Application of Probable Maximum Precipitation Estimates United States East of the 105th Meridian

HYDROMETEOROLOGICAL REPORTS

*No. 1. Maximum possible precipitation over the Ompompanoosuc Basin above Union Village, Vt. 1943.
*No. 2. Maximum possible precipitation over the Ohio River Basin above Pittsburgh, Pa. 1942.
*No. 3. Maximum possible precipitation over the Sacramento Basin of California. 1943.
*No. 4. Maximum possible precipitation over the Panama Canal Basin. 1943.
*No. 5. Thunderstorm rainfall. 1947.
*No. 6. A preliminary report on the probable occurrence of excessive precipitation over Fort Supply Basin, Okla. 1938.
*No. 7. Worst probable meteorological condition on Mill Creek, Butler and Hamilton Counties, Ohio. 1937. (Unpublished.) Supplement, 1938.
*No. 8. A hydrometeorological analysis of possible maximum precipitation over St. Francis River Basin above Wappape11o, Mo. 1938.
*No. 9. A report on the possible occurrence of maximum precipitation over White River Basin above Mud Mountain Dam site, Wash. 1939.
*No. 10. Maximum possible rainfall over the Arkansas River Basin above Caddoa, Colo. 1939. Supplement, 1939.
*No. 11. A preliminary report on the maximum possible precipitation over the Dorena, Cottage Grove, and Fern Ridge Basins in the Willamette Basin, Oreg. 1939.
*No. 12. Maximum possible precipitation over the Red River Basin above Denison, Tex. 1939.
*No. 13. A report on the maximum possible precipitation over Cherry Creek Basin in Colorado. 1940.
*No. 14. The frequency of flood-producing rainfall over the Pajaro River Basin in California. 1940.
${ }^{*}$ No. 15. A report on depth-frequency relations of thunderstorm rainfall on the Sevier Basin, Utah. 194l.
*No. 16. A preliminary report on the maximum possible precipitation over the Potomac and Rappahannock River Basins. 1943.
*No. 17. Maximum possible precipitation over the Pecos Basin of New Mexico. 1944. (Unpublished.)
*No. 18. Tentative estimates of maximum possible flood-producing meteorological conditions in the Columbia River Basin. 1945.
*No. 19. Preliminary report on depth-duration-frequency characteristics of precipitation over the Muskingum Basin for 1- to 9-week periods. 1945.
*No. 20. An estimate of maximum possible flood-producing meteorological conditions in the Missouri River Basin above Garrison Dam site. 1945.
*No. 21. A hydrometeorological study of the Los Angeles area. 1939.
*No. 21A. Preliminary report on maximum possible precipation, Los Angeles area, California. 1944.
*No. 21B. Revised report on maximum possible precipitation, Los Angeles area, California. 1945.
*No. 22. An estimate of maximum possible flood-producing meteorological conditions in the Missouri River Basin between Garrison and Fort Randall. 1946.
*No. 23. Generalized estimates of maximum possible precipitation over the United States east of the lo5th meridian, for areas of 10,200 , and 500 square miles. 1947.
*No. 24. Maximum possible precipitation over the San Joaquin Basin, California. 1947.
*No. 25. Representative 12-hour dewpoints in major United States storms east of the Continental Divide. 1947.
*No. 25A. Representative 12-hour dewpoints in major United States storms east of the Continental Divide. 2d edition. 1949.
*No. 26. Analysis of winds over Lake Okeechobee during tropical storm of August 26-27, 1949. 1951.
*No. 27. Estimate of maximum possible precipitation, Rio Grande Basin, Fort Quitman to Zapata. 1951.
*No. 28. Generalized estimate of maximum possible precipitation over New England and New York. 1952.
*No. 29. Seasonal variation of the standard project storm for areas of 200 and 1,000 square miles east of 105th meridian. 1953.
*No. 30. Meteorology of floods at St. Louis. 1953. (Unpublished.)
*No. 31. Analysis and synthesis of hurricane wind patterns over Lake Okeechobee, Florida. 1954.
*No. 32. Characteristics of United States hurricanes pertinent to levee design for Lake Okeechobee, Florida. 1954.

No. 33. Seasonal variation of the probable maximum precipitation east of the lo5th meridian for areas from 10 to 1,000 square miles and durations of $6,12,24$, and 48 hours. 1956.
No. 34. Meteorology of flood-producing storms in the Mississippi River Basin. 1956.
No. 35. Meteorology of hypothetical flood sequences in the Mississippi River Basin. 1959.
*No. 36. Interim report--probable maximum precipitation in California. 1961. Also available is a supplement, dated October 1969.
No. 37. Meteorology of hydrologically critical storms in California. 1962.
No. 38. Meteorology of flood-producing storms in the Ohio River Basin. 1961.
No. 39. Probable maximum precipitation in the Hawaiian Islands. 1963.
No. 40 Probable maximum precipitation, Susquehanna River drainage above Harrisburg, Pa. 1965.
No. 41. Probable maximum and TVA precipitation over the Tennessee River Basin above Chattanooga. 1965.
No. 42. Meteorological conditions for the probable maximum flood on the Yukon River above Rampart, Alaska. 1966.
No. 43. Probable maximum precipitation, Northwest States. 1966.
No. 44. Probable maximum precipitation over South Platte River, Colorado, and Minnesota River, Minnesota. 1969.

[^0]
NOAA HYDROMETEOROLOGICAL REPORT NO. 52

Application of Probable Maximum Precipitation Estimates United States East of the 105th Meridian

Prepared by
E.M. Hansen, L.C. Schreiner \& J.F. Miller

Hydrometeorological Branch
Office of Hydrology
National Weather Service

WASHINGTON, D.C.
August 1982

table of contents

Page

ABSTRACT 1

1. Introduction 11.1
Background 1
1.2 Objective. 1
1.3 Definitions. 2
1.4 Summary of procedures and methods of this report. 3
1.5
Application to PMP. 5Some other aspects of temporal and spatial distri-butions.5
1.6 .1 Moving rainfall centers 5
1.6 .2Distributions from an actual storm.6
1.7 Other meteorological considerations 71.7 .1
1.7 .21.8
2.

2.12.22.3
PMP for smaller areas within the total drainage 7
Rains for extended periods. 7
Report preparation 7
Temporal distribution 7
Introduction 7
Observed sequences of 6 -hr increments in ma jor storms 10
Recommended sequences for PMP increments. 15
3. Isohyetal pattern 153.1
Introduction 15
Isohyetal shape. 16
Summary of analysis. 20
Recommended isohyetal pattern for PMP. 20
Application of isohyetal pattern. 23
Drainage-centered patterns 23
Ad justment to PMP for drainage shape 23
3.23.33.43.53.5 .13.5 .2
Pattern applicable to PMP 24
4. Isohyetal orientation 25
Introduction. 25
Data 25
Average orientations 25
4.24.2 .14.2.24.34.44.4 .14.4 .2Orientation notation.27
Method of analysis. 27
Ana lysis. 27
Regional variation 27
Generalized isohyetal orientations 29
4.4 .3
Variation of PMP with pattern orientation applied to drainage. 30
Range of full PMP. 30
4.4.3.1
Reduction to PMP for orientation outside of range. 32
Variation due to area size 33
4.4.3.3
Noncoincidental rainfall pattern. 36
Comparison to other studies 36
4.5 Meteorological evaluation of isohyetal orientations 37
4.6 Application to HM R No. 51 42
5. Isohyet values 42
5.1 Introduction 42
5.2 Within/without-storm D.A.D. relations 43
5.2 .1
PMP increments for which isohyet values are required 43
5.2.2 Isohyet values for the greatest 6-hr PMP increment 44
5.2.2.1 Depth-area relations 44
5.2.2.2 Isohyetal profile. 45
5.2.2.3 Nomogram for isohyet values 49
5.2.3 Isohyet values for the second greatest 6-hr PMP increment 50
5.2.4 Isohyet values for the third greatest 6-hr PMP increment 50
5.2 .5 Residual-area precipitation 56
5.2 .6 Tables of nomogram values 56
5.3 Area of pattern applied to drainage 71
5.4 Multiple rainfall centers 71
5.4 .1 Development of a multicentered isohyetal pattern 71
5.4.2 Arrangement of centers 73
6. Short duration precipitation 73
6.1 Introduction 73
6.2 Data 73
6.3 l-hr PMP 76
6.3 .1 Depth-duration ratios 76
6.3.2 1-hr 1-mi ${ }^{2}$ PMP 77
6.3 .3 Depth-area ratios 79
6.3 .4 1-hr PMP for areas to $20,000 \mathrm{mi}$ 85
6.4 PMP for durations less than 1 hr 85
6.5 Isohyet values for durations less than 1 hr 97
6.5 .1 Description of procedure 97
6.5 .2 Application of nomogram for short duration isohyets 98
6.5 .3 Isohyet values for short duration residual isohyets 100
7. Procedure and example application 100
7.1 Stepwise procedure 100
7.2 Example No. la 108
7.3 Example No. lb 126
7.4 Example No. $2 a$ 133
7.5 Example No. 2b 152
Acknowledgements 153
References. 157
Appendix 159

LIST OF FIGURES

Number Page
1 Schematic diagram showing the relation between depth-area curve for PMP and the within/without-storill relations for PMP at 1,000 mi 2 4
2 Examples of temporal sequences of $6-\mathrm{hr}$ precipitation inmajor storms12
3
Schematic example of one temporal sequence allowed for 6 -hrincrements of PMP16
4
Homogeneous topographic/climatologic subregions used in study of regional variation of isohyetal patterns 18
5
Standard isohyetal pattern recommended for spatial distribu-tion of PMP east of the 105th meridian (scale 1:1,000,000)21
67Model for determining the adjustment factor to apply to isohyetvalues as a result of placing the pattern in figure 5 atan orientation differing from that given in figure 8 bymore than 40°, for a specific location35
Track of hurricane Agnes (6/19-22/72) showing frontal posi-tions and orientation of the greatest $20,000-\mathrm{mi}^{2}$ precipi-tation area centered at Zerbe, PA40
Frontal positions and orientation of the greatest $20,000-m i^{2}$precipitation area centered at Golconda, IL (10/3-6/10)41
13
6-hr within/without-storm average curves for standard area sizes. 45
14
Within/without-storm curves for PMP at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$ for standard area sizes. 47
15 Isohyetal profiles for standard area sizes at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$ 48

16 Nomogram for the lst 6-hr PMP increment and for standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$51

17 12-hr within/without-storm curves for standard area sizes....... 53
18 Nomogram for the 2nd 6-hr PMP increment and for standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$ 54

19 Nomogram for the 3rd 6-hr PMP increment and fqr standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$55

20 Nomogram for the 4 th through 12 th $6-h r$ PMP increments and for standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$ 57

Schematic showing difference in isohyetal patterns for 3 greatest 6-hr PMP increments and that for fourth through 12th 6-hr increments for a $1,000-\mathrm{mi}^{2}$ storm.58

Schematic showing an example of multiple centered isohyetal pattern72

1- to 6-hr ratio of precipitation based on ma jor storms used in $H M R$ No. 51 and rainfall frequency studies78

1 -hr $1-\operatorname{mi}^{2}$ PMP analysis based on figure 23 and 6 -hr $10-\mathrm{mi}^{2}$ precipitation from HM R No. 5179

Maximized observed 1-hr point amounts and moisture maximized values from major storms listed in table 21.82

Example of transposition limits as applied to the Smethport, PA. storm (7/17-18/42)...83

Depth-area data plotted as percent of maximum $1-\mathrm{hr} 1-\mathrm{mi}^{2}$
amount for storms where the maximum $1-\mathrm{hr} 1-\mathrm{mi}^{2}$ amount was
determined froma dense network of observations or bucket
survey amounts... 84
Depth-area relation for 1 -hr PMP in percent of maximum point ($1-\mathrm{mi}^{2}$) a mount861-hr $10-$ mi 2 PMP analysis for the eastern United States87
1-hr $100-\mathrm{mi}^{2}$ PMP analysis for the eastern United States. 88
1-hr 200-mi ${ }^{2}$ PMP analysis for the eastern United States. 891-hr 1,000-mi ${ }^{2}$ PMP analysis for the eastern United States90
1-hr 5,000-mi ${ }^{2}$ PMP analysis for the eastern United States. 91
1-hr $10,000-\mathrm{mi}^{2} \mathrm{PMP}$ analysis for the eastern United States. 92

Page

1-hr 20,000-mi ${ }^{2}$ PMP analysis for the eastern United States 93
Ratio analysis of 5- to 60-min precipitation used to obtain 5-min PMP 94
Ratio analysis of 15 to 60-min precipitation used to obtain 15-min PMP 95
Ratio analysis of 30- to 60-min precipitation used to obtain 30-min PMP. 96
Index map for 1 - to 6 -hr ratios for $20,000-\mathrm{mi}^{2}$ "A" isohyet 98
Regionally-averaged nomogram for 1 -hr isohyet values in percent of 1 st 6 -hr isohyet values 99
Example of computation sheet showing typical format 104
Leon River, $\operatorname{TX}\left(3,660 \mathrm{mi}^{2}\right)$ above Belton Reservoir showing drainage 109
Depth-area-duration curves for $31^{\circ} 4^{\prime} \mathrm{N}, 98^{\circ} 15^{\prime} \mathrm{W}$ applicable to the Leon River, TX drainage 111
Depth-duration curves for selected area sizes at $31^{\circ} 4^{\prime} \mathrm{N}$, $98^{\circ} 15^{\prime} \mathrm{W}$ 112
Smoothing curves for 6 -hr incremental values at selected area sizes for Leon River, TX drainage. 113
Isohyetal pettern placed on the Leon River, TX drainage to give maximum precipitation volume 115
Volume vs. area curve for lst three 6 -hr increments for Leon River, TX drainage. 121
Smoothed durational curves used to interpolate short-duration Isohyet values for the Leon River, TX drainage. 127
Alternate placement of isohyetal pattern on Leon River, $T X$ drainage such that no adjustment is applicable for orientation. 128
Ouachita River, $\operatorname{AR}\left(1,600 \mathrm{mi}^{2}\right)$ above Rennel Dam showing drainage 134
Depth-area-duration curves for $34^{\circ} 36^{\prime} \mathrm{N}, 93^{\circ} 27^{\prime} \mathrm{W}$ applicable to the Ouachita River, AR drainage 135
Depth-duration curves for selected area sizes at $34^{\circ} 36^{\prime} \mathrm{N}$, $93^{\circ} 27^{\prime} \mathrm{W}$ 136

53 Smoothing curves for 6 -hr incremental values at selected
area sizes for Ouachita River, AR drainage. 138
54 Isohyetal pattern placed on the Ouachita River, AR drainage to give maximum precipitation volume 139
55 Volume vs. area curve for lst three 6-hr increments for Ouachita River, AR drainage 145
56 Isohyetal pattern placed on the Ouachita River, AR drainage relative to subdrainages 150
57 Alternate placement of isohyetal pattern on Ouachita River, AR drainage typical of determination of peak discharge. 153
A. 1 Regional distribution of 253 mar storms listed in table A.l showing orientation of total-storm precipitation patterns 168
LIST OF TABLES
1 Major storms from $\mathfrak{M M R}$ No. 51 used in this study 8
2 Major storms from table 1 used in study of temporal distributions 11
3 Summary of rain burst characteristics of 28 major rainfalls listed in table 2 14
4 Shape ratios of isohyetal patterns for 53 major rain events 17
56 Shape ratios of $20,000-\mathrm{mi}^{2}$ isohyetal patterns for sixsubregions19
78Averages of isohyetal orientations for jor storms withinselected subregions of the eastern United States.28
10 Average of isohyetal orientation for the large sample of storms within selected subregions in the eastern United States 29Major storm orientations relative to generalized analysisincluding summary information32
12 Frequency of various difference categories between observed and preferred orientations 33
13 38
major storms used to develop regional analysis (fig. 8).
Major storms from table 1 used in depth-area study 44
lst 6 -hr nomogram values at selected area sizes. 59
16 2nd 6-hr nomogram values at selected area sizes 62
17 3rd 6 -hr nomogram values at selected area sizes 65
1819
Storms used in analysis of 1 -hr storm-area averagedPMP values.74
Storms used to define 1 - to $10-$ mi 2 area ratios for 6 and12 hours.75
21
Extreme 1 -hr amounts used as support for $1-h r 1-m i^{2}$ PMP map 80
22
Completed computation sheets for the 1 st, 2 nd and $3 \mathrm{rd} 6-\mathrm{hr}$ increments for Leon River, TX drainage. 117
23
Completed computation sheet for the 1 st to 3 rd 6 -hrincrements for supplemental isohyets on the Leon River, TXdrainage120
Isohyet values (in.), Leon River, $I X$, for example la 122
25
Completed computation sheets showing typical format to get incremental drainage-average depths, Leon River, TX 123
Completed computation sheets for lst three 6 -hr increments for alternate placement of pattern on Leon River, TX drainage 129
27

Completed computation sheets for 1 st three 6 -hr increments
for Ouachita River, AR drainage. 140
Isohyet values (in.), Ouachita River, AR, for example $2 a$ 147
Completed computation sheets showing typical format to get incremental drainage-average depths, Ouachita River, AR. 143
30 Completed computation sheet for determining average depths for lst three $6-h r$ increments over subdrainage between Blakely Mt. Dam and heshita, AR 151
31 Completed computation sheets for lst three 6-hr increments for alternate placement of pattern on Ouachita River, AR drainage 154
A. 1253 major storms 160
A. 2 Distribution of 253 major storms by duration and area size classes. 167
A. 3 Shape ratios of 253 mar storm isohyetal patterns relative to area size classes. 167
NOTE: Pages on which the page number is followed by " R " have receivedeypographical corrections (2nd printing, 1987)

APPLICATION OF PROBABLE MAXIMUM PRECIPITATION ESTIMATES
 - UNITED STATES EAST OF THE 105TH MERIDIAN

E. M. Hansen, L. C. Schreiner* and J. F. Miller
Water Management Information Division National Weather Service, NOAA, Silver Spring, Md.

Abstract

This study provides a stepwise approach to the temporal and spatial distribution of probable maximum precipitation (PMP) estimates derived from Hydrometeorological Report No. 51, "Probable Maximum Precipitation Estimates - United States East of the 105th Meridian." Included are discussions of the shape and orientation of isohyetal patterns for major rainfalls of record. An elliptical isohyetal pattern with a ratio of major to minor axes of 2.5 to 1 is recommender, and a procedure is outlined for obtaining appropriate isohyet values. A procedure is given to determine PMP values for durations less than 6 hours. Example applications have been worked through to serve as guidance in the use of this procedure.

1. INTRODUCTION

1.1 Background

Generalized estimates of all-season probable maximum precipitation (PMP) applicable to drainages of the United States east of the 105 th meridian are provided in Hydrometeorological Report No. 51 (Schreiner and Riedel 1978). Hereinafter, that report will be referred to as HMR No. 51, and references to other reports in this series will be similarly abbreviated.

The terminology in HMR No. 51 has not always been precise, particularly, where PMP estimates are referred to as being for drainages from 10 to $20,000 \mathrm{mi}^{2}$. It is important to realize that the term drainages as used in that report is a rather loose interpretation when the more precise term is areas. The term drainage or drainage area in the present report will apply to a specific drainage only. HMR No. 51 provides storm-area PMP estimates for a specific range of area sizes (10 to $20,000 \mathrm{mj}^{2}$) and durations (6 to 72 hr).

1.2 Objective

The objective of this report is to aid the user in adapting or applying PMP estimates from $H M R$ No. 51 to a specific drainage. This report recommends a procedure for the application of PMP estimates to a drainage for which both the temporal and spatial distributions are needed. This information is necessary for the determination of peak discharge and can be useful in estimating the maximum volume in evaluations of the probable maximum flood (PMF).

[^1]
1.3 Definitions

Probable Maximum Precipitation (PMP). Theoretically the greatest depth of precipitation for a given duration that is physically possible over a given size storm area at a particular geographical location at a certain time of the year. (This definition is a 1982 revision to that used previously (American Meteorological Society 1959) and results from mutual agreement among the National Weather Service, the U.S. Army Corps of Engineers, and the Bureau of Reclamation.)

PMP Storm Pattern. The isohyetal pattern that encloses the PMP area plus the isohyets of residual precipitation outside the PMP portion of the pattern.

Storm-centered area-averaged PMP. The values obtained from HMR No. 51 corresponding to the area of the PMP portion of the PMP storm pattern. In this report all references to PMP estimates or to incremental PMP infer storm-area averaged PMP.

Drainage-averaged PMP. After the PMP storm pattern has been distributed across a specific drainage and the computational procedure of this report applied, we obtain drainage-averaged PMP estimates. These values include that portion of the PMP storm pattern that occur over the drainage, both PMP and residual.

Temporal Distribution. The order in which 6 -hr incremental amounts are arranged in a 3 -day sequence (72 hr). This report includes information regarding determination of hourly and smaller units within the maximum 6 -hr increment, but does not discuss the distribution of units less than $6-\mathrm{hr}$.

Spatial Distribution. The value of fixed isohyets in the idealized pattern storm for each 6-hr increment and shorter durations within the maximum \quad-hr increment of PMP when area-averaged PMP is to be distributed.

Total Storm Area and Total Storm Distribution. The largest area size and longest duration for which depth-area-duration data are available in the records of major storm rainfall.

Standard Areas. The specific area sizes for which PMP estimates are available from the generalized maps in HMR No. 51, i.e., $10-, 200-1,000-, 5,000-$, $10,000-$, and $20,000-\mathrm{mi}^{2}$ areas.

Standard Isohyet Area Sizes. In this report, the standard isohyet area sizes are are those enclosed by the isohyets of the recommended pattern, i.e., 10,25 , $50,100,175,300,450,700,1,000,1,500,2,150,3,000,4,500,6,500,10,000$, $15,000,25,000,40,000$, and $60,000 \mathrm{mi}^{2}$.

Residual Precipitation. The precipitation that occurs outside the area of the PMP pattern placed on the drainage, regardless of the area size of the drainage. Because of the irregular shape of the drainage, or because of the choice of a PMP pattern smaller in area than the area of the drainage, the residual precipitation can fall within the drainage. A particular advantage in the consideration of residual precipitation, is that of allowiag for the determination of concurrent precipitation, i.e., the precipitation falling on an adjacent drainage as compared to that for which the PMP pattern has been applied.

Isohyetal Orientation. The orientation (direction from north) of the major axis through the elliptical pattern of PMP. The term is used in this study also to define the orientation of precipitation patterns of major storms when approximated by elliptical patterns of best fit.

Within/Without-Storm Depth-Area Relations. This relation evolves from the concept that the depth-area relation for area-averaged PMP represents an envelopment of maximized rainfall from various storms each effective for a different area size(s). The within-storm depth-area relation represents the areal variation of precipitation within a storm that gives PMP for a particular area size. This can also be stated as the storm that results in PMP for one area size may not give PMP for any other area size. Except for the area size that gives PMP, the within-storm depth-area relation will give depths less than PMP for smaller area sizes. This concept is illustrated in the schematic diagram shown in figure 1 . In this figure, precipitation for areas in the PMP storm outside the area size of the PMP pattern describes a without-storm depth-area relation. The precipitation described by the without-storm relations is the residual precipitation defined elsewhere in this report.

1.4 Summary of Procedures and Methods of this Report

All procedures described in this study are based on information derived from major storms of record, and are applicable to nonorographic regions of the eastern United States.

The temporal distributions provided allow some flexibility in determining the hydrologically most critical sequence of incremental pap. The procedure used to determine the temporal distributions has been used in some other Hydrometeorological Branch reports (Riedel 1973, and Schwarz 1973 for exarple), and is described in chapter 2.

We have surveyed major storm isohyetal patterns for statistics on pattern shape, and have adopted an elliptical shape having a 2.5 to 1 ratio of major to minor axes as representative of a precipitation pattern. This elliptical shape has been adopted for PMP and is applied to all 6 -hr incremental patterns. The discussion of the shape of the isohyetal patterns is found in chapter 3.

Another aspect of this study is a generalized approach to adjustments for pattern orientation to fit the drainage when inconsistent with the orientation determined for the PMP isohyetal pattern. Outlined in chapter 4 is an empirical method that allows up to 15 percent reduction to storm-centered area-averajed PMP for drainage areas larger than $3,000 \mathrm{mi}^{2}$ which differ by more than 40 degrees from the orientation consistent with PMP-producing storms.

In determining spatial distribution a basic assumption is that rainfall depths for areas smaller and larger than the total area for which PMP is needed over a particular drainage, are less than PMP. (See within/without-storm depth-area definitions.) This assumption, for areas smaller than the PAP, has been commonly made in some other studies by this branch (Riedel 1973, Riedel, et al. 1969, and others), and results in what has been referred to in those reports as withinstorm or within-drainage depth-area-duration (D.A.D) relations. Application of a similar assumption to areas larger than that for the PMP is a consideration unique to the present study and introduces the concept of residual precipitation.

Figure 1.-Schematic diagram showing the relation between depth-area curve for PMP and the within/without-storm relations for PMP at $1,000 \mathrm{mi}^{2}$.
(See sec. 1.3 definitions.) Discussion of the procedure to obtain the spatial distribution of PMP and the residual precipitation is given in chapter 5 .

For many drainages, it is frequently necessary to have values for durations less than 6 hours. Procedures for obtaining the percentage of the greatest 6 -hr increment that occurs in the maximum $5,15,30$ and 60 min are provided in chapter 6. We do not in this report attempt to define the temporal distribution within the greatest $6-\mathrm{hr}$ increment except to suggest that the $5-, 15-$ and $30-\mathrm{min}$ values should be included within the maximum 60 min . It is anticipated that the time of occurrence of the maximum 60 min within the 6 -hr increment will be the subject of a future study.

1.5 Application to PMP

For those interested in the application of $P M P$ from $\mathcal{M R}$ No. 51 (nonorographic region only) to a specific drainage, chapter 7 is most important. This chapter provides a step-by-step approach to guide the user through the application of procedures developed in this report. Examples have been worked out in sufficient detail to clarify important aspects of these procedures.

The examples in chapter 7 give the user a procedure to obtain the maximum volume of rainfall for a drainage. Finding the maximum volume of rainfall is only part of the hydrologic problem. Another important question is the probable maximum peak flow that could occur at the proposed hydrologic structure. The solution is somewhat more difficult to directly ascertain than finding the maximum volume. The calculation of peak flow is highly dependent on a mixture of basin parameters such as lag time, time of concentration, travel time, and loss rate functions in combination with the amount, distribution and placement of the PMP storm within the drainage. Because of the interaction of these parameters, we cannot provide a simple stepwise procedure to determine peak flow. The user must weigh carefully the effect of the various parameters, drawing on his experience and knowledge of the drainage under study, and determine, through a series of trials, what combination of hydrologic parameters will produce the maximum peak flow.

1.6 Some Other Aspects of Temporal and Spatial Distributions

Although we present a procedure that leads to temporal and spatial distribution of PMP, we recognize that some considerations have not been discussed in this study. When storm data become sufficiently plentiful, and when our knowledge of storm dynamics permits, these considerations may lead to improvements in the current procedures. Meanwhile only brief comments follow regarding two such considerations for future study.

1.6.1 Moving rainfall centers

Our procedure assumes that isohyetal patterns for all 6-hr PMP increments remain fixed with time, i.e., all are centered at the same location. For large drainages (greater than $10,000 \mathrm{mi}^{2}$, for example), it is meteorologically rea sonable for the rainfall center to travel across the drainage with time during the storm. It is conceivable that such movement could result in a higher flood peak if the direction and speed of movement coincides with dowstream progression of the flood crest.

It was decided jointly by the Corps of Engineers and the Hydrometeorological Branch that the present report would not cover application of moving centers. Generalization of moving centers would require analysis of observational data such as incremental storm isohyetal patterns that are presently not available. It is anticipated that a future study will cover moving centers.

1.6.2 Distributions from an actual storm

Use of elliptical patterns for spatial distribution permits simplicity in generalized depth-area relations and in determining isohyet values. It also helps maintain consistency in results among drainages, area sizes, and durations. Such consistency is also maintained by the recommended temporal distributions. An alternate but unrecommended procedure is to adopt the distributions of a record storm precipitation that occurred on the drainage or within a homogeneous region including the drainage.

The isohyetal pattern from an actual storm might "fit" a drainage better than an elliptical pattern, and multiplying the isohyets by percent of PMP (say for 6 hours for the drainage, divided by the drainage depth from the storm pattern after it is located on the drainage) will give isohyet values for PMP. Such isohyets, however, quite possibly could give greater than PMP depths for smaller areas within the drainage.

The temporal distribution of such a storm could also be used for PMP. Again, however, there could very likely be problems. The most intense three 6 -hr rain increments in a $72-\mathrm{hr}$ storm may be widely separated in a time sequence of incremental rainfall (mass curve). Thus, 12 - or 18 -hr PMP could not be obtained unless rain bursts somehow were brought together. However, such arrangement is often done as a maximization step and PMP depths from MMR No. 51 used. These modifications would be towards the generalized criteria of the present study in which there are no results that are inconsistent or irreconcilahle.

Paulhus and Gilman (1953) published a technique for using an actual pattern for distributing PMP. The referenced paper describes a "sliding" technique for obtaining the spatial distribution of PMP that has its greatest merit in applications in the more orographic regions (stippled zones in $\mathcal{H M R}$ No. 51) covered by this study, such as the Appalachians and along the western border to the region, where site-specific studies are recommended. However, we aivise caution in application of this technique directly as Paulhus and Gilnan have proposed, in that it is possible to obtain PMP for a much smaller area size than that for the drainage to which it is applied. Since this disagrees with our within-storm concept, we therefore suggest adherence to the following modifications to the technique presented by Paulhus and Gilman, if it is used:
a. Use a set of depth-area relations (from $\mathcal{H R}$ No. 51) which, when "slid over" the depth-area relations for the storm, will give PMP for an area size within 10 percent of the area of the drainage of concern.
b. It is desirable that PMP (from MMR No. 51) be obtained for at least the hydrologically critical duration.
c. For other durations between 5 and 72 hours, stay within 15 percent of PMP as specified in $H M P$ No. 51. For additional information regarding application of this technique, the reader is referred to the Paulhus and Gilnan paper.

1.7 Other Meteorological Considerations

Other aspects of extreme rainfall criteria can be important to determinations of peak flow. Some of these aspects are described here.

1.7.1 PMP for smaller areas within the total drainage.

Our previous studies have concentrated on defining PMP for the total drainage area. In fact, in the present study we recommend spatial distributions resulting in somewhat less than PMP for smaller as well as larger areas than the PMP pattern. The question can naturally be asked, does PMP for a smaller area size than the storm area size that is applicable to the entire drainage, which when centered over a portion of the drainage (experiencing more intense rainfall than that for the entire drainage), result in a more critical peak flow? There is a possibility that PMP covering only a subportion of the drainage could provide a hydrologically more critical peak discharge, and the hydrologist should consider such a possibility. The depth of rainfall to use over the remaining portion of the drainage would need to be specified. (See discussion on residual precipitation in sections 3.5 .3 and 5.2.5.)

1.7.2 Rains for extended periods

Especially for large drainages, rainfalls for durations longer than 3 days could be fmportant in defining critical volumes for hydrologic design. As examples, the Hydrometeorological Branch, working with Corps of Engineers hydrologists, has evaluated the meteorology of hypothetical sequences of record storms transposed in space and recommended how close together such storms can follow each other (Myers 1959, and Schwarz 1961). Similar studies may be needed for other large drainage projects. Sufficiently severe assumptions, however, relative to how full reservoirs are prior to the $P M F$ and the antecedent soil conditions, could obviate the need for such studies.

1.8 Report Preparation

Preparation of this report began in 1977 as follow on sturies to HMR No. 51. Initial discussions with the Corps of Engineers outlined the scope of the project. As indicated in a previous section, certain problems were left to be considered in later studies. The basic studies were undertaken when all the authors were affiliated with the National Weather Service (NWS). These sturies were completed after one of the authors, L. Schreiner, transferred to the Bureau of Reclamation (ISBR). Several of the concepts and procedures includer in this report evolved after Mr. Schreiner's transfer, as a collaborative effort of the three authors and other meteorologists affiliated with both the NWS and the USBR.

2. TEMPORAL DISTRIBUTION

2.1 Introduction

When applying PMP to determine the flood hydrograph, it is necessary to specify how the rain falls with time, that is, in what order various rain increments are arranged with time from the beginning of the storn. Such a rainfall sequence in an actual storm is given by what is called a mass curve of rainfall, or the accumulated rainfall plotted against time from the storm beginning. Mass curves observed in severe storms show a great variety of sequences of rain increments.

Table 1.-Ma jor storms from $M M R$ No. 51 used ta this study

Storm center location	Date	Storm assignment number	${ }^{\circ}{ }^{\text {la }}$)	(${ }^{\text {a }}$)			otal storm duration (hr)	Total storm area size (mi^{2})	Orient. of pattern $\left({ }^{\circ}\right)$
1. Jefferson, OH (T)\#	9/10-13/1878	OR 9-19	41	45	80	46	84	90,000	190
2. We11sboro, PA	5/30-6/1/1889	SA 1-1	41	45	77	17	60	82,000	200
3. Greeley, NE	6/4-7/1896	MR 4-3	41	33	98	32	78	84,000	205
4. Lambert, MN	7/18-22/1897	UMV 1-2	47	47	95	55	102	80,000	230
5. Jewell, Mb	7/26-29/1897	NA $1-7 \mathrm{~B}$	38	46	76	34	96	32,000	205
6. Hearne, TX (T)	6/27-7/1/1899	QM 3-4	30	52	96	37	108	78,000	170
7. Eutaw, AL	4/15-18/00	LMV 2-5	32	47	87	50	84	75,000	230
8. Paterson, NJ (T)	10/7-11/03	GL. 4-9	40	55	74	10	96	35,000	170
9. Medford, WI	6/3-8/05	GL 2-12	45	08	90	20	1.20	67,000	205
10. Bonaparte, IA	6/9-10/05	LMV 2-5	40	42	91	48	12	20,000	285
11. Warrick, MT	6/6-8/06	MR 5-13	48	04	109	39	54	40,000	250
12. Knickerbocker, TX	8/4-6/06	OM 3-14	31	17	100	48	48	24,600	235
13. Meeker, OK	10/19-24/08	SW 1-11	35	30	96	54	126	80,000	200
14. Beaulieu, MN	7/18-23/09	IMV 1-11A	47	21	95	48	108	5,000	285
15. Merryville, LA	3/24-28/14	LMV 3-19	30	46	93	32	96	125,000	200
16. Cooper, MI	8/31-9/1/14	GL 2-16	42	25	85	35	6	1,200	300
17. Altapass, NC (T)	7/15-17/16	SA 2-9	35	53	32	01	108	37,000	155
18. Meek, NM (T)	9/15-17/19	GM 5-15B	33	41	105	11	54	75,000	200
19. Springbrook, MT	6/17-21/21	MR 4-21	47	18	105	35	108	52,600	240
20. Thrall, TX (T)	9/8-10/21	Of 4-12	30	35	97	18	48	12,500	210
21. Savageton, WY	9/27-10/1/23	MR 4-23	43	52	105	47	108	95,000	230
22. Boyden, IA	9/17-19/26	MR 4-24	43	12	96	00	54	63,000	240
23. Kinsman Notch, Ni (T)	11/2-4/27	NA 1-17	44	03	71	45	60	60,000	220
24. E1 ba, AL	3/11-16/29	IMV 2-20	31	25	86	04	114	100,000	250
25. St. Fish Iltchy., TX	$6 / 30-7 / 2 / 32$	OM 5-1	30	10	99	21	42	30,000	205
26. Scituate, RI (T)	9/16-17/32	NA $1-20 \mathrm{~A}$	41	47	71	30	48	10,000	200
27. Ripogenus Dam, ME (T)	9/16-17/32	NA $1-20 \mathrm{~B}$	45	53	69	15	30	10,000	200
28. Cheyenne, OK	4/3-4/34	SW 2-11	35	37	99	40	18	2,200	230
29. Simmesport, LA	5/16-20/35	LMV 4-21	30	59	91	48	102	75,000	235
30. Hale, CO	5/30-31/35	MR 3-28A	39	36	102	08	24	6,300*	235

Table l.-Ma jor storms from HMR No. 51 used in this study - Continued

Storm center location	Date	Storm assignment number	Lat.		Long. $\left(^{\circ}\right)(1)$		tal stor duration (hr)	Total storm area \{ize (mi ${ }^{2}$)	Orient. of pattern $\left({ }^{\circ}\right)$
31. Woodward Rch., TX	5/31/35	GM 5-20	29	20	99	18	10	7,000	210
32. Hector, NY	7/6-10/35	NA 1-27	42	30	76	53	90	38,500	255
33. Snyder, TX	6/19-20/39	--	32	44	100	55	6	2,000	285
34. Grant Twnshp., NE	6/3-4/40	MR 4-5	42	01.	96	53	20	20,000	210
35. Ewan, NJ (T)	9/1/40	NA 2-4	39	42	75	12	12	2,000	205
36. Hallett, OK	9/2-6/40	SW 2-18	36	15	96	36	90	20,000	160
37. Haywdrd, WI	8/28-31/41	UMV 1-22	46	00	91	28	78	60,000	270
38. Smethport, PA	7/17-18/42	OR 9-23	41	50	78	25	24	4,300	145
39. Big Meadows, VA (T)	10/11-17/42	SA 1-28A	38	31	78	26	156	25,000	200
40. Warner, OK	5/6-12/43	SW 2-20	35	29	95	18	144	212,000	225
41. Stanton, NE	6/10-13/44	MR 6-15	41	52	97	03	78	16,000	260
42. Collinsville, LL	8/12-16/46	MR 7-2B	38	40	89	59	114	20,400	260
43. Del Rio, TX	6/23-24/48	--	29	22	100	37	<24	10,000	180
44. Yankeetown, FL (T)	9/3-7/50	SA 5-8	29	03	82	42	96	43,500	205
45. Council Grove, KS	7/9-13/51	MR 10-2	38	40	96	30	108	57,000	280
46. Ritter, IA	6/7/53	MR 10-8	43	15	95	48	20	10,000	220
47. Vic Pierce, TX (T)	6/23-28/54	SW 3-2?	30	22	101	23	120	27,900	140
48. Bolton, Ont., Can. (T)	10/14-15/54	ONT 10-54	43	52	79	48	78	20,000	190
49. Westfield, MA (T)	8/17-20/55	NA $2-22 \mathrm{~A}$	42	07	72	45	72	35,000	230
50. St. Pierre Baptiste, Que., Can.	8/3-4/57	QUE 8-57	46	12	71	35	18	7,000	285
51. Sombreretillo, Mex. (T)	9/19-24/67	SW 3-24	26	18	99	55	126	60,000	220
52. Tyro, VA ('T)	8/19-20/69	NA $2-23$	37	49	79	00	48	15,000	270
53. Zerbe, PA (T)	6/19-23/72	NA $2-24 \mathrm{~A}$	40	37	76	32	96	130,000	200

$\#(T)=$ Precipitation associated with tropical cyclone
 Cherry Ck.

Certain sequences result in more critical flow (higher peak) than others. We leave the determination of criticality to the hydrologist, but recognize that the mass curve or temporal distribution selected for PMP is important.

PMP estimates can be obtained in HMR No. 51 for 6-, 12-, 24-, 48- and 72-hr durations. A plot of these depths against duration joined by a smooth curve defines PMP for all durations between 6 and 72 hours. In many applications, definition of PMP by 6 -hr time increments is sufficient. Thus, PMP values for 6 , 12, 18, $24, \ldots, 72 \mathrm{hr}$ can be read from such a smooth curve. Successive subtraction of the PMP for each of these durations from that of the duration 6 -hr longer gives 6 -hr increments of PMP. We have shown in $\mathbb{M M R}$ No. 51 that, in general, allowing PMP for all durations (6 to 72 hr) to occur in a single storm is not an undue maximization.

2.2 Observed Sequences of 6-hr Increments in Ma jor Storms

We considered the sequences of 6 -hr rain increments of the more important storms east of the 105 th meridian as guidance for recommending sequences for PMP. These storms, 53 of which are given in the appendix of GMR No. 51 , are listed in table 1 and represent a primary data base for this study. Table 1 includes information on storm location, duration, areal extent, and the orientation of the isohyetal pattern (refer to chapter 4).

To obtain information on the chronological sequence of 6 -hr increments of precipitation, we referred to storm data summazed for most major storms listed in table 1 (not available for the 2 storms of $9 / 16-17 / 1932$, and those of $6 / 19-$ 20/1939, 6/23-24/1948, 10/14-15/1954, and 8/3-4/1957). For the 47 remaining storms, these data are contained in what we refer to as Part 2 storm study files in which point data are grouped to obtain chronological sequences of areally averaged depths. A search was made through these storms for cases in which depths were given for both 100 - and $10,000-$ mi 2 approximate areas for the storm center with maximum precipitation. The storms were further limited to those for which 6 -hr incremental depths occurred over a period of more than 48 hr , to assure us that we were considering representative 3-day storms.

Table 2 lists the 28 storms that met these conditions, and separates them by storn type-tropical and nontropical. The remaining 19 storms had rainfall durations or areas that failed to meet our threshold. It should be pointed out that the limitations for $48-h r$ sequences from the Part 2 data do not necessarily agree with the listing of total-storn duration given in table 1 . For example, the Greeley, Nebraska ($6 / 4-7 / 1896$) storm in table 1 is considered to have a total storm duration of 78 hr (U.S. Arny Corps of Engineers 1945-). This same storm for the 100 - and $10,000-\mathrm{mi}^{2}$ approximate areas in the maximum storm rainfall center provides sequences of depths only up to about $24 \mathrm{hr}\left(\sim 100 \mathrm{mi}^{2}\right)$ and $36-\mathrm{hr}$ $\left(\sim 10,000 \mathrm{mi}^{2}\right.$).

A rainfall was considered tropical if it occurred within 200 miles of a storm track contained in Neumann, et al. (1978), and if the rain occurred within 2 days prior to passage of the storm. Other storm rainfalls were also designated tropical if they occurred within 500 miles beyond and within 2 days after the last reported position of a tropical cyclone track in Neumann. In such cases, the assumption made was that moisture from the tropical cyclone continued to move

Table 2.-Major storms from table 1 used in study of temporal distributions

Location	Date	Storm assignment number
TROPICAL		
Jefferson, OH	9/10-13/1878	OR 9-19
Hearne, TX	6/27-7/1/1899	GM 3-4
Paterson, NJ	10/7-11/1903	GL 4-9
Altapass, NC	7/15-17/1916	SA 2-9
Big Meadows, VA	10/11-17/1942	SA 1-28A
Yankeetown, FL	9/3-7/1950	SA 5-8
Vic Pierce, TX	6/23-28/1954	SW 3-22
Westfield, MA	8/17-20/1955	NA $2-22 \mathrm{~A}$
Sombreretillo, Mex.	9/19-24/1967	SW 3-24
Zerbe, PA	6/19-23/1972	NA $2-24 \mathrm{~A}$
NONTROPICAL		
Lambert, MN	7/18-22/1897	UMV 1-2
Jewe 11, MD	7/26-29/1897	NA $1-7 \mathrm{~B}$
Eutaw, AL	4/15-18/1900	LMV 2-5
Medford, WI	6/3-8/1905	GL 2-12
Warrick, MT	6/6-8/1906	MR 5-13
Meeker, OK	10/19-24/1908	SW 1-11
Merryville, LA	3/24-28/1914	LMV 3-19
Springbrook, MT	6/17-21/1921	MR 4-21
Thrall, TX	9/8-10/1921	G 4-12
Savageton, WY	9/27-10/1/1923	MR 4-23.
Elba, AL	3/11-16/1929	LMV 2-20
Simmesport, LA	5/16-20/1935	LMy 4-21
Hector, NY	7/6-10/1935	NA 1-27
Hayward, WI	8/28-31/1941	IMV 1-22
Warner, OK	5/6-12/1943	SW 2-20
Stanton, NE	6/10-13/1944	MR 6-15
Collinsville, IL	8/12-16/1946	MR 7-2B
Council Grove, KS	7/9-13/1951	MR 10-2

beyond the dissipated circulation system and possibly combined with frontal or orographic mechanisms to produce the observed extrene rain. Such probably was the case with the Big Meadows, Virginia (10/11-17/1942) rain listed in table 2. A further check was made of daily weather maps to determine if any of these rains may have been associated with tropical disturbances of less intensity than covered in Neumann, et al. The Hearne, Texas ($5 / 27-7 / 1 / 1899$) rain, as an important example, is believed to have resulted from extreme moisture associater with one of these weaker systers located off the Texas Gulf Coast, and which moved rapidly inland. More discussion on meteorological factors in extreme rainfalls is given in chapter 4.

[^2]

Figure 2.-Examples of temporal sequences of 6 -hr precipitation in major storms.

We defined a rain burst as one or more consecutive 6 -hr rain increment(s) for which each individual increment has 10 percent or more of the 72 -hr rainfall. A second set of results was obtained by redefining a rain burst as 20 percent or more of the $72-h r$ rainfall.

Examination of the incremental rainfall sequences for each of the 28 storms in table 2 allowed us to compile some constructive information. We tallied the number of bursts in each sequence, the duration of each burst, and the time interval between bursts. Table 3 summarizes this information by area size and storm type for the 28 storms in table 2. (Values in parentheses represent data based on a burst defined as ≥ 20 percent of the $72-h r$ rainfall.) Part (a) summarizes the number of rain bursts in the $72-\mathrm{hr}$ period of maximum rainfall; part (b) the duration (in hours) of the rain bursts; and part (c) the number of hours between bursts.

The first example in figure 2 for the storm of June 6-8, 1906, is used to illustrate these three temporal characteristics. There are two bursts observed for the $100-\mathrm{mi}^{2}$ area and 3 bursts for the $10,000-\mathrm{mi}^{2}$ area. These counts went into part (a) of table 3. For $100 \mathrm{mi}^{2}$, the first rain burst is 12 hr long and the second is 6 hr long. These are separated by 6 hr . The first burst for $10,000 \mathrm{mi}^{2}$ is 6 hr long separated by 12 hr from the second burst of 12 hr , which is separated by 6 hr from the last burst of 6 hr . These values are included in parts (b) and (c) of table 3. Some conclusions drawn from the sumaries in table 3 are the following:

1. In part (a), fewer rain bursts are observed when the 20 percent threshold is applied than with the 10 percent threshold.
2. For the 10 percent threshold, a larger fraction ρ^{f} tropical storms ($8 / 10$ at $100 \mathrm{mi}^{2}$ and $6 / 10$ at $10,000 \mathrm{mi}^{2}$) tends to have single bursts in a $72-h r$ period than do nontropical storms ($6 / 18$ at $100 \mathrm{mi}^{2}$ and $6 / 18$ at 10,000 mi^{2}). This is indicative of the greater occurrence of short-duration thunderstorms which cause multiple bursts in nontropical storms. However, when a rain burst is defined as 20 percent or greater of the $72-\mathrm{hr}$ total rainfall, the tendency is to lessen the difference between storm types ($6 / 10$ vs. $14 / 18$ at $100 \mathrm{mi}^{2}$ and $6 / 10$ vs. $13 / 18$ at $10,000 \mathrm{mi}^{2}$).
3. Rain burst lengths between 6 and 24 hr dominate for both area sizes and storm types (part (b)). There appears to be a significant difference between storm type and the length of rain bursts, based on this limited sample. Nontropical storms show notably shorter-duration bursts (89 percent are 12 hr or less) than do tropical storms (77 percent are 12 hr or less).
4. The number of hours between rain bursts in tropical storms typically is about 6 to 12 hr , while nontropical storms showed intervals between 5 and 30 hr (part (c)).

Table 3.-Summary of rain burst characteristics of 28 major rainfalls listed in table 2

	0		Number of rain bursts in a $72-\mathrm{hr}$ period						Total	
$\begin{aligned} & \text { Area } \\ & \left(m i^{2}\right) \end{aligned}$	T	NT								
	Number of Storms									
100	O(2)	0(0)	8(6)	6 (14)	O(2)	$7(4)$	2(0)	$5(0)$	10	18
10,000	$0(4)$	O(1)	6(6)	6(13)	3(0)	$7(4)$	1(0)	5(0)	10	18

Part (b); Duration of bursts

6			$\begin{array}{lcccc}\text { Duration of rain bursts (hr) } \\ 12 & 18 & 24 & 30 & 36\end{array}$										Total	
$\begin{aligned} & \text { Area } \\ & \left(\mathrm{mi}^{2}\right) \end{aligned}$	T	NT	T	VT										
	Number of bursts													
100	3(7)	19(14)	3(3)	12(8)	$3(0)$		3(0)	$0(0)$	$2(0)$	$0(0)$		$0(0)$	14 (10)	$35(22)$
10,000	3(2)	14(14)	5(3)	13(7)	$0(0)$	$7(0)$	4(1)	0(0)	$2(0)$	$0(0)$	$1(0)$	1(0)	15(6)	35(21)

Part (c); Duration of intervals

[^3]
2.3 Recommended Sequences for PMP Increments

While the 28 -storm sample shows some evidence for rain burst sequences to differ depending on the storm type, table 3 suggests the difference may be in part due to the choice of threshold value. Furthermore, differentiation by storm type would necessitate delineating regions of control on PMP. This is not recommended since anomalies in major rains related to storm type occur. An example of this is one of the most extreme rain events for large areas along the gulf coast, the Elba, Alabama storm of $3 / 11-16 / 1929$. This was a nontropical storm. Another reason for not distinguishing time sequences for PMP by storm type is that the PMP in coastal regions may be produced by a complex weather situation that is a mixture of both tropical and nontropical influences. Therefore, one standard set of temporal sequences, independent of storm type, is recommended for the PMP increments determined as describer in section 2.1 .

The limited sample of storms in table 2 was further examined for guidance on how to arrange the increments of PMP. Almost any arrangement could be found in these data. The Warner, Oklahoma, (9/6-12/1943) storm showed the six greatest 6hr increments to be consecutive in the middle of the $72-h r$ rain sequence, while the Council Grove, Kansas (7/9-13/1951) storm showed daily bursts of 12 hr with lesser rains between.

To get PMP for all durations within a $72-\mathrm{hr}$ storm requires that the 6 -hr increments be arranged with a single peak (fig. 3). Ne chose a $24-\mathrm{hr}$ period as including most rain bursts in major storms, and set this as the length of rain bursts for the PMP, giving three $24-\mathrm{hr}$ periods in a $72-\mathrm{hr}$ period. Based on results from examination of the 28 -storm sample, guidance follows for arranging 6-hr increments of PMP within a $72-\mathrm{hr}$ period. To obtain PMP for all durations:
A. Arrange the individual $6-\mathrm{hr}$ increments such that they decrease progressively to either side of the greatest $6-\mathrm{hr}$ increment. This implies that the lowest 6 -hr increment will be at either the beginning or the end of the sequence.
B. Place the four greatest $6-\mathrm{hr}$ increments at any position in the sequence except within the first 24 -hr period of the storm sequence. Our study of major storms (exeeding 48 -hr durations) shows maximum rainfall rarely occurs at the beginning of the sequence.

3. ISOHYTAL PATTERN

3.1 Introduction

There are two important considerations relative to the isohyetal pattern used for PMP rainfalls. The first is the shape of the pattern and how it is to be represented. The second is the number and magnitude of isohyets within the pattern.

This chapter deals with the selection of the pattern shape and the number of isohyets considered to represent the shape. The magnitude of the individual isohyets will be detemined from the procedure described in chapter 5, Isohyet Values. In addition to establishing the shape of the isohyetal pattern for

Figure 3.-Schematic example of one temporal sequence alloved for 6-hr increments of PMP. See text for restrictions placed on allowed sequences.
distributing area-averaged $P M P$ over a drainage for the three greatest increments, it should be emphasized that this shape applies as well to the remaining 6-hr increments of PMP for distribution of residual precipitation and other adjustments.

3.2 Isohyetal Shape

To understand more about the shape of isohyetal patterns, we considered those for the 53 major rainfalls listed in table I. It sapparent from this sample of storms as well as from our experience with other samples that the most representative shape for all such storms is that of an ellipse. Actual storm patterns in general are extended in one or more directions, primarily as a result of storm movement, and one finds that an ellipse having a particular ratio of major to minor axis can be fit to the portion of heaviest precipitation in most storms. Therefore, one question we posed was, what was the most representative ratio of axes for the mar storms in our sample. Also of interest was to learn the variation of pattern shape with area size and with region.

To decermine the shape ratio (i.e., the ratio of the way to minor axis) for the storms in our sample, we developed a number of elliptical templates that were scaled to contain $20,000 \mathrm{mi}^{2}$, relative to the small isohyetal maps portrayed in "Storm Rainfall in the United States" (U.S. Army Corps of Engineers 1945-),
hereafter referred to as "Storm Rainfall." These templates had shape ratios that varied between 1 and 8. For each storm, we chose the template which best fit the shape of the isohyets that enclosed approximately $20,000-\mathrm{mi}^{2}$ areas of greatest rainfall. Judgment of fit was necessary, particularly for storms with large areas, or those near coastal zones where only partial isohyetal patterns were available. For those smaller area storms, a shape ratio was determined based on the ratio of major to minor axis measured on the storm isohyetal pattern.

The variation of shape ratios for the 53-storm sample is sumarized in table 4. Shape ratios of 2 are most common, followed by those of 3 and 4. Of the storms in table 4,62 percent had shape ratios of 2 or 3 , and 83 percent had shape ratios of 2 to 4 .

Table 4.-Shape ratios of isohyetal patterns for 53 major rain events (see table 1)

	Shape Ratio								Total
	1	2	3		5	6	7	8	
No. of patterns	2	22	11	11	4	2	1	0	53
\% of total	3.8	41.5	20.8	20.8	7.5	3.8	1.9	0	100
Accum. \%		45			94		100	100	

Before we draw any conclusions from table 4, we wanted to know if there was a variation in shape ratio with region or area size. To check the regional variation of shape ratios, we chose to separate the region into meteorologically homogeneous subregions as shown in figure 4. These subregions were not meant to represent the entire region of homogeneity but to be sufficiently independent portions of such broadscale subregions among which one might expect to find differences in shape ratios. These regions, shown in figure 4, contained 33 (62%) of the 53 storms.

Table 5 shows the distribution of shape ratios within each of the six subregions, and although the number of storms in each is small, the percent of total shown at the bottom of the table is somewhat similar to that for the entire sample given in table 4. The number of storms in table 5 is too small to be significant, but distinguishable regional differences are not apparent, all tending to support shape ratios of 2 or 3 .

Table 5.--Shape ratios for six subregions

Subregions	Shape Ratio								Total no. of storms
	1	2	3	4	5	6	7	8	
	of storms in region								
Atlantic Coast	20	40	0	20	20	0	0	0	5
Appalachians	20	40	20	0	20	0	0	0	5
Gulf Coast	0	56	22	11	11	0	0	0	9
Central Plains	0	67	0	17	17	0	0	0	6
North Plains	0	0	50	0	0	25	25	0	4
Rocky Mt. Slopes	0	50	25	25	0	0	0	0	4
\% of total	6	45	18	12	12	3	3	0	$\begin{array}{r} 33 \\ 99 \\ \hline \end{array}$

Figure 4.-Homogeneous topographic/climatologic subregions used in study of regional variation of isohyetal patterns.

The appendix contains a discussion of a larger sample of storms, 183 of which occurred in these same six subregions. Results from these storms are shown in table 6. Information from table 6 indicates that the Atlantic Coast and North Plains regions have the greatest percentage (16) of storms with shape ratios greater than 5. The North Plains also has the greatest percentage (16) of approximately circular patterns. The Appalachians show the greatest percentage of storms with shape ratios of 4 and 5 . This may be a reflection of an orographic effect of the mountains combined with the northeastward movement of storms along the east coast. These results are not typical of all orographic regions, for shape ratios of 2 predominate on the Rocky Mountain Slopes. This is meteorologically reasonable since many large storms in this region result from nearly stationary weather systems over or near the east face of the mountains.

Table 6.-Shape ratios of $20,000-\mathrm{mi}^{2}$ isohyetal patterns for six subregions

Subregions	Shape Ratio								Total no. of storms
	1	2	3	4	5		7	8	
	\% of storms in region								
Atlantic Coast	4	31	19	15	15	12	4	0	26
Appala chians	4	17	13	30	30	0	0	4	23
Gulf Coast	6	42	28	10	6	2	2	4	50
Central Plains	2	26	35	16	9	9	0	2	43
North Plains	16	28	28	8	4	8	4	4	25
Rocky Mt. Slopes	6	56	19	0	13	0	0	6	16
\% of total									183
subsample	6	33	25	14	12	5	2	3	100

Although some of the differences are meteorologically reasonable and may in fact represent variations over a regional extent, it must be recognized that the regional samples in table 6 are somewhat small in all but the Gulf Coast and Central Plains. It is difficult to compare the results in tables 5 and 6 . Seven storms in table 5 that had particularly small total areas were not included in the sample for table 6. Nevertheless, it was concluded from these tables that there is little apparent regional variation amongst shape ratios.

The variation of shape ratios with area size for the 53 storm sample, regardless of duration, is shown in table 7 . Here too the results show no strong variation with area size.

Table 7. -Shape ratios of mar isohyetal patterns relative to area size of total storm

Area size $\left(10^{3} \mathrm{mi}{ }^{2}\right)$	1	2	3	pe 4	$\begin{gathered} \text { zatio } \\ 5 \end{gathered}$	6	7	8	Total no. of storms
	4012	\% of storm in category							
≤ 0.3									0
$0.31=5.0$		20	20	20					5
5.1-10.0		67		33					3
10.1-20.0		57		28	14				7
20.1-30.0		50	12	25					8
$30.1-40.0$		50		33	17				6
40.1-50.0		50		50					2
50.1-70.0		22	33	11		22	11		9
$70.1-90.0$		28	43		28				7
≥ 90.0			50	17					6
\% of total	6	40	21	21	8	4	2	0	53

In table 7 , the larger values in each row have been circled. In this sample, there appears to be a tendency for larger percentages of storms to be circular at the smaller area size. In the same maner, there is a tendency for shape ratios to increase from 2 for areas between $5,000 \mathrm{mi}^{2}$ and $50,000 \mathrm{mi}^{2}$ to 3 for larger areas. Although these results are perhaps handicapped by the small size of the sample, somewhat similar results were obtained from the larger sample of storms discussed in the appendix.

3.3 Summary of Analysis

The following conclusions were drawn from analysis of shape ratios of mator storm isohyetal patterns.

1. Approximately 60 percent of our sample of major storms had shape ratios between 2 and 3 .
2. No strong regional variation of shape ratios was apparent, although some meteorologically reasonable trends could be obtained from the data.
3. No strong relation found between shape ratio and totalstorm area size, but there was some evidence that lower shape ratios occur with the smaller area sizes.

3.4 Recommended Isohyetal Pattern for PMP

Since a majority of the storms considered in this study had shape ratios of 2 and 3, we recommend an idealized (elliptical) isohyetal pattern with a ratio of major to minor axis of 2.5 to 1 for distribution of all 6 -hr increments of precipitation over drainages in the nonstippled zones east of the 105 th meridian (see figs. 18-47 of HMR No. 51). The choice of a single shape ratio for the entire region east of the 105 th meridian simplifies the procedure for determining the hydrologically most critical pattern placement on a drainage, does not violate the data, and tends to be in the direction of the small-area patterns observed in major storms of record.

A recommended pattern is given in figure 5, drawn to a scale of 1 to 1,000,000. This pattern contains 14 isohyets (A through N), that we think would provide reasonable coverage of drainage areas up to about $3,000 \mathrm{mi}^{2}$. Since it would be cumbersome to include a pattern drawn to $1: 1,000,000$ scale with isohyets enclosing the largest suggested area, we have limited figure 5 to only 6,500 mi^{2}. All discussion of figure 5 implies a pattern of 19 isohyets extending from A to S and covers an area of $60,000-\mathrm{mi}^{2}$. It is necessary to provide patterns larger than $20,000 \mathrm{mi}^{2}$ (the limit of PMP given in HMR No. 51) in order to cover a narrow drainage with isohyets, particularly if the pattern and the drainage have different axial orientations, or if you $n t$ to consider non-basin centered placements. The $10-m i^{2}$ isohyet is taken to be the same as point rainfall.

If it is desired to apply figure 5 to some other scale or to add larger isohyets to the pattern, and suitable templates are not available, table 8 aids the reproduction of figure 5 and gives the length in miles of the semi-minor and semi-major axes of an ellipse along with selected radials that enclose the suggested areas for a shape ratio of 2.5 . For example, to obtain a $2,150-\mathrm{mi}^{2}$ ellipse, the minor axis is twice the value of 16.545 given in table 8 , or 33.09 mi. The major axis is then 82.725 mi. The information in table 8 is sufficient to obtain isohyets that enclose areas for which $\mathbb{M R}$ No. 51 is applicable.

The procedure in chapter 7 for determining isohyet values suggests that at times it may be necessary to consider isohyets supplementary to those specified in figure 5. To aid in construction of any additional isohyets, we provide the

Figure 5.--Standard isohyetal pattern recommended for spatial distribution of PMP east of the losth meridian (scale 1:1,000,000).

Table 8.--Axial distances (mi) for construction of an elliptical isohyetal pattern for standard isohyet areas with a 2.5 shape ratio (Complete four quadrants to obtain pattern)

$\begin{gathered} \text { Isohyet } \\ \text { label } \end{gathered}$	Standard isohyets enclosed area (mi ${ }^{2}$)	Incremental area (mi ${ }^{2}$)	Radial axis (deg.)*					
A	10	10	2.820	2.426	1.854	1.481	1.269	1.128
B	25	15	4.460	3.836	2.933	2.342	2.007	1.784
C	50	25	6.308	5.426	4.148	3.313	2.839	2.523
D	100	50	8.920	7.672	5.866	4.685	4.014	3.568
E	175	75	11.801	10.150	7.758	6.198	5.310	4.720
F	300	125	15.451	13.289	10.160	8.115	6.953	6.180
G	450	150	18.924	16.276	12.444	9.939	8.516	7.569
H	700	250	23.602	20.301	15.521	12.397	10.622	9.441
I	1,000	300	28.209	24.263	18.550	14.816	12.965	11.284
J	1,500	500	34.549	29.717	22.720	18.146	15.549	13.820
K	2,150	650	41.363	35.577	27.200	21.725	18.614	16.545
L	3,000	850	48.860	42.026	32.130	25.662	21.989	19.544
M	4,500	1,500	59.841	51.470	39.351	31.430	26.930	23.936
N	6,500	2,000	71.920	61.860	47.294	37.774	32.366	28.768
0	10,000	3,500	89.206	76.728	58.661	46.853	40.145	35.682
P	15,000	5,000	109.225	93.973	71.846	57.383	49.168	43.702
0	25,000	10,000	141.047	121.318	92.752	74.082	63.475	55.419
R	40,000	15,000	178.412	153.456	17.323	93.707	80.292	71.365
S	60,000	20,000	218.510	187.945	143.691	114.767	98.337	87.404

following relations, where a is the semi-major axis, b is the semi-minor axis, and A is area of the ellipse.

For this study,
$a=2.5 b$

For a specific area, A, $b=\left(\frac{A}{2.5 \pi}\right)^{1 / 2}$

Radial equation of ellipse,

$$
r^{2}=\frac{a^{2} b^{2}}{a^{2} \sin ^{2} 0+b^{2} \cos ^{2} 0}
$$

where $r=$ distance along a radial at an angle 0
to the major axis.

Although there is a slight tendency for circular patterns to occur for small area storms, we recommend the elliptical pattern in figure 5 for all drainage areas covered by HMR No. 51.

3.5 Application of Isohyetal Patterns

3.5.1 Drainage-centered patterns

This study recommends centering the isohyetal pattern (fig. 5) over a drainage to obtain the hydrologically most critical runoff volume. For many drainages that are not divided into sub-basins for analysis, the greatest peak flow will result from a placement of the isohyetal pattern that gives the greatest volume of rainfall within the drainage. The hydrologic trials to determine the greatest volume in the drainage discussed in section 5.3 may result in a placement that does not coincide with the geographic center of the drainage, particularly in irregularly shaped drainages. Centering of the isohyetal pattern as described here applies to the incremental volumes determined for each of the $6-h r$ PMP increments, each of which will be centered at the same point.

For some drainages, it may be hydrologically more critical to center the isohyetal pattern at some other location than that which yields the greatest volume. That is, recognizing that any location other than drainage-centered may result in less volume of rainfall in the drainage, it may nevertheless be possible to obtain a greater peak flow by placing the center of the isohyetal patterns nearer the drainage outlet. Characteristics of the particular drainage would be an important factor in considering these trial placements of isohyetal patterns. Should this secondary consideration for a nondrainage-centered pattern be used, the data in table 8 are believed sufficiently large in area covered to allow considerable flexibility in alternative placement of patterns, while still giving spatial distribution throughout the drainage. When it is determined that the zero isohyet occurs within the drainage, the area to use in hydrologic computations is that contained within the zero isonyet, and not the area of the entire drainage.

An additional benefit may be derived from the extent of coverage provided in table 8 . This appears in the form of concurrent precipitation; i.e., if PMP is applied to one drainage, the extended pattern in many instances is sufficient to permit estimation of the precipitation that could occur on a neighboring drainage. This information is useful in evaluating effects from multiple drainages contributing to a hydrologic structure.

3.5.2 Adjustment to PMP for drainage shape

Whenever isohyetal patterns are applied to a drainage, there will be disagreement between the shape of the outermost isonyets and the shape of the drainage. Adjustment to drainage averaged PMP for this lack of congruency has been referred to in some past studies as a "fit factor" or a "basin shape" adjustment. In those studies, a comparison was made between the drainageaveraged PMP determined from planimetering isohyetal areas within the drainage and the total PMP (generally for 72 hr) derived from depth-area-duration data. It has generally been the case that the ratio of these depths, termed the fit factor, was then applied to each durational increment of the PMP.

Since we have established that there is a pattern shape assigned to each 6-hr increment, we can reasonably expect that there will be some reduction to the volume precipitation determined from the isohyetal pattern when the pattern is "fit" to an irregularly shaped drainage. Comparison of the drainage-averaged volume of precipitation and that from the depth-area curve derived from $H M R 51$ for a 6 -hr period is indicative of the percentage reduction due to the drainage shape. The largest reduction occurs in the first 6 -hr period and decreases with each succeeding 6-hr period.

3.5.3 Pattern applicable to PMP

When the isohyetal pattern in figure 5 is applied to a drainage, both drawn to the same scale, one might ask whether it is necessary to use all the isohyets given, since the outermost isohyet encloses $60,000 \mathrm{mi}^{2}$, well above the area size for which PMP is given. The answer to this question depends upon the shape of the drainage. It is only necessary to use as many of the isohyets of figure 5 as needed to cover the contributing portion of the drainage. If one has a perfectly elliptical drainage of $2,150 \mathrm{mi}^{2}$ with a shape ratio of 2.5 , then it is only necessary to evaluate isohyets A through K in the pattern in figure 5. Since almost all drainages are highly irregular in shape, the K isohyet is unlikely to provide total coverage for a drainage of this size, and for an extremely long $2,150-\mathrm{mi}^{2}$ drainage, even though one is applying the $2,150-\mathrm{mi}^{2} \mathrm{PMP}$, it may be necessary to evaluate the M, V or larger isohyets.

At this point in our discussion, we note that figure 5 is applied only to the three greatest $6-\mathrm{hr}$ increments of PMP (18-hr PMP). For the nine remaining 6-hr increments of PMP in the 3-day storm, we recommend a uniform distribution of PMP throughout the area of PMP. This means that for each of the three greatest increments, the magnitude of PMP is such that it is reasonable to expect it to be spatially distributed according to the isohyets in figure 5 . However, the magnitudes of the increments of PMP decrease rapidly after the greatest 6 -hr amount, and by the fourth $6-h r$ period are reduced to a level at which we assume they can be approximated by constant values over the PMP portion of the pattern for the fourth through $12 \mathrm{th} 6-\mathrm{hr}$ periods.

Since most drainages have irregular shapes and as we have already discussed earlier in this section, the pattern shape in figure 5 will not fit when placed over the drainage. Therefore, there will be portions of the drainage that may for some unusually shaped drainages be uncovered by the pattern for a particular area size of PMP. (Chapter 5 discusses how to determine what area pattern to place on a drainage.) We are faced with the problem of what precipitation to expect outside the area of the PMP pattern. The solution lies in the concept of residual precipitation.

Residual precipitation is the precipitation that occurs outside the PMP area size pattern. For example, if we find the pattern area size that gives the maximum volume of PMP in the drainage is $2,150 \mathrm{mi}^{2}$, then for the 3 greatest $6-\mathrm{hr}$ increments, apply figure 5, where the K isohyet encloses the PMP area. The isohyets inside and outside of K represent values that will give areal average depths somewhat less than PMP. In this example, the isohyets outside of K determine the residual precipitation. It should also be emphasized that residual precipitation is that outside the area of the PMP pattern, and not necessarily outside the drainage.

Now, for the fourth through 12 th $6-h r$ periods we have assumed a constant value approximates the respective $6-h r$ increment of PMP through the area size of PM. . Therefore, for these increments, there would be no A through J isohyets in the patterns applied. But, there would remain isohyets outside the isohyet for the area size of the PMP (outside K in the above example), and thus there is a residual precipitation pattern assigned to each of the fourth through 12 th 6 -hr increments of PMP, in addition to the patterns for the three greatest 6 -hr increments. (See discussion in section 5.2 .5 and fig. 21.)

Although the concept of residual precipitation and its application and representation in isohyetal patterns is new, and perhaps confusing at this point, further discussion in chapter 5 and the examples in chapter 7 should be helpful.

4. ISOHYETAL ORIENTATION

4.1. Introduction

The subject of isohyetal orientation arises quite naturally from discussion of placing isohyetal patterns over a drainage, since the orientation of a PMP pattern and that of the drainage over which it is placed may be entirely different. Guidance is needed on how well these orientations match for the PMP storm. It is assumed, though perhaps not always true, that the greatest volume of rainfall within a drainage results when the isohyetal pattern and the drainage are similarly oriented.

An objective of this section, therefore, is to determine whether there are meteorological restrictions or preferences for certain orientations. We are also interested in determining if there are any regional variations or constraints on orientations due to terrain or other factors.

As in the previous chapter, we rely on major observed storm rainfalls and apply the results to adjust the isohyetal orientation of the 6-hr PMP increments. (See section 5.2.1.)

Since $6-h r$ incremental isohyetal patterns are available only for a very few storms, we assume that the orientation of isohyets for the 6 -hr incremental patterns of rainfall is the same as that for the total storm. Limited support for this assumption is found in the few incremental isohyetal patterns given in a study of Mississippi River basin storms by Lott and Myers (1956). For 10 of the 18 storms studied by Lott and Myers, $6-h r$ isohyetal patterns were determined. The orientations of the $6-h r$ isohyetal increments for these 10 storms vary from the total-storm orientations by no more than 40°.

4.2 Data

The sample of isohyetal patterns from the 53 major storms in table 1 were considered for the study of isohyetal orientations.

4.2.1 Average orientations

In this chapter, reference is sometimes made to the average of several orientations. It is believed important to remark here on how these averages were obtained, because averages of angular measure do not follow that of simple arithmetic averages. First, recognizing that every orientation line (or axis) is

Froblem: Obtain an average of three omientation lines given below. If the Iines are designated as $\# 1=020^{\circ}$ or 200°, $\# 2=150^{\circ}$ or 330°, and $\# 3=165^{\circ}$ or 345°, then if we average 020°, 150° and 165°, we get 112°, which is seen to represent a falae average.

Solution: Choose values to cuerage from ends of the lines (quadrants) that give the minimon range. Bere the range of 200° minus 150°, or 380° minus 330°, is the minimum (50° range). Thus, the representative average is 172°, or 352° respectively.

Figure 6.--Schematic example of problem in averaging isohyetal orientations.
2-valued, we obtain different averages relative to which value is chosen to represent a particular orientation. Therefore, a rule must be developed, when a veraging such values, on which of the 2 values to use so that everyone obtains a comparable and representative result. The rule we applied wa to use those values that would give a minimum range for all the values to be averaged. This procedure will be illustrated by the following example. Average the three
 $165^{\circ}-345^{\circ}$). (Three orientations are considered here only to keep the problem simple; the procedure is the same regardless of the number of orientations to be averaged). If one chose to average the three smallest values (reading from north) of $20^{\circ}, 150^{\circ}$ and 165°, the result would be 112° given by the dashed line
in figure 6. This is an unrepresentative average when compared to the three solid lines in this figure. We say the range of those 3 values is $145^{\circ}\left(165^{\circ}\right.$ minus 020°). However, following the rule to obtain a minimum range, consider the three values of 150°, 165° and 200° (representing the same three orientations, but reading the other end of the $020^{\circ}-200^{\circ}$ line). Te get a range of 50° (i.e., 200° minus 150°), and similarly a 50° range is obtained for the set of other ends to these same 3 lines $\left(380^{\circ}\right.$ minus $\left.330^{\circ}\right)$. Since 50° is the least difference we can obtain from any set of directions, for these 3 particular lines, the correct values to average are either $150^{\circ}, 165^{\circ}$ and 200° or, $020^{\circ}+360^{\circ}$, 330° and 345°, for which the average orientation is 172° or 352°, respectively shown by the dotted line in figure 6 .

4.2.2 Orientation notation

Although each orientation line is 2 -valued, we have chosen to represent each orientation by only one value in the remainder of this chapter. This convention greatly simplifies the notation assigned to graphs and tables. In selecting the one value to identify each orientation, we could have arbitrarily chosen values between 0° and 180° (from north). However, this choice is but one of many possible choices, each covering a range of 180°, and we adopted the 180° sector between 135° and 315° for this study. This particular choice resulted from considerations of meteorological bases for the observed pattern orientations, which are related to the moisture bearing inflow winds. Wind is commonly reported as the direction the wind is blowing from. Atmospheric winds during periods of maximum moisture in the United States east of the 105 th meridian are predominantly in the quadrant from the south to west. In addition, analysis for our storm sample indicated that most rainfall patterns had orientations that varied about a southwest-northeast axis.

4.3 Method of Analysis

An isohyetal orientation was determined for each of the major total-storm rainfall patterns in table 1 . We prescribed that the orientation line for each pattern pass through the location of maximum reporter point rainfall. Some complex isohyetal patterns necessitated subjective judgments on the orientation, because of multiple possible orientations or incomplete total-storm patterns. The latter was particularly the case along coastal zones. Direction of the orientation in each rainfall pattern was read to the nearest 5 degrees. Orientations determined for the 53 storms, listed in table 1 , have been plotted at their respective locations in figure 7 .

4.4 Analysis

The amount of variation in orientations given in table 1 and figure 7 gave rise to the question, whether it was possible to generalize these orientations into a consistent pattern over the entire study region.

4.4.1 Regional variation

The same six subregions used to study shape ratios were used to determine regionally averaged orientations. Averages of the orientation for the major storms in each subregion are given in table 9 . The range of orientations for storms considered in each subregion is also indicated.

Figure 7.-Lacation and orientation of precipitation pattern for 53 wa jor storns listed in BMR No. 51. Identification numers refer to table 1.

Table 9.-Averages of isohyetal orientations for mar storms wint selected subregions of the eastern United States (storms contained in appendix of bMR No. 51)

Subregion	No. of Storms	Average orientation (deg)	Range in orientations (deg)
Atlantic Coast	5	202	170 to 230
Appalachians	5	194	145 to 270
Gulf Coast	9	214	170 to 290
Central Plains	6	235	160 to 285
North Plains	4	270	230 to 295
Rocky Mt. Slopes	4	224	200 to 240

Although the results in table 9 represent a small sample, we feel that a tendency is shown for some regional variation among these subregions. Support for this conclusion was based in part on results from a similar analysis of the larger sample of storms discussed in the appendix and summarized in table 10 . We subdivided the Appalachians into storms that occurred east and west of the ridgeline. By so doing, the results for the Appalachians suggest that orientations in this region closely agree with the subregions to the east (Atlantic Coast) and to the west (Central Plains). This distinction does not appear in the results for table 9 , because none of the storms considered occurred to the west of the ridgeline. A general picture of the regional variation of isohyetal orientation is obtained from these two samples: orientations are southwesterly east of the Appalachians, along the Gulf Coast, and along the east slopes of the Rocky Mountains, but become more westerly in the Plains States. Meteorological bases for those observed orientations will be discussed in section 4.5 .

Table 10.-Average of isohyetal orientation for the large sample of storms within selected subregions in the eastern United States

Subregion	No of storms	Average orientation (deg.)	Range in orientations (deg.)
Atlantic coast	26	204	140 to 305
Appalachians (East)	17	204	155 to 240
Appalachians (West)	6	278	240 to 305
Gulf Coast	50	235	140 to 300
Central Plains	43	256	195 to 300
North Plains	25	257	185 to 310
Rocky Mt. Slopes	16	214	170 to 290

4.4.2 Generalized isohyetal orientations

Assuming from tables 9 and 10 that there is a regional variation in isohyetal orientations of major storms, we want to determine the regional variation that represents PMP. It would be desirable to generalize orientations by a continuous analysis across the entire study region.

As a first approach we plotted the subregion averages from table 9 at their respective locations, centered to represent the centroids of the storms averaged. From this basis, a rough pattern was drawn to show regional variation (not shown here). It was felt that although a general pattern could be obtained in this manner, drawing to five data points for so large a region was less than desirable.

A decision was made to consider a number of jor storms distributed throughout the region and develop the generalized pattern from their orientations. Storms were selected from table 1 according to the following conditions:

1. No other major storm in table 1 occurred within a radius of 100 miles of the storm chosen. When two or more storms were within 100 miles of one another, only the storm with the larger $24-\mathrm{hr} 1,000-\mathrm{mi}^{2}$ depth was considered.
2. No storm was selected whose total storm duration was less than 24 hr , as they were believed to represent local storms for which almost any orientation is believed possible.

With this guidance, 25 storms (roughly one-half the storms in table 1) were selected. In addition, to the 25 major storms from table 1 , six storms were selected from "Storm Rainfall" (U.S. Army Corps of Engineers 1945-) to fill in portions of the region not represented by storms in table 1 . These storms also met the selection criteria noted above.

The 31 storms were plotted at their respective locations as show in figure 8. Through considerable trials, a generalized pattern wa draw which attempted to match as many of the storm orientations as possible and yet maintain some internal consistency regarding gradients and smoothness. Also shown in figure 8 is the result of this analysis.

In making the analysis shown in this figure, we attempted to control the variation from observed orientation whenever possible. Table 11 lists the 31 differences. It is apparent that some large variations occur, e.g., 72° at Smethport, Pennsylvania. For the most part, variations are considerably less, as summarized by 10° categories in table 12 . Two-thirds of the analysed orientations are within 30° of the observed orientations, while nearly 94% are within 50°.

Although there are some portions of the region (e.g., eastern Great Lakes) that show rather large variation from the analysis, a decision was made not to complicate the analysis further by creating regional anomalies. Therefore, the analysis shown in figure 8 was adopted to represent the pattern of orientations for our data, and we further assumed that this pattern applied to the most favorable conditions for PMP. For drainages that lie outside the region covered by the analysis (for example in northern Michigan), use the orientation of the nearest isopleth.

4.4.3 Variation of PMP with pattern orientation applied to drainage

In application of PMP to specific drainage, figure 8 is used to deteraine the orientation of the isohyetal pattern most likely to be conducive to a PMP type event. It is unrealistic to expect that figure 8 is without error and that PMP at any location is restricted to only one orientation. For these reasons we recognize that it is more reasonable that PMP occur through a range of orientations centered on the value read from figure 8. Following this line of reasoning, we also expect that for precipitation orientations that do not fall within the optimum range, the magnitude of PMP would be somewhat less.
4.4.3.1 Range of full PMP. The range of full PMP ($100 \% \mathrm{PMP}$) is that range of orientations, centered on the value read from figure 8, for which there is no reduction to the amounts read from HMR No. 51 for orientation. Our concept of PMP is that the conditions resulting in a PMP-type event are somewhat restricted, and we believe that the range of full PMP should also be limited. However, to gain support for this limitation, we again referred to our sample of major storms and, from the summary of orientations in table 12 , we chose a range of $\pm 40^{\circ}$ (representing about 85 percent of the variation in our sample) to assign to PMP. Therefore, whenever the pattern best fitted to the drainage for which PMP is being determined has an orientation that falls within 40° of the orientation obtained for that location (from fig. 8), full PMP is used.

54. BROOME,TX
55. LOGANSPORT, LA
56. GOLCONDA, It
57. GLENVILLE,GA
58. DARLINGTON, SC
59. BEAUFORT, NC

Figure 8.--Analysis of isohyetal orientations for selected major storms adopted as recommended orientation for PMP within $\pm 40^{\circ}$. Addition of 6 mar jor stons not in figure 7 have been identified numerically above station locations and in the margin.

Table 11. Ma jor storm orientations relative to generalized analysis including summary information

Storm index no. from table 1	成me men	24-hr 1000- mi^{2} depth (in.)	Observed orientation (deg.)	Orientation from analysis (deg.)	Differences
1	Jefferson, OH	11.0	190	230	+40
7	Eutaw, AL	11.3	230	231	+ 1
8	Paterson, NJ	10.9	170	199	+29
14	Beaulieu, MN	10.0	285	251	-34
17	Altapass, NC	15.0	155	218	+63
18	Meek, MM	5.0	200	182	-18
19	Springbrook, MT	11.3	240	241	+ 1
20	Thra 11, TX	24.3	210	205	- 5
21	Sa vageton, WY	6.6	230	230	0
22	Boyden, IA	10.6	240	246	+ 6
23	Kinsman Notch, NH	7.8	220	200	-20
24	El ba, AL	16.1	250	224	-26
25	St. Fish Hechy, IX	19.0	205	194	-11
27	Ripogenus Dam, ME	7.7	200	198	- 2
30	Hale, CO	7.2	225	213	-12
37	Ha yward, WI	9.1	270	253	-17
38	Smethport, PA	13.3	145	217	+72
39	Big Meadows, VA	10.3	200	209	+ 9
42	Collinsville, IL	9.0	260	247	-13
44	Yankeetown, FL	30.2	205	200	- 5
45	Council Grove, KS	6.6	280	240	-40
48	Bolton, Ont., Can.	6.4	190	230	+40
49	Westfield, MA	12.4	230	198	-32
51	Sombreretillo, Mex.	. 11.9	220	170	-50
53	Zerbe, PA	12.3	200	207	$+7$
Supplementary storms					
54	Broome, TX	13.8	230	195	-35
55	Logansport, LA	14.8	215	225	+10
56	Golconda, IL	7.4	235	244	+ 9
57	Glenville, GA	13.1	180	205	+25
58	Darlington, SC	10.8	205	199	- 6
59	Beaufort, NC	11.5	235	196	-39

4.4.3.2 Reduction to PMP for orientation outside of range. We have stated that for orientations that differ from the central value from figure 8 by more than 40°, less than PMP-type conditions are likely, and therefore we feel a reduction can be made to the PMP determined from HMR No. 51. It is also reasonable to expect that as the difference between PMP orientation and orientation of the pattern on the drainage increases, the reduction applied to PMP should increase.

Table 12.-Frequency of various difference categories between observed and preferred orientations

Because we anticipated there could be a regional variation, we considered the subregions in figure 4. Our sample in table 1 of major storms within these subregions is too small to be useful, and we relied on the increased sample described in the appendix. Within each subregion, storms were ranked according to magnitude of $72-\mathrm{hr} 20,000-\mathrm{mi}^{2}$ depth, and then converted to percent of the maximum depth occurring in each region. We plotted the percent of maximum rainfall vs. orientation for each storm by geographic region. An enveloping curve drawn on these graphs provided guidance on the range of orientations that should be permitted without reduction and on the appropriate reduction for greater variations. The data for the Gulf Coast zegion are shown in figure 9, as an example of these plots.

In figure 9, the Hearne, Texas (6/27-7/1/1899) storm gave the maximum depth, and the Elba, Alabama (3/11-16/1929) storm was the second greatest at about 80 percent of the Hearne depth. We remind the reader that since orientation is a form of circular measure, the left-hand end of the scale in figure 9 is identical with the right-hand end of the scale.

Considering each of the subregional distributions, of which figure 9 is an example, we developed a model based essentially on envelopment of subordinate depth storms. The model shows that 100 percent of PMP applies within $\pm 40^{\circ}$ of the central value as indicated in section 4.4.3.1. Maximum reduction to PMP is limited to 15 percent applicable to orientation differences of $\pm 65^{\circ}$ or more. This model is given in figure 10 , in which the adjustment factor (100% minus the percentage reduction) to PMP is read from the right-hand axis for differences of orientation from the central value obtained from figure 8 (represented by the 0 value on the left of the model).
4.4.3.3 Variation due to area size. It appears reasonable that no reduction should be applied to storms on the scale of a single thunderstorm cell (or

Figure 9.-Distribution of isohyetal orientations for 50 ma jor storms (from sample listed in the appendix) that occurred in the gulf coast subregion.
possibly a complex cell). Such a system is expected to have equal intensity at any orientation. An area size of $300 \mathrm{mi}^{2}$ sas chosen as the smallest storm area for which a reduction should be applied. A rational argument can also be developed to say that if we limit reduction of PMP for orientation to storm area sizes of $300 \mathrm{mi}^{2}$ and larger, it is unreasonable to expect that a discontinuity occurs at $300 \mathrm{mi}^{2}$. On this basis, there should also be some limit at which the maximum reduction of 15% applies. Between these limits, a reduction between 0 and 15% applies. Although we have no data to support our decision, we chose to set a limit of $3,000 \mathrm{mi}^{2}$ (ten times the lower limit of $300 \mathrm{mi}^{2}$) as the area above which 15% reduction is possible.

To use figure 10 for pattern areas greater than $300 \mathrm{mt}^{2}$ consider the diagonal lines provided for guidance. These, lines have been drawn for every $500 \mathrm{mi}^{2}$ up to $3,000 \mathrm{mi}^{2}$, and intermediate $100-\mathrm{mi}^{2}$ areas are indicated by the dots along the right margin. By connecting the vertex in the upper left with the appropriate dot on the right, the user can determine the adjustment factor corresponding to the orientation difference noted along the abscissa. As an example, for a $1,000-$ $m i^{2}$ isohyetal pattern whose orientation differs by 57° from that determined from figure 8, the adjustment factor read from figure 10 is 97.3%. Note for orfentation differences of 65° or larger, the adjustment factor is that given by the scale along the right margin for the respective areas.

Figure 10.-Model for deternining the adjustment factor to apply to isohyet values as a result of placing the pattern in figure 5 at an orientation differing from that given in figure 8 by more than 40°, for a specific location.

4.4.4 Noncoincidental rainfall pattern

One may find through a trial and error apprach that, in some hydrologic situations, an isohyetal pattern orientation different from that of the drainage may give a more critical result than that obtained when the orientations coincide. This appears to be possible, for some drainages, because there is a tradeoff between the volume one gets from a rainfall pattern coincident with the drainage, but requiring maximum reduction for orientation relative to PMP, and that from a noncoincident placement of the isohyetal pattern with less or no orientation reduction.

To illustrate, assume a precipitation pattern placed on a hypothetical drainage has an orientation differing more than 65 degrees from that given in figure 8 for the location. The recommended procedure in this study is to apply the maximum reduction allowed in figure 10 to all the isohyet values, for orientation differences of this magnitude. However, it might be possible to obtain a more hydrologically critical result if the rainfall pattern placed over the drainage and the drainage orientations were kept dissimilar and the isohyet values were not reduced at all. Because it appears it may be necessary to check a wide range of possible orientation arrangements to determine the hydrologically most critical relationship between PMP and rainfall pattern on drainage orientations, we offer only limited guidance. The most likely situations where non-fit and no reduction would be important are those that involve maximum reductions to PMP for low drainage shape ratios (≤ 2), i.e., "fat" drainage shapes.

Another consideration that needs to be noted is that the discussion of pattern placement in this report is primarily directed at drainages that are not affected by orographic influences (the nonorographic region in HMR No. 51). Should it be of interest to estimate PMP from HMR No. $51 / 52$ techniques applied to a drainage in the orographic region, it is necessary to judge whether placement of the pattern to center in the drainage or to align with the drainage is meteorologically possible. An example is the following: if a tropical storm is taken as the PMP storm type for a drainage on the western slopes of the southern Appalachtan Mountains, it is unlikely that the isohyetal pattern can be realistically centered more than a few miles west of the ridgeline. Thus, in the orographic regions, one needs to recognize the storm type most likely to give MP and then determine where and how the idealized pattern can be placed.

4.4.5 Comparison to other studies

There are only a few references to orientation of isohyetal patterns in the meteorological literature. $H M R$ No. 47 (Schwarz 1973) discusses the subject of orientation preferences and reduction to PMP for pattern orientation in the Tennessee Valley. Schwarz concludes that 100% of PMP would apply to orientations between 195 and 205 degrees. Riedel (1973) suggests that 100% of PMP applies to orientations between 200 and 280 degrees for the Red River of the North and the Souris River in North Dakota. For these locations, figure 8 gives central orientations between 210 and 245 degrees, and between 240 and 255 degrees, respectively. Our $\pm 40^{\circ}$ range for full PMP, when added to these central orientations, permits general agreement between these two studies and the present study, although in general we allow for more westerly components than were reported in the earlier studies.

Huff (1967) reported that in a detailed study of 10 large scale storms (Illinois) in the period $1951-1960$ in which 12 -hour rainfall exceeded 8 in. at the stom center, the median orientation was 270 degrees. This compares with a range of 245 to 255 degrees for central orientations across Illinois in figure 8. A later study (Huff and Voge1 1976) reported that for heavy rainstorms in northeastern $111 i n o i s, 84$ percent had orientations between 236 and 315 degrees.

4.5 Meteorological Evaluation of Isohyetal Orientations

We believe the basis for the orientations in figure 8 is related to the occurrence of certain meteorological factors conducive to optimum rainfall production. We know that certain combinations of storm movement, frontal surfaces, and moisture inflow can influence the orientation of observed rainfall. We also know that the movements of storm systems are often guided by the mean tropospheric winds (generally represented by winds at the $700-$ to $500-\mathrm{mb}$ level). An attempt is made in this section to understand some of these largescale factors relative to the occurrence of the major rainfall events listed in table 11. These factors are listed in table 13. Note that the isohyetal orientations for the total storm given in column σ of this table are those observed for these individual rainfall cases (from table 11) and are not to be confused with the orientations appearing in figure 8 for the generalized analysis.

The following comments explain the information given in table 13:
Col. 1 location of maximum rainfall

Col. 2 date within the period of extreme rainfall on which the greatest daily rainfall occurred, as derived from selected mass curves shown in "Storm Rainfall" (J. S. Army Corps of Engineers 1945-)

Col. 3 rainfall type categories: tropical (T) for all extreme rains that occur as the result of passage of a tropical cyclone within 200 miles of the site of heavy rain; modified tropical (MT) for those extreme rains that appear to be derived from moisture associated with a tropical cyclone at some distance, or whose moisture has fed into a frontal system that has moved to the vicinity of the rain site. The presence of tropical cyclones has been determined from Veumann et al. (1977). Tropical cyclone rains that become extratropical are also labeled MT; general (G) includes all rains for which no tropical storm was likely involved; local (L) for relatively short-duration small-area storms.

Col. 4 the orientation (direction storm is moving from) of the track of low-pressure center passing within 200 miles of the heavy rain, for the date of closest passage of the rain center. When no low-pressure center passes near the rain site, "none" is listed in table 13.

Table 13.-Meteorological factors pertinent to isohyetal orientation for major storms used to develop regional analysis (fig. 8)

1	2	$\begin{aligned} & \text { Column } \\ & 3 \end{aligned}$	4	5	6
Storm center	Date of max. daily rain	$\begin{gathered} \text { Type of } \\ \text { rain- } \\ \text { storm } \\ \hline \end{gathered}$	Orient. of storm track	Orient. of front. surface	Observed orient. of iso. pat.
1. Jefferson, OH	9/13/1878	MT	190	135	190
2. Eutaw, AL	4/16/00	G	none	210	230
3. Paterson, NJ	10/09/03	MT	100	180	170
14. Beaulieu, MN	7/19/09	G	none	none	285
17. Altapass, NC	7/16/16	MT* 1	none	none	155
18. Meek, M	9/16/19	$\mathrm{MT} * 2$	none	none	200
19. Springbrook, Mt.	6/19/21	G	260	200	240
20. Thrall, TX	9/09/21	MT*3	none	none	210
21. Savageton, WY	9/28/23	G	none	none	230
22. Boyden, IA	9/17/26	G	none	210	240
23. Kinsman Notch, NH	11/04/27	MT*4	none	180	220
24. Elba, AL	3/14/29	G	none	210	250
25. St. Fish Htchy., TX	7/01/32	G	none	240	205
27. Ripogenus Dam, ME	9/17/32	MT	185	160	200
30. Hale, CO	5/31/35	L	none	090	225
37. Hayward, WI	8/30/41	G	none	250	270
38. Smethport, PA	7/18/42	L	none	190	145
39. Big Meadowns, VA	10/15/42	MT*5	none	none	200
42. Collinsville, IL	8/16/46	G	none	260	260
44. Yankeetown, FL	9/05/50	T	$180 * 8$	none	205
45. Council Grove, KS	7/11/51	G	none	250	280
48. Bolton, Ont. Can.	10/16/54	MT	200	200	190
49. Westfield, MA	8/18/55	MT	175	none	230
51. Sombreretillo, Mex.	9/21/67	T	020	none	220
53. Zerbe, PA	6/22/72	MT	150	220	200
54. Broome, TX	9/17/36	MT*6	none	none	230
55. Logansport, LA	7/23/33	T	240	245	215
56. Golconda, IL	10/05/10	G	none	235	235
57. Glenville, GA	9/27/29	MT*7	$230 * 7$	none	180
58. Darlington, SC	9/18/28	T	230	220	205
59. Beaufort, NC	9/15/24	MT	240	210	235

LEGEND
T - Tropical
MT - Modified Tropical
G - General
L - Local
*1 - Trop. cycl. dissipated in central Georgia on 14 th
2 - Hurricane dissipated in southwestern Texas on 15 th
3 - Hurricane dissipated on Texas-Mexico border on 8th
4 - Tropical cyclone headed north @ $36^{\circ} \mathrm{N}, 80^{\circ} \mathrm{N}$. mid-day 3 rd
5 - Tropical cyclone dissipated in eastern North Carolina on 12th
6 - Tropical cyclone dissipated near Del Rio, TX on 14 th
7 - Hurricane at Key West on 27th, track given for 30th
8 - Storm looping on $4-5 t h$

Col. 5 the orientation (only one end of the 2 -ended line given) of the frontal surface if the front is within 100 miles of the rain center (from United States Daily Weather Maps) for the date of greatest daily rainfall. When no frontal surface appears near rain site, "none" is listed in table 13.

Col. 5 the orientation of observed rainfall pattern for the
total storm from table 11
Eighteen of the 31 rains in table 13 come from tropical or modified tropical storms. A logical question is whether the orientation of the rainfall pattern is the same as the orientation of the storm track. Eleven of the thirteen rainfalls that have storm track information show agreement within 50 degrees between the storm track and rainfall orientations.

Some of the modified tropical cyclone rains showed that maximum rainfall occurred where tropical moisture interacted with a frontal surface generally approaching from the west or northwest. This kind of interaction and the complexity involved in ascertaining the cause for the particular isohyetal orientation is illustrated in the case of the Zerbe, Pa. storm (6/19-23/72). Figure 11 shows a cold front through the Great Lakes at 1200 G4T on the 21 st that moved eastward and became stationary through western New England by 1200 GMT on the 22nd. The track of the tropical cyclone center is shown by 6 -hr positions. After 1200 GMT on the $22 n d$, the storm center appears to be attracted toward the approaching frontal trough position and recurves inland through Pennsylvania. The orientation (approx. 200°) of the total-storm isohyetal pattern is plotted in figure 11 for comparison. Although the front appears to be dissipating with the approach of the tropical cyclone, the orientation of the total-storm rainfall would suggest that the effect of the frontal surface as a mechanism for heavy rainfall release was important. Thunderstorms along the frontal surface may have moved in a northeasterly direction (200°), steered by the upper-level winds. Since all of these features are in motion, it is likely that the orientation of the isohyetal pattern is the composite result of several interactions. One additional factor that has not been discussed is the effect of the Appalachian Mountains. The ridges comprising these mountains also have a northeastsouthwest orientation. We are unable to say at this time how the interaction between moisture flows and these terrain features contribute to the overall orientation of the precipitation pattern.

The Springbrook ($6 / 17-21 / 21$) and Savageton ($9 / 27-10 / 1 / 23$) storms were associated with nontropical low-pressure centers to the south of the respective rainfall maxima, around which moist air drawn from gulf latitudes encountered strong convergence to release convective energy.

Reviewing the results given in table 13, one may ask, what meteorological feature provides the source of precipitation for those storms that show "none" in columns 4 and 5. To answer this question requires studies beyond the scope of this discussion, but in many instances we believe the precipitation was caused by horizontal convergence of very moist air. This convergence in most instances was due to meteorological conditions, while in others it may have been enhanced by terrain features.

Figure 11.-Track of hurricane Agnes ($6 / 19-22 / 72$) showing frontal positions and orientation of the greatest $20,000-\mathrm{mi}^{2}$ precipitation area centered at zerbe, PA.

The Golconda, Illinois, storm (10/3-6/10) is representative of most of the other major storms in table 13 in which the isohyetal orientation can be more closely related to the orfentation of the frontal surface. For this storm figure 12 shows a weak and dissipating cold front (A) approaching Golconda from the west on the 3 rd and 4 th. Farther west on the 4 th a second cold front (B) is passing through the Dakotas and moves rapidly eastward to a position southwest-northeast through the Great Lakes on the 5th. Twenty-four hours later this second front has passed eastward of Golconda. Prior to its passage, strong southerly surface winds bring moist tropical air northward through the Mississippi Valley. It is presumed that this moist air upon meeting the frontal surface, is lifted to a level at which convective lifting takes over. Thunderstorms, or local storms, triggered along the frontal surface produce the observed rainfall orientation.

Figure 12.-Prontal positions and orientation of the greatest $20,000-\mathrm{mi}^{2}$
precipitation area centered at Golconda, $\mathrm{IL}(10 / 3-6 / 10)$.
Almost all of the 31 major storms listed in table 13 included thunderstorm-type bursts of heavy rain. Tendencies for these short-duration bursts are evident in major portions of the mass curves (not shown here) for each storm. Thunderstorms imbedded within widespread rain patterns are common to major rainfalls in the study region. Since thunderstorms are involved, we speculate that the isohyetal pattern orientations probably are controlled to some degree by the upper-level flows (see Newton and Katz 1958, for example).

Maddox et al. (1973) studied the synoptic scale aspects of 151 flash floods, 113 of which occurred east of the 105 th meridian. (One-third of these had maximum precipitation amounts equal to or exeeding 10 in .) Their results showed that the winds aloft tend to parallel the frontal zone during these events. They also showed that $500-\mathrm{mb}$ winds were representative of the winds aloft between 700
and 200 mb , and that mean $500-\mathrm{mb}$ winds for these events varied between 220 and 250 degrees (standard deviation of about 30°). Although they do not discuss regional variation, this range of $500-\mathrm{mb}$ winds agrees well with the orientations adopted for PMP-type rain patterns (fig. 8).

Upper-level winds are routinely available only after December 1944 (Northern Hemisphere Daily Maps). Seven storms in table 12 occurred after this date, for which the $500-\mathrm{mb}$ winds were 280° at Collinsville, Illinois, 260° at Council Grove, Kansas, 210° at Bolton, Ontario, 215° at Westfield, Massachusetts, 020° at Sombreretillo, Mexico, and 220° at Zerbe, Pa., the $500-m b$ winds were indeterminate for the Yankeetown, Florida rain site because of the occurrence of a small closed low system aloft associated with the surface hurricane. There is agreement within $\pm 20^{\circ}$ between $500-\mathrm{mb}$ winds and the orientation of heaviest rainfall for these storms. Had $500-\mathrm{mb}$ information been available for more of the storms, it is expected that this association would be further supported.

4.6 Application to BMR No. 51

This study of isohyetal orientation of major rainfalls has produced guidelines we recommend for use in adjusting the volume of rainfall obtained from the isohyetal patterns of the $6-h r$ PMP increments. Figures 8 and 10 are used to reduce the PMP for certain area sizes if the orientation of the pattern placed on the drainage does not fall within $\pm 40^{\circ}$ of the prescribed MP orientation for that site. To apply these results use the following steps:

1. For a specific drainage, locate its center on figure 8 and linearly interpolate the central orientation for PMP at that location.
2. Obtain the orientation of the isohyetal pattern that best fits the drainage. In the orographic region of HMR No. 51, the orientation of the pattern may not fit the drainage but will be controlled by terrain and meteorological factors.
3. If (1) differs from (2) by more than $\pm 40^{\circ}$ the isohyet values for each of the 6-hr increments of PMP are to be reduced in accordance with figure 10 . Differences in orientations of more than $\pm 65^{\circ}$ require the maximum reduction. The reduction that is applicable, however, is a function of the storm pattern area size with no reduction if $300 \mathrm{mi}^{2}$ or less, and a maximum of 15% if $3,000 \mathrm{mi}^{2}$ or more.

5. ISOHYET VALUES

5.1 Introduction

When considering the spatial distribution of rainfall over a drainage, a question that needs to be answered is how concentrated the rain should be. Keep in mind that the concentration or distribution of the drainage-average plp does not change the total rain volume for idealized elliptically shaped drainages. For this report, the spatial distribution is set by the values of isohyets in the isohyetal pattern. Part of this question has been answered in chapter 3, where we developed an idealized pattern shown in figure 5. This chapter, therefore,
deals with determination of the values to assign the isohyets in that figure for each 6 -hr increment. Chapter 6 treats isohyet values for shorter durations.

One manner of distributing the drainage-average PMP is to apply the depth-area relation of PMP itself, that is, giving PMP for all area sizes within any particular drainage. Studies made for $H M R$ No. 51, however, showed that the storms, controlling or setting PMP for small area sizes, often did not control for large areas and vice versa. Therefore, we assume that rainfall for areas less than the area of the PMP pattern will be less than the corresponding PMP, and that the depth-area relation of PMP should not be used to determine the isohyet values. The term adopted for the depth-area relations in a storm is thus a "within-storm" relation, since it serves to represent a relation for which one storm controls over all area sizes less than PMP. We have made a similar assumption, in this study, that such a curve also applies to areas larger than the area for which average PMP is being distributed (referred to as without-storm curves, see fig. 1).

If one applies the pattern in figure 5 to a drainage in the orographic region in $H M R$ No. 51 there will be an additional modification to the distribution of PMP brought about by terrain effects. It is not the intent of this report to discuss how these local modifications are derived, but their effect will be to modify or warp the pattern in the direction of major storm patterns that have been observed on the drainage. Because these modifications are a function of the specific drainage, it is recommended that each application of HMR No. $51 / 52$ in the orographic region be the subject of an individual study.

5.2 Within/Without-Storm D.A.D Relations

From consideration of the possible depth-area-duration (D.A.D) relations, we recommend a within/without-storm distribution of PMP for a drainage that falls somewhere between a flat average value (uniform distribution) and the depth-area relation of PMP. Such a relation can be patterned after depth-area relations of major storms. The within-storm technique has been used in several HM R reports (Riedel 1973, Goodyear and Riedel 1965). In this chapter, we use the generalization of such within-storm depth-area relations combined with withoutstorm relations to set the values of isohyets for the adopted pattern.

The following sections describe the method used to obtain isohyet values at one location and explain how we generalized the procedure throughout the region. Since the method is somewhat complex, it is necessary to present a more detailed description of its development.

To begin this discussion several questions are posed: a.) For which 6-hr PMP increments do we need isohyetal values?, b.) How are within/without-storm deptharea relations for 6 -hr PMP increments in (a) determined?, c.) How are isohyetal profiles for a 6 -hr incremental PMP used to obtain isohyet values?, and d.) How can we generalize (c) to provide isohyet values for areas between 10 and 20,000 mi^{2} anywhere within the study region?

5.2.1 PMP increments for which isohyet walues are required

Record storm rainfalls show a wide variation in D.A.D relations. They all indicate a sharp decrease with area size for the mimum 6 -hr rainfall. The remaining 6 hr rainfall increments may vary from showing a decrease, an increase, or no change with increasing area size. This mixture may be due in part to a
storm with a complex combination of both high and low rainfall centers with maximum depths controlled by several centers. However, for internal consistency no increase in incremental PMP values with increasing area size was allowed in HMR No. 51. If it were, it would designate a low rather than a high rainfall center, or a doughnut type configuration.

We have let the D.A.D relations of PMP in $H M R$ No. 51 set the number of increments for which areal variation is required. These show that most spatial variation occurs in the largest 6 -hr increment, and practically none, if any, occurs after the third greatest 6 -hr increment. This is to say, as an example, that the fourth greatest $6-\mathrm{hr}$ incremental PMP determined by subtracting 18-hr PMP from $24-h r$ PMP varies only slightly, if at all, with area size. Therefore, we recommend distributing incremental PMP for only the three greatest 6-hr PMP increments. The remaining nine 6 -hr PMP increments are used as storm pattern averages, that is, as uniform depths over the pattern area used for distributing PMP。

5.2.2 Isohyet values for the greatest 6-hr PMP increment

Since we need to obtain all isohyet values for only the three greatest 6 -hr PMP increments, we have chosen to discuss each increment separately. The procedure we followed began with consideration of the depth-area-duration relations taken from mar storms in table 1 ; we used these data to develop within/withoutstorm curves which we then converted to isohyetal profiles. Finally, we generalized these profiles in developing a set of nomograms that give isohyet values for any area size.
5.2.2.1 Depth-area relations. We chose to consider depth-area data only for those storms in table 1 that provided moisture maximized transposed depths within 10 percent of PMP for 6 hr . This condition reduced our sample to the 29 storins in table 14. Next, depth-area data for these storms, taken from the appendix of HMR No. 5l, were used to form all available ratios of depths. for example, for $10 \mathrm{mi}^{2}$, divide the $10-, 200-, 1,000-, 5,000-, 10,000-2$ and $20,000-\mathrm{mi}^{2}$ depths by the $10-\mathrm{mi}^{2}$ depth. Then form all the ratios for $200 \mathrm{mi}^{2}$ and so on to the $20,000-$ mi ratios. Those within/without-storm average ratios, since they are individually done for each storm, are thus given as a percent of the respective standard area size value.

Table 14.-Ma jor storms from table 1 used in depth-area study (index numbers refer to listing in ta ble 1)

| 1. Jefferson, OH | 15. Merryville, LA | 36. | Hallett, OK |
| :--- | :--- | :--- | :--- | :--- |
| 2. Wellsboro, PA | 16. Boyden, IA | 38. Smethport, PA | |
| 3. Greeley, NE | 23. Kinsman Notch, NH | 40. Varner, OK | |
| 6. Hearne. TX | 24. Elba, AL | 44. Yankeetown, FL | |
| 7. Eutaw, AL | 27. RApogenus Dam, ME | 45. Council Grove, KS | |
| 8. Paterson, NJ | 28. Cheyenne, OK | 46. Ritter, IA | |
| 10. Bonaparte, IA | 29. Simmesport, LA | 47. Vic Pierce, TX | |
| 12. Knickerbocker, TX | 30. Hale, CO | 51. Sombreretillo, Mex. | |
| 13. Meeker, OK | 34. Grant Township, NE | 53. Zerbe, PA | |
| 14. Beaulieu, MN | 35. Ewan, NJ | | |

Because of the relatively small sample of storms, we chose not to consider any regional variation that may exist in these storm ratios. This conclusion is
believed justified at this time, however, future study should investigate regional variation in depth-area relations.

The ratios obtained for the 29 storms were then averaged and the average was plotted against area size. Since some storms are relatively small in area size while others are much larger than $20,000 \mathrm{mi}^{2}$, not all 29 storms have all the depth data needed to complete all ratios, and the larger area averages are made from fewer and fewer storms. The plotted data are smoothed into a consistent set of curves as shown in figure 13. The solid lines represent within-storm averages for areas less than that of the MMP, and the dashed lines represent without-storm averages for areas greater than the area for PMP, the residual precipitation. Because of our assumption of no regional variation, figure 13 applies to the entire region.

Now, by applying the curves in figure 13 to the storm area averaged PMP in $H M R$ No. 51 at a specific location, we obtain a set of curves of the form shown in figure 14. The solid curve connects the $6-\mathrm{hr}$ PMP for various area sizes (in parentheses). The short-dashed lines are the within-storm curves for areas less than the PMP area, and the long-dashed lines are the without-storm curves for areas larger than the PMP area. It is the long-dashed curves covering the residual or without-storm precipitation that are unique to this study. To use figure 14, if one considers PMP for a particular area size, say $1,000 \mathrm{mi}^{2}$, enter the figure on the ordinate at $1,000 \mathrm{mi}^{2}$, and move horizontally to the solid line to obtain the value of PMP at this location, 15.5 in. To determine the corresponding precipitation during this PMP storm for any smaller (larger) area size in that $1,000-\mathrm{mi}^{2}$ PMP pattern, follow the short-dashed (long-dashed) curves from the point of PMP. In this figure, we have treated the juncture of withinand without-storm curves as a discontinuity, although a tangential approach to the point of PMP may be more realistic. We assume that this decision has little affect on our procedure and on the results obtained. If the PMP is for some area size other than the standard areas shown, then interpolation is necessary, using the indicated curves as guidance.
5.2.2.2 Isohyetal profile. Figure 14 gives a plot of the within/without-storm precipitation relative to area size. In the application of our idealized elliptical pattern, we need to know the value of the isohyet that encloses the specified areas. That is, if we drew a radial from the center of the pattern to the outermost isohyet, it would intersect all the intermediate enclosed isohyets. If we then plotted the value of the isohyet against the enclosed area of that isohyet, we could draw a curve through all the points of intersection and obtain a profile of isohyet values for a particular pattern area of PMP. A different distribution pattern of PMP would give a different isohyetal profile.

For $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$, we have converted the within/without-storm curves in figure 14 to the corresponding isohyetal profiles shown in figure 15 . The curves in figure 15 were computed by reversing the process generally followed for deriving D.A.D curves from an isohyetal profile. This process has been briefly outlined in the "Manual for Estimation of Probable Maximum Precipitation" (World Meteorological Organization 1973). A necessary assumption for this conversion procedure is that of equivalent radius. That is, since the radius of an ellipse varies with the angle between a particular radius and the axis, different profiles would be obtained, depending upon which radial is chosen. To avoid this problem, we approximate the elliptical pattern by a circular pattern of equivalent areas and

Higure 13.-6-hr within/without-storm average curves for standard area sizes.

Figure 14. —Within/without-storm curves for PMP at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$ for standard area sizes.

Figure 15.-Isohyetal profiles for standard area sizes at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$.
determine the corresponding profiles. We applied the procedure to obtain isohyetal profiles for the standard area sizes, as shown in figure 15.

In figure 15, the solid lines represent the profile corresponding to the shortdashed curves in figure 14. A discontinuity occurs at the point of PMP, and the dashed lines are the converted long-dashed lines in figure 14 representing residual precipitation. Vertical lines labeled A, B, C, \ldots, S are indicated to show the specific isohyets we chose for our idealized pattern in figure 5. Should supplemental isohyets be of interest, they may be interpolated from the scale of enclosed areas along the top of this figure.

To apply figure 15 for a PMP pattern of $1,000 \mathrm{mi}^{2}$, for example, enter the abscissa at each of the isohyets and move vertically to intersect the curve for $1,000 \mathrm{mi}^{2}$. Then, move horizontally to the left to read the respective value of the isohyet. Note that the I isohyet for the $1,000-\mathrm{mi}^{2}$ pattern from figure 15 is 13.0 in., while the $1,000-\mathrm{mi}^{2} \mathrm{PMP}$ at $37^{\circ} \mathrm{N}$, $89^{\circ} \mathrm{W}$ from figure 14 is 15.5 in . This says that to obtain an areal average of 15.5 in ., the precipitation varies across the pattern from a central value of 23.3 in. to 13.0 in. at the enclosing isohyet.
5.2.2.3 Nomogram for isohyet values. The isohyet values in figure 15 were computed for PMP at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$, but we see in HMR No. 51 that the magnitude of PMP varies regionally, and therefore we must have profiles to cover PMP for all locations. It was decided that the simplest way to handle this was to normalize the regional differences in PMP by converting the profiles in figure 15 to a percentage of the greatest $6-\mathrm{hr}$ increment of PMP (the same as the 6 -hr PMP). For example, as mentioned in section 5.2 .2 .2 , the $1,000-\mathrm{mi}^{2}$ PMP is 15.5 in . The isohyet value for the C isohyet is 20.5 in . from figure 15 . Dividing 20.5 by 15.5 gives roughly 132 percent. If we compute similar ratios for the C isohyet for other area sizes and PMP, then we have a set of values representing the variation of the C isohyet values with area size. Connecting these percentages with a smooth line, we obtain the curve labeled C in figure 16 . The other lines in this figure represent similar connections of values for the other isohyets in our idealized pattern (solid lines for PMP and dashed lines for residual precipitation). We have in figure 16 a nomogram that provides the isohyet value as a percent of the greatest $5-h r$ increment of PMP for any location and area size for all the isohyets in our standard pattern (Eig. 5). Some additional smoothing was necessary to obtain a consistent set of curves.

Once all the curves had been smoothed for the lst 6 -hr nomogram, a check was made using the average storm area size PMP depth from $M M R$ No. 51 equated to the average PMP depth spatially distributed over the PMP portion of the storm pattern for a similar storm area size. The check was made by assuming drainages to have perfect 2.5 to 1 elliptical shapes for each of the standard area sizes. By taking the $6-h r$ PMP for a particular location, we read off percentage values for each of the isohyets, say for the $1,000-m i^{2}$ area pattern (isohyets A to I), and used our computational procedure (see discussion for figure 43) to compute the precipitation volume. Dividing the volume by the area gave an average depth which should agree with that from HMR No. 51, for that location. This was done for each area size. If our results disagreed with those from HMR No. 51, we applied a percentage adjustment, comparable to the disagreement, to the points in figure 16, as a correction. The final nomogram was checked at a number of
regional locations to verify that all variations from average PMP in $H M R$ No. 51 were less than 2%.

In figure 16, the cusps represent the discontinuity points in figure 15 , and although there is a question whether first-order discontinuities occur in an actual precipitation pattern, and while actual discontinuities in rainfall patterns may not exist in the regions of moderate or heavy rainfall, these are regions where the gradients of rainfall change rapidly. Our capability to represent such changes are limited and we have chosen to show them as a cusp. The discontinuities in figure 16 indicate that the gradient of the respective isohyet value variation with area size changes at that point.

To use the nomogram in figure 16 for distributing the $1,000-\mathrm{mi}^{2}$ PMP, one enters the figure at $1,000 \mathrm{mi}^{2}$ on the ordinate and reads from right to left at the points of intersection with the respective curves. That is, values of approximately $149,140,131, \ldots, 82$ percent are obtained for isohyets A, B, C,..., I contained within the $1,000-\mathrm{mi}^{2}$ ellipse, and $60,44,32,21,12$, and 5 percent are obtained for the isohyets of residual precipitation (J to 0) outside the $1,000-\mathrm{mi}^{2}$ ellipse.

5.2.3 Isohyet values for the second greatest 6-hr PMP increment

Section 5.2.2 describes the development of the procedure to obtain isohyet values for the greatest 6 hhr PMP increment. We wish to follow a similar procedure to obtain isohyet values for the second greatest 6 -hr PMP increment. To do this, however, we need to return to our data base of storms in table 1 and find the set of storms whose 12 hr moisture maximized and transposed rainfall came within 10 percent of the $12-\mathrm{hr}$ PMP. The $12-\mathrm{hr}$ depth-area data for these storms were used to compute ratios at all the available area sizes. Again, the ratios were averaged and these average ratios plotted against area size to get the 12 -hr within/without-storn curves shown in figure 17. Then we converted the curves in figure 17 to depths relative to the $12-\mathrm{hr}$ PMP at $37^{\circ} \mathrm{N}, 89^{\circ} \mathrm{W}$ (not shown). The computational procedure (World Meteorological Organization 1973) was used again to obtain $12-h r$ isohyetal profile curves (not shown). At this point, we subtracted the 6 -hr isohyetal profile data from the $12-\mathrm{hr}$ profile data to get profiles for the 2 nd 6 -hr increment (not shown). Then, reading depths for the standard isohyets chosen in figure 5 and converting these into a percentage of the 2 nd 6 hr increment of PMP, we developed the 2 nd 6 hr nomogram shown in figure 18.

Once again, a check was made for accuracy as represented by the average PMP data from HMR No. 51, and appropriate adjustments and smoothing made where needed. The set of solid curves in figure 18, representing isohyets within the PMP area, tends to have shifted closer to the 100 percent value. This is expected, because as we mentioned earlier, by the fourth increment ifttle to no areal distribution was evident in our study computations; i.e., a value of 100 percent of the incremental PMP applies throughout the PMP portion of the pattern storm (this does not include residual precipitation).

5.2.4 Isohyet values for the third greatest 6-hr PMP increment

We used the observation of converging values discussed in section 5.2.3 to obtain isohyet values for the third greatest 6-hr PMP increment, rather than repeat the complex procedure followed for the greatest and second greatest
00

Figure 16.--Nomogram for the 1st 6-hr m

Figure 16.-Nomogram for the 1st 6-hr RMP increment and for standard isohyet area aizes between 10 and 40,000 in ${ }^{2}$.

PERCENT OF : 2-hr PMP
Figure 17. - 12-hr within/without-storn curves for standard area sizes.
increments. Therefore, we plotted the values of the first and second greatest 6hr PMP increments for each isohyet from the respective nomograms (figs. 16 and 18) and connected them with a smooth curve to a value of 100 percent used to represent the fourth increment. From these simple curves, we then interpolated the percents for the third 6 -hr PMP increment. One advantage of this procedure was that it guaranteed consistency between results.

The results of this interpolative scheme are show in figure 19 in percent of the third greatest 6-hr PMP increment. In this figure, we see that the respective curves for PMP (solid lines) are very near to 100 percent. Note the difference in scale of the abscissa between PMP curves and residual precipitation curves, made to facilitate their use. These curves were also checked for

Figure 18.-Nomogram for the 2ad 6-hr PMP increment and for standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$.

Figure 19.-Nomogram for the 3rd 6-hr PMP increment and for standard isohyet area sizes between 10 and $40,000 \mathrm{mi}^{2}$.
agreement with $H M R$ No. 51 as described for the previous two 6-hr increment nomograms.

5.2.5 Residual-area precipitation

The nomograms in figures 16,18 and 19 were believed sufficient to provide areal distribution of PMP within any pattern area and location. It was mentioned in section 3.5.3, that it was necessary to introduce the concept of residual precipitation, i.e., that which fell outside the area for which PMP was being distributed. Residual precipitation is needed to cover the remainder of the drainage not covered by the elliptical pattern for the area of the PMP. In each of the nomograms the dashed curves give isohyet values for application to the uncovered drainage. For the fourth through 12 th increments, we have said that a constant value applies to the area of PMP being considered.

Outside this area, there would be a decrease in the precipitation from that of the PMP pattern. The distribution of this residual precipitation for the fourth to 12 th increments was determined from the tendencies shown for the residual precipitation isohyet values in figures 16,18 and 19 . The results of extrapolation from these relations are presented as a nomogram for the fourth through 12th $6-h r$ increments, in figure 20. Note these curves all start fron 100%, as compared to the residual precipitation curves in figure 19.

To emphasize the difference between precipitation patterns for the lst three nomograms and that for figure 20, we show two schematic diagrams in figure 21 for a PMP pattern of $1,000 \mathrm{mi}^{2}$, as an example. The figure at the top represents a pattern of isohyets for which values are obtained for the three greatest $5-h r$ PMP increments. The figure at the bottom shows the pattern of isohyets for which values are obtained for the fourth through 12 th 6 -hr PMP increments of $1,000-\mathrm{mi}^{2}$ PMP pattern. Residual precipitation in both diagrams is indicated by the dashed lines. We have added an irregularly shaped drainage to the patterns in figure 21 to clarify the point that there will be a reduction in the volume of precipitation that occurs even for the fourth through 12 th $6-h r$ periods. That is, even though a constant value applies across the drainage as shown by the I isohyet, only a portion of the area enclosed by this isohyet lies within the drainage.

5.2.6 Tables of nomogram values

We have found that different users read slightly different values from the set of nomogram figures provided in this study. To minimize such differences and since the reading of values from these figures is a recurrent process in the application procedure outlined in chapter 7 , it was decided that values read from the nomograms would be provided in tabular form. Reference to the tables when making the computations in chapter 7 will assure all users have the same values. Tables 15 to 18 provide nomogram values for each of the standard isohyet area sizes and for an intermediate area size between each of the standard isohyet area sizes.

Note that, although these tables are useful for all computations, it may still be necessary to refer to the nomograms on occasion. One such ocassion would be when one wishes to distribute PMP over an area size other than one of the

Figure 21.-Schematic showing difference in isohyetal patterns for 3 greatest 6hr PMP increments and that for 4th through 12 th 6 -hr increments for a $1,000-$ mi^{2} storn.

Table $15 .-1$ st 6 -hr nomogram values at selected area sizes

Isohyet					Storm	ea	siz					
	10	17	25	35	50	75	100	140	175	220	300	360
A	100*	101	102	104	106	109	112	116	119	122	126	129
B	64	78	95*	97	99	102	105	108	111	114	118	121
C	48	58	67	77	92*	95	98	101	103	106	110	113
D	38	46	52	59	66	77	90*	93	96	99	103	105
E	30	37	43	48	54	62	68	78	89*	92	96	98
F	24	30	34	39	44	50	55	61	66	73	88*	90
Cr	19	24	28	32	35	40	44	49	53	58	65	73
H	14	10	22	25	28	32.	35	39	42	46	51	56
I	10	14	17	19	22	26	28	32	34	37	42	45
J	6	9	1 ?	14	16	19	21	24	26	28	32	35
K	2	5	7	9	11	14	16	18	20	22	25	27
L.	0	1	3	5	7	9	11	13	15	17	19	21
M		0	0	1	3	5	6	8	9	10	12	13
N				0	0	0	1	2	3	4	6	7
0							0	0	0	0	1	2
p											0	0

[^4]Table $15 .-1 \mathrm{st}$ 6-hr nomogram values at selected area sizes - Continued

Isohyet	Storm area (mi ${ }^{2}$) size											
	450	560	700	850	1000	1200	1500	1800	2150	2600	3000	3800
A	132	136	140	145	149	155	162	169	176	184	191	203
B	124	128	132	136	140	145	152	158	165	172	179	189
C	116	120	124	128	131	136	142	147	154	160	166	176
1)	108	111	115	119	122	126	132	137	142	148	154	163
E	101	104	107	110	113	116	122	126	131	137	142	150
F	93	95	98	101	104	107	112	117	122	127	132	140
G	86*	89	92	94	97	100	105	108	113	118	122	130
H	63	72	84^{*}	87	89	92	96	99	103	108	112	119
I	50	56	63	72	$82 *$	85	88	91	95	99	102	108
J	38	43	48	54	60	68	80^{*}	83	86	89	92	98
K	30	33	36	40	44	49	56	64	77*	80	83	89
1.	23	25	27	30	32	35	41	46	52	62	74^{*}	79
M	15	16	18	19	21	23	26	29	33	38	44	56
N	8	9	10	11	12	14	16	18	20	22	25	31
0	3	3	4	4	5	6	7	8	9	11	13	15
P	0	0	0	0	0	0	0	1	2	3	4	6
Q								0	0	0	0	0

*Indicates cusp

Table $15 .-1$ st 6 -hr nomogram values at selected area sizes - Continued

Isohyet	Storm area (mi ${ }^{2}$) size								
	4500	5500	6500	8000	10000	12000	15000	18000	20000
A	212	223	233	247	262	274	290	304	312
B	198	209	218	230	24.3	255	271	283	291
C	184	194	203	214	227	238	253	264	271
D	170	180	187	198	209	219	232	242	248
E	157	166	174	183	194	203	214	224	229
F	146	153	160	169	178	186	196	205	210
G	135	142	148	157	166	174	183	192	197
H	124	131	137	144	152	159	168	176	181
I	113	119	125	132	140	147	156	164	168
J	103	108	113	120	129	135	143	150	154
K	93	98	103	110	117	123	131	138	142
L	83	88	93	99	107	113	120	127	131
M	71*	76	81	87	93	99	106	113	117
N	37	48	70*	75	82	87	94	101	104
0	19	23	29	40	68*	73	80	86	89
P	9	10	13	18	26	38	65*	71	74
\bigcirc	0	0	1	3	7	11	18	28	36
R			0	0	n	0	2	6	8
S							0	0	0

[^5]Table 16.--2nd $6-\mathrm{hr}$ nomogram values at selected area sizes

Isohyet	$\text { Storm area (mi }{ }^{?} \text {) size }$											
	10	17	25	35	50	75	100	140	175	220	300	360
A	100 *	102	103	104	105.5	107	108	109	110	110.5	111.5	112
B	64	81.5	98*	99	100.5	102	103	104	105	106	107	108
C	48	61	72	82	96.5*	98	99	100.5	101.5	102.5	103.5	104
D	39	50	59	66.5	76	86	95*	96.5	97.5	98.5	100	101
E	30	40	48	54.5	62.5	72	79	88	95*	96	97.5	98.5
F	24	32	39	44.5	51	59.5	65	73	79	85	95*	96
G	20	27	32.5	37.5	43.5	50	55	62	66.5	72	80	85
H	14	20.5	26	30.5	36	42	47	52.5	56.5	61	67.5	72
I	10	15.5	20	24	29	34.5	38.5	43.5	47	51	57	61
J	7	12	15.5	19	23	27.5	31.	35	38.5	42	47	50
K	3	7	10.5	13.5	17	21	24	27.5	30	33	37.5	40.5
I.	0	1.5	5	7.5	11	14.5	17	20.5	23	26	30	33
M		0	0	1	4	7	9	12	14.5	17	20.5	23
N				0	0	0	1	3.5	5	7.5	10	$1 ?$
0							0	0	0	0	1	3
p											0	n

[^6]Table $16 .-2 n d$ 6-hr nomogram values at selected area sizes - Continued

Isohyet	Storm area (mi ${ }^{2}$) size											
	450	560	700	850	1000	1200	1500	1800	2150	2600	3000	380
A	113	114	114.5	115	116	116.5	117	118	118.5	119	119.5	120.5
R	109	109.5	110	111	112	112.5	113	114	114.5	11.5	116	117
C	105	106	107	107.5	108.5	109	110	110.5	111	112	112.5	113.5
D	102	102.5	104	104.5	105	106	107	108	108.5	109.5	110	111
E	99.5	100.5	101	102	103	104	105	105.5	106.5	107	108	109
F	97	98	99	100	101	1.02	103	104	104.5	105.5	106	107
G	95*	96	97	98	99	99.5	100.5	101.5	102	103	104	105
H	77.5	85	95*	96	97	97.5	99	99.5	100	101	102	1.103
1	66	71.5	78	85	95*	96	97	98	99	99.5	100.5	101.5
J	54.5	60	65.5	71	76	82.5	95.5*	96	97	98	99	100
K	44.5	49	54	58.5	63	68	75.5	83	96*	96.5	97	98
L	36.5	40	44	48	51	55	60.5	66	73	83	96*	97
M	25.5	28.5	32	35	38	41	45	49.5	54	60.5	67	81
N	14	17	19.5	22	24	27	31	34	37.5	41.5	45	52.5
0	4.5	6.5	9	11	12.5	14.5	17	19.5	22	25.5	28.5	34
p	0	0	0	0	0	0	0	1.5	4	7	9	13.5
0								0	0	0	0	0

[^7]Table $16 .-2 n d$ - 6 hr nomogram values at selected area sizes - Continued

*Tndicates cusp

Table $17 .--3 r d 6$-hr nomogram values at selected area sizes

[^8]Table 17.-3rd 6-hr nomogram values at selected area sizes - Continued

Isohyet	450	560	700	850	Storm 1000	$\begin{aligned} & \text { rea }\left(\mathrm{mi}^{2}\right) \\ & 1200 \end{aligned}$	size 1500	1800	2150	2600	3000	3800
A	103.8	104	104.2	104.4	104.6	104.7	105	105.2	105.3	105.5	105.7	105.8
R	102.4	102.7	102.9	103.?	103.3	103.5	103.8	104	104.2	104.4	104.6	104.8
C	101.2	101.5	101.7	102	102.3	102.5	102.7	102.9	103.2	103.4	103.5	103.8
D	100.3	100.6	100.8	101.1	101.3	101.5	101.7	102	102	102.4	102.5	102.8
E	99.8	100	100.2	100.4	100.6	100.8	101	101.2	101.3	101.5	101.7	101.9
F	99.5	99.7	99.9	100.1	100.3	100.4	100.7	100.8	101	101.2	101.3	101.5
G	99.2*	99.4	99.6	99.7	99.9	100	100.3	100.4	100.6	100.7	100.9	101.1
H	84	91	99.2*	99.4	99.6	99.7	100	100.1	100.3	100.4	100.5	100.7
I	71	77.5	85	92	99.3*	99.5	99.7	99.8	100	100.1	10 n .2	100.5
J	60	64.5	70.5	76.5	82.5	89.5	99.4*	99.5	99.7	99.8	99.9	100.1
K	50	54	58.5	62.5	67	72.5	81	89	99.5*	99.5	99.6	99.8
L	39.5	43	47	50.5	54	58.5	65.5	72.5	80.5	90.5	99.3*	99.5
M	30	33	37	40	43	46.5	51.5	56.5	61	69	76	88.5
N	19	22.5	25.5	28.5	31	34	38	42	46.5	52	57	67
0	7	10	13	15.5	17.5	20.5	24	27	30.5	34	37.5	43.5
p	0	0	0	0	0	0	n	2.5	5.5	9	12	16.5
Q									0	0	0	0

*Indicates cusp

Table 17. - 3 rd 6 -hr nomogram values at selected area sizes - Continued

[^9]Table 18. - 4 th to 12 th 6 -hr nomogram values at selected area sizes

Table 18.-4th to 12 th- 6 -hr nomogram values at selected area sizes - Continued

Table 18.--4th to 12 th 6 -hr-nomogram values at selected area sizes - Continued

Tsohyet	4500	5500	Storm area (mí) size						
			6500	8000	10000	12000	15000	18000	20000
A									
B									
C									
D									
E									
F									
G									
H									
I									
J									
K									
L.									
M	100								
N	76	88	100						
0	49	56.5	65	79	100				
P	21	27	34.5	44	59	71	100		
\bigcirc	0	0	1	8	18	27	43	54	66
R			0	0	0	0	1	7	12
S							0	0	0

standard isohyet area sizes, for which it is then necessary to construct supplemental isohyet(s). This construction is discussed in chapter 7.

5.3 Area of Pattern Applied to Drainage

Up to this point in our discussion we have not indicated specifically how we select the area size of the PMP to distribute across a particular drainage. In previous PMP studies, we have assumed that the maximum peak discharge and the maximum volume of precipitation in the drainage were represented by a basincentered pattern for PMP equivalent to the area of the drainage. This assumption was necessary because we do not have sufficient information to determine what the hydrologically most critical condition is for peak discharge. Obviously, as precipitation patterns are moved to centering positions closer to the drainage outlet, greater peaks may occur but volume probably will be reduced.

In the present study, we have chosen to base our selection of PMP pattern on maximizing the volume of precipitation within the drainage. This eliminates the assumption used in other Hydrometeorological Reports that PMP be based on an area equal to the drainage area. Maximum volume is a function of pattern centering, of basin irregularity of shape, and of the area size of PMP distributed over the drainage. Of these, we have control over the pattern centering when we recommend that all patterns be centered to place as many complete isohyets within the drainage as possible. The irregularity of the drainage is fixed, and we are left with the area of the PMP pattern as a variable. However, the process of maximizing volume for various area sizes results in a procedure involving a series of trials.

To obtain the area that maximizes precipitation within the drainage, we propose that the user start by selecting an area size in the vicinity of that for the drainage. It is convenient to choose areas that match those for the isohyets in our idealized pattern ($700,1,500,6,500 \mathrm{mi}^{2}$, etc.). Compute the volume of precipitation for each of the 3 greatest $6-\mathrm{hr}$ increments of PMP at the area size chosen and obtain the total volume. Then, choose additional areas on either side of the initial choice, and evaluate the volume corresponding to each of these. By this trial process, and by plotting the results as area size (selected) vs. volume (computed), we can approximate the area size at which the volume reaches a maximum. (This may require drawing supplemental isohyets.)

This procedure will be better demonstrated by the examples presented in chapter 7. It will be found that, as experience is gained in the application of patterns to variously shaped drainages, one can do a better job at the initial selection of area sizes.

5.4 Multiple Rainfall Centers

In general, we recommend a single-centered isohyetal pattern for distributing PMP. From major storms of record we note that as the size of the rainfall pattern increases, the number of rainfall centers increases. This observation has led to the following considerations.

5.4.1 Development of a multicentered isohyetal pattern

A consideration when discussing the numbers of centers in an isohyetal pattern is how the end product (the flood peak) varies with the number of rainfall

Figure 22.-Schematic showing an example of multiple centered isohyetal pattern (BP portion only).
centers. In general, all else being equal, the more centers used, the lower the peak discharge. If multiple centers are to be considered, we therefore recommend a limit of two.

The process for deriving these centers within an elliptical pattern is based on the standard isohyets and their values for a single-centered pattern as
determined from the nomograms described in sections 5.2.2 to 5.2.5. The multiple centers need not have equal areas nor equal numbers of isohyets. An example of multiple cell construction is shown in figure 22. In this figure, pattern X represents a single center, and pattern Y a double-centered pattern derived from pattern X. In pattern Y the enclosed area of the A isohyet equals that of A in pattern X. The sum of the areas of the two B centers in pattern Y equals that of B in pattern X, and similarly for the C isohyets. This approach satisfies the requirement to keep the volume of PMP constant, regardless of pattern selected. The manitudes of the A, B and C isohyets in X and Y are the same.

Supplemental isohyets ma be necessary to provide sufficient isohyets for coverage of small multiple centered patterns. Intermediate isohyets can be determined by the technique in section 3.4.

5.4.2 Arrangement of centers

Actual storms show a multitude of possible placements of the two centers. As the size of the drainage increases, the number of arrangements that are possible also increases. It is left to the user to determine the most critical hydrologic arrangement for a specific drainage situation. This arrangement should not violate the basic elliptical shape of the total isohyetal pattern.

6. SHORT-DURATION PRECIPITATION

6.1 Introduction

In applying PMP estimates to determine flood hydrographs, it is often necessary to determine the amounts that fell within time increments of less than 6 hr . Severe storms have occurred in which all, or nearly all, of the rain fell in periods of less than an hour. In other situations, the rainfall has been much more uniform, with large amounts falling every hour for several days. It is the purpose of this chapter to develop criteria for the mamum 5-, 15-, 30- and 60min amounts that occur within the largest 6 -hr increment of PMP determined from HMR No. 51. Another important feature is the temporal distribution of these short-duration values within the greatest 6 -hr increment. This has not been studied for the present report. It is left to the discretion of the analyst to place these values chronologically in the most critical sequence.

6.2 Data

The amount of storm-centered data available for durations between 1 and 6 hr is limited. Of the total storm sample available in the United States east of the l05th meridian only 29 , or about 6 percent, had data for the 1 -hr duration. These storms are listed in table 19 and provide a basis for much of the analysis in this chapter. For many storms, data are insufficient to define an accurate isohyetal pattern near the storm center. In these cases the value for the largest observation, or the innermost isohyet drawn, is assumed to represent the average depth over a $10-$ mi 2 area. Of our storm sample, 12 had sufficient data to define the areal distribution to the nearest square mile. These storms are identified by an asterisk in table 19.

Many of the storms in table 19 did not last more than a few hours. Since the information in $H M R$ No. 51 is restricted to areas of $10 \mathrm{mi}^{2}$, or larger, it necessary to define a relationship between point and $10-\mathrm{mi}^{2}$ values for 6 and 12

Table 19.-Storms used in analysis of l-hr stormarea averaged PMP values

Nearest station					Date	Storm a ssignment number+
Baltimore, MD	39	17	79	37	7/12/1903	SA 1-6
Bonaparte (nr), LA	40	42	91	48	6/9-10/1905	UMV 2-5
Cambridge, OH	40	02	81	36	7/16/1914	OR 2-16
Gordon, PA	40	45	76	20	8/21-22/1915	SA 1-7
Oakdale, NE	42	04	97	58	7/16-17/1920	MR. 4 -18
Lancaster, PA	40	03	76	17	8/18/1920	SA 1-8
Baltimore, MD	39	17	76	37	10/9-10/1922	SA 1-9
Harrisburg, PA	40	13	76	51	8/8/1925	SA 1-10
Toledo, IA	42	00	92	34	8/1-2/1929	LMV 2-17
La keville, PA	42	27	75	16	7/24/1933	SA 1-11
Woodward Ranch, TX	29	20	99	18	5/31/1935	G 5-20
Elm Grove, WV*	40	03	80	40	7/10/1937	OR 9-15
Pickwick, TN	35	05	88	14	8/21-25/1937	OR 3-25
Winchester Spr., TN*	35	12	86	12	7/8/1938	--
Lucas Garrison, MO*	38	45	90	23	8/25/1939	UMV 3-19
Wa shington, D.C.	38	54	77	03	7/23/1940	--
Ewan, NJ*	39	42	75	12	9/1/1940	NA 2-4
Plainville, IL*	39	48	91	11	5/22/1941	UMV 2-19
Iowa City, IA*	41	38	91	33	9/8/1942	UMV 2-21
Gering (nr), NE*	41	49	103	41	6/17-18/1947	MR 7-16
Holt, MO	39	27	94	20	6/22-23/1947	MR 8-20C
St. Louis, MO*	38	36	90	18	7/5/1948	LMV 3-27
Marsland (nr), NE*	42	36	103	06	7/27-28/1951	MR 10-7
Kelso, MO	37	12	89	33	8/11-12/1952	LMV 3-30
Ritter, IA	43	15	95	48	6/7/1953	MR 10-8
Tulsa, OK*	36	'11	95	54	7/25/1963	--
--*	35	22	98	18	9/20-21/1965	--
Glen U11in, ND*	47	21	101	19	6/24/1966	--
Greeley (nr), NE	41	33	98	32	8/12-13/1966	--

these numbers are assigned by the Corps of Engineers (indexed to major drainages) and are given in "Storm Rainfall" (U. S. Army Corps of Engineers 1945-). Storms without index numbers are from less complete storm studies maintained in the Hydrometeorological Branch.
*Storms for which an isohyetal pattern s developed that permitted determination of areal values for $1 \mathrm{mi}^{2}$ and larger.
hr. For this purpose another storn sample was selected that consisted of all storms in "Storm Rainfall" (U. S. Army Corps of Engineers 1945-) for which adequate data were available to define depth-area relations between 1 and 10 mi^{2}. These 54 storms are listed in table 20.

Table 20.-Storms used to define 1- to $10-\mathrm{mi}^{2}$ area ratios for 6 and 12 hr

Location of st Nearest station	$\begin{gathered} \hline \mathrm{cm} \mathrm{ce} \\ \mathrm{La} \\ \left({ }^{\circ}\right) \end{gathered}$	(')			Date	Storm assignment number +
Constableville, NY	43	44	74	46	7/1-5/1890	GL 1-2
S. Canisteo, NY	42	15	77	33	9/8-13/1890	GL 4-1
Blanchard, IA	40	31	95	13	7/6-7/1898	MR 1-3A
Girardville, PA	40	48	76	17	8/3-5/1898	SA 1-4
Friesburg, NJ	39	35	75	25	9/12-15/1904	NA 1-9
Bona parte (nr), IA	40	42	91	48	6/9-10/1905	UMV 2-5
Arkadelphia, AR	34	07	93	03	6/28-7/2/1905	MR 1-16B
E1k, M	32	56	105	17	7/21-25/1905	G1 3-13
LaFayette, LA	30	14	91	59	5/7-10/1907	LMV 3-12
Sugarland, TX	29	36	95	38	5/28-31/1907	IMV 3-13
Ardmore, OK	34	12	97	08	7/12-15/1927	SW 2-5
Cheltenham, MD	38	44	76	51	8/10-13/1928	NA 1-18
Algiers, LA	29	56	90	03	9/5-9/1929	LMV 4-13
Meeker, OK	35	30	96	54	6/2-6/1932	SW 2-7
Tribune, KS	38	28	101	46	6/2-6/1932	SW 2-7A
St. Fish Htchry., TX*	30	10	99	21	6/30-7/2/1932	GM 5-1
Elka Park, NY	42	10	74	14	10/4-6/1932	NA 1-21
Peeka moose, NY	41	56	74	23	8/20-24/1933	NA $1-24 \mathrm{~A}$
York, PA	39	55	76	45	8/20-24/1933	NA 1-24B
Cheyenne (nr), OK*	35	37	99	40	4/3-4/1934	SW 2-11
Cherry Ck., CO*非	39	13	104	32	5/30-31/1935	MR 3-28A
Keene, OH	40	16	81	52	8/6-7/1935	OR 9-11
Bentonville, AR	36	22	94	13	9/6-10/1937	SA 2-15A
Cherokee, OK	36	45	98	22	9/6-10/1937	SW 2-15B
New Orleans, LA	29	57	90	04	9/30-10/4/1937	IMV 4-22A
Woodworth, LA	31	08	92	29	9/30-10/4/1937	IMV 4-22B
Loveland (nr), CO	40	23	105	04	8/30-9/4/1938	MV 5-8
Miller Island, LA*	29	45	92	10	8/6-9/1940	LMV 4-24
Ewan, NJ	39	42	75	12	9/1/40	NA $2-4$
Hallett, OK*	36	15	96	36	9/2-6/1940	SW 2-18
Larchmont, NY	40	55	73	46	7/26-28/1942	NA 2-7
Charlottesville, VA	38	02	78	30	8/7-10/1942	NA 2-8
Warner, OK	35	29	95	18	5/6-12/1943	SW 2-20
Mounds (nr), OK*	35	52	96	04	5/12-20/1943	SW 2-21
Pierce (nr), NE	42	12	97	32	5/10-12/1944	MR 6-13
Stanton (nr), NE*	41	52	97	03	6/10-13/1944	MR 6-15
Turkey Ridge St., SD	43	16	97	08	6/10-13/1944	MR 6-15A
New Brunswick, NJ	40	29	74	27	9/12-15/1944	NA 2-16
Cedar Grove, NJ	40	52	74	13	7/22-23/1945	NA 2-17
Jerome, IA	40	43	93	02	7/16-17/1946	MR 7-9

Table 20.--Storms used to define l- to $10-$ mi 2 area ratios for 6 and 12 hr - Continued

Nearest station		(')			Date	Storm assignment number+
Collinsville, IL	38	40	89	59	8/12-16/1946	MR 7-2B
Holt (nr), MO	39	27	94	20	6/18-23/1947	MR 8-20
Wickes, AR*	34	14	94	20	8/27-28/1947	SW 3-7A
Dallas, TX	32	51	96	51	8/24-27/1947	SW 3-7B
Mifflin, WI	42	52	90	21	7/15-16/1950	UMV 3-28
Dumont (nr), IA	42	44	92	59	6/25-26/1951	LMV 3-29
Council Gr. (nr), KS	38	40	96	30	7/9-13/1951	MR 10-2
Vic Pierce, TX*	30	22	101	23	6/23-28/1954	SW 3-22
New Bern, NC	35	07	77	03	8/10-15/1955	NA 2-21B
Slide Mtn., NY	42	01	74	25	8/11-15/1955	NA 2-21A
Big Meadows, VA	38	31	78	26	8/15-19/1955	NA $2-22 \mathrm{~B}$
Westfield, MA	42	07	72	45	8/17-20/1955	NA $2-22 \mathrm{~A}$
Big Elk Mdw. Res., CO	40	16	105	25	5/4-8/1969	--
Broomfield (nr), CO	39	55	105	06	5/5-6/1973	--

+ - See note for table 19.
\# - Westernmost center of two large nearly equal amounts, generally known as Cherry Ck. The easternmost center is at Hale CO, $39^{\circ} 36^{\prime} \mathrm{N}, 102^{\circ} 08^{\prime} \mathrm{V}$ (see table 1).
* - Storms with larger 6-and $12-\mathrm{hr}$ values used in depth-area development.

Data for durations less than 1 hr are not available from the storm studies prepared for "Storm Rainfall" (U. S. Army Corps of Engineers 1945-). For these durations maximum annual values were used. These values were determined from excessive precipitation tables of "Climatological Data" (National Weather Service 1914-).

6.3 1-hr PMP

Since maximum l-hr data are relatively scarce, it has been necessary to resort to indirect methods to develop the l-hr PMP. The primary tool sa the development of depth-duration ratios for point or $1-$ mi 2 precipitation. These were used to develop $1-\mathrm{mi}^{2}$ 1-hr PMP maps. Depth-area ratios developed from storm values were used to develop maps for other area sizes.

6.3.1 Depth-duration ratios

The first step in this procedure is to develop depth-duration ratios for durations from 5 min to 12 hr along meridians at 2° intervals starting at $69^{\circ} \mathrm{W}$. Depth-duration curves were prepared for each 2° of latitude from $29^{\circ} \mathrm{N}$. For $6-$ and $12-h r$ durations, the $10-$ mi 2 values from $M M R$ No. 51 were used. Values for the 2- and 3 -hr durations were obtained for the $100-y r$ recurrence interval from Weather Bureau Technical Paper No. 40 (Hershfield 1961). For the shorter durations, $5,10,15,30$ and 60 min, the $100-y r$ amounts were determined from NOAA Technical Memorandum NW 35 (Frederick et al. 1977). Along the 105 th meridian,
however, all rainfall-frequency values were determined from NOAA Atlas 2 (Miller et al. 1973).

A11 values were expressed as a percent of the $6-\mathrm{hr} 10-\mathrm{mi}^{2}$ amount, and a smooth set of curves was developed for each meridian. These curves (not shown) indicate that the ratio between amounts for durations less than 6 hr and the $6-\mathrm{hr}$ amount decreased from north to south. This variation was consistent along all meridians. The same trend can be seen by examining 6- to $24-\mathrm{hr}$ ratios in PMP values of $H M R$ No. 51. Although considerable scatter is present when 1- to 6-, 2to 6-, or 3 - to $6-\mathrm{hr}$ ratios in major storms are examined, a trend toward increasing ratios with latitude can also be detected. After constructing a smooth family of curves along the meridian, the 1 -hr pt. to 6 -hr $10-\mathrm{mi}^{2}$ ratios were plotted and regionally smoothed (fig. 23). This smoothing step required changes of less than 2 percent from the values determined from the sets of curves.

6.3 .2 1-hr 1-mi ${ }^{2}$ PMP

The ratio map of figure 23 was used to compute 1 -hr $1-m i^{2}$ PMP values over a 2° grid from the $6-h r \quad 10-\mathrm{mi}^{2}$ PMP amounts shown in HMR No. 51 . These values were ploted and isohyets drawn as shown in figure 24 . The 1 -hr data used to develop the 1 - to $6-h r$ ratios were based upon single station observations, and the resulting maps can be considered "point" values. We have developed a convention for this report that they should be considered applicable to $1 \mathrm{mi}^{2}$. We do not recommend any increase in these values for smaller areas.

Though the paucity of data prevents development of the $1-h r 1-\mathrm{mi}^{2}$ PMP by traditional methods, an important step in evaluating the reasonableness of the PMP values developed is to compare the limited data available with the derived map. Table 21 shows the important 1 -hr values used in this comparison. In most cases, $1-h r$ values are not obtainable directly from the observations of the most extreme rainfall in the storm and must be estimated by indirect methods. The technique used for each storm is indicated in the remarks column.

These maximum observed amounts together with the moisture maximized values are shown in figure 25. There are only a few storms that provide controlling or near controlling values: a) Smethport, Pennsylvania; b) Glen Ullin, North Dakota; c) Buffalo Gap, Saskatchewan; and d) Simpson P.o., Kentucky. The moisture maximized amount for Buffalo Gap of 16.3 in . exceeds the value interpolated from figure 24 of 14.4 in. for the northern Great Plains, the region within which it could be transposed. However, the moisture maximization factor for this storm is 155 percent. Since this moisture maximized value is not supported by the values for other storms in the region, we have adopted the convention of limiting the adjustment factor to 150 percent.

The Buffalo Gap observation is based upon a D.A.D. analysis of the results of a bucket survey. Figure 24 "undercuts" the moisture maximized transposed value by about 1 in. and is about 4 in. larger than the observed precipitation value. Considering all the uncertainties involved, we feel this is a reasonable estimate of the $1-\mathrm{mi}^{2} 1-h r$ PMP for this region, and that it is comparable to practices followed in HMR No. 51 . (See section 4.1 of that report.)

In figure 25 , the moisture adjustment factor used for the Cherry $C k$. storm is 122 percent. (This percent was also used for the Hale center of the same storm listed in HMR No. 51.) Recently, the dew point for this storm was reevaluated

Figure $23 .-1-\mathrm{hr}$ pt. to $6-\mathrm{hr} 10-\mathrm{mi}^{2}$ ratio of precipitation based on major storms used in HMR No. 51 and rainfall frequency studies.

and resulted in a revised moisture adjustment factor of 141 percent. Applying this new adjustment factor to the l-hr value for the storm gives a maxized value of 15.5 in., which more closely supports the 16.7 in . value interpolated from figure 24.

The moisture adjusted values show little support for the values show in the southern portion of the $1-h r 1-$ mi 2 PMP map. The next step in the traditional method for developing PMP values would be transposition of the maxized amounts within regions of meteorological homogeneity for each extreme storm of record. Figure 26 shows the transposition limits for the Smethport, Pennsylvania storm of July 17-18, 1942, the moisture mimized value at the storm location, and the moisture maximized transposed value for the southwestern extreme of the

Figure 24.-1-hr 1 -Ti 2 mPP analysis based on figure 23 and 6-hr 10-ad ${ }^{2}$ precipitation fron bMr No. 51.
transposition limits. Comparison of this $18.3-i n$. value with the $1-h r 1-m i^{2}$ PMP from flgure 24 shows a difference of 0.6 in . We consider this a reasonable envelopment of a moisture maximized transposed amount.

6.3.3 Depth-area ratios

Preparation of 1 -hr PMP values over the range of area sizes of interest required development of depth-area reduction ratios. A primary basis for such reduction ratios is the list in taple 19 of 12 extreme storms (those noted by asterisks) for which point or $1-$ mi 2 data are available at 1 hr . A problem with the data from these 12 storms is the limited area of most storms. Nearly 60 percent have an areal extent of less than $240 \mathrm{mi}^{2}$, while one fourth of them

Table 21.-Extreme 1-hr amounts used as support for $1-\mathrm{hr} 1-\mathrm{mi}{ }^{2}$ MP map

Table 21.--Extreme 1-hr amounts used as support for $1-\mathrm{hr} 1-\mathrm{mi}{ }^{2}$ PMP map - Continued

* $10-\mathrm{mi}^{2}$ a mount
+ See table 19
\dagger Assignment number from "Canadian Storm Rainfall" (Canadian Dept. of Transport; ongoing publication)
\# See note for table 20

Figure 25.-Maximized observed 1-hr point amounts and moisture maximized values from ja jor storms listed in table 21.

Flgure 26.-Example of transposition linits as applied to the Smethport, PA storm (7/17-18/42) .

enclose an area less than $100 \mathrm{mi}^{2}$. It was decided to develop an average deptharea curve for the 1 -hr duration from these 12 storms and similar curves for the 6- and $12-\mathrm{hr}$ durations from these storms and 9 additional storms from the 54 storms for which maximum point or $1-\mathrm{mi}^{2}$ amounts were available (table 20). The curves for the $6-$ and 12 -hr durations were used as an ald in shaping the 1 -hr curve for the larger area, sizes. Figure 27 shows the data for these 12 storms for the areas of $600 \mathrm{mi}^{2}$ and less and the curve of best fit for the data. Similar curves (not shown) were drawn for the 6 - and $12-h r$ durations.

The depth-area relations implicit in the set of pMP values derived from the maps of HMR No. 51 represent enveloping values from a combination of storms. We therefore adjusted our family of curves to be compatible with an average depth-

Figure 27.-Depth-area data plotted as percent of maximum 1-hr $1-\mathrm{mi}^{2}$ amount for storms where the maximum $1-\mathrm{hr} 1-\mathrm{mi}^{2}$ amount n determined from a dense network of observations or bucket survey amounts.
area reduction curve developed using PMP values from HMR No. 51. Although some regional variation was seen in curves developed at a number of widely spaced geographic locations, it wa decided that one curve would be adequate for the 1 hr duration. We think this is realistic, since the regional variation wast slightly less at 6 hr than at 12 hr , and it is meteorologically reasonable to expect the potential for shorter durations to be less variable throughout the region than it is for the longer durations. The rationale here is that a longer duration storm ($>24 \mathrm{hr}$) requires a sustained moisture inflow that is most likely to occur nearest the coast and decreases inland. This contrasts with the moisture requirements for a short-duration local storm which is likely to occur almost anywhere. The adopted $1-h r$ depth-area curve, in percent of the $1-m i^{2}$ PMP, is shown in figure 28. This curve covers area sizes as large as $20,000 \mathrm{mi}^{2}$ and was determined primarily to provide areal l-hr values that enveloped available data. Since most of the available data are from small area storms ($<500 \mathrm{mi}^{2}$), there is less reliability with increasing area size. Nevertheless, $1-\mathrm{hr} 20,000-\mathrm{mi}^{2}$ data are available for the Bonaparte, Iowa storm ($6 / 9-10 / 1905$), which provided a large-area check of the adopted depth-area relation.

6.3.4 1-hr PMP for areas to $20,000 \mathrm{mi}^{2}$

The depth-area curve developed in the preceding section (fig. 28) was used to compute PMP for $10,100,200,1,000,5,000,10,000$ and $20,000 \mathrm{mi}^{2}$ (figs. 29 to 35, respectively).

The four storms (see section 6.3.4) which provide significant support for the $1-\operatorname{mi}^{2} 1-h r$ PMP also provide evidence of the reasonableness of the PMP values for these larger areas. In addition, the moisture maximized value for Cherry Ck., Colorado is within 15 percent of the PMP at the storm location. The moisture maximized value for the Simpson, P.O., Kentucky sform exceeds the estimated PMP at the storm location by 0.4 in . for 10 and $100 \mathrm{mi}^{2}$. At $200 \mathrm{mi}^{2}$, the PMP and the moisture adjusted value for Simpson are about equal. Since the l-hr amount was determined from a reconstructed depth-duration curve, it was decided not to revise the PMP estimate based on this difference.

6.4 PMP for Durations Less Than 1-hr

As mentioned in section 6.2, there are no storm studies that have data for durations less than 1 hr . The very-short duration data most nearly representative of extreme storm situations can be found in the excessive precipitation tablulations published in "Climatological Data" (National Weather Service, 1914-). A series of the maximum annul values was determined for each duration of interest for every station in the east where such data are available. These data were examined to see if there was any trend for higher or lower ratios with the magnitude or recurrence intervals. The data indicate that the ratios have a slight tendency to decrease with increasing magnitude. There is also a slight geographic variation with the ratios with decreasing latitude. These trends have been incorporated into the appropriate ratio mps. Only one set of ratio mps (relative to 1 hr) have been provided, figures 36,37 , and 38 for the 5-, 15-, and $30-$ min durations, respectively.

Since there are no data from which to develop areal corrections, we apply the same ratio for all areas. It is for this reason that we feel values for these shorter durations should be be limited only to area sizes of $200 \mathrm{mi}^{2}$ or less.

Figure 29.-1-hr $10-$ mi 2 PMP analysis for the eastern Dnited States.

Figure 30. - 1 -hr $100-$ nai 2 PMP analysis for the eastern Onited States.

Figure 31. - $1-\mathrm{hr} 200-\mathrm{mi}^{2}$ MMP analysis for the eastern Onited States.

Figure 32. - 1-hr 1, 000-ail ${ }^{2}$ mP analysis for the eastern United States.

Figure 33. - 1 -hr 5,000-4 ${ }^{2}$ MP analysis for the eastern Onited States.
(107

Figure 34. $-1-\mathrm{hr} 10,000-\mathrm{mi}^{2} \mathrm{MPP}$ analysis for the eastern United States.

Figure 35.-1-hr 20,000-1i ${ }^{2}$ MMP analysis for the eastern United States.

Figure 37. -Ratio analysis of 15- to 60-min precipitation used to obtain 15-min MP. (Applicable to area sizes < $200 \mathrm{mi}^{2}$.)

Figure 38. -Ratio analysis of $30-$ to 60 - gin precipitation used to obtain 30-min
PMP. (Applicable to area sixes $<200 \mathrm{mi}^{2}$.)

6.5 Isohyet Values for Durations Less Than 1-hr

As in chapter 5, where a procedure was given to compute isohyet values for each 6-hr isohyetal pattern of the $72-\mathrm{hr}$ PMP, it is also important to provide a procedure to distribute the precipitation for durations within the greatest $6-\mathrm{hr}$ increment. Such information has not been included in any previous study. Also, since little depth-duration data were available for the durations less than 6 hr in the major storms, it was not possible to pursue an approach similar to that used in chapter 5. Furthermore, one finds that by plotting the isohyet values for each 6 -hr period, it is possible to fit the short durations ($<6 \mathrm{hr}$) by any number of smooth curves. Especially for large values of 6 -hr PMP the depthduration relation for durations less than 6 hr has the greatest curvature and therefore the greatest flexibility in curve fitting, depending upon the individual analyst. As a consequence, a procedure s adopted that allowed answers to be obtained with an accuracy of ± 10 percent. This tolerance was judged acceptable considering the approximations involved in the procedure.

Sections 6.5.1 and 6.5.2 describe the procedure to obtain isohyet values for isohyets in the PMP portion of the pattern as applied to short durations within the greatest $6-\mathrm{hr}$ increment. Residual isohyet values are discussed in section 6.5.3. The discussion and example in chapter 7 are meant to further clarify the application of this procedure.

6.5.1 Description of procedure

Only a brief description of the procedure has been provided here. Following the procedure in chapter 5, it is possible to determine the isohyet values for the greatest 6 -hr increment relative to a specific drainage application. It was noted in some sample applications that the $6 / 12-h r$ ratios obtained for each isohyet decreased with increasing isohyets (area). This result implies that the $1 / 6-\mathrm{hr}$ or $15-\min / 6-\mathrm{hr}$ ratios will also vary between isohyets. The adopted procedure recognizes this variation and was developed as follows. Depth-duration curves were drawn for each isohyet from data for the 4 greatest 6 -hr increments of PMP. Values for 1 hr were interpolated from these curves and $1 / 6-\mathrm{hr}$ ratios determined. These ratios were plotted against area size (area enclosed by respective isohyets) and a smooth curve drawn through the points. A comparison was then made by computing the area-averaged precipitation obtained from distributing the precipitation according to the smooth curve and determining the area-averaged depth taken directly from the D.A.D data based on figures 24, and 29 to 35 . The smooth curve was then adjusted to correct for any discrepancies.

Determining the ratio curves at a number of locations throughout the region and for a number of pattern area sizes showed a regional and areal variation in the results. To account for the regional variation, it was decided to prepare an index map for the $1-h r 20,000-\operatorname{mi}^{2}$ ratios of the $6-h r$ labels for the A isohyet. This particular choice was bas on a number of trials and this area size was selected because it had the greatest regional variation. Figure 39 shows the $1 / 6-h r$ ratio index map. In this map the ratios increase from the southeast to the northwest through most of the region.

To show the areal variation, a regionally averaged nomogram developed, as shown in figure 40. The abscissa is based on a scale of percent of the corresponding 6 -hr isohyet value. It was necessary to omit every other isohyet (B, D, F, H) from these nomograms for clarity, but simple interpolation will.

Hgure 39.-Index map for 1- to 6-hr ratios for 20,000 -mi ${ }^{2}$ A" isohyet.
provide values for the missing isohyets. The nomogram does not include information for the residual isohyets.

6.5.2 Application of nomogram for short duration isohyets

The use of the relations in figure 40 is simple. One locates the center of the drainage being considered (for which 6 -hr isohyet values have been determined as directed in chapter 5) on figure 39 and interpolates the $1 / 6$-hr ratio. This ratio then represents the label of the 1 -hr $20,000-\operatorname{mi}^{2}$ A isohyet on the nomogram in figure 40. The user must then make a copy of the scale provided with the nomogram and place the scale on the nomogram to correspond to the value determined from the index map. Having adjusted the scale, all isohyet values

Figure 40.-Regionally-averaged nomogran for 1 -hr isohyet values in percent of 1st 6 -hr isohyet values.
may be read directly from the nomogram as percents of the corresponding 6-hr isohyet values.

Once all isohyet values have been read, the ratios are multiplied by the greatest 6 -hr isohyet values to get the $1-h r$ isohyet values. Because of the areal limitations discussed in section 6.4, we suggest that isohyet values for any durations less than 1 hr also be limited to small pattern areas (< 200 mi^{2}). For such cases, short duration isohyet values can be interpolated from smooth curves connecting the 1-, 6-, $12-, 18-$ and $24-\mathrm{hr}$ values to zero. Following this procedure for areas larger than $200 \mathrm{mi}^{2}$ will result in patternaveraged depths that are less than that of PMP determined from figures $36-38$.

6.5.3 Isohyet values for short duration residual isohyets

Attempts were made to obtain values for isohyets describing residual precipitation along similar lines as discussed above. However, the results were confusing and the procedure abandoned. It was decided that the alternative was to allow interpolation from smoothed depth-duration curves drawn through isohyet values for the $6-, 12-, 18$ - and 24 -hr durations connected to zero. These curves are relatively more flat than those for isohyets in the PMP portion of the pattern, especially those enclosing the smaller areas. Flatter curves allow the least flexibility in fitting the curve for durations less than 6 hr , and therefore the error involved in this decision is minimized.

7. PROCEDURE AND EXAMPLE APPLICATION

Chapters 2 through 6 describe the development of guidance for distributing storm-area averaged PMP from HMR No. 51 over a specific drainage. Since much of this material and the considerations involved in its application are unique to this study and represent a relatively complex computational process, it is believed useful to summarize the results of the study in the form of a stepwise procedure. To further emphasize the meaning of each of the steps, two examples are fully detailed as additional insight into the methods recommended.

Because of the complexity involved in the use of these procedures and the acknowledged length of time required to complete one application, it is recommended that the procedure be automated by those users having access to such capability.

7.1 Stepwise Procedure

The following stepwise procedure is recommended for distributing stormarea averaged PMP over a drainage. In addition, some guidance considerations are provided to aid the user when a subjective decision is required.
A. 6-Hr Incremental PMP (refer to $H M R$ No. 51)

Step

1. Obtain depth-area-duration (D.A.D) data from figures 18 through 47 in $M R$ No. 51 for the location of the drainage. Location is customarily judged at or near the center of the drainage. For particularly large drainages in which isohyetal pattern placements my be de at considerable
distance from the drainage center, the location of the pattern center should be used to obtain the appropriate D.A.D data.
2. Plot the data in step Al on semi-logarithmic paper (area on the log scale) and join points of common duration with curves. When drawing a smooth set of curves, we recommend that the curves be adjusted to assure that they are either parallel or show slight convergence with increasing area size; i.e., the largest incremental differences occur at 10 mi^{2}, and the smallest incremental differences occur at $20,000 \mathrm{mi}^{2}$ in HMR No. 51.
3. From the curves in step $A 2$, read off D.A.D values for a set of standard isohyet area sizes* both larger and smaller than the area size of the specific drainage. Where possible, it is recommended that at least 4 pattern area sizes larger and smaller be used to adequately enclose the area size corresponding to maximum precipitation volume (see step C11).
4. For each of the pattern area sizes selected in step A3, plot the depth-duration data (at least to 48 hr) on linear paper and fit a smooth curve to enable interpolation of values for the 18-hr duration.
5. Obtain incremental differences for each of the first three $6-\mathrm{hr}$ periods (0 to 6,6 to 12 , and 12 to 18 hr) through successive subtraction for each area size considered in step A4. Because of possible inaccuracies in reading the map analyses, plotting, and drawing for the data in the preceding steps, the $6-h r$ incremental values should also be plotted (on semi-log paper) and smoothed to insure a consistent data set. Incremental data should decrease or remain constant with increases in both duration and pattern area size. In drawing these final smoothing curves choose a scale for the abscissa (incremental depths) that allows values from curves to be read off to the nearest hundredth.

B. Isohyetal Pattern

Step

1. A tracing of the drainage should be placed over the isohyetal pattern in figure 5, drawn at comparable map scales. Placement of the pattern (or adjustment of the drainage axis) is a subjective consideration. Placement is generally regarded as that which inputs the maximum

[^10]precipitation to the drainage. In most cases this consideration is met by drainage-centering the isohyetal pattern, that is, the isohyetal and drainage patterns have approximately the same center and axial orientation (see section 4.4 .4 for exception). Judgment is guided by trying to place the greatest number of whole isohyets completely within the drainage, since the isohyets that enclose smaller area sizes contain proportionately higher rain amounts. This guidance is subject to consideration of the relative orientations preferred for PMP-type patterns discussed in the following steps.
2. Determine the orientation (to nearest whole degree) of the pattern when placed on the drainage, in terms of degrees from north. If this orientation does not fall between 135° and 315°, add 180° so that it does.
3. Determine the orientation preferred for PMP conditions from figure 8 at the location of the pattern center. If the difference between orientations from step B3 and B2 is less than 40 degrees, then for the isohyetal pattern as placed over the drainage there is no reduction factor to consider. If the orientation differences exceed 40 degrees, then a decision must be made whether the pattern is to be placed at some angle to the drainage at which no reduction to isohyet values is required, or aligned with the drainage and a reduction made to the isohyet values. A truly objective decision on the orientation of the pattern yielding maximum volume would require numerous applications. As guidance, the area size of the drainage, the shape of the drainage, and the differences in orientations (preferred PMP and pattern placed on the drainage) have the greatest bearing on the volume of precipitation determined. Only the experience gained from numerous trials will enable the user to reduce the effort involved in making these decisions. An illustration of the effects of alternative placements is demonstrated in the examples.
4. Skip this step if no adjustment for orientation is needed. Having settled on a placement of the isohyetal pattern, determine the appropriate adjustment factors due to orientation for the isohyets involved from the model shown in figure 10 (read to tenths of percent). Note that the amount of reduction is dependent upon area size (only pattern areas larger than $300 \mathrm{mi}^{2}$ need to be reduced) and the difference between orientations. Multiply the adjustment factor times the corresponding 6 -hr incremental amounts from step $A 5$ for each pattern area size to obtain incremental values reduced as a result of pattern orientation.

C. Maximum Precipitation Volume

Determine the maximum volume of precipitation for the three largest 6 -hr incremental periods resulting from placement of the
pattern over the drainage. To do this, it is necessary to obtain the value to be assigned to each isohyet in the pattern that occurs over the drainage during each period. Guidance for this determination is given in the following steps related to the format presented in figure 41. It is suggested that an ample number of copies of this figure be reproduced to serve in the computation procedure.

Step

Start by determining the maximum volume for the lst 6-hr incremental period.

1. Fill in the name of the drainage, drainage area, date of computation, and increment (either $1 s t$, $2 n d$ or $3 r d$) in the appropriate boxes at top of form (fig. 41).
2. Put the area size (mi ${ }^{2}$) from step $A 3$ for which the first computation is made under the heading at the upper left of form.
3. Column I contains a list of isohyet labels. Use only as many isohyets as needed to cover the drainage.
4. For the area size in step C2, list in column II the corresponding percentages read from table 15 or the nomogram in figure 16 (first 6 -hr period) for those isohyets needed to cover the drainage; use table 16 or figure 18 and table 17 or figure 19 for the $2 n d$ and 3 rd 6 -hr periods, respectively, when determining step ClO.
5. Under the heading amount (Amt.) in column III place the value from step B4 corresponding to area size and increment of computation. Multiply each of the percentages in column II by the Amt. at the head of column III to fill column III.
6. Column IV represents the average depth between adjacent isohyets. The average depth of the "A" isohyet is taken to be the value from colum III. The average depth between all other isohyets which are totally enclosed by the drainage is the arithmetic average of paired values in column III. For incomplete isohyets covering the drainage, it is necessary to make a weighted estimate of the average depth if a portion of the drainage extends beyond a particular isohyet. The average depth for the extended portion of the drainage may be taken as 0.5 to 1.0 times the difference between the enclosing isohyets plus the lower isohyet. The weighting relation is given by:

$$
F(X-Y)+Y
$$

where X and Y are adjacent isohyet values, $X>Y$, and the weight factor, F, may be between 0.5 and 1.0 . If only a small portion of the drainage extends beyond X, then the

Figure 41. - Example of computation sheet shoring typical format.

Drainage:								Increment:					
								Area :			Dare:		
	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	Amt.	Avg. depth	$\Delta \mathrm{A}$	ΔV	Area size	Iso.	Nomo.	Amt.	Avg. depth	$\Delta \mathrm{A}$	ΔV
	A							A					
	B							B					
	C							C					
	D							D					
	E							E					
	F							F					
	G							G					
	H							H					
	I							I					
	J							J					
	K							K					
	L							L					
	M							M					
	N							N					
	0							0					
	P							P					

weight factor may be taken closer to 1.0 , and if the drainage extends nearly to Y, then a weight factor close to 0.5 is appropriate.
7. Column V lists the incremental areas between adjacent isohyets. For the isohyets enclosed by the drainage, the incremental area can be obtained from table 8. For all other isohyets it will be necessary to planimeter the area of the drainage enclosed by each isohyet and make the appropriate successive subtractions. The sum of all the incremental areas in column V should equal the area of the drainage. If the computation in step 5 results in the zero isohyet's crossing the drainage, the appropriate total area is that contained within the zero isohyet, and not the total drainage area.
8. Column VI gives the incremental volume obtained by multiplying values in column IV times those in column V. The incremental volumes are summed to obtain the total volume of precipitation in the drainage for the specified pattern area size in the $6-\mathrm{hr}$ period.
9. Steps C2 to C8 are repeated for all the other pattern area sizes selected in step A3.
10. The largest of the volumes obtained in steps $C 8$ and $C 9$ represents the preliminary maximum volume for the lst $6-\mathrm{hr}$ incremental period and specifies the pattern area to which such volume relates. The area of maximum volume can be used as guidance in choosing pattern areas to compute volumes for the 2 nd and 3 rd 6 -hr incremental period. Presumably, this guidance narrows in on the range of pattern area sizes considered and possibly reduces in some degree the number of computations. Compute the 2 nd and 3 rd $6-h r$ incremental volumes by repeating steps $C 1$ to C9, using the appropriate tables or nomograms.
11. Sum the volumes from steps $C 8$ to $C 10$ at corresponding area sizes and plot the results in terms of volume vs. area size (semi-log plot). Connect the points to determine the area size for the precipitation pattern that gives the maximum 18 -hr volume in the drainage.
12. It is recommended, although not alwys necessary, that the user repeat steps C2 through Cll for one or two supplemental area sizes (area sizes other than those of the standard isohyetal pattern) on either side of the area size of maximum volume in step Cll. This provides a check on the possibility that the maximum volume occurs between two of the standard isohyet area sizes. To make this check, an isohyet needs to be drawn for each supplemental area size in the standard isohyetal pattern and positioned on the drainage so that the corresponding incremental areas between isohyets can be determined (planimetered). In addition, supplemental cusp points need to be determined in figures

16, 18 and 19 for each of the area sizes considered. To find the appropriate cusp position, enter the ordinate at the supplemental area size, and move horizontally to intersect a line between the two most adjacent cusps. This intermediate point will be the percentage for the supplemental isohyet when reading the other isohyet percentages in step $C 4$; otherwise follow the computational procedure outlined.
13. The largest 18 -hr volume obtained from either step Cll or C12 then determines the final pattern area size of maximum volume for the pattern placement chosen in step Bl.
D. Distribution of Storm-Area Averaged PMP over the Drainage

Step

1. For the pattern area size for PMP determined in step Cl3, use the data in step A3 to extend the appropriate depthduration curve in step $A 4$ to $72-h r$, and read off values from the smoothed curve for each 6 hr (6 to 72 hr).
2. Obtain 6-hr incremental amounts for data in step D1 for the 4th through 12 th 6 -hr periods in accordance with step A5, and follow procedural steps B1 to B4 to adjust these incremental values for isohyetal orientation, if needed.
3. Steps D1 and D2 give incremental average depths for each of the $126-\mathrm{hr}$ periods in the $72-\mathrm{hr}$ storm. To obtain the values for the isohyets that cover the drainage, multiply the lst $6-h r$ incremental depth by the lst $6-h r$ percentages obtained from table 15 or the nomogram (fig. 16) for the area size determined in step Cl3. Then multiply the 2nd 6hr incremental depth by the $2 n d 6$-hr percentages from table 16 or the nomogram (fig. 18) for the same area size, and similarly for the $3 \mathrm{rd} 6-\mathrm{hr}$ increment (table 17 or fig. 19). Finally, multiply each remaining 6 -hr incremental depth by the 4 th through 12 th percentages in table 18 or the nomogram (fig. 20). As a result of this step, a matrix of the following form can be completed (to the extent of whichever isohyets cover the drainage).

pattern determined in step Clo. Divide each incremental volume by the drainage area (that portion covered by precipitation).
4. Should it be of interest to determine the isohyetal values for durations less than 6 hr within the greatest $6-\mathrm{hr}$ increment, the procedure discussed in section 6.3 gives the following steps.
a. Interpolate the $1 / 6-\mathrm{hr}$ ratio at the drainage location from figure 39.
b. Adjust an overlay of the scale given in figure 40 a long the abscissa of the figure such that the $20,000-\mathrm{mi}^{2}$ "A" isohyet equals the ratio read in step D5a.
c. At the area size for the PMP pattern found in step ClO , read from the nomogram (fig. 40) percentages of the 6 -hr isohyet values. These isohyets cover only the PMP portion of the pattern.
d. Multiply the ratio in step $D 5 \mathrm{c}$ by the corresponding 6-hr isohyet values in step D3 to obtain l-hr isohyet values.
e. Plot the values from step D5d along with the 6-, 12-, 18-, and 24 -hr isohyet values for each isohyet from step D3. Draw a smooth curve of best fit through points for each isohyet to include the origin.
f. Read off isohyet values for any other intermediate duration of interest. Note that the values interpolated from these smooth curves, $5-15-$, and $30-\mathrm{min}$ durations, will result in somewhat lower drainage-averaged PMP estimates than obtained from figures 36-38.
g. To obtain isohyet values for any isohyet of residual precipitation in the PMP pattern, plot the 6-, 12-, 18and $24-h r$ isohyet values from step $D 3$ and fit a smooth curve through the points to include the origin. Read off isohyet values for any intermediate duration. (Note in step D5f is also valid for l-hr values in this step.)

E. Temporal Distribution

In the matrix in step D3, storm-area averaged $P M P$ has been distributed according to increasing 6-hr period. The discussion in chapter 2 provides guidance on distributing these incremental periods with time. A number of distributions are possible, with the choice being left to the user, depending on which is most appropriate for the drainage under study. Whatever distribution is selected must be applied to all isohyets. An example of one possible distribution is reordering the 6 -hr incremental periods in step D3 as follows:

1	2	3	4	5	6	7	8	9	10	11	12
11	10	8	5	1	2	3	4	6	7	9	12

F. Subdrainages

Should it be necessary to determine the areal distribution of PMP across subdrainages of a particular drainage, consider the following steps:

Step

1. With the pattern placed across the entire drainage as given in step Bl, and incremental isohyet values as determined in step D3 and/or D5, planimeter the incremental areas contained between isohyets within each subdrainage.
2. Follow the computational procedure outlined in steps C5 to C8 to obtain the incremental subdrainage volumes for $6-\mathrm{hr}$ periods 1 through 12.
3. The subdrainage volumes divided by the subdrainage areas yield the average depths across the subdrainage for each 6hr increment.

Note: If the subdrainage is crossed by the zero isohyet, the appropriate area for consideration is the subdrainage area inside the zero isohyet, not that of the total subdrainage.
4. If it is hydrologically critical to rearrange the temporal sequence of the incremental amounts determined in step F3 for a particular subdrainage, then it is necessary that the same arrangement be applied to all other subdrainages. This requirement is important and must be observed without exception. Demonstration of a subdrainage application is given in example $2 a$.

7.2 Example No. la

The first example demonstrates the computational procedure, and shows the affect on maximum volume determination that results from consideration of orientation of the isohyetal pattern.

The drainage used in this example is that of the Leon River in Texas above Belton Reservoir (approximately $3,660 \mathrm{mi}^{2}$) shown in figure 42 , drawn to a scale of $1: 1,000,000$. Drainage center is about $31^{\circ} 4^{\prime} \mathrm{N}, 98^{\circ} 15^{\prime} \mathrm{W}$.

The following steps correspond to those outlined in section 7.1 leading to determination of the area size of the isohyetal pattern that gives maxmum volume, from which we then assign isohyet values.

Higure 42.-Leon River, $T X\left(3,660 \mathrm{mi}^{2}\right.$) above Belton Reservoir showing drainage.

Step

Al. For the Leon River drainage above Belton Reservoir $\left(31^{\circ} 45^{\circ} \mathrm{N}\right.$, $98^{\circ} 15^{\prime} \mathrm{W}$) we obtain storm-area averaged PMP data from $M M$ No. 51, figures 18 through 47 as,

Duration (hr)					
Area $\left(\mathrm{mi}^{2}\right)$	6	12	24	48	72
10	29.8	36.2	41.8	46.7	49.8
200	22.3	27.4	33.0	37.5	41.4
1000	16.2	21.2	26.8	31.0	34.5
5000	9.3	13.1	18.1	22.6	25.9
10000	7.2	10.4	14.9	18.8	21.0
20000	5.2	8.2	11.7	15.4	18.4

A2. The depth-area-duration data in step Al is plotted in figure 43, and smooth curves drawn. The decision on how to smooth these curves to the data points is left to the user, although it is cautioned they are to be parallel or converge slightly with increasing area size.

A3. From figure 43, we can read off values for the standard areas of isohyets both larger and smaller than the drainage area $\left(3,660 \mathrm{mi}^{2}\right)$.

Duration (hr)					
Area $\left(\mathrm{mi}^{2}\right)$	6	12	24	48	72
1000	16.1	20.7	26.1	30.5	34.1
1500	14.4	18.9	24.1	28.5	32.0
2150	12.9	17.2	22.3	26.7	30.2
3000	11.5	15.7	20.6	25.0	28.5
4500	9.8	13.9	18.6	22.8	26.4
6500	8.5	12.4	16.7	21.0	24.3
10000	7.1	10.6	14.8	18.8	22.0
15000	5.9	9.3	13.0	16.8	20.0

A4. The data in step A3 are plotted on linear paper and smooth depth-duration curves dram as shown in figure 44. From these curves we interpolate 18-hr values:

Area $\left(\mathrm{mi}^{2}\right)$	$18-\mathrm{hr}$ Duration
1000	23.7
1500	21.8
2150	20.0
3000	18.5
4500	16.5
6500	14.8
10000	13.0
15000	11.3

Figure 43.-Depth-area-duration curves for $31^{\circ} 45^{\prime} \mathrm{N}, 98^{\circ} 15^{\prime} \mathrm{H}$ applicable to the Leon River, TX drainage.

A5. Incremental differences for the lst three 6 -hr periods are obtained by successive subtraction of the values contained in steps A3 and A4.

	6 -hr periods		
Area $\left(\right.$ mi $\left.^{2}\right)$	1	2	3
1000	16.1	4.6	3.0
1500	14.4	4.5	2.9
2150	12.9	4.3	2.8
3000	11.5	4.2	2.8
4500	9.8	4.1	2.6
6500	8.5	3.9	2.4
10000	7.1	3.5	2.4
15000	5.9	3.4	2.0

Figure 44.-Depth-duration curves for selected area sizes at $31^{\circ} 45^{\prime} \mathrm{N}, 98^{\circ} 15^{\prime} \mathrm{W}$.

Plotting each set of 6 -hr values against area and fitting the points by smooth lines as shown in figure 45 gives the following set of incremental data (read to hundredths).

Figure 45.-Smoothing curves for 6-hr incremental walues at selected area sizes for Leon River, TX drainage.

	$6-\mathrm{hr}$ periods		
Area $\left(\mathrm{mil}^{2}\right)$	1	2	3
1000	16.10	4.60	3.01
1500	14.35	4.42	2.89
2150	12.82	4.27	2.79
3000	11.40	4.14	2.70
4500	9.80	3.96	2.58
6500	8.50	3.82	2.48
10000	7.05	3.66	2.36
15000	5.80	3.50	2.25

Note that within each column as a result of this smoothing, the values consistently decrease with increasing area size.

B1. The isohyetal pattern is then drainage-centered over the Leon River drainage drawn to $1: 1,000,000$ scale as shown in figure 46. Our judgment of best fit enclosed the "H" isohyet within the narrow outline of the drainage. The "N" isohyet encloses almost all the drainage.

B2. The orientation of the pattern, when fit as in figure 46 is roughly $134^{\circ} / 314^{\circ}$. The 134° misses by 1° our preferred range (135° to 315°) and we accordingly added 180° to get an orientation of 314°.

B3. For the location of the drainage center at $31^{\circ} 45^{\prime} \mathrm{N}$ and $98^{\circ} 15^{\prime} \mathrm{W}$, figure 8 gives the PMP orientation of 208°. The angular difference is $314^{\circ}-208^{\circ}$, or 106°. Since this difference, or its supplement, 74°, exceeds our range of $\pm 40^{\circ}$ for which no reduction to PMP is applied, we must adjust the storm-area averaged PMP for orientation of the pattern when aligned with the drainage.

B4. Figure 10 gives the following reductions for the various isohyet areas considered in step $A 3$ and the orientation difference from PMP given in step B3.

Patterg area (mi $)$	Ad justment factor $(\%)$
1000	96.1
1500	93.3
2150	89.7
3000	85.0
4500	85.0
6500	85.0
10000	85.0
15000	85.0

Multiply each of the final smoothed 6 -hr incremental values in step A5 by the adjustment factors of step B4 to get the adjusted incremental values,

Patterg	6-hr periods		
	1	2	3
1000	15.47	4.42	2.89
1500	13.39	4.12	2.70
2150	11.50	3.83	2.50
3000	9.69	3.52	2.30
4500	8.33	3.37	2.19
6500	7.22	3.25	2.11
10000	5.99	3.11	2.01
15000	4.93	2.98	1.91

Figure 46.-Isohyetal pattern placed on the Leon River, TX drainage to give maximum precipitation volume.
C. Determine the maximum volume of precipitation for the PMP patterns corresponding to the 8 area sizes used in the previous steps. To do this, we recommend filling in the computation sheets as shown in table 22. Some preliminary considerations have been made regarding the fit of the isohyetal pattern over the drainage. First, the small ($-10-\mathrm{mi}^{2}$) area of the drainage outside the N isohyet has been disregarded as insignificant to overall volume. Second, weight factors of 0.6 and 0.75 have been assigned (arbitrary judgment) to the average depth calculation for the L to M and M to N isohytal areas, respectively (see step C6).

Following the procedure outlined in section C, we find the greatest volume for the 1 st 6 -hr increment occurs at 1,500 mi^{2}. We should then check the volumes obtained for the 2 nd and 3rd 6 -hr increments before accepting $1,500 \mathrm{mi}^{2}$ as our answer. For these additional increments it is not necessary to calculate volumes for all the areas considered in the 1st 6 -hr increment, only those in the vicinity of the presumed area of maximum volume ($1,500 \mathrm{mi}^{2}$). Thus, we have limited our calculations to areas between 1,000 and $3,000 \mathrm{mi}^{2}$ (table 22). Addition of the incremental volumes at corresponding area sizes shows, however z^{2} that the maximum volume has shifted from $1,500 \mathrm{mi}^{2}$ to $2,150 \mathrm{mi}^{2}$ for these accumulated volumes. (The sum of the lst to 3rd volumes is shown by the solid line in fig. 47.)

It is of interest to narrow in on this maximum as to area size, and we chose to evaluate two supplementary PMP pattern areas at 1,900 and $2,400 \mathrm{mi}^{2}$. Isohyets for these area sizes have been added to figure 46 as dotted lines. The results from table 23 (dashed lines in figure 47) show a maximum volume, occurs at an area size slightly less than that for the $2,150-\mathrm{mi}^{2}$ area pattern in the Leon River drainage.

Because of the shift of area size between the lst and the sum of the 1st three increments, it has been recommended that the three greatest increments be determined in the computation procedure. This significantly increases the number of computations required.

Step
D1. Having concluded that the maximum volume occurs for a PMP pattern near 2,150 mi^{2} when placed over the Leon River, we can now determine the values for each isohyet for all twelve 6 -hr increments. Return to the smooth depth-duration curve for $2,150 \mathrm{mi}^{2}$ in step $A 4$, and extend this curve to 72 hr before reading off the $6-\mathrm{hr}$ values.

Duration (hr)

	6	12	18	24	30	36	42	48	54	60	66	72
Increm. PMP (in.)	12.9	17.2	20.0	22.3	23.8	25.0	26.0	26.8	27.7	28.5	29.2	29.9

Th ble 22.-Completed computation sheets for 1 st, 2nd and 3 rd 6-hr increments for Leon River, TX drainage - Continued
= Increment: \quad l,2

Drainage: Leon River, TX Area: \qquad crement: \qquad , Date:

	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \hline \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \hline \text { Amt . } \\ & 5.99 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	\triangle A	$\Delta \mathrm{V}$	$\begin{aligned} & \hline \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \hline \text { Amt } \\ & 4.93 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle \mathrm{A}$	ΔV
10000/1	A	262	15.69	15.69	10	156.9	15000/1	A	290	14.30	14.30	10	143.0
	B	243	14.56	15.12	15	226.8		B	271	13.36	13.83	15	207.4
	C	227	13.60	14.08	25	352.0		C	253	12.47	12.92	25	323.0
	D	209	12.52	13.06	50	653.0		D	232	11.44	11.96	50	598.0
	E	194	11.62	12.07	75	905.2		E	214	10.55	11.00	75	82.50
	F	178	10.66	11.14	125	1392.5		F	196	9.56	10.10	125	1252.5
	G	166	9.94	10.30	150	1545.0		G	183	9.02	9.34	150	1411.0
	H	152	9.10	9.52	250	2380.0		4	168	8.28	8.65	250	2162.5
	I	140	8.39	8.74	271	2368.5		I	156	7.69	7.98	271	2162.6
	J	128	7.67	8.03	393	3155.8		J	143	7.05	7.37	393	2896.4
	R	117	7.01	7.34	488	3581.9		X	131	6.46	5.76	488	3299.9
	L	107	6.41	6.71	582	3905.2		L	120	5.92	6.19	582	3602.6
(.60 X)	M	93	5.57	6.07	737	4473.6	(.60 8)	M	106	5.22	5.64	737	4156.7
(.75 X)	N	82	4.91	5.40	489	2640.6	(.75 X)	N	94	4.63	5.07	489	2479.2

Sum $=10975.7$
Sum $=11459.2$

[^11]Sum $=11879.1$

Table 22.-Completed computation sheets for 1 st, 2nd and 3rd 6-hr increments for Leon River, TX drainage - Continued

Table 23.-Completed computation sheet for the 1st to 3 rd 6 -hr increments for supplemental isohyets on the Leon Rifer, TX drainage

D2. Successively subtract the 6 -hr values in step D1.
6-hr periods

	1	2	3	4	5	6	7	8	9	10	11	12
Increm. PMP (in.)	12.9	4.3	2.8	2.3	1.5	1.2	1.0	0.8	0.9	0.8	0.7	0.7

We read slightly different values (read to hundreths) in smoothed data from figure 45 for the lst three 6 -hr increments, which we substitute here, for consistency.

Note that to assure a series of decreasing values it s necessary to reverse the values for the 8 th and 9 th increment. This does not cause any problem for our computations.
6-hr periods

	1	2	3	4	5	6	7	8	9	10	11	12
Increm. PMP (in.)	12.82	4.27	2.79	2.30	1.50	1.20	1.00	0.90	0.80	0.80	0.70	0.70

Multiply each of these 6 -hr incremental PMP by 89.7% to reduce them for orientation.

	1	2	3	4	5	6	7	8	9	10	11	12
Adj• (in.) 11.50	3.83	2.50	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63	

D3. Isohyet values are then obtained by multiplying the lst 6-hr value in step D2 by the percentages for $2,150 \mathrm{mi}^{2}$ from table 15 or the lst $6-\mathrm{hr}$ nomogram (fig. 16), the $2 \mathrm{nd} 6-\mathrm{hr}$ value by the percentages in table 16 or figure 18 , the 3 rd 6 -hr value by the percentages in table 17 or figure 19, and the fourth through 12 th $6-\mathrm{hr}$ values by the percentages in table 18 or figure 20 as shown in table 24. In section 3.5.3, we have explained that the fourth through 12 th 6 -hr increments are assumed uniform. Thus, a constant value is used through the extent of the area size of PMP, $2,150 \mathrm{mi}^{2}$ in this example.

Table 24.-Isohyet values (in.), Leon River, TX, for example la

Isohyet	1	2	3	4	5	6	6	-hr	periods	8	9	10
11	12											
	20.24	4.54	2.63	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
A	18.98	4.39	2.61	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
B	17.17	4.25	2.58	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
C	16.33	4.16	2.56	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
D	15.07	4.08	2.53	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
E	14.03	4.00	2.53	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
F	12.99	3.91	2.52	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
G	11.85	3.83	2.51	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
H	10.93	3.77	2.50	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
I	9.89	3.72	2.49	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
J	8.86	3.68	2.48	2.06	1.34	1.08	0.90	0.81	0.72	0.72	0.63	0.63
K	5.98	2.80	2.03	1.66	1.08	0.87	0.72	0.65	0.58	0.58	0.51	0.51
L	3.80	2.07	1.55	1.26	0.82	0.66	0.55	0.49	0.44	0.44	0.38	0.38
M	3.30	1.44	1.16	0.96	0.62	0.50	0.42	0.38	0.33	0.33	0.29	0.29
N	2.30											

Note: The results shown in this matrix emphasize the fact that for the fourth through 12th 6-hr period the distribution of PMP is uniform across the PMP portion of the pattern (A through K) for each increment. However, isohyets L to N represent residual precipitation for the $2,150-\mathrm{mi}^{2}$ pattern and these isohyets are assigned decreasing values.

D4. The values in table 24 represent the incremental isohyetal values for the Leon River drainage with the $2,150-$ mi 2 PMP pattern placed as shown in figure 46. To obtain incremental average depths (PMP) for this drainage it is necessary to compute the incremental volumes as determined from the tabulated isohyetal values according to the procedures described for figure 41, and then divide each incremental volume by the drainage area. This results in the following incremental average depths. (See computations in table 25.)

Table 25.-Completed computation sheets showing typical format to get incremental drainage-average depths, Leon River, TX
Increment: 1 to 5

Drainage:
Leon River, TX Area: \qquad Date:

Table 25.-Completed computation sheets showing typical format to get incremental drainage-averaged depths, Leon River, TX. - Continued

Increment: 7 to 12
Drainage: Leon River, TX

	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt. } \\ & 0.90 \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle A$	$\Delta \mathrm{V}$	$\begin{aligned} & \hline \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \hline \text { Amt. } \\ & 0.72 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle \mathrm{A}$	$\Delta \mathrm{V}$
$2150 / 7$	A	100	0.90	0.90	10	9	2150/10	A	100	0.72	0.72	10	7.2
	B	100	0.90	0.90	15	13.5		B	100	0.72	0.72	15	10.8
	C	100	0.90	0.90	25	22.5		C	100	0.72	0.72	25	18.0
	D	100	0.90	0.90	50	45.0		D	100	0.72	0.72	50	36.0
	E	100	0.90	0.90	75	67.5		E	100	0.72	0.72	75	54.0
	F	100	0.90	0.90	125	112.5		F	100	0.72	0.72	125	90.0
	G	100	0.90	0.90	150	135.0		G	100	0.72	0.72	150	108.0
	H	100	0.90	0.90	250	225.0		4	100	0.72	0.72	250	180.0
	I	100	0.90	0.90	271	243.9		I	100	0.72	0.72	271	195.1
	J	100	0.90	0.90	393	353.7		J	100	0.72	0.72	393	282.9
	K	100	0.90	0.90	488	439.2		K	100	0.72	0.72	488	351.4
	L	80.5	0.72	0.81	582	471.4		L	80.5	0.58	0.65	582	378.3
(.60 X)	M	61	0.55	0.64	737	471.7	(.60 X)	M	61	0.44	0.51	737	375.9
(.75 X)	N	46.5	0.42	0.49	489	239.6	(.75 X)	N	46.5	0.33	0.39	489	190.9

		1	2	3	4	5	6	7	8	9	10	11	12
$\overline{\text { Avg. }}$													
PMP	(in.)	8.59	3.24	2.18	1.78	1.16	0.93	0.78	0.70	0.62	0.62	0.54	0.54
These give a $72-\mathrm{hr}$ total drainage-averaged BMP of 21.68 in ., which can be compared to 27.4 in . for $3,660 \mathrm{mi}^{2}$ (from fig. 43), or a 21 percent reduction from HMR No. 51. The reduction is due to orientation and basin shape factors.													
D5. a. At $31^{\circ} 45^{\prime} \mathrm{N}, 98^{\circ} 15^{\prime} \mathrm{W}$, we read a $1 / 6-\mathrm{hr}$ ratio of 0.306 from figure 39.													
b. We adjust the scale for the nomogram in figure 40 such that the abscissa for the $20,000-\mathrm{mi}^{2}$ " A " isohyet reads 0.306 .													
c. With the scale set as in step $D 5 b$, we read ratios for the following isohyets.													

Isohyet	$1 / 6-\mathrm{hr}$ ratio
A	.299
B	$.298 *$
C	.297
E	$.295 *$
F	.293
G	$.2915 *$
H	.290
J	$.2875 *$
K	.285
	.282
.279	

*interpolated isohyet on nomogran
d. Multiply the ratios in step $D 5 c$ by the corresponding values from table 24 (lst 6-hr period only) to get the 1-hr isohyet values.

Isohyet	1-hr isohyet values
A	6.05
B	5.66
C	5.10
D	4.82
E	4.42
F	4.09
G	3.77
H	3.73
I	3.12
J	2.78
X	2.47

e. Plot the values in step D5d and those for the 4 greatest increments from table 24 and draw a smooth curve of best fit through these points with the origin as the starting point as shown in figure 48.
f. From figure 48, we can read isohyet values for any other duration less than 6 hr (see note in procedure step 7D5f).
g. The 4 greatest 6 -hr incremental isohyet values for the M isohyet have also been plotted on figure 48 as an example of residual precipitation. It is apparent that this curve is flatter than those for the PMP portion of the pattern. Lesser errors are therefore likely in interpolating short duration isohyet values for residual precipitation than for those within the PMP area. (Note in procedure step 7D5f applies here and to l-hr values for residual precipitation.)

7.3 Example 1b

As a comparison to the results of example la, we will now evaluate the maximm volume for the Leon River, Texas drainage when no adjustment for orientation is applied. In step B3, we obtained the orientation for PMP from figure 8 as 208° for $31^{\circ} 45^{\prime} \mathrm{N}$, $98^{\circ} 15^{\prime} \mathrm{W}$. Figure 10 indicates that within 40° of PMP orientation, no reduction need be applied to isohyets values. Subtracting 40° from 208°, we get an orientation of 168°. Thus, if we place the isohyetal pattern at an orientation of 168° on the Leon River drainage, as shown in figure 49, no adjustment is necessary. We must planimeter the areas between each of the incomplete isohyets, and then refer to step C in the procedure.
C. Complete the computational process of figure 41 for the area sizes considered in example la. We have omitted the $1,000-$ and $15,000-\mathrm{mi}^{2}$ areas based on the outcome of example la. Note that the nomogram percentages will be the same as those used in example la, but the amount heading column III is now unadjusted for orientation; i.e., smoothed values from figure 45.

Table 26 presents completed computations for this example. The preliminary maximum volume for the first, 6 -hr increment appears to occur between 6,500 and $10,000 \mathrm{mi}^{2}$. To check on this outcome, the $15,000-$ mi 2 area pattern volume was determined and was found to be significantly less than that at $10,000 \mathrm{mi}^{2}$. Computation of the 2 nd and $3 \mathrm{rd} 6-\mathrm{hr}$ increments for the standard isohyet areas between 4,500 and $15,000 \mathrm{mi}{ }_{2}^{2}$ resulted in $18-\mathrm{hr}$ volumes ranging between 45,000 and $49,000 \mathrm{mi}^{2}$-in.

Note that by not adjusting the isohyets for orientation, the PMP pattern area of maximum volume has greatly increased from 2,150 mi^{2} in example la to $10,000 \mathrm{mi}^{2}$ in this example, but the total volume as decreased. This occurs because some of the larger isohyets become more effective as the isohyet values increase with increasing area, and combine with proportionately larger incremental areas. At the same time the volume contributed by the isohyets enclosing smaller areas has been markedly reduced.

Figure 48.--Smoothed durational curves used to interpolate short-duration isohyet values for the Leon River, TX dralnage.

Pigure 49.-Alternate placement of isohyetal pattera on Leon River, TX drainage such that no adjustment is applicable for orientation.

Table 26. Completed computation sheets for lst three 6-hr increments for alternate placement of pattern on Leon RXVer, TX drainage

Table 26.-Completed computation sheets for list three 6 -hr increnents for alternate placement of pattern on Leon River, TX drainage - Continued

Table 26.-Completed computation sheets for lst three 6-hr increments for alternate placement of pattern on Leon River, TX drainage - Continued

Table 26. -Completed computation sheets for lst three 6-hr increnents for altermate placement of pattern on Leon $\& i v e r, ~ I X d r a i n a g e ~-~ C o n t i n u e d ~$

In view of this result, and considering the elongated shape of the drainage, greater volume might have been obtained had the pattern in figure 49 been centered at one of the fatter parts of the drainage. By doing so, it appears possible that the H isohyet could be totally enclosed in the drainage when compared with the F isohyet as placed in figure 49. However, there would be proportionately lower volumes contributed from the rest of the drainage.

We will not carry this example beyond this point, as to do so would repeat the procedure demonstrated in example la. The objective of this example has been to show that, particularly for a long drainage, alignment of the isohyetal pattern (isonyets reduced for orientation) with the drainage axis will generally give greater volume than will a non-aligned pattern of unreduced isohyets.

7.4 Example No. 2a

The second example describes the effect of a drainage-centered pattern vs. a pattern placement that may be considered for obtaining peak discharge. Also considered in this example will be the evaluation of subdrainages.

For this example we chose the Ouachita River, Arkansas, above Rennel Dam, a drainage encompassing about $1,600 \mathrm{mi}^{2}$. The drainage outline drawn to a map scale of $1: 1,000,000$ is shown in figure 50 and includes four typical subdrainages. The areas within the four subdrainages are:

1. Above Pine Ridge
Area $\left(\right.$ mi $\left.^{2}\right)$
300
278
604
418

As in example la we will concern ourselves with determining the storm area size of the PMP pattern that provides the maximum volume within the entire $1,600 \mathrm{mi}^{2}$ drainage.

The following steps correspond to those outlined in section 7.1 .
Step
A1. The drainage center for the Ouachita River above Rennel Dan is roughly $34^{\circ} 36^{\prime} \mathrm{N}, 93^{\circ} 27^{\prime} \mathrm{W}$. At this location, the following table of values is obtained from figures 18 through 42 of MMR No. 51.

Figure 50.-Ouachita River, AR (1,600 wil 2) above Rennel Dar showing drainage.

	Duration (hr)				
Area $\left(\mathrm{mi}^{2}\right)$	6	12	24	48	72
10	30.0	35.9	40.6	44.6	47.1
200	22.2	27.0	31.2	34.7	37.7
1000	16.3	21.0	25.3	29.0	31.2
5000	9.5	13.5	17.7	21.6	24.2
10000	7.3	10.7	14.0	18.0	20.8

A2. The storm-area averaged $P M P$ depths in step Al are plotted in figure 51 and smooth curves drawn. Notice that to obtain a consistent set of curves, it has not been possible to draw through all the data points.

A3. From figure 51 we read off the data for at 1 east 4 standard isohyet area sizes larger and smaller than the area of the drainage. We have chosen the areas in the following table.

Duration (hr)

Area $\left(\mathrm{mi}^{2}\right)$	6	12	24	48	72
450	19.3	24.0	28.2	31.2	34.3
700	17.7	22.3	26.3	29.5	32.6
1000	16.3	20.8	24.9	28.0	31.1
1500	14.7	19.1	23.1	26.4	29.4
2150	13.3	17.5	21.5	24.8	27.8
3000	12.0	16.0	20.0	23.4	26.4
4500	10.4	14.2	18.2	21.5	24.6
6500	8.9	12.6	16.5	19.8	23.0

Figure 52.-Depth-duration curves for selected area sizes at $34^{\circ} 36^{\prime} \mathrm{N}, 93^{\circ} 27^{\prime} \mathrm{W}$.
A4. A smooth depth-duration curve is drawn for each of the eight area sizes listed in step A3, as shown in figure 52. From these curves, values are interpolated for 18 -hr durations.

Area $\left(\mathrm{mi}^{2}\right)$	$18-\mathrm{hr}$ Duration
450	26.5
700	24.9
1000	23.2
1500	21.6
2150	20.0
3000	18.6
4500	16.8
6500	15.2

A5. Incremental differences are obtained for the lst three 6-hr periods through subtraction of successive 6 -hr values.

	6-hr periods		
Area $\left(\mathrm{mi}^{2}\right)$	1	2	3
450	19.3	4.7	2.5
700	17.7	4.6	2.6
1000	16.3	4.5	2.4
1500	14.7	4.4	2.5
2150	13.3	4.4	2.5
3000	12.0	4.0	2.6
4500	10.4	3.8	2.6
6500	8.9	3.7	2.6

These values should then be plotted and fit by smooth curves as demonstrated in figure 53. The results from this figure provide smooth incremental values read to hundredths.

	6-hr periods Area $\left(\mathrm{mi}^{2}\right)$		
450	19.32	4.73	3.54
700	17.70	4.63	2.54
1000	16.34	4.51	2.54
1500	14.79	4.36	2.54
2150	13.40	4.21	2.53
3000	12.05	4.05	2.52
4500	10.35	3.86	2.51
6500	8.80	3.67	2.50

Note that within each column, the values consistently decrease as compared to the unsmoothed values.

B1. The isohyetal pattern from figure 5 is placed over the drainage outline drawn to a scale of $1: 1,000,000$ as shown in figure 54. It sudged that the best fit of the isohyetal pattern was to enclose the H isohyet by the drainage out1ine.

B2. For the isohyetal pattern placement in figure 54, the orientation is 095°. Since this orientation does not fall between the specified range of 135° and 315°, we add 180° to get an orientation of 275° (effectively the other end of the orientation line).

B3. From figure 8, the orientation for PMP at $34^{\circ} 36^{\prime} \mathrm{N}, 93^{\circ} 27^{\prime} \mathrm{W}$ is about 235°. The difference between the orientation of the pattern laid over the drainage and that of PMP from figure 8 is 40°. On the basis of the model shown in figure 10 , no adjustment need be made to the values in step $A 5$.

B4. This step is skipped as no reduction is required.
C. Now we can determine the maximum volume for PMP isohyetal pattern areas given in step A5. This computation is performed using the form provided in figure 41 and is completed for the

Pigure 53.--Smoothing curves for 6-hr incremental values at selected area sizes for Ouschta River, AR drainage.

Figure 54. -Isohyetal pattern placed on the Ouachita River, AR drainage to give maximum precipitation volume.

1st 6 -hr incremental period as shown in table 27 , following the steps outlined in section $7.1 c$.

In this computation, it was decided that the average depth of rainfall over the small portion of the drainage between isohyets L and M was insignificant to the volume computation, and therefore only the volume within the L isohyet has been determined.

Following the computation through the 1 st 6 -hr period, we find volumes that range between 19,000 and $22,000 \mathrm{mi}^{2}-\mathrm{in}$. with the maximum between 1,500 and $2,150 \mathrm{mi}^{2}$. When computing the 2 nd and $3 \mathrm{rd} 6-\mathrm{hr}$ increments, we can narrow in on the range of areas to those areas between 1,000 and $4,500 \mathrm{mi}^{2}$ (table 27). The results from summation of the incremental volumes at corresponding area sizes indicates that the maimum volume occurs at $2,150 \mathrm{mi}^{2}$.

Table 27. -Completed computation sheets for 1 st three 6 -hr increments for Ouachita River, AR drainage
Increment: $\quad 1$

Drainage:	Ouachita River, AR							Area :	$: \underline{1,600 ~} \mathrm{mi}^{2}$		Date:		
	I	II	III	IV	V	VI			II	III	IV	V	VI
$\begin{aligned} & \hline \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{array}{r} \text { Amt } \\ 19.32 \\ \hline \end{array}$	Avg. depth	ΔA	$\Delta \mathrm{V}$	$\begin{aligned} & \hline \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$		Nomo	$\begin{array}{r} \text { Ant } \\ 14.79 \\ \hline \end{array}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle A$	$\Delta \mathrm{V}$

	A	132	25.50	25.50	10	255.0		A	162	23.88	23.88	10	238.8
	B	124	23.96	24.73	15	371.0		B	152	22.40	23.14	15	347.1
$450 / 1$	6	116	22.41	23.18	25	579.6	1500/1	6	142	20.93	21.66	25	541.5
	D	108	20.87	21.64	50	1082.0		D	132	19.52	20.22	50	1011.0
	E	101	19.52	20.20	75	1515.0		E	122	18.04	18.78	75	1408.5
	F	93	17.97	18.74	125	2342.5		F	112	16.51	17.28	125	2160.0
	G	86	16.62	17.30	150	2593.0		G	105	15.53	16.02	150	2403.0
	H	63	12.17	14.90	250	3725.0		H	96	14.15	24.84	250	3710.0
	I	50	9.66	10.92	242	2642.6		I	88	13.02	13.59	242	3288.8
	J	38	7.34	8.50	242	2057.0		J	80	11.79	12.40	242	3000.8
	K	30	5.80	6.57	224	1471.7		K	56	8.25	10.02	224	2244.5
	L	23	4.44	5.12	192	983.0		L	41	5.06	7.26	192	1374.7
					un $=$	9617.4						Sum $=$	1729.7

Ta ble 27.-Completed computation sheets for lst three 6-hr increments for Ouachita River, AR drainage - Continuedil
Increment:

Drainage: Ouachita River, $A R$ Area : \qquad Date:

	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{array}{r} \text { Amt. } \\ 10.35 \end{array}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle A$	$\Delta \mathrm{V}$	$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Ant. } \\ & 4.36 \\ & \hline \end{aligned}$	Avg.	$\triangle \mathrm{A}$	$\Delta \mathrm{V}$
4500/1	A	212	21.94	21.94	10	219.4		A	117	5.10	5.10	10	51.0
	B	198	20.49	21.22	15	318.3		B	113	4.93	5.02	15	74.2
	C	184	19.04	19.76	25	494.0	1500/2	C	110	4.80	4.87	25	121.8
	D	170	17.60	18.32	50	916.0		D	107	4.67	4.74	50	237.0
	E	157	16.25	16.92	75	1269.0		E	105	4.58	4.63	75	347.2
	F	146	15.11	15.68	125	1960.0		F	103	4.49	4.54	125	567.5
	G	135	13.97	14.54	150	2181.0		G	100.5	4.38	4.44	150	666.0
	H	124	12.83	13.40	250	3350.0		H	99	4.32	4.35	250	1087.5
	I	113	11.70	12.26	242	2966.9		I	97	4.23	4.28	242	1035.8
	J	103	10.66	11.18	242	2705.6		J	95.5	4.15	4.20	242	1016.4
	K	93	9.63	10.14	224	2271.4		8	75.5	3.29	3.73	224	835.5
	L	83	8.59	9.11	192	1749.1		L	60	2.52	2.96	192	558.3

Ta ble 27.-Completed computation sheets for lst three 6-hr increments for Ouachita River, AR drainage - Continued

Increment:

Drainage: Ouachita River, AR Area: $1,600 \mathrm{mi}^{2}$ Date: \qquad

	I	II	III	IV	V	VI		I	II	III	IV	V	VI
Area			Amt.	Avg.			Area			Amt.	AVg.		
size	Iso. Nomo.	3.86	depth	ΔA	ΔV	size	Iso. Nomo.	2.53	depth	ΔA	ΔV		

$4500 / 2$	A	121	4.67	4.67	10	46.7	2150/3	A	105.3	2.66	2.66	10	26.6
	B	117	4.52	4.60	15	68.9		B	104.2	2.64	2.65	15	39.8
	C	114	4.40	4.46	25	111.5		C	103.2	2.61	2.62 .5	25	55.6
	D	112	4.32	4.36	50	218.0		D	102	2.58	2.595	50	129.8
	E	109.5	4.23	4.28	75	321.0		E	101.3	2.56	2.57	75	192.8
	F	108	4.17	4.20	125	525.0		F	101	2.56	2.56	125	320.0
	G	105.5	4.07	4.12	150	618.0		G	100.6	2.54	2.55	150	382.5
	H	103.5	4.00	4.04	250	1010.0		${ }^{\text {c }}$	100.3	2.54	2.54	250	635.0
	I	102	3.94	3.97	242	960.7		I	100	2.52	2.53	242	612.3
	J	100.5	3.88	3.91	242	946.2		J	99.7	2.52	2.52	242	609.8
	K	99	3.82	3.85	224	862.4		K	99.5	2.52	2.525	224	565.6
	L	97.5	3.76	3.79	192	727.7		L	80.5	2.04	2.28	192	437.8

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			$\begin{aligned} & \text { Amt. } \\ & 2.54 \end{aligned}$				$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			$\begin{aligned} & \text { Armt. } \\ & 2.51 \end{aligned}$			
	A	105	2.67	2.67	10	26.7		A	106	2.66	2.66	10	25.6
	B	103.8	2.64	2.66	15	39.8		B	105	2.64	2.65	15	39.8
1500/3	C	102.7	2.61	2.63	25	65.8	$4500 / 3$	C	104	2.61	2.63	25	65.8
	D	101.7	2.58	2.60	50	130.0		D	103.1	2.59	2.50	50	130.0
	E	101.0	2.57	2.58	75	193.5		E	102.1	2.56	2.58	75	193.5
	F	100.7	2.56	2.57	125	321.2		F	101.7	2.55	2.35	125	320.0
	G	100.3	2.55	2.56	150	384.0		G	101.2	2.54	2.55	150	382.5
	H	100	2.54	2.55	250	637.5		H	100.9	2.53	2.54	250	635.0
	1	99.7	2.53	2.535	242	613.5		I	100.6	2.53	2.53	242	612.3
	J	99.4	2.52	2.525	242	611.0		j	100.2	2.52	2.53	242	612.3
	K	81	2.06	2.29	224	513.0		K	99.9	2.51	2.52	224	564.5
	L	65.5	1.66	1.86	192	357.1		L	99.6	2.50	2.51	192	481.9
					Sum $=$	3893.1						Sum	4064.2

Table 27. -Completed computation sheets for 1 st three 6 -hr increments for Ouachita River, AR drainage - Continued

Drainage:	Ouachita River, AR							$: \underline{1,600 ~} \mathrm{mt}^{2}$			Increment Date:	1,2				
	I	II	III	IV	V	VI					I	II	III	IV	v	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{array}{r} \text { Amt. } \\ 14.30 \\ \hline \end{array}$	Avg. depth	$\Delta \mathrm{A}$	ΔV	$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Agt . } \\ & 4.30 \\ & \hline \end{aligned}$	Avg. depth	$\Delta \mathrm{A}$	ΔV			
	A	167	23.88	23.88	10	238.8		A	117.5	5.05	5.05	10	50.5			
	B	156	22.31	23.10	15	346.4		B	114	4.90	4.98	15	74.6			
1700/1	C	145	20.74	21.52	25	538.1	1700/2	C	110.5	4.75	4.83	25	120.8			
	D	135	19.30	20.02	50	1001.0		D	107.5	4.62	4.69	50	234.5			
	ε	125	17.88	18.59	75	1394.2		E	105	4.52	4.57	75	342.8			
	F	116	16.59	17.24	125	2155.0		F	103.5	4.45	4.49	125	561.2			
	G	107	15.30	15.94	150	2391.0		G	101	4.34	4.40	150	660.0			
	H	98	14.01	14.52	250	3630.0		H	99	4.25	4.30	250	1075.0			
	I	91	13.01	13.51	242	3269.4		I	97	4.17	4.22	242	1021.2			
	J	82	11.73	12.37	242	2993.5		J	96	4.13	4.15	242	1004.3			
	\cdots	79	11.30	11.52	87	1002.2		-	95.5	4.10	4.12	87	358.4			
	\%	62	8.87	10.08	137	1381.0		\%	80	3.44	3.77	137	516.5			
	L	44	6.29	7.58	192	1455.4		L	64	2.74	3.07	192	589.4			
					Sum $=$	21796.0						Sum $=$	6509.2			

Table 27. - Completed computation sheets for list three 6 -hr increments for Ouachita R ver, AR drainage - Continued

Drainage:	Ouachita River, AR							$1,600 \mathrm{mi}^{2}$			Increment: \qquad Date: \qquad		
	I	II	III	IV	V	VI		I	II	III	IV	v	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt. } \\ & 2.54 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg } \\ & \text { depth } \end{aligned}$	$\Delta \mathrm{A}$	ΔV	$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	Amt.	Avg. depth	$\triangle \mathrm{A}$	$\Delta \mathrm{V}$
	A	105.1	2.67	2.67	10	26.7							
	B	104	2.64	2.66	15	39.8							
1700/3	C	102.8	2.61	2.63	25	65.8							
	D	101.9	2.59	2.60	50	130.0							
	E	101.1	2.57	2.58	75	193.5							
	F	100.7	2.56	2.57	125	321.2							
	G	100.4	2.55	2.56	150	384.0							
	H	100	2.54	2.55	250	637.5							
	1	99.7	2.53	2.54	242	614.7							
	J	99.5	2.53	2.53	242	612.3							
	∞	99.3	2.52	2.525	87	219.7							
	K	86	2.18	2.35	137	322.0							
	L	70	1.78	1.98	192	380.2							
					Sum $=$	3947.4							

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	$\begin{aligned} & \text { Amt. } \\ & 2.52 \end{aligned}$					
	A	105.4	2.66	2.66	10	26.6
	B	104.3	2.63	2.65	15	39.7
2400/3	C	103.3	2.60	2.62	25	65.4
	D	102.3	2.58	2.59	50	129.5
	E	101.5	2.56	2.57	75	192.8
	F	101	2.55	2.56	125	320.0
	G	100.7	2.54	2.55	150	382.5
	H	100.3	2.53	2.54	250	635.0
	I	100	2.52	2.53	242	612.3
	J	99.8	2.51	2.52	242	609.8
	K	99.4	2.50	2.51	224	562.2
	-	99.3	2.50	2.50	70	175.0
	L	86	2.17	2.34	122	285.5

Figure 55.-Volume vs. area curve for lst three 6-hr increments for Ouachita River, AR drainage.

As recommended in the procedure, we should compute, volumes for supplemental area sizes on either side of $2,150 \mathrm{mi}^{2}$. We chose $1,700,1,900$ and 2,400 mi 2 (see table 27 for computations). Supplemental isohyets for these three area sizes have been added to figure 54 as the dotted isohyets. The additional computations result in the conclusion that the $1,900-\mathrm{mi}^{2}$ area pattern provides the greatest volume (about $32,400 \mathrm{mi}^{2}-i n$.). (See the dashed line in figure 55.)

Step
D1. For an area size of $1,900 \mathrm{mi}^{2}$, it is necessary to return to figure 51 and read off depth-duration $\begin{aligned} & \text { alues as follows: }\end{aligned}$
Duration (hr)

	6	12	24	48	72
$1,900 \mathrm{mi}^{2}$					
PMP (in.)	13.8	18.1	22.1	25.4	28.1

Plotting these data on a linear depth-duration diagram, we read off the following 6 -hr values.

	6	12	18	24	30	36	42	48	54	60	66	72
$1,900-\mathrm{mi}^{2}$												

	1	2	3	4	5	6	7	8	9	10	11	12
Increme												
PMP(in。)	13.8	4.3	2.4	1.6	1.0	0.8	0.9	0.8	0.9	0.7	0.6	0.6

Now the values for the lst three increments can be replaced by the smoothed values obtained from figure 53, read to hundreths. Note, that to maintain a consistently decreasing set of values with increasing period it is necessary to interchange the incremental values for the 7 th and 8 th period to get a final smooth set of depth-duration values of:

	6-hr periods											
	1	2	3	4	5	6	7	8	9	10	11	12
Increm.												
PMP(in.)	3.85	4.25	2.53	1.60	1.0	0.8	0.80	0.7	0.7	0.7	0.6	0.6

D3. Form the matrix of isohyet values shown in table 28 by multiplying the lst 6 -hr value in step D2 times the isohyet percentages for $1,900 \mathrm{mi}^{2}$ from the lst 6 -hr nomogram (fig. 16), the 2 nd 6 -hr value in step $D 2$ times the percentages for $1,900 \mathrm{mi}^{2}$ from figure 18, etc., and each of the fourth through 12 th $6-h r$ values times the percentages from figure 20.

D4. Incremental average depths for the Ouachita River drainage with the $1,900-$ mi 2 PMP storm pattern placed as shown in figure 54 can be obtained using the incremental isohyetal labels in step D3 and the 6-hr incremental depths from step D2, as was done for example la. These results (computations shown in table 29) are,

	1	2	3	4	5	6	7	8	9	10	11
Drainage avg. PMP (in.)	13.62	4.16	2.49	1.55	0.98	0.78	0.78	0.68	0.68	0.68	0.59

Table 28. -Isohyet values (in.), Ouachita River, AR, for example 2a

(Isohyet)	6-hr periods											
	1	2	3	4	5	6	7	8	9	10	11	12
A	23.68	5.02	2.66	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
B	22.16	4.93	2.63	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
C	20.64	4.72	2.61	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
D	19.18	4.59	2.58	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
E	17.73	4.51	2.56	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
F	16.41	4.42	2.55	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
G	15.24	4.34	2.54	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
H	13.92	4.25	2.54	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
I	12.88	4.17	2.52	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
	11.63	4.10	2.52	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.60
$1900 \mathrm{mi}^{2}$	10.80	4.06	2.51	1.60	1.00	0.80	0.80	0.70	0.70	0.70	0.60	0.65
K	9.35	3.66	2.33	1.47	0.92	0.74	0.74	0.64	0.64	0.64	0.55	0.55
L	6.58	2.89	1.90	1.19	0.74	0.60	0.60	0.52	0.52	0.52	0.45	0.45

Note the results shown in this matrix of isohyet values emphasize the fact that for the fourth through 12 th 6 -hr period the distribution of PMP is uniform across the PMP portion of the pattern (A through $1,900 \mathrm{mi}^{2}$) for each increment. However, isohyets outside the $1,900-\mathrm{mi}^{2}$ isohyet (K and L) represent the residual precipitation for the $1,900-$ mi 2 pattern, and these isohyets are assigned decreasing values.

These give a $72-h r$ total drainage-averaged PMP of 27.59 in. and can be compared to the 29.2 in. from figure 51 for 1,600 mi^{2}, or a 6 percent reduction from HM R No. 51. This small reduction is in part caused by the fact that no adjustment was made for orientation and the fact that the basin shape is relatively elliptical.

D5. In this example, isohyetal values for durations less than 6 hr were not required. If they were needed, they would be computed at this point.

E. Temporal Distribution

The isohyet values listed in the matrix of step D3 may be reordered according to the limitations given in section 2.3 . Remember that if reordering is done, it must be done consistently for all isohyets covering the drainage.

F. Subdrainage Average Depths

Figure 56 shows the four subdrainages within the Ouachita River Drainage (above Rennel Dam) covered by the isohyetal pattern. It is often of interest to determine the incremental average depths of precipitation applied to each subdrainage. For this example we will demonstrate the steps to determine average depth

Table 29.-Completed computation sheets showing typical format to get incremental drainage-average depths, Ouachita River, AR .
Increment: 1 to 7

Drainage:	Ouachita River, AR							Area: 1,600 mi ${ }^{2}$			Date:		
	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt } \\ & 13.85 \\ & \hline \end{aligned}$	Avg。 depth	A	V	$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt. } \\ & 1.60 \\ & \hline \end{aligned}$	Avg. depth	A	V

	A	10	236.8		A	100	1.60	1.60	10	16.0
	B	15	343.8		B	100	1.60	1.60	15	24.0
1900/1.	C	25	535.0	1900/4	C	100	1.60	1.60	25	40.0
	D	50	994.0		D	100	1.60	2.60	50	80.0
	E	75	1381.5		E	100	1.60	1.60	75	120.0
	F	125	2128.4		F	100	1.60	1.60	125	200.0
	G	150	2368.5		G	100	1.60	1.60	150	240.0
	H	250	3635.0		H	100	1.60	1.60	250	400.0
	I	242	3233.1		I	100	1.60	1.60	242	387.2
	J	242	2966.9		J	100	1.60	1. 60	242	387.2
	-	144	1615.7		-	100	1.60	1. 60	144	230.4
	K	80	808.8		K	92	1.35	1.48	80	118.4
	L	192	1543.7		L	74.5	1.19	1.27	192	243.8

Table 29.-Completed computation sheets showing typical format to get incremental drainage-average depths, Ouachita River, AR - Continued

	A	100	0.70	0.70	10	7.0
$1900 / 8,9$,	B	100	0.70	0.70	15	10.5
10	D	100	0.70	0.70	25	17.5
	E	100	0.70	0.70	50	35.0
	F	100	0.70	0.70	125	87.5
	G	100	0.70	0.70	150	105.0
	H	100	0.70	0.70	250	175.0
	I	100	0.70	0.70	242	169.4
	J	100	0.70	0.70	242	169.4
	-	100	0.70	0.70	144	100.8
	K	92	0.64	0.67	80	53.6
	L	74.5	0.52	0.58	192	111.4

Area			Amt.			
size		100	0.60			
	A	100	0.60	0.60	10	6.0
	B	100	0.60	0.60	15	9.0
1900/11,12	C	100	0.60	0.60	25	15.0
	D	100	6.60	0.60	50	30.0
	E	100	0.60	0.60	75	45.0
	F	100	0.60	0.60	125	75.0
	G	100	0.60	0.60	150	90.0
	H	100	0.60	0.60	250	150.0
	I	100	0.60	0.60	242	145.2
	J	100	0.60	0.60	242	145.2
	\rightarrow	100	0.60	0.60	144	86.4
	K	92	0.55	0.58	30	48.4
	L	74.5	0.45	0.50	192	96.0
				Avg. depth $=$		$\begin{array}{r} 939.2 \\ .59 \end{array}$

Figure 56. -Isohgetal pattern placed on the Owachita River, AR drainage relative to subdrainages.
over the subdrainage between Pine Ridge and 性shita ($278 \mathrm{mi}^{2}$). From figure 56 we see that this subdrainage is covered by isohyets B through K.

Step
F1. Planimeter the areas between isohyets for each isohyet that crosses the subdrainage to obtain the areas used in column V of the computation sheet shown in table 30 .

F2. Use the isohyet values in step D3 to fill in colum III in table 30. Follow the computational procedure outlined in steps $C 5$ to $C 8$ to obtain the subdrainage incremental. volumes. Note that for the fourth through 12 th 6 -hr periods it is not necessary to formally compute the volumes, since the subregion is not covered by residual precipitation, and

Table 30.-Completed computation sheet for determining average depths for lst three 6-hr increments over subdrainage between Blakely Mt. Dam and Wa shita, AR

Drainage:	Ouachita River, AR							Area :			Increment Dete:	1503				
	I	$I I$	III	IV	V	VI					I	II	III	IV	V	VI
Area			Amp.	Avg.			Area			Amt.	Avg.					
Size	Iso	Nomo.		depth	$\triangle \mathrm{A}$	ΔV	size	Iso	Nomo.		depth	$\triangle \mathrm{A}$	ΔV			

thus the average depths for these increments will be the same as the incremental PMP amounts.

F3. The average depths for the subdrainage between Pine Ridge and Washita are thus,

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Subdrain-
 age. avg. 15.2
 depth (ino) | 4.3 | 2.5 | 1.6 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.7 | |

7.5 Example No. 2b

In this example we want to suggest that a placement of the isohyetal pattern closer to the outlet may be advantageous to bring about a greater peak discharge, however, the result is a lower volume than the drainage-centered placement considered in example $2 a$. Figure 57 shows the displacement of our standard pattern toward the drainage outlet. One might judge that a somewhat better placement is possible than that shown. However, for the purpose of illustration, it s believed necessary not to change the original orientation in order to show that any reduction in volume was due to difference other than orientation.

For this example, it is not necessary to start over by obtaining new values from HMR NO. 51.* Therefore, we can proceed directly to the computation of volume previously determined in table 27 , and it is only necessary to change the incremental areas as a result of planimetering figure 57. The computations for the ist three 6 -hr increments for the standard isohyetal areas as recomputed in table 31 are shown to be roughly 10 percent lower than those for the drainagecentered placement (fig. 54).

In table 31, we find that unlike the result from example $2 a$, the area of $P M P$ determined by maximum volume in the drainage has increased from 1,900 mi to the vicinity of $3,000 \mathrm{mi}^{2}$. This result implies a less intense storm has been considered. Although not shown, a reduction in volume would also have occurred had we applied the same isohyet values from table 28 to the pattern shown in figure 57. These results support our claim that a placement that may be advantageous to obtaining a maximum peak discharge in general will give less than maximum volume.

Although relocation of a PMP storm pattern closer to the drainage outlet results in a a smaller drainage volume, one should consider the impact of concentrating a more intense storm pattern near the dam. A more intense storm here means a PMP storm pattern area less than that giving the maximum volume of precipitation in the drainage, but which contains greater central depths. For the example storm shown in figure 54, we might consider a PMP storm pattern for $450 \mathrm{mi}^{2}$ or $1,000 \mathrm{mi}^{2}$ and compute the peak discharge. Since we do not have sufficient information to compute the peak discharge, it is left to the user to make such tests. From these tests the user can determine whether other more

[^12]

Figure 57.-Alternate placement of isohyetal pattern on Cuachita River, AR drainage typical of deternination of peak discharge.
intense storms or pattern repositions will yleld more critical peak flows. It should be noted again that drainage-averaged depths from any PMP pattern smaller than that which gives maximum volume in the drainage, will be less than drainageaveraged PMP.

ACKHOWLEDGEMENTS

The authors express their appreciation to Mr. John Riedel, former Chief, Hydrometeorological Branch, Office of Hydrology, National Weather Service; Dr. Donald Jensen, and Mr. Arthur Cudworth, Bureau of Reclamation, Denver; and Messrs. Eugene Stallings and Ron Hula, U. S. Army Corps of Engineers for their helpful comments and suggestions during the preparation of this report. We appreciate the large amount of technical assistance provided by Keith Bell, Marion Choate, Roxanne Johnson, and Teresa Nero of the Hydrometeorological Branch. The many drafts and final versions of this manuscript were typed by Helen Rodgers, Kathryn Carey and Clara Brown.

Table 31. - Completed computation sheets for lst three 6-hr increments for alternate placement of pattern on Ouachita River, AR drainage

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Amt.						$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			Amt.			
			16.34							12.05			
	A	149	24.35	24.35	10	243.5		A	191	23.02	23.02	10	230.2
	B	140	22.88	23.62	15	354.3		B	179	21.57	22.30	15	334.5
1000/1	C	131	21.40	22.14	25	553.5	3000/1	C	166	20.00	20.78	25	519.5
	D	122	19.93	20.66	50	1033.0		D	154	18.56	19.28	50	964.0
	E	113	18.46	19.20	75	1440.0		E	142	17.11	17.84	75	1338.0
	F	104	16.99	17.73	125	2216.2		F	132	15.90	16.50	125	2062.5
	G	97	15.85	16.42	140	2298.8		G	122	14.70	15.30	140	2142.0
	H	89	14.54	15.20	140	2128.0		H	112	13.50	14.10	140	1974.0
	I	82	13.40	13.97	115	1606.6		I	102	12.29	12.90	115	1483.5
	J	60	9.80	11.60	160	1856.0		J	92	11.09	11.69	160	1870.4
	K	44	7.19	8.50	210	1785.0		K	83	10.00	10.54	210	2213.4
	L	32	5.23	6.21	260	1614.6		L	74	8.92	9.46	260	2459.5
	M	21	3.43	4.33	225	974.2		9	44	5.02	6.97	225	1568.2
	N	12	1.96	2.70	50	135.0		,	25	3.01	4.02	50	201.0
Sum $=18238.7 \quad$ Sum $=19360.8$													

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$	Ant.						$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			$\begin{array}{r} \text { Amt } \\ 10.35 \end{array}$			
			14.79										
	A	162	23.96	23.96	10	239.6		A	212	21.94	21.94	10	219.4
	B	152	22.48	23.22	15	348.3		B	198	20.49	21.22	15	318.3
1500/1	C	142	21.00	21.74	25	543.5	$4500 / 1$	C	184	19.04	19.75	25	494.0
	D	132	19.52	20.26	50	1013.0		D	170	17.60	18.32	50	916.0
	E	122	18.04	18.78	75	1408.5		E	157	16.25	16.92	75	1269.0
	F	112	16.56	17.30	125	2162.5		F	146	15.11	15.68	125	1960.0
	G	105	15.53	16.04	140	2245.6		G	135	13.97	14.54	140	2035.6
	H	96	14.20	14.86	140	2080.4		H	124	12.83	13.40	140	1876.0
	I	88	13.02	13.61	115	1565.2		I	113	11.70	12.26	11.5	1409.9
	J	80	11.83	12.42	160	1.987 .2		j	103	10.66	11.18	160	1788.8
	K	56	8.28	10.06	210	2112.6		K	93	9.62	10.14	210	2129.4
	L	41	6.06	7.17	260	1864.2		L	83	8.59	9.10	260	2366.0
	M	26	3.84	4.95	225	1113.8		M	71	7.35	7.97	22.5	1793.2
	N	16	2.37	3.10	50	155.0		N	37	3.83	5.59	50	279.5
Sum $=18839.4 \quad$ Sum $=18855.1$													

Table 31.-Completed computation sheets for lst three 6-hr increments for alternate placement of pattern on Ouachita River, $A R$ drainage - Continued

Increment: \qquad
Drainage: Ouachita River, AR
Area: $\frac{1,600 \mathrm{mi}^{2}}{}$ Date: \qquad

	I	II	III	IV	V	VI		I	II	III	IV	V	VI
$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt } . \\ & 4.63 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { depth } \end{aligned}$	$\triangle A$	$\Delta \mathrm{V}$	$\begin{aligned} & \text { Area } \\ & \text { size } \\ & \hline \end{aligned}$	Iso.	Nomo.	$\begin{aligned} & \text { Amt } \\ & 4.21 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Avg. } \\ & \text { dept } \end{aligned}$	$\triangle A$	ΔV
700/2	A	114.5	5.30	5.30	10	53.0	2150/2	A	118.5	4.99	4.99	10	49.9
	B	110	5.09	5.20	15	78.0		B	114.5	4.82	4.90	15	73.5
	C	107	4.95	5.02	25	125.5		C	111	4.67	4.74	25	118.5
	D	104	4.81	4.88	50	244.0		D	108.5	4.57	4.62	50	231.0
	\dot{E}	101	4.68	4.74	75	355.0		E	106.5	4.48	4.52	75	339.0
	F	99	4.58	4.63	125	578.8		F	104.5	4.40	4.44	125	555.0
	G	97	4.49	4.54	140	635.6		G	102	4.29	4.34	140	607.6
	H	95	4.40	4.445	140	622.3		H	100	4.21	4.25	140	595.0
	I	78	3.61	4.005	115	460.6		I	99	4.17	4.19	115	481.8
	J	65.5	3.03	3.32	160	531.2		J	97	4.08	4.12	160	659.2
	K	54	2.50	2.76	210	579.6		K	96	4.04	4.06	210	852.6
	L	44	2.04	2.27	250	590.2		L	73	3.07	3.56	260	925.6
	M	32	1.48	1.76	225	396.0		M	54	2.27	2.67	225	600.8
	N	19.5	0.90	1.19	50	59.5		N	37.5	1.58	1.92	50	96.0

Sum $=5309.3$
Sum $=6185.5$

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			Amt.				Area size						
			4.51							4.05			
	A	116	5.23	5.23	10	52.3		A	119.5	4.84	4.84	10	48.4
	B	112	5.05	5.14	15	77.1		B	116	4.70	4.77	15	71.6
1000/2	C	108.5	4.89	4.97	25	124.2	3000/2	c	112.5	4.56	4.64	25	115.0
	D	105	4.74	4.82	50	241.0		D	110	4.46	4.51	50	225.0
	E	103	4.64	4.69	75	351.8		E	108	4.37	4.42	75	331.5
	F	101	4.56	4.60	125	575.0		F	106	4.29	4.33	125	541.2
	G	99	4.46	4.51	140	631.4		G	104	4.21	4.25	140	595.0
	H	97	4.37	4.42	140	618.8		H	102	4.13	4.17	140	483.8
	I	95	4.28	4.32	165	496.8		I	100.5	4.07	4.10	115	471.5
	J	76	3.43	3.86	160	617.6		J	99	4.01	4.04	160	645.5
	K	63	2.84	3.14	210	659.4		K	97	3.93	3.97	210	833.7
	L	51	2.30	2.57	260	668.2		L	96	3.89	3.91	260	1015.6
	M	38	1.71	2.01	225	452.2		M	67	2.71	3.30	225	742.5
	N	24	1.08	1.40	50	70.0		N	45	1.82	2.26	50	113.0
Sum $=5635.8 \quad$ Sum $=6336.7$													

$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$			$\begin{aligned} & \text { Amt. } \\ & 4.36 \end{aligned}$				$\begin{aligned} & \text { Area } \\ & \text { size } \end{aligned}$									
							3.86									
	A	117	5.10	5.10	10	31.0					A	121	4.67	4.67	10	45.7
	B	113	4.93	5.02	15	75.0		B	117	4.52	4.60	15	69.0			
1500/2	C	110	4.80	4.86	25	121.5	$4500 / 2$	C	114	4.40	4.45	25	111.5			
	D	107	4.66	4.73	50	236.5		D	112	4.32	4.36	50	218.0			
	E	105	4.58	4.62	75	346.5		E	109.5	4.23	4.28	75	321.0			
	F	103	4.49	4.54	125	567.5		F	108	4.17	4.20	125	525.0			
	G	100.5	4.38	4.44	140	621.6		G	105.5	4.07	4.12	140	576.8			
	H	99	4.32	4.35	140	609.0		H	103.5	4.00	4.04	140	565.6			
	I	97	4.23	4.28	115	492.2		I	102	3.94	3.97	115	456.6			
	J	95.5	4.16	4.20	160	672.0		J	100.5	3.88	3.91	160	625.6			
	K	75.5	3.29	3.72	210	781.2		K	99	3.82	2.85	210	808.5			
	L	60.5	2.64	2.96	260	769.6		L	97.5	3.75	3.79	260	985.4			
	M	45	1.96	2.30	225	517.5		M	96	3.71	3.74	225	841.5			
	N	31	1.35	1.66	50	83.0		N	59	2.28	3.00	50	150.0			
Sum $=5944.1$ Sum $=6301.2$																

Table 31. -Completed computation sheets for lst three 6 -hr increments for alternate placement of pattern on Ouachita River, AR drainage - Continued

Increment: \qquad
Drainage: Ouachita River, AR Area: $1,600 \mathrm{mi}^{2}$ Date:

American Meteorological Society, 1959. Glossary of Meteorology. Boston, Mass., 638 pp .

Canadian Department of Transport (ongoing publication). Canadian Storm Rainfa11. 315 Bloor Street West, Toronto, Ontario, Canada.

Frederick, R.H., V.A. Myers, and E.P. Auciello, 1977. Five- to 60-Minute Precipitation Frequency for the Eastern and Central United States. NOAA Technical Memorandum NWS HYDRO-35, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Silver Spring, Md., 36 pp .

Goodyear, Hugo V. and John T. Riedel, 1965. Probable Maximun Precipitation Susquehanna River Drainage Above Harrisburg, Pennsylvania. Hydrometeorological Report No. 40, Weather Bureau, U.S. Department of Commerce, Wa shington, D.C., 70 pp .

Hershfield, D.M., 1961. Rainfall Frequency Atlas of the United States for Durations 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years. Technical Paper No. 40, Weather Bureau, U.S. Department of Commerce, Washington, D.C., 115 pp .

Huff, Floyd A., 1967. Time Distribution of Rainfall in Heavy Storms. Water Resources Research, 3, pp. 1007-1019.

Huff, Floyd A. and John L. Voge1, 1976. Hydrometeorology of Heavy Rainstorms in Chicago and Northeastern Illinois, Phase I - Historical Studies. Illinois State Water Survey Report of Investigation 82, Urbana, Il1., 63 pp .

Lott, George A. and Vance A. Myers, 1956. Meteorology of Flood-Producing Storms in the Mississippi River Basin. Hydrometeorological Report No. 34. Weather Bureau, U.S. Department of Commerce, Washington, D.C., 226 pp.

Maddox, R.A., C.F. Chappell and L.R. Hoxit, 1979. Synoptic and Meso-Scale Aspects of Flash Flood Events. Bulletin of the American Meteorological Society, 60, 2, pp. 115-123.

Miller, J.F., R.H. Frederick, and R.J. Tracey, 1973. Precipitation Frequency Atlas of the Western United States. NOAA Atlas 2, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Silver Spring, Md., 11 Vols.

Myers, Vance A., 1959. Meteorology of Hypothetical Flood Sequences in the Mississippi River Basin. Hydrometeorological Report No. 35. Weather Bureau, U.S. Department of Commerce, Wa shington, D.C., 46 pp.

National Weather Service, 1914- . Climatological Data. NOAA, National Climatic Center, Asheville, N.C.

Neumann, C.J., G.W. Cry, E.L. Caso and B.R. Jarvinen, 1978. Tropical Cyclones of the North Atlantic Ocean 1871-1977. National Weather Service, National Climatic Center, Asheville, N.C., 170 pp .

Newton, C.W. and S. Katz, 1958. Movement of Large Convective Rainstorms in Relation to Winds Aloft. Bulletin of the American Meteorological Society, 39, 3, pp. 129-136.

Paulhus, J.L.H. and C.S. Gilman, 1953. Evaluation of Probable Maximum Precipitation Transactions, American Geophysical Union, 34, 5, Washington, D.C., pp. 701-708.

Riedel, John T., 1973. Probable Maximum Preciditation and Snowmelt Criteria for the Red River of the North above Pembina, and Souris River above Minot, North Dakota. Hydrometeorological Report No. 48. National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Washington, D.C., 69 pp .

Riede1, John T., F.K. Schwarz and R.L. Weaver, 1969. Probable Maximum Precipitation Over South Platte River, Colorado, and Minnesota River, Minnesota. Hydrometeorological Report No. 44. U.S. Department of the Army, Corps of Engineers, Weather Bureau, U.S. Department of Commerce, Washington, D.C., 114 pp .

Schwarz, Francis K., 1961. Meteorology of Flood-Producing Storms in the Ohio River Basin. Hydrometeorological Report No. 38. Weather Rureau, U.S. Department of Commerce, Washington, D.C., 67 pp .

Schwarz, Francis K., 1973. Meteorological Criteria for Extreme Floods for Four Basins on the Tennessee and Cumberland River Natersheds. Hydrometeorological Report No. 47. National Weather Service, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Silver Spring, MD, 59 pp.

Schwarz, F.K., and N.F. Helfert, 1969. Probable Maximum and TVA Precipitation for Tennessee River Basins up to 3,000 Sauare Miles in Area and Durations to 72 Hours. Weather Bureau, Hydrometeorological Report No. 45, Environmental Science Services Administration, U.S. Department of Commerce, Silver Sprina, M, 156 pp .

Schreiner, Louis C. and J.T. Riedel, 1978. Prohable Maximum Precipitation Fstimates, United States East of the 105 th Meridian. Hydrometeorological Report No. 51. National Weather Service, National nceanic and Atmospheric $\overline{A d m i n i s t r a t i o n, ~ U . S . ~ D e p a r t m e n t ~ o f ~ C o m m e r c e, ~ W a s h i n g t o n, ~ D . C ., ~} 87 \mathrm{pp}$.
U.S. Army Corps of Engineers, 1945- - Storm Rainfall in the United States. Washington, D.C.

World Meteorological Organization, 1973. Manual for Estimation of Probable Maximum Precipitation. Operational Eydrology Report No. 1, WMO No. 332, Geneva, Switzerland, 190 pp.

APPENDIX

The 53 storms listed in the Appendix to $\mathbb{M R} 51$ were chosen as the sample of storms to be used initially in this study. However, in the study of storm shapes and orientations it was found that this sample was particularly small when questions of regional variation, regional averages, or statistical distributions were considered. For this reason a subordinate storm sample was created to provide additional guidance in some of these discussions.

The subordinate sample of storms was derived from the major storms listed in "Storm Rainfall" (U.S. Army Corps of Engineers 1945-). This file includes storms from as early as the 1870 's and is continually updated as new storms are studied. Some additional storm data are available from other agencies and from storms studied by the Hydrometeorglogical Branch. We concentrated on the 253 storms whose areas were $10,000 \mathrm{mi}^{2}$ or larger and whose durations were 60 hr or longer, since we believe the larger/longer storms were more useful in pointing up possible differences. We also imposed a controlling factor in our storm selection, that only storms whose $72-\mathrm{hr}$ depth was 90 percent or more of the total-storm depth ($20,000 \mathrm{mi}^{2}, 72 \mathrm{hr}$) would be used, because we wanted storms that basically represented extreme 3 -day rains. These are listed in table A.l.

The distribution of the 253 storms according to area and duration classes is shown in table A.2.

The regional distribution of this sample is shown in figure A.1, which includes the orientation of the respective rainfall patterns. One feature shown in this figure is that even in this sample of 253 storms, there are local regions for which no storms satisfying the areal and durational criteria of our sample occur. That is not to say that storms of these magnitudes have not occurred in these regions, but rather that we have no records of such storms.

The distribution of the 253 storms relative to area size and shape ratio classes is given in table A.3. These results can be compared to those in table 7 for the 53 storm sample.

Table A.1.--253 Major storms (1isted in Storm Rafnfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order)

Date	Station nearest center					Tot. st. dur. (hr)	Tot. st. area ($m i^{2}$)	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \text { amt. } \\ (\mathrm{in} .) \end{gathered}$
9/10-13/1878	Jefferson, OH	41	45	80	46	84	90,000	11.0
9/20-24/82	Paterson, NJ	40	55	74	10	108	40,000	7.9
7/27-31/87	Union Pt., GA	33	37	83	04	114	100,000	9.0
9/8-12/88	Greenwood, SC	34	12	82	10	120	120,000	8.4
5/30-6/1/89	Wellsboro, PA	41	45	77	17	60	82,000	8.3
3/5-9/91	Kosciusko, MS	33	05	89	35	114	185,000	7.2
6/23-27/91	Larrabee, IA	42	52	95	30	96	30,000	9.3
7/24-28/92	Minneapolis, MN	45	04	93	18	108	20,000	6.4
5/25-29/93	Marianna, AR	34	44	90	49	96	175,000	7.7
8/26-28/93	Manning, SC	33	41	80	12	66	54,000	11.1
9/6-10/93	Franklin, LA	29	47	91	30	114	40,000	10.4
3/17-20/94	Washington, AR	33	48	93	40	72	112,000	6.0
5/17-22/94	Bridgeton, NJ	39	26	75	14	120	57,000	5.1
5/29-31/94	Ward District, CO	40	04	105	32	60	25,300	4.6
8/3-6/94	Folkland, NC	35	34	77	38	96	72,800	6.4
12/16-20/95	Phillipsburg, MO	37	34	92	47	96	110,000	6.5
6/4-7/96	Greeley, NE	41	33	98	32	78	84,000	9.2
7/6-8/96	Greenwood, SC	34	11	82	09	66	118,000	6.0
9/27-30/96	Bloomery, WV	39	23	78	22	66	50,000	6.8
7/12-14/97	Southington, CT	41	39	72	53	60	44,000	6.7
7/18-22/97	Lambert, \mathbb{N}	47	47	95	55	102	80,000	5.8
7/25-27/97	Butternut, WI	46	00	90	30	66	15,000	8.6
7/26-29/97	Jewe 11, MD	38	46	76	34	96	32,000	6.2
12/31-1/3/97	Pine Bluff, AR	34	12	92	00	78	118,000	5.7
12/1-4/97	Jackson, MS	32	17	90	11	96	70,000	6.6
5/2-6/98	Norman, OK	35	13	97	28	84	68,000	6.0
6/2-6/98	Pine River Dam, $\mathrm{MN}^{\text {N }}$	46	41	94	07	102	30,000	5.7
8/26-29/98	St. Andrews Bay, FL	30	10	85	42	96	64,000	7.0
8/30-9/3/98	Port Royal, SC	32	23	80	42	120	42,000	9.6
9/28-10/1/98	Pensacola, FL	30	25	87	13	84	75,500	8.1
10/2-4/98	Highlands, NC	35	02	83	12	66	60,000	5.9
6/27-7/1/99	Hearne, TX	30	52	96	37	108	78,000	21.1
12/8-11/99	Port Gibson, MS	31	58	90	59	66	30,000	7.3
4/15-18/1900	Eutaw, AL	32	47	87	50	84	75,000	11.3
7/14-17/00	Primghar, IA	43	05	95	38	78	100,000	9.1
9/7-11/00	Elk Point, SD	42	41	96	40	102	50,000	6.1
10/27-30/00	La Crosse, WT	43	48	91	15	78	15,200	6.7
5/18-22/01	Lumberton, NC	34	32	79	00	108	79,600	6.2
7/1-6/01	New Folden, $\mathbb{N N}^{\text {N }}$	48	22	96	20	108	50,000	6.1
3/25-29/02	Ripley, MS	34	42	88	57	114	100,000	8.6

Table A.1 - 253 Ma jor storms (1isted in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, a rranged in chronological order) Continued

Date	Station nearest center	$\begin{gathered} \text { Lat. } \\ \left(0^{\circ}\right)()^{\prime} \\ \hline \end{gathered}$		$\begin{gathered} \text { Long } \\ \left({ }^{\circ}\right)(1) \\ \hline \end{gathered}$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \mathrm{amt} . \\ \text { (in.) } \\ \hline \end{gathered}$
9/20-24/02	Wakeeney, KS	39	01	99	53	108	81,600	5.3
9/24-27/02	Colora, MD	39	40	76	06	72	40,000	5.6
8/24-28/03	Woodburn, IA	40	57	93	35	96	59,000	10.3
9/7-10/03	Burlington, KS	38	12	95	45	72	40,900	5.7
9/28-10/1/03	Gainesville, TX	33	37	97	08	90	50,000	7.5
10/7-11/03	Paterson, NJ	40	55	74	10	96	35,000	10.9
5/1-3/04	Boxelder, CO	40	59	105	11	66	21,200	3.4
6/1-5/04	Hartshorne, OK	34	51	95	33	84	66,000	7.2
6/2-5/04	Spearfish, SD	44	29	103	47	78	12,300	3.4
9/12-15/04	Friesburg, NJ	39	35	75	25	66	35,000	6.7
9/26-30/04	Rociada, M	35	52	105	27	90	70,000	5.4
2/10-13/05	Putman, GA	32	14	84	25	72	80,000	5.8
6/3-8/05	Medford, WI	45	08	90	20	120	67,000	7.0
7/18-21/05	Hartshorne, OK	34	51	95	33	84	100,000	6.8
10/16-19/05	New Haven, MO	38	38	91	13	69	26,000	6.6
8/21-25/06	Hartington, NE	42	37	97	16	96	33,900	4.7
8/22-26/06	Warsaw, MO	38	15	93	21	102	24,300	6.6
5/7-10/07	La fayette, LA	30	14	91	59	96	49,000	9.0
5/28-31/07	Sugarland, TX	29	36	95	38	90	80,000	8.7
7/13-16/07	Nera ha, NE	40	20	95	41	96	40,000	7.9
5/21-25/08	Chatanooga, OK	34	25	98	39	108	175,000	6.1
7/28-31/08	New Bern, NC	35	07	77	03	72	29,000	5.9
8/23-28/08	Vade Meccum, NC	36	26	80	28	120	69,600	9.5
9/16-20/08	Cameron, LA	29	45	93	20	102	22,000	10.1
10/19-24/08	Meeker, OK	35	30	96	54	126	80,000	8.6
5/24-28/09	Shoccoa, MS	32	39	89	53	11.4	70,000	7.2
7/4-7/09	Bethany, M0	40	15	94	02	66	27,000	7.3
7/18-23/09	Ironwood, MI	46	27	90	11	108	50,000	10.0
9/6-9/09	Topeka, KS	39	04	95	37	78	39,000	6.9
9/19-22/09	St. Francisville, LA	30	46	91	22	66	31,000	10.2
6/6-11/10	Boonville, M0	38	58	92	45	120	70,000	2.9
10/3-6/10	Golconda, IL	37	22	88	29	90	70,000	7.4
2/16-18/11	Woodward (nr), OK	36	27	99	23	60	44,400	4.5
4/12-15/11	Benton, AR	34	33	92	37	60	75,000	4.9
8/28-31/11	St. George, GA	30	30	82	02	84	39,000	13.5
4/11-14/12	Arnegard, ND	47	48	103	25	90	10,700	2.0
5/19-22/12	Gladwin, MI	43	59	84	29	72	37,156	4.6
6/14-18/12	Johnstown, PA	40	20	78	55	120	50,000	4.0
9/22-25/12	Emmitsburg, Md	39	41	77	21	72	40,000	4.6
9/22-25/12	Camden, SC	34	15	80	37	72	16,000	5.5

Table A. 1 - 253 Ma jor storms (1isted in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order) Continued

Date	Station nearest center	$\begin{gathered} \text { Lat. } \\ \left(0^{\circ}\right)(1) \\ \hline \end{gathered}$		Long.$\left(^{\circ}\right)(1)$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \mathrm{amt} . \\ \text { (ine) } \\ \hline \end{gathered}$
7/12-15/13	Toboso, OH	40	03	82	13	84	17,000	5.9
12/1-5/13	San Marcos (nr), TX	29	52	97	57	96	70,000	9.3
3/24-28/14	Merryville, LA	30	46	93	32	96	125,000	10.7
4/24-28/14	Merryville, LA	30	46	93	32	96	100,000	8.1
4/29-5/2/14	Clayton, M	36	20	103	06	66	36,500	7.9
6/25-28/14	Hazelton, ND	46	29	100	17	90	66,000	6.8
6/25-28/14	Morris, MN	45	35	95	55	60	45,000	4.7
2/12-14/15	Onida, SD	44	42	100	04	60	50,000	3.1
6/2-7/15	Henrietta, TX	33	48	98	12	138	60,000	4.7
9/6-9/15	Moran, KS	37	56	95	10	96	24,000	7.6
5/14-19/16	York, NY	42	52	77	52	120	21,400	3.8
7/13-17/16	New Ulm, MN	44	19	94	28	96	30,000	5.6
7/15-17/16	Altapass, NC	35	53	82	01.	108	37,000	15.0
9/10-12/16	Cunningham, KS	37	39	98	24	60	44,000	4.4
9/14-16/17	Hatteras, NC	35	15	75	40	60	25,000	6.5
3/12-15/18	Holcomb, WV	38	15	80	34	66	17,200	4.0
5/9-13/18	Mountain Home, AR	36	20	92	30	78	70,000	5.7
8/19-22/18	Mayville, ND	47	30	97	19	78	24,000	4.8
10/24-27/18	Tryon, NC	35	13	82	14	72	17,200	7.1
10/26-31/18	Highlands, NC	35	02	83	12	120	107,000	6.7
11/6-8/18	Neosha, MO	36	52	94	22	72	34,500	4.5
3/14-16/19	Atchison, KS	39	34	95	07	60	33,000	5.0
6/22-24/19	Clinton, IL	40	08	88	58	66	20,000	5.1
8/25-29/19	Warrensburg, MO	38	46	93	44	102	19,900	9.3
9/16-19/19	Bruning, NE	40	20	97	34	66	58,350	7.4
10/7-12/19	Anahugo, TX	29	47	94	40	120	60,000	8.1
10/25-28/19	Steelville, MO	37	59	91	22	60	84,000	6.8
12/6-10/19	Selma, AL	32	25	87	02	90	116,000	7.5
1/21-24/20	Pontotoc, MS	34	15	89	00	84	100,000	2.8
2/3-6/20	Runnymede, VA	37	01	76	39	60	20,000	-
5/9-12/20	Va1e, SD	44	37	103	24	78	54,000	3.8
6/15-18/20	W. Newton, PA	40	13	79	36	84	30,000	3.8
9/6-9/20	Memphis, TN	35	09	90	03	66	24,000	3.7
3/11-14/21	Magnolia, MS	31	06	90	28	72	42,000	10.1
6/2-6/21	Pueblo (nr), CO	38	27	105	04	114	144,000	7.8
6/17-21/21	Springbrook, MT	47	18	105	35	108	52,600	11.3
10/29-11/2/21	Marion, NC	35	41	82	01	96	24,000	4.6
11/16-19/21	Searcy, AR	35	15	91	44	78	130,000	7.4
2/19-23/22	West Branch, MI	44	19	84	17	114	35,000	3.5
4/24-27/22	Weatherford, IX	32	45	97	48	66	65,700	7.6

Table A.1 - 253 Major storms (listed in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order) Continued

Date	Station nearest center	$\begin{gathered} \text { Lat. } \\ \left({ }^{\circ}\right)(1) \\ \hline \end{gathered}$		Long.$\left(^{\circ}\right)(1)$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area } \\ \left(\mathrm{mi}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \text { amt. } \\ \text { (in.) } \\ \hline \end{gathered}$
6/8-11/22	Wrightstown, WI	44	20	88	12	84	45,000	6.1
6/9-12/22	Syracuse (nr), NY	43	04	76	16	84	20,000	4.2
7/9-12/22	Grant City, MO	40	29	94	25	78	113,500	9.3
9/27-10/1/23	Savageton, WY	43	52	105	47	108	95,000	6.6
7/11-14/24	Fort Scott, KS	37	51	94	42	72	35,000	5.6
8/3-6/24	West Bend, WI	43	25	88	11	90	50,000	6.7
9/13-17/24	Beaufort, NC	34	44	76	39	96	100,000	11.5
12/4-8/24	Brownsville, KY	37	13	86	15	108	32,400	6.2
5/27-29/25	Eagle Pass, TX	28	43	100	30	60	47,100	7.1
6/1-3/25	St. Joseph, MO	39	46	94	55	66	64,000	4.9
9/23-26/25	Freeman Springs, AR	35	40	93	06	90	75,000	3.9
3/20-22/26	St. Francisville, LA	30	46	91	22	66	28,200	5.9
8/23-26/26	Donaldsonville, LA	30	06	90	58	72	50,000	11.5
9/2-5/26	Columbus, KS	37	15	94	52	78	50,000	5.9
9/17-21/26	Bay Minette, AL	30	53	87	47	120	35,700	13.7
9/25-30/26	Eufaula, OK	35	17	95	35	108	40,000	6.6
2/11-14/27	Clinton, LA	30	52	91	00	72	50,000	7.0
3/17-20/27	Tuscumbia, MO	38	15	92	27	60	32,000	4.2
4/12-16/27	Jefferson, LA	29	40	90	05	108	250,000	14.7
5/5-9/27	Belvidere, SD	43	50	101	16	108	150,000	3.7
5/20-23/27	Kaplan, LA	30	01	92	19	72	12,500	8.1
7/12-15/27	Ardmore, OK	34	12	97	08	96	33,000	8.6
8/11-14/27	Bison, KS	38	31	99	12	72	34,000	6.6
11/2-4/27	Kinsman Notch, NH	44	03	71	45	60	60,000	7.8
5/14-16/28	Woodville, MS	31	06	91	18	60	34,000	8.0
6/12-17/28	Crystal Sprngs, MS	31	59	90	26	108	20,000	8.6
6/28-30/28	Clinton, TN	36	06	84	08	66	70,000	7.7
7/5-8/28	Berthold, ND	48	20	101	46	72	20,000	5.8
7/18-21/28	Mt. Ayr, LA	40	43	94	14	84	19,500	3.8
3/9-13/28	Settle, NC	36	01	80	46	96	24,000	7.0
8/10-13/28	Cheltenham, MD	38	44	76	51	66	35,000	8.8
8/13-17/28	Caesars Head, SC	35	07	82	38	102	77,300	9.4
9/4-7/28	Marion, SC	34	11	79	23	72	19,600	4.9
9/16-19/28	Darlington, SC	34	17	79	02	96	100,000	10.8
11/15-17/28	Lebo, KS	37	55	95	26	60	60,000	8.1
3/11-16/29	Elba, AL	31	25	86	04	114	100,000	16.1
7/16-18/29	Woodville, MS	31	09	91	18	66	24,000	5.4
9/20-23/29	Gallinas (nr), M	35	09	105	39	72	17,000	2.6
9/23-28/29	Glenville, GA	31	56	81	56	120	70,000	13.1
9/29-10/3/29	Vernon, FL	30	38	85	43	34	103,000	9.3

Table A.1 - 253 Ma jor storms (listed in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order) Continued

Date	Station nearest center	$\begin{gathered} \text { Lat } \\ \left({ }^{\circ}\right)(1) \\ \hline \end{gathered}$		$\begin{aligned} & \text { Long } \\ & \left.c^{\circ}\right)\left({ }^{\circ}\right) \end{aligned}$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area }^{2}{ }^{\left(\text {mi }^{2}\right)} \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \mathrm{amt} \\ \text { (ine) } \\ \hline \end{gathered}$
1/6-11/30	Arkadelphia, AR	34	07	93	03	114	70,000	5.4
5/15-19/30	Camden, AR	33	36	92	49	108	116,000	7.3
6/12-15/30	Wa shington, IA	41	17	91	41	63	70,000	7.7
10/9-12/30	Porter, M	35	12	103	17	60	27,700	7.2
7/20-25/31	Conklingville, NY	43	19	73	56	120	17,000	3.1
6/2-6/32	Meeker, OK	35	30	96	54	84	70,000	8.7
7/3-8/32	Clay, WV	38	28	81	05	120	36,000	5.6
7/31-8/3/32	Lexington, KY	38	02	84	36	72	23,300	5.8
9/5-7/32	Abilene, TX	32	26	99	41	60	20,400	4.5
10/4-6/32	Elka Park, NY	42	10	74	14	66	60,000	7.4
10/4-7/32	Elka Park, NY	42	10	74	14	96	29,000	6.9
10/14-18/32	Tuscaloosa, AL	33	14	87	37	90	70,000	6.8
10/15-18/32	Rocky Mount, NC	37	00	79	54	72	50,000	7.4
12/21-24/32	Sulphur, OK	34	30	96	58	66	100,000	6.7
4/11-14/33	Durham, NH	43	08	70	56	60	20,000	5.0
7/22-27/33	Logansport, LA	31	58	94	00	126	100,000	14.8
8/20-24/33	Peeka moose, NY	41	56	74	23	108	66,000	8.2
2/27-3/4/34	De Ridder, LA	30	50	93	16	126	200,000	7.2
6/6-8/34	Akron, IA	42	49	96	33	66	53,400	5.2
9/4-9/34	Beaufort, NC	34	44	76	39	108	19,000	7.3
11/19-21/34	Millry, AL	31	38	88	19	66	130,000	9.0
11/28-12/1/34	Southport, NC	33	55	78	01	84	90,000	6.4
1/18-21/35	Hernando, MS	34	50	90	00	84	98,500	7.9
5/2-7/35	Melville, LA	30	41	91	44	126	133,000	11.1
5/16-20/35	Simmesport, LA	30	59	91	48	102	75,000	10.4
7/6-10/35	Hector, NY	42	30	76	53	90	38,500	8.6
9/2-6/35	Easton, MD	38	46	76	01	114	48,469	10.8
12/5-8/35	Satsuma (nr), TX	29	54	96	37	60	56,500	13.9
7/29-8/2/36	Blountstown, FL	30	26	85	02	120	100,000	6.7
9/14-18/36	Broome, TX	31	47	100	50	96	70,000	13.8
9/25-28/36	Hillsboro, TX	32	01	97	08	90	157,000	9.9
4/24-28/37	Clear Springs, MD	39	40	77	54	114	20,000	6.1
5/26-30/37	Ragland, M	34	49	103	44	84	37,000	3.3
6/11-13/37	Circle, MT	47	30	105	34	60	62,000	4.0
8/31-9/3/37	Wolverine, MI	45	17	84	37	72	19,000	7.0
9/6-10/37	Bentonville, AR	36	22	94	13	84	42,750	6.1
9/30-10/4/37	New Orleans, LA	29	57	90	04	114	20,000	11.3
10/17-20/37	Caesars Head, SC	35	07	82	38	72	15,000	5.1
3/28-31/38	Ford's Ferry, KY	37	28	88	06	84	25,000	6.0
4/5-9/38	Lock No. 2, AL	32	08	88	02	108	95,000	7.9

Table A. 1 - 253 Ma jor storms (1isted in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 907$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order) Continued

Date	Station nearest center	$\begin{aligned} & \text { Lat } \\ & \left({ }^{\circ}\right)(1) \\ & \hline \end{aligned}$		$\begin{gathered} \text { Long }, \\ \left({ }^{\circ}\right)\left({ }^{\prime}\right) \\ \hline \end{gathered}$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area }^{\left(\mathrm{mi}^{2}\right)} \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \mathrm{amt} . \\ \text { (in.) } \\ \hline \end{gathered}$
6/26-28/38	Odessa, DE	39	28	75	40	60	10,500	5.3
8/12-15/38	Koll, LA	30	20	92	45	90	34,000	12.0
8/30-9/4/38	Loveland (nr), CO	40	23	105	04	126	21,500	3.2
9/17-22/38	Buck, CT	41	40	72	40	120	67,000	7.7
3/9-12/39	Charleston, IL	39	29	88	11	72	70,000	3.9
8/6-9/40	Miller Island, LA	29	45	92	10	84	36,200	18.4
9/2-6/40	Hallett, OK	36	15	96	36	90	20,000	13.6
11/22-25/40	Hempstead, TX	30	08	96	08	78	78,000	14.2
5/26-31/41	Jennings, LA	30	13	92	39	120	54,000	5.6
8/28-31/41	Hayward, WI	46	00	91	28	78	60,000	9.1
9/20-23/41	McColleum Ranch, M	32	10	104	44	78	38,000	6.3
10/17-22/41	Trenton, FL	29	48	82	57	138	25,000	18.2
10/18-22/41	Lindsborg, KS	38	34	97	40	96	16,000	7.9
4/17-21/42	Kenton (nr), OK	36	55	102	58	102	54,500	3.1
5/19-23/42	Carbondale, PA	40	48	76	08	96	12,000	5.0
6/23-26/42	Clifton Hill, MO	39	25	92	42	72	35,000	6.9
7/2-6/42	Spring Branch, TX	29	55	98	25	96	52,800	6.9
8/7-10/42	Charlottesville, VA	38	02	78	30	96	24,500	5.3
8/29-9/1/42	Rancho Grande, M	34	56	105	06	84	35,600	6.8
10/11-17/42	Big Meadows, VA	38	31	78	26	156	25,000	9.1
12/27-30/42	Ashville, AL	33	51	86	20	79	30,950	9.7
1/16-19/43	River Falls, AL	31	21	86	32	66	40,000	8.7
5/6-12/43	Warner, OK	35	29	95	18	144	212,000	11.1
5/12-20/43	Mounds (nr), OK	35	52	96	03	192	200,000	8.5
7/27-29/43	Devers, TX	30	02	94	35	60	33,000	13.7
6/10-13/44	Stanton, NE	41	52	97	03	78	16,000	9.3
6/2-5/44	Colony, WY	44	56	104	12	72	36,000	3.4
9/12-15/44	New Brunswick, NJ	40	29	74	27	96	50,000	5.6
8/26-29/45	Hockley, TX	30	02	95	51	72	34,000	13.4
5/25-28/46	Renovo, PA	41	20	77	45	78	16,800	4.7
8/12-15/46	Cole Camp (nr), MO	38	29	93	13	78	45,000	8.3
8/12-16/46	Collinsville, IL	38	40	89	59	114	20,400	9.0
5/25-30/47	Plattsmouth, NE	41	01	95	53	132	300,000	-
6/2-7/47	Browning (nr), MO	40	03	93	06	120	306,000	4.8
6/10-13/47	Earlham, IA	41	28	94	07	78	300,000	-
6/18-23/47	Holt (nr), MO	39	27	94	20	120	306,000	5.5
6/23-26/47	Anna polis, MD.	37	22	90	42	66	306,000	2.3
6/26-30/47	Lathrop, MO	39	33	94	20	96	306,000	4.1
8/10-13/47	Plentywood, MT	48	45	104	30	72	64,329	3.9
8/24-27/47	Dallas, TX	32	51	96	51	72	30,000	9.3

Table A. 1 - 253 Ma jor storms (listed in Storm Rainfall, $\geq 10,000 \mathrm{mi}^{2}$ and $\geq 60 \mathrm{hr}$; $72 \mathrm{hr} \geq 90 \%$ total storm amount at $20,000 \mathrm{mi}^{2}$, arranged in chronological order) Continued

Date	Station nearest center	$\begin{gathered} \text { Lat. } \\ \left(^{\circ}\right)\left({ }^{1}\right) \\ \hline \end{gathered}$		$\begin{gathered} \text { Long } \left.{ }^{\circ} \text { (}{ }^{\circ}\right) \\ \hline \end{gathered}$		Tot. st. dur. (hr)	$\begin{gathered} \text { Tot. st. } \\ \text { area } \\ \left(\text { mi }^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} 1000-\mathrm{mi}^{2} \\ 24-\mathrm{hr} \\ \mathrm{amt} . \\ \text { (in.) } \\ \hline \end{gathered}$
4/22-25/50	Monmouth (nr), IL	40	55	90	43	60	20,000	4.6
9/3-7/50	Yankeetown, FL	29	03	82	42	96	43,500	30.2
8/9-13/51	Council Grove, KS	38	40	96	30	108	57,000	6.6
6/23-28/54	Vic Pierce, TX	30	22	101	23	120	27,900	18.4
8/10-15/55	New Bern, NC	35	07	77	03	126	69,000	8.9
8/11-15/55	Slide Mt., NY	42	01	42	25	120	81,000	6.0
8/15-19/55	Big Meadows, VA	38	31	78	26	96	50,000	5.5
8/17-20/55	Westfield, MA	42	07	72	45	72	35,000	12.4
5/18-21/60	New Prague, MN	44	35	93	35	85	10,000	4.4
9/10-13/61	Bay City, TX	28	58	95	57	90	100,000	9.6
9/11-13/61	Shelbina, MO	39	41	92	03	60	121,000	7.1
3/2-5/66	Courtenay (nr), ND	47	14	98	35	72	35,000	3.1
6/19-23/72	Zerbe, PA	40	37	76	32	96	130,000	12.3

Table A.2.--Distribution of 253 major storms by duration and area size classes

$\begin{array}{r} { }^{\mathrm{Are}} \\ \left(10^{3} \mathrm{~m}\right. \\ \hline \end{array}$	$\begin{array}{r} 10- \\)<20 \\ \hline \end{array}$		$30-$ <40	$40-$ <50	$50-$ <60				$\begin{aligned} & 90- \\ & <100 \end{aligned}$	$\begin{aligned} & 100- \\ & <120 \end{aligned}$	$\begin{gathered} 120- \\ \leq 140 \\ \hline \end{gathered}$	$\begin{aligned} & 140- \\ & <160 \end{aligned}$	$\begin{gathered} 160- \\ <180 \\ \hline \end{gathered}$	$\begin{aligned} & 189-2 \\ & <200 \end{aligned}$	$\begin{aligned} & 200-\geq 3 \\ & <300 \end{aligned}$		Total
$\begin{aligned} & \text { Dur. } \\ & \text { (hr) } \end{aligned}$																	
60	1	7	4	5	2	3	2	2	-	-	1	-	-	-	-	-	27
66	2	7	5	1	4	4	1	-	-	2	1	-	-	-	.	1	28
72	10	3	10	4	3	1	1	1	-	1	-	-	-	-	.	.	34
78	4	1	3	1	2	1	2	1	-	3	1	-	-	-	-	1	20
84	2	2	5	2	.	2	3	.	3	3	-	-	-	-	-	.	22
90	1	1	2	.	2	1	4	1	.	2	-	1	-	-	-	-	15
96	1	5	6	3	3	1	4	.	-	4	2	.	1	-	-	1	31
102	1	2	1	.	2	-	2	1	-	1	.	-	.	-	.	.	10
108	1	2	2	2	4	1	2	1	2	1	.	1	1	.	1	-	21
114	-	3	1	2	-	-	2	。	.	3	-	1	-	1	-	-	13
120	1	2	2	1	3	4	2	1	-	1	1	-	-	.	.	2	20
126	.	1	.	-	.	1	.	1	.	1	1	-	-	-	1	.	6
132	-	.	-	-	.	.	-	-	-	-	-	-	-	-	.	1	1
138	.	-	.	-	-	1	.	.	-	.	.	-	-	1	-	-	2
144	-	-	-	-	-	-	-	-	-	-	-	-	-	.	1.	-	1
≥ 150	.	1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	2
Total	24	37	41	21	25	20	25	9	5	22	7	3	2	2	4	6	253

Table A. $3 .-$ Shape ratios of 253 major storm isohyetal patterns relative to area size classes

Area size category	Shape ratio								Total no. of storms
$\left(10^{3} \mathrm{mi}^{2}\right)$	1	2	3	4	5	6	7	8	
			of	al	R	c			
10 to 20	17	33	29	8	4	4	4		24
20 to < 30	8	25	36	11	11	3		6	36
30 to < 40	2	41	22	17	12	5			41
40 to < 50		24	33	19	19		5		21
50 to<60	8	38	8	15	19	8	4		26
60 to 675	6	28	25	19	6	11	3	3	36
75 to <100		22	22	26	17	9	4		23
100 to <125	9	17	30	26	4	4	9		23
≥ 125	4	35	39	4	17				23

Figure A.1.-Regional distribution of 253 jor storms listed in table Al showing orientation of total-storn precipitation patterns.

(Continued from inside front cover)

No. 45. Probable maximum and TVA precipitation for Tennessee River Basins up to 3 ,000 square miles in area and durations to 72 hours. 1969.
No. 46. Probable maximum precipitation, Mekong River Basin. 1970.
No. 47. Meteorological criteria for extreme floods for four basins in the Tennessee and Cumberland River Watersheds. 1973.
No. 48. Probable Maximum Precipitation and Snowmelt Criteria For Red River of the North Above Pembina, and Souris River Above Minot, North Dakota. 1973.
No. 49. Probable Maximum Precipitation Estimates, Colorado River and Great Basin Drainages. 1977.
No. 50. The Meteorology of Important Rainstorms in the Colorado River and Great Basin Drainages. 1982 (PB82 185414)
No. 51. Probable Maximum Precipitation Estimates, United States East of l05th Meridian. 1978. (PB287925)
No. 52. Application of Probable Maximum Precipitation Estimates--United States East of the 105 th Meridian. 1982.

No. 53. Seasonal Variation of 10-Square-Mile Probable Maximum Precipitation Estimates, United States East of the 105th Meridian. 1980. (NUREG/CR-1486)

[^0]: *Out of print.

[^1]: *Current affiliation Bureau of Reclamation, Denver, Colorado.

[^2]: While the sample of storms in table 2 is too small to set quantitative differences, we wish to see if qualitative differences appear. Figure 2, as an example, shows sequences of $6-h r$ increments for 5 of the storms ia table 2. (Two of the five are tropical.) In this figure, the $100-$ mi 2 results are shown as solid lines and the $10,000-\mathrm{mi}^{2}$ results as dashed lines. Increnental amounts are expressed as a percentage of the $72-\mathrm{hr}$ rainfall.

[^3]: T - tropical, NT - nontropical
 () - Values in parentheses are for results when definition for rain burst is increased from $\geq 10 \%$ to $\geq 20 \%$ of the 72 -hr total rain (see text).

[^4]: *Tndicates cusp.

[^5]: *Indicates cusp

[^6]: *Tndicates cusp

[^7]: *Indicates cusp

[^8]: *Indicates cusp

[^9]: *Indicates cusp

[^10]: *The standard isohyet area sizes are those of: $10,25,50,100,175,300,450$, $700,1,000,1,500,2,150,3,000,4,500,6,500,10,000,15,000,25,000,40,000$, and $60,000 \mathrm{mi}^{2}$.

[^11]: Sum $=11872.8$

[^12]: 末The user may need to redetermine these if the pattern is moved a significant distance.

