(2)}	N/A	25 to > 50 ⁽²⁾

Table 6-1 Typical Strain Values for Geosynthetic Components

⁽¹⁾ Allowable strain in GCL liner depends on GCL type and installation procedures.

⁽²⁾ GCL Tensile Strength at Break depends on GCL type (Reference (26)).

⁽³⁾ GSE geomembrane data used for reference; actual geomembrane supplier may vary.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 46

6.2 Slope Stability

A slope stability analysis was performed for new dams proposed for the HRF perimeter, in the areas not bounded by the existing hillsides to the east and south. The analyses were performed on the south dam for each development lift, and on the south and northwest dam at their completion height for End of Operations (Mine Year 20) when the dams are at their greatest height and therefore yield their lowest slope stability safety factor. Analysis on the north dam was on the first development lift when this dam should yield its lowest slope stability safety factor. These conditions are anticipated to be the most critical conditions throughout the life of the facility.

6.2.1 Global Slope Stability

As required by Attachment A, the dams require ESSA and must achieve a safety factor of ≥ 1.5 . Stability analyses were performed for intermediate lifts 1 and 2 of the south dam of cross-section A-A' as well as the End of Operations (Lift 3) conditions for this dam and for the northwest dam in cross-section C-C'. Stability analysis was performed for lift 1 of the north dam in cross-section A-A'. Results of the ESSA stability analyses are presented in Table 6-2. The model solution outputs are shown in Large Figure 33 through Large Figure 37.

Analysis	Cross- Section A-A' ESSA (South Dam)	Cross- Section A-A' ESSA (North Dam)	Cross- Section C-C' ESSA (Northwest Dam)
Target Factor of Safety (FOS)	~1.5	~1.5	~1.5
Lift 1 – Computed FOS	2.34	2.72	N/A
Lift 2 – Computed FOS	2.32	N/A	N/A
Lift 3 - End of Operations (Year 20) – Computed FOS	2.32	N/A	2.27

Table 6-2 Global Slope Stability Analysis Results

As shown in Table 6-2, the factor of safety for the ESSA stability analysis is greater than the target factor of safety. This indicates that the dams will be stable during all lifts. As shown in Large Figure 33 through Large Figure 37, the critical failure surfaces begin at the crest and daylight at or above the toe of the dam. The minimum slip surface depth for these analyses was set at 5 feet. Because the angle of repose for the dam fill material (approximately 30 degrees) is greater than the proposed dam downstream slope angle (18 degrees), surficial slope failures are not expected. The gap between the End of Operations factor of safety and the target factor of

safety indicate that dam height could be increased further and still achieve an acceptable slope stability factor of safety.

As agreed with the MDNR, because the material in the constructed dams will be well compacted and because the HRF liner system will preclude leakage through the dams, Undrained Shear Strength Analysis and Liquefaction Analyses were not applicable and were not performed.

6.2.2 Infinite Slope Stability

As described in Section 5.1, the HRF geosynthetic liner system will consist of the following components, listed in order from bottom to top: (1) a GCL, (2) lower geomembrane, (3) geocomposite (geonet), and (4) upper geomembrane. Textured upper and lower geomembranes will likely be used for increased interface friction. The geocomposite between the upper and lower geomembranes will be a geonet encased on both sides by geotextiles. A GCL will be located below the lower geomembrane.

The interior slope angle for the HRF and the geosynthetic materials of the liner that will directly contact the underlying soils used for dam construction must be selected to produce a stable liner system – a system that will not slide down-slope as the HRF is filled with Residue. Equation 6-1 was used to calculate the factors of safety against down-slope sliding between successive liner components. In addition, each successive layer of the liner system must have an adequate interface friction angle with the underlying layer to prevent down-slope movement of any layer of the liner system, and the GCL must be internally reinforced to prevent internal shear failure of the GCL. Infinite slope stability for the liner system layer interfaces are shown in Table 6-3.

$$FS = \frac{\tan(\delta)}{\tan(\beta)}$$

Equation 6-1

Where: δ = interface friction angle (degree) β = slope angle (degree)

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 48

		-		
Table 6-3	Infinite Slop	oe Stabilitv	Analy	sis Results

Interface Number	Material Types	Slope Angle, β (deg)	Interface Friction Angle, δ (deg)	Target FS	Computed FS
4	Textured Geomembrane above Geocomposite Drainage Net	15.95	28	~1.5	1.86
3	Geocomposite Drainage Net above Textured Geomembrane	15.95	28	~1.5	1.86
2	Textured Geomembrane above Geosynthetic Clay Liner	15.95	28	~1.5	1.86
1	Geosynthetic Clay Liner above Granular Soil	15.95	24	~1.5	1.56

Computed factor of safety values shown in Table 6-3 are based on commonly reported interface friction angles between the materials anticipated to be used for the HRF liner (Reference (27)). Any variation from the anticipated material types warrants project-specific interface shear testing to confirm that the friction angles produce slope stability safety factors that are greater than the target factor of safety.

Per Fox and Ross (Reference (28)), shear failure in GCL-Geomembrane liner systems will occur at the interface with the lowest peak shear strength. Peak shear strengths for internally reinforced GCLs vary by normal stress and GCL type. For the GCL type to be specified for this Project (a woven-to-nonwoven needle-punched GCL), per Zornberg et.al. (Reference (29)) typical peak shear strengths (internal friction angle $Ø_p$ degrees) are approximately 40 degrees with additional strength provided by cohesion. Based on Equation 6.1, for an internal friction angle of 40 degrees and a slope angle of 15.95 degrees, the computed factor of safety against internal shear failure is 2.94, which is greater than the Target FS. This is without consideration of the added benefit the cohesive strength in the GCL provides.

6.2.3 Blast Induced Vibrations and Slope Stability

Natural high ground to the southwestern and southeastern edge of the emergency basin consists of rock outcroppings, which will need to be reshaped to achieve a minimum interior slope angle of 4H:1V for the HRF. Blasting will be required to loosen and break apart the rock outcroppings into manageable sizes that can be removed from the slope. Blasting has the potential to cause pore water pressure spikes and permanent deformation. Vibration, movement, and spikes in pore water pressure of the north side of the HRF, Emergency Basin, and any new construction should be closely monitored during blasting. Small test blasts should be conducted with long delays to determine the effects of blasting. Because permanent deformation is cumulative, tension cracks

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 49

in the north side of the HRF, Emergency Basin, and any new construction must be examined and repaired before any additional blasting can take place.

The value for allowable permanent deformation of a slope due to earthquake-induced movement varies greatly. Movement increases exponentially after initiating, so monitoring movement will be vital to the safety of the area. As reported in Reference (30), slopes with less than 0.5 feet of ground movement should be considered safe, while slopes moving more than 1.0 foot will be considered unsafe and/or require further evaluation. The safety of any slope movement beyond 0.5 feet will be determined by the engineer.

The potential blasting configuration for the construction of the HRF and its effect on the inferred fault is beyond the scope of this document. Consistent with generally accepted construction procedures, visual observation of the HRF foundation conditions below the specified pre-load area will be made in conjunction with construction. Any areas where foundation conditions must be improved will be identified and resolved prior to proceeding with overlying construction.

6.3 Drainage and Leakage Collection Systems

Drainage typically refers to liquid that drains from a waste deposit and is collected by the drainage collection system. The HRF will act as a sedimentation basin, and will remain full or partially full of water during routine operations. In this context, drainage is liquid that drains from the deposited Residue and is collected during or after cessation of Residue disposal activities.

6.3.1 Drainage Collection System

Drainage collection will be achieved by placing strips of geocomposite across the base of the HRF. The geocomposite is comprised of a geonet with a geotextile heat-laminated to one or both sides of the geonet. The geocomposite strips subsequently discharge into a dewatering sump from where the collected drainage will be pumped to the HRF during operations and to the Waste Water Treatment Plant (WWTP) in closure.

Design of a drainage collection system is based primarily on structural performance and hydraulic performance. Structural considerations of the geocomposite include compression and creep resistance of the geonet. With regard to the hydraulic performance, the key factors for the HRF drainage collection system are the transmissivity of the geonet, the filtration properties of the associated geotextile (Reference (31)) and the time for Residue dewatering as controlled largely by the rate of liquid drainage from the Residue.

A model was developed to determine the drainage area (the summation of the lengths times the widths of the geocomposite drains) required at the base of the HRF to sufficiently reduce the hydraulic head in the HRF to facilitate reclamation. For this analysis the 3-dimensional modeling code MODFLOW was used (Reference (32)). The version used for this work was MODFLOW-2000 (Reference (33)). The graphical user interface, Groundwater Vistas (Version 5.09 Build 16), was used for the construction of the MODFLOW model (Reference (34)).

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 50

Results of the model (Figure 6-1) indicate that, in order to achieve sufficient dewatering to facilitate temporary cover placement over the Residue surface once Residue discharge into the HRF is complete, the geocomposite drains should be spaced not greater than125 feet apart across the base of the cell. With this spacing and a pumping rate of 300 gpm, the hydraulic head should be lowered approximately 10 to 17 feet within approximately 1.5 years following cessation of Residue discharge into the HRF. This drained surface layer of Residue should provide a sufficiently stable construction base to facilitate placement of a temporary cover system in advance of completing permanent reclamation once cell dewatering is completed and Residue settlement has diminished. In the event that it is impractical to access the low density residue for temporary cover (which will remain in place and serve as a foundation for final cover) can occur in the winter on the frozen residue surface; a technique used to cover paper sludge and other low strength waste materials. Alternatively, material strength modifiers such as Calciment (off-spec cement) could be used to improve strength of the residue surface, or a thick geotextile or geogrid reinforced soil layer could be placed to facilitate access.

With this configuration and based on a maximum Residue depth of approximately 80 feet, the cells should be effectively dewatered within approximately 10 years of the cessation of Residue discharge into the HRF. A check of this time estimate can be made using Darcy's Law for velocity using Equation 4-1. Based on a permeability of 5.5×10^{-6} cm/sec (Table 4-1) and an 80 foot flow path, the estimated time for drainage to occur through the 80 foot column of residue is approximately 14 years (5113 days); a value commensurate with the 10 year (3652 day) estimate from the MODFLOW model. These dewatering calculations assume drainage only through the geocomposite drainage collection layer. The calculations ignore drainage through the overlying layer of LTVSMC Coarse Tailings. This means that drawdown may be more rapid than modeled for an 80-foot column of residue.

Figure 6-1 HRF Dewatering: Hydraulic Head Drawdown vs. Time at 125 Foot Drain Spacing

The estimates of drawdown time and consolidation are for facility design and permitting. The Project design includes flexible features such as the availability of the WWTP during reclamation and long-term closure to treat HRF leachate for as long as it is generated. Residue generated during full-scale operations will be tested to update estimates of drawdown time, and these updates will be included in annual reporting as described in the Residue Management Plan (Reference (1)), along with any planned changes in operations based on monitoring data and operational experience.

Prior to Residue deposition within the HRF, coarse tailings will be placed as a granular filter over the strips of geocomposite to prevent migration of the Residue into the geocomposite. The fly ash component of any relocated coal ash is anticipated to have a particle size distribution and hydraulic conductivity similar to that of the Residue, so it is anticipated that the coarse tailings will also separate any relocated coal ash from the geocomposite drainage layer. Prior to coal ash relocation, ash samples will be collected and evaluated for gradation to confirm that the drainage layer design remains adequate. Design equations used to determine granular filter gradation requirements are (Reference (20)):

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 52

Equation 6-2
Equation 6-3

Where, for a design based on characteristics of the Residue:

 $D_{15(\text{Filter Soil})}$ = nominal diameter of which 15% by weight of the protective filter material (coarse tailings) is finer

 $D_{15(Soil to Protect)}$ = nominal diameter of which 15% by weight of the material to be protected (Residue) is finer

 $D_{85(Soil to Protect)}$ = nominal diameter of which 85% by weight of the material to be protected (Residue) is finer

These equations provide a range of acceptable D_{15} particle sizes for a filter material. This range is between 0.06 mm and 0.30 mm for the D_{15} (Filter Soil); LTVSMC coarse tailings. The average D_{15} particle size for LTVSMC coarse tailings is 0.075 mm. Filter criteria for a geotextile states the apparent opening size of the geotextile must be less than or equal to twice the D_{85} particle size of the filtered material. D_{85} particle size doubled is 2.5 mm. Thus, a geotextile with apparent opening size of 0.212 mm would be appropriate for this filter configuration. If erosion of the coarse tailings appears to be a problem at the onset of impounding Residue in the HRF, sand bags or similar means can be used to secure the geocomposite.

A number of design features are included to reduce the potential for clogging the geocomposite strips. The LTVSMC Coarse Tailings cover over the geocomposite strips is selected to prevent migration of residue into the geocomposite strips. The design of the geocomposite includes a performance reduction factor (thereby requiring a higher performing geocomposite) to account for chemical precipitation within the geocomposite. Further, the LTVSMC Coarse Tailings cover provides a continuous drainage layer through which drainage to the Drainage Collection Sump for subsequent removal will also occur.

The geocomposite must have sufficient compression strength to withstand the overburden pressure induced by the Residue. Geonets are selected to have a compressive strength twice the stress that they are expected to resist (Reference (32)). Assuming a complete saturated column of Residue at the expected deepest area in the HRF (worst-case scenario), the applied total stress is approximately 9,200 psf. Considering this criteria, a geonet approximately 270 mm thick with a nonwoven geotextile heat-bonded to both sides with a compressive strength greater than 18,000 psf is recommended. Detailed specification of the selected geocomposite will be provided in construction specifications for Agency reference prior to construction.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 53

Settlement due to consolidation of materials within the Emergency Basin (underlying the HRF) is expected to have negligible impact on the performance of the drainage collection system. The system is designed to move liquid to the drainage collection sump in the northwest corner of the HRF utilizing a 1% slope. Assuming settlement occurs within the Emergency Basin material at a uniform rate, equivalent settlements can be determined for various locations in the Emergency Basin based on the material depth and End of Operations settlement at Node A. The 1% slope of the drainage collection system will decrease the most between areas experiencing greater settlement than for areas experiencing less settlement. Settlements were calculated at Node A and along cross-sections H-H' (Large Figure 9) at borings 70-ST13-A (deep area of Emergency Basin) and 70-ST-12 (shallow area of Emergency Basin) and added to the change in elevation due to the 1% grade to preliminarily estimate the reduction in slope at the bottom of the HRF. The estimated total changes in elevation due to settlement at Node A, 70-ST-13A and 70-ST-12 are 1.4 feet, 3.85 feet, and 6.13 feet, respectively. These settlements correlate to a slope of 0.75% between 70-ST-12 and 70-ST-13A; and a slope of 0.96% between 70-ST-13A and Node A. Slope change is depicted in Large Figure 38.

The minimum design slope suggested for the drainage collection system is 1% to facilitate drainage of virtually all free liquid from the HRF as part of reclamation activities. Based on the preliminary estimates of settlement summarized above, the slope of the base of the HRF may fall below the minimum recommended value, depending on actual settlements that occur. Rather than overbuilding the liner slopes based on the modeling performed to date, the settlement of the HRF subgrade will be monitored during pre-load fill placement to gather additional data on which final settlement estimates will be based. Slope adjustments will then be made based on these final settlement estimates.

6.3.2 Leakage Collection System

The upper liner of the HRF liner system will consist of a single geomembrane liner. Any defects in this liner that go undetected and unrepaired during construction will yield leakage of HRF pond water to the geocomposite drainage layer underlying the upper geomembrane and overlying the lower composite geomembrane and geosynthetic clay liner system. The geocomposite must be selected and configured with sufficient transmissivity and cross-sectional flow area to transmit any leakage through the upper geomembrane liner to the leakage collection sump without building excessive hydraulic head (typically ≤ 1 foot) on the lower composite liner system. Maintenance of a low hydraulic head on the lower composite liner is prevented. Computation of the leakage rate through the upper layer of the HRF liner system is necessary so that the rate at which water is captured, treated, and pumped to the HRF during operations and to the FTB (or water treatment plant) in closure is properly accounted for in the FTB water balance. The following assumptions are used to calculate the leakage rate through the upper layer of the upper layer of the double liner system.

• Leakage through the upper liner, consisting of a single geomembrane, occurs entirely through potential defects in the upper liner.

- For the liner leakage calculations, the defects in the single geomembrane are assumed circular with a diameter of 1 centimeter and a frequency of 2.5 defects per acre.
- Flow through a defect is calculated using the orifice equation. Because there is a pond present in the design of the HRF, the head on the defect is simply the elevation difference between the pond water surface and the liner.
- Flow through the Residue is calculated using Darcy's Law for saturated porous media.
- Both the size and number of defects in the liner, or the conductivity of the Residue above the liner may limit flow through the upper liner.

The flow per unit area, q, based on the orifice equation is shown in Equation 6-4, where n is the number of defects per acre $[1/L^2]$, a is the area of the defect $[L^2]$, H is the depth of the Residue over the liner [L], and d is the distance between the water surface and the Residue surface (negative if the water drops below the Residue, positive if there is a standing pond) [L].

$$q = 0.6na\sqrt{2g(H+d)}$$
 Equation 6-4

When a standing pond is present in the HRF, the flow per unit area, q, based on Darcy's Law is shown in Equation 6-5, where K is the saturated permeability of the Residue. When the water surface drops below the Residue while it is draining in closure, the flow per unit area is simply equal to the saturated hydraulic conductivity; in other words, d equals zero.

$$q = K\left(\frac{H+d}{H}\right)$$
 Equation 6-5

Leakage flow is constrained by the limitations on flow through liner defects (the orifice equation) and by the hydraulic conductivity of the Residue (Darcy's law). Figure 6-2 is an example plot of leakage flow based on the orifice equation and Darcy's Law at different Residue depths. When Residue is shallower, flow is constrained by the inability of liner defects to transmit an unlimited amount of flow, so the controlling flow line (the dark blue line) follows the orifice equation (purple line). However, as the Residue depth increases, a point is reached where flow becomes constrained by the hydraulic conductivity of the Residue, which controls the rate at which liquid can move through and drain from the Residue (the orange line). From that point, the controlling flow line follows Darcy's Law (the orange line). The Drainage Collection System is designed to collect the leakage flow as shown by the dark blue controlling flow line.

Figure 6-2 HRF Dewatering: Hydraulic Head Drawdown vs. Time

The estimated flow presented in Figure 6-2 represents that flow that the geocomposite drainage layer, underlying the upper liner, must be designed to collect in order to maintain less than or equal to one foot of hydraulic head on the lower composite (geomembrane over geosynthetic clay) liner system. It is the geocomposite drainage layer in combination with the configuration of the underlying composite liner and leakage collection system that produce an overall HRF liner system yielding virtually no leakage from the HRF.

The geocomposite in the HRF leakage collection system will be a continuous layer. This is a change from earlier HRF leakage collection system designs that envisioned strips of geocomposite at a 130-foot spacing between the upper and lower geomembrane components of the liner system. Design calculations for the HRF Leakage Collection System geocomposite layer, presented in Attachment E, assume strips of geocomposite, rather than a continuous layer. Attachment E calculations, which show that the configuration with strips of geocomposite could provide adequate capacity to collect the calculated leakage flow, have not been updated for this document. The continuous layer of geocomposite will be equal to or improve on the capacity of the leakage collection system shown in Appendix E, and thus provide adequate capacity to transmit the leakage occurring through the upper geomembrane into the Leakage Collection

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 56

System, limiting hydraulic head on the lower geomembrane and achieving practically zero leakage from the HRF. Since the geocomposite layer is now continuous, geocomposite transmissivity requirements might be reduced from those assumed in Attachment E. These requirements will be determined during final design.

The Leakage Collection Sump is sized to accommodate the maximum leakage flow, which will take place during the first lift of the HRF. The Leakage Collection Sump is designed to handle a flow of approximately 8,000 gallons/minute (the transmissivity of a geocomposite such as the GSE PermaNet SL, with design safety factors applied, is approximately 4 gallons/minute/foot; multiplied by the 2,000-foot sump perimeter). The maximum estimated leakage is approximately 2,340 gallons/minute (the maximum leakage rate of 38,000 gallons/acre/day multiplied by the ultimate HRF footprint of roughly 90 acres), well below the 8,000 gallon/minute capacity of the geocomposite and the Leakage Collection Sump. Leakage collection system design computations and HRF leakage rate computations are provided as Attachment E.

The HRF liner design assumes that post-construction liner leak location surveys are imperfect and that some defects in the upper geomembrane component of the liner system remain undetected and unrepaired following liner construction. Recently developed geomembranes facilitate post-construction leak location surveys that are proven capable of detecting all liner defects. The defects can then be repaired prior to placing the lined facility into service. At the point in time when the HRF proceeds to permitting, PolyMet will evaluate recently developed geomembranes as an alternate to the proposed geomembranes, as means by which overall liner configuration can potentially be simplified while still achieving the objective of a virtually leak free HRF.

6.4 Chemical Compatibility of GCL with Leakage from Hydrometallurgical Residue

The GCL selected for the HRF must be able to meet performance standards under the chemical and climatic conditions expected at the HRF. This topic is fully addressed in Section 2.2.2.3 of the Residue Management Plan (Reference (1)). In brief, ions such as those of calcium and sodium are known to have potentially detrimental effects on the long-term permeability of GCLs; the GCL permeability has the potential to increase in the presence of such ions, particularly when these ions are present in high concentrations. Therefore, two GCL suppliers (CETCO and GSE) were requested to evaluate the potential for any leakage that occurs through the geomembrane liner of the HRF to have a detrimental effect on the permeability of their GCLs.

CETCO and GSE utilized the services of JTL Laboratories, Inc. (JTL) to perform permeability tests on a number of GCL samples permeated with a synthetic leachate. The leachate was manufactured by GSE and CETCO and supplied to JTL as described in the test reports provided in Attachment F. As described in the May 13, 2008 test report provided by CETCO (Attachment F), three GCLs were manufactured by CETCO for permeability testing using the synthetic leachate as the permeant. The test on one GCL containing a plastic membrane component was terminated early-on due to impracticalities associated with manufacturing of the

product. The two other CETCO GCLs were prepared by adding two different proprietary high molecular weight polymers to the sodium bentonite used in the GCL. Based on the tests performed by JTL for CETCO, the GCL utilizing the "R-101" polymer formulation was most successful and is expected to have a long-term permeability of 1.5×10^{-9} cm/sec when permeated with leakage, should it occur through the geomembrane liner of the HRF.

In the testing, the CETCO R-101 GCL was directly hydrated with the synthetic leachate. Research indicates that prehydration with clean water prior to exposure to high ionic strength liquids is beneficial to GCL performance (Attachment F). Freshwater prehydration, which is expected to occur at the HRF as the GCL absorbs moisture from the facility subgrade soil, would improve GCL performance above the laboratory test results.

Testing of the CETCO R-101 GCL showed slight variability in permeability over the 500-day test. Measured permeability, which was initially approximately $6 \ge 10^{-10}$ cm/sec, increased to approximately $1.5 \ge 10^{-9}$ cm/sec. The noted hydraulic conductivity increase is less than one order of magnitude, and computations provided in Attachment E demonstrate that the computed leakage rate through the GCL remains near zero even if the hydraulic conductivity of the GCL increases by two orders of magnitude.

Based on the June 16, 2010 data reported by JTL Laboratories to GSE, the GCL provided by GSE for testing using synthetic leachate as a permeant is expected to have a long-term permeability of about 7.2 x 10^{-10} cm/sec when permeated with leakage, should it occur through the geomembrane liner of the HRF.

The potential effects of climatic conditions on GCL performance, particularly effects of freezethaw cycles, have been studied by numerous researchers (Reference (27)). Findings indicate that GCL performance is minimally affected by freeze-thaw cycles. Further, the majority of the GCL component of the hydrometallurgical residue facility liner system will be below the water elevation, and therefore not exposed to freeze-thaw cycles. The portions of the GCL that are above the water elevation will only undergo freeze-thaw cycles for a limited amount of time; i.e., only for a few years until the hydrometallurgical residue facility is raised vertically. Available evidence indicates that the GCL's limited exposure to freeze-thaw cycles is not expected to significantly affect its performance.

Based on the laboratory testing reported herein, specifications for the GCL component of the HRF should require use of polymer-treated GCL manufactured specifically in anticipation of the chemical characteristics of the liquid and the pore water that will be contained within the HRF.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 58

7.0 Revision History

Date	Version	Description
9/29/2011	1	Initial Release
5/31/2012	2	Version 2 incorporates edits and updates made in response to Version 1 review comments received from the MDNR, USACE, EPA, ERM and Knight Piesold.
10/12/2012	3	Version 3 incorporates edits and updates made in response to Version 2 review comments received from the MDNR, USACE, EPA, ERM and Knight Piesold.
10/31/2014	4	Version 4 incorporates edits to address unresolved Co-lead agency comments as communicated to PolyMet by the MDNR on 08/22/2014. Additional changes to this document address the proposed relocation of coal ash to the HRF, and the option of preload placement over multiple construction seasons as an alternate to wick drain installation.
11/26/2014	5	Version 5 resolves MDNR and Knight Piesold comments on Version 4, and integrates response to comments on Version 3 requested by the MDNR to be incorporated into Version 5.
7/11/2016	6	Updated to include signed PE certification

8.0 References

1. Poly Met Mining Inc. NorthMet Project Residue Management Plan (v5). July 2016.

2. Kaiser Engineers, Inc. *Engineering and Exonomic Analyses of Tailing Disposal System*. [Report to Erie Mining Company]. September 1968.

3. Kaiser Engineers, Inc. Foundation Investigations for Proposed tailings Dam. [Letter to Erie Mining Company]. December 12, 1969.

4. Sitka Corp. LTV Steel Mining Comany Geotechnical Assessment of Tailings Impoundment Phase 1. [Report to LTVSMC]. March 21, 1995.

5. —. Phase 3 Geotechnical Assessment of Tailings Basin [for LTV Steel Mining Company]. February 1997.

6. Jisra, M.A., Chandler, V.A. and Lively, R.S. Bedrock Geology of the Mesabi Iron Range. [Map]. s.l. : Minnesota Geological Survey, 2005. Miscellaneous Map M-163.

7. **Jirsa, M.A. and Boerboom, T.J.** Bedrock Geology of the Vermillion Lake 30' x 60' quadrangle, northern Minnesota. [Map]. s.l. : Minnesota Geological Survey, 2003. Miscellaneous Map M-141.

8. **Jirsa, M.A., et al., et al.** Bedrock geology database, bedrock topography, and depth to bedrock maps of the eastern half of the Mesabi Iron Range, northern Mnnesota. [Map]. s.l. : Minnesota Geological Survey, 2005. Miscellaneous Map M-158, scale 1:100,000.

9. Lehr, J.D. and Hobbs, H.C. Glacial Geology of the Laurentian Divide Area, St. Louis and Lake Counties, Mnnesota: Minnesota Geological Survey Field Trip Guidebook Series 18. Prepared for the 39th Midwest Friends of the Pleistoceen Field Trip, Biwabik, Minnesota. [Map]. 1992. p. 73. 1:250,000.

10. **Jennings, C.E., and Reynolds, W.K.** *Surficial Geology of the Mesabi Iron Range, Minnesota.* [Map]. s.l. : Minnesota Geological Survey, 2005. Miscellaneous Map M-164, scale 1:100,000.

11. **Braun Engineering Testing.** Preliminary Subsurface Investigation Proposed Basin #3 [for Erie Mining Company]. 1976.

12. Cotter, R. D., H. L. Young, L. R. Petri, C. H. Prior. Ground and surface water in the Mesabi and Vermilion Iron Range area, northeastern Minnesota. *U.S. Geological Survey Water-Supply Paper 1759-A.* s.l. : U.S. Government Printing Office, 1965.

13. **Poly Met Mining Inc.** NorthMet Project Water Modeling Data Package Volume 2 - Plant Site (v11). March 2015.

14. **Chandler, Val W.** Minnesota at a Glance Earthquakes in Minnesota. s.l. : Minnesota Geological Survey, 1994.

15. **Poly Met Mining Inc.** NorthMet Project Geotechnical Data Package Vol 1 - Flotation Tailings Basin (v7). July 2016.

16. **Barr Engineering Co.** Hydrogeology of Fractured Bedrock in the Vicinity of the NorthMet Project (v2). November 2014.

17. **National Highway Institute.** *Ground Improvement Methods.* [Reference Manual]. August 2006.

18. **GEO-SLOPE International Ltd.** Stress-Deformation Modeling with SIGMA/W 2007. [Manual]. February 2010.

19. **Goodman, Richard E.** Introduction to Rock Mechanics. 2 [Text book]. New York, New York, United States of America : John Wiley & Sons, 1989.

20. **Das, Braja M.** Principles of Geotechnical Engineering. 5 [Text book]. Pacific Grove, California : Brooks/Cole, 2002.

21. Holtz, Robert, William D. Kovacs, Thomas C Sheehan. An Introduction To Geotechnical Engineering. 2nd Edition s.l. : Prentice Hall, October 2010.

22. Sitka Corporation. Data Report for 1996 Tailings Dam Investigations. 1996.

23. *Slope Stability Analyses in Stiff Fissured Clays*. **Stark and Eid.** s.l. : Journal of Geotechnical and Geoenvironmental Engineering, 1997.

24. **Poly Met Mining Inc.** NorthMet Project Flotation Tailings Management Plan (v6). July 2016.

25. **PolyMet Mining Inc.** NorthMet Project Water Management Plan - Plant Site (v1). November 2011.

26. Qian, X. D., Koerner, R. M. and Grey, D. H. Geotechnical Aspect of Landfill Design and Construction . New Jersey : Prentice Hall Inc., 2001.

27. **Koerner, R. M.** Designing with Geosynthetics. 6th s.l. : Xlibris Corp., January 16, 2012. Vol. 1 and 2.

28. Fox, Patrick J. and Ross, Jason D. Discussion of "Analysis of a Large Database fo GCL Geomembrane Interface Shear Strength Date". January 2010.

29. Analysis of a Large Database of GCL Internal Shear Strength Results. Zornberg, Jorge

G., McCartney, John S. and Swan Jr., Robert. H. s.l. : Journal of Geotechnical and Geoenvironmental Engineering, ASCE, March 2005.

30. **California, State of.** *Analysis and Mitigation of Earthquake-Induced Landslide Hazards.* 1977. Guidelines for Evaluation and Mitigation of Seismic Hazards in California, Divisions of Mines and Geology, California Department of Conservation Special Publication 117, Chapter 5, 15pp.

31. Giroud, J.P., J.G. Zornberg, and A. Zhao. Hydraulic Design of Geosynthetic and Granular Liquid Collection Layers. *Geosynthetics International*. 2000, Vol. 7, 4-6.

32. A Modular Three-Dimensional Finite-Difference Groundwater Flow Model, U.S. Geological Survey Techniques of Water Resouce Investigations. McDonald, M.G. and A.W., Harbaugh. 1998, TWRI 6-A1, p. 575.

33. Harbaugh, A.W., et al., et al. *MODFLOW-2000*, the U.S. Geological Survey modular ground-water model -- User guide to modularization concepts and the Ground-Water Flow Process. U.S. Geological Survey Open-File Report 00-92. 2000. p. 121.

34. **Environmental Simulations, Inc.** Guide to using Groundwater Vistas, Version 5. s.l. : Environmental Simulations Inc., 2007.

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 62

List of Tables

Table 3-1	Historical Seismicity of Minnesota ¹	9
Table 3-2	Summary of Seismic Risk Calculation	. 11
Table 4-1	Summary of Material Permeabilities	. 14
Table 4-2	Summary of Stress-Deformation Parameters	20
Table 4-3	Unit Weight and Shear Strength Parameters for HRF Slope Stability Analysis	. 22
Table 4-4	Summary of Residue Characteristics for HRF Sizing and Settlement Analysis	. 24
Table 4-5	Computed Specific Gravity of Hydrometallurgical Residue	25
Table 6-1	Typical Strain Values for Geosynthetic Components	45
Table 6-2	Global Slope Stability Analysis Results	46
Table 6-3	Infinite Slope Stability Analysis Results	48

List of Figures

Figure 4-1	Linear-Elastic Stress-Strain Diagram	17
Figure 4-2	Modified Cam-Clay (MCC) Stress-Strain Diagram	18
Figure 4-3	Consolidation Curve	19
Figure 6-1	HRF Dewatering: Hydraulic Head Drawdown vs. Time at 125 Foot Spacing	Drain 51
Figure 6-2	HRF Dewatering: Hydraulic Head Drawdown vs. Time	55

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 63

List of Large Figures

Large Figure 1	Facility Location Diagram
Large Figure 2	HRF Geologic Cross Section Locations and Testing Locations
Large Figure 3	HRF Area Site Topography
Large Figure 4	HRF Area Bedrock Geology
Large Figure 5	HRF Area Bedrock Topography
Large Figure 6	HRF Geologic Cross Sections A-A' and B-B'
Large Figure 7	HRF Geologic Cross Sections C-C' and D-D'
Large Figure 8	HRF Geologic Cross Sections E-E', F-F', and G-G'
Large Figure 9	HRF Geologic Cross Sections H-H'
Large Figure 10	HRF Area Generalized Groundwater Elevations
Large Figure 11	Fully Softened Friction Angle Relationships
Large Figure 12	Existing Conditions Geometry
Large Figure 13	HRF End of Operation (Year 20) Geometry A-A'
Large Figure 14	HRF End of Operation (Year 20) Finite Element Mesh A-A'
Large Figure 15	Residue Settlement Column
Large Figure 16	Total Vertical Displacement at Removal of Preload
Large Figure 17	Pore-Water Pressure at Removal of Preload
Large Figure 18	Total Head Pressure at Removal of Preload
Large Figure 19	Total Vertical Stress at Removal of Preload
Large Figure 20	Effective Vertical Stress at Removal of Preload
Large Figure 21	Vertical Displacement at Node A after Removal of Surcharge
Large Figure 22	Pore-Water Pressure at Node A after Removal of Surcharge
Large Figure 23	Pore-Water Pressure at End of Operation (Year 20)
Large Figure 24	Total Head Pressure at End of Operation (Year 20)
Large Figure 25	Total Vertical Stress at End of Operation (Year 20)
Large Figure 26	Effective Vertical Stress at End of Operation (Year 20)
Large Figure 27	Total Vertical Displacement at End of Operation (Year 20)
Large Figure 28	Vertical Displacement at Node A at End of Operation (Year 20)
Large Figure 29	Pore-Water Pressure at Node A at End of Operation (Year 20)
Large Figure 30	Displacement due to Effective Stress at Node A
Large Figure 31	Residue Consolidation at Node A
Large Figure 32	Strain in Geosynthetic Liner at NorthMet End of Operation (Year 20)
Large Figure 33	ESSA Slope Stability HRF South Dam Lift 1
Large Figure 34	ESSA Slope Stability HRF South Dam Lift 2

Date: July 11, 2016	NorthMet Project Geotechnical Data Package (Volume 2) Hydrometallurgical Residue Facility
Version: 6	Page 64

Large Figure 35	ESSA Slope Stability HRF South Dam End of Operation (Year 20)
Large Figure 36	ESSA Slope Stability HRF Northwest Dam End of Operation (Year 20)
Large Figure 37	ESSA Slope Stability HRF North Dam Lift 1
Large Figure 38	Change in HRF Liner Slope due to Settlement

List of Attachments

Attachment A	NorthMet Geotechnical Modeling Work Plan
Attachment B	Hydrometallurgical Residue Facility Boring Logs
Attachment C	Residue Laboratory Test Results
Attachment D	Residue Settlement Calculations
Attachment E	Leakage Collection System Computations
Attachment F	GSE and CETCO test reports

Large Figures

PolyMet Mining Company Hoyt Lakes, MN

Large Figure 2 ullet**Historic Boring** HRF GEOLOGIC CROSS SECTION **DMT** Testing LOCATIONS AND 300 600 1,200 **TESTING LOCATIONS** 0 **CPT** Testing NorthMet Project **Cross Section Line** Feet PolyMet Mining Inc. **HRF** Footprint Hoyt Lakes, MN

Taconite Pits Sources: USGS Lake Vermillion 100:000 Quadrangle Taconite Pits: DNR Mining Features, 2009.

Large Figure 3 HRF AREA SITE TOPOGRAPHY NorthMet Project PolyMet Mining Inc. Hoyt Lakes, MN

Sources: Top of bedrock: DNR Hydrogeologic database 2006 Depth to bedrock: MGS M-158

Elevation, Feet (MSL)

RLG 10-12-12

CDR

Α'

1800 —

1700

1600

Elevation, Feet (MSL)

Large Figure 9

HRF GEOLOGIC CROSS SECTION H-H'

Surficial Aquifer Groundwater Contours¹

HRF Footprint

¹Inferred water table contours were developed using a combination of measured groundwater elevations in site monitoring wells and contours from the Plant Site MODFLOW model.

Large Figure 10 HRF AREA GENERALIZED GROUNDWATER ELEVATIONS NorthMet Project PolyMet Mining Inc. Hoyt Lakes, MN

Large Figure 11. Revised Fully Softened Friction Angle Relationships with Liquid Limit, Clay-Size Fraction, and Effective Normal Stress (Stark and Eid, 1997).

Large Figure 12 Existing Conditions Geometry

Large Figure 13 HRF End of Operation (Year 20) Geometry A-A'

Large Figure 14 HRF End of Operation (Year 20) Finite Element Mesh A-A'

Large Figure 15 Residue Settlement Column

PolyMet: NorthMet Hydrometallurgical Residue Facility Critical Cross Section File Name: Residue Column.gsz Date: 2/13/2012 SIGMA/W Analysis, Coupled Stress/PWP Method

Residue Settlement Column

Large Figure 16 Total Vertical Displacement at Removal of Preload

Large Figure 17 Pore-Water Pressure at Removal of Preload

Large Figure 18 Total Head Pressure at Removal of Preload

Large Figure 19 Total Vertical Stress at Removal of Preload

Large Figure 20 Effective Vertical Stress at Removal of Preload

Large Figure 21. Vertical Displacement at Node A after Removal of Surcharge NorthMet Hydrometallurgical Residue Facility

Large Figure 22. Pore-Water Pressure at Node A after Removal of Surcharge NorthMet Hydrometallurgical Residue Facility

Large Figure 23 Pore-Water Pressure at End of Operation (Year 20)

Large Figure 24 Total Head Pressure at End of Operation (Year 20)

Large Figure 25 Total Vertical Stress at End of Operation (Year 20)

Large Figure 26 Effective Vertical Stress at End of Operation (Year 20)

Large Figure 27 Total Vertical Displacement at End of Operation (Year 20)

Large Figure 28. Vertical Displacement at Node A at End of Operation (Year 20) NorthMet Hydrometallurgical Residue Facility

Large Figure 29. Pore-Water Pressure at Node A at End of Operation (Year 20) NorthMet Hydrometallurgical Residue Facility

Large Figure 30. Displacement due to Effective Stress at Node A NorthMet Hydrometallurgical Residue Facility

NorthMet Hydrometallurgical Residue Facility

Large Figure 33 ESSA Slope Stability HRF South Dam Lift 1

Large Figure 34 ESSA Slope Stability HRF South Dam Lift 2

Large Figure 35 ESSA Slope Stability HRF South Dam End of Operation (Year 20)

PolyMet: NorthMet Hydrometallurgical Residue Facility Critical Cross Section C-C' File Name: HRF 2012 Models - Critical Section C.gsz Date: 9/11/2012 SLOPE/W Analysis, Spencer Method

Large Figure 36 ESSA Slope Stability HRF Northwest Dam End of Operation (Year 20)

Large Figure 37 ESSA Slope Stability HRF North Dam Lift 1

Attachments

Attachment A

NorthMet Geotechnical Modeling Work Plan

Version 1 - Submitted by PolyMet on 06/16/2011

This document is the Work Plan for geotechnical modeling of the NorthMet Project as requested by the Geotechnical Stability Impact Assessment Planning Summary Memo, NorthMet Project EIS, dated May 18, 2011. The findings from the geotechnical modeling will be incorporated into a 3-Volume Geotechnical Data Package – and summarized and referenced as needed. NorthMet Project Geotechnical Data Package Volumes 1 through 3 will consist of:

- Volume 1 Flotation Tailings Basin
- Volume 2 Hydrometallurgical Residue Facility
- Volume 3 Stockpiles

Project:

The project that will be evaluated is the project described in the Lead Agency Draft Alternative Summary as amended 03/04/11. This Work Plan will be reviewed and amended as necessary in response to project changes in the event such changes require substantive changes to previously analyzed facility designs.

Background:

The NorthMet Project includes two material disposal facilities that include dams, consisting of the Flotation Tailings Basin for final deposition of flotation tailings, and the Hydrometallurgical Residue Facility for final deposition of the hydrometallurgical residue. The Flotation Tailings Basin and Hydrometallurgical Residue Facility are designed using an iterative process whereby facility capacity requirements and geotechnical requirements are utilized to determine the facility geometry and overall sizing requirements to contain the tailings and residue expected to be generated through the life of the project. A third type of material disposal facility, which does not require dams but does entail foundation and slope construction, is the waste rock stockpiles at the Mine Site (a.k.a. Stockpiles).

An important input parameter to the facility designs are the slope stability safety factors. Acceptable slope stability safety factors are selected and then the facilities (Flotation Tailings Basin and Hydrometallurgical Residue Facility) are configured to achieve these safety factors as computed by modeling performed during facility design. In the case of Stockpiles, MDNRmandated design requirements have been developed that result in acceptable safety factors.

The slope stability analysis methods that are used to compute slope stability safety factors are not required universally. In other words, some types of analysis are appropriate to some facility configurations while not applicable to other configurations. For example, undrained strength stability analysis (USSA) for slope stability is appropriate for the upstream construction approach planned for the Flotation Tailings Basin. It is not necessary for the Hydrometallurgical Residue Facility which will utilize downstream construction with a liner system. With this context the geotechnical work plans for the Flotation Tailings Basin, Hydrometallurgical Residue Facility, and Stockpiles are outlined below.

Version 1 - Submitted by PolyMet on 06/16/2011

Flotation Tailings Basin Geotechnical Model for SDEIS, FEIS and Permitting:

The objective of the Tailings Basin Geotechnical Modeling for the SDEIS, FEIS and Permitting is to demonstrate the ability of the Critical Cross-Section (i.e., Cross-Section F; that cross-section anticipated to yield the lowest slope stability safety factor as indicated in the Preliminary Geotechnical Evaluation – March 2009) to comply with the required global slope stability safety factors. The information content of the March 2009 Preliminary Geotechnical Evaluation will be updated and formatted to accommodate the 3-Volume Geotechnical Data Package format, with content further amended as necessary to both reflect the Draft Alternative (March 4, 2009, and as amended) and to incorporate the specific guidance provided below. The following is a step-by-step summary of the planned Flotation Tailings Basin geotechnical modeling process.

- 1. Gather existing conditions data (i.e. basin topography, stratigraphy, soil and tailings strength and hydraulic characteristics, and other data as needed to support geotechnical modeling and Flotation Tailings Basin design). Note this data has previously been compiled and presented in the Preliminary Geotechnical Evaluation March 2009. This information will be incorporated into the Geotechnical Data Package Volume 1, which will present the analyses outlined in this Work Plan. Results of in-laboratory testing of liquefied shear strength of NorthMet flotation tailings, completed subsequent the March 2009 evaluation, will be incorporated into the work prescribed in this Geotechnical Modeling Work Plan.
- 2. Develop tailings basin slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for the Flotation Tailings Basin for seepage and stability modeling. Models presented in the Preliminary Geotechnical Evaluation March 2009 utilized surveyed cross-sections of the existing basin and proposed cross-sections of future dam raises; existing models will be reconfigured as needed to accommodate the modeling approach outlined in this Work Plan. This information will then be incorporated into the Geotechnical Data Package Volume 1.
- 3. Develop seepage and stability models of the Flotation Tailings Basin using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W, SIGMA/W and QUAKE/W as necessary) for the following conditions:
 - a. Normal operating condition with lowest design Safety Factor (will model for normal pool elevation with steady-state seepage conditions and including bentonite amended exterior face of new dams).
 - Maximum dam height and increased pond elevation to account for pond bounce predicted to occur during a Probable Maximum Precipitation [PMP] event. Transient seepage analysis will be utilized as needed to account for the temporarily elevated pond condition produced by a PMP event.
 - c. Post closure with cover effective (bentonite amended exterior face of new dams, beaches, and pond bottom) and with pond at design elevation (after closure, fail-safe water level controls will be implemented to limit pond bounce during a PMP event to at or near the pond design elevation).

Version 1 - Submitted by PolyMet on 06/16/2011

- 4. Configure geotechnical data for model input. Model input parameters for hydraulic conductivity are anticipated to remain as utilized for the Preliminary Geotechnical Evaluation March 2009. For the March 2009 Preliminary Geotechnical Evaluation, all LTVSMC fine tailings and slimes and all saturated NorthMet tailings were assumed to be liquefiable; updated analysis will establish stress-strain criteria for which materials will transition from non-liquefied strengths to liquefied (steady state) strengths. This is to accommodate triggering analysis by which materials will be modeled as non-liquefied if stress-strain criteria are not exceeded, and modeled as liquefied if stress-strain criteria are exceeded. Data inputs that by mutual MDNR—PolyMet agreement remain poorly defined will be analyzed via sensitivity analysis to characterize their impact on model results.
- 5. Design slopes to achieve the following:
 - a. Effective Stress Stability Analysis (ESSA) Factor of Safety \geq 1.5 for effective shear strength conditions.
 - b. Undrained Strength Stability Analysis (USSA) Factor of Safety ≥ 1.3 for undrained shear strength conditions for non-statically liquefiable soils (i.e., end of construction case per dam raise).
 - c. Liquefaction Analysis (USSA_{liq})
 - i. Contractive/Dilative Material Behavior Analysis Identify materials having the potential to liquefy by classifying materials as contractive or dilative based on published correlations compared to site-specific field data (i.e., SPT blowcounts, CPT tip resistance, and shear wave velocities).
 - ii. Static Liquefaction (i.e., induced by embankment construction or nonseismic event)
 - For static liquefaction slope stability analyses, determine if liquefaction can be triggered. Use published triggering relationships and model results to determine areas along the slip surface where liquefaction will be triggered (Olson & Stark, 2003, Yield Strength Ratios and Liquefaction Analysis of Slopes and Embankments). If the safety factor against triggering static liquefaction is ≥ 1.5, no further liquefaction analysis is needed.
 - 2. If the safety factor against triggering is < 1.5, perform static liquefaction slope stability analysis. If the resulting slope stability analysis safety factor is < 1.2, then modify the slope design until safety factor criteria are met.
 - iii. Seismic Liquefaction (i.e., induced by seismic event)
 - 1. Develop material damping coefficients for LTVSMC and NorthMet tailings.
 - 2. Use Geo-Slope software to compute initial stresses and steadystate pore-water pressure distribution.
 - 3. Apply earthquake loads via QUAKE/W (earthquake loads to be obtained from probabilistic seismic hazard analysis [PSHA]) and compare results to a SLOPE/W yield undrained model to identify

Version 1 - Submitted by PolyMet on 06/16/2011

the elements within the model that liquefy as a result of the seismic loading.

- 4. Use published triggering relationships and model results to determine areas along the slip surface where liquefaction will be triggered (Olson & Stark, 2003, Yield Strength Ratios and Liquefaction Analysis of Slopes and Embankments).
- 5. Perform slope stability analysis in SLOPE/W (using liquefied shear strengths applied to elements shown to liquefy).
- 6. Perform deformation modeling in SIGMA/W to predict magnitude of deformation.
- 6. Report final design and operating requirements necessary to maintain required slope stability safety factors and deformation requirements for the critical slope cross-section (assumed to be Cross-Section F for SDEIS modeling).
- 7. Following MDNR Dam Safety review and approval of Critical Cross-Section modeling process/procedures and outcomes, proceed with modeling cross-sections G (north side of Cell 2E) and N (south side of Cell 1E) for final Flotation Tailings Basin design (for input to SDEIS, FEIS and/or Permitting as timing accommodates).
- 8. Within two years of basin start-up, complete analysis of one additional cross-section located at the mid-1980s piping failure location near the southwest corner of Cell 1E.

Reporting – the Geotechnical Data Package Volume 1 will present the background/supporting information and results of the Flotation Tailings Basin geotechnical analyses described in this Work Plan. Geotechnical Data Package – Volume 1 will contain the pertinent content previously presented in the Preliminary Geotechnical Evaluation – March 2009; reconfigured in response to MDNR Dam Safety requests to group all geotechnical data by material type (i.e., LTVSMC coarse tailings, fine tailings and slimes, NorthMet bulk tailings, etc.) rather than by data type (i.e., hydraulic conductivity, liquefied shear strength, undrained shear strength, etc.). Furthermore, analysis methods required by this Work Plan and the associated results will be presented in Geotechnical Data Package – Volume 1 to the extent that analysis methods and results supersede contents of the Preliminary Geotechnical Evaluation – March 2009. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time following tailings basin closure.

Hydrometallurgical Residue Facility Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Hydrometallurgical Residue Facility Geotechnical Modeling for the SDEIS, FEIS and Permitting is to:

Version 1 - Submitted by PolyMet on 06/16/2011

- demonstrate the ability of the most sensitive slope cross-section to comply with the required slope stability safety factors for global stability,
- demonstrate the ability of the composite liner system to comply with infinite slope stability safety factor requirements, and to
- demonstrate the capability of the composite liner system to withstand the strain anticipated due to differential settlement that may occur in the facility foundation materials.

The following is a step-by-step summary of the planned Hydrometallurgical Residue Facility geotechnical modeling process.

- Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data, hydrogeologic data and other data as needed to support geotechnical modeling of the Hydrometallurgical Residue Facility). Note – portions of this data have previously been compiled and presented in the Preliminary Geotechnical Evaluation – March 2009. This information will be incorporated into the Geotechnical Data Package Volume 2 and will be supplemented with additional facility location-specific data. Data on existing baseline water sources at the site, including surface discharges from the surrounding highlands, will be gathered for consideration during hydrometallurgical residue facility design. The facility will be designed to accommodate any such surface discharges and hence these discharges will not impact geotechnical modeling of the hydrometallurgical residue facility.
- 2. Gather additional residue strength and hydraulic conductivity data and/or representative published data for use in facility design. This information will be incorporated into the Geotechnical Data Package Volume 2 to the extent needed to facilitate the modeling outlined herein.
- 3. Develop residue facility layout and slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for proposed residue facility stability and deformation modeling. Note seepage through the residue facility embankments will be inhibited by the composite liner system and seepage modeling will be an unnecessary component of this analysis.
- 4. Develop global and infinite slope stability models and deformation models of the facility using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W and SIGMA/W as necessary). Model the following:
 - a. Deformation of hydromet residue facility foundation and liner system.
 - b. Infinite slope stability of hydromet residue facility liner system (if necessary/applicable).
 - c. Global stability of hydromet residue facility embankments.

Model maximum residue facility dam height with minimum and maximum pond elevation, and post closure – cover effective with minimum pond elevation. Model for effective shear stress conditions. Modeling for undrained shear strength conditions will

Version 1 - Submitted by PolyMet on 06/16/2011

not be necessary due to lined facility design with imported and mechanically placed dam fill and lack of seepage through the dam.

- Configure geotechnical data for model input. Model input parameters will be based on data collected for and presented in the Preliminary Geotechnical Evaluation – March 2009. For materials to be imported for construction, engineering judgment will be used to select conservative shear strength parameters for input to the slope stability analysis and liner deformation analysis.
- 6. Use SLOPE/W to calculate the Global Safety Factor for the following conditions:
 - a. Effective Stress Stability Analysis (ESSA) Safety Factor ≥ 1.5
 - b. Slope failures on external face and internal face of residue facility embankments.
- 7. Perform infinite slope stability analysis to confirm that load from residue deposition will be transferred to facility foundation soils and will not induce excess strain in facility liner materials.
- 8. Perform deformation modeling to predict magnitude of deformation and resulting strain in the facility liner system for comparison to allowable strain in liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the facility liner.
- 9. Report final basin design and operating requirements necessary to maintain required slope stability safety factors and deformation requirements.
- 9. Reporting the Geotechnical Data Package Volume 2 will present the background/supporting information and results of the Hydrometallurgical Residue Facility geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

Version 1 - Submitted by PolyMet on 06/16/2011

Stockpile Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Stockpile Geotechnical Modeling for the SDEIS, FEIS and Permitting is to comply with Mn Rule 6132.2400 (stockpile slopes will be as required by 6132.2400 Subp. 2. B. and stockpile foundations will be as required by 6132.2400 Subp. 2. A. (1)). These are design requirements that have been established to insure acceptable slope stability safety factors for global stability and acceptable foundation stability, the latter of which relates to the capability of the geomembrane liner system to withstand the strain anticipated due to differential settlement that may occur in the stockpile foundation materials.

The following is a step-by-step summary of the planned Stockpile geotechnical modeling process.

- 1. Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data and other data as needed to support foundation design). Existing site information will be utilized for analysis performed in support of the SDEIS and FEIS, with additional data gathered and designs updated as needed for final design in conjunction with permitting. Existing information will be incorporated into the Geotechnical Data Package Volume 3
- 2. Configure stockpile slopes to meet or exceed minimum dimensional requirements established by Mn Rule 6132.2400.
- 3. Perform stockpile subgrade settlement analysis to predict magnitude of deformation and resulting strain in the stockpile liners for comparison to allowable strain in the liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the stockpile liners.
- 4. Report final stockpile design and operating requirements necessary to maintain required slope stability safety factors and liner performance requirements.
- 5. Reporting the Geotechnical Data Package Volume 3 will present the background/supporting information and results of the Stockpile geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

Attachment B

Hydrometallurgical Residue Facility Boring Logs

LUU VI UVININU

PROJECT: 70- Bas Eri Ho	-50 in [#] 2 Expansion e Mining Co. yt Lakes, Minn.	BOI	RINC CATI Ste	2: ON 1.	<u>s</u> 1: 44+25	<u><u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>
		DA	re:3/	/2/	70	SCALE:1'' = 6'
Elev. Depth 1547.6 0'	Description of Materials		BPF	WL	Tests Sample #	or Notes
1543.6 4'	Fine to Medium Loamy Sand, with granite fragments, dark brown to grey brown, mo (very dense)	e ist	80		89	andere finder and a second
	Refusal at 4.0'					
	Boring attempted again at station 44+00 v	vith	refus	al	at 1.5'	

LOG OF BORING

PROJECT:70-	50	BO	RINC	2.	ST	-10		endersteren over	
Basi Erie Hoy	in #2 Expansion Mining Co. † Lakes, Minn.	LOCATION: Sta. 50+00							
and the second		DA	TE: 3	/2/	70	SCAL		61	
Elev. Depth 1543.0 0'	Description of Materials		BPF	WL	Tests Sample #	or	Note	\$	
1539.0 4'	Fine to Medium Sandy Loam to Loamy So grey mottled with reddish brown and darl brown, wet (medium dense)	and, <	21		90	interna en anterna en anterna en a	line or a high rate of a second		
1532.5 10.5	Fine to Medium Sandy Loam to Loamy So and granite fragments, greyish brown, wet (medium dense to dense)	and	32 21	V	91 92 93			-	
	Refusal at 10.5' No water encountered at 10.0' when me Water level at 7.0' when measured 2 ho	asur urs	ed in later	nme	diately af	fer co	mpletic	on	

ENGINEERING SERVICES, INC.

PROJE	CT:70-5 Basi Erie Hoy	50 n [#] 2 Expansion L Mining Co. t Lakes, Minn.	ORING	2: ON Ste	<u>ST-11</u> 1: a. 54+00, Centerline
Elev. 1547.3	Depth 0'	Description of Materials	BPF	/2/ WL	70 <u>ISCALE: 1"</u> Tests or Not Sample #
1545.3	21	Fine to Medium Sandy Loam to Loamy Sand grey mottled with reddish brown and brown frozen to wet (dense)	, 35	(1000001600000	94 8 dry = 109.7 mc = 18.8%
		Fine to Medium Sandy Loam, non plastic, with Gravel and boulders, greyish brown,	_34_ 45	-	95 96
		(very dense)	100/	W	
			60		
1528_3	19'				

S7.6.3

LUG UT BUKING

	Constanting of the second second second	sin for the and the second and the second and the second second second second second second second second second	provinceste	and states and	sami	inerestation and and and and and and and and and an		
PROJE	CT: 70-	-50	BO	RIPC		ST.	øl Z	
	Erie	• Mining Co.	LO	CATI	40	1:		
	Bas Hoy	in "2 Expansion /t Lakes, Minn.		Sta.	5	8+50		-
			DA.	ſE:3/	/2/	70	SCALE	:1" = 6'
Elev	Douth	Description of Materials	9- (12-11) 9- (12-11)	RPF	wi	Tests	or	Notes
1550.9	0'			P 11		Sample #		
		Fine to Medium Sandy Loam,						
		with Coarse Gravel and lenses of Sand, brown,		65		58 LL -	= 12	
		moist		70		59		
	· ·	(very dense)						
1541.9	91			100/	2"	60		
1540.9	10'	Fine Sand, brown, with pieces of weather	red*	.120	- · .	61		
		Refusal						
		No water encountered in probing boring i	mme	diat	ly	after com	pletion	
	c	Boring attempted at stations 58+75 (elevat t 1.5'	Ion	1554	. 0)	and 58+2	5 with	refusal

16

34.

*Charcoal colored schist

PROJE	CT:70– Basin Erie Hoyt	–50 in [#] 2 Expansion 9 Mining Co. 14 Lakes, Minn.		RINC CATI ta.	<u>):</u> ON 62+	5. 1: 00	<u>ST-13</u>		
1944 Hannada La Mariana Mariana Mariana Mariana M			DA	re:2/	/27	/70	SCA	LE:1" =	≍ (
Elev. 1542.4	Depth 0'	Description of Materials		BPF	WL.	Tests	or Y	Not	es
540 A	C I	Ice		ranha é menan	a variaterora	<u></u>	aterial trade controls and	treinstreisten simistenen	LI WARD
540.4	<u></u>	Fine to Medium Sand to Fine Sand, dark	arev		V.				
		(very loose)	9.07	/ 1		A-7			
		(tailings)		1		4.7			
			н. С			· · · ·			
								· · ·	
	e La Stran			4		48			
			-						
				2		49			
	•							•	
-							•	•	
	•			2	-	50			
ан 1									
المتعط						n de la composition de la composition de la composition de de la composition de			
518,4	24'	Fibrous Peat with wood dark because		4	• <i>i</i> .	51			
516.4	26'	wet		<u> </u>		Ji ang	n en		
		Fine Loamy Sand to Sandy Loam with	ألمرام						
		grey, wet (dense)	unu	10		50			
			+	40		JZ			5 . 2
510.4	32'	Dational							
	di siya d	Netusal							

.

airenten det antenna	Státhán a sin a		n in the second	dentervice and	-	A MARKAN RANKED STREAM PROPERTY OF A DESCRIPTION OF A COLOR PROPERTY OF A DESCRIPTION OF A
PROJI	ECT: 70 Basii	n [#] 2 Expansion	BOI		<u>):</u> 01	ST-13A N:
Hoyt Lakes, Minnesota						+50
MARINAL ALLER			DAT	E:2/	/27	/70 SCALE:1" = 6
Elev.	Depth	Description of Materials		BPF	WL	Tests or Notes
1541	1'			seinimaar	orivitation pre	Sample "
		Fine Sand, dark grey, (loose) (tailings)		- · · ·	X	
				5		53 Specific Gravity = 3.03
1533	9'					
		Fine Loamy Sand, grey (very loose) (tailings)		2		54
				3	-	55
523	19'					
519	23'	Fine Sand, dark grey (loose) (tailings)	-	6		56
<u> </u>		Fine to Medium Sandy Loam with layers of Clay and Sand, dark brown and brown, wet	of	15		57
513	29'	Granite fragments (medium dense)				
		Refusal				
		Water level at 2.0' when measured immed when measured 5 days later	liate	ly a	fter	r completion and at 2,(

			÷					
PROJEC	CT: 70-	50	1001	RING			<u></u>	14
	Basin Frie A	" 2 Expansion Aining Co	LO	CATIO	٥N	:		
	Hoyt	Lakes, Minn.		2.	α.	04+00		
	,	· · ·	<u> </u>			·	(
			<u>IDA</u>	$\frac{12:27}{1}$	24/	Torte	ISCAL	<u>E:1"/</u>
Elev.	Depth	Description of Materials		BPF	vЦ	10212	0i	140
1544.8	0'		-			Sample #		***
		Fine Sand arev				. •		
		frozen to wet (loose)		2		1		
		(tailings)		3		2		
								÷. *
				5		3 Specif	ic Gr	avity
						2.88 A		·
						.		
1530.8	14					i de di		
		Fine Sand with layers of Silt Lam and		7		5		
		Very Fine Sand, grey, wet						
		(toose) (tailinas)			·			
	•			4		5		
						- •		•
						a ta a		
1520.8	24'	Silt logm non plastic with layers of		_		· · ·		
		Sand, greyish brown, wet (loose)	-	5	, .	Speci 2'85	fic G	ravit)
		(tailings)						
515.8	29'							
		Fine to Medium Sand, grey		15		8		-:
		(mearum dense)						
510.8	34'					tan ang		
		ibrous Peat with wood, dark brown,		4	9			
		noist to wet (soft)		0				
							÷	
1 an 1			-	3	1	0 mc =	417%	
		$(x_{i}^{*},x_{i}^{*}) \in K_{\mu} = \{x_{i}^{*}, x_{i}^{*}\} $				**** . •		
	- 1							
500.3	44.5				· .	1	21 202	
		Muck, olive,	<u> </u>	<u> </u>		i mc ≕	210%	•
		wet (sott)						
495 3	19.51							
		Medium to Loose Sand and Gravel,		<u>1</u>	1	2		
100	-	brownish grey, wet (loose)						
471.8	<u>วง'</u>	Fine Sand with a little Ground dark			,			на I.
		layers of brown Medium Sand and a few	· Y /	18	1	3	e tra a	
487.8	57"	pieces of wood, wet (medium dense)	· . [1	n ar an a'		
		Medium to Coarse Sand with granite				e e e		
,		fragments, brown, wet (very dense)		52	1	۵		
						••••••••••••••••••••••••••••••••••••••		
482.3	62.5'							
:		Ketusal						•
		Water level at 2' when measured immedia	Itak	offer		moletion	and c	it.
1 - 1 - 1	. 1		••••	unior		mprorior.		
		surface when rechecked 8 days later				premon		

PROJE	CT: 70	-50	BOI	<u>SINC</u>	<u>.</u>	ST-15
-	Basin	#2 Expansion	LOO	CATI	10	4:
Contract of News	trie A Hovt	Aining Co. Lakes, Minn.				Sta. 64+00
					/0.5	
}	ſ		DAT	E: 2/	/25	Tests or No
Elev.	Depth	Description of Materials		BPF	WL	
1543.5	0'	Fine Sand gray				Sample #
		frozen to wet (loose)				
		(tailings)			W	a de la companya de l
				3		15
1533.5	10'		•	2.		16
		Very Fine Loamy Sand with layers of •				
		grey, wet (loose)	. 4		2	
		(tailings)		3		17
	4. 		: .			
	• •		ĺ			
1324.5	19'		-	,	,	18
		Fine Sand, grey, (loose) (tailinas)	· . -			10
			X			en e
			· -	3		19
		4				
			. -	9		20
1511.5	32'				,	
		very Fibrous Peat with wood, dark brown moist (soft)	, 1			
	1 - E		· ·	4		21
1505 0	201			•		
1505.8	38	Muck, clive, wet				
		(soft)		3		22 = 0 dry = 38.3
1501.5	42'		· .			m.c = 91.5%
		Fine to Medium Sandy Loam with Gravel, slightly plastic to plastic, brownish grey	- 5			
		wet (medium dense)		15	2	LL = 11 23 PI = 11
				15		24 $\Delta dry = 142.7$
489.5	54'					
		Fine to Medium Loamy Sand, with Gravel	, 1	16	2	25
		brown, wet (verv. dense)				
·			4	6		26
479 5	641					
+/ 7 . J	04	Granite fragments		37	2	27
						na sensa ang kanalan na sensa ang kanalan na sensa ang kanalan na sensa ang kanalan na sensa sensa sensa sensa Sensa sensa sens
			-			
4			114	no ir:		00

ROJE	CT: 70	-50	BO	RING		<u>ST-1</u>	6	de apprensis for functions and a first state of the state
	Basir Erie Hoyt	#2 Expansion Mining Co. Lakes, Minn.	LO	CATI	ION ita.	1: 67+00	 Apply protocoust with a start gauge 	nan karan yang bertakan di karan yang bertakan di karan yang bertakan di karan yang bertakan di karan yang ber
			DA	TE: 2	/26	/70	SCA	LE:1" =
lev. 547,4	Dopth 0'	Description of Materials		BPF	WL	Tests Sample	or #	Notes
545.9	1.5'	lce						
		Fine to Medium Sand, dark grey, lenses of brown Silt Loam below 7', moist to wet (loose) (tailings)	•	3	W	31 32		
				4	•	33		
	•			6		34		
534.4	13'				·			
532.4	15'	Silt Loam, brown, mixed with Peat & Wa (loose)	bod	2		35		
529.4	18'	Fine to Medium Loamy Sand, with grani fragments, brown, wet	te					
		Refusal						n Alexandro Maria an Alexandro
		Water level at 3.0' when measured imme	diai	ely	afte	r complet	ion a	nd again

	PROJECT: 70–50 Basin #2 Expansion Erie Mining Co. Hoyt Lakes, Minn.		50 #2 Expansion Mining Co. Lakes, Minn.	BORIN	ST-16B N: Sta. 67+00	
	Septembring to Amparts	and the second second second		DATE:	2/27	/70 SCALE:1"
• • .	Elev. 1546.8	Depth 0'	Description of Materials	BPI	WL	Tests or Not Sample #
. ·	1545.3	1.5'	Ice	an a	andianan	af den felden die de de felden die die eine eine weeren werden weeren gevonden gevonden gevonden gevonden gevo
			Very Fine Sand to Fine Sandy Loam with lenses of Silt Loam,			
			grey, trozen to wet (loose) (tailings)	5	-	40
					_	
				5	-	41
				9		42
				4	-	43
				7		44
	1519.8	27'	Granite fragments with Fine to Medium So Loam, (primarily reddish granite)	andy 65		45
	<u>1511.8</u>	35'		120	2"	46
			Refusal			

4

() .

PROJECT	: 70–3 Basin Erie Hoyt	50 #2 Expansion Mining Co. Lakes, Minn.	BO LO	RING CATI Sto	3: ION 1. (1: 59+00	<u>ST-17</u>	uzanjen o do jezerat dozirinda na zanjen o do jezerat dozirinda
17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	warmen		DA.	TE: 2	/27	/70	<u>ISCAI</u>	<u> </u>
Elev. De 1567.4 (pth)'	Description of Materials		BPF	WL	Tests Sample	or #	Note
1563.4 4	1.0	Fine to Medium Sandy Loam, a little Fin Gravel, brown, (very dense)	e	62		29 30	Ydry	= 134
		Refusal	21 m				m.c = LL =	р = 8.0% 13

PROJE	ECT _	Er	ie Mi	ining	Compa	iny - E-S	eries Borings	ORDER NO.
DATE	STAR	7/2	22/77	7	DATE	HRS.	7/22/77 FIELD ENCINEER Richard	C Miller - EBASCO
È	<u> </u>	Γ.	1	T				
DEPTH FEET	BLOWS PER SIX INCHES	SAMPLE NO	RECOVERY	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REMARKS
			-			dk grey	Silty fine to coarse Sand,	
		-					loose - (Tailing)	
	-	-						
	6	1				·····		
5	4	$\frac{1}{1}$	18''			· · · ·	1	
]			<u> </u>			
		<u> </u>						
								·
10	4		1.011					
10	12	2	18			dk grey	Silty fine to coarse Sand,	//
						····	loose - (Tailing)	
15								
1)	18	2	1.01					
	$-\frac{17}{14}$		18.			dk grey	Silty fine to medium Sand,	
							trace coarse Sand, medium	·
						······	dense - (Tailing)	
20								
	7		1.011			11		
	9	_4	18			dk grey	Silty coarse Sand, trace	
			¦i				medium Sand, loose -	
		·					(Tailing)	· · · · · · · · · · · · · · · · · · ·
25						·		
25	12		1 0110			11		-
	10	<u> </u>	18.1			ak grey	Silty medium Sand, trace	
[· · ·	fine Sand, medium dense -	· .
							(Tailing)	
30								· · · · · · · · · · · · · · · · · · ·
<u> </u>			j.	63833				

REMARKS .

1

2

BORING NO. E-1

SHEET _____ OF _____

SHEET _____ OF ____

PROJE	ст _	Eri	e Mi	ining	Compa	ny - E-Se	ries Borings	ORDER NO.
ELEVA	TION				GWL O H	RS		BORING NO. 2-1
DATE	START	_7/	22/7	7	DATE	hrs complete_Z	122/77 FIELD ENGINEER Richard	I C Miller - EBASCO
		Γ.		1			DESCRIPTION	
DEPTH FEET	BLOWS PER	SAMPLE NO AND TYPE	RECOVERY	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REMARKS
31	11 9	6	12"			dk grey	Silty medium Sand, trace	
		1			8		coarse Sand, medium	
			ļ		š		dense - (Tailing)	
		1	ļ			ļ		
35			-					
ļ	6	7	18''			dk grey	Silty fine to medium Sand,	
<u> </u>							loose - (Tailing)	
			ļ		ļ			
			ļ		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
40								
<u> </u>	4	8	18''			dk grey	Silty very fine Sand to	······································
ļ	4_						Silt with stringers of	
ļ							Clayey Silt, light brown,	
							loose - (Tailing)	
45								
	-3-	9	18"				same as above	
50								· · · · ·
	<u>-6</u> -2	10	18''			dk grey	Silt, some Clayev Silt to	
			- <i>i</i>		<u> </u>		silty very fine Sand, loose -	
					<u> </u>		(Tailing)	
55								
	4 4	11	18''				Black very fine Sand to lenses	-
	5						of light brown Clayey Silt and	
P						-	grey Silt, loose - (Tailing)	·
					58½'	brown	Muskeg	
60								

.

REMARKS _

BORING NO. E-1

1 153 1

SHEET ______ OF _____

PROJE ELEVA	ст тіом	Eri	ie M	ining	Compa GWL 0	ORDER NO.		
						HRS		BORING NOE-1
DATE	START	7/2	22/7	Z	DATE	COMPLETE_	7/22/77 FIELD ENGINEER Richard	C Miller - EBASCO
	RIS	όш	≻ '		<u>.</u>	- <u></u>	DESCRIPTION	۵ مرب
DEPTH FEET	BLOWS PE	SAMPLE N AND TYP	RECOVER	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REMARKŞ
61	4	12	18'	'	3	brown	Muskeg	
	9				621			
			ł	f	02			·
				-				<u> </u>
				· ·			depth of hole: 62'	
						ļ <u> </u>	piezometer installed	
				1				
ļ								
							· · · · · · · · · · · · · · · · · · ·	
						, <u> </u>		
						· · · · · · · · · · · · · · · · · · ·		
-								
-								
			<u> </u>			· · · · · · · · · · · ·		
								· · · · · · · · · · · · · · · · · · ·
				ŀ			· · · · · · · · · · · · · · · · · · ·	
<u> </u>				ŀ		— · · · · · · · · · · · · · · · · · · ·		
<u> </u>				┝				
————				ŀ				
				Γ				,
				ŀ		,	· · · · · · · · · · · · · · · · · · ·	
-,l						<u>-</u>		х.

REMARKS _

BORING NO. E-1

PROJE	ст	Erie	Min	ing C	ompan	y - E-Ser	cies Borings	ORDER NO.
ELEV	ATION		·····		GWL O H	IRS		BORING NOE-4
DATE	START	7/2	2/77		DATE	COMPLETE	7/22/77 FIELD ENGINEER Richard	C Miller - EBASCO
	μs	0 म					DESCRIPTION	
DEPTH FEET	BLOWS PE SIX INCHE	SAMPLE N	RECOVERY	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REMARKS
			 			dk grey	Silty fine Sand, trace	
							medium Sand, loose -	
		·					(Tailing)	
	10							
5		1	18''					
	-	۹, ۱						
ļ						L		
	5				l 			
10	$\begin{bmatrix} 3\\4 \end{bmatrix}$	2	_18''			dk grey	Silty fine Sand, some	
							medium Sand, loose -	
ļ,							(Tailing)	
L								
15								
	6	3	18''			dk grey	Silty fine to medium Sand,	
							trace coarse Sand, loose -	
							(Tailing)	
<u> </u>								
20								
	4	4	18'			dk grey	Silty fine Sand, some	
							medium Sand, loose -	
							(Tailing)	
25								· · · · · · · · · · · · · · · · · · ·
	5	5	18'				same as above	
	5				1			

.

REMARKS -

BORING NO. E-4

SHEET _____ OF _____

					·			SHEET	OF	<u>3</u>
PROJE	ст _	Eri	le Mi	ning	Compa	nv - E-Se	eries Borings	00050 No	•	
ELEVA	TION					IRS		BORING NO.	E-4	
DATE	START	_7/	22/7	7	DATE	HRS COMPLETE	7/22/77 FIELD ENGINEER Richard	<u>C Miller -</u>	EBASCO	
			Γ				DESCRIPTION		,	
DEPTH FEET	BLOWS PEF	SAMPLE NC AND TYPE	RECOVERY	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REM/	ARKS	
31	5	6	18''			dk grey	Silty very fine Sand, trace		· · · · · · · · · · · · · · · · · · ·	
	_2						fine and medium Sand.			
							loose - (Tailing)		······································	\neg
	· · · ·									
35										
	4 4	7	18''			dk grey	Silty very fine Sand,	····		
ļ							lenses.of_light brown			
							<u> Clayey Silt, loose - (Tailing)</u>			
ļ										
40	4									
	$\frac{\tau}{2}$	8	<u> 18''</u>				same as above			
45									-62	
	5	9	18''			dk grey	Silty fine Sand, loose -			
	0						(Tailing)			
		·								
50										
	4	10	<u> 18' </u>			dk grey	Silty very fine Sand, loose			٦
							- (Tailing)			
									· · · · ·	
55										-
	$\frac{1}{1}$	11	18''			lt grev	Silt with lenses light		n de la companya de l Service de la companya	
	_2						brown Clayey Silt - 14" -	······································		
							Clavey Silt - 4" your loss			\neg
						. ·	(Tailing)			1
60									•	

.

REMARKS

BORING NO. ______

EBASCO SERVICES INCORPORATED LOG OF BORING

								SHEET <u>3</u> of <u>3</u>
PROJE ELEVA	CT	Erie	<u>Min</u>	<u>ing C</u>	Ompan WL 0 H	<u>y - E-Ser</u> Irs Irs	ies Borings	ORDER NO Boring No
DATE	START		22/7	7	DATE	COMPLETE 7	122/77 FIELD ENGINEER Richard	C Miller - EBASCO
	8 S	юш			_		DESCRIPTION	
DEPTH FEET	BLOWS PE SIX INCHE	SAMPLE N AND TYPI	RECOVER	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL CLASSIFICATION	REMARKS
61	$\frac{11}{10}$	12	18''			dk grey	Silty very fine Sand, loose	
		1		84343333		1		

	α 0	6	1.				DESCRIPTION	
DEPTH	BLOWS PE	SAMPLE NO	RECOVERY	PROFILE	SOIL STRATA DEPTH	COLOR	MATERIAL Classification	REMARKS
61	<u>11</u> <u>10</u>	12	18'	-		dk grey	Silty very fine Sand, loose	
-							- (Tailing)	
		ļ						
65								
	$\frac{1}{\frac{1}{2}}$	13	18'			lt brown	Clayey Silt, very loose -	
 			· · · ·				(Tailing)	
						·····,		
					69½'		Boulder at 69½' - natural	
							ground	
							denth of hele 711	
						,	Diezometer installed	
				ŀ				
				-				·
	 		-	ŀ		-		
				. F				
]	ļ				
	Ļ							·

REMARKS _

BORING NO. E-4

· >

PROJECT: <u>LTV- Area 2W Tailing Basin</u> DATE STARTED: <u>10-16-92</u> DATE COMPLETED: <u>10-20-92</u> FIELD INSPECTOR: <u>K. Mann (BEC)</u> CREW CHIEF: Larry Anderson (AEC)

BORING LOG

BORING NO .: E-5

RISER PIPE ELEVATION: 1685.5 ft.

GROUND SURFACE ELEVATION: 1683.6 ft.

Depth (Feet)	Blows Per 6"	Sample Type	N Value	Recovery (Feet)	Profile	DESCRIPTION OF MATERIALS AND REMARKS
			-			POORLY GRADED SAND (SP)-About 5% coarse sand; about 95% fine to medium sand; loose; dry; grey.
5	5 8 10	SS	18			6.0'
·	13			1.8		POORLY GRADED SAND (SP)- Trace gravel; about 85% medium to coarse sand; about 15% fine sand; loose to medium dense; grey; dry.
<u>10</u>	4 4 5	SS	a			
	5			1.9		POORLY GRADED SAND (SP)- Trace gravel; about 10% coarse sand; about 85% fine to medium sand about 5% silt; loose to medium dense; black; dry.
15	5 5 7 9	SS	12	1.9		14.0' POORLY GRADED SAND (SP)- Trace gravel; about 85% medium to coarse sand; about 15% fine sand; medium dense; dark grey; dry.
20	5					POORLY GRADED SAND- Black, as above.
	6 6	SS	12	2.0 -		
25 	8 10 17 21	SS	27	2.0		24.0' POORLY GRADED SAND WITH SILT (SP-SM)- About 80% fine sand; about 20% silt; black; medium dense; dry.
	9					- Coarse Tailings
30 COMM	<u>10</u>	SS oil borin	a was o	omplete	dusing	a CME 550 rubber tire-mounted drilling rig with a 4 1/4-inch (ID) SHEET 1 OF 5

And the second provide the second provided the second provided

PROJECT: <u>LTV- Area 2W Tailing Basin</u> DATE STARTED: <u>10-12-92</u> DATE COMPLETED: <u>10-20-92</u> FIELD INSPECTOR: <u>K. Mann (BEC)</u> CREW CHIEF: Larry Anderson (AEC)

BORING LOG

BORING NO .: E-5

GROUND SURFACE ELEVATION: 1683.6 ft.

COMMENT: Soil boring continued at 54 feet using a 3 7/8-inch diameter tricone bit and drilling mud.

SHEET 2 OF 5

PROJECT: <u>LTV- Area 2W Tailing Basin</u> DATE STARTED: <u>10-16-92</u> DATE COMPLETED: <u>10-20-92</u> FIELD INSPECTOR: <u>K. Mann (BEC)</u> CREW CHIEF: Larry Anderson (AEC)

BORING LOG

BORING NO .: E-5

GROUND SURFACE ELEVATION: 1683.6 ft.

COMMENT:

SHEET 3 OF 5

PROJECT: <u>LTV- Area 2W Tailing Basin</u> DATE STARTED: <u>10-16-92</u> DATE COMPLETED: <u>10-20-92</u> FIELD INSPECTOR: <u>K. Mann (BEC)</u> CREW CHIEF: <u>Larry Anderson (AEC)</u>

BORING LOG

BORING NO.: E-5

GROUND SURFACE ELEVATION: 1683.6 ft.

Depth (Feet)	Blows Per 6*	Sample Type	N Vatue	Recovery (Feet)	Profile	DESCRIPTION OF MATERIALS AND REMARKS
	10 11 16 16	SS	27	1.5		POORLY GRADED SAND (SP)-Trace gravel; about 80% medium to coarse sand; about 20% fine sand; dense; grey.
95	17 15 13	SS	28			
	16			1.5		
<u>105</u> — —	12 11 18 18	SS	29	1.8		POORLY GRADED SAND (SP)- About 5% coarse sand; about 90% fine to medium sand; about 5% silt; dense; grey to black.
 110	13					110.0'
	14 14 19	SS	28	-1.7		SILTY SAND (SM)- About 70% fine sand; about 30% silt; dense; grey. 112.0' Bottom of borehole. E.O.B.
<u>115</u>						
						- Coarse Tailings

COMMENT:

SHEET 4 OF 5

PROJECT: <u>LTV- Area 2W Tailing Basin</u> DATE STARTED: <u>10-16-92</u> DATE COMPLETED: <u>10-20-92</u> FIELD INSPECTOR: <u>K. Mann (BEC)</u> CREW CHIEF: <u>Larry Anderson (AEC)</u>

BORING LOG

BORING NO .: E-5

GROUND SURFACE ELEVATION: 1683.6 ft.

Depth (Feet)	Blows Per 6"	Sample Type	N Value	Racovery (Feet)	Profile	DESCRIPTION OF MATERIALS AND REMARKS
						Notes: Borehole E-5 was completed as a piezometer on 10/19/92 and 10/20/92 by American Engineering Company (AEC) using a CME 550 rubber tire-mounted failing rig with a 4 1/4-inch (I.D.) holiow stem auger. Piezometer construction consists of a 2-inch (D.D.) schede 80 PVC riser and scene forming an assembly 110.2 telong. The screen, placed between 90.2 and 110.2 feet, is #10 slot and 20 feet long. The screen annulus was backfilled with coarse tailings to 82.5 feet, and a bentonite plug was placed to 80.5 feet. The remainder of the annulus was grouted, and a schedule 40 steel protective casing was installed over the riser pipe. The piezometer was developed by bailing.

COMMENT:

SHEET 5 OF 5

SITKA CORP

Test Hole No. DH96-09

									-			
Proje	ect:	Ľ	TV Taili	nas Assessment	Equipment:	CME 750 mud rotary		10	▶ % Pa	assing 7	#200	
Proie	ot No:	1	7957	5				10	00 0		/0	50
		L			_							
Locat	tion:	Н	loyt Lak	«es, MN	Ground El (ft):	1559.6						
Date	drilled	: A	ugust 2	25, 1996	Coords (ft):	405,433N, 2,234,935E		Limit	Content		Liquid	
Depth	Blow	Sarr	nple	I				×	(S C	×	;
-	Count	INU	туре	SAND (SM/SP-SM	I), fine to coarse,	some silt,	Detail	20%	40%	60%	80%	
-				compact, angular, (COARSE TAILING	dark brownish gr	ay, wet,						
				x	-,							
5	16		SPT									
	.0	•						ů				
		i										
												į.
10 	1	2	SPT	As above, very loo	se							_
-												
_ 15												
-	16	3	SPT	As above, compac	t			0				
-												
-												
20	17	4	SPT					0				-
-	F											
-												
25												
-	19	5	SPT					0				
-												
-												
30	12	6	SPT	As above, 2 inches	fine tailings			•				_
-												
-												
]
				(Co	ontinued)					,		

SITKA CORP

and the second se

Test Hole No. DH96-09

Test	Hole	Log			r	·		·	1	Page	2 of 2	2
Proje	ect:	L	.TV Tai	lings Assessment	Equipment:	CME 750 mud rotary		10	9 % Pa 30 5	assing ; TTT 50	#200 70 90	
Proje	ect No:	: L	.78.5.7									
Loca	tion:	ŀ	loyt La	kes, MN	Ground El (ft):	1559.6			_			
Date	drilled	: A	ugust	25, 1996	Coords (ft):	405,433N, 2,234,935E		Plastic Limit	Wa Con	ter tent	Liquid Limit	
Depth	Blow	San	nple	. M	Material Decoription					o	×	
	9	1NO 7	SPT				Detail	20%	40%	60%	80%	
40	9	8A	SPT	(FINE TAILINGS)	silty, loose, angula	ar, gray, wet,		•				
-		8B		SILT (ML), trace fir	ne sand, low plast	icity, soft to			0			•
				inni, angular, brow	mish yray, wel, (C	SLIMES)						
- - 												
-	4	9	SPT	As above, layers of	f fine tailings			*	•		•	
-												
-												
50	4	10	SPT	As above, black sli	me lavers						•	_
_				·	,							
-												
55	7	11A	SPT	SILI (ML), some fir slime layers, wet, (l	ne sand, loose, ar FINE TAILINGS)	ngular, black,		0			•	
-		11B _11C		SILT & CLAY (ML/	CL-ML), low plast	icity, firm,		××	•		•	*
-				(SLIMES)								
60				red, moist	ct, diack, drown 8	k brownish						
-	15	12A	SPT									1
-		128		SAND (SM/SC-SM), silty, clayey, fin r_dark brownish (e, dense to		0				
-				tery conce, angula	, dan bronnon (
65	33	13	SPT	As above, trace gra	vel			0				-
-	ŀ											
-												
			-	End of hole at 70.0	feet						-	

Sr	ГКА		COR	P			7	est Hol	le No. D	H96-10
Test	Hole	Log							Page	: 1 of 4
Proie	ect:	L	.TV Tailii	ngs Assessment	Equipment:	CME 750 mud rotary		10	% Passing	#200 70 90
Proje	et No	1	7857			·····,				
					One used EL (ft)					
Loca	tion:	F	ioyt Lak	ces, Min		: 1610.3	_	Plastic	Water	Liquid
Date	drilled	: J	uly 12,1	996	Coords (ft):	405,676N, 2,234,927	E	Limit	Content	Limit
Depth (ft)	Depth Blow Sam (ft) Count No			1	laterial Description Piezo			20%	40% 60%	80%
5	16	1	SPT	SAND (SP), fine t compact to dense (COARSE TAILIN	o coarse, trace to e, angular, brown IGS)	o some silt, iish gray, damp,		0		
- - - - - - - - - - - - - - -	28	3	SPT	As above, mediur	m to coarse, dens	se, wet		0		
20	14	4	SPT					0		
25 	29	5	SPT					0		
30	27	6	SPT					o		
				,	(Continued)					
L			1	(▃┴──┴──┤

ITK	\mathbf{A}	C	ORI	<u>P</u>			1	est Hole	<u>е INO. DH</u> Рабе	$\frac{90-10}{2 \text{ of } 4}$
est Hole Log								▲ % Passing #200		
roject:		LTV Tailings Assessment Equipment: CME 750 mud rotary						10 30 50 70 90		
oiect l	No:	L7:	8.5.7							
ocation: Hovt Lakes, MN				es, MN	Ground El (ft)	: 1610.3				
ate dri	lled:	July 12,1996			Coords (ft):	405,676N, 2,234,9	27E	Plastic Limit	Water Content	Liqui Limi
							Piezo	×	0	×
th Bl t) Co	low punt	No	Туре		Material Descript	ion	Detail	20%	40% 60%	80%
40	32	7	SPT					0		
15	36	8	SPT				Y			
45	26	9	SPT	SAND (SP), mea	lium to coarse, ti se, angular, brow	ace to some silt, nish gray, damp,		0		
	Ī			(COARSE TAILI	NGS)					
50	0.5		CDT					0		
	25	10								
55	38	11	SPT					0		
-60	00	- 10	CDT					0		
	30	12								
-65	36	13	SPT					0		
-70										
					(Continued)					

per l'apprend and the second s

ta a tanàna amin'ny fisiana amin'n
SIIK	AU		<u>.P</u>			1	est He	ole No. T	- <i>DH</i> Ρ _{ασε}	$\frac{90-10}{3 \text{ of } 4}$
est not	e LOE	<u> </u>						◆ % P	assing #	200
Project:		LTV Taili	ngs Assessment	Equipment:	CME 750 mud rotary		10	30 3	50 7	o 90
Project N	o:	L78.5.7								
Location:		Hoyt Lal	kes, MN	Ground El (ft):	1610.3					
Date drille	əd.	. lulv 12 1	1996	Coords (ft):	405.676N. 2.234.927E		Plastic	Wa	ater	Liquid Limit
							×		o	X
)epth Blov (ft) Cou	w Sa nt No	ample Type	Ν	Material Descriptio	n	Piezo Detail	20%	<u> 40% </u>	60%	80%
40	14	SPT					0			
			SAND (SP-SM) f	ine to medium silt	v compact.					
-75		_	angular, gray, mo	bist, (FINE TAILING	as)			•		
25	15	SPI								
- ⁸⁰ 27	16A	SPT	As above fine sa	ndv silt			0	•		•
			AS above, line sa	nuy Siit						
- 85										
29	17	SPT						0		
				ing cond work stiff						
-			to dark gray, wet	, (SLIMES)	, angular, gray					
-90	18							0		
23										
05	Ì									
- 95	19	SPT						0		
			ORGANIC SILT 8	PEAT (OL/PT), c	rganic, dense,					
- 100 42	204	SPT	dark brown & dai	rk black, moist (Pt	-AI)					
	20E	5	SAND (SC/SC-S	M), clayey & silty,	some gravel,		0			
			moist, (TILL)	liar & rounded, bro	ownish gray,					
- 105										
				(Continuea)						

ul.

l est F	1010.	Log			T			r	• %	Passing	2 4 C	<u>ין</u> י
Projec	:t:	Ľ	TV Taili	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70	9
Projec	t No	1.	7857	-								
. Tojec	LINU.	L.	10.0.1									
Locatio	on:	Н	oyt Lał	kes, MN	Ground El (ft)	: 1610.3		Plastic		Mater		Liqui
Date d	Irilled:	JI	uly 12,1	996	Coords (ft):	405,676N, 2,234,927E	Ξ	Limit	(Content		Limi
Depth	Blow	Sam	ple	Ν	Aatorial Descripti	on	Piezo	×—		_ 0		X
(ft) C	Count	No	Туре		naterial Descripti		Detail	209	<u>% 40</u>	<u>% 609</u>	<u>% 80</u>)%
	12	21	571									
-												
_ 110	74	22	SPT					ρ				
115												
	29	23	SPT					•				
- -												
120				End of hole at 119	9.5 feet.							
				Inclinometer insta Pneumatic piezor	lled at 119.5 fee neter installed in	t, 2.6 foot stick up. adjacent hole						
				drilled with hollow Water Level @ 43	/-stem auger.	6						
- - -												
125												
130												
135												
_ 140												
				·								

est I	Hole.	Log							/ / / / / / / / / / / / / / / / / / /	uge ssing #	200
Proje	ct:	LI	rV Tailin	gs Assessment	Equipment:	CME 750 mud rotary		10	30 50) 7	0
⊃roje	ct No:	Lī	78.5.7								
_ocat	tion:	н	oyt Lake	es, MN	Ground El (ft):	1649.3			.		<u> </u>
Date	drilled:	A	ugust 13	3 - 14, 1996	Coords (ft):	405,809N, 2,234,963E		Plastic Limit	Wat Cont	ter ent	Liq Lir
enth	Blow	Sam	ple				Piezo	x ——	c)	2
(ft)	Count	No	Туре	CANID (CM) fino	Material Descriptio	n eilt compact to	Detail	20%	40%	60%	80%
				dense, angular, l (COARSE TAILIN	orownish gray, dan NGS)	np,					
-5	14	1	SPT					0			
- 10	22	2	SPT	As above, trace	to some silt (SM/S	P-SM)		0			
- 15	9	3	SPT	As above, moist				0			
- 20	38	4	SPT					0			
-25	29	5	SPT	As above, medi	um to coarse			0			
30				As above deper	a to vany dansa						
	50	6	SPI								
— 35											
					(Continued)						

oct H	nlo			A .			1	<i>CSI</i> 110		Page	2 2.0	of '
		LOg]	······································			♦ %	Passing	#200	<u> </u>
roject	:	Ľ	TV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70	90
roject	No:	Ľ	78.5.7									
.ocatio	on:	Н	oyt Lak	es, MN	Ground El (ft):	1649.3						
)ate dr	rilled:	A	ugust 1	3 - 14, 1996	Coords (ft):	405,809N, 2,234,963E		Plastic Limit	С	Water Content		Liqui Limi
ath D		Sor					Piezo	×—	-	- 0		— ×
ft) Co	ount	No	Туре	N	Aaterial Description	on	Detail	20%	<u>6 40'</u>	<u>% 609</u>	6 80)%
	77	7	SPT					ο				
	60	8	SPT					0				
	ŀ											
	r											
5												
	44	9	SPT					0				
										r r		
				-								
50	47	10	SPT	As above, some s	andy silt (ML)			0				
	F											
55												
	55	11	SPT					ο				
50	31	12	SPT	As above, fine to	coarse, compact	to dense		0				
				As above, some	ine tailings layers							
55												
	29	13	SPT								ſ	
-												
70												
					(Continued)							

ала Солония с солония (СССС) с

Test J	Hole	Log			•	······································			ŀ	Page	<u>3 of</u>
Proie	ct.	T	V Tailii	nas Assessment	Equipment:	CME 750 mud rotarv		10	% Pa 30 5	assing # 50 7	200 70
	ul.	ا _س				······································					
Proje	CT NO:	L7	ð.5. <i>1</i>								
Loca	tion:	Ho	oyt Lak	es, MN	Ground El (ft):	1649.3		Plastic	W	ater	Lia
Date	drilled:	Αι	ugust 1	3 - 14, 1996	Coords (ft):	405,809N, 2,234,963E		Limit	Con	tent	Lir
Depth	Blow	Sam	ple		latorial Descriptic	<u>n</u>	Piezo	x			000%
(ft) -	Count	No	Туре	IV			Detail	0	40%	60%	80%
-	32	14	501								
-											
-											
75 	35	15	SPT			∇	7	0			
-						_					
- - -											
- - 80											
- -	23	16	SPT					0			
•											
- - -											
85 	94	17	CDT					 ♦ 0 			
-	34	17	UFI	As above, some fi	ine tailings lavers						
-											
-								•			
	32	18	SPT					0			
- - -											
-				SILT (ML) trace fi	ine sand firm an	gular, brownish					
95 95				gray, wet, some fi	ine tailings layers	, (SLIMES)					
-	8	19	SPT								
-											
-				SILT (ML), some	sand to sandy, co	ompact to dense,					
100 	24	20	SPT	angular, gray, we		<i>(</i>		o			
_											
_											
 105											
					(Continued)						

Test I	Hole	Log									Page	240	of
								1	4	▶ % I	Passing	#200	1
Proje	ct:	L	TV Taili	ings Assessment	Equipment:	CME 750 mud rotary		10)	30	50	70	ç
Proje	ct No:	: L	.78.5.7										
Locat	tion:	F	lovt Lal	kes, MN	Ground El (ft):	1649.3							
Dete	-1911	ι. Λ		14 1000	Coordo (ft):	405 200NL 2 224 062E		Pla	stic	v	Vater		Liqu
Date	ariilea	I: A	lugust i	13 - 14, 1990		405,80911, 2,234,903		Lin X	nit :	Co	ontent		Lin — >
Depth	Blow	San	nple	Ν	Aterial Descriptio)n	Piezo		0.00%	400/	- 609	/ 0/	, 10/
 	12	21	срт		F		Detail		20%	40%			170
- 1	15	21											
-													
-													
110 -	33	22A	SPT	As above, siltv sa	nd			þ	*				•
-		22B	-						0				
-													
115	37	23	SPT						0				\$
-													
-													
-				As above, mediur	n to coarse sand,	silty							
120 -	36	24	SPT						0	•			
-			-										
-													
-				As above, silt, sor	ne medium to co	arse sand							
125 -	35	25	SPT						0				
-			-										
-													
-				SILT (ML), trace r	nedium to coarse	e sand, very stiff,							
130	27	26	SPT	angular, dark gray	y, wei, some tine	tainings layers,			0				
-			-										
-													
135 	11	27	SPT	As above, clayey	(CL-ML/ML), bro	wnish gray				o			
			-										
-							_						
-				SAND (SC-SM), s	silty, clayey, trace	gravel, angular &							
140													
					(Continued)		1						

Test I	Hole .	Log								Page	<u> </u>
Proje	ct:	LI	FV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	♦ % 1 30	50	#200 70
Proje	ct No:	Lī	78.5.7	-							
Locat	tion:	Н	ovt Lak	es, MN	Ground El (ft):	1649.3					
Date	drilled:	A	uaust 1	3 - 14, 1996	Coords (ft):	405,809N, 2,234,963E		Plastic Limit	V Cc	Vater	Lic Li
							Diaza	×		0	
Depth (ft)	Blow Count	Sam No	туре		Material Description	on	Detail	20%	, 40%	. 60%	80%
-	31	28	SPT	rounded, brown,	tan & red, wet (TI	LL)		0			
-				End of Hole at 14	12.0 feet.						
- : -				Water Level @ 76	6.5 feet on $9/10/9$	6.					
145 - -											
-											
-											
- 150 -											
-											
-											
- - 155											
-											
-											
-											
160 											
-											
-											
165 											
 170											
1/0 											
175											
	1	1	1								

511	10le .	Log			1				Passing	<u> </u>
rojec	ct:	Ľ	FV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	30 50	70 90
rojec	ct No:	L	78.5.7							
ocati	ion:	Н	oyt Lak	es, MN	Ground El (ft)	: 1712.4				
ate c	drilled:	A	ugust 1	0 - 12, 1996	Coords (ft):	406,082N, 2,235,010E		Limit	Content	Liqui Limi
oth t)	Blow Count	Sarr No	ple Type	N	l Aterial Descripti	on	Piezo Detail	20%	40% 60%	<u> </u>
				SAND (SM/SP-SI compact, angular (COARSE TAILIN	۸), fine to coarse , brownish gray, GS)	e, some silt, damp,				
5	11	1	SPT					0		
10	15	2	SPT					0		
				As above, mediur	n to coarse					
15	14	3	SPT					0		
20										
	25	4	SPT					•		
25										
	27	5	SPT							
30	26	6	SPT					o		
			1							
35										

est H	lole	Log			I				× % P	Page	2 of 7
rojec	t:	Ľ	TV Taili	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70 90
rojec	t No:	L	78.5.7								
ocatio	on:	Н	loyt Lak	xes, MN	Ground El (ft)	: 1712.4					
ate d	rilled:	Â	ugust 1	0 - 12, 1996	Coords (ft):	406,082N, 2,235,010E		Plastic Limit	W Cor	ater ntent	Liqui Limi
pth I t) C	Blow Count	San No	nple Type	N	laterial Descripti	on	Piezo Detail	20%	40%	60%	80%
	63	7	SPT	As above, very de	nse			0			
10											
	31	8	SPT	As above, dense				ο			
_											
15	48	9	SPT					o			
				SAND (SM), fine, s	silty, dense, ang	ular, gray, moist,					
U I	30	10	SPT	(FINE TAILINGS)				•			
5											
	46	11	SPT	As above, brown s	slime layers			0			
						,					
50				SAND (SM/SP-SM dense to verv den	I), fine to mediui se. angular. grav	m, some silt, /. (COARSE		•			
	41	12	SPT	TAILINGS)	,			0			
5								•			
	85	13	SPT					0			
,0											
-											
				10	Continued)						

a compared and the second s

1. Construction of the second

lest i	Hole	Log							Page	e 3 of 1
		0						•	% Passing	#200
Proje	ect:	Ľ	TV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10 '	30 50	70 9
Proje	ct No:	Ľ	78.5.7							
	tion	L		oc MN	Ground EL (ft):	1712 4				
Loca	LIOH.	П	ioyi Lak	es, win		171Z. 4		Plastic	Water	Liqu
Date	drilled	: A	ugust 1	0 - 12, 1996	Coords (ft):	406,082N, 2,235,010E		Limit	Content	Lim
Depth	Blow	San	nple	N	Jatorial Descriptio	'n	Piezo	^	0	
(ft)	Count	No	Туре				Detail	20%	40% 60%	<u>6 80%</u>
	44	14	SPT					0		
				SAND (SM), fine	to medium, silty, c	lense, angular,	-			
_75			-	gray, moist, (FINI	E TAILINGS)			•		
	40	15	SPT							
				SAND (SM/SP-S	M), fine to mediun	n, some silt to				
80				silty, dense, angu	ılar, gray, wet, (CC	DARSE TAILINGS)		•		
	33	16								
-										
- 85			-					•		
	32	17	SPI							
-										
-				SAND (SM), fine	to medium, silty, c	lense, angular,	-			
- 90				gray, wet, (FINE	TAILINGS)	-			•	
	42	18	SPI							
-				SAND (SM), fine	to medium, some	silt, dense,	1			
- 95 -		10		angular, gray, we	et, (COARSE TAILI	NGS)		•		
-	42	19	- 571							
-										
-				SAND (SM), fine	to medium, some	silt, dense,	1			
100 -	26	20		angular, gray, we	et, (FINE TAILING	5)		• •		
-										
-										
-										
105										
					(Continued)	_				

est H	Iole	Log							1	Page	4 of	7
Proiec	nt:	L	TV Tailir	nas Assessment	Equipment:	CME 750 mud rotary		10	♦ % P 30	assing # 50	¥200 70 €	 90
Projec	ot No:	-	7857									
loget	ion:	с Ц		oc MN	Ground EL (ft)	• 17124					4 - T- 4	
Local	IOH.	. A		es, win		406.082NL 2.235.010E		Plastic	W	ater	Liqu	Jie
Date d	arillea	: A	ugust n	0 - 12, 1996		400,08211, 2,233,010		Limit X	Cor	o	Lim X	าะ <
epth (ft)	Blow Count	San No	nple Type		Material Descripti	on	Piezo Detail	20%	40%	60%	80%	т
	42	21	SPT									
- 110	17	224	SPT	As above, silt, so	ome fine sand				0		*	
	.,	22B		SILT (ML), trace wet, (SLIMES)	fine sand, very st	iff, angular, gray,			0			
- 115	60	23	SPT	SAND (SM/SP-S to very dense, ar TAILINGS)	SM), fine to mediu ngular, gray, wet,	m, some silt, dense (COARSE		•				
- 120	47	24	SPT	As above, mediu	im to coarse			• 0				
125	51	25	SPT					•				
130								•				
	34	26	SPT	As above, layers	fine tailings			0				
- 135	47	27	SPT	SAND (SM), fine wet, 1.5 inch slin	e, silty, dense, ang ne layer, (FINE T/	gular, gray, AILINGS)		¢	•			
			-									
- 140				SAND (SM), fine	e, some silt, dense	e, angular, gray,						
					(Continued)							

Statistical Activity (Second Second Se

Test 1	Hole	Log						Page	2 5 of 7
Proje	ct:	Ľ	TV Taili	ngs Assessment	Equipment: CME 750 mud rot	ary	10 3	% Passing D 50	#200 70 90
Proje	ct No:	Ľ	78.5.7						
Loca	tion:	Н	oyt Lak	xes, MN	Ground El (ft): 1712.4				
Date	drilled	: A	ugust 1	0 - 12, 1996	Coords (ft): 406,082N, 2,235,0	010E	Plastic Limit	Water Content	Liqui Limi
Depth (ft)	Blow Count	Sarr No	nple Type	<u></u>	Material Description	Piezo Detail	20%	40% 60%	6 80%
	41	28	SPT	wet, (COARSE TA	AILINGS)		•		
				SAND (SM), fine,	silty, dense, angular, brownish				
- 145	41		SPT	gray, wet, (FINE	TAILINGS)		0	•	
				,					
- 150	27	20	ерт				0	•	
	37		051						
					. n.				
155				As above, fine sa	ndy silt				•
	38	31	SPT				0		
- 160			-	CLAY & SILT (CL plasticity, firm to	./CL-ML), trace fine sand, low very stiff, angular, gray to brownish				
	19	32	SPT	gray, wet, (SLIMI	ES)		0		
165				•			1		
- 100	17	33A 33B	SPT				¢	,	
-									
170 	7	34	SPT				x-o		
- - -			-						
175									
					(Caration and)				

		<u> 8</u>										
roject:		LT	V Tailin	igs Assessment	Equipment:	CME 750 mud rotary		10	♦ % 30	Passin 50	g #2 70	90
roject N	lo:	L78	8.5.7									
ocation	:	Ho	yt Lak	es, MN	Ground El (ft)	: 1712.4						
ate drill	ed:	Au	gust 1() - 12, 1996	Coords (ft):	406,082N, 2,235,010E		Plastic Limit X	C	Water Content - 0 -		Liqu Lim
pth Blo ft) Cou	w Int I	Samp No	ole Type	Ν	laterial Descripti	on	Piezo Detail	20%	40	% 60	1%	80%
51	3	5A 5B	SPT	SILT & SAND (ML very dense, angu	_/SM), fine to me lar, gray, wet, (Fl	edium, dense to NE TAILINGS)		o v-	*	*		
180	7	36	SPT	As above, silt, sor	me sand			c	>			•
185		37	SPT	As above, silt and	l sand			o			•	
190 54	3	38	SPT	As above, silt, so	me sand			Þ				
195 7 4	1	39	SPT	SILT (ML), trace f angular, dark gra	ine sand, low pla y, wet, (SLIMES)	asticity, hard,		•				
200 4:	2 4	0A 0B	SPT _	PEAT (PT/OH/O moist, organic	L), dense, dark t	prown & black,	-		×-≫			
205	7	41	SPT						0			
210				SAND (SM/SC-S very dense, angu moist (TILL)	M), silty, clayey, lar & rounded, b	trace gravels, rown, gray & red,						

p (* 1997) (* 1997) (* 1998) And and an analysis (* 1998) And and an analysis (* 1998) And an analysis (* 1998) And an analysis (* 1998)

And the second se

and the second s

•

Test i	Hole I	.09								Page	: 70	эf
	1010 1	108_							♦ %	Passing	#200)
Proje	ct:	LT۱	/ Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70	
Proio	ct No	179	257									
rioje	CINO.	270				1710 4						
Locat	tion:	Ho	yt Lak	es, MN	Ground EI (π) :	1712.4		Plastic		Water		Li
Date	drilled:	Au	gust 1	0 - 12, 1996	Coords (ft):	406,082N, 2,235,010E		Limit	C	Content		L
D	Diam	Samo			<u> </u>		Piezo	×		_ 0		
(ft)	Count	No	Type	N	Aaterial Descriptio	n	Detail	20	<u>% 40</u>	<u>% 609</u>	<u>6 80</u>	09 T
	54/ 0.3'	42	SPI									
_												
215												
-												
-												
_				End of hole at 21	8.0 feet							
				Inclinometer insta	alled at 218.0 feet	, 1.8 foot stick up						
-												
-												
_ _		ļ										
_												
- 230												
<u> </u>												
F												
E												
- - -												
E												
	'		-									
F												
-												
245	5											
				8								

Test 1	Hole .	Log								Pag	<u>e 1</u> c	<u> 2</u>
						_		·	*	% Passing	g #200	1
Proje	ect:	Ľ	rV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70	ę
Proje	ect No:	L	78.5.7									
Loca	tion [.]	н	ovtlak	es MN	Ground El (ft)	: 1695.1						
_000				0.00.4000				Plasti	с	Water]	Liq
Date	drilled:	A	ugust 1	9 - 20, 1996	Coords (ft):	406,370IN, 2,235,398E		Limit		Content		Lir
Depth	Blow	Sam	ple		Material Descripti	on	Piezo		n 0/	40% 60	.o/ or	י 10/
 -	Count	NO	туре	SAND (SM/SP-S	M), medium to co	parse, some silt.	Detail	2		+0% 00		1/8
-				compact, angula	r, gray, damp, (C	OARSE TAILINGS)						
-								•				
—5 -	17	1	SPT					9				
-												
-												
-				SILT (ML), some	fine sand to sand	ly, loose to very						
10	6	2	SPT	loose, angular, b	orownish gray, we	t, (FINE TAILINGS)) ;	<u>k</u>	•			
÷.												
-												
- 15 												•
-	2	3	SPT						Ŭ			
-				SAND (SM/SP-S	SM), medium to c	oarse, trace to						
20				Some silt, compa	act, angular, gray, NGS)	, moist,		*				
-	23	4	581									
-												
-												
25 25	16		ерт	As above, fine to	medium			•				
-	0	5										
-												
-												
30 _	20	6	SPT									
	23											
-												
				SILT (ML), fine s	andy, compact, a	ngular, dark gray,	-					
		-			(Continued)							

\underline{SI}	TKA	4 (<u>_Or</u>	<u>RP</u>			7	est Hol	e No. DI	<i>H96-13</i>
Test	Hole	: Log	r						Page	2 of 6
Proje	ect:	I	LTV Tail	ings Assessment	Equipment:	CME 750 mud rotary		1 0 :	% Passing	#200
Proje	ect No:	:	L78.5.7			, , , , , , , , , , , , , , , , , , ,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Loca	tion:	ł	Hovtla	kes MN	Ground EL (ft):	1605 1				;
Date	drillod	I· /		10 20 1006		1000.1		Plastic	Water	Liquid
Date		·. /				406,370N, 2,235,398E		Limit X	Content	Limit
Depth (ft)	Blow Count	Sai No	mple Type	N	laterial Descriptio	n	Piezo Detail	20%	40% 60%	80%
- -	12	7	SPT	moist, some slime	e layers, (FINE TA	ILINGS)		0		
-										
-				SAND (SM/SP-SN	 fine to medium 	some silt				
40 	18		- ODT	compact to dense	e, angular, browni	sh gray, moist,		•		
	10							0		
- 45										
	29	9	SPT					0		
-										
50	20		ODT							
	30	10	001					0		
-	18	11	SPT					0		
_										
60	00		ODT							
-	23	12	571					0		
-										
- 65										
-	31	13	SPT					♦0		
-										
-			-	SAND (SM) fine of	ilty compact and					
70					iry, compact, ang	juiai, wel,				
				(C	ontinued)					

<u>Sr</u>	ΓK/		COR	P			7	est Ho	le No.	DH	1 96-1	13
Test	Hole	Log							l	Page	3 of	6
Proie	ect:	L	.TV Taili	ings Assessment	Equipment:	CME 750 mud rotary		10	▶ % Pa	issing #	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> 200 <u> 200 </u> 20 <u> 200 </u> 200 20 200 200 20 200 200 200 200	
Proje	ot No	- I	79 5 7		-quipinonii			10	00 0	iu i	/0	30
			.10.5.7									
Loca	tion:	ł	loyt Lai	kes, MN	Ground El (ft):	1695.1		Diantia				
Date	drilled	: A	ugust 1	9 - 20, 1996	Coords (ft):	406,370N, 2,235,398E		Limit	Con	ter tent	Lic	iuia mit
Depth	Blow	Sar	nple	Λ	L	n	Piezo	×	(>		×
- (11)	24	14	SPT	some coarse tailir	nas lavers. (FINE	TAILINGS)	Detail	20%	40%	_60%	80%	
			-		.ge .aj e.e, (J				
75												
	22	15	SPT					0	+			
				SAND (SM) fine t	o medium some	silt compact						
80				angular, gray, wet	COARSE TAILIN	NGS)		•				
	29	16	SPT					0				
				SAND & SILT (SM	/ML), fine to med	lium, compact to						
	28	17	SPT	dense, angular, gi	ay, wet, (FINE IA	ALINGS)		o				
-90			-									
	31	18	SPT					0				
-				SAND (SM/SP-SN	I), fine to medium	n, some silt,						
95 	41	19	SPT	dense, angular, gr	ay, wet, (COARSI	É TAILINGS)						
E 100												
	32	20	SPT	As above, becomi	ng silty sand (SM)		0				
- 105												
				(0	Continued)							

Sr	ГКА		COR	Р			T	est Ho	le No). D.	H96-	-13
Test.	Hole	Log								Page	40	f 6
Proje	ect:	Ľ	TV Tailii	ngs Assessment	Equipment:	CME 750 mud rotary		10	♦ % F 30	Passing 50	#200 70	90
Proje	ect No:	Ľ	78.5.7									
Loca	tion:	н	loyt Lak	xes, MN	Ground El (ft)	1695.1						
Date	drilled	: A	ugust 1	9 - 20, 1996	Coords (ft):	406,370N, 2,235,398E		Plastic Limit	W Co	/ater ntent	L	iquid Limit
Depth	Blow	Sam	nple		Material Descripti	 on	Piezo	X	40%	0		~~ X
(m)	37	21	SPT				Detan	0	40%			/0
- 110	24		ерт									-
	34											
- 115												-
	39	23	SPT	As above, fine ta	llings & slime laye	rs		0				
			_									-
	31	24	SPT					0				
- 105												_
	37	25	SPT					0				
				SAND & SILT (SI	M/ML), fine, comp	Dact to dense,						
- 130 -	33	26	SPT	angular, brownis	in gray, wet, (Fint				0	•		
				As above, fine sa	andy silt							
135 	29	27	SPT					φ			•	-
- 140												-
					(Continued)							
h	.t	1		L	<u>`</u>			• · · · · · · · · · · · · · · · · · · ·		<u>i</u>		

y construction construction and the second construction and the second construction and the second construction of the second con

S	ГКА		COR	P			7	est Hol	e No.	DH	196-1.	3
Test .	Hole	Log				· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••	P	age	5 of	6
Proie			TV Taili	nge Assessment	Equipment:	CME 750 mud rotary		10 4	% Pa	ssing 7	¥200	40
	CL.	L.	.1 V 1 alli	nys Assessment	Equipment.	OWE 750 mad rolary		10 0	50 50	J	/0	50
Proje	ct No:	L	.78.5.7									
Loca	tion:	F	loyt Lak	kes, MN	Ground El (ft):	1695.1			,			
Date	drilled	: A	ugust 1	9 - 20, 1996	Coords (ft):	406,370N, 2,235,398E		Plastic Limit	Wat Cont	er ent	Liqu Lin	uid nit
		C			<u> </u>		Diana	×	c	•	>	×
Depth (ft)	Count	No	пріе Туре	N	Aaterial Descriptio	n	Detail	20%	40%	60%	80%	
F	30	28	SPT					0				
Ę												
- 145			-								•	
Ē	19	29	SPT					o				
-				SILT & CLAY (CL	ML), low plasticity	/, stiff, angular,						
- 150	40		ODT	brownish gray, w	et, (SLIMES)	······································		V_X				
-	13	30	- 581									
-												
155 	10	31	SPT					x->				
	10											
F.							_					
				SAND (SM), fine,	silty, dense, angu	lar, brownish						
160 	44	32	SPT	gray, wei, (inte				φ				
F												
Ē							_					
- 165				SILT (ML), low pla	asticity, very stiff, a et (SI IMES)	angular,						
-	19	33A 33B	SPT	Stermen gray, t	., (×-×	0 0			•
E												
-							-			au th		
- 170			4	gray, wet, (FINE	-/SM), fine, dense FAILINGS)	, angular, dark				•		
	43	34	SPT					0				
-												
Ē				SILT (ML) IOW D	asticity yony stiff to	hard angular	-					
- 175					autory, vory ous to	s naro, ungular,						-
					Continued)							

and a second sec

ost 1	Hole	Lno								Page	6 of	6
.51 1	1010	LUE							♦ % F	Passing	#200	
roje	ct:	Ľ	TV Tailir	ngs Assessment	Equipment:	CME 750 mud rotary		10	30	50	70	90
Proje	ct No:	Ľ	78.5.7									
.ocat	ion:	Н	loyt Lak	es, MN	Ground El (ft)	: 1695.1						
Date of	drilled	: A	ugust 1	9 - 20, 1996	Coords (ft):	406,370N, 2,235,398E		Plastic Limit	V Co	/ater ntent	Liq Lir	iui mi
oth	Blow	Sam					Piezo	×—		o —	·	×
ft)	Count	No	Туре		Material Descript	ion	Detail	20%	40%	60%	80%	-1
	38	35	SPT	dark gray, wet, (S	SLIMES)			0				
180	29	364	SPT									
	20	36B						×-	ו			
				PEAT (PT/OH), c	lense, angular, d	ark brown & black,	4					
85	48	37A	SPT	moist								
		378		 SAND (SM), fine, moist 	and silt, dense, a	angular, brown,		0				
				SAND (SC), fine,	clayey, trace gra	ivel, very dense,						
190	71/ 0.5'	38	SPT	angular & rounde	a, brown, gray c	k red, (TILL)		0				
				End of Hole at 19	13.0 feet		-					
195					0.01001							
200												
205												
210												

and the state of t

and the second s

		No Vi	orthea rginia,	st Tec MN	hnical	Servic	ses Inc	BORING NUMBER BE PAGE 1	H-A OF 1
CLIE	NT P	olvM	et					PROJECT NAME Emergency Basin Phase II	
PRO.		UM	BER	7157	FA.08			PROJECT LOCATION Hovt Lakes. Minnesota	
DATE	E STAF	RTE	D 4/2	21/09			COMPLETED 4/21/09	GROUND ELEVATION HOLE SIZE 8 Inch	
DRIL		ON.	TRAC	TOR	Braur	 າ	-	GROUND WATER LEVELS:	
DRIL		IET	HOD	4 1 4	" HSA			∑ AT TIME OF DRILLING 0.50 ft	
LOG	GED B	Y E	B. Flaa	ada			CHECKED BY D. Fossell	AT END OF DRILLING	
NOTE	=s							AFTER DRILLING	
o DEPTH (ft)	SAMPLE TYPE	NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		_	MATERIAL DESCRIPTION	PID (ppm)
		SS 1	67	SP		1.5	$\stackrel{V}{=}$ (SP) Brown to black, TAILINGS,	no odor, wet	*
-	$\overline{\mathbb{N}}$	s	42	SP			(SP) Black, TAILINGS, no odor,	wet	*
L .		2		GP		3.5	(GP) COARSE GRAVEL		
		3 3	42	SP		6.0	(SP) Dark-brown to black, TAILIN	NGS AND GRAVEL, no odor, wet	*
		S 4	46	SP		8.5	(SP) Brown, SAND		*
10		S 5	58	SP		11.0	(SP) Brown-gray, FINE-MEDIUM	I GRAINED SAND (last 8 inches is brown)	*
		S 6	50	SP		13.5	(SP) As Above		*
-	X	5S 7	50	SP			(SP) As Above		*
-		SS 8	25	SP		18.5	(SP) As Above		*
20	-	SS 9	21	SP		21.0	(SP) As Above		*
							PVC Temp well set 16-21 feet bo * = No PID readings obtained	ge Bottom of borehole at 21.0 feet.	

GENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:14 - C:\PROGRAM FILES\GINT\PROJECTS\7157FA EMERGENCY BASIN.GPJ

	N V	lorthea ′irginia	ast Teo , MN	chnical	Service	es Inc	BORING NUMBER BE PAGE 1	H-B OF 1
CLIEN		/let					PROJECT NAME Emergency Basin Phase II	
PRO	IFCT NUM	IBFR	7157	FA 08			PROJECT OCATION Hove Lakes Minnesota	
	STARTE		8/09	171.00			GROUND ELEVATION HOLE SIZE & Inch	
				Braur	`			
			4 1 A	" HSA			AT TIME OF DRILLING 6" Standing water at surface, drilled thr	ough wat
		R Elas	<u>+ +</u>					<u>ougn w</u> at
NOTE	:e	D. 1 lac	aua		`			
			1	1	1			
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	PID (ppm)
						Skipped interval		
	SS 1	21	SP-			(SP-SM) Black-drak gray, TAILING	GS, saturated	<1
L -			SIVI		3.5	Skipped interval		
		42	SP-			(SP-SM) As Above		<1
			SP-		0.0	Skipped interval		
		58	SM		8.5	(SP-SM) As Above (4 inches)		<1
10	1 ss		SM			(SM) Tailings with concentrate, sa	iturated /	
	4	100	SM		11.0	(SM) Dark grav. mottled. CONCEN	NTRATE. saturated	<1
	S ss	100	-		`	Skipped interval	/	
	5	100	SM		13.5	(SM) As Above		<1
	V ss	100	SM		: :	Skipped interval		<1
	6	100			16.0	Water sample BH-B (H2O:1) inten	val	
	SS 7	92	SP- SM		<u>21.0</u> 23.5	Skipped interval (SP-SM) Dark-gray to black, TAILI	INGS, some concentrate, saturated	<1
	V ss	93	SP-		\$	Skipped interval		1
	8	03	SM		26.0	(JT-JIVI) AS ADOVE		
L	SS a	83	SP-		20 5	(SP-SM) As Above		<1
					120.0	Skipped interval		
		100	SP-		31.0	(SP-SM) Black, TAILINGS, coarse	er than above though	<1
						Skipped interval		
	SS 11	75	SP- SM	**	36.0	(SP-SM) As Above		<1
		58	SP-			(SP-SM) As Above (12 inches)		<1
Γ			CL-	pilliti http://www.	38.5	(CL-ML) Grayish-brown, SILTY CL	LAY with organic pieces, swamp smell	
40		25	CL-		41.0	Skipped interval	av SII TY CI AY with gravel and small grapite fragments	<1
	- Ss	82	<u>ML</u> CL-			Skipped interval		<1
L	/\ 14		ML SP		43.5	(CL-ML) As Above (2 inches)		
	SS SS	83	SP	'		Skipped interval		<1
	/ \ 15				46.0	(SP) Tan-brown, FINE-MEDIUM S	SAND, some silt	
L.				1		Water sample BH-B (H2O:2) inter	val	
				1	50.0			
50				1	50.0			

Bottom of borehole at 50.0 feet.

	N V	orthea irginia	ist Tec , MN	hnical	Servi	ces Inc	BORING NUMBER BH	1-C OF 1
CLIEN	T PolyN	let					PROJECT NAME Emergency Basin Phase II	
PROJ	ECT NUM	BER	7157	FA.08			PROJECT LOCATION Hoyt Lakes, Minnesota	
DATE	STARTE	D_4/*	17/09			COMPLETED 4/17/09	GROUND ELEVATION HOLE SIZE 8 Inch	
DRILL	ING CON	TRAC	TOR	Braun	ı		GROUND WATER LEVELS:	
DRILL	ING MET	HOD	414	" HSA			AT TIME OF DRILLING	
LOGO	BED BY _	B. Flaa	ada			CHECKED BY D. Fossell	AT END OF DRILLING	
NOTE	S						_ AFTER DRILLING	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	PID (ppm)
						Skipped interval		
	SS 1	38	SP- SM		3.5	(SP-SM) Dark gray, TAILINGS, s	saturated, some brick fragments on surface in this area	3.8
	SS 2	33	SP- SM		60	Skipped interval (SP-SM) As Above		2.0
	SS 3	42	SP-		0.0	Skipped interval (SP-SM) As Above		3.4
10	ss ss	33	SP-			Skipped interval (SP-SM) As Above		3.7
	SS SS	42	SP-			Skipped interval (SP-SM) As Above		4.0
	ss v ss	50	SIVI SP-		13.5	Skipped interval		25
	6 // 55		SM SP-		16.0	Skipped interval		2.0
	7	58	SM		18.5	(SP-SM) As Above 16.5-18.5 feet water sample BH-	-C (H2O:1) interval	3.0
	-			-	20.5	Skipped interval		
		67	SP- SM		23.5	(SP-SM) As Above (5 inches) (SP) Tan-gray, MEDIUM-COAR	SE SAND WITH GRAVEL, wet (11 inches)	6.5
						Auger refusal at 23.5 feet	Refusal at 23.0 feet. Bottom of borehole at 23.0 feet.	

GENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:14 - C:/PROGRAM FILES/GINT/PROJECTS/7157FA EMERGENCY BASIN.GPJ

	Ν	lorthea	ast Tec	hnical	Services Inc	BORING NUMBER BI PAGE 1	H-D OF 1
	V	'irginia	, MN				
CLIE	T PolyN	/let				PROJECT NAME _Emergency Basin Phase II	
PROJ	ECT NUN	BER	7157	FA.08		PROJECT LOCATION Hoyt Lakes, Minnesota	
DATE	STARTE	D 4/	14/09		COMPLETED <u>4/14/09</u>	GROUND ELEVATION HOLE SIZE _8 Inch	
DRILI		ITRAC	TOR	Braur	1	GROUND WATER LEVELS:	
DRILI	ING MET	HOD	414	" HSA		AT TIME OF DRILLING 4 inches standing water at surface	
LOGO	GED BY _	B. Flaa	ada		CHECKED BY D. Fossell	AT END OF DRILLING	
NOTE	s					AFTER DRILLING	
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)
			-		Skipped interval		
		0			3.5		
	SS 2	29	ML		Skipped interval (ML) Brown to dark gray, CON0	CENTRATE, saturated	6.5
	SS 3	75	ML		 Skipped interval (ML) Dark gray to black, CONC 	ENTRATE, saturated	8.2
10	SS 4	100	SP- SM		Skipped interval (SP-SM) Black-gray, TAILINGS	S, saturated	6.2
	SS 5	83		\square	(ML) Light-gray, CONCENTRA Skipped interval	TE, saturated/	5.1
IN.GPJ	∕ ∖ s	83	м		13.5 (ML) As Above Skipped interval	/	30
- T	6				16.0 (ML) As Above Skipped interval		0.0
ERGE ERGE	7	100	ML		(ML) Dark-gray, CONCENTRA	TE, saturated	4.5
20 20	-				Water sample BH-D (H2O:1) In	iterval	
CTS/71	-			-	23.0 Skipped interval		-
	SS 8	75	SP- SM		(SP-SM) Brown-tan, FINE-SILT	Y SAND, some gravel	2.0
	ss 9	25	SP- SM		Skipped interval (SP-SM) As Above		2.4
		21	SP-		Skipped interval (SP-SM) As Above		1.3
PROGR		25	SP-		Skipped interal		16
	/ 11	25	SM		33.5	D (H2O·2) interval	1.0
14:14					34.0	Bottom of borehole at 34.0 feet.	
24/09							
6 - <u>T</u> C							
US.GI							
GINT							
P/WI							
T H							
RALE							
GENE							

	N V	lorthea /irginia	ast Teo , MN	chnica	l Serv	ices Inc	BORING NUMBER BH-E PAGE 1 OF 1							
CLIE	NT PolyN	/let					PROJECT NAME Emergency Basin Phase II							
PRO	JECT NUN	IBER	7157	'FA.08	}		PROJECT LOCATION Hoyt Lakes, Minnesota GROUND ELEVATION HOLE SIZE 8 Inch							
DATI	E STARTE	D 4/	16/09			COMPLETED _4/16/09								
DRIL		ITRAC	TOR	Brau	n		GROUND WATER LEVELS:							
DRIL	LING MET	HOD	414	" HSA	١		AT TIME OF DRILLING 8-10 inches of standing water at surface	ace while						
LOG	GED BY	B. Flaa	ada			CHECKED BY D. Fossell	AT END OF DRILLING							
NOT	ES						AFTER DRILLING							
o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC I OG			MATERIAL DESCRIPTION	PID (ppm)						
	-\/ ss	0				Skipped interval (ML) No recovery								
		0	ML		3.5	Skipped interal								
	2	29	ML		6.0	(ML) Gray, CONCENTRATE, s Skipped interval	saturated	3.9						
	- 3	4	ML		8.5	(ML) As Above		5.1						
10		0	ML		11.0	(ML) No recovery		_						
	- ss 5	25	ML		13.5	(ML) Gray, CONCENTRATE,	saturated, slimy, soft	2.3						
		100	ML		16.0	(ML) As Above		1.0						
		50	ML		18.5	(ML) Dark-gray, CONCENTRA	ATE	1.8						
20	_				20.0	16-20 feet water sample BH-E	(H2O:1) interval							
						Skipped interval								
		58	ML SP-		8235	(ML) As Above (12 inches) (SP-SM) Tailings (2 inches)		2.1						
			\ <u>SM</u>		x <u>2 3 . 3</u> X	Skipped interval								
	9	67	SM-		× 26.0	(SP-SM) Black, TAILINGS (12	l inches)	2.1						
	∕ ss	75	SP-		E	(SP-SM) Brown, FINE-SILTY	SAND	/ 15						
	-/ 10	/3	SP-	100	28.5	$-\sqrt{(SP-SM)}$ As Above, sparse gra	avel	1.5						
30	- SS 11	75	SP- SM		: 31.0	Skipped interval (SP-SM) As Above		1.3						
	- ss	42	SP-		E.	Skipped interval	ol harder drilling	1.4						
	/ 12		SM		33.5	31 5-33 5 feet water sample B								
							Bottom of borehole at 33.5 feet.							

	N	lorthea	ast Tec	hnical	Servic	ces Inc	BORING NUMBER E	3H-F 1 OF 1									
	۱. ۱	rginia	, MN														
CLIE	ENT Poly	/let					PROJECT NAME _Emergency Basin Phase II										
PRC	JECT NUN	IBER	7157	FA.08			PROJECT LOCATION Hoyt Lakes, Minnesota										
DAT	E STARTE	D 4/	10/09			COMPLETED <u>4/10/09</u>	GROUND ELEVATION HOLE SIZE 8 Inch										
DRII		ITRAC	TOR	Braun			GROUND WATER LEVELS:										
DRII	LING MET	HOD	4 1 4	" HSA			AT TIME OF DRILLING										
LOG	GED BY _	B. Flaa	ada			CHECKED BY D. Fossell	AT END OF DRILLING										
NOT	'ES						AFTER DRILLING										
O DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	PID (ppm)									
		0			1.5	Skipped Interval											
-		58	SP- SM		3.5	(SP-SM) Dark gray - black, TAIL sand) tailings	INGS; 1st 2 inches had wood chips; last 3 inches coarser (like medium	<1									
	SS 3	42	SP- SM		4.0 6.0	Skipped Interval (SP-SM) As Above (like fine-medium sand) tailings											
_	- SS 4	33	SM		6_5 8.5	 Skipped Interval (SM) Gray, SILT; 1st 2 inches has said far VOC DRO SV 	ad small roots; last 3 inches was wood	<1									
10		33	SP- SM		9.0	Skipped Interval	oravel and roots: 5 inches brown EINE-MEDILIM SAND: sharee gravel	<1									
-		0	SP		11.5	 Skipped Interval SP) No Recovery: looked like sid 		<1									
GPJ-					13.5	\sim Skipped Interval											
BASIN	7	83	SP		14.0/	(SP) Brown-tan, FINE-MEDIUM Soil Sampled for VOC, DRO, SV	SAND; some silt ′OC, and RCRA Metals @ 1250	<1									
ENCY	x ss	25	SP		17.5	(SP) As Above; rock @ 17.5 feet	prevented drilling deeper	- <1									
GENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:14 - C:\PROGRAM FILES\GINT\PROJECTS\7157FA EMERGENC	X SS 8	25	SP		17.5	(SP) As Above; rock @ 17.5 feet Auger Refusal @ 17.5	prevented drilling deeper Refusal at 17.5 feet. Bottom of borehole at 17.5 feet.	<1									

			N V	lorthea ïrginia,	ist Teo , MN	chnica	l Servi	ces Inc	BORING NUMBER BH PAGE 1 (I-G DF 1						
	CLIEN	IT _	PolyN	1et				Р	ROJECT NAME Emergency Basin Phase II							
	PROJ	ЕСТ	NUN	IBER _	7157	FA.08		P	ROJECT LOCATION Hoyt Lakes, Minnesota							
	DATE STARTED 4/15/09							COMPLETED _4/15/09 G	ROUND ELEVATION HOLE SIZE 8 Inch							
	DRILL	ING	CON	ITRAC	TOR	Brau	n	G	ROUND WATER LEVELS:							
	DRILL	ING	6 MET	HOD	414	" HSA			AT TIME OF DRILLING SWL at surface while drilling							
	LOGG	ED	BY _	B. Flaa	ada			CHECKED BY D. Fossell	AT END OF DRILLING							
	NOTES								AFTER DRILLING							
	o DEPTH (ft)	SAMPI E TVDE	NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC I OG			MATERIAL DESCRIPTION	PID (ppm)						
								Skipped interval								
F	-	Х	SS 1	21	ML		3.5	(ML) Dark-gray to black, CONCENT	RATE, saturated	2.6						
-	_	X	SS 2	79	ML		6.0	Skipped inteval (ML) Light-gray, CONCNTRATE, slir	ny, soft	9.2						
	_	\mathbb{X}	SS	100	ML			Skipped interval (ML) As Above		4.7						
	10		SS	100	ML SP-		8.5	Skipped interval (ML) As Above (4 inches)	-	4.5						
	_		SS	79	SM SP-			 (SP-SM) DArk-gray to black, TAILIN Skipped interval 	GS, saturated	3.3						
V.GPJ	_		5		SM		<u>13.5</u>	 (SP-SM) Dark-gray to black, TAILING Skipped interval 	GS, saturated							
BASII	-	М	6	63	ML		16.0	(ML) Dark-gray, CONCENTRATE, s	E, saturated							
GENCY	_	Х	SS 7	50	ML		18.5	(ML) As Above		2.8						
EMER(20					-	20.0	16-20 feet water sample BH-G (H2C	0:1) interal							
N7157FA	_	M	SS	29	ML		_	(ML) Dark-gray, CONCENTRATE, si	aturated	3.2						
OJECTS	_	\square	8 SS	13	SP		23.5	Skipped interval	- PSE SAND WITH GRAVEL	8.0						
	-	\square	9 				26.0	Skipped interval		0.0						
-ILES/G	-	M	10	17	GP	00°	28.5	(GP) Dark-gray to black, COARSE G	GRAVEL with sand	3.7						
GRAM	30	Х	SS 11	58	SP- SM		31.0	(SP-SM) Brown, FINE-SILTY SAND	, sparse gravel	1.2						
C:\PRO	-	Х	SS 12	83	SP- SM		33.5	(SP-SM) As Above		1.3						
ENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:14 -								26-31 feet water sample BH-G (H2C	b:2) interval Bottom of borehole at 33.5 feet.							

Г

		Northe	east Teo	chnical	Servi	ces Inc	BORING NUMBER BE PAGE 1						
		Virgini	a, MN										
CLIE	NT _Pc	lyMet					PROJECT NAME _ Emergency Basin Phase II						
PRO	JECT N	UMBER	7157	7FA.08			PROJECT LOCATION Hoyt Lakes, Minnesota						
DATE		TED _4	/15/09			COMPLETED 4/15/09	GROUND ELEVATION HOLE SIZE 8 Inch						
DRIL	LING C	ONTRA	CTOR	Brau	า		_ GROUND WATER LEVELS:						
DRIL	LING N	ETHOD	414	1" HSA			AT TIME OF DRILLING						
LOG	GED B	B. Fla	aada			CHECKED BY D. Fossell	AT END OF DRILLING						
NOT	ES		1				_ AFTER DRILLING						
o DEPTH (ft)	SAMPLE TYPE	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	PID (ppm)					
						Skipped interval							
F		S 29	ML		3.5	(ML) Gray to brown, CONCENT	RATE, saturated	2.8					
-	Xs	S 54	ML		6.0	Skipped interval (ML) Light-brown, CONCENTR/	ATE, saturated, slimy, soft	2.2					
F	Xs	s 42	ML		0.0	Skipped interval (ML) Brown-gray, As above		3.5					
10		s	Skipped interval										
		4 ⁷⁵			11.0	(ML) As Above Skipped interval		2.2					
E		5 54	ML		13.5	(ML) Dark-gray, As above		2.5					
BASIN.O		S 42	ML		16.0	(ML) As Above		2.1					
	_					Water sample BH-H (H2O:1) int	lerval						
<u>19</u> ₩ 20	_				20.5								
TS/7157F		S 67	ML		23.5	(ML) Brown-gray, CONCENTRA	ATE, slimy soft	<1					
	Xs	S 42	SP-		26.0	Skipped interval (SP-SM) Dark-gray TAILINGS		2.2					
	Xs	S 46	SP-		20.0	Skipped interval (SP-SM) As Above		2.2					
Ы Ы З О		s n			28.5	Skipped interval							
ROGRA	/ 1 - // s	0 ° S	SP-	_ 	<u>31.0</u>	Skipped interval							
15 - C:\F		1 ⁰⁰	SM		33.5	Skipped interval	AND, no gravel	1.0					
4/09 14:		2 0	_		36.0	No recovery Skipped interval							
012-0/2	- X SI	PT 63	SP		38.5	(SP) Gray to brown, FINE-MED	IUM SAND, saturated	1.6					
10. SN 40	- 1	S 63	SP		41.0	(SP) As Above, not much grave	l, saturated	1.3					
- 0IN 	-				43.0	39-43 feet water sample BH-H ((H2O:2) interval						
P / WEL							Bottom of borehole at 43.0 feet.						
BH / TI													
ENERAL													
8													

			N Vi	orthea irginia,	st Tec MN	hnical	Services Inc	BORING NUMBER B PAGE 1	H-I of 1						
	CLIEN	IT _	PolyⅣ	let				PROJECT NAME Emergency Basin Phase II							
	PROJ	ECT	NUM	BER	7157	FA.08		PROJECT LOCATION Hoyt Lakes, Minnesota							
ľ	DATE	ST	ARTE	D 4/7	7/09		COMPLETED _4/8/09	GROUND ELEVATION HOLE SIZE 8 Inch							
	DRILL	.ING	CON	TRAC	TOR	Braun	1	GROUND WATER LEVELS:							
	DRILL	.ING	MET	HOD	4 1 4	" HSA		AT TIME OF DRILLING							
	LOGG	ED	BY _	B. Flaa	ada		CHECKED BY D. Fossell	AT END OF DRILLING							
	NOTE	s _						AFTER DRILLING							
	o DEPTH (ft)	SAMPI E TYPE	NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	PID (ppm)						
		М	SS 1	0			Skipped Interval 2.0								
		M	SS 2	100	ML		(ML) Gray, silt; wet		<1						
Ī		M	SS 3	0			No Recovery; wet								
Ī		$\overline{\Lambda}$	SS	400	SP-		Skipped Interval	Г							
		Д	4	100	SM		8.5 Skipped Interval	DIST	<1						
ŀ	10	М	SS 5	100			9.0 Same As Above		1.9						
-		\square	SS	58			Skipped Interval Same As Above	<i>Г</i>	1.2						
GPJ		Γ													
ASIN		Ж	55 7	100	SP- SM		(SP-SM) Black sand with silt; gra	avel at bottom	1						
ENCY B		M	SS	100	SP		(SP) Black gravel to 17 feet; brow	wn coarse sand to 18.5 feet; moist	<1						
ERG			0				.18.5	Г	-						
AEN	20	М	55 9	90			19.0/ No Recovery 21.0								
7157F		М	SS	0/			Skipped Interval	Γ	-						
CTS/		Д	10	94	SP		24.0								
PROJE		M	SS 11	38	SP		(SP) Grayish brown, medium sa 26.0	nd with sparse gravel; moist	<1						
GENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:15 - C:\PROGRAM FILES\GINT								Refusal at 26.5 feet. Bottom of borehole at 26.5 feet.							

	N	lorthea /irginia	ast Tec , MN	hnical	Services Inc			BORING NUMBER B	H-J OF 1							
CLIE		/let						v Basin Phase II								
DRO			7157					l akes Minnesota								
			12/00	1 A.00		4/14/00										
			13/09	Descus		/ 4/14/09										
DRIL				Braun			GROUND WATER LEVELS:									
DRIL			414	"HSA			AT TIME OF DRILLING									
LOG		B. Flaa	ada			r <u>D. Fossell</u>	AT END OF DRILLING									
NOT		1		1	1		AFTER DRILLING									
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTIO	'n	PID (ppm)							
					Skipped inte	erval										
F		29	ML SP-		(ML) Black,		(3 inches)		<1							
-			<u>SM</u>		Skipped inte	erval										
	2	58	ML		6.0 (ML) Dark-g	gray to black, CON	CENTRATE, saturated		3.8							
	∕ ss	50	ML		Skipped inte	erval			2.4							
-	- 3	50	SP- ∖SM		(INIL) AS AD	ray, FINE-SILTY S	AND, sparse gravel, last 4 inches br	rown, saturated /	2.4							
10		67	SP-		Skipped inte	Skipped interval .0 (SP-SM) Tan-brown, FINE-SILTY SAND, sparse gravel, saturated Skipped interval .5 (SP-SM) As Above, more gravel now										
	4				11.0 (SP-SM) Ta											
_		100	SP- SM		13.5 (SP-SM) As											
- GP	√ ss	00	SP-		Skipped inte	erval										
BAS	6 83 SM (SP-SM) As Above															
NCY	SS 3	83	SP-		(SP-SM) As	s Above		1.0								
					Skipped inte	erval										
20 20 20		100	SP-		(SP-SM) As	3 Above			2.4							
71571	_				Water sam	ple BH-J interval										
CTS																
ROJE					25.0		Pottom of borobolo at 25.0	foot	_							
							Bolloni di borendle al 25.0	leet.								
ES/GI																
GRAN																
PRO																
14:16																
24/09																
T - 9/:																
- C																
MEL																
TP																
L BH																
IERA																
б О																

		N V	lorthea	ast Tec . MN	hnical	Services Inc BORING NUMBER BH	1-K DF 1										
				,													
	CLIEN		let														
	PROJ		IBER	/15/	FA.08	PROJECT LOCATION Hoyt Lakes, Minnesota											
	DATE STARTED 4/8/09					COMPLETED _4/8/09 GROUND ELEVATION HOLE SIZE _8 Inch											
	DRILL	ING CON	ITRAC	TOR	Braun	GROUND WATER LEVELS:											
	DRILL	ING MET	HOD	414	" HSA	AT TIME OF DRILLING											
	LOGG	ED BY	B. Flaa	ada		CHECKED BY D. Fossell AT END OF DRILLING											
	NOTE	s				AFTER DRILLING 2.50 ft											
	o DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	PID (ppm)										
			0			Skipped Interval											
F		<u>s</u> s	25	SP-		▼ (SP-SM) Dark gray, tailings; wet	<1										
		2		SIVI		3.5 Water sampled for VOC, DRO, SVOC, and RCRA Metals @ 1240											
		$\bigvee ss_3$	42	SP-		(SP-SM) Lighter gray, tailings; wet	<1										
ł						Skipped Interval											
			50	SP-		6.5. (SP-SM) Dary gray; tailings; 2 inches of gray silt @ bottom; wet											
	10	V ss		SP-													
Ī		5	50	SM		(SP-SM) Dark gray; tailings; 5 inches of gray silt @ top; wood fragments; wet Soil Sampled for VOC, DRO, SVOC, and RCRA Metals @ 1330											
-		🗸 ss	50	SP-	िगाः	Skipped Interval ////////////////////////////////////											
Ę	_	6		SM		13.5 (SP-SM) Gray, FINE-SILTY SAND (6 inches); orangish brown; FINE-MEDIUM SAND; wet											
SIN.0			42	SP		(14.0) (SP) Orangish brown to brown; FINE-MEDIUM SAND; wet; rock @ tip											
ΥBA						\sim Skipped Interval											
ENO		$X = \frac{SS}{8}$	50	SP-		(SP-SM) As Above; some silt; sparse gravel	<1										
AERG	20			SD.		Skipped Interval											
FAEN	20	X 9	50	21.0 (SP-SM) As Above	<1												
TS\7157		SS 10	42	SP- SM		(SP-SM) As Above; coarser sand last 4 inches 23.0 Soil Sampled for VOC, DRO, SVOC, and RCRA Metals @ 1345	<1										
SENERAL BH / TP / WELL - GINT US.GDT - 9/24/09 14:15 - C:\PROGRAM FILES\GINT\PROJE						Bottom of borehole at 23.0 feet.											

AMERICAN ENGINEERING TESTING, INC.

SUBSURFACE TEST BORING LOG

BARR PROJECT NO: 23/69-0862-023

AET JO	DB NO: 07-04509.2	LOG OF BORING NO. <u>10-01 (p. 1 of 2)</u>																
PROJE	ст: PolyMet Eme	ergency]	Basin Iı	ivestiş	gation; Ho	yt I	lake	s ,]	MN									
DEPTH	SURFACE ELEVATION:				GEOLOGY	N	MC	SA	MPLE	REC	FIELI)&L	ABORA	TORY	TESTS			
FEET	MATERIAL	DESCRIPTI	ON			14]	TYPE	IN.	WC	DD	LL	PL	%-#200			
1	VICE - 4" thickness			-/tu	ICE WATER	1	F/W	Į	SU									
2 -	FILL, silt, trace roots, dar	k gray (slir	nes)		WAILK			묍										
3 -	, , .		-			4		M	SS	0								
4				- 🗱				Д										
5 —	FILL, silt, dark gray (slim	ies)				1	м	M	SS	18								
6 -								A	55	20								
7								붬										
8 —						<1	M	М	X SS 18									
9								뙵										
10 —						<1	M	M	SS	18								
11 -								रि										
12 -						<1	M	∇	22	18								
13 —					FILL /		IVI	A	00									
14					TAILINGS			붬										
15 -	FILL, silt with sand, dark	gray and b	lack, trace			3	M	X	SS	9								
16 -	odor (slimes)	, possible p	euoleum					R										
1/						<1	M	М	SS	7								
10								মি										
20 -						6	M	M	22	11								
21 -						0	101	Å	20									
22 —			•					뵍										
23 —						3	M	Х	SS	16								
24 —	FILL, sandy silt, black (fi	ne tailings))					岱										
25 –	1122, 50110, 5110, 5110, 51	8-)				15	M	М	SS	12								
26 -								रि										
27 —	FILL, silty clay, dark brow	wn, lamina	tions of			5	м	\square	22	15								
28 –	dark gray silt (slimes)							Д	55	15								
29 -	FILL, silty sand, black (fi	ne tailings)						뇑										
30 -						5	M	М	SS	12								
DEP	TH: DRILLING METHOD			WATE	ER LEVEL ME.	ASUR	EMEN	ITS		r			NOTE:	REFE	ER TO			
0-40	9½' 3.25" HSA	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV DE	/E-IN PTH	I FL	ORILLII UID LE	NG EVEL	WATI LEVE	ER IL	THE A	TTAC	HED			
		3/4/10	11:15	51.0	49.5	4	8.0				10.0)	SHEE	rs foi	R TO HED AN ON OF GY ON			
] ¹	EXPLA	NATI	ON OF			
BORIN COMPI	G LETED: 3/4/10							ļ				r 1	ERMIN		JY ON			
DR: L	A LG: TDD Rig: 27C												TH	15 LO	<u>ل</u>			

SUBSURFACE TEST BORING LOG

AET JO	DB NO: 07-04509.2			LC	G OF	во	RING	10	10-	<u>01 (</u>	(p. 2	of 2)
PROJE	CT: PolyMet Emergency Basin Invo	esti	gation; Ho	yt L	ake	s,]	MN						
DEPTH			GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORA	TORY	TESTS
FEET	MATERIAL DESCRIPTION			IN	IVIC	1	YPE	IN.	WC	DD	LL	PL	%-#20 0
32	FILL, sand, fine to medium grained, dark gray, laminations of silt (coarse tailings)					뙵							
33 -				4	м	М	SS	9					
34 —	FILL, sand with silt, dark gray (coarse tailings)		FILL/			I							
35 —			TAILINGS	9	м	М	SS	15					
36 -						E							
37				7	М	M	SS	11					
38 - 39 -	SILTY SAND, a little gravel, brown, wet, dense to medium dense (SM)		•			Ł							
40 -			•	40	м	M	SS	10					
41 —			•			R							
42 —			· · ·			Į		-					
43 -						ł							
44 -			TILL	20	N	<u>r</u> i M	99	15					
46 -			*	29	IVI	Д	22	15					
47 —						ł							
48 —	GRAVELLY SAND WITH SILT, brown, wet,	·].[]]	•			ł							
49 -	very dense (SP-SM)		•			Ł							
50 -				58	М	М	SS	7					
	END OF BORING AT 51.0 FEET Borehole backfilled with auger cuttings												

SUBSURFACE TEST BORING LOG

BARR PROJECT NO: 23/69-0862-023

AET .	юв NO: 07-04509.2					LC	OG OF	BOR	RING N	0	10	-02	(p. 1	of 1)
PROJ	ECT: PolyMet Em	ergency	Basin In	vesti	gation; Ho	oyt L	Jake	s, N	/IN						
DEPTH	SURFACE ELEVATION:_		· · ·		GEOLOGY	N	MC	SAN	MPLE	REC	FIELI	0&L	ABORA	TORY	TESTS
FEET	MATERIAL	DESCRIPT	ION			N	V	T	ŶPĒ	ĨÑ.	WC	DD	LL	PL	%-#2 0¢
	ICE - 6" thickness	framer () T)		ICE	-	-	ţ							
1 -	FILL, silt, a little wood, o	lark gray (slimes)	-⁄ 🞆	DEPOSIT	A	F/W	H	SU						
2 -		0.0	,					H							
3 -	-				FUI/	15	Μ	X	SS	13					
4 -					TAILINGS			Ł							
5 -	-\FILL. wood			7				st M							
5-	FILL, sand with silt, dark	gray (coa	rse tailings)	7		9	M	X	SS	8					
6 -		1 1 1	• 1 1			4		स्रि							
7 -	moist (SM)	d dark gray	ish brown,		TILL	4/0.5'		<u>s</u> t							
8 -						7/0.5'	M	Ň	SS						
	AUGER REFUSAL AT Borehole backfilled with	8.3 FEET auger cutti	ngs												
		r													
DEI	TH: DRILLING METHOD		[]	WATE	R LEVEL MEA	SURE	MEN	TS	TT T T T		117 A 1999		NOTE:	REFE	r to
0-	8.3' 3.25" HSA	DATE	TIME	DEPT	H DEPTH	DEF	E-IN PTH	FLU	ID LEV	EL	LEVE	K L	THE A'	ITACI	HED
		3/4/10								5	Surfa	ce	SHEET	S FOR	AN
DOBB												E	XPLAN	JATIO	N OF
COMP	LETED: 3/4/10												ERMIN	OLOG	Y ON
DR: L	A LG: TDD Rig: 27C												THI	SLOC	ŕ

06/06

SUBSURFACE TEST BORING LOG

PROJECT: PolyMet Emergency Basin Investigation; Hoyt Lakes, MNDEPTH IN FEETSURFACE ELEVATION: MATERIAL DESCRIPTIONGEOLOGY INNMCSAMPLE TYPEFIELD & LABORAL WCDD1 -FILL, sandy silt, dark gray, frozen (fine tailings)FSUII	TORY TESTS PL %-#20
$ \begin{array}{c c} \hline \text{DEPTH} \\ IN \\ FEET \end{array} & \text{SURFACE ELEVATION:} \\ \hline \text{MATERIAL DESCRIPTION} \end{array} & \text{GEOLOGY} \\ \hline \text{N} & \bigvee \\ \hline \text{V} \end{array} & \begin{array}{c c} \text{SAMPLE} \\ \hline \text{V} \\ \hline \text{V} \end{array} & \begin{array}{c c} FILL \\ \hline \text{N} \\ \hline \text{WC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \text{WC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \text{SUBSCRIPTION} \end{array} \\ \hline \begin{array}{c c} \text{F} \\ \text{F} \\ \hline \text{F} \\ \hline \text{SU} \\ \hline \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \text{WC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \text{SUBSCRIPTION} \end{array} \\ \hline \begin{array}{c c} \text{FILL} & \text{Sample} \\ \hline \text{F} \\ \hline \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \text{WC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \text{VC} \\ \hline \text{VC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \ \text{SUBSCRIPTION} \end{array} \\ \hline \begin{array}{c c} \text{F} \\ \hline \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \text{WC} \\ \hline \text{DD} \\ \hline \text{LL} \\ \hline \ \text{VC} \\ \hline \ \text{VC} \\ \hline \ \text{DD} \\ \hline \ \text{LL} \\ \hline \ \text{SUBSCRIPTION} \end{array} \\ \hline \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \text{FILL} & \text{SAMPLE} \\ \hline \ \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \ \text{SUBSCRIPTION} \end{array} \\ \hline \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \ \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \ \text{SUBSCRIPTION} \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \ \text{SUBSCRIPTION} \end{array} & \begin{array}{c c} \text{FILL} & \text{SAMPLE} \\ \hline \ \text{FILL} & \text{SUBSCRIPTION} \end{array} \\ \hline \end{array} \\ \hline \end{array} $	FORY TESTS PL %-#20
FEET MATERIAL DESCRIPTION TYPE IN. WC DD LL 1 - FILL, sandy silt, dark gray, frozen (fine tailings) F SU Image: Subscription for the subscriptic subs	PL %-#20
1 - tailings) FILL, sandy silt, dark gray, frozen (fine	
4 – FILL, silt, dark gray and black, possible	
$\begin{vmatrix} 3 \\ 6 \end{vmatrix}$ $\begin{vmatrix} <1 \\ W \end{vmatrix}$ $\begin{vmatrix} SS \\ 18 \end{vmatrix}$ $\begin{vmatrix} 1 \\ 8 \end{vmatrix}$	
$8 - \begin{vmatrix} \text{FILL, sin, gray to dark gray (sinnes)} \\ <1 \end{vmatrix} W \begin{vmatrix} X \end{vmatrix} SS \begin{vmatrix} 18 \end{vmatrix}$	
$\begin{bmatrix} 10 \\ 11 \end{bmatrix} = \begin{bmatrix} 10 \\ 11 \end{bmatrix} = $	
13 - 13 - 13 - 13 - 10 - 10 - 10 - 10 -	
14 – gray, lenses of sandy silt (fine tailings)	
FILL, silty sand, fine to medium grained, dark	
19 - FILL silt dark gray and black (climes)	
20 - 5 W Ss 12	
FILL, a mixture of black silty sand (coarse $36/0.5$ W SS 6	
24 – FILL, silty sand with gravel, grayish brown	
25 - 17 W SS 6	
27 – 28 – SLIGHTLY ORGANIC SILT, trace roots, dark 2777 TOPSOIL OR 30 W SS 3	
brown (OL) (may be original topsoil)	
AND BOULDERS (SM)	
AUGER REFUSAL AT 28.5 FEET Borehole backfilled with auger cuttings	
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMENTS	
DATE TIME SAMPLED CASING CAVE-IN DRILLING WATER THE AV	KEFER TO
0-28 ¹ / ₂ ' 3.25" HSA DEPTH DEPTH DEPTH DEPTH FLUID LEVEL LEVEL SHEET	S FOR AN
SIGING SUFFACE DIALS	ATION OF
BORING COMPLETED: 3/5/10 TERMIN	OLOGY ON
DR: LA LG: TDD Rig: 27C THI	SLOG

SUBSURFACE TEST BORING LOG

AET JO	OB NO: 07-04509.2						LC)G OF	F BC	DRING 1	NO	10	-04	(p. 1	of 1)
PROJE	ECT: PolyMet Eme	ergency	Basin Ir	ivesti	igat	tion; Ho	yt L	lake	es,	MN						
DEPTH IN	SURFACE ELEVATION:				G	EOLOGY	N	мс	S	AMPLE	REC	FIEL	D&L	ABORA	TORY	TESTS
FËET	MATERIAL	DESCRIPT	ION					<u> </u>			IN.	WC	DD		PL	%-#200
1 -	ICE - 24" thickness			ļu ļu	1 1ICE	न		F	ł							
2-				ļ.,				_	ł							
2	FILL, silty sand, fine to n roots, dark gray (coarse ta	nedium gra uilings)	ained, trace		8 8		1	w	M	SS	3					
3-		0 /			8				Л И							
4 -	FILL, sand with silt, fine	to medium	n grained,		FIL	L/			ł							
5 —	dark gray (coarse tannigs)				ILINGS	13	W	X	SS	8					
6 —									R							
7 —					×		6/0.5'	337	₹Į \	99	4					
8 -	SILTY SAND WITH GR dark brown and dark grav	AVEL, tra	ice roots,				50/0.5		A	55	4					
9 —	SII TY SAND WITH GR	AVEL br	own wet						ł							
10	medium dense (SM)	//////////////////////////////////////	own, wet,				15	117	\bigvee	99	6					
11 -									Д	66	0					
12									ł							
12	SILTY CLAYEY SAND apparent cobbles, brown,	WITH GR wet (SC-S	AVEL, M)		TIL	L			3							
13 -		,	,						ł							
14 -					•		5/0.5		ł							
15 —							10/0.5	W	Х	SS	8					
16 —							50/0.2		Ł							
17 —									Ł							
18 —									Į							
19 —	SAND WITH GRAVEL,	medium to	coarse			ADCE			ł							
20 —	gruniou, orown, wet, very	dense (51)			LUVIUM	00	337	M	99	0					
21 —		1.0 0000					- 00	**	М		0					
	END OF BORING AT 2 Borehole backfilled with a	1.0 FEET auger cutti	ngs													
DEP	TH: DRILLING METHOD			WAT	ER L	EVEL MEA	SURI	EMEN	ITS					NOTE:	REFE	r to
0-19	0 ¹ / ₂ ' 3.25" HSA	DATE	TIME	SAMPI DEPT	LED TH	CASING DEPTH	CAV DEI	E-IN PTH	I FL	DRILLIN UID LE	iG VEL	WATE LEVE	ER L	THE A	TTAC	HED
		3/5/10			\square							Surfa	ce	SHEET	S FOF	LAN NOT
BORIN	G												1	EXPLA TERMIN	NATIC IOLOG	Y ON
COMPI	LETED: 3/5/10												'	TH	IS LOC	3
DK: LA	H LO: IDD Kig: 4/C								L							

SUBSURFACE TEST BORING LOG

AET JO	B NO: 07-04509.2					LC	OG OF	FBC	RING	10	10-	-05	(p. 1	<u>of 1</u>) -
PROJEC	CT: PolyMet Eme	ergency	Basin Ir	ivesti	gation; H	oyt I	lake	es,	MN						
DEPTH	SURFACE ELEVATION:				GEOLOGY			SA	MPLE	REC	FIELI)&L	ABORA	TORY	TESTS
FEET	MATERIAL	DESCRIPT	ION			N	MC		TYPE	ÎN.	WC	DD		PL	%-# 20
	FILL, organic silty sand v	with roots,	dark brown	n 🞆				Ł							
1 -					FILL		M	ł	SU						
2 —	SILTY SAND WITH CD	AVET he	own moist			_		Į.							
3_	medium dense (SM)	AVEL, UI	own, moisi	, it i		29	M	X	SS	12					
5					TILL			H							
4 -								Ł							
5	GRAVEL WITH SAND.	brown, we	et, dense			42	w	M	SS	12					
6 -	(GP)	010111,111	,		COADSE			Д							
7	SAND, fine to medium g	rained, bro	wn, wet,		ALLUVIUM			ł		_					
	very dense (SP)			_		50/0.3	W	B	SS	3					
	AUGER REFUSAL AT Borehole backfilled with	7.5 FEET auger cutti	ngs												ļ
		C	0												
DEPT	TH: DRILLING METHOD			WATI	ER LEVEL ME	ASURI	EMEN	VTS					NOTE:	REFE	R TO
0.71		DATE	TIME	SAMPI	ED CASING	CAV	E-IN PTH				WATE	ER	THE A	TTAC	HED
0-73	72 3.23'' HSA	3/8/10	13:00	7.5	7.5	7	.5				Non	e	SHEET	S FOF	R AN
			10100	7.5								-	EXPLA	NATIC	N OF
BORING) ETED, 2/8/10						·	\vdash		-+		1	FERMIN	IOLOC	JY ON
DR. I.A	LG. TM Rig. 77C	<u> </u>				+							TH	IS LOO	3
)6/06	10, 1111 Mg, 4/0		I ł			<u> </u>		1		l					

SUBSURFACE TEST BORING LOG

AET J	OB NO: 07-04509.2					LO	G OF	BORING 1	NO	10-	05A	(p.)	lof	1)
PROJI	ECT: PolyMet Em	ergency	Basin I	nvestig	ation; Ho	oyt L	ake	s, MN						
DEPTH	SURFACE ELEVATION:_				GEOLOGY	N	MC	SAMPLE	REC	FIELI) & LA	BORA	TORY	TESTS
FEET	MATERIAL	DESCRIPT	ION				MC	TYPE	IN.	WC	DD	LL	PL	%-#2 00
	No samples taken, see tes	t boring 10	0-05					3						
1 -	-							Ł						
2 -														
3 -								1						
4 -														
5 -	-							ł						
6 -								Ħ					-	
7 -	AUGER REFUSAL AT Borehole backfilled with Boring performed 5' east	7.0 FEET auger cutti of 10-05	ngs					<u><u> </u></u>						
DEP	TH- DRILLING METHOD			WATER	LEVEL ME	ASURE	MEN	TS						
				SAMPLE	D CASING	CAV	E-IN	DRILLIN	ig	WATE		NUTE:	KEFE	
()-7' 3.25" HSA	DATE	IIME	DEPTH	DEPTH	DEP	TH	FLUID LE	VEL	LEVE	L	THE A		
		3/8/10	13:30	7.0	7.0	7.	0			None	e -	VDI VI	JATIO	
BORIN	G											ERMIN	01.06	YON
COMP	LETED: 3/8/10											TH	SLOG	
DR: L	A LG: TM Rig: 27C													

SUBSURFACE TEST BORING LOG

AET JO	OB NO: 07-04509.2					LC)G OF	BORING N	10	10-0	05B	(p.]	l of :	1)
PROJE	CT: PolyMet Em	ergency	Basin I	nvestig	ation; He	oyt L	ake	s, MN						
DEPTH	SURFACE ELEVATION:				GEOLOGY			SAMPLE	REC	FIELI) & LA	BORA	TORY	TESTS
FEET	MATERIAL	DESCRIPT	ION		0	N	MC	TYPE	ÎN.	wc	DD	LL	PL	%-#20
	No samples taken, see tes 10-054	st borings .	10-05 and					£]						
								1						
2 –								1						
3 —								Ħ						
4								ł						
5 —								Ħ						
6 —								1						
7 -								Đ						
,	AUGER REFUSAL AT	7.5 FEET	۲			50/0.0'		រ _{ss}	-0					
	Borehole backfilled with Boring performed 10' so	auger cutti	ngs											
	Doring performed 10 sol	<i>un 0</i> , 10 0.												
			•											
											2			
DEPI	TH: DRILLING METHOD			WATER	LEVEL MEA	SURE	MEN	 TS				<u>(Отр.</u>	ייייייייי	
0.7		DATE	TIME	SAMPLE	D CASING	CAV	E-IN	DRILLIN	G.	WATE		THE A'	TACI	HED
0-7	⁷ 2' 3.25" HSA	3/8/10	14:00	7.5	7.5	DEP 7	5	FLUID LEV	/EL	None		HEET	S FOR	AN
			1.00	1.5		/•	-			110110	E	XPLAN	IATIO	N OF
BORINC COMPL	; eted: 3/8/10										TE	RMIN	OLOG	Y ON
DR: LA	LG: TM Rig: 27C											THI	S LOG	ì

SUBSURFACE TEST BORING LOG

AET JOE	NO: 07-04509.2					LC	DG 0	F BORI	NG N	o	10	-06	(p. 1	of	l)
PROJECT	r: PolyMet En	nergency	y Basin	Investig	gation; H	<u>loyt I</u>	Lak	es, M	[N						
DEPTH IN	SURFACE ELEVATION	•			GEOLOGY	N	мс	SAM	PLE	REC	FIEL	D&L/	BORA	TORY	TESTS
FEET	MATERIA	L DESCRIP	TION		TOBGOU	_	-	TY	PE	IN.	WC	DD	LL	PL	%-#200
	frozen		uark prow	n, ////	TUPSUIL		F		1A						
2-	SILTY SAND, brown, f	frozen (SM	I)		TILL		F/M	ı 🏾 י	IA	i					
2								Ē							
	AUGER REFUSAL A	T 3.0 FEE	Ţ												
	Solehole backfilled will	i auger cut	ungs												
														-	
							:								
DEPTH:	DRILLING METHOD			WATER	LEVEL MEA	ASUREN	/ MENT	 ГS							
0_31	Hand Augor	DATE	TIME	SAMPLEI	CASING	CAVE	-IN	DRIL	LING	W	ATER		ле: 1 те ат	VEFER TACU	
0-3	Auger	3/8/10	11:20	3.0							EVEL		HEETS	FOR	AN
						5.0			-		TONE	EX	PLAN	ATIO	1 OF
BORING COMPLETI	ED: 3/8/10											TER	MINC	DLOGY	(ON
DR: LA	LG: TM Rig:										1741	1	THIS	LOG	

							New
WELL LOCATION	er e sendering a a			WEI	INESOTA		GW-003 MINNESOTA UNIQUE WELL NO.
ST LOUIS				W Kana Sana S	Minneso	pte Statutes Chapter 1031	5 97393
Township Name Town	ship No. Rang	je No. Sr	ection No.	Fraction		WELL DEPTH (completed)	Date Work Completed
HOUT LAKES 5	SAL 14	$\mu\omega$	8	ALLANG	USE	/13.0	
House Number, Street Name, City, <u>LTU.</u> <u>STorgel</u> <u>Min</u> Show exact location of well in section	and Zip Code of V V e . Ho en grid with "X".	Vell Location	akes ske	or Fire Numi	ber 1 laoation.	DRILLING METHOD	n 🗇 Dug y 🖓 Jatted
	TAI	ind5±	> ftm	Showing prop Docads and	eny lines. buildings.	QUELE Gel Mul . F	VELL HYDROFRACTURED? □ YES ⊇NO TROM
W	T			~		USE Commentio Comment	oring C) Heating/Cooling nunity PWS D Industry/Commerciat ommunity PWS Remediat tering D
	Vz Atlen	121	l.	A. Marina		CASING Drive Shoe? I Ye	s Gr™o HOLE DIAM. □ Welded
PROPERTY OWNER'S NAME	mixin	 G 0	om om	OMAIL		CASING DIAMETER 4. in to 93.0 R.	ibs./tt. 7.7/2 in. to / 2.54
Property owner's mailting address if	different than well Box	Reation add	dress indike 7	ited above.		SCREEN Make TCHNUSCAL	Ibs./fl. in. to it. OPEN HOLE from ft.1o ft.
HOYT	LAKe	: M	W-3	5 /3	, U	Type JH / No. JH - Direct Slot/Gauze	Diam. 4 Length 20 St. FITTINGS: Fluid drop, 71 in G
WELL OWNER'S NAME						STATIC WATER LEVEL	and surface Date measured
Added and a second second by the second	SHME	·····				PUMPING LEVEL (below land surface)	
GEOLOGICAL MATERIALS	COLOF	HAF	RDNESS (DF FROM	то	WELL HEAD COMPLETION Vities adapter manufacturer Casing Protection At-grade (Environmental Wells and Boringa ON GROUTING INFORMATION Well grouted? Yes No Grout Material Xeat carment Bentor	Model II 2 in, above grade
The I all the state of the						from to	it. □ yds. □ bags
Tall u's	Can		111 - I			fromto	it. 🗇 yds. 🗅 bags ION
<u></u>	OK-MY				26.0	Well disinfected upon completion?	j Ne
						Not installed Date installed	
teren al a d'obras calculatorem los ana e tabres providentes de la dora de la dora de la compositiva ana espect		Numerous designations				Manufacturer's name	
						Model number	HP Volts
						Length of drop pipe	ft. Capacityg.p.m.
						Type: C Submersible C L.S. Turbine C R	eciprocating 🖸 Jet 🗇
						Does property have any not in use and not sealed	well(s)? I Yes I No WALKACUUM
	1					VARIANCE) =)(= -'
			in dan tersebuter en statuter et s			was a variance granted from the MDH for this well	/ LIYes EINo
Use a seco	nd sheet, if neede	ea'				This well was drilled under my supervision and in a	ccordance with Minnesota Rules, Chapter 4725.
$A \in T$ Jub	RCE OF DATA	, etc. 700 -	204			AMEL. CAN ENGINE Licensee Business North	eling TEST ing Miller
TEP of R:	sen E	10.	17	17,10	0	Julie Barress Hann	
GROUND S	cillace	Elu	. 17	14.1		LARRY HANDERSON	e Date
MPUHIANT - FILE WIT	H PROPERT <u>NER CO</u> PY	V PAPEI	8	5973	83	Nathe of Daller	Date HE-01205-06 (Rev. 9/96)

мц х.		_			GW 004
County Name	uis	-	MIN		LL RECORD 551772
Township Name Hay T Lakes 5 Numerical Street Address and City of V	No. Range No.	Section No.	Fraction Wy.NK or Fire Numb	ן פי	WELL DEPTH (completed) 104 DAIE Work Completed 10-26-94
Show exact location of well in section g	No.	Skeich S	n map of well howing prope roads and b	location. eny lines, buildings.	Cable Tool Dug Auger CRotary CJ Jetted C DRILLING FLUID DRILLING FLUID
	T U	onit	tt:	Ng	USE Domestic Irrigation Test Well USE Remedial
	i ⊗ mri. I				CASING Drive Shoe? Yes INO HOLE DIAM.
PROPERTY OWNER'S NAME		Miles	Ce	0,	$\begin{array}{c c} \text{CASING DIAMETER} & \text{WEIGHT} \\ \hline \begin{array}{c} 4 \\ \hline \\$
					SCREEN OPEN HOLE Make CPOK Type 44 Type 44 Stov/Gauze +012 Stov/Gauze +012 Set between 82 Tt. and 104 Th. FITTINGS: K. pack
GEOLOGICAL MATERIALS	COLOR	HARDNESS O MATERIAL	FFROM	то	STATIC WATER LEVEL
Jaconite	-		_		PUMPING LEVEL (below land surface) h. afterhrs. pumpingg.p.m.
Teilives	Gray	loose	0	104	Casing Proteolion
					GROUTING INFORMATION Well grouted? XYes No SILVY AVOUND COSTY Grout Material Divest cornert EXBentionite from to tr uds. Chags
					fromtoft. tbgts. bags fromtbft. gts. bags NEAREST KNOWN SQURCE OF CONTAMINATION
					Well disinfected upon completion? Yes Yes
					Voir installed Date installed Manufacturer's name
an a that an		1			HP Voits Unitse HP Voits GP.m. HP Voits GP.m. HP Voits GP.m. H H Voits GP.m. H Voits GP.m. H H Voits GP.m. H H Voits GP.m. H H Voits GP.m. H H H H H H H H H H H H H H H H H H
					ABANDONED WELLS Does property have any not in use and not sealed well(s)?
					WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge.
Use a second REMARKS, ELEVATION, SOURC	sheet, if needed E OF DATA, etc.				Petersen DNG Inc 65183
					Authorized Representative Signature Dermis Petersen
MPORTANT - FILE WITH	PROPERTY PA	PERS E	517	70	Name of Dniller ' Date HE-01205-04 (Rev. 5/92)
WELL OWNE		<u> </u>		16	

мц х.		_			GW 004
County Name	uis	-	MIN		LL RECORD 551772
Township Name Hay T Lakes 5 Numerical Street Address and City of V	No. Range No.	Section No.	Fraction Wy.NK or Fire Numb	ן פי	WELL DEPTH (completed) 104 DAIE Work Completed 10-26-94
Show exact location of well in section g	No.	Skeich S	n map of well howing prope roads and b	location. eny lines, buildings.	Cable Tool Dug Auger CRotary CJ Jetted C DRILLING FLUID DRILLING FLUID
	T U	onit	tt:	Ng	USE Domestic Irrigation Test Well USE Remedial
	i ⊗ mri. I				CASING Drive Shoe? Yes INO HOLE DIAM.
PROPERTY OWNER'S NAME		Miles	Ce	0,	$\begin{array}{c c} \text{CASING DIAMETER} & \text{WEIGHT} \\ \hline \begin{array}{c} 4 \\ \hline \\$
					SCREEN OPEN HOLE Make CPOK Type 44 Type 44 Stov/Gauze +012 Stov/Gauze +012 Set between 82 Tt. and 104 Th. FITTINGS: K. pack
GEOLOGICAL MATERIALS	COLOR	HARDNESS O MATERIAL	FFROM	то	STATIC WATER LEVEL
Jaconite	-		_		PUMPING LEVEL (below land surface) h. afterhrs. pumpingg.p.m.
Teilives	Gray	loose	0	104	Casing Proteolion
					GROUTING INFORMATION Well grouted? XYes No SILVY AVOUND COSTY Grout Material Divest cornert EXBentionite from to tr uds. Chags
					fromtoft. tbgts. bags fromtbft. gts. bags NEAREST KNOWN SQURCE OF CONTAMINATION
					Well disinfected upon completion? Yes Yes
					Voir installed Date installed Manufacturer's name
an a that are an		1			HP Voits Unitse HP Voits GP.m. HP Voits GP.m. HP Voits GP.m. H H Voits GP.m. H Voits GP.m. H H Voits GP.m. H H Voits GP.m. H H Voits GP.m. H H H H H H H H H H H H H H H H H H
					ABANDONED WELLS Does property have any not in use and not sealed well(s)?
					WELL CONTRACTOR CERTIFICATION This well was drilled under my supervision and in accordance with Minnesota Rules, Chapter 4725. The information contained in this report is true to the best of my knowledge.
Use a second REMARKS, ELEVATION, SOURC	sheet, if needed E OF DATA, etc.				Petersen DNG Inc 65183
					Authorized Representative Signature Dermis Petersen
MPORTANT - FILE WITH	PROPERTY PA	PERS E	517	70	Name of Dniller ' Date HE-01205-04 (Rev. 5/92)
WELL OWNE		<u> </u>		16	

							G-W.	005
VELL LOCATION		l	MI	NNESOTA	DEPARTMENT OF HEALTH		MINNESOTA U	INIQUE WELL NO.
ounty Name		-	WEL	L AN	BORING RECORD		Fr. C)	7004
57.200.5		l,		Minneso	vla Statutes Chapter 1031	L	See I had	1004
ownship Name Township No.	Range No.	Section No.	Fraction	1 * ~	WELL DEPTH (completed)	n. Date Work	Completed	2
House Number, Street Name, City, and Zip Ge	ode of Well Loc	cation	or Fire Num	Vi_2An Vi Noer	DRILLING METHOD	<u>(</u>	- 7 70	1
TV. STEEL Misse	HoyT	Lakes			Cable Tool D Auger	Driven 2*Rotary	🗇 Dug	d
how exact location of well in section orid with	inx. indis	POW Skel	ch map of we Showing prop	li location. perty lines,		· · · · · · · · · · · · · · · · · · ·		
[)"	<i></i>	roads and	buildings.	BRIDE GEL- Maril	WELL HYD	ROFRACTURED?	P ⊡YES ZINO
		\otimes	MUL	,3	USE Domotion	 ZP Monitoring		n. ing/Cooling
	-	(`			CI Infigation	 Community PW3 Noncommunity I 	S 🗌 Indus PWS 🗌 Flem	stry/Commercial edial
	$\langle \cdot \rangle$	- / c				Dewatering	□	
$\gamma_{1} = \gamma_{1} = \gamma_{1} = \gamma_{2} = \gamma_{2$	Z Z	1.0			Steel B Threade	ed 🗆	Welded	HOLE DIAM,
		191			D Plastic	ann an an tha an		
	1./- http:////	10.1			CASING DIAMETER	WEIGHT	and the second	
LTU STEAL MAN	1.100 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. A. t. I		in to in		ibs./it.	7. 18. 10 1251
roperty owner's mailing address if different th	an well locatio	in address indicat	ed above.		n. to it.		ibs./it.	in. to in_ to in_ to in_ to in_ to in_ in_ in_ in_ in_ in_ in_ in_ i
P.O. BOX 8	941				SCREEN	OPEN	HOLE	
Kat Lok	es1	MAN. 5	575	О	Type STAINLESS STO	ee/ Irom		l.toft.
17041 6141					Slot/Gauze 012	Lengt	h	
					Set between 22	707.0 jl. Fit	TTINGS: 6/000	(Capplings
ELL OWNER'S NAME					90.9 It 5 below	 above fand surfa 	ice Date measu	red
514	ine			: Manufalanti di sut sutu prinquego	PUMPING LEVEL (below land surface)			
ren owner's maning address it onterent than p	property owner	's address indicat	ed above.		ft. after	hr	s. pumping	g.p.m.
					WELL HEAD COMPLETION			
					Pitless adapter manufacturer		Model	11
					Casing Protection Casing Protection At-grade (Environmental Wells and Bo		Model E 12 in. abov	/e grade
					Pitless adapter manufacturer Casing Protection Casing Protection CAt-grade (Environmental Wells and Bc GROUTING INFORMATION Well provided	Drings ONLY)	Model E 12 in. abov	/e grade
GEOLOGICAL MATERIALS C	COLOR	HARDNESS C	F	то	Casing Protection Casing Protection Casing Protection Casing Protection Casing Protection Casing Protection Casing Carving InFORMATION Well grouted? Casing Pres No Grout Material Casing Pres Casing	Dorings ONLY)	Model E 12 in. abov	ve grade h Solids Bentonite
GEOLOGICAL MATERIALS C	OLOR	HARDNESS C MATERIAL	FROM	то	Casing Protection	Bentonite C	Model E 12 in. abos	re grade Is Solids Beritonite U yds. D bage
GEOLOGICAL MATERIALS C	OLOR	HARDNESS C MATERIAL	FROM	то	Casing Protection	Bentonite to	Model □ 12 in. abos Dancrete □ Higi	re grade h Solids Bentonite 1 yds bags 1 yds bags 1 yds bags
GEOLOGICAL MATERIALS C	DOLOR	HARDNESS C MATERIAL		TO	Pritess adapter manufacturer Casing Protection At-grade (Environmental Wells and Bo GROUTING INFORMATION Well grouted? Pres No Grout Material Pres No from from from NEAREST KNOWN SOURCE OF CONT fort		Model 12 in. abov	re grade h Solids Bentonite v/ds bage v/ds bage v/ds bage
GEOLOGICAL MATERIALS C AIC TO COLARSE TA. Timog's Gr	COLOR 214y	HARDNESS C MATERIAL		то 125.0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and Bo GROUTING INFORMATION Well grouted? Pres No Grout Material Pres No Grout Material Pres From from NEAREST KNOWN SOURCE OF CONT feet Well disinfected upon completion?		Model 12 in, abox	re grade h Solids Bentonite] yds.] bags] yds. [] bags] yds. [] bags type
GEOLOGICAL MATERIALS C METE COMMESE TA. Times's Gr	COLOR 2044	HARDNESS C MATERIAL		то /25.0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and Bc GROUTING INFORMATION Well grouted? Fres from from from from NEAREST KNOWN SOURCE OF CONT feet Well disinfected upon completion? PUMP	Bentonite C Bentonite C to to t, to R, AMINATION Yes No	Model 1 2 n. abox	re grade h Solids Bentonite yds bags yds bags yds bags type
GEOLOGICAL MATERIALS C ALC TO COARSE TA. TONG'S GR	2010R	HARDNESS C MATERIAL	FROM	то 125:0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? From fro	Bentonite C to to t, to to t, to	Model 12 m. abox	re grade f: Solids Bentonite
GEOLOGICAL MATERIALS C METO COLARSE TA. Timos's Gr	SOLOR 2144	HARDNESS C MATERIAL	FROM	то /25: <i>С</i>	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and Bo GROUTING INFORMATION Well grouted? Pres No Grout Material Pres No Grout Material Pres From from from NEAREST KNOWN SOURCE OF CONT feet Well disinfected upon completion? PUMP Priot Installed Date installe	Bentonite C to C ft. to ft. to ft. to n. AMINATION Yes No	Model 12 in. abox	re grade
GEOLOGICAL MATERIALS C ALC TO COLANSE TA. Ting's Gr	RUAY	HARDNESS C MATERIAL	FROM	то /25.0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? Fres No Grout Material Pres No Grout Material Pres No Grout Material Pres No Grout Material Pres Cont from	Bentonite C to to t, to to R. AMINATION Yes No	Model 1 2 in, abox	re grade
GEOLOGICAL MATERIALS C METC CLARSE 72. Timg's Gr	2010R	HARDNESS C	FROM	то 125.0		Bentonite C to C to ft. to ft. to ft. to ft. AMINATION Yes No ed HP ft. C	Model Di 12 n. atos Concrete [] Higu 	re grade h Solids Bentonite yds bage yds bage yds bage typetyptypetyptypetype _
GEOLOGICAL MATERIALS C ALC TO COARSE TA. / ing's Gr	20LOR	HARDNESS C	FROM	то /25:С		Bentonite C to to t. t. t. t. t. t. t. c.	Model 12 m. abox	re grade f: Solids Bentonite
GEOLOGICAL MATERIALS C Mr. TO COMPLEE TA. Ling's Gr	RUAY	HARDNESS C MATERIAL	FROM	то /25: <i>С</i>	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? West cament from f		Model 12 in. abox	re grade h Solids Bentonite yds. D bage U yds. D bage U yds. D bage type stype sg.p.m. OM & MCAEM
GEOLOGICAL MATERIALS C METE COMPLE TA. Timg's Gr	RUAY	HARDNESS C MATERIAL	FROM	то /25:0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and Bc GROUTING INFORMATION Well grouted? Fres No Grout Material Pres Pres Trom from	Bentonite C to to t, t, to t, t, t, t, c e Reciprocatin ol sealed well(s)?	Model 12 in, abox	re grade h Solids Bentonite
GEOLOGICAL MATERIALS C Mr. TC CCARSE TA. Inng's Gr	20LOR	HARDNESS C	FROM	то /25.0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Weils and 8c GROUTING INFORMATION Weil grouted? Fres No Grout Material Prest coment from	Bentonite C to ft. t	Model 12 n. abox	re grade h Solids Bentonite □ yds. □ bage □ yds. □ bage □ yds. □ bage vype vype s g.p.m.
GEOLOGICAL MATERIALS C MC TO COMPLE TA. Timg's Gr	20LOR	HARDNESS C	FROM	то /25: <i>С</i>	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? From		Model 12 m. abox	re grade h Solids Bentonite U yds. D bags U yds. D bags U yds. D bags U yds. D bags S.
GEOLOGICAL MATERIALS C	in needed	HARDNESS C MATERIAL	FROM	то /25: <i>С</i>	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? Well arout Material Prest comment from fr	Bentonite C (to C ft. to	Model 12 in. abox	re grade the Solids Bentonite
GEOLOGICAL MATERIALS C ALT TO CICARLESE TA. ING'S Gr Use a second sheet, MARKS, ELEVATION, SOURCE OF MET TOB # TC	in needed DATA, etc.	HARDNESS C MATERIAL	FROM	TO /25:0	Pittess adapter manufacturer Casing Protection At-grade (Environmental Wells and 8c GROUTING INFORMATION Well grouted? Well arout Material Prest comment from fron fr	Bentonite C (to C ft. to C ft. to ft	Model Model I 12 in. abox	re grade re grade r Solids Bentonite U yds. D bage yds. D bage yds. D bage type s
GEOLOGICAL MATERIALS C NC TO COMPLE TA. ING'S GR Use a second sheet, EMARKS, ELEVATION, SOURCE OF MET TOB # TC TCP of R. SCK C	intereded intere	HARDNESS C MATERIAL	FROM	TO		Bentonite () C to () ft. to () ft. ft. AMINATION Yes () No ed () ft. to () ft. ft. to () ft. ft. ft. ft. ft. ft. ft. ft.	Model Model II 2 m. abox	re grade h Solids Bentonite □ yds. □ bage □ yds. □ bage □ yds. □ bage 1ype s □ yds. □ bage 1ype s utes. Chapter 4725. Muccob 3 No. S ~ 7 ~ 5 &
GEOLOGICAL MATERIALS C INC TO COANSE TD. ING'S GR Use a second sheet, EMARKS, ELEVATION, SOURCE OF HET TOB # TC TCP of R. SEK G GRAMMAL SOUPLA	inneeded DATA, etc. DOLOR	HARDNESS C MATERIAL	F FROM	TO 125:0		Bentonite C to Atlanticon C to Atlanticon C C C C C C C C C C C C C	Model Model II 12 n. abox	re grade h Solids Bentonite yds. □ bags □ yds. □ bags □ yds. □ bags vise vise vise vise vise vise vise vis
GEOLOGICAL MATERIALS C NC TO COARSE TA. ING'S GR Use a second sheet, EMARKS, ELEVATION, SOURCE OF AET JOB # 70 TOP of R. SCK C GROUND SURFA	intereded intereded intereded DATA, etc. intereded ETU.	HARDNESS C MATERIAL	F FROM	TO		Bentonite C (to 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Model Model II 2 n. abox	re grade h Solids Bentonite

• , *

625044 County St. Louis Quad Quad ID	MINNESOTA DEPARTMENT OF HEALTH WELL AND BORING RECORD Minnesota Statutes Chapter 1031 Minnesota Statutes Chapter 1031 Minnesota Statutes Chapter 1031				
Well Name LTV STEEL MINING CO Township Range Dir Section Subsections Elevation ft. 59 14 W 8 BCD Elevation Method	Well Depth Depth Completed Date Well Completed 12 ft. 12 ft. 04/09/2001				
Well Address P.O. BOX 847 HOYT LAKES MN 55750-0847 Geological Material Color Hardness From To PEATY SOIL BLACK SOFT 0 0 FIRM SAND & PEAT BROWN SOFT 0 5 EXTRA DENSE ROCKS 5 12 12	Drilling Fluid Well Hydrofractured? Yes No From Ft. to Ft. From Ft. to Ft. Use Monitor well Casing Type Plastic Joint Unknown Drive Shoe? Yes No Above/Below ft. Casing Diameter Weight Hole Diameter 1 in. to 4 ft. Ibs./ft. 10 in. to 12 ft. Open Hole from ft. to ft. Screen YES Make US FILTER Type steel (non-stainless) Diameter Slot/Gauze Length Set Between 2 8 4 ft. and 12 ft. Static Water Level 1.5 ft. from Land surface Date Measured 04/09/2001 PUMPING LEVEL (below land surface) ft. after hrs. pumping g.p.m. Well Head Completion Pitless adapter manufacturer DOUBLE SEALE Model I' Casing Protection Y 12 in. above grade 12 in. above grade				
R E M A R K S STS D10301 MW3 N47? 36.62' W92? 9.26' DOUBLE SEALED PROTOP OWNER'S MAILING ADDRESS: CO. RD. 666 P.O. BOX 847 HOYT LAKES, MN 55750-0847	At-grade (Environmental Wells and Borings ONLY) Grouting Information Well Grouted? Yes No Grout Material: Neat Cement from 0 to 4 ft. 2 bags				
	Nearest Known Source of Contamination _feet _direction _type Well disinfected upon completion? Yes Pump Not Installed Date Installed Manufacturer's name Model number HP Volts Length of drop Pipe Manufacturer's name				
	Abandoned Wells Does property have any not in use and not sealed well(s)?				
First Bedrock Aquifer Last Strat Depth to Bedrock ft.	Variance Was a variance granted from the MDH for this well? Yes No Well Contractor Certification STS Consultants, Ltd. M0150 ZEHNDA, D. License Business Name Lic. Or Reg. No. Name of Driller				
County Well Index Online Report	625044 Printed 1/8/2009 HE-01205-07				
neur SE comme (of basin				

Attachment C

Residue Laboratory Test Results

Grain Size Distribution ASTM D422 Job No.: 6628 Project Instrumental Mesidae Test Date: 39306 Reported To Jeur Hughweing Company Sample Samp	-											
Project Project Test Date: ::::::::::::::::::::::::::::::::::::				(Grain S	Size	Distri	bution A	STM E	0422	Job No. :	5628
Reported To: Bench To:	Project: Polymet Pilot Plant Combined Residue									Test Date:	3/30/06	
Single Sold Dissibility Spec 1 1 </td <td colspan="9">Reported To: Barr Engineering Company</td> <td></td> <td>Report Date:</td> <td>9/4/12</td>	Reported To: Barr Engineering Company										Report Date:	9/4/12
Speci 1 Jeg Latings-Site v/Send (ML) Speci 1 1 1		Location / Borin	ng No.	Sample No.	Depth (ft)	Sample Type				Soil Classification		
Spec 2 Image: Control of the system Specimen 1 Specimen 2 Specimen 3 Diameter % Passing Diameter	Spec 1	c 1 Plant Residue 1 Bag Tailings - Silt w/Sand (ML)										
Special Iurometer Lata Diameter (mm) % Passing Diameter % Passing Diameter % Passing 0.0184 44.07 Iurometer Iurometer % Passing Diameter % Passing Diameter % Passing Iurometer Iurometer % Passing Iurometer Iurometer % Passing Iurometer Iurometer Iurometer % Passing Iurometer	Spec 2									· ·		
Specimen 1 Specimen 3 Diameter (mm) % Passing Diameter % Passing Diameter % Passing 0.0128 10.17	Spec 3											
Specimen 1 Specimen 2 Specimen 3 Diameter (mm) % Passing Diameter % Passing 0.0257 61.02 0.0184 44.07 0.0128 10.17 0.0052 4.96 0.0066 2.09 0.0066 2.09						H	ydrome	ter Data				
Diameter (mm) % Passing Diameter % Passing Diameter % Passing 0.0257 61.02		Spec	imen ⁻				Speci	men 2		ç	Specimen 3	
Desting /// i a casing Desting 0.0257 61.02	Dian	notor (mm)		% Paceina	- r)iamot	or	% Door	sing	Diamotor	0/ Do	eeina
	Dial	0.0257		61.02		namel		/o FaS	sing	Diametel	70 Fa	sang
		0.0184		44.07								
		0.0120		10.17								
		0.0092		4.96								
		0.0066		2.09	_							
		0.0032		1.05								
				0.00								

		Pe	ermeability	Test Data				
Project:			Date:	4/13/2006				
Reported To:		Barr E	Engineering Cor	npany		Jo	o No.:	5628
Boring No.:								
Sample No.:	1							
Depth (ft)								
Location:								
Sample Type:	Bag							
Soil Type:	Tailings - Silt with Sand (ML)							
Atterberg Limits								
	40.7							
	38.4							
PI Permeability Test	2.3							
in Saturation %:	56.4%							
	0.69							
$\frac{1}{100}$ Ht (in):	2 99							
Dia. (in):	1.45							
ອ ວ Dry Density (pcf):	59.4							
Water Content:	41.2%							
Test Type:	Falling							
Max Head (ft):	4.0							
Confining press. (Effective-psi):	10.0							
Trial No.:	9-14							
Water Temp ℃:	23.0							
% Compaction								
% Saturation (After Test)	97.0%							
	-	(Coefficient of F	Permeability				
K @ 20 °C (cm/sec)	3.4 x 10 ⁻⁵							
K @ 20 ℃ (ft/min)	6.8 x 10 ⁻⁵							
Notes:								

Overburden Pressure (Tons/Square Foot)	Volume of Solids (cu. ft.)	Weight of Solids (Ibs.)	Void Ratio (e)	Volume of Voids (V v, cu. ft.)	Total Volume (cu. ft.)	Dry Density (Ibs./cu. ft.)	Dry Density (Ibs./cu. ft.) (check)
0.01	6.95E-04	0.118	1.92	1.33E-03	2.03E-03	58.1	58.1
0.02	6.95E-04	0.118	1.88	1.31E-03	2.00E-03	59.0	58.9
0.05	6.95E-04	0.118	1.8	1.25E-03	1.95E-03	60.6	60.6
0.1	6.95E-04	0.118	1.76	1.22E-03	1.92E-03	61.5	61.5
0.25	6.95E-04	0.118	1.64	1.14E-03	1.83E-03	64.3	64.3
0.5	6.95E-04	0.118	1.54	1.07E-03	1.77E-03	66.8	66.8
1	6.95E-04	0.118	1.39	9.66E-04	1.66E-03	71.0	71.0
2	6.95E-04	0.118	1.22	8.48E-04	1.54E-03	76.5	76.5

Note:

1) Average overburden stress on hydrometallurgical residue in disposal cell is anticipated to be approximately 1.0 tons per square foot at closure.

2) Values based on specific gravity of solids of 2.72 as provided by Bateman Metals (May 2006), and weight of solids of:

0.118 pounds

3) Reference Soil Engineering Testing, Inc. May 10, 2006 Consolidation Test Data.

4) Data for the 2 tsf load is preliminary as of 5-15-2006.

Attachment D

Residue Settlement Calculations

PolyMet Hydrometallurgical	Residue Cell:	Residue Settlement - Model	Outcomes Check
Updated 09/20/2011	EJB		

Residue Settlement Estimation		Source
$S = \Delta e_{Mid Depth} / (1 + e_o)^* L_o$		(Terzaghi, Peck, Mesri Eq. 16.7)
S = Estimated Total Settlement $\Delta e_{Mid Depth}$ = Change in Residue Void R Facility	atio at Mid Depth of	
e _o = Initial Average Residue Void Ratio	D	
L_o = Initial Residue Fill Depth σ at L_o = (80ft x 73pcf)/2000 = 2.92 ts	f	(Approx. Elev 1650 ft to 1570 ft)
$e_{\sigma = 2.92 \text{ tsf}}$ = Residue Void Ratio at Cont tsf (estimated full depth confining stre	fining Stress of 2.92 ess)	
L _a =	80 ft	

- 0	80 11	
e _o =	1.92	Attachment C (SET Job#5628)
$e_{\sigma=2.92 \text{ tsf}} =$	1.22	Attachment C (SET Job#5628)
$\Delta e_{Full Depth} =$	0.7	(1.92 - 1.22 = 0.7)
$\Delta e_{Mid Depth} =$	0.35	(0.7 * 0.5 = 0.35)

9.6 ft

Estimated Settlement =

Attachment E

Leakage Collection System Computations

Leakage Rate Computations for HRF Composite Liner System (Lower Liner)

Project Name:	PolyMet
Project Number:	23/69-862-023

Updated by: TJR Date: 9/4/2012

Design Objective:

Based on design of the geocomposite to maintain geocomposite flow capacity greater than or equal to leakage rate into the geocomposite (from leakage through the overlying geomembrane liner); estimate the rate of leakage through the composite liner of the HRF.

Computation Approach:

Giroud, J.P. (1997). "Equations for Calculating the Rate of Liquid Migration through Composite Liners Due to Geomembrane Defects," Geosynthetics International, Vol. 4, Nos. 3-4,

Liner Configuration	Contact Quality C_{qo}	Contact Quality C	Hydraulic Head h (feet)	Hydraulic Head h	Liner Thickness t _s (meters)	Defect Diameter (circular defects) d (meters)	Defect Area (circular defects) a (square meters)	Defect Width (rectangular and square defects) b (meters)	Defect Length (rectangular defects) B (meters)	Defects Per Acre n	Hydraulic Conductivity of Geomembrane Liner Subgrade K _s (centimeters/second)	Hydraulic Conductivity of Geomembrane Liner Subgrade K _s (meters/second)	Circular Defects Leakage Rate Q _{cir} (gallons/acre/day)	Square Defects Leakage Rate Q _{sqr} (gallons/acre/day)	Rectangular Defects Leakage Rate Q _{rec} (gallons/acre/day)	Average Leakage Rate from HRF Qavg (gallons/acre/day)
Geomembrane/ Geosynthetic Clay	0.21	0.52	2.75E-02	0.01	0.0065	0.01	0.000079	0.01	2	2.5	3.00E-09	3.00E-11	0.0.E+00	0.0.E+00	0.0.E+00	0.0.E+00
Sensitivity to Order of Magnitude Increase in Subgrade K _s	0.21	0.52	2.75E-02	0.01	0.0065	0.01	0.000079	0.01	2	2.5	3.00E-08	3.00E-10	0.0.E+00	0.0.E+00	0.0.E+00	0.0.E+00
Sensitivity to Two Orders of Magnitude Increase in Subgrade K _s	0.21	0.52	2.75E-02	0.01	0.0065	0.01	0.000079	0.01	2	2.5	3.00E-07	3.00E-09	0.0.E+00	0.0.E+00	0.0.E+00	0.0.E+00

Leakage Rate Equations:

Circular Defects

 $Q_{cir} = nC_{qo} [1 + 0.1 (h/t_s)^{0.95}] a^{0.1} h^{0.9} k_s^{0.74}$

Square Defects

 $Q_{sqr} = nC_{qo} [1 + 0.1 (h/t_s)^{0.95}] b^{0.2} h^{0.9} k_s^{0.74}$

Rectangular Defect

 $Q_{\text{rec}} = nC_{qo} [1 + 0.1 (h/t_{\text{s}})^{0.95}] b^{0.2} h^{0.9} k_{\text{s}}^{0.74} + nC_{q\infty} [1 + 0.2 (h/t_{\text{s}})^{0.95}] (B-b) b^{0.1} h^{0.45} k_{\text{s}}^{0.87}$

Reference Data (Input Data): GSE PermaNet SL Geocomposite

Geonet Core Thickness (mil): Geonet Core Thickness (ft):

3.30E+02 2.75E-02

Summary: Due to low hydraulic head on composite liner system of HRF, computed and expected leakage rate through the HRF composite liner system is zero.

Project Name: Project Number:	PolyMet 23/69-862-023	Updated by: TJR Date: 9/4/2012	Computations For:	HRF Leakage Collection System - Geocomposite Design
Design Objective:	Selection of Geocomposite Transmissivity and Flow Length to A to Sump that is Equal to or Greater than Leakage Into the Geoc Hydraulic Head on HRF Composite Liner Remains Within Geoco	chieve Saturated Flow Ca omposite (from through t mposite Drainage Layer.	pacity of Geocomposite he upper liner) so that	te t
Computation Approach:	Reference Equation 139 in J.P. Giroud, J.G. Zornberg, and A. Zh Granular Liquid Collection Layers, Geosynthetics International,	ao, Hydraulic Design of G 2000, Vol. 7. Nos. 4-6.	eosynthetic And	
Equation 139:	$\theta_{\text{measured - req}} = FS \ \Pi \ (\text{RF}) \ q_h \ L/sin \beta$			
	FS = Factor of Safety (Based on Designers Judgement)	1.5		
	$\theta_{\text{ measured - req}}$ = required transmissivity of geocomposite to main	tain hydraulic head within	geocomposite	
	$\Pi (RF) = RF_{IMCO} \times RF_{IMIN} \times RF_{CR} \times RF_{IN} \times RF_{CD} \times RF_{PC} \times RF_{CC}$	x RF _{BC}		
	$\frac{Reduction Factors}{RF_{IMCO}}$ = reduction factor for immediate compression	Reduction 1.0 Accounte	<u>n Factor Notes:</u> d for in Manufactrers P	Published Transmissivity.
	RF _{IMIN} = reduction factor for immediate intrusion	1.0 Accounte	d for in Manufactrers P	Published Transmissivity.
	RF _{CR} = reduction factor for creep	1.1 Time-Dep	endent Hydraulic Trans	nsmissivity Reduction Due to Creep of Geocomposite Core.
	RF_{IN} = reduction factor for delayed intrusion	1.2 Reduction	n Factor Due to Delayed	ed Intrusion of Geotextile into Geocomposite Core.
	RF_{CD} = reduction factor for chemical degredation	1.0 For Chem	ical Degredation of Pol	lymeric Compounds During Service Life of Geocomposite.
	RF_{PC} = reduction factor for particulate clogging	1.0 Hydraulic	Transmissivity Reduction	tion Due to Particles Migrating Into Geocomposite Core.
	RF_{CC} = reduction factor for chemical clogging	1.2 Hydraulic	Transmissivity Due to (Chemical Precipitation in Geocomposite Core.
	RF_{BC} = reduction factor for biological clogging	1.0 Hydraulic	Transmissivity Reducti	tion Due to Biological Growth in Geocomposite Core.
	Π (RF) = 1.0 x 1.0 x 1.1 x 1.2 x 1.0 x 1.0 x 1.2 x 1.0 =	1.58		
	q_h = maximum leakage rate through upper geomembrane	38,000 gal/acre/day 1.35E-06 ft/sec		Ref. Water Modeling Data Package - Volume 2 - Plant Site: Pond Depth = 6 ft, K = 0.000034 cm/s, Def
	Trial 1: L=1,000 ft		Trial Geocomposite Transmissivity ≥ ⊕ measured - reg ??	Defects/Acre = 2.5, Facility Area = 5
	L = drainage length (feet) β = slope angle (degrees)	1000 ft 0.573 degrees	medalice req	45,000
	$\sin \beta =$	0.010		Âg 35,000
		2.15E-02 ft /sec		30,000
	$\theta_{\text{measured} - \text{req}} = FS \Pi(\text{HF}) q_h L/\sin\beta \text{ for } L = 1000 \pi$			e 25,000
	$\boldsymbol{\theta}_{\text{measured - req}} = FS \Pi (RF) q_h L/sin \beta$			Darcy's Law
	= (1.5) (1.58) (1.35E-6) (1000) / (0.010)	3.21E-01 ft ² /sec	No	10,000
	Trial 2: $L = 500 \text{ ft}$ $\theta_{\text{measured}, \text{reg}} = FS \prod (\text{RE}) a_h L/sin \beta \text{ for } L = 500 \text{ ft}$	1.60E-01 ft ² /sec	No	5,000
	Trial 3: L = 250 ft			0 5 10 15 20 25 30 35 40 45 50 55
	$\theta_{\text{measured}-\text{req}} = FS \Pi (\text{RF}) q_h L/sin \beta \text{ for } L = 250 \text{ ft}$	8.02E-02 ft ² /sec	No	
	Trial 4: $L = 125 \text{ ft}$ $\theta_{\text{measured - req}} = FS \Pi (\text{RF}) q_h L/sin \beta \text{ for } L = 125 \text{ ft}$	4.01E-02 ft ² /sec	No	Summary: Specify Geocomposite Drainage Layer to Have Transmissivi 1.0 Percent and Drain Pipe Spacing of 130 ft (= 2 x 65 ft). N for Future Slope Changes, Drain Spacing Modifications and Transmissivity
	Trial 5: L = 65 ft $θ_{\text{measured} - \text{req}} = FS Π (RF) q_h L/sin β for L = 65 ft$	2.08E-02 ft ² /sec	Yes	indistrissivity.

smissivity \geq 2.08E-2 ft²/sec at Liner Slope of 5 ft). Modify Design as Needed to Account ons and Alternate Geocomposite
Attachment F

GSE and CETCO test reports

May 13, 2008

Tom Radue Vice President Barr Engineering 4700 West 77th Street Minneapolis, Minnesota 55435

Re: GCL Hydraulic Conductivity/Chemical Compatibility Test Results Bentomat ST with Polymer-Treated Clay (R-101) PolyMet Hydrometallurgical Residue Cells

Dear Mr. Radue:

In October 2006, CETCO contracted JLT Laboratories, in Canonsburg, Pennsylvania, to perform long-term compatibility tests of polymer-treated Bentomat GCL samples in contact with a synthetic PolyMet Hydrometallurgical Residue solution. The following sections describe the synthetic leachate solution used, the GCL samples tested, the compatibility/hydraulic conductivity test procedure, the test results and interpretation.

SYNTHETIC LEACHATE

The synthetic leachate solution used for this testing was prepared by CETCO using chemical concentrations and water quality data provided by Barr Engineering (please see Attachment A). We understand that the chemical concentrations were estimated using a process mass balance, and were intended to simulate the leachate expected at the PolyMet Hydrometallurgical Residue Cells at Hoyt Lakes. In preparing the synthetic solution, the laboratory discovered that many of the concentrations exceeded their respective solubility limits, resulting in significant precipitation of solids and likely much lower dissolved concentrations than given by the mass balance. Accordingly, the tests were performed using a 50% solution (the highest concentrations that would still remain in solution) to more closely simulate the dissolved chemical concentrations that may come in contact with the GCL in the field.

GCL SAMPLES

Three Bentomat ST samples were initially tested for this project: R-101 and R-103 (made with polymer-treated clay), and R-102 (made with an internal plastic membrane component). The R-102 test was terminated early-on, as it was an experimental product, determined to be impractical to manufacture on a large scale. The two remaining samples, R-101 and R-103, were prepared by adding two different proprietary, high-molecular weight polymers to the sodium bentonite. The polymers are intended to resist the potentially harmful effects of cations dissolved in the water in the following two ways: (1) the polymers bond to and encapsulate the clay

particles, preventing harmful chemicals from intruding into the interlayer region where absorbed water is held; and (2) the polymers themselves expand when coming in contact with water, reducing the porosity of the overall system, helping to maintain a lower hydraulic conductivity. The laboratory procedure used to test these samples is discussed in the following section.

LABORATORY TEST PROCEDURE

Hydraulic conductivity/compatibility testing was performed in accordance with Scenario 2 of ASTM D6766, the Standard Test Method for Evaluation of Hydraulic Properties of Geosynthetic Clay Liners Permeated with Potentially Incompatible Liquids. This method is recommended within the industry for conclusively evaluating GCL compatibility with site-specific leachates. The samples were hydrated with synthetic leachate for 48 hours under an effective stress of 5 psi, and then subjected to a hydraulic head of 2 psi to drive the flow of leachate through the samples. The method recommends that testing continue until the following termination criteria are met: (1) steady-state flow (defined as influent and effluent flow measurements within 25%); (2) at least two pore volumes of flow have passed through the specimen; and (3) chemical equilibrium (defined as electrical conductivity values within 10%) is established between the effluent and influent. To monitor these termination criteria during the testing period, flow measurements were collected daily, and chemical measurements were collected approximately once per month.

As mentioned previously, the test on sample R-102 was terminated in 2007. The test on sample R-103 was terminated in February 2008 due to excessive clogging of the porous stones and feed lines, driving the permeability to zero. The test on sample R-101 ran for 18 months, until all the required termination criteria were achieved. The compatibility test results for sample R-101 are presented in the following section.

COMPATIBILITY TEST RESULTS

The test on sample R-101 was run for 18 months (from October 26, 2006 to April 24, 2008), at which point all the ASTM D6766 Scenario 2 termination criteria were achieved. The flow and water quality measurements from JLT Laboratories for sample R-101 are presented in the attached test report (Attachment B). Apart from discrete spikes in measured flow corresponding to times when the porous plates and tubing were cleaned and flushed to remove chemical/biological precipitates, steady-state flow, the first termination criterion, was met almost immediately, on the fifth day of testing. The second termination criterion, two pore volumes of flow, was met after approximately 68 days. The third and final termination criterion, chemical equilibrium, was met after 546 days. The final measurements showed that the long-term, steady-state hydraulic conductivity of sample R-101 in contact with the synthetic site leachate is 1.51 x 10^{-9} cm/sec.

In addition to testing the compatibility of R-101 with the synthetic site leachate, CETCO also evaluated the feasibility of manufacturing the R-101 product at full-scale. In March 2008, our Lovell facility performed a manufacturing trial on Bentomat with the R-101 formulation. The trial demonstrated that several hundred thousand square feet of material could be manufactured at the normal production rate, with minimal impact to standard operations. Accordingly, based on these trial findings, the R-101 product can readily be manufactured at the quantities required for the PolyMet project.

INTERPRETATION OF TEST RESULTS

Based on the laboratory testing results presented above, a GCL manufactured with the R-101 formulation would be expected to have a long-term hydraulic conductivity of 1.5×10^{-9} cm/sec, when hydrated and permeated with synthetic site leachate. These results indicate that the polymer-treated bentonite clay in R-101 was able to swell and maintain a low hydraulic conductivity even in the presence of the high ionic strength synthetic mine leachate. In is important to note that, since testing was performed in accordance with ASTM D6766, Scenario 2, it may actually yield a conservative representation of field conditions, for the following reasons:

- **Prehydration.** The R-101 sample was directly hydrated with the synthetic leachate at the beginning of the test. However, in the field, if the GCL is placed against a moist subgrade and then covered with a geomembrane, it will likely achieve hydration by pulling moisture from the subgrade soil long before it comes in contact with the site leachate. Several researchers, including Shackelford et. al. (2000) and Jo et al (2004), have shown that prehydration of a GCL with clean water prior to exposure to high strength liquids can significantly improve the GCL's hydraulic conductivity. Depending on the moisture of the subgrade at the PolyMet site, the GCL hydraulic conductivity may improve through prehydration with subgrade moisture or precipitation.
- **Confining Pressure.** The R-101 sample was tested at the standard recommended effective stress of 5 psi, which is roughly equivalent to the pressure exerted by 6 to 7 feet of soil. However, we understand that in the field, the liner system will be under several years' of tailings deposition, which is expected to reach an ultimate height of 60 to 80 feet. Therefore, the effective stress that will be acting on the tailings liner system will be much higher, perhaps 50 to 70 psi. Several researchers have shown that the hydraulic conductivity of bentonite is dictated by not only the pore water chemistry, but also by the confining pressure acting on the GCL. Daniel (2000) permeated GCLs with concentrated calcium chloride (5,000 mg/L) solutions at various confining pressures. At low compressive stress, the calcium solution had a dramatic effect on GCL performance. However, as the pressure increased to 400 kPa (approximately 58 psi), the hydraulic conductivity to distilled water and concentrated calcium solution was virtually identical. These results are consistent with the findings of Thiel and Criley (2005), who found that at effective stresses greater than 400 to 500 kPa (58 to 72 psi), the hydraulic conductivity of a GCL becomes virtually independent of the leachate chemistry.

CLOSING

Based on the ASTM D6766 long-term compatibility test results presented above, Bentomat manufactured with the R-101 polymer formulation is expected to have a long-term hydraulic conductivity of 1.5×10^{-9} cm/sec when hydrated and permeated with synthetic PolyMet site leachate. Additionally, the GCL hydraulic conductivity may improve considerably in the field, due to the potential benefits of prehydration from subgrade moisture and increased confining pressure. Based on the favorable results described above, CETCO recommends that the GCL product specified for the PolyMet Hydrometallurgical Residue Cells meets the following minimum requirements:

- 1. Polymer-enhanced product, with a manufacturer-demonstrated long-term laboratory hydraulic conductivity of 1.5×10^{-9} cm/sec, when tested in contact with the site leachate, per ASTM D6766, Scenario 2.
- 2. Manufacturer-demonstrated capability to manufacture and supply the large quantities required for the PolyMet project.

We appreciate the opportunity to provide this technical information. If you have any questions, please feel free to contact me at (847) 818-7945.

Sincerely,

-p.C.

Chris Athanassopoulos, P.E. Technical Support Engineer

ATTACHMENT A ESTIMATED CHEMICAL CONCENTRATIONS POLYMET HYDROMETALLURGICAL RESIDUE CELLS (PROVIDED BY BARR ENGINEERING)

	Al ⁺³	Ca ⁺²	Cr	Mg ⁺²	Na ⁺	SO4-2	S ⁻²
52 aAI2SO43 wt.%	0.8	0.0	0.0	0.0	0.0	4.2	0.0
53 aCaCl2 wt.%	0.0	4,151.2	7,343.2	0.0	0.0	0.0	0.0
54 aCaSO4 wt.%	0.0	615.1	0.0	0.0	0.0	1,474.4	0.0
55 aCoSO4 wt.%	0.0	0.0	0.0	0.0	0.0	3.4	0.0
56 aCuSO4 wt.%	0.0	0.0	0.0	0.0	0.0	19.2	0.0
57 aFeSO4 wt.%	0.0	0.0	0.0	0.0	0.0	0.3	0.0
58 aFe2SO43 wt.%	0.0	0.0	0.0	0.0	0.0	3.5	0.0
59 aHCI wt.%	0.0	0.0	0.9	0.0	0.0	0.0	0.0
61 aH2SO4 wt.%	0.0	0.0	0.0	0.0	0.0	119.2	0.0
62 aK2SO4 wt.%	0.0	0.0	0.0	0.0	0.0	759.2	0.0
63 aMgCl2 wt.%	0.0	0.0	0.2	0.1	0.0	0.0	0.0
64 aMgSO4 wt.%	0.0	0.0	0.0	4,065.2	0.0	16,065.3	0.0
65 aNaCI wt.%	0.0	0.0	800.1	0.0	518.9	0.0	0.0
66 aNaHS wt.%	0.0	0.0	0.0	0.0	77.8	0.0	108.5
67 aNa2SO4 wt.%	0.0	0.0	0.0	0.0	0.02	0.05	0.0
68 aNiSO4 wt.%	0.0	0.0	0.0	0.0	0.0	39.1	0.0
69 aZnSO4 wt.%	0.0	0.0	0.0	0.0	0.0	1.0	0.0
70 aNa3AuCl4 wt.%	0.0	0.0	0.00007	0.0	0.00004	0.0	0.0
71 aNa2PdCl4 wt.%	0.0	0.0	0.00033	0.0	0.00011	0.0	0.0
72 aNa2PtCl4 wt.%	0.0	0.0	0.00065	0.0	0.00021	0.0	0.0
73 aNa3RhCl6 wt.%	0.0	0.0	0.00014	0.0	0.00007	0.0	0.0
Total (mg/L)	0.8	4,766.3	8,144.5	4,065.3	596.7	18,489.0	108.5

CHLORIDE TAILINGS DECANT WATER - EXPECTED INORGANIC CONCENTRATIONS (mg/L) Provided by Barr Engineering

ATTACHMENT B JLT LABORATORIES, INC. FINAL TEST REPORT ON SAMPLE R-101

April 25, 2008 08LG951.01

CETCO 1500 West Shure Drive Arlington Heights, IL 60004

Attn: Jim Olsta

RE: FINAL COMPATIBILITY TEST RESULTS BARR ENGINEERING SAMPLE R-101 WITH SYNTHETIC LEACHATE

Dear Mr. Olsta:

Submitted herein are the final compatibility test results for sample R-101 using synthetic leachate. The sample was received on October 24, 2006 and set up to hydrate with leachate on October 25, 2006. The sample hydrated 48 hours from October 26, 2006 through October 27, 2006. On October 27, 2006 testing commenced with the first readings taken on October 28, 2006. Testing continued through April 24, 2008 for a total of 547 days.

Throughout this testing period, readings were taken every day at about 8:30AM, seven days a week for the duration of the test program.

Also throughout the test, the bladder accumulators were refilled with synthetic leachate on a regular basis. Typically, 100 to 150 cc's of leachate was used to refill the inflow bladder and the outflow bladder drained. After the 5th day of testing (November 1, 2006), inflow equaled outflow and continued for the duration of the test.

During the test, we regularly flushed the feed lines and the porous stones. You will note on the data sheets, that flow increased immediately after this flushing process.

After about 400 days of testing, we began to flush the inflow porous stones more aggressively using about 100 cc's of leachate. This did remove some sediment from the stones. We also passed the leachate through a 240 mesh Stainless Steel screen to ensure there were no suspended solids in the leachate. Thereafter, the flow did increase and essentially stabilized at about 475 days.

Jim Olsta - CETCO Barr Sample R-101 Page 2 of 2 04/25/2008

You will also note variations in the EC values throughout the test which is difficult to explain. The leachate definitely aged with time (1.5 years) and was exposed to air each time the container was opened to refill the bladders. We also stored the leachate in a refrigerator between uses. Thus, it was exposed to temperature excursions. Since we are not aware of its' constituents, any other explanation for these value differences would only be a guess.

We appreciate the opportunity to provide our services and look forward to working with you again. Should you have any questions, comments or require additional information, please do not hesitate to call.

Sincerely,

JLT LABORATORIES, INC/

John Boschuk, Jr., P.E. President

cc: Report & Invoice Chris Athanassopoulos

Enclosures JB/mJb \wp10\lettcr08114 Inv # 3384

SUM	X WALL PERMEABILITY RESULTS 1/ D-7100							
Client : CE Project Location : Ba Description : R- :	ETCO rr Engineering 101	Date:04-25-08Job No.:06LG951.01Tested By:MLB/DBChecked By:JB						
Permeant Fluid : Sy	n Leachate	Spec. Gravity : 2.74 Assumed						
	Physical	Property Data						
Initial Height (in) : Initial Diameter (in) : Initial Wet Weight (g) : Wet Density (pcf) : Moisture Content % : Dry Density (pcf) :	0.17 4.00 51.80 92.29 23.90 74.49	Final Height (in):0.24Final Diameter (in):4.00Final Wet Weight (g):86.10Wet Density (pcf):108.66Moisture Content %:106.40Dry Density (pcf):52.65						
Test Parameters								
Fluid:Cell Pressurepsi)Head Waterpsi)Tail Waterpsi)	Syn Leachate 80.00 77.00 75.00	Average EffectiveConfining Pressure (psi):Gradient:230.00Eff Stress at Base (psi):5						
Permeability Input Data		S 1.00E-8 E 1.00E-9						
Flow, Q (cc) : Length, L (in) : Area, A (sqin) : Head, h (psi) : Time, t (min) : Temp, T (Deg C) :	2.50 0.24 12.57 2.00 1442.00 21.0	1.00E-10 1.00E-11 0 100 200 300 400 500 600 TIME - Days						
	Compute	ed Permeability						
PERMEABILITY, K = Day 547	1.51E-009	(cm/sec) at 20 Degrees C Total Inflow to Date : 657.8 cc						

JLT Laboratories, Inc.

Description : R-101

Date : 04-25-08 Estimated Pore Volume : 39 cc Estimated Inflow Pore Volumes : 16.87

Permeant : Syn Leachate

JLT Laboratories, Inc.

Client :	CETCO
Project Location :	Barr Engineering
Description :	R -101

 Date :
 04-25-08

 Job No. :
 06LG951.01

 Tested By :
 MLB/DB

 Checked By :
 JB

Sample ID R-101

			Estimate	d Poe Volume ;	39	cc	Page 1
Elapsed Time	Permeability	Inflow	Time	Date	Total Cumulative	Pore	T
Days	cm/sec	CC	minutes		Inflow Volume, cc	Volumes	COMMENTS
1				10/26/2006	0.00	0.00	Synthetic Leachate
2				10/27/2006	0.00	0.00	
3	9.64E-010	1.6	1442	10/28/2006	1.60	0.04	
4	9.05E-010	1.5	1441	10/29/2006	3.10	0.08	
5	7.83E-010	1.3	1443	10/30/2006	4.40	0.11	Inflow; pH= 6.77 EC = 1.21 mS
6	7.95E-010	1.3	1421	10/31/2006	5.70	0.15	Outflow: pH = 6.55 EC = 3.05 mS
7	7.83E-010	1.3	1442	11/01/2006	7.00	0.18	
8	8.48E-010	1.4	1435	11/02/2006	8.40	0.22	
9	7.82E-010	1.3	1445	11/03/2006	9.70	0.25	
10	7.29E-010	1.2	1431	11/04/2006	10.90	0.28	Flushed Stones and Lines
11	7.14E-010	1.2	1461	11/05/2006	12.10	0.31	
12	6.03E-010	1.0	1442	11/06/2006	13.10	0.34	
13	6.02E-010	1.0	1444	11/07/2006	14.10	0.36	
14	6.03E-010	1.0	1442	11/08/2006	15.10	0.39	
15	6.03E-010	1.0	1441	11/09/2006	16.10	0.41	
16	6.03E-010	1.0	1442	11/10/2006	17.10	0.44	
17	6.64E-010	1.1	1440	11/11/2006	18.20	0.47	
18	6.63E-010	1.1	1442	11/12/2006	19.30	0.49	
19	6.03E-010	1.0	1441	11/13/2006	20.30	0.52	
20	7.23E-010	1.2	1442	11/14/2006	21.50	0.55	
21	7.23E-010	1.2	1442	11/15/2006	22.70	0.58	-1000000000000000000000000000000000000
22	6.64E-010	1.1	1440	11/16/2006	23.80	0.61	Outhow: pH = 7.02 EC = 7.18 mS
23	1.03E-009	1./	143/	11/17/2006	25.50	0.65	Flushed Stones and Lines
24	7.81E-010	1.3	1446	11/18/2006	26.80	0.69	
25	7.24E-010	1.2	1440	11/19/2006	28.00	0.72	
26	6.0/E-010	1.0	1431	11/20/2006	29.00	0.74	
2/	6.00E-010	1.0	1449	11/21/2006	30.00	0.77	
20	6.03E-010	1.0	1442	11/22/2006	31.00	0.79	
29	6.03E-010	1.0	1441	11/23/2000	32.00	0.84	
30	5.42E-010	0.9	1/35	11/24/2006	32.90	0.87	
32	5.40E 010	0.9	1435	11/26/2006	34.70	0.07	
33	5.40E-010	0.9	1495	11/27/2006	35.60	0.09	
34	5.90E-010	1.0	1475	11/28/2006	36.60	0.91	
35	5.42E-010	0.9	14/3	11/20/2006	37.50	0.04	
36	7.83E-010	13	1443	11/20/2006	36.60	0.00	Flushed Stones and Lines
37	7 22E-010	12	1444	12/01/2006	40.00	1.03	
38	6 64F-010	11	1440	12/02/2006	41.00	1.05	
39	6.02E-010	10	1443	12/03/2006	42.10	1.00	
40	6.03E-010	1.0	1442	12/04/2006	43.10	1.11	
41	6.06E-010	1.0	1434	12/05/2006	44.10	1.13	
42	6.04E-010	1.0	1439	12/06/2008	45.10	1.18	
43	5.42E-010	0.9	1442	12/07/2006	46.00	1.18	
44	6.02E-010	1.0	1444	12/08/2006	47.00	1.21	
45	6.07E-010	1.0	1431	12/09/2006	48.00	1.23	
46	5.97E-010	1.0	1456	12/10/2006	49.00	1,26	1
47	6.00E-010	1.0	1448	12/11/2006	50.00	1.28	
48	5.43E-010	0.9	1439	12/12/2006	50,90	1.31	
49	6.02E-010	1.0	1444	12/13/2006	51.90	1.33	Inflow: pH= 8.57 EC = 2.31 mS
50	5.46E-010	0.9	1432	12/14/2006	52.80	1.35	Outflow: pH = 7.24 EC = 7.15 mS
51	5.97E-010	1.0	1456	12/15/2006	53.80	1.38	
52	5.43E-010	0.9	1439	12/16/2006	54.70	1.40	
53	6.02E-010	1.0	1443	12/17/2006	55.70	1.43	

54	5.47E 010	0.9	1431	12/18/2006	56.60	1.45	
55	5.43E-010	0.9	1439	12/19/2006	57.50	1.47	
56	546E-010	0.90	1433	12/20/2006	58 40	1.50	Page 2
57	5.42E-010	0.90	1442	12/21/2006	59.30	1.52	
58	5 42E-010	0.00	1442	12/22/2006	60.20	1.54	
59	5 73E-010	0.95	1440	12/23/2006	61 15	1.57	2
60	5.76E.010	0.00	1433	12/24/2006	62 10	1 59	
61	5.415-010	0.90	1433	12/25/2006	63.00	1.53	1
62	5.40E 010	0.90	1440	12/23/2000	63.00	1.02	
63	5.12E.010	0.90	1 1442	12/27/2006	64.75	1.04	1
64	5.126-010	0.05	1472	12/2//2000	65.60	1.00	· · · · · · · · · · · · · · · · · · ·
65	J.10E-010	0.85	143	12/20/2000	66.40	1.00	
66	4.82E-010	0.80	1442	12/29/2006	67.25	1.70	
67	5.11E-010	0.85	1444	12/30/2006	69.10	1.72	
69	5.12E-010	0.65	1442	12/31/2008	68.05	1.75	
60	5.138-010	0.85	1440	01/01/2007	60.95	2.00	Flushed Steepe and Lines
69	4.83E-010	0.80	1439	01/02/2007	09.75	3.40	Flushed Stones and Lines
70	4.83E-010	0.80	1439	01/03/2007	70.55	4.20	
/1	4.82E-010	0.80	1442	01/04/2007	/1.35	5.00	
72	4.81E-010	0.80	1446	01/05/2007	/2.15	5.80	· · · · · · · · · · · · · · · · · · ·
73	4.82E-010	0.80	1442	01/06/2007	/2.95	6.60	
/4	5.13E-010	0.85	1440	01/07/2007	73.80	7.45	
/5	5.44E-010	0.90	1437	01/08/2007	/4./0	8.35	
76	5.40E-010	0.90	1448	01/09/2007	75.60	9.25	
77	5.41E-010	0.90	1445	01/10/2007	76.50	10.15	
78	5.43E-010	0.90	1440	01/11/2007	77.40	11.05	
79	5.43E-010	0.90	1441	01/12/2007	78.30	11.95	
80	5.42E-010	0.90	1442	01/13/2007	79.20	12.85	
81	5.43E-010	0.90	1440	01/14/2007	80.10	13.75	
82	5.43E-010	0.90	1439	01/15/2007	81.00	14.65	
83	5.43E-010	0.90	1439	01/16/2007	81.90	15.55	
84	5.41E-010	0.90	1445	01/17/2007	82.80	16.45	
85	5.42E-010	0.90	1442	01/18/2007	83.70	17.35	
86	5.74E-010	0.95	1439	01/19/2007	84.65	18.30	
87	5.44E-010	0.90	1437	01/20/2007	85.55	19.20	1
88	5.44E-010	0.90	1438	01/21/2007	86.45	20.10	
89	5.71E-010	0.95	1445	01/22/2007	87.40	21.05	
90	5.71E-010	0.95	1446	01/23/2007	88.35	22.00	
91	5.73E-010	0.95	1440	01/24/2007	89.30	22.95	
92	5.73E-010	0.95	1440	01/25/2007	90.25	23.90	
93	5.72E-010	0.95	1442	01/26/2007	91.20	24.85	
94	5.74E-010	0.95	1439	01/2//2007	92.15	25.80	
95	5.73E-010	0.95	1441	01/28/2007	93.10	20.75	
96	5.72E-010	0.95	1442	01/29/2007	94.05	27.70	EC Inflow: 1.84 mS Outflow 6.84 mS
97	5.73E-010	0.95	1440	01/30/2007	95.00	28.65	Flushed Stones and Lines
98	5.74E-010	0.95	1437	01/31/2007	95.95	29.60	
99	5.43E-010	0.90	1439	02/01/2007	96.85	30.50	
100	5.41E-010	0.90	1445	02/02/2007	97.75	31.40	
101	5.72E-010	0.95	1442	02/03/2007	98.70	32.35	
102	5.42E-010	0.90	1442	02/04/2007	99.00	33.25	
103	5.43E-010	0.90	1440	02/05/2007	100.50	34.15	
104	5.42E-010	0.90	1442	02/06/2007	101.40	35.05	
105	5.42E-010	0.90	1444	02/07/2007	102.30	35.95	EC INNOW: 1.58 ms Outflow : 6.65 mS
106	5.42E-010	0.90	1442	02/08/2007	103.20	36.85	Flushed Stones and Lines
107	5.43E-010	0.90	1440	02/09/2007	104.10	37.75	
108	5.43E-010	0.90	1439	02/10/2007	105.00	38.85	
109	5.43E-010	0.90	1439	02/11/2007	105.90	39.55	
110	5.41E-010	0.90	1445	02/12/2007	100.80	40.45	
440	5.40E-010	0.90	1449	02/13/2007	107.70	41.30	
112	5.428-010	0.90	1442	02/14/2007	100.00	42.20	<u> </u>
113	5./3E-UIU	0.90	1440	02/15/2007	1105.00	43.20	
114	5.72E-UIU	0.95	1442	02/17/2007	111.30	44.10	
110	5.73E-010	0.95	1440	02/19/2007	112.40	40.10	
110	5.74E 010	0.95	1443	02/10/2007	112.40	40.00	
119	5.74E-010	0.90	1439	02/19/2007	114.25	47.00	· · · · · · · · · · · · · · · · · · ·
110	5 30E_010	0.30	1452	02/21/2007	115.15	47.50	
120	5.37E-010	0.50	140	02/22/2007	116.10	40.00	
120	1 2.13E-010	0.90	1440	UZIZZIZUUI	110.10	-9.10	1

121	5.42E-010	0.90	1442	02/23/2007	117.00	50.65	
122	5.73E-010	0.95	1441	02/24/2007	117.95	51.60	Page 3
123	5 74F-010	0.95	1437	02/25/2007	118.90	52 55	
124	5 71E-010	0.05	1446	02/26/2007	110.85	53.50	
125	5.71E-010	0.05	1 1445	02/27/2007	120.80	54.45	
125	J.71E-010	0.95	1445	02/2//2007	120.00	55.40	
120	5.75E-010	0.95	1435	02/28/2007	121.75	55.40	
12/	6.04E-010	1.00	1438	03/01/2007	122.75	56.40	Flushed Stones and Lines
128	6.04E-010	1.00	1438	03/02/2007	123.75	57.40	
129	6.03E 010	1.00	1442	03/03/2007	124.75	58.40	
130	5.72E-010	0.95	1443	03/04/2007	125.70	59.35	
131	6.03E-010	1.00	1440	03/05/2007	126.70	60.35	
132	6 03E-010	1.00	1440	03/06/2007	127.70	61.35	
133	5 73E-010	0.95	1441	03/07/2007	128.65	62 30	
134	5.75E-010	1.00	1420	02/08/2007	120.00	62.30	
425	0.046-010	1.00	1439	03/08/2007	129.05	03.30	
135	6.03E-010	1.00	1441	03/09/2007	130.65	64.30	
136	6.03E-010	1.00	1442	03/10/2007	131.65	65.30	
137	6.32E-010	1.05	1443	03/11/2007	132.70	66.35	
138	6.34E-010	1.05	1440	03/12/2007	133.75	67.40	
139	6.35E-010	1.05	1437	03/13/2007	134.80	68.45	
140	6.65E-010	1.10	1438	03/14/2007	135.90	69.55	â.
141	6 64E-010	1.10	1439	03/15/2007	137.00	70.65	
142	6 34B-010	1.05	1440	03/16/2007	138.05	71 70	2
143	6 637 010	1.00	1442	03/17/2007	130.00	72.80	
144	6.63E.010	1.10	1441	03/18/2007	140.25	72.00	
144	0.03E-010	1.10	1441	03/16/2007	44.25	75.90	
145	6.63E-010	1.10	1442	03/19/2007	141.35	75.00	EC Inflow: 1.53 mS Outflow: 4.58 mS
146	6.62E-010	1.10	1444	03/20/2007	142.45	76.10	
147	6.65E-010	1.10	1438	03/21/2007	143.55	77.20	Flushed Stones and Lines
148	6.63E-010	1.10	1442	03/22/2007	144.65	78.30	
149	6.64E-010	1.10	1440	03/23/2007	145.75	79.40	
150	6.66E-010	1.10	1435	03/24/2007	146.85	80.50	
151	6.29E-010	1.05	1451	03/25/2007	147.90	81.55	
152	6 93E-010	1 15	1442	03/26/2007	149.05	82 70	
153	6.63E.010	1 10	1441	03/27/2007	150 15	83.80	
154	6.04E.010	1.10	1440	03/28/2007	151.20	84.05	
104	0.942-010	1.13	1440	03/20/2007	151.30	04.95	
155	6.94E-010	1.15	1439	03/29/2007	152.45	86.10	
156	6.64E-010	1.10	1439	03/30/2007	153.55	87.20	
157	6.90E-010	1.15	1449	03/31/2007	154.70	88.35	
158	6.93E-010	1.15	1442	04/01/2007	155.85	89.50	
159	6.64E-010	1.10	1440	04/02/2007	156.95	90.60	
160	6.68E-010	1.10	1431	04/03/2007	158.05	91.70	
161	6.58E-010	1.10	1452	04/04/2007	159.15	92.80	
162	6.00E-010	1.00	1449	04/05/2007	160.15	93.80	
163	6 32E-010	1.05	1444	04/06/2007	161.20	94.85	
164	6 35E 010	1.05	1437	04/07/2007	162.25	95.90	
165	6 33E 010	1.05	1442	04/08/2007	162.20	06.05	
100	0.335-010	1.05	1442	04/00/2007	103.30	90.95	
100	0.02E-010	1.00	1443	04/09/2007	104.30	97.95	
107	0.018-010	1.00	1445	04/10/2007	06.001	98.95	
108	6.03E-010	1.00	1442	04/11/2007	166.30	99.95	
169	6.64E-010	1.10	1440	04/12/2007	167.40	101.05	
170	6.65E-010	1.10	1438	04/13/2007	168.50	102.15	
171	6.64E-010	1.10	1439	04/14/2007	169.60	103.25	
172	6.63E-010	1.10	1442	04/15/2007	170.70	104.35	
173	6.34E-010	1.05	1440	04/16/2007	171.75	105.40	
174	6.33E-010	1.05	1441	04/17/2007	172.80	106.45	
175	6.34E-010	1.05	1440	04/18/2007	173 85	107 50	
176	6 6 3 P-010	1 10	1441	04/10/2007	174 95	108.60	Flushed Stones and Lines
177	6.63E-010	1 10	1442	04/20/2007	176.05	100.00	
179	6.05E-010	1.10	1407	04/21/2007	170.00	1109.70	
170	0.332-010	1.05	143/	04/20/2007	177.10	110.75	
179	0.34E-010	1.05	1439	04/22/2007	1/8.15	111.80	
180	6.61E-010	1.10	1445	04/23/2007	179.25	112.90	
181	6.34E-010	1.05	1439	04/24/2007	180.30	113.95	
182	6.62E-010	1.10	1444	04/25/2007	181.40	115.05	
183	6.35E-010	1.05	1437	04/26/2007	182.45	116.10	
184	6.62E-010	1.10	1444	04/27/2007	183.55	117.20	
185	6.37E-010	1.05	1432	04/28/2007	184.60	118.25	
186	6.63E-010	1.10	1442	04/29/2007	185.70	119.35	
187	6 56F-010	1 10	1458	04/30/2007	186.80	120.45	FC Inflow 1.54 mS Outflow 4.12 mS
107	0.505-010	1.10	1400	U-1/JU/2007	100.00	120.40	

188	6.43E-010	1.05	1420	05/01/2007	187.85	121.50	
189	6.33E-010	1.05	1442	05/02/2007	188.90	122.55	Page 4
190	6.31E-010	1.05	1445	05/03/2007	189.95	123.60	
191	6.03E-010	1.00	1442	05/04/2007	190.95	124.60	
192	6.03E-010	1.00	1 1440	05/05/2007	191.95	125.60	
193	6.04E-010	1.00	1439	05/06/2007	192.95	126.60	
194	6.34E-010	1.05	1438	05/07/2007	194.00	127.65	
195	6.02E-010	1 1.00	1444	05/08/2007	195.00	128.65	1
196	6 33E-010	1.05	1442	05/09/2007	196.05	129.00	
197	6 32E-010	1.00	1443	05/10/2007	197.10	130.75	
198	6.038.010	1.00	1440	05/11/2007	198.10	131 75	
199	6.03E-010	1.00	1440	05/12/2007	199.10	132 75	
200	6.03E-010	1.00	1442	05/13/2007	200.10	133.75	
201	6 32E-010	1.00	1444	05/14/2007	201.15	134.80	
202	6 02E-010	1.00	1443	05/15/2007	202.15	135.80	
202	6 31 E-010	1.00	1445	05/16/2007	203.20	136.85	EC Inflow 154 mS Outflow 397 mS
200	6 34E 010	1.05	1440	05/17/2007	200.20	137.00	
204	6 33E 010	1.05	1440	05/19/2007	204.23	137.50	Elusted Stepes and Lines
205	6.04E.010	1.00	1492	05/10/2007	205.30	130.95	
200	6.04E-010	1.00	1437	05/19/2007	200.30	1 140.05	
207	5 72E 010	0.05	1437	05/20/2007	207.30	140.95	
200	5.72E-010	0.95	1442	05/21/2007	200.25	141.90	
209	5.75E-010	0.95	1440	05/22/2007	209.20	442.00	
210	5.42E-010	0.90	1442	05/23/2007	210.10	143.75	
211	5.42E-010	0.90	443	05/24/2007	211,00	144.00	
212	5.13E-010	0.05	1439	05/25/2007	211.00	145.50	
213	J.14E-010		1437	05/20/2007	212.70	140.33	1
214	5.13E-010	0.00	1440	05/28/2007	213.33	147.20	
215	5.13E-010	0.05	1445	05/20/2007	215.30	140.05	
210	5.41E-010	0.90	1445	05/29/2007	215.30	140.95	
218	5.14E.010	0.85	1437	05/31/2007	217.05	149.00	
210	4 81E 010	0.00	1437	06/01/2007	217.00	151.50	
220	4.875.010	0.80	1442	06/02/2007	218.65	152.30	
221	543E-010	0.00	1439	06/03/2007	219.55	153.20	
222	5.45E-010	0.95	1442	06/04/2007	220.50	154 15	
223	5 41F-010	0.90	1445	06/05/2007	221.00	155.05	
224	5 45B-010	0.90	1435	06/06/2007	222.30	155.95	
225	5 42E-010	0.9	1442	06/07/2007	223.20	156.85	
226	5 43E-010	0.9	1440	06/08/2007	224.10	157 75	
227	5.42E-010	0.9	1442	06/09/2007	225.00	158.65	
228	5.42E-010	0.9	1443	06/10/2007	225.90	159.55	
229	5.42E-010	0.9	1442	06/11/2007	226.80	160.45	
230	5.44E-010	0.9	1438	06/12/2007	227.70	161.35	
231	5.44E-010	0.9	1437	06/13/2007	228.60	162,25	
232	4.83E-010	0.8	1439	06/14/2007	229.40	163.05	
233	4.82E-010	0.8	1443	06/15/2007	230.20	163.85	
234	4.22E-010	0.7	1442	06/16/2007	230,90	164.55	2.5
235	4.22E-010	0.7	1440	06/17/2007	231.60	165.25	
236	3.62E-010	0.6	1440	06/18/2007	232.20	165.85	Flushed Stones and Lines
237	7.23E-010	1.2	1442	06/19/2007	233.40	167.05	
238	7.25E-010	1.2	1439	06/20/2007	234.60	168.25	
239	7.25E-010	1.2	1439	06/21/2007	235.80	169.45	
240	7.23E-010	1.2	1443	06/22/2007	237.00	170.65	
241	6.03E-010	1.0	1440	06/23/2007	238.00	171.65	
242	6.03E-010	1.0	1442	06/24/2007	239.00	172.65	
243	5.43E-010	0.9	1441	06/25/2007	239.90	173.55	
244	5.43E-010	0.9	1440	06/26/2007	240.80	174.45	
245	5.43E-010	0.9	1440	06/27/2007	241.70	175.35	
246	5.42E-010	0.9	1442	06/28/2007	242.60	176.25	
247	5.42E-010	0.9	1443	06/29/2007	243.50	177.15	
248	4.84E-010	0.8	1437	06/30/2007	244.30	177.95	
249	4.83E-010	0.8	1439	07/01/2007	245.10	178.75	
250	4.22E-010	0.7	1440	07/02/2007	245.80	179.45	
251	3.62E-010	0.6	1442	07/03/2007	246.40	180.05	Flushed Stones and Lines
252	8.44E:010	1.4	1441	07/04/2007	247.80	181.45	
253	8.44E-010	1.4	1441	07/05/2007	249.20	162.85	
254	8.44E-010	1.4	1441	07/06/2007	250.60	184.25	

255	8.44E-010	1.4	1442	07/07/2007	252.00	185.65	I
256	7.85E-010	1.3	1439	07/08/2007	253.30	186.95	e en anticipa de la conte
257	7.85E-010	1.3	1439	07/09/2007	254.60	188.25	Page 5
258	7 84E-010	13	1441	07/10/2007	255.90	189.55	
259	7 84E-010	13	1440	07/11/2007	257 20	190.85	In 1 27 mS Out : 3.78mS
260	7 265-010	12	1437	07/12/2007	258.40	192.05	
261	7 23E-010	12	1443	07/13/2007	259.60	193 25	27 - 8000
262	6.62E-010	1.2	1444	07/14/2007	260.00	194 35	
263	6.65E-010	1.1	1437	07/15/2007	261.80	195.45	
264	6.04E.010	1 10	1/38	07/16/2007	262.80	196.45	
204	6.04E-010	1.0	1 1430	07/10/2007	262.00	190.45	
200	6.04E-010	1.0	1439	07/17/2007	203.00	109.45	
200	6.03E-010	1.0	1442	07/10/2007	204.00	190.45	
207	5.43E-010	0.9	1440	07/19/2007	205.70	199.35	Elushed Lines and Replaced States
200	3.43E-010	0.9	1440	07/20/2007	200.00	200.25	Flushed Lines and Replaced Stones
209	9.04E-010	1.0	442	07/2007	200.10	201.75	
270	9.03E-010	1.5	1441	07/22/2007	209.00	203.25	
2/1	9.03E-010	1.5	1443	07/23/2007	271.10	204.75	
2/2	9.05E-010	1.5	1440	0772472007	272.00	200.25	
2/3	9.06E-010	1.5	1439	07/25/2007	274.10	207.75	
2/4	9.06E-010	1.5	1438	07/26/2007	2/5.60	209.25	
2/5	9.06E-010	1.5	1439	07/27/2007	277.10	210.75	
2/6	9.04E-010	1.5	1442	07/28/2007	278.60	212.25	
277	8.44E-010	1.4	1441	07/29/2007	280.00	213.65	
2/8	8.45E-010	1.4	1440	07/30/2007	281.40	215.05	(*) F) (****=Cent)
279	8.44E-010	1.4	1442	07/31/2007	282.80	216.45	
280	8.43E-010	1.4	1443	08/01/2007	284.20	217.85	
281	8.45E-010	1.4	1440	08/02/2007	285.60	219.25	
282	7.83E-010	1.3	1442	08/03/2007	286.90	220.55	
283	7.84E-010	1.3	1441	08/04/2007	288.20	221.85	
284	7.85E-010	1.3	1439	08/05/2007	289.50	223.15	
285	6.64E-010	1.1	1439	08/06/2007	290.60	224.25	Shahad Otanan and Lines
286	6.65E-010	1.1	1437	08/07/2007	291.70	225.35	Flushed Stones and Lines
287	9.02E-010	1.5	1445	08/08/2007	293.20	220.85	
200	9.04E-010	1.5	1442	08/09/2007	294.70	220.35	
289	9.05E-010	1.5	1440	08/10/2007	290.20	229.00	
290	8.44E-010	1.4	144	08/11/2007	297.00	231.25	
291	8.44E-010	1.4	1442	08/12/2007	299.00	232.05	
292	8.43E-010	1.4	1439	08/13/2007	300.40	234.05	
295	8.40E-010	1.4	1/38	08/15/2007	303.20	236.85	
205	8.40E-010	1.4	1/30	08/16/2007	304.60	238.25	
295	8.45E-010	1.4	14.39	08/17/2007	306.00	230.25	
207	8.44E-010	1.4	1440	08/18/2007	307.40	200.00	
297	8.44E-010	1.4	1440	08/19/2007	308.80	242.45	
200	8.45E-010	1.4	1440	08/20/2007	310.20	243.85	~
300	7.86E-010	1.4	1437	08/21/2007	311 50	245 15	
301	7.85E-010	13	1439	08/22/2007	312.80	246.45	
302	7.23E-010	1.2	1443	08/23/2007	314.00	247.65	
303	6.63E-010	1.1	1442	08/24/2007	315.10	248.75	Flushed Stones and Lines
304	9.05E-010	1.5	1440	08/25/2007	316.60	250.25	
305	9.04E-010	1.5	1442	08/26/2007	318.10	251.75	
306	9.06E-010	1.5	1438	08/27/2007	319.60	253.25	
307	9.04E-010	1.5	1442	08/28/2007	321.10	254.75	
308	9.05E-010	1.5	1440	08/29/2007	322.60	256.25	
309	9.05E-010	1.5	1441	08/30/2007	324.10	257.75	
310	9.04E-010	1.5	1442	08/31/2007	325.60	259.25	· · · · · · · · · · · · · · · · · · ·
311	9.03E-010	1.5	1443	09/01/2007	327.10	260.75	
312	9.03E-010	1.5	1444	09/02/2007	328.60	262.25	
313	9.06E-010	1.5	1438	09/03/2007	330.10	263.75	
314	8.46E-010	1.4	1438	09/04/2007	331.50	265.15	
315	8.44E-010	1.4	1442	09/05/2007	332.90	266.55	
316	8.43E-010	1.4	1443	09/06/2007	334.30	267.95	
317	8.44E-010	1.4	1442	09/07/2007	335.70	269.35	In : 1.67 mS Out : 3.35 mS
318	8.44E-010	1.4	1442	09/08/2007	337.10	270.75	
319	8.44E-010	1.4	1442	09/09/2007	338.50	272.15	
320	8.44E-010	1.4	1442	09/10/2007	339.90	273.55	
321	8.43E-010	1.4	1443	09/11/2007	341.30	274.95	

322	8.45E-010	1.4	1439	09/12/2007	342.70	276.35	
323	8.45E-010	1.4	1439	09/13/2007	344.10	277.75	
324	7.83E-010	1.3	1443	09/14/2007	345.40	279.05	Page 6
325	7.83E-010	1.3	1442	09/15/2007	346.70	280.35	
326	7.83E-010	1.3	1442	09/16/2007	348.00	281.85	
327	7.84E-010	1.3	1441	09/17/2007	349.30	282.95	
328	7.83E-010	1.3	1442	09/18/2007	350 60	284 25	
329	7.84E.010	13	1440	09/19/2007	35190	285 55	
330	7.34E-010	1.0	1439	09/20/2007	353.10	286.75	
331	7.25E-010	1.2	1430	09/20/2007	35430	287.05	
332	6.63E.010	1.2	14.43	09/22/2007	355.40	207.55	
332	6.62E-010	1.1	1443	09/22/2007	358.50	209.05	
333	0.03E-010		1442	09/23/2007	355.50	290.15	
334	0.04E-010	1.1	1440	09/24/2007	357.00	291.25	
335	5.43E-010	0.9	1440	09/25/2007	356.50	292.15	
336	5.44E-010	0.9	1438	09/20/2007	359.40	293.05	
337	5.43E-010	0.9	1439	09/2//2007	360.30	293.95	
338	4.83E-010	0.8	1439	09/28/2007	361.10	294.75	
339	4.81E-010	0.8	1444	09/29/2007	361.90	295.55	
340	4.82E-010	0.8	1442	09/30/2007	362.70	296.35	
341	4.82E-010	0.8	1441	10/01/2007	363.50	297.15	
342	4.82E-010	0.8	1443	10/02/2007	364.30	297.95	
343	4.83E-010	0.8	1440	10/03/2007	365.10	298.75	
344	4.82E-010	0.8	1442	10/04/2007	365.90	299.55	
345	4.22E-010	0.7	1443	10/05/2007	386.60	300.25	
346	4.22E-010	0.7	1440	10/06/2007	367.30	300.95	
347	4.23E-010	0.7	1439	10/07/2007	368.00	301.65	
348	4.23E-010	0.7	1439	10/08/2007	368.70	302.35	
349	4.22E-010	0.7	1442	10/09/2007	369.40	303.05	
350	3.62E-010	0.6	1439	10/10/2007	370.00	303.65	
351	3.63E-010	0.6	1436	10/11/2007	370.60	304.25	
352	3.62E-010	0.6	1439	10/12/2007	371.20	304.85	
353	3.62E-010	0.6	1442	10/13/2007	371.80	305.45	
354	3.62E-010	0.6	1442	10/14/2007	372.40	306.05	
355	3.62E-010	0.6	1441	10/15/2007	373.00	306.65	
356	3.62E-010	0.6	1440	10/16/2007	373.60	307.25	· · · · · · · · · · · · · · · · · · ·
357	3.62E-010	0.0	1440	10/17/2007	374.20	307.85	
358	3.62E-010	0.6	1439	10/18/2007	374.80	308.45	In : 1.57 mS Out : 3.15 mS
350	3.62E-010	0.0	1433	10/19/2007	375.40	309.05	
360	3.62E-010	0.0	14.41	10/20/2007	376.00	309.05	
361	3.62E-010	0.0	1442	10/21/2007	376.60	310.25	
362	3.02E-010	0.0	1442	10/22/2007	377.20	310.25	
362	3.02E-010	0.0	1440	10/22/2007	377.20	310.05	
303	3.03E-010	0.0	1430	10/24/2007	377.00	312.45	
304	3.02E-010	0.0	1439	10/24/2007	370.40	312.00	1
305	3.01E-010	0.0	1443	10/25/2007	379.00	312.05	
300	3.02E-010	0.6	1442	10/20/2007	379.00	313.25	
367	3.62E-010	0.6	1440	10/2//2007	380.20	313.85	
368	3.62E-010	0.6	1440	10/28/2007	380.80	314.45	
369	3.63E-010	0.6	1438	10/29/2007	381.40	315.05	
370	3.62E-010	0.6	1439	10/30/2007	382.00	315.65	
3/1	3.62E-010	0.6	1439	10/31/2007	382.60	316.25	
372	3.61E-010	0.6	1444	11/01/2007	383,20	316.85	
373	3.62E-010	0.6	1442	11/02/2007	383.80	317.45	
374	3.62E-010	0.6	1441	11/03/2007	384.40	318.05	Flushed Inflow Lines and Stone
375	6.02E-010	1.0	1443	11/04/2007	385.40	319.05	
376	4.83E-010	0.8	1440	11/05/2007	386.20	319.85	In: 1.33 mS Out: 2.41 mS
377	2.41E-010	0.4	1442	11/06/2007	386.60	320.25	
378	6.02E-011	0.1	1443	11/07/2007	386.70	320.35	
379	6.03E-011	0.1	1440	11/08/2007	386.80	320.45	
380	6.04E-011	0.1	1439	11/09/2007	386.90	320.55	In: 1.55 mS Out :No Fluid
381	6.04E-011	0.1	1439	11/10/2007	387.00	320.65	
382	4.82E-010	0.8	1442	11/11/2007	387.80	321.45	Flushed Inflow Lines and Stone
383	4.23E-010	0.7	1439	11/12/2007	388.50	322.15	
384	4.23E-010	0.7	1438	11/13/2007	389.20	322.85	
385	4.23E-010	0.7	1439	11/14/2007	389.90	323.55	
386	4.22E-010	0.7	1442	11/15/2007	390.60	324.25	
387	4.22E-010	0.7	1442	11/18/2007	391.30	324.95	
388	4.22E-010	0.7	144 1	11/17/2007	392.00	325.65	
					0		

389	4.22E-010	0.7	1440	11/18/2007	392.70	326.35	
390	3.62E-010	0.6	1440	11/19/2007	393.30	326.95	
391	3.62E-010	0.6	1441	11/20/2007	393.90	327.55	Page 7
392	3.62E-010	0.6	1440	11/21/2007	394.50	328.15	
393	3.62E-010	0.6	1439	11/22/2007	395.10	328.75	
394	3.62E-010	0.6	1439	11/23/2007	395.70	329.35	1
395	3 00E-010	0.5	1449	11/24/2007	396.20	329.85	
396	3.01E-010	0.5	1442	11/25/2007	396.70	330.35	
397	3.02E.010	0.5	144.0	11/26/2007	397.20	330.85	
398	3.048.010	0.5	1431	11/27/2007	397.20	331 35	
300	4 70E-010	0.0	1452	11/28/2007	398.50	332 15	Elushed Inflow Lines and Stone
400	4.792-010	0.8	1440	11/20/2007	300.00	332.05	
400	4.802-010	0.0	1440	11/30/2007	400.10	333.75	
402	4.312-010	0.0	1/137	12/01/2007	400.10	334.45	
402	4.23E-010	0.7	1442	12/01/2007	401.00	335.05	
403	3.02E-010	0.0	1442	12/02/2007	401.40	335.55	
404	3.01E-010	0.5	1445	12/03/2007	401.90	335.55	
405	3.01E-010	0.5	1440	12/04/2007	402.40	330.05	
408	3.01E-010	0.5	1442	12/05/2007	402.50	330.55	
407	3.02E-010	0.5	1440	12/06/2007	403.40	337.05	
408	3.02E-010	0.5	1438	12/07/2007	403.90	337.55	
409	4.83E-010	0.8	1439	12/08/2007	404.70	338.35	Flushed Inflow Lines and Stone
410	4.82E-010	0.8	1442	12/09/2007	405.50	339.15	
411	4.83E-010	0.8	1440	12/10/2007	406.30	339.95	
412	4.82E-010	0.8	1441	12/11/2007	407.10	340.75	
413	4.83E-010	0.8	1440	12/12/2007	407.90	341.55	
414	4.22E-010	0.7	1441	12/13/2007	408.60	342.25	
415	4.22E-010	0.7	1442	12/14/2007	409.30	342.95	
416	4.23E-010	0.7	1437	12/15/2007	410.00	343.65	
417	3.62E-010	0.6	1439	12/16/2007	410.60	344.25	
418	3.62E-010	0.6	1442	12/17/2007	411.20	344.85	
419	3.01E-010	0.5	1443	12/18/2007	411.70	345.35	
420	3.01E-010	0.5	1445	12/19/2007	412.20	345.85	
421	3.01E-010	0.5	1442	12/20/2007	412.70	346.35	1 1 00 - 0 0
422	3.02E-010	0.5	1440	12/21/2007	413.20	340.00	
423	5.44E-010	0.9	1438	12/22/2007	414.10	347.75	Plushed Inflow Lines and Stone
424	5.43E-010	0.9	1439	12/23/2007	415.00	340.03	Backwashed Innow Stone
420	5.42E-010	0.9	1442	12/24/2007	415.90	349.33	alessa and a second
420	J.43E-010	0.9	1440	12/25/2007	410.00	350.45	
421	5.43E-010	0.9	1440	12/20/2007	418.60	352.25	
420	5.43E 010	0.9	1440	12/28/2007	419.50	353 15	In : 1.60 mS. Out : 2.55 mS
430	5.43E-010	0.9	1440	12/20/2007	420.40	354.05	
431	5.43E-010	0.0	1439	12/30/2007	421 30	354.05	
432	5.43E-010	0.9	1433	12/31/2007	422.30	355.85	In : 1.62 mS Out : 2.54 mS
433	5.43E-010	0.9	1439	01/01/2008	423.10	356.75	
434	5.43E-010	0.9	1439	01/02/2008	424.00	357.65	
435	5.42E-010	0.0	1442	01/03/2008	424.90	358 55	
436	5.43E-010	0.9	1440	01/04/2008	425 80	359 45	
437	5.43E-010	0.9	1441	01/05/2008	426.70	360.35	Flushed System and Backwashed
438	9.65E-010	1.6	1441	01/06/2008	428.30	361.95	Inflow Porous Stone
439	9.64E-010	1.6	1442	01/07/2008	429.90	363.55	
440	9.67E-010	1.6	1438	01/08/2008	431.50	365.15	
441	9.07E-010	1.5	1437	01/09/2008	433.00	366.65	
442	9.03E-010	1.5	1443	01/10/2008	434.50	368.15	
443	9.03E-010	1.5	1444	01/11/2008	436.00	369.65	
444	8.46E-010	1.4	1438	01/12/2008	437.40	371.05	
445	8.46E-010	1.4	1438	01/13/2008	438.80	372,45	
446	7.85E-010	1.3	1439	01/14/2008	440.10	373.75	
447	7.84E-010	1.3	1440	01/15/2008	441.40	375.05	
448	7.84E-010	1.3	1441	01/16/2008	442.70	376.35	
449	7.84E-010	1.3	1440	01/17/2008	444.00	377.65	
450	7.24E-010	1.2	1441	01/18/2008	445.20	378.85	
451	7.23E-010	1.2	1442	01/19/2008	446.40	380.05	Flushed System and Backwashed
452	1.33E-009	2.2	1438	01/20/2008	448.60	382.25	Inflow Porous Stone
453	1.33E-009	2.2	1438	01/21/2008	450.80	384.45	
454	1.33E-009	2.2	1439	01/22/2008	453.00	386.65	
455	1.33E-009	2.2	1442	01/23/2008	455.20	368.85	

456	1.33E-009	2.2	1440	01/24/2008	457.40	391.05	EC: In = 2.95 Out= 2.79 mS
457	1.27E-009	2.1	1440	01/25/2008	459.50	393.15	
458	1.27E-009	2.1	1439	01/26/2008	461.60	395.25	Page 8
459	1.27E-009	2.1	1439	01/27/2008	463.70	397.35	1
460	1.27E-009	2.1	1442	01/28/2008	465.80	399.45	
461	1.21E-009	2.0	1440	01/29/2008	467.80	401.45	
462	1.21E-009	2.0	1441	01/30/2008	469.80	403.45	
463	1.14E-009	1.9	1442	01/31/2008	471.70	405.35	
464	1.15E-009	1.9	1438	02/01/2008	473.60	407.25	
465	1.15E-009	1.9	1437	02/02/2008	475.50	409.15	
466	1.14E-009	1.9	1442	02/03/2008	477.40	411.05	
467	1.09E-009	1.8	1435	02/04/2008	479.20	412.85	
468	1.08E-009	1.8	1447	02/05/2008	481.00	414.65	k
469	1.08E-009	1.0	1442	02/06/2008	462.60	4 0.45	
470	1.03E-009	1.7	1440	02/07/2008	464,50	410.10	
471	1.03E-009	1.7	1441	02/08/2008	487.90	419.05	
472	1.02E-009	1.7	1430	02/10/2008	489.60	423.25	
473	9.66E-010	1.6	1439	02/11/2008	49120	424.85	
475	9.04E-010	1.0	1460	02/12/2008	492.70	426.35	Flushed System and Stone
476	1 39E-009	2.3	1439	02/13/2008	495.00	428.65	
477	1.39E-009	2.3	1440	02/14/2008	497.30	430.95	
478	1.39E-009	2.3	1440	02/15/2008	499.60	433.25	
479	1.33E-009	2.2	1442	02/16/2008	501.80	435.45	
480	1.33E-009	2.2	1442	02/17/2006	504.00	437.65	
461	1.32E-009	2.2	1443	02/16/2008	506.20	439.65	
482	1.27E-009	2.1	1437	02/19/2008	506.30	441.95	EC: In=2.80 mS Out = 2.56 mS
483	1.27E-009	2.1	1438	02/20/2008	510.40	444.05	
484	1.27E-009	2.1	1439	02/21/2008	512. 50	446.15	
485	1.27E-009	2.1	1442	02/22/2008	514.60	448.25	
486	1.27E-009	2.1	1441	02/23/2008	516.70	450.35	
487	1.21E-009	2.0	1434	02/24/2008	518.70	452.35	
488	1.20E-009	2.0	1446	02/25/2008	520.70	454.35	
489	1.14E-009	1.9	1442	02/26/2008	522.60	456.25	
490	1.09E-009	1.8	1440	02/27/2008	524.40	458.05	Elushed Suptom and Shace
491	1.03E-009	1.7	1441	02/26/2006	520.10	459.75	Flushed System and Sione
492	1.45E-009	2.4	1442	02/29/2006	526,50	402.13	
495	1.45E-009	2.4	1439	03/02/2008	533.30	466.95	
495	1.45E-009	2.4	1400	03/03/2008	535.60	469.25	
496	1 39E-009	2.3	1440	03/04/2008	537.90	471.55	
497	1.39E-009	2.3	1442	03/05/2008	540.20	473.85	
498	1.39E-009	2.3	1441	03/06/2008	542.50	476.15	
499	1.33E-009	2.2	1440	03/07/2008	544.70	478.35	
500	1.33E-009	2.2	1440	03/08/2008	546.90	480.55	
501	1.33E-009	2.2	1442	03/09/2006	549,10	482.75	
502	1.27E-009	2.1	1438	03/10/2008	551.20	484.85	EC: In = 2.81 mS Out = 2.75 mS
503	1.27E-009	2.1	1439	03/11/2008	553.30	486.95	Flushed System
504	1.57E-009	2.6	1441	03/12/2008	555.90	489.55	
505	1.57E-009	2.6	1440	03/13/2008	558.50	492.15	
506	1.57E-009	2.6	1442	03/14/2008	561.10	494.75	
507	1.57E-009	2.6	1439	03/15/2008	563.70	497.35	
508	1.51E-009	2.5	1440	03/16/2008	566.20	499.85	
509	1.51E-009	2.5	1440	03/17/2008	306,/U	502.35	
510	1.512-009	2.3	1441	03/10/2008	573 70	507.35	
511	1.51E-009	∠.3 2.5	1490	03/20/2008	578.20	507.33	
512	1.51E-009	2.5	1430	03/21/2008	578.60	512.00	
514	1.45E-009	2.7	1443	03/22/2008	581.00	514 65	
515	1.39E-009	2.3	1442	03/23/2008	583.30	516.95	(11) (11) (11) (11) (11) (11) (11) (11)
518	1.39E-009	2.3	1441	03/24/2008	585.60	519.25	
517	1.33E-009	2.2	1440	03/25/2008	587.80	521.45	
518	1.27E-009	2.1	1440	03/26/2008	589.90	523.55	
519	1.27E-009	2.1	1439	03/27/2008	592.00	525.65	
520	1.21E-009	2.0	1438	03/28/2008	594.00	527.65	
521	1.14E-009	1.9	1442	03/29/2008	595.90	529.55	
522	1.15E-009	1.9	1441	03/30/2008	597.80	531.45	Flushed System

523	1.57E-009	2.6	1440	03/31/2008	600.40	534.05	
524	1.57E-009	2.6	1439	04/01/2008	603.00	536.65	
525	1.51E-009	2.5	1440	04/02/2008	605.50	539.15	Page 9
526	1.51E-009	2.5	1441	04/03/2008	608.00	541.65	
527	1.45E-009	2.4	1439	04/04/2008	610.40	544.05	
528	1.45E-009	2.4	1440	04/05/2008	612.80	546.45	
529	1.45E-009	2.4	1438	04/06/2008	615.20	548.85	
530	1.51E-009	2.5	1443	04/07/2008	617.70	551.35	Flushed System and Stone
531	1.51E-009	2.5	1441	04/08/2008	620.20	553.85	
532	1.51E-009	2.5	1440	04/09/2008	622.70	556.35	
533	1.45E-009	2.4	1442	04/10/2008	625.10	558.75	
534	1.45E-009	2.4	1438	04/11/2008	627.50	561.15	
535	1.39E-009	2.3	1441	04/12/2008	629.80	563.45	
536	1.39E-009	2.3	1442	04/13/2008	632.10	565.75	
537	1.33E-009	2.2	1442	04/14/2008	634.30	567.95	
538	1.27E-009	2.1	14 41	04/15/2008	636.40	570.05	
539	1.20E-009	2.0	1443	04/16/2008	638.40	572.05	
540	1.15E-009	1.9	1437	04/17/2008	640.30	573.95	Flushed System and Stone
541	1.51E-009	2.5	1439	04/18/2008	642.80	576.45	
542	1.51E-009	2.5	1442	04/19/2008	645.30	578.95	
543	1.51E-009	2.5	1440	04/20/2008	647.80	581.45	
544	1.51E-009	2.5	1441	04/21/2008	650.30	583.95	
545	1.51E-009	2.5	1442	04/22/2008	652.80	586.45	
546	1.51E-009	2.5	1439	04/23/2008	655.30	588.95	EC: In = 2.81 mS Out = 2.75 mS
547	1.51E-009	2.5	1442	04/24/2008	657.80	591.45	Test Terminated

ATTACHMENT C REFERENCES

REFERENCES

1. Daniel, D. (2000) "Hydraulic Durability of Geosynthetic Clay Liners." Presented at GRI-14, Conference on Hot Topics in Geosynthetics. 51

- 2. Jo, H.Y., Benson, C.H., and T. Edil (2004) "Hydraulic Conductivity and Cation Exchange in Nonprehydrated and Prehydrated Bentonite Permeated with Weak Inorganic Salt Solutions," Clays and Clay Minerals, 52 (6), 661-679.
- 3. Shackelford, C.D, Benson, C.H., Katsumi, K., Edil, T., and L. Lin (2000) "Evaluating the Hydraulic Conductivity of GCLs Permeated with Non-Standard Liquids," Geotextiles and Geomembranes, 18, 133-161.
- 4. Thiel, R. and Criley, K. (2005) "Hydraulic Conductivity of a GCL Under Various High Effective Confining Stresses for Three Different Leachates." Presented at Geofrontiers 2005, Waste Containment and Remediation.

MEMO June 19, 2007 To: Tom Radue Barr Engineering cc: From: Jim Olsta Subject: Hoyt Lake Mine Project

Dear Mr. Radue:

We reviewed the GCL treat options with our manufacturing plants. R-101 can be produced at our normal production rates. There is a manufacturability issue with R-102 and it cannot be produced at this time. R-103 can be produced at a reduced production rate.

Please find attached the test data from JLT Laboratory regarding the synthetic mining leachate compatibility testing for R-101 and R-103. Both samples are still running well. R-101 has a hydraulic conductivity of 4.3×10^{-10} cm/s. Even though R-103 has recently taken an upward spike after the porous stones and the lines were flushed, it still has a low hydraulic conductivity of 1.6×10^{-9} cm/s.

Also attached are the latest influent/effluent electrical conductivity (EC) results for the GCL compatibility testing with samples R-101 and R-103. The R-101 effluent EC has dropped from over 7.0 mS to less than 4.0 mS, but is still higher than the influent EC (1.5 mS). R-101 effluent EC has dropped significantly in the last four months and at the present rate should reach equilibrium in late August after ~300 days permeation. The R-103 effluent EC has dropped from ~5.0 mS to 3.6 mS and has been erratic. At its present the appears that it will not reach equilibrium until December after ~400 days permeation.

Right now the lab has to wait to collect several milliliters before testing EC. We are ordering a set of more sensitive meters which should allow them to measure closer to real time and determine EC equilibrium sooner.

If you have any questions, feel free to contact us.

Barr Engrg.

day		R-101	R-103
	5	3.05	2.5
	21	7.18	4.96
	49	7.15	4.59
	96	6.84	3.75
	145	4.58	4.42
	187	4.12	3.6
	203	3.97	3.89

SUMMARY OF FLEX WALL PERMEABILITY TEST RESULTS ASTM D-7100								
Client Project Location : Description :	CETCO Barr Engineering R-101	Date:06-06-07Job No.:06LG951.01Tested By:MLB/DBChecked By:JB						
Permeant Fluid :	Syn Leachate	Spec. Gravity : 2.74 Assumed						
	Physical	Property Data						
Initial Height (in) Initial Diameter (in) Initial Wet Weight (g) Wet Density (pcf) Moisture Content % Dry Density (pcf) Initial Void Ratio Saturation,%	: 0.17 : 4.00 : 51.80 : 92.29 : 22.00 : 75.65 : 1.2601 : 47.8	Final Height (in):Final Diameter (in):Final Wet Weight (g):Wet Density (pcf):Moisture Content %:Dry Density (pcf):Final Void Ratio:Saturation ,%:						
	Test]	Parameters						
Fluid Cell Pressure psi) Head Water psi) Tail Water psi)	: Syn Leachate : 80.00 : 77.00 : 75.00	EffectiveConfining Pressure (psi):4Gradient:290.53						
<u>Permeability Input Data</u>	l	1.00E-8						
Flow, Q (cc) Length, L (in) Area, A (sqin) Head, h (psi) Time, t (min) Temp, T (Deg C)	: 0.90 : 0.19 : 12.57 : 2.00 : 1435.00 : 21.0	1.00E-10 0 50 100 150 200 250 TIME - Days						
	Compute	ed Permeability						
PERMEABILITY, K = Day 224	4.31E-010 To	(cm/sec) at 20 Degrees C stal Groundwater Inflow to Date : 222.3 cc						

JLT Laboratories, Inc.

R101-Comp-Barr.WK4\FF-Winter06

Description : R-101

Date : 06-06-07 Estimated Pore Volume : 33 cc Estimated Inflow Pore Volumes : 4.74

Permeability vs Time 1.00E-8 Permeability - cm/sec 1.00E-9 1.00E-10 100 200 0 50 150 250 Time - Days **Cumulative Inflow Volume vs Time** - Total Inflow Cumulative Inflow Volume - cc 200 150 100 50 0 50 100 150 200 250 0 Time - Days ILT Laboratories, Inc.

Permeant : Syn Leachate

JLT Laboratories, Inc.

Client :	CETCO	Date :	06-06-07	119
Project Location :	Barr Engineering	Job No. :	06LG951.01	
Description :	R-101	Tested By :	MLB/DB	
		Checked By :	JB	

Sample ID : **R-101**

			Estimate	d Poe Volume :	33	CC	Page 1
Elapsed Time	Permeability	Inflow	Time	Date	Total Cumulative	Pore	
Days	cm/sec	CC	minutes		Inflow Volume, co	Volumes	COMMENTS
1				10/26/2006	0.00	0.00	Synthetic Leachate
2				10/27/2006	0.00	0.00	I
3	7.63E-010	1.6	1442	10/28/2006	1.60	0.05	
4	7.16E-010	1.5	1441	10/29/2006	3.10	0.09	
5	6.20E-010	1.3	1443	10/30/2006	4.40	0.13	Inflow: pH= 6.77 EC= 1.21 mS
6	6.29E-010	1.3	1421	10/31/2006	5.70	0.17	Outflow. pH = 6.55 EC = 3.05 mS
7	6.20E-010	1.3	1442	11/01/2006	7.00	0.21	
8	6.71E-010	1.4	1435	11/02/2006	8.40	0.25	
9	6.19E-010	1.3	1445	11/03/2006	9.70	0.29	
10	5.77E-010	1.2	1431	11/04/2006	10.90	0.33	Flushed Stones and Lines
11	5.65E-010	1.2	1461	11/05/2006	12.10	0.37	
12	4.77E-010	1.0	1442	11/06/2006	13.10	0.40	
13	4.76E-010	1.0	1444	11/07/2006	14.10	0.43	
14	4.77E-010	1.0	1442	11/08/2006	15.10	0.46	
15	4.77E-010	1.0	1441	11/09/2006	16.10	0.49	
16	4.77E-010	1.0	1442	11/10/2006	17.10	0.52	
17	5.25E-010	1.1	1440	11/11/2006	18.20	0.55	
18	5.25E-010	1.1	1442	11/12/2006	19.30	0.58	
19	4 77E-010	1.0	1441	11/13/2006	20.30	0.62	
20	572E-010	12	1442	11/14/2006	21.50	0.65	
21	5.72E-010	12	1442	11/15/2006	22.70	0.69	Inflow: pH= 7.04 EC = 1.61 mS
22	5.72E-010	1.1	1440	11/16/2006	23.80	0.00	Outflow: $pH = 7.02$ EC = 7.18 mS
23	8 14E-010	1.1	1437	11/17/2006	25.50	0.72	Elushed Stopes and Lines
24	6 19E 010	1.7	1446	11/18/2006	25.50	0.77	
24	573E 010	1.3	1440	11/10/2006	20.00	0.85	
25	J.73E-010	1.4	1/21	11/20/2006	20.00	0.00	
20	4.01E-010	1.0	1431	11/21/2008	29.00	0.00	
27	4.73E-010	1.0	1449	11/20/2006	31.00	0.91	
20	4.775.010	1.0	1442	11/22/2000	31.00	0.34	
29	4.77E-010	1.0	1441	11/23/2000	32.00	1.00	
30	4.29E-010	0.9	1442	11/24/2000	32.90	1.00	
31	4.31E-010	0.9	1435	11/25/2000	33.00	1.02	
32	4.27E-010	0.9	1449	11/20/2000	34.70	1.05	
33	4.30E-010	0.9	1421	11/2//2006	35.00	1.08	
- 34	4.008-010	1.0	14/3	11/20/2006	30.00	1.11	
35	4.292-010	0.9	1443	11/29/2006	37.50	1.14	Eluched Stepse and Lines
30	6.20E-010	1.3	1442	11/30/2006	38.80	1.10	Flushed Stones and Lines
37	5.72E-010	1.2	1444	12/01/2006	40.00	1.21	
38	5.25E-010	1,1	1440	12/02/2006	41.10	1.25	
39	4.77E-010	1.0	1443	12/03/2006	42.10	1.20	
40	4.//E-010	1.0	1442	12/04/2006	43.10	1.31	
41	4.80E-010	1.0	1434	12/05/2006	44.10	1.34	
42	4.78E-010	1.0	1439	12/06/2006	45.10	1.3/	
43	4.29E-010	0.9	1442	12/0//2006	46.00	1.39	
44	4,76E-010	1.0	1444	12/08/2006	47.00	1.42	
45	4.81E-010	1.0	1431	12/09/2006	48.00	1.45	
46	4.72E-010	1.0	1456	12/10/2006	49.00	1.48	
47	4.75E-010	1.0	1448	12/11/2006	50.00	1.52	
48	4.30E-010	0.9	1439	12/12/2006	50.90	1.54	
49	4.76E-010	1.0	1444	12/13/2006	51.90	1.57	Inflow: pH= 6.57 EC = 2.31 mS
50	4.32E-010	0.9	1432	12/14/2006	52.80	1.60	Outflow: pH = 7.24 EC = 7.15 mS
51	4.72E-010	1.0	1456	12/15/2006	53.80	1.63	
52	4.30E-010	0.9	1439	12/16/2006	54.70	1.66	
53	4.77E-010	1.0	1443	12/17/2006	55.70	1.69	

54	4.33E-010	0.9	1431	12/18/2006	56.60	1.72	
55	4.30E-010	0.9	1 4 3 9	12/19/2006	57.50	1.74	
56	4.32E-010	0.90	1433	12/20/2006	58.40	1.77	Page 2
57	4 29F-010	0.90	1442	12/21/2006	59.30	1.80	
58	4 29E-010	0.90	1442	12/22/2006	60.20	1.82	
59	4 54E-010	0.95	1440	12/23/2006	61 15	1.85	
60	4.54E 010	0.05	1433	12/24/2006	62.10	1.88	
61	4.30E-010		1446	12/25/2006	63.00	1.00	
62	4.28E-010	0.30	1447	12/25/2000	63.00	1.91	
02	4.286-010	0.90	1447	12/20/2000	64.75	1.94	
63	4.05E-010	0.85	1442	12/2//2006	04.75	1.96	
64	4.09E-010	0.85	1431	12/28/2006	65.60	1.99	
65	3.82E-010	0.80	1442	12/29/2006	66.40	2.01	
66	4.05E-010	0.85	1444	12/30/2006	67.25	2.04	
67	4.05E-010	0.85	1442	12/31/2006	68.10	2.06	
68	4.06E-010	0.85	1440	01/01/2007	68.95	2.91	
69	3.82E-010	0.80	1439	01/02/2007	69.75	3.71	Flushed Stones and Lines
70	3.82E-010	0.80	1439	01/03/2007	70.55	4.51	
71	3.82E-010	0.80	1442	01/04/2007	71.35	5.31	
72	3.81E-010	0.80	1446	01/05/2007	72.15	6.11	
73	3.82E-010	0.80	1442	01/06/2007	72.95	6.91	
74	4.06E-010	0.85	1440	01/07/2007	73.80	7.76	
75	4.31E-010	0.90	1437	01/08/2007	74.70	8.66	
76	4.28E-010	0.90	1448	01/09/2007	75.60	9.56	
77	4.28E-010	0.90	1445	01/10/2007	76.50	10.46	
78	4 30E-010	0.90	1440	01/11/2007	77.40	11.36	
70	4 30E-010	0.90	1440	01/12/2007	78.30	12.26	
80	4.20E-010	0.00	1442	01/13/2007	70.00	12.20	
91	4.291-010	0.90	1440	01/13/2007	80.10	14.06	
01	4.30E-010	0.90	1440	01/14/2007	81.00	14.00	· · · · · · · · · · · · · · · · · · ·
02	4.30E-010	0.90	1439	01/15/2007	81.00	14.90	
03	4.30E-010	0.90	1439	01/10/2007	01.90	10.00	
84	4.28E-010	0.90	1445	01/17/2007	82.80	16.76	
85	4.29E-010	0.90	1442	01/18/2007	83.70	17.66	
86	4.54E-010	0.95	1439	01/19/2007	84.65	18.61	
87	4.31E-010	0.90	1437	01/20/2007	85.55	19.51	
88	4.31E-010	0.90	1438	01/21/2007	86.45	20.41	
89	4.52E-010	0.95	1445	01/22/2007	87.40	21.36	
90	4.52E-010	0.95	1446	01/23/2007	88.35	22.31	
91	4.54E-010	0.95	1440	01/24/2007	89.30	23.26	
92	4.54E-010	0.95	1440	01/25/2007	90.25	24.21	
93	4.53E-010	0.95	1442	01/26/2007	91.20	25.16	
94	4.54E-010	0.95	1439	01/27/2007	92.15	26.11	
95	4.54E-010	0.95	1441	01/28/2007	93.10	27.06	
96	4.53E-010	0.95	1442	01/29/2007	94.05	28.01	EC Inflow: 1.84 mS Outflow 6.84 mS
97	4.54E-010	0.95	1440	01/30/2007	95.00	28.96	Flushed Stones and Lines
98	4.55E-010	0.95	1437	01/31/2007	95.95	29.91	
99	4.30E-010	0.90	1439	02/01/2007	96.85	30.81	
100	4.28E-010	0.90	1445	02/02/2007	97.75	31.71	
101	4.53B-010	0.95	1442	02/03/2007	98.70	32.66	
102	4.29E-010	0.90	1442	02/04/2007	99.60	33.56	
10.3	4.30E-010	0.90	1440	02/05/2007	100.50	34.46	
104	4.29E-010	0.90	1442	02/06/2007	101 40	35.36	
105	4 29E-010	0.90	1444	02/07/2007	102.30	36.26	EC Inflow: 1.58 ms Outflow : 6.65 mS
109	4.20E.010	0.00	1442	02/08/2007	103.20	37.16	Elushed Stopes and Lines
107	4 30E-010	0.00	1440	02/09/2007	104 10	38.06	
109	4.30E-010	0.50	1430	02/10/2007	105.00	38.06	
100	4.30E-010	0.90	1439	02/10/2007	105.00	30.90	
109	4.305-010	0.90	1439	02/11/2007	105.90	39.00	
110	4.20E-UIU	0.90	1440	02/12/2007	100.00	40.70	
111	4.27E-010	0.90	1449	02/13/2007	107.70	41.00	
112	4.292-010	0.90	1442	02/14/2007	100.00	42.50	
113	4.54E-010	0.95	1440	02/15/2007	109.55	43.51	
114	4.53E-010	0.95	1442	02/16/2007	110.50	44.46	l
115	4.54E-010	0.95	1440	02/17/2007	111.45	45.41	
116	4.53E-010	0.95	1443	02/18/2007	112.40	46.36	
117	4.54E-010	0.95	1439	02/19/2007	113.35	47.31	
118	4.33E-010	0.90	1431	02/20/2007	114.25	48.21	
119	4.26E-010	0.90	1452	02/21/2007	115.15	49.11	
120	4.54E-010	0.95	1440	02/22/2007	116.10	50.06	

1

121	4.29E-010	0.90	1442	02/23/2007	117.00	50.96	Page 3
122	4.54E-010	0.95	1441	02/24/2007	117.95	51.91	
123	4.55E-010	0.95	1437	02/25/2007	118.90	52.86	
124	4.52E-010	0.95	1446	02/26/2007	119.85	53.81	
125	4.52E-010	0.95	1445	02/27/2007	120.80	54.78	
126	4.55E-010	0.95	1435	02/28/2007	121.75	55.71	
127	4 78E-010	1 00	1438	03/01/2007	122 75	56 71	Flushed Stones and Lines
128	4 78E-010	1 100	1438	03/02/2007	123 75	57.71	
129	4.77E.010	1.00	1442	03/03/2007	124.75	58.71	
120	4.77E-010	0.05	1442	03/04/2007	125.70	50.88	
131	4.33E-010	1.00	1445	03/04/2007	126.70	59.00	
131	4.762-010	1.00	1440	03/06/2007	120.70	61.66	
132	4.78E-010	1.00	1440	03/06/2007	127.70	01.00	
133	4.54E-010	0.95	1441	03/07/2007	128.05	02.01	
134	4.78E-010	1.00	1439	03/08/2007	129.65	63.61	
135	4.77E-010	1.00	1441	03/09/2007	130.65	64.61	
136	4,77E-010	1.00	1442	03/10/2007	131.65	65.61	
137	5.01E-010	1.05	1443	03/11/2007	132.70	66.66	
138	5.02E-010	1.05	1440	03/12/2007	133.75	67.71	
139	5.03E-010	1.05	1437	03/13/2007	134.80	68.76	
140	5.26E-010	1.10	1438	03/14/2007	135.90	69.86	
141	5.26E-010	1.10	1439	03/15/2007	137.00	70.96	
142	5.02E-010	1.05	1440	03/16/2007	138.05	72.01	
143	5.25E-010	1.10	1442	03/17/2007	139.15	73.11	
144	5.25E-010	1.10	1441	03/18/2007	140.25	74.21	
145	5.25E-010	1.10	1442	03/19/2007	141 35	75.31	EC Inflow: 153 mS Outflow: 458 mS
146	5.24E-010	1.10	1444	03/20/2007	142.45	76.41	
147	5.26E-010	1 10	1438	03/21/2007	143.55	77.51	Flushed Stones and Lines
148	5.20E-010	1.10	1400	03/22/2007	144.65	78.61	Trastice otories and Lines
140	5.25E-010	1.10	1440	03/23/2007	145.75	70.01	
145	5.23E-010	1.10	1440	03/24/2007	146.85	80.81	
150	J.27E-010	1.10	1433	03/24/2007	147.00	00.01	
151	4.98E-010	1.05	1451	03/25/2007	147.90	01.00	
152	5.49E-010	1.15	1442	03/26/2007	149.05	83.01	
153	5.25E-010	1.10	1441	03/2//2007	150.15	84.11	
154	5.49E-010	1.15	1440	03/28/2007	151.30	85.26	
155	5.50E-010	1.15	1439	03/29/2007	152.45	86.41	
156	5.26E-010	1.10	1439	03/30/2007	153.55	87.51	
157	5.46E-010	1.15	1449	03/31/2007	154.70	88.66	
158	5.49E-010	1.15	1442	04/01/2007	155.85	89.81	
159	5.25E-010	1.10	1440	04/02/2007	156.95	90.91	
160	5.29E-010	1.10	1431	04/03/2007	158.05	92.01	
161	5.21E-010	1.10	1452	04/04/2007	159.15	93.11	
162	4.75E-010	1.00	1449	04/05/2007	160.15	94.11	
163	5.00E-010	1.05	1444	04/06/2007	161.20	95.16	
164	5.03E-010	1.05	1437	04/07/2007	162.25	96.21	
165	5.01E-010	1.05	1442	04/08/2007	163.30	97.26	
166	4.77E-010	1.00	1443	04/09/2007	164.30	98.26	
167	4 76E-010	1.00	1445	04/10/2007	165.30	99.26	
168	4 77E-010	1.00	1442	04/11/2007	166.30	100.26	
169	525E-010	1 10	1440	04/12/2007	167 40	101.36	
170	526F-010	1 10	1438	04/13/2007	168.50	102 46	
171	526E-010	1 10	1 4 30	04/14/2007	160.00	103 56	
172	5.25E-010	1 10	14/2	04/15/2007	170 70	104.66	
172	5.02E 010	1.10	1440	04/16/2007	171 75	105.71	
17.3	5.02E-010	1.05	1440	04/17/2007	172.90	105.71	
475	J.01E-010	1.00	1441	04/19/2007	172.00	100.70	
1/5	3.02E-010	0.1	1440	04/10/2007	173.00	107.01	Eluched Steepe and Lines
1/0	3.25E-010	1.10	1441	04/19/2007	174.80	108.91	riusned Signes and Lines
1/7	5.25E-010	1.10	1442	04/20/2007	1/6.05	110.01	
178	5.03E-010	1.05	1437	04/21/2007	1/7.10	111.06	
179	5.02E-010	1.05	1439	04/22/2007	178.15	112.11	
180	5.24E-010	1.10	1445	04/23/2007	179.25	113.21	
181	5.02E-010	1.05	1439	04/24/2007	180.30	114.26	
182	5.24E-010	1.10	1444	04/25/2007	181.40	115.36	
183	5.03E-010	1.05	1437	04/26/2007	182.45	116.41	
184	5.24E-010	1.10	1444	04/27/2007	183.55	117.51	
185	5.04E-010	1.05	1432	04/28/2007	184.60	118.56	
186	5.25E-010	1.10	1442	04/29/2007	185.70	119.66	
187	5.20E-010	1.10	1456	04/30/2007	186.80	120.76	EC Inflow: 1.54 mS Outflow: 4.12 mS

188	5.09E-010	1.05	1420	05/01/2007	187.85	121,81	
189	5.01E-010	1.05	1442	05/02/2007	188.90	122.86	Page 4
190	5.00E-010	1.05	1445	05/03/2007	189.95	123.91	
191	4.77E-010	1.00	1442	05/04/2007	190.95	124.91	
192	4.78E-010	1.00	1440	05/05/2007	191.95	125.91	
193	4.78E-010	1.00	1439	05/06/2007	192.95	126.91	
194	5.02E-010	1.05	1438	05/07/2007	194.00	127.96	
195	4.76E-010	1.00	1444	05/08/2007	195.00	128.96	
196	5.01E-010	1.05	1442	05/09/2007	196.05	130.01	
197	5.01E-010	1.05	1443	05/10/2007	197.10	131.06	
198	4.78E-010	1.00	1440	05/11/2007	198.10	132.06	
199	4.78E-010	1.00	1440	05/12/2007	199.10	133.06	
200	4.77E-010	1.00	1442	05/13/2007	200.10	134.06	
201	5.00E-010	1.05	1444	05/14/2007	201.15	135,11	
202	4.77E-010	1.00	1443	05/15/2007	202.15	136.11	
203	5.00E-010	1.05	1446	05/16/2007	203.20	137.16	EC Inflow: 1.54 mS Outflow: 3.97 m
204	5.02E-010	1.05	1440	05/17/2007	204.25	138.21	
205	5.01E-010	1.05	1442	05/18/2007	205.30	139.26	Flushed Stones and Lines
206	4.78E-010	1.00	1439	05/19/2007	206.30	140.26	
207	4.79E-010	1.00	1437	05/20/2007	207.30	141.26	
208	4.53E-010	0.95	1442	05/21/2007	208.25	142.21	
209	4.54E-010	0.95	1440	05/22/2007	209.20	143.16	
210	4.29E-010	0.90	1442	05/23/2007	210.10	144.06	
211	4.29E-010	0.90	1443	05/24/2007	211.00	144.96	
212	4.06E-010	0.85	1439	05/25/2007	211.85	145.81	
213	4.07E-010	0.85	1437	05/26/2007	212.70	146.66	
214	4.06E-010	0.85	1440	05/27/2007	213.55	147.51	
215	4.06E-010	0.85	1440	05/28/2007	214.40	148.36	
216	4.28E-010	0.90	1445	05/29/2007	215.30	149.26	
217	4.31E-010	0.90	1435	05/30/2007	216.20	150.16	
218	4.07E-010	0.85	1437	05/31/2007	217.05	151.01	
219	3.81E-010	0.80	1444	06/01/2007	217.85	151.81	İ
220	3.82E-010	0.80	1442	06/02/2007	218.65	152.61	
221	4.30E-010	0.90	1439	06/03/2007	219.55	153.51	1
222	4.53E-010	0.95	1442	06/04/2007	220.50	154.46	
223	4.28E-010	0.90	1445	06/05/2007	221.40	155.36	
224	4.31E-010	0.90	1435	06/06/2007	222.30	156.26	

S	UMMARY OF FLE TEST AST	X WALL PERMEABILITY RESULTS M D-7100	JLT
Client : Project Location : Description :	CETCO Barr Engineering R-103	Date:06-06-Job No.:06LG9Tested By:MLB/2Checked By:JB	07 951.01 DB
Permeant Fluid :	Syn Leachate	Spec. Gravity : 2.74	Assumed
	Physical	Property Data	
Initial Height (in) Initial Diameter (in) Initial Wet Weight (g) Wet Density (pcf) Moisture Content % Dry Density (pcf) Initial Void Ratio Saturation, %	: 0.18 : 4.00 : 48.10 : 80.94 : 23.00 : 65.80 : 1.5983 : 39.4	Final Height (in) Final Diameter (in) Final Wet Weight (g) Wet Density (pcf) Moisture Content % Dry Density (pcf) Final Void Ratio Saturation,%	
	Test	Parameters	
Fluid Cell Pressure psi) Head Water psi) Tail Water psi)	: Syn Leachate : 80.00 : 77.00 : 75.00	Effective Confining Pressure (psi) Gradient	: 4 : 276.00
Permeability Input Dat	8		
Flow, Q(cc)Length, L(in)Area, A(sqin)Head, h(psi)Time, t(min)Temp, T(Deg C)	: 3.20 : 0.20 : 12.57 : 2.00 : 1435.00 : 21.0	1.00E-10 1.00E-10 0 50 100 150 TIME - Days	200 250
	Compute	ed Permeability	
PERMEABILITY, K = Day 224	= 1.61E-009 To	(cm/sec) at 20 Degrees C otal Groundwater Inflow to Date : 234.45	i cc

JLT Laboratories, Inc.

Description : R-103

JLT Laboratories, Inc.

Client :	CETCO
Project Location :	Barr Engineering
Description :	R-103

R-103

Sample ID :

CC

32

Estimated Poe Volume

Page 1

Elapsed Time Permeability **Total Cumulative** Inflow Date Pore Time COMMENTS Days cm/sec CC minutes Inflow Volume, cc Volumes 10/26/2006 0.0 0.00 Synthetic Leachate 1 10/27/2006 2 0.0 0.00 3 6.03E-010 12 1442 10/28/2006 1.2 0.04 7.54E-010 1.5 1441 10/29/2006 2.7 0.08 4 7.03E-010 1.40 1443 4.1 0.13 Inflow: pH= 6.51 EC = 1.54mS 5 10/30/2006 1.50 6 7.64E-010 1421 10/31/2006 5.6 0.18 Outflow: pH = 6.18 EC = 2.50 mS 7.03E-010 1.40 1442 11/01/2006 7.0 0.22 7 8 6.06E-010 1 20 1435 11/02/2006 8.2 0.26 6.01E-010 1.20 1445 11/03/2006 0.29 94 9 6.58E-010 1.30 1431 11/04/2006 10.7 0.33 Flushed Stones and Lines 10 11/05/2006 11 4.46F-010 0.90 1461 11.6 0.36 4.52E-010 11/06/2006 0.90 1442 12.5 0.39 12 13 4.51E-010 0.90 1444 11/07/2006 13.4 0.42 4.52E-010 0.90 1442 11/08/2006 14.3 0.45 14 15 5.03E-010 1.00 1441 11/09/2006 15.3 0.48 11/10/2006 5.02E-010 1 00 1442 0.51 16 16.3 5.03E-010 1.00 11/11/2006 17 1440 17.3 0.54 5.02E-010 1.00 1442 0.57 18 11/12/2006 18.3 19 5.03E-010 1.00 1441 11/13/2006 19.3 0.60 20 5.02E-010 1.00 1442 11/14/2006 20.3 0.63 5.52E-010 1.10 21 1442 11/15/2006 21 4 0.67 inflow: pH= 6.45 EC = 1.62 mS 5.53E-010 1440 11/16/2006 22.5 Outflow: pH = 6.13 EC = 4.96 mS 22 1.10 0.70 2.10 1.06E-009 1437 11/17/2006 24.6 0.77 Flushed Stones and Lines 23 24 1.00E-009 2.00 1446 11/18/2006 26.6 0.83 25 9.05E-010 1.80 1440 11/19/2006 28.4 0.89 7.08E-010 11/20/2006 1.40 1431 29.8 0.93 26 27 6.00E-010 1.20 1449 11/21/2008 31.0 0.97 5.02E-010 1.00 1442 11/22/2006 320 1.00 28 5.03E-010 11/23/2006 1.03 29 1.00 1441 33.0 30 4.52E-010 0.90 1442 11/24/2006 33.9 1.06 31 4.54E-010 0.90 1435 11/25/2006 34.8 1.09 32 5.00E-010 1.00 1449 11/26/2006 35.8 1.12 5.10E-010 1.00 1421 11/27/2006 36.8 1.15 33 4.91E-010 1.00 1475 11/28/2006 37.8 1.18 34 1443 5.02E-010 1.00 11/29/2006 38.8 1.21 35 5.02E-010 1.00 39.8 Flushed Stones and Lines 36 1442 11/30/2006 1.24 6.02E-010 37 1.20 1444 12/01/2006 41.0 1.28 5.03E-010 1.00 1440 12/02/2006 42.0 1.31 38 39 5.02E-010 1.00 1443 12/03/2006 43.0 1.34 5.02E-010 1.00 12/04/2006 44.0 1.38 40 1442 5.05E-010 1.00 1434 12/05/2006 45.0 1.41 41 42 5.03E-010 1.00 1439 12/06/2006 46.0 1.44 5.52E-010 1.47 43 1.10 1442 12/07/2006 47.1 44 5.01E-010 1.00 1444 12/08/2006 48.1 1.50 5.57E-010 1.10 12/09/2006 49.2 1.54 45 1431 5.47E-010 1.10 1456 12/10/2006 50.3 1.57 46 6.00E-010 47 1.20 1448 1.61 12/11/2006 515 48 5.54E-010 1.10 1439 12/12/2006 52.6 1.64 1.68 Inflow: pH=6.93 EC = 1.81 mS 49 5.01E-010 1.00 1444 12/13/2006 53.6 5.06E-010 1.00 1432 12/14/2006 54.6 1.71 Outflow: pH = 6.38 EC = 4.59 mS 50 4.97E-010 51 1.00 1456 12/15/2006 55.6 1.74 5.54E-010 1.10 1439 12/16/2006 56.7 1.77 52 53 5.52E-010 1.10 12/17/2006 57.8 1.81 1443 1 10 1.84 5.57E-010 12/18/2006 58.9

JLT Laboratories, Inc.

54

1431

55	5.54E-010	1.10	1439	12/19/2006	60.0	1.88	
56	5.56E-010	1.10	1433	12/20/2008	61.1	1.91	Page 2
57	5.52E-010	1.10	1442	12/21/2008	62.2	194	
58	5.52E-010	1.10	1442	12/22/2006	63.3	1.98	
59	5.03E-010	1.00	1440	12/23/2006	BA 3	2.01	
80	5.56E-010	1 10	1433	12/24/2006	65.4	2.01	
61	5 26E-010	1.10	1435	12/24/2008	66.5	2.04	
62	5.262-010	1.05	1 1440	12/20/2000	67.5	2.00	
02	5.25E-010	1.05	1447	12/20/2000	07.5	2.11	<u> </u>
03	5.272-010	1.05	442	12/2//2000	00.0	2.14	
04	5.31E-010	1.05	1431	12/20/2000	09.0	2.16	
65	5.27E-010	1.05	1442	12/29/2006	70.7	2.21	
66	5.27E-010	1.05	1444	12/30/2006	/1./	2.24	
67	5.27E-010	1.05	1442	12/31/2006	72.8	2.27	
68	5.28E-010	1.05	1440	01/01/2007	73.8	2.31	
69	5.03E-010	1.00	1439	01/02/2007	74.8	2.34	
70	5.03E-010	1.00	1439	01/03/2007	75.8	2.37	
71	5.02E-010	1.00	1442	01/04/2007	76.8	2.40	
72	5.01E-010	1.00	1446	01/05/2007	77.8	2.43	
73	5.02E-010	1.00	1442	01/06/2007	78.8	2.46	
74	5.03E-010	1.00	1440	01/07/2007	79.8	2.49	
75	5.04E-010	1.00	1437	01/08/2007	80.8	2.53	
76	5.00E-010	1.00	1448	01/09/2007	81.8	2.56	
77	5.26E-010	1.05	1445	01/10/2007	82.9	2.59	
78	5.28E-010	1.05	1440	01/11/2007	83.9	2.62	
79	4.77E-010	0.95	1441	01/12/2007	84.9	2.65	
80	4 77E-010	0.95	1442	01/13/2007	85.8	2.68	
81	5.03E-010	1.00	14.40	01/14/2007	86.8	2.00	
82	5.03E-010	1.00	1440	01/15/2007	87.8	2.71	
02	5.03E-010	1.00	1439	01/15/2007	07.0	2.74	
03	5.03E-010	1.00	1439	01/10/2007	00.0	2.70	
04	5.01E-010	1.00	1445	01/17/2007	0.60	2.0	
65	5.02E-010	1.00	1442	01/10/2007	90.8	2.04	
86	5.03E-010	1.00	1439	01/19/2007	91.8	2.87	
6/	5.04E-010	1.00	1437	01/20/2007	92.8	2.90	
88	5.04E-010	1.00	1436	01/21/2007	93.8	2.93	
89	5.01E-010	1.00	1445	01/22/2007	94.8	2.96	
90	5.01E-010	1.00	1446	01/23/2007	95.8	2.99	
91	5.03E-010	1.00	1440	01/24/2007	96.8	3.03	
92	5.03E-010	1.00	1440	01/25/2007	97.8	3.06	
93	5.02E-010	1.00	1442	01/26/2007	98.8	3.09	
94	5.03E-010	1.00	1439	01/27/2007	99.8	3.12	
95	5.03E-010	1.00	1441	01/28/2007	100.8	3.15	
96	5.02E-010	1.00	1442	01/29/2007	101.8	3.18	EC Inflow: 1.85 mS Outflow : 3.75 m\$
97	5.03E-010	1.00	1440	01/30/2007	102.8	3.21	
98	5.04E-010	1.00	1437	01/31/2007	103.8	3.24	·
99	5.03E-010	1.00	1439	02/01/2007	104.8	3.28	
100	5.01E-010	1.00	1445	02/02/2007	105.8	3.31	
101	5.02E-010	1.00	1442	02/03/2007	106.8	3.34	1747
102	5.02E-010	1.00	1442	02/04/2007	107.8	3.37	
103	5.03E-010	1,00	1440	02/05/2007	108.8	3.40	
104	5.02E-010	1.00	1442	02/06/2007	109.8	3.43	
105	5.03E-010	1.00	1441	02/07/2007	110.8	3,46	EC Inflow: 1.76 mS Outflow : 3.60 ms
106	5.02E-010	1.00	1442	02/08/2007	111.8	3,49	
107	5.03E-010	1.00	1440	02/09/2007	112.8	3.53	
108	5.03E-010	1 00	1439	02/10/2007	113.8	3.56	
100	5.03E-010	1.00	1430	02/11/2007	114.8	3.50	
110	5.00E-010	1.00	1435	02/12/2007	115.8	3.62	
111	5.00E_010	1.00	1440	02/13/2007	116.9	3.65	<u></u>
112	5.00E-010	1.00	1442	02/14/2007	117.0	3.05	
112	478E-010	0.05	1440	02/15/2007	110	3.00	
44.4	4775-010	0.55	1440	02/15/2007	110.0	3.71	<u> </u>
114	4.785.040	0.95	1442	02/10/2007	119.7	3.74	·
115	4.775 040	0.95	1440	02/1//2007	120.7	3.//	
116	4.//E-010	0.90	1443	02/10/2007	121.0	3.80	ļ
117	5.03E-010	1.00	1439	02/19/2007	122.6	3.83	ļļ
118	5.00E-010	1.00	1431	02/20/2007	123.6	3.86	ļ
119	4./4E-010	0.95	1452	02/21/2007	124.6	3.89	l
120	4.78E-010	0.95	1440	02/22/2007	125.5	3.92	
121	4.77E-010	0.95	1442	02/23/2007	126.5	3.95	

i

122	5.03E-010	1.00	1441	02/24/2007	127.5	3.98	
123	5.04E-010	1.00	1437	02/25/2007	128.5	4.01	Page 3
124	4.76E-010	0.95	1446	02/26/2007	129.4	4.04	(197.5
125	4.76E-010	0.95	1445	02/27/2007	130.4	4.07	
126	4.79E-010	0.95	1435	02/28/2007	131.3	4.10	
127	4.78E-010	1.00	1438	03/02/2007	133.25	4.13	
120	4 77E-010	0.95	1430	03/03/2007	134.2	4.10	5 (5)(5) ⁽²)
130	4.77E-010	0.95	1443	03/04/2007	135.15	4.13	
131	4.78E-010	0.95	1440	03/05/2007	136.1	4.25	
132	4.53E-010	0.90	1440	03/06/2007	137	4.28	
133	4.52E-010	0.90	1441	03/07/2007	137.9	4.31	
134	4.53E-010	0.90	1439	03/08/2007	138.8	4.34	
135	4.52E-010	0.90	1441	03/09/2007	139.7	4.37	
136	4.52E-010	0.90	1442	03/10/2007	140.6	4.39	
137	4.52E-010	0.90	1443	03/11/2007	141.5	4.42	
138	4.53E-010	0.90	1440	03/12/2007	142.4	4.45	
139	4.54E-010	0.90	1437	03/13/2007	143.3	4.40	
140	4.53E-010	0.90	1430	03/14/2007	144.2	4.51	
142	4.53E-010	0.90	1440	03/16/2007	146	4.56	433 ¹ 9
143	4.52E-010	0.90	1442	03/17/2007	146.9	4.59	
144	4.52E-010	0.90	1441	03/18/2007	147.8	4.62	
145	4.52E-010	0.90	1442	03/19/2007	148.7	4.65	EC Inflow: 1.58 mS Outflow : 4.42 ms
146	4.51E-010	0.90	1444	03/20/2007	149.6	4.68	
147	4.53E-010	0.90	1438	03/21/2007	150.5	4.70	
148	4.52E-010	0.90	1442	03/22/2007	151.4	4.73	
149	4.27E-010	0.85	1440	03/23/2007	152.25	4.76	
150	4.29E-010	0.85	1435	03/24/2007	153.1	4.78	
151	4.29E-010	0.85	1435	03/25/2007	153.95	4.81	
153	4.242-010	0.85	1431	03/20/2007	154.0	4.04	
154	4.52E-010	0.90	1442	03/28/2007	156.6	4.89	
155	4.53E-010	0.90	1440	03/29/2007	157.5	4.92]
156	4.78E-010	0.95	1439	03/30/2007	158.45	4.95	
157	4.78E-010	0.95	1439	03/31/2007	159.4	4.98	
158	4.50E-010	0.90	1449	04/01/2007	160.3	5.01	BA (1974) - T. T. SARC
159	4.52E-010	0.90	1442	04/02/2007	161.2	5.04	
160	4.53E-010	0.90	1440	04/03/2007	162.1	5.07	
161	4.30E-010	0.85	1431	04/04/2007	162.95	5.09	
162	4.24E-010	0.85	1452	04/05/2007	163.8	5.12	
164	4.50E-010	0.90	1449	04/06/2007	165.6	5.15	
165	4.54E-010	0.90	1437	04/08/2007	166.5	5.10	
166	4.52E-010	0.90	1442	04/09/2007	167.4	5.23	and the second s
167	4.52E-010	0.90	1443	04/10/2007	168.3	5.26	
168	4.26E-010	0.85	1445	04/11/2007	169.15	5.29	
169	4.27E-010	0.85	1442	04/12/2007	170	5.31	
170	4.27E-010	0.85	1440	04/13/2007	170.85	5.34	
171	4.28E-010	0.85	1438	04/14/2007	171.7	5.37	ļ
172	4.28E-010	0.85	1439	04/15/2007	172.55	5.39	
17.3	4.27E-010	0.00	1442	04/10/2007	173.4	5.42	
174	4.27E-010	0.85	1440	04/18/2007	175.1	5.45	
176	4.27E-010	0.85	1440	04/19/2007	175.95	5.50	
177	4.27E-010	0.85	1441	04/20/2007	176.8	5.53	
178	4.27E-010	0.85	1442	04/21/2007	177.65	5.55	
179	4.28E-010	0.85	1437	04/22/2007	178.5	5.58	
180	4.28E-010	0.85	1439	04/23/2007	179.35	5.60	
181	4.26E-010	0.85	1445	04/24/2007	180.2	5.63	
182	4.28E-010	0.85	1439	04/25/2007	181.05	5.66	
103	4.20E-010	0.85	1444	04/26/2007	101.9	5.68	
185	4.202-010	0.85	1437	04/21/2007	183 6	5./1	<u> </u>
186	4.30E-010	0.85	1432	04/29/2007	184 45	5.74	x+ x
187	4.35E-010	0.85	1416	04/30/2007	185.3	5.79	EC Inflow: 1.57 mS Outflow: 3.60 ms
188	4.38E-010	0.90	1488	05/01/2007	186.2	5.82	

1
			11.2 V. 12.2 V. 1				
189	4.59E-010	0.90	1420	05/02/2007	187.1	5.85	
190	4.52E-010	0.90	1442	05/03/2007	188	5.88	Page 4
191	4.51E-010	0.90	1445	05/04/2007	188.9	5.90	
192	4.77E-010	0.95	1442	05/05/2007	189.85	5.93	
193	4.78E-010	0.95	1440	05/06/2007	190.8	5.96	
194	4.53E-010	0.90	1439	05/07/2007	191.7	5.99	- 10-24 C
195	4.53E-010	0.90	1438	05/08/2007	192.6	6.02	
196	4.26E-010	0.85	1444	05/09/2007	193.45	6.05	
197	4.27E-010	0.85	1442	05/10/2007	194.3	6.07	
198	4.27E-010	0.85	1443	05/11/2007	195.15	6.10	
199	4.53E-010	0.90	1440	05/12/2007	196.05	6.13	
200	4.53E-010	0.90	1440	05/13/2007	196.95	6.15	
201	4.52E-010	0.90	1442	05/14/2007	197.85	6.18	
202	4.26E-010	0.85	1444	05/15/2007	198.7	6.21	
203	4.35E-010	0.90	1498	05/16/2007	199.60	6.24	EC Inflow: 1.59 mS Outflow : 3.89 ms
204	4.44E-010	0.85	1385	05/17/2007	200.45	6.26	
205	4.53E-010	0.90	1440	05/18/2007	201.35	6.29	
206	4.52E-010	0.90	1442	05/19/2007	202.25	6.32	
207	4.53E-010	0.90	1439	05/20/2007	203.15	6.35	
208	4.54E-010	0.90	1437	05/21/2007	204.05	6.38	
209	4.52E-010	0.90	1442	05/22/2007	204.95	6.40	
210	4.53E-010	0.90	1440	05/23/2007	205.85	6.43	
211	4.27E-010	0.85	1442	05/24/2007	206.70	6.46	
212	4.27E-010	0.85	1443	05/25/2007	207.55	6.49	
213	4.28E-010	0.85	1439	05/26/2007	208.40	6.51	
214	4.28E-010	0.85	1437	05/27/2007	209.25	6.54	-541 - 154110-
215	4.27E-010	0.85	1440	05/28/2007	210.10	6.57	
216	4.26E-010	0.65	1445	05/29/2007	210.95	7.42	
217	3.53E-010	0.70	1435	05/30/2007	211.65	8.12	Flushed Stones and Lines
218	1.66E-009	3.30	1437	05/31/2007	214.95	11.42	
219	1.65E-009	3.30	1444	06/01/2007	218.25	14.72	
220	1.66E-009	3.30	1442	06/02/2007	221.55	18.02	
221	1.66E-009	3.30	1439	06/03/2007	224.85	21.32	
222	1.61E-009	3.20	1442	06/04/2007	228.05	24.52	
223	1.60E-009	3.20	1445	06/05/2007	231.25	27.72	
224	1.61E-009	3.20	1435	06/06/2007	234.45	30.92	

June 16, 2010 101.R2044.01

GSI: Lining Technology. Inc. 19103 Gundle Road Houston, TX 77073

Attn: Jimmy Youngblood

RE: FINAL RESULTS - PANEL 16 POLYMET MOCK GCL JLT PROPOSAL DATE: 7-30-2009 PO NO: 48942-000-OP

Dear Mr. Youngblood:

Submitted herein are the final results of Compatibility testing performed on the mock GCL described above. The test was performed for a total duration of 176 days. The test was terminated because we ran out of the synthetic leachate. In addition we could not obtain p11 or FC readings on the inflow side because the leachate ran out. For the outflow side, the liquid in the accumulator bladder was crystalized and could not be tested. However, the p11 and EC inflow and outflow readings taken on May 4th were well within the guidance of the standard.

We appreciate the opportunity to provide our services and look forward to working with you again. Should you have any questions, comments or require additional information, please do not hesitate to call. Thank you.

Sincerely.

JLT-LABORATORIES, INC.

John Boschuk, Jr., P.E. President

cc: Accounts Payable - Invoice Only

Englematri -114 mili - mjell Serres reserve Invie i Lite.

will Bouth Contral-Avenue · Canonaburg, Representation of the start start start and

SUM	IMARY OF FLEX WA TEST RESU ASTM D-67	LL PERMEABILITY LTS 66		JLT			
Client : G Project Location : Po Description : M 6 c 0.0 Permeant Fluid : Sy	SE olymet OCK GCL As-Received oz and 6 oz Fabric 8 lbs/sq ft 30 Cap C nthetic Leachate	Date Job No. MC Tested By Checked By Nay Panel No Legal Jug Spec Gravity	05/23/ 09LR20 MLB/T 1B 16 2.74	10 044.01 DB Assumed			
•	Physical Prope	rty Data					
Initial Height (in) : Initial Diameter (in) : Initial Wet Weight (g) : Wet Density (pef) : Moisture Content % Dry Density (pef) :	0 19 4.00 39.60 63.13 10.10 57.34	Final Height Final Diamete Final Wet We Wet Density Moisture Cor Dry Density	Final Height (In) Final Diameter (In) Final Wet Weight (g) Wet Density (pcf) Moisture Content % Dry Density (pcf)				
	Test Param	eters					
Fluid Cell Pressure psi 1 : Head Water ()si) Tail Water ()si 1	Synthetic Leachate 80.00 77.00 75.00	Average Effe Confining Pr Gradient Eff Stress at	ective ressure (psi) Base (psi-)	: 4.00 : 250.91 : 5			
Permeability Input Data For Last Data Point	- cm/sec	1 OOE -8					
Flow, Q (cc) Length, L (in) Area, A (sqin) Head, h (psi) : Time, t (min) Temp, T (Deg C)	1,30 0.22 12.57 2.00 1441.00 21.0	00E-10 0 20 40 60 T	80 100 120 IME - Days	c 1473 160 180			
	Computed Perr	neability					
PERMEABILITY, K = 7.19E-010 (cm/sec) at 20 Degrees C Day 176 Inflow to Date : 414.6 cc							

JLT Laboratories Inc

MOCK GCL As Received MCOCK5X5-30CLAY WK4\FF-GSECorp

JLT Laboratories. Inc.

MOCK GCL As Rectified MCIOCK6X6-30CLAY WK4:FF GSECorp

Chernit	6258	Date	0512310
Presect Location	Paymer	Job Nit	(191 R25)44 : 11
Desetution	MOCK GUT As Received MC	Lested By	NR.B/LE
	6 oz and 6 oz Fabric	Checked By	8L

Estimated Fee Volume

32.2 cc

Page 1

Sample ID GCL As Received MC 6 ez abit 6 laz Fabric

0.8 lbs/sq H

1

Erapsed Time	Permeati My	เวกิองจ	1 ane	Dale	Total Cumulative	Pare	- CHARLES -
Cayo	cimisec	CC	minutes		BITEW VOLUTE CC	V(Hidh) i	LEAR PLUCE AND A DEPARTMENT OF THE SEC.
1				11,27/2009	0.00	0.00	DOUT MELT 23/02/00105 From Colle-
5				11.20/2005	U GU	0.00	
3	2 230 Day	44	1441	1/23/2009	4 413	c) 14	
4	2. F. H. L. H. M.	4.5	1443	11/30/2001	12 20	0.01	
K	2 438: 1234	44	1443	12/01/2009	13.36	0.64	
6	2 331: 57.37	4.3	1441	12/02/2009	1760	0.01	
7	3 436-18 4	4.4	1442	12/03/2009	22 00	0.00	10 74 6 (2.4 16 1
8	2,446,4869	44	1435	12/04/2003	25.40	0.84	10 23 2 041 251
9	2 4 W 18+4	44	1442	12/05/2/109	100	10 1912 1 1912	
14)	2 2.22 48 49	4.2	1442	12.06/2009	35.00	1 2013	
11	2 2:1: 4923	40	1439	12/07/2069	3'3 00	1.1.1	
12	2 21 E (3.4)	40	1442	12/03/2009	4 3 UG	1 34	
13	AND SEE AND SE	35	1444	12/09/2009	42.50	E 45 M	
14	1990 Bar	3.4	1442	12/10/2009	43 90		
15	1.718:009	3 1	144	12/11/2009	53.00	1 25	10 DE 4 (NA 136 1
16	6668.00.32	3.0	1442	1271272009	50013	1.0.1	111 215 46 15 101 223 11
17	1 73是 建铁橡皮	3 1	1440	12/13/2009	59 10	1.04	
18	7 (EE (0.25)	3 1	1443	12/14/2009	6220	1 92	
19	itist: (n.»)	30	1441	12/15/2009	65 24	ತೆ ಚಿತ್ರ	
20	41848 E)E)# 4	3.0	1442	12/10/2009	58 20	1. 1.	
21	718-009	31	1442	12/17/2009	71.35	27, 22, 7 16, 16, 4	
22	77E: 18.43	32	1440	12/18/2009	74 50	2.31	
ã 3	1 77E 654	32	'437	12/19/2009	77.70	A 25 T.	
24	761 6 .	32	1440	12/20/2009	8090	2.51	Pr
25	177F (3)9	32	144()	12/21/2009	84 10	2.91	EC IN 20 ES OUT 234
26	77E 18,14	3.2	1440	12/22/2009	37 30	2.51	
27	643. 1861	30	144	12,23,2009	90 30	2.80	
43	84 56 . 1515 a	2 \$	1441	12/24-2005	5320	2.09	
28	他能情的	29	1442	12/25-2000	96 10	2:13	
30	的复数消息的	2 '9	1439	12/26/2009	3.200	3.07	
31	611 8881	23	1438	12/27/2005	101.90	3.10	1. 1. CAO 60714 220
32	1 6928 1 141-6	29	1.4.4 °.	12/28/2609	104 80	1.23	PC II 24 9 CO OU 23 9
33	638 (80) +	29	1421	12/29/2009	107 76	1.24	
39	1919 6 6 m	23	1452	12/50-2009	110.50	1.4 4 3	
15	153 - 2 N - 4	2.8	1443	12:31/2005	113.4	13.32	
36	441 1.54	8 %	14-52	01/01/2010	116.25	1.24	
37	Ret 1 . 19 4	5.9	1440	01/02/2010	119 1	3.86	
38	State and a	28	1439	01/03/2010	121.9	3.75	
391	6. 1. 18 V	29	144()	01:04:2010	1.24 8	1 86	
451	548 64 2	23	54-51	01/05.2010	1.27 6	3.90	
4.1	541 3.0 6	2 3	*4 4 °	61 06.2010	1 sC 4	4 05	teritoria en la contra della
42	551 1810	2 2	143 9	01/07/2010	133.2	4.14	
43	4.5 E (R.5)	6 5	14.6 %	01908-2010	1 16 1	4.22	with Chiph builder as
44	110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27	1442	01/69/2010	138 7	a 31	
4.5	See. 19.84	27	:438	01/10/2010	15" 40	4 314	
46	1. 1.11 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	27	1439	51.12 2010	144 10	4.48	
20	441-5728	27	14 39	0' 12,2010	2413 312	4.50	
4/5	628: alle1	2 E	1441	0113/2010	143 4	4.64	
44	118:00-1	26	1444	01/14:2019	152.00	4 72	
50	151 21 1	26	14 32	D+ 15/2010	154 62	4 30	

MOCK GOL AS Peceived MCPANEL 16 MOCYSX6 30CLAY WKAFF-GSECor;

51	441: 211 37	20	1442	01/16/2010	157 24	4 38	
52	441- (819	2.6	1441	01/17/2010	159 BC	4 96	
53	381-009	25	1442	01/18/2010	162 30	5.04	Lage .
54	1 38E DAM	2.5	1440	01/19/2010	164 80	5.12	
55	141-1414	2.5	:439	01 20/2010	167 30	5 20	Ec in 298 pt- in 675
56	1.38E 0049	2 5	1442	01/21/2010	169 8C	5 27	EC Out 2 97 pH Out 6 78
57	1 388 069	2 5	1441	01/22/2010	172 30	5 35	
58	38E 1819	25	1442	01/23/2010	174 80	543	
59	1 388 004	25	1442	01/24/2010	177.30	5 5 1	
60	1.331-009	24	1433	C1/25/2010	179 70	5 58	
61	1 32E GF9	24	1446	01/26/2010	182 10	5 66	
62	1 321-1814	24	1447	01:27:2010	184 50	5 73	
63	1.33E 009	24	1442	01.28/2010	186 90	5 80	
64	1 34E 004	24	1431	01/29/2010	189 30	5 88	
65	1 3.41- 00.40	24	1442	01/30/2010	19:70	5 95	
66	1 271-069	23	1444	01/31/2010	194 00	6 02	
67	1 27E (dos)	23	1442	02/01/2010	196.30	6 10	
68	1 276 (859	23	1440	02/02/2010	198 60	6.17	
69	1 228 1814	2 2	1439	02/03/2010	200 3G	6.24	Backwashed Stones
70	1 276 (84)	2 3	1439	02/04/2010	203 10	6.31	
71	1 338.000	24	1442	02/05/2010	205 50	6 38	
72	1.271 (169)	2.3	1446	02/06/2010	207 80	6 4 5	
73	1.271-0854	23	1442	02/07/2010	21010	6 52	
74	1 235- 1843	22	1440	02/08/2010	212 30	6 59	
75	1 2.11- 1.184	22	1437	02:05/2010	214 50	6.66	
76	1 0 12 E Kitz	22	1443	02/10/2010	216 70	6 73	
77	1 The Aller	22	1445	02/11/2010	218 90	6.80	
78	1 115 060	22	1440	02 12 2010	27: 10	E 87	Receivabled States
79	1 9782 -14.61	22	1441	02/13/2010	223.30	6 94	1.0. PP 31 44 11 PR
80	1 78. 4834	22	1442	02/14/2010	225 50	7 89	
81	1 116.1260	22	1440	02:15/2010	227 70	7 07	
82	E THE REIG	22	1430	(12) 16(2010	229 90	7 14	
83	1 219 (25)	2.2	1444	03/17/2010	232 10	221	F.C. e. 2.25 child 6.39
84	1 221-1861	22	1436	02.18/2010	234.38	7.28	EC.04 222 cH.04 542
85	3 5 44. 12:342	22	1437	02,19/2010	236 50	7 34	20000 222 91000 94
86	1 1 1 (890	22	1645	62/20/2010	238 70	7 4 1	
87	1 * 35	22	1437	02/21/2010	24(1.97)	7 4 9	
8a	110 500	21	1438	02/22/2010	243 00	7 56	
80	1 168- 3169	21	1445	02/23/2010	245 19	7.61	
60	1 161. 521	2 1	1446	02/24/2:010	247 20	7 58	
01	1 11 11 11 11 11	2.1	14.111	02/25/2010	249 30	7 74	
92	3 16 18 18 19	21	1441	02/26/2010	251 49	7 31	
91	1435 15 100	2.0	1442	02/27/2010	253.49	787	
64	1 111 etter	20	1430	92.28/2010	755 40	7.02	
99	1.115 (2.5)	20	14.4.1	02/01/2010	257 411	7 99	
55	1017 318:00	20	1432	03/02/2010	259 40	B CE	Hackwallhen Mones
07	8 215-12:04	20	1440	03/03/2010	261.45	8 12	
98	1 778. (115)	22	14.37	03/04/2010	263 60	8 10	
00	1 9 78- nationa	29	08 LI	03/05/2010	255 80	\$ 25	
100	1 211 19.4	22	14.45	03/06/2010	258 00	8 32	
5-11	1 136 8201	2 2	1442	03/07/2010	279 26	A 36	
102	1 791. 18 24	2 2	144.	03/08/2010	272 40	2 42	
103	1 7 78 416 4	22	144(3	03/04/2010	274 60	a 53	
104	1651 (515)	21	1342	03510/2010	276 7.	8 50	
105	1 1.5. 1000	2.1	LLL	13.1.1.2010	278 86	ABE	
1.36	Ende strate	2.1	1.1.1	03/12/2010	280 30	3 77	
10.7	1. 9.98. Ed.d.s.	2.2	1.4.4.3	03/12/2010	200 50	3 70	
100	1 11-11 1 100 10 10 10 10 10 10 10 10 10 10 1	23	1330	63/14/2010	285 30	2 83	
100	16.8. 3.7	21	1.526	03,15/2010	287 40	2 32	
110	1 PIL and an	23	€ € №1	63/16/2010	289 60	8 60	
110	1 152 1941	2 4	1.4.45	03/17/2010	26* 70	20 U	
5.5.2	APPE AND	20	1.4.4.3	03/19/20:0	29 70	0.12	
112	1453. 127 41	10	1440	03-10-2010	255 80	0 12	Racking had Glonge
113	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.4	1.64.2	03-20/2010	293 00	6) 4	CHARLES AND AND CHARLES
5.56	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27	2000 E	037212030	300 30	0 10	
6 4 2		4 . 1	a mp dià a	004 120201	200 20	2 3.3	

16	1 2"E 11914	23	1443	0.322 2010	302 50	9 40	
117	127E (184	23	1439	03.23/2010	304 90	9 4 T	Į.
113	1.27E 064	23	1439	03/24/2010	307 20	9 54	EC In 2.35 prim
119	1.271. (4)4	23	1441	03/25/2010	309 50	961	EC Out 231 BHOL
120	1 3015 3014	23	1413	03/26/2010	311 80	9 68	
121	1 271: 009	23	1442	03/27/2010	314 10	9 75	
122	1 278 1809	23	1441	03/28/2010	316 40	983	
123	1 271-204	23	1437	03/29/2010	318 70	9 90	
124	1.27E 009	23	1446	03/30/2010	321 00	9 97	
125	1.315.260	2 20	1445	03/31/2010	323 20	10.04	
126	1.236.000	2 20	1435	04/01/201/)	32540	10.11	
120	1. 2.25. (163)	2 20	1438	04/02/2010	327 ถึป	10 17	
120	1.731. (10).	2 20	1439	04/02/2010	320 80	16 74	
120	1 Lat. 344	2 10	1442	04.04/2010	311 60	10.31	
129	T TOT THEY	2:0	14.473	04.05.2010	334 00	10.37	
130	1 1012 1007	2 10	1443	04:06:2010	334 50	16 44	
131	14)12 48,174	2 10	1440	04:00:20:0	336 10	10 44	
132	1 111 000	2 00	144()	04/07/2010	330 10	10.50	
133	\$ 119- DOM	200	144 1	04/08/2010	349 10	10.00	
134	1 1 1 8· 4.8.4.	2 00	1439	04/09/2019	342 10	10.62	
135	1 11E 009	2 00	144 7	04/10/2015	344 10	10 69	Flushed Stones and L
136	14.6 31,9	2 10	1442	04/11/2010	346 20	10 75	
137	1 141-4849	2 10	1443	04/12/2010	348 30	10 82	
138	1.15E-3039	2 10	1440	04/13/2010	350 40	1() 88	
139	1 1 IE 069	2 00	1437	04/14/2010	352 40	10 94	
140	1.111:009	2 00	1438	04/15/2010	354 40	1101	
141	1111. 13.44	2 00	1439	04/16/2010	358 40	11 07	
142	1 1 1 : 421.43	2 00	1440	04117,2010	358 40	11 13	
143	1 058- 00.9	1.90	1442	94/18/2010	360 30	11 19	
144	1 HISE USA	1 90	1441	04-19-2010	362 20	11 25	
145	1951-1944	1 90	1442	04/20/2010	3/14 10	1131	Flushed Stores and Li
145	L INEAMA	2 10	1444	04:21/2010	366 20	11 37	
147	1111-18/4	2 00	1438	04/22/2010	368 20	1143	
148	1 USE 08.9	1 90	1442	04/25/2010	370 10	11 48	
149	LOSE-ON-	1 90	1440	04/24/2010	372 00	11 55	
159	LUSE OR 9	1.90	1435	04/25/2010	373 90	1161	
151	9 88E 010	1 80	1451	04/26/2010	375 70	11 67	
152	9 641-010	1.80	1442	04/27/2010	377 50	11.72	
153	8 ast. a.a.	1.80	1441	04/22/2010	379 30	11.78	
154	G CR. 2513	1.80	144/7	04/29/2010	381 10	1184	
155	12 (11, 01)(1)	1 70	1430	04:20:2010	382.80	11.89	
100	-7 892 10107	170	1433	05/01/2010	384 50	1194	
100	17 46 5 51 46 F 18 1	1 70	14.35	06/02/2010	386.20	11 90	
107	9 138-1111	1.70	1449	06/53.2010	397 0/2	12.05	
158	et fords etters	170	1442	00/00/2010	200 65	12 1/1	Sillio 2.44 millio e
59	9 388 010	170	144.5	05/04/2010	203 60	12 16	
160	9 40E: 010	1 70	1443	05/03/2010	391 30	10 30	EC OUT & STA DIT MA
101	9 30E 010	1 70	1442	05/06/2010	393 00	12 21	
152	4 121-114	170	1438	95,9772010	394 70	12 20	
163	8 83E 010	1 60	1444	05/08/2010	199 10	18 31	
1:54	8 478 010	1.60	1437	05/09/2010	387.80	14 30	
165	8 3nE (10)	1 50	1442	05/10/2010	399 40	12 40	
166	来 28日-19141	1 50	1443	05/11/2019	400 96	12 45	
167	3 2"1: 010	1.50	1445	0512/2010	402 40	12.50	
153	8 201-4110	1 50	144.	05/13/2010	493 90	12 54	
169	7.41 11/11	143	1440	05.14 2010	405 36	12 59	
7.)	7 A 13 10 1	1.40	1.1 33	05.15/2010	405 70	12 63	
7 9	1 75[- 0.01	1.40	1439	05.15.2010	408 10	12 57	
172	T HE OL	1 30	1442	05.17/2010	2099 d.	12.71	
173	141:011-0	1.30	14.41	05. 18,2010	410 70	12.75	
74	1 198 010	1 30	4.4 1	05/19/2010	412 00	12 8.	
75	7 1-21 (110)	30	1440	05-20/2010	413 30	12.84	
76	7 121 13 183	1 30	1.4.5	05,21/2010	414 60	12.88	Not enough for EG or pr

	Aľ*3	Ca ⁺²	CL	Mg ⁺²	Na ⁺	SO4-2	S-2
52 aAl2SO43 wt.%	0.8	0.0	0.0	0.0	0.0	4.2	0.0
53 aCaCl2 wt.%	0.0	4,151.2	7,343.2	0.0	0.0	0.0	0.0
54 aCaSO4 wt.%	0.0	615.1	0.0	0.0	0.0	1,474.4	0.0
55 aCoSO4 wt.%	0.0	0.0	0.0	0.0	0.0	3.4	0.0
56 aCuSO4 wt.%	0.0	0.0	0.0	0.0	0.0	19.2	0.0
57 aFeSO4 wt.%	0.0	0.0	0.0	0.0	0.0	0.3	0.0
58 aFe2SO43 wt.%	0.0	0.0	0.0	0.0	0.0	3.5	0.0
59 aHCI wt.%	0.0	0.0	0.9	0.0	0.0	0.0	0.0
61 aH2SO4 wt.%	0.0	0.0	0.0	0.0	0.0	119.2	0.0
62 aK2SO4 wt.%	0.0	0.0	0.0	0.0	0.0	759.2	0.0
63 aMgCl2 wt.%	0.0	0.0	0.2	0.1	0.0 [.]	0.0	0.0
64 aMgSO4 wt.%	0.0	0.0	0.0	4,065.2	0.0	16,065.3	0.0
65 aNaC! wt.%	0.0	0.0	800.1	0.0	518.9	0.0	0.0
66 aNaHS wt.%	0.0	0.0	0.0	0.0	77.8	0.0	108.5
67 aNa2SO4 wt.%	0.0	0.0	0.0	0.0	0.02	0.05	0.0
68 aNiSO4 wt.%	0.0	0.0	0.0	0.0	0.0	39.1	0.0
69 aZnSO4 wt.%	0.0	0.0	0.0	0.0	0.0	1.0	0.0
70 aNa3AuCl4 wt.%	0.0	0.0	0.00007	0.0	0.00004	0.0	0.0
71 aNa2PdCl4 wt.%	0.0	0.0	0.00033	0.0	0.00011	0.0	0.0
72 aNa2PtCl4 wt.%	0.0	0.0	0.00065	0.0	0.00021	0.0	0.0
73 aNa3RhCl6 wt.%	0.0	0.0	0.00014	0.0	0.00007	0.0	0.0
Total (mg/L)	0.8	4,766.3	8,144.5	4,065.3	596.7	18,489.0	108.5

T.

T.

6

L

CHLORIDE TAILINGS DECANT WATER - EXPECTED INORGANIC CONCENTRATIONS (mg/L) Provided by Barr Engineering