

# **NorthMet Project**

# Geotechnical Data Package Volume 3 – Mine Site Stockpiles

Version 5 - Certified

Issue Date: July 11, 2016

This document was prepared for Poly Met Mining Inc. by Barr Engineering Co. and Golder Associates Inc.



| Date: July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |  |  |  |
|---------------------|----------------------------------------------------------|--|--|--|
| Version: 5          | Certifications                                           |  |  |  |

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of Minnesota.

07/11/2016

Brent Bronson, P.E. PE #46492

Date

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Licensed Professional Engineer under the laws of the state of Minnesota.

Gordan Gjerapic, P.E.

Gordan Gjerapic, P.E PE #47209

07/11/2016

Date



# **Table of Contents**

| Acro | onym  | s and Abbreviations                                   | . ii |
|------|-------|-------------------------------------------------------|------|
| 1.0  |       | Introduction                                          | . 1  |
|      | 1.1   | Outline                                               | . 1  |
| 2.0  |       | Regulatory Basis                                      | . 3  |
| 3.0  |       | Existing Site Conditions                              | . 6  |
|      | 3.1   | Existing Site Data                                    | . 6  |
|      | 3.2   | Site Conditions for Category 1 Waste Rock Stockpile   | . 9  |
|      | 3.3   | Site Conditions for Category 2/3 Waste Rock Stockpile | 11   |
|      | 3.4   | Site Conditions for Category 4 Waste Rock Stockpile   | 13   |
|      | 3.5   | Site Conditions for Ore Surge Pile                    | 15   |
|      | 3.6   | Site Conditions Summary                               | 16   |
| 4.0  |       | Physical Properties of Materials                      | 18   |
|      | 4.1   | On-Site Soils                                         | 18   |
|      | 4.2   | Waste Rock and Ore                                    | 19   |
| 5.0  |       | Stockpile Analysis and Design Inputs                  | 21   |
|      | 5.1   | Climatic Data                                         | 21   |
|      | 5.2   | Stockpile Geometry                                    | 21   |
|      | 5.3   | Stockpile Liner Systems and Foundations               | 22   |
|      | 5.4   | Permanent Stockpile Development Sequence              | 22   |
|      | 5.5   | Temporary Stockpile Development Sequence              | 22   |
|      |       | 5.5.1 Underdrain System                               | 24   |
|      |       | 5.5.2 Liner System                                    | 25   |
|      | 5.6   | Stockpile Reclamation                                 | 25   |
| 6.0  |       | Stockpile Analysis and Design Outcomes                | 26   |
|      | 6.1   | Stockpile Stability                                   | 26   |
|      | 6.2   | Foundation Settlement                                 | 28   |
|      | 6.3   | Liner Survivability                                   | 28   |
| 7.0  |       | Revision History                                      | 29   |
| 8.0  |       | References                                            | 30   |
| List | of Ta | bles                                                  | 31   |
| List | of At | tachments                                             | 31   |



| Date: July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|---------------------|----------------------------------------------------------|
| Version: 5          | Page ii                                                  |

# **Acronyms and Abbreviations**

|         | Stands For                         |
|---------|------------------------------------|
| Golder  | Golder Associates Inc.             |
| IFC     | Issued for Construction            |
| LLDPE   | linear low density polyethylene    |
| PGA     | peak ground acceleration           |
| Project | NorthMet Project                   |
| SPT     | standard penetration test          |
| USCS    | Unified Soil Classification System |
| USFS    | U.S. Forest Service                |



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 1                                                   |

#### 1.0 Introduction

This Geotechnical Data Package – Volume 3 presents the geotechnical evaluations performed by Golder Associates Inc. (Golder) in support of the NorthMet Project (Project) waste rock stockpile designs presented in the Rock and Overburden Management Plan (Reference (1)) and the Water Management Plan – Mine Site (Reference (2)). This information is intended for use in preparing the Environmental Impact Statement, and to support Project permitting.

The overall plan for management of waste rock is to classify rock by its reactivity and place it in one of three stockpiles based on that classification. The lowest reactivity stockpile, Category 1, is a permanent stockpile. A groundwater containment system will be constructed to capture drainage from the Category 1 Waste Rock Stockpile (see Section 2.1.2 of Reference (1)), and the stockpile will be progressively reclaimed with an engineered geomembrane cover system (see Section 3.0 of Reference (3)). The two higher reactivity stockpiles, Category 2/3 and Category 4, are temporary stockpiles, and waste rock from these stockpiles will be relocated to the East Pit after mining ceases in the East Pit. Engineered liner systems will be constructed beneath the temporary stockpiles to capture drainage (see Section 2.1.3 of Reference (1)).

The Mine Site exploration drilling locations, soil borings, and geophysical testing locations used for stockpile foundation design are shown in Attachment A. The majority of the relevant geotechnical data has been collected from the accessible highland areas. Because the surface rights over most of the Mine Site are owned by the U.S. Forest Service (USFS), further access is restricted until completion of the proposed land exchange with the USFS. A Phase II Geotechnical Investigation Work Plan will be developed during permitting to provide the basis to finalize the stockpile Issued for Construction (IFC) designs. It is Golder's opinion that the existing geotechnical database, in combination with knowledge of the regional surficial and bedrock geology and the conservative assumptions used to design the waste rock stockpile slopes and foundations, is sufficient to support a basic level engineering design and permitting for the proposed waste rock stockpiles. It is anticipated that any IFC level design modifications to the proposed stockpile geometry, design methodologies or performance.

#### 1.1 Outline

This Geotechnical Data Package – Volume 3 presents the analyses and assumptions upon which recommendations are provided for the waste rock stockpile foundation preparation and liner system designs, and presents the methodology used to evaluate the slope stability of the recommended designs. The outline of this document is:

Section 1 Introduction

Section 2 Regulatory basis



- Section 3 Existing conditions
- Section 4 Physical properties of the materials
- Section 5 Stockpile analysis and design inputs
- Section 6 Stockpile analysis and design outcomes
- Section 7 Certification

This document may evolve through the environmental review, permitting, operating and closure phases of the Project. A Revision History is included at the end of the document.



### 2.0 Regulatory Basis

Requirements for stockpile design and reactive mine waste are included in the Nonferrous Metallic Mineral Mining Minnesota Administrative Rules, MNDNR Rules parts 6132.2400 and 6132.2200, respectively. Variances from these rules or alternative plans require review and approval by the MNDNR. Minnesota Rules, part <u>6132.2400 states that</u> Storage Piles (a.k.a. Stockpiles) must be designed and constructed to minimize hydrologic impacts, enhance the survival and propagation of vegetation, be structurally sound, control erosion, promote progressive reclamation, and recognize the conservation of mineral resources. Specific regulatory requirements for Stockpiles as excerpted from Minnesota Rules, part 6132.2400 are:

- A. General design: All storage piles shall be designed and constructed according to the standards in subitems (1) to (4).
- (1) When mine waste is deposited on areas with unstable foundations such as peat, muskeg, bedded lacustrine deposits, karst topography, active seismic and flood zones, and areas above or within a mine, a professional engineer, registered in this state and proficient in the design, construction, operation, and reclamation of facilities on unstable foundations, shall examine the foundation and design the storage piles to ensure stability.
- (2) Practices such as the use of vegetated buffer strips, hay bale dikes, silt fences, or settling basins shall be used to control erosion.
- (3) Rills or gullies shall be observed to determine dominant runoff flow paths, which shall be stabilized to control runoff.
- (4) Storage piles containing reactive mine waste must also comply with the requirements of Minnesota Rules, part <u>6132.2200</u>.
- B. Rock storage piles: The final exterior slopes of lean ore, waste rock, and leached ore storage piles shall consist of benches and lifts as follows:
- (1) No lift shall exceed 40 feet in height;
- (2) No bench shall be less than 30 feet, measured from the crest of the lower lift to the toe of the next lift;
- (3) The sloped area between benches shall be no steeper than the angle of repose; and
- (4) When vegetation is required under Minnesota Rules, part <u>6132.2700</u>, subpart 2, item A, subitem (13), the sloped areas between benches shall be prepared to support vegetation.
- C. Surface overburden: Surface overburden shall be disposed of according to subitems (1) and (2).



- (1) When surface overburden is generated, it shall be placed in layers on the completed tops and benches of lean ore and waste rock storage piles to enhance reclamation potential.
- (2) If no completed tops or benches are available, or if such sites are not within economic haul distances of surface stripping activities, surface overburden storage piles shall be created so that the final exterior slopes shall consist of benches and lifts as follows:
  - (a) No lift shall exceed 40 feet in height;
  - (b) No bench width shall be less than 30 feet wide, measured from the crest of the lower lift to the toe of the next lift;
  - (c) The sloped area between benches shall be no steeper than 2.5:1; and
  - (d) Runoff water shall either be temporarily stored on benches or removed by drainage control structures.
- D. Mixed storage piles: Lean ore and waste rock shall not be used to cover surface overburden storage piles to avoid compliance with sloping and vegetation requirements. This shall not preclude the abutting of lean ore or waste rock storage piles with surface overburden storage piles or the placement of lean ore or waste rock lifts on top of surface overburden pads or lifts.
- E. Alternative design: Based on acceptable research, the commissioner shall approve other measures that satisfy subpart 1.

Minnesota Rules, part 6132.2200 Reactive Mine Waste applicable to Stockpile design require that Reactive Mine Waste shall be mined, disposed of, and reclaimed to prevent the release of substances that result in the adverse impacts on natural resources. A reactive mine waste storage facility must be designed by professional engineers registered in Minnesota proficient in the design, construction, operation, and reclamation of facilities for the storage of reactive mine waste, to either:

- (1) Modify the physical or chemical characteristics of the mine waste, or store it in an environment, such that the waste is no longer reactive; or
- (2) During construction to the extent practicable, and at closure, permanently prevent substantially all water from moving through or over the mine waste and provide for the collection and disposal of any remaining residual waters that drain from the mine waste in compliance with federal and state standards.

The State of Minnesota requires submittal, review, and state approval of a quality control/quality assurance program for liner systems prior to construction. In addition, the State of Minnesota requires submittal of a construction documentation report that summarizes the details of the facility construction and presents the results of the quality



assurance testing. Quality assurance testing is most often performed by the facility design engineer and a qualified independent testing laboratory. Quality assurance for facilities like the stockpile liners typically includes:

- Density testing of compacted structural fill materials.
- Peel and shear strength testing of seems in the geomembrane liner and/or cover systems.
- Overall confirmation of materials compliance with specifications.
- Construction surveying to confirm facility line and grade compliance with specifications.
- Maintenance of construction observation records and a photographic record of construction activities.
- Documentation of any variation from agency approved plans and specifications and the basis by which the variation is deemed acceptable to the facility design engineer.

Permit issuance for the facility will depend on compliance with an approved QA/QC plan. A construction QA/QC plan will be developed during permitting and submitted for agency approval.



### Page 6

#### 3.0 **Existing Site Conditions**

#### 3.1 **Existing Site Data**

The existing site conditions were evaluated using the site data summarized below:

- boring logs from a drilling program conducted by Barr in March 2005
- data from a Phase I field investigation conducted by Golder in April 2006 •
- data from a geotechnical investigation conducted by Barr in January 2008 •
- data from an overburden geotechnical investigation conducted by Barr in February • 2010
- depth to bedrock point data obtained prior to March 2005, provided by Poly Met • Mining Inc., based on electrical resistivity survey geophysics, geotechnical borings, and exploration borings
- Wetland delineation at the Mine Site conducted by Barr in 2006 (Reference (4)) •

Geotechnical boring locations by Barr (2005 and 2008) and test trench locations by Golder (2006) are shown in Attachment A.

Barr conducted a monitoring well installation program in March 2005. Eleven borings were completed as summarized in Table 3-1. The borings were advanced by WDC Exploration & Wells using rotasonic drilling methods. The advanced borings indicated bedrock depths ranging from 4 feet to more than 28.5 feet. The boring logs from the 2005 well installation program are included in Attachment B.

Golder conducted a Phase I geotechnical field and laboratory investigation in April 2006 to evaluate the subsurface conditions within the proposed stockpile footprints. The investigation program consisted of fifteen (15) test trenches (G06-TP1 through G06-TP15) excavated to depths ranging between 3.5 and 20 feet. Test trenches were excavated using a John Deere 690 ELC trackhoe operated by Radotich Enterprises, LLC. The test trenches were extended either to bedrock refusal or 20 feet, which was the limit of the trackhoe reach. Bedrock was encountered in 13 of the 15 test trenches at depths ranging from 3.5 to 15 feet. The Phase I geotechnical investigation report is included as Attachment C.

Barr conducted a rotasonic drilling program in January 2008 as a part of the Overburden Characterization Plan in support of the EIS. Twenty-four borings were advanced (RS-01B to RS-20A). Twenty-two borings were completed using an 8-inch diameter rotasonic core with a miniature all-terrain rig operated by Boart Longyear Company. The depth at which bedrock was encountered ranged from 5 to 33 feet, as summarized in Table 3-1. In addition, two borings were completed using a hollow stem hand auger. The hand auger borings



encountered boulder refusal at 0.5 and 2.0 feet, respectively. Borehole logs from the January 2008 geotechnical investigation conducted by Barr and the accompanying in-laboratory material test data are included as Attachment D.

Barr conducted a standard penetration test (SPT) and pressure meter test program in February 2010 as a part of overburden characterization in support of the DEIS. Four SPT borings and offset hollow stem auger borings for pressure meter testing and sample recovery were advanced (J003, J010, J027 and J037). Borings and testing were completed by American Engineering Testing, Inc. Borehole logs, pressure meter test data and soil test data from the February 2010 geotechnical investigation conducted by Barr are included as Attachment E. Barr (2010) data are generally consistent with findings from previous investigations.

# Table 3-1Depth to Bedrock Data from Geotechnical Borings by Barr (2005, 2008) and Test<br/>Trench Investigations by Golder (2006)

| Barr (2005)      |                                                       | Golder           | (2006)                                                | Barr (2008)      |                                                       |  |
|------------------|-------------------------------------------------------|------------------|-------------------------------------------------------|------------------|-------------------------------------------------------|--|
| Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) | Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) | Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) |  |
| MW-05-02         | 5.0                                                   | GATP-06-1        | > 20                                                  | RS-01B           | 20.5                                                  |  |
| MW-05-08         | > 28.5                                                | GATP-06-2        | 13.0                                                  | RS-03            | 22.0                                                  |  |
| MW-05-09         | 12.5                                                  | GATP-06-3        | 15.0                                                  | RS-04            | 25.0                                                  |  |
| SB-05-01         | 15.0                                                  | GATP-06-4        | 13.5                                                  | RS-05A           | 13.0                                                  |  |
| SB-05-03         | 16.0                                                  | GATP-06-5        | 14.0                                                  | RS-05B           | > 5.0                                                 |  |
| SB-05-04         | 15.0                                                  | GATP-06-6        | > 20                                                  | RS-06A           | > 21.0                                                |  |
| SB-05-05         | 8.0                                                   | GATP-06-7        | 3.5                                                   | RS-06R           | 21.0                                                  |  |
| SB-05-06         | 14.5                                                  | GATP-06-8        | 4.5                                                   | RS-07            | 11.0                                                  |  |
| SB-05-07         | 13.0                                                  | GATP-06-9        | 8.5                                                   | RS-07R           | 9.5                                                   |  |
| SB-05-10         | 4.0                                                   | GATP-06-10       | 8.0                                                   | RS-08A           | 11.0                                                  |  |
| SB-05-10A        | 6.0                                                   | GATP-06-11       | 6.0                                                   | RS-09            | 8.0                                                   |  |
|                  |                                                       | GATP-06-12       | 5.0                                                   | RS-10            | 14.0                                                  |  |
|                  |                                                       | GATP-06-13       | 9.0                                                   | RS-11            | 33.0                                                  |  |
|                  |                                                       | GATP-06-14       | 3.5                                                   | RS-12            | 22.0                                                  |  |
|                  |                                                       | GATP-06-15       | 11.5                                                  | RS-13            | 8.0                                                   |  |
|                  |                                                       |                  |                                                       | RS-14A           | 5.0                                                   |  |
|                  |                                                       |                  |                                                       | RS-14B           | 5.0                                                   |  |
|                  |                                                       |                  |                                                       | RS-15A-E         | > 0.5                                                 |  |



| Barr (2005)      |                                                       | Golder           | (2006)                                                | Barr (2008)      |                                                       |  |
|------------------|-------------------------------------------------------|------------------|-------------------------------------------------------|------------------|-------------------------------------------------------|--|
| Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) | Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) | Boring<br>Number | Bedrock<br>Depth<br>Below<br>Existing<br>Grade (feet) |  |
|                  |                                                       |                  |                                                       | RS-16A-C         | > 2.0                                                 |  |
|                  |                                                       |                  |                                                       | RS-17A           | > 8.0                                                 |  |
|                  |                                                       |                  |                                                       | RS-17B           | 11.2                                                  |  |
|                  |                                                       |                  |                                                       | RS-18A           | 8.0                                                   |  |
|                  |                                                       |                  |                                                       | RS-19A           | 9.0                                                   |  |
|                  |                                                       |                  |                                                       | RS-20A           | 6.5                                                   |  |

Note: Excludes Barr 2010 data; Barr 2010 borings were terminated above bedrock or at auger refusal. Auger refusal on cobble, boulder or bedrock was not confirmed.

The site exploration drilling database, test pit logs, drilling logs from soil borings and monitoring wells, and geophysics data were used to develop an estimated depth to bedrock isopach map presented in Attachment A.

Barr completed additional rotasonic borings in 2011 and 2012 for monitoring well installations. This data has not been used for the analyses presented herein and is therefore not attached, but will be considered during preparation of IFC designs.

Collected soil samples from the Golder (2006) and Barr (2008 and 2010) field programs were classified using the Unified Soil Classification System (USCS). In-laboratory material classification tests were performed in accordance with ASTM methodologies to obtain index properties of the samples recovered from the test trenches and boreholes, to confirm field classifications, and for use in developing correlations with engineering properties of the soils encountered. In-laboratory tests conducted on subgrade materials sampled during these field programs included the following:

- Sieve Analysis ASTM C117/C136 (Golder, 2006 and Barr, 2008);
- Atterberg Limits ASTM D4318 (Golder, 2006 and Barr, 2008);
- Natural Moisture Content ASTM (Golder, 2006 and Barr, 2008);
- Standard Proctor Compaction ASTM D698 (Golder, 2006);
- Consolidated-Undrained (CU) Triaxial Compression ASTM D4767 (Golder, 2006);
- Falling Head Flexible-Wall Permeability Testing ASTM D5084 (Golder, 2006); and



• One-Dimensional Consolidation Testing – ASTM D2435 (Golder, 2006).

Copies of test reports for the in-laboratory material testing are provided in Attachment C, Attachment D, and Attachment E.

# 3.2 Site Conditions for Category 1 Waste Rock Stockpile

The Category 1 Waste Rock Stockpile footprint encompasses 508 acres during operations, and 526 acres reclaimed. For the Category 1 Waste Rock Stockpile and for all other stockpiles some discrepancies may exist between footprint areas reported herein relative to footprint areas reported in other documents. This is the result of varying document preparation dates and/or versions. No effort has been made to align document submittal dates. Hence, some footprint size variations between versions can be expected.

Wetland delineation within the Category 1 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the vicinity of the Category 1 Waste Rock Stockpile footprint is based on the borehole logs (Barr 2005, 2008 and 2010) and test pit logs (Golder, 2006). Geotechnical borings and test pits within or in the vicinity of the Category 1 Waste Rock Stockpile are summarized in Table 3-2. Additional depth to bedrock information in the vicinity of the Category 1 Waste Rock Stockpile is presented in Attachment F.

| Borehole/Test<br>Pit | Location <sup>(1)</sup> | Bedrock<br>Depth<br>(feet) | Soil types                                                                                                                                                                      |
|----------------------|-------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MW-05-09             | WL/HL                   | 12.5                       | 0.5 feet topsoil; 1.5 feet of sand (w/ 5-10% gravel);<br>5 feet of silty sand (w/ <40% cobbles and boulders);<br>1.5 feet sand; 4 feet silty sand (trace gravel and<br>cobbles) |
| SB-05-04             | WL                      | 15                         | 2 feet of peat; 5.5 feet of clayey silt; 1 feet of silty clay; 1.5 feet of sandy silt (w/ 10% cobbles); 5 feet of silty sand (w/ 10-20% coarse gravel and cobbles)              |
| SB-05-10             | WL/HL                   | 4.0                        | 1 feet peat; 3 feet of silty sand (with 5-10% gravel and cobbles)                                                                                                               |
| GATP-06-04           | WL                      | 13.5                       | 0.5 feet topsoil; 13 feet of silty sand (mixed w/ gravel and cobbles)                                                                                                           |
| GATP-06-05           | HL                      | 14.0                       | 0.5 feet topsoil; 3.5 feet of lean clay (sandy w/ 15-20% gravel), 2 feet of silty sand (w/ 30-45% gravel), 8 feet of silty sand.                                                |
| GATP-06-06           | HL                      | >20                        | 0.5 feet of topsoil; 14.5 feet of silty sand (mixed w/<br>gravel, cobbles and boulders); 5 feet layer of sandy<br>silt                                                          |

#### Table 3-2 Category 1 Waste Rock Stockpile Boring and Test Pits



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 10                                                  |

| Borehole/Test<br>Pit                                               | Location <sup>(1)</sup> | Bedrock<br>Depth<br>(feet) | Soil types                                                                                              |  |  |  |
|--------------------------------------------------------------------|-------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|--|--|--|
| RS-15A-E                                                           | HL                      | >0.5                       | Peat over sandy silt (refusal on boulder)                                                               |  |  |  |
| RS-16A-C                                                           | HL                      | >2.0                       | Silty sand (refusal on boulder)                                                                         |  |  |  |
| J003                                                               | J003 WL -<br>J010 HL -  |                            | 2.5 feet peat and organic silt; 3.6 feet coarse alluvium; 21.0 feet silty sand w/gravel                 |  |  |  |
| J010                                                               |                         |                            | 2.3 feet fill; 15.9 feet silty sand w/gravel; 0.5 feet obstruction (possible bedrock)                   |  |  |  |
| J027                                                               | WL                      |                            | 7.0 feet peat; 0.7 feet organic silt; 16.9 feet silty sand w/gravel (w/ apparent cobbles)               |  |  |  |
| J037                                                               | HL                      |                            | 0.5 feet topsoil; 12.0 feet sandy silt and silty sand w/gravel; 0.4 feet obstruction (possible bedrock) |  |  |  |
| (1) WL – wetland, HL – highland, WL/HL – wetland/highland boundary |                         |                            |                                                                                                         |  |  |  |

Results from the in-laboratory material classification testing on the samples collected during Golder (2006) and Barr (2008 and 2010) geotechnical investigations are summarized in Table 3-3.



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |  |  |  |
|-----------------------|----------------------------------------------------------|--|--|--|
| Version: 5            | Page 11                                                  |  |  |  |

| Sample                            | USCS Class.            | %<br>Gravel | %<br>Sand | %<br>Fines | <b>LL</b> <sup>(1)</sup> | <b>PL</b> <sup>(1)</sup> | <b>PI</b> <sup>(1)</sup> |
|-----------------------------------|------------------------|-------------|-----------|------------|--------------------------|--------------------------|--------------------------|
| TP#4, Sample #1,<br>0.5' to 4.5'  | SM                     | 8.0         | 60.7      | 31.3       | 7                        | 7                        | 0                        |
| TP#4, Sample #2,<br>4.5' to 13.5' | SM w/ little gravel    | 11.0        | 49.7      | 39.3       | n/a                      | n/a                      | n/a                      |
| TP#5, Sample #1,<br>0.5' to 4.0'  | CL                     | 13.0        | 35.6      | 51.4       | 25                       | 16                       | 9                        |
| TP#5, Sample #1,<br>6.0' to 14'   | SM                     | 1.0         | 52.0      | 47.0       | n/a                      | n/a                      | n/a                      |
| TP#6, Sample #2,<br>15' to 20'    | ML sandy               | 0.0         | 48.3      | 51.7       | n/a                      | n/a                      | n/a                      |
| RS-15A-E, 0' to 0.5'              | ML sandy<br>w/organics | 1.0         | 46.3      | 52.7       | NP                       | NP                       | NP                       |
| RS-16A-C. 0' to 2.0'              | Silty Sand (SM)        | 0.4         | 68.4      | 31.2       | NP                       | NP                       | NP                       |
| J003, 4.5' to 6.0'                | CL-ML/CL               | 0.0         | 32.6      | 67.4       | NT                       | NT                       | NT                       |
| J003, 19.5' to 21.0'              | SC                     | 12.0        | 53.1      | 34.9       | NT                       | NT                       | NT                       |
| J010, 4.5' to 6.0'                | SM                     | 13.7        | 55.5      | 30.8       | NP                       | NP                       | NP                       |
| J010, 9.5' to 11.0'               | SM                     | 12.9        | 55.3      | 31.8       | NP                       | NP                       | NP                       |
| J027, 12.0' to 13.5'              | SM                     | 28.0        | 50.9      | 21.1       | NP                       | NP                       | NP                       |
| J027, 22.0' to 23.5'              | SM                     | 8.3         | 60.5      | 31.2       | NP                       | NP                       | NP                       |
| J037, 9.5' to 11.0'               | SM                     | 18.7        | 48.7      | 32.6       | NP                       | NP                       | NP                       |

| Table 3-3 | Geotechnical Classification Results for Category 1 Waste Rock Stockpile Soils |
|-----------|-------------------------------------------------------------------------------|
|-----------|-------------------------------------------------------------------------------|

(1) NP – non-plastic soil; NT – not tested for plasticity

Borings advanced in the vicinity of and within the footprint of the Category 1 Waste Rock Stockpile indicate bedrock depths ranging from 4 feet to over 20 feet below the surface (Table 3-2). On the basis of the bedrock isopach map shown in Attachment A, depth to bedrock may be somewhat greater in the central and southwestern portions of the stockpile footprint. Soils in the highland areas are glacial tills in origin and typically consist of sandy silts and silty sands with varying amounts of coarser material and occasional layers of sandy clays. Existing data indicates that lowland areas contain horizons of glacial, alluvial and lacustrine deposits. The upper soil horizons in the lowland deposits contain relatively finer grained soils, e.g., peat, organic clays and silts.

#### 3.3 Site Conditions for Category 2/3 Waste Rock Stockpile

The Category 2/3 Waste Rock Stockpile area encompasses 180 acres. Wetland delineation within the Category 2/3 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Category 2/3 Waste Rock Stockpile footprint is based on the test pit samples collected by Golder in 2006 and the rotasonic drill testing by Barr in January 2008. Geotechnical borings and test pits in the vicinity (within approximately 100 feet) of the Category 2/3 Waste Rock Stockpile footprint are summarized



in Table 3-4. Additional depth to bedrock information in the vicinity of the Category 2/3 Waste Rock Stockpile is presented in Attachment F.

| Table 3-4 Category 2/3 Waste Rock Stockpile Borings | S |
|-----------------------------------------------------|---|
|-----------------------------------------------------|---|

|             |                         | Bedrock<br>Depth |                                                                                                                                                                                                             |
|-------------|-------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Borehole    | Location <sup>(1)</sup> | (feet)           | Soil types                                                                                                                                                                                                  |
| SB-05-01    | HL/WL                   | 15.0             | 4 feet topsoil (low plast. clay w/ 25% coarse fraction); 1<br>feet of silty clay; 3 feet of silty clay w/ organics ; 7 feet<br>silty clay w/ organics (rocky last 5 feet before bedrock)                    |
| RS-11       | WL                      | 33               | <ul> <li>9.5 feet peat; 7.5 feet silty sand (w/ gravel, cobbles and organics);</li> <li>8 feet gravelly sand with silt (w/ cobbles); 8 feet sand to silty sand (w/ gravel, cobbles and boulders)</li> </ul> |
| RS-17A      | HL                      | >8               | 1 feet topsoil; 3.5 feet gravelly silty sand; 1.5 feet silty gravel w/ sand; 1 feet silty sand w/ gravel (refusal on boulder)                                                                               |
| RS-17B      | HL                      | 11.2             | 1 feet topsoil; 3.5 feet gravelly silty sand; 1.5 feet silty<br>gravel w/ sand; 1 feet silty sand w/ gravel; 1 feet<br>boulder; 3.2 feet sand (w/ silt and gravel)                                          |
| GATP-06-8   | HL                      | 4.5              | 2 feet silty sand (w/ little gravel); 2.5 feet sand and gravel (trace silt)                                                                                                                                 |
| GATP-06-9   | HL                      | 8.5              | 0.5 feet of topsoil; 3.5 feet of silty sand (mixed w/ little gravel, cobbles and boulders); 4.5 feet sand and gravel (little silt, few cobbles)                                                             |
| GATP-06-10  | HL                      | 8.0              | 0.5 feet of topsoil; 3.5 feet of silty sand (w/ little gravel, few cobbles); 2.0 feet sand and gravel; 2 feet silty sand (some gravel)                                                                      |
| GATP-06-11  | HL                      | 6.0              | 0.5 feet topsoil; 5.5 feet of silty sand (mixed w/ gravel and cobbles)                                                                                                                                      |
| GATP-06-12  | HL                      | 5.0              | 0.5 feet topsoil; 4.5 feet of silty sand (mixed w/ gravel and cobbles)                                                                                                                                      |
| GATP-06-13  | HL                      | 9.0              | 0.5 feet of topsoil; 8.5 feet of silty sand (w/ gravel, few cobbles and boulders);                                                                                                                          |
| GATP-06-14  | WL                      | 3.5              | 0.5 feet of topsoil; 3.0 feet of silty sand (w/ little gravel, few cobbles);                                                                                                                                |
| GATP-06-15  | HL                      | 11.5             | 1.0 feet of topsoil; 3.0 feet of silty sand (w/ gravel); 7.5 feet of silty sand (w/ little gravel, cobbles and boulders);                                                                                   |
| (1) WL – we | etland, HL – high       | and, WL/HL -     | wetland/highland boundary                                                                                                                                                                                   |



Results from the in-laboratory material classification testing on the samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-5.

|                                  |                     | %      | %    | %     |                   |                   |                          |
|----------------------------------|---------------------|--------|------|-------|-------------------|-------------------|--------------------------|
| Sample                           | USCS Class.         | Gravel | Sand | Fines | LL <sup>(1)</sup> | PL <sup>(1)</sup> | <b>PI</b> <sup>(1)</sup> |
| TP#8, Sample #2, 2' to 4.5'      | SP w/ gravel        | 40     | 58.2 | 1.8   | n/a               | n/a               | n/a                      |
| TP#11, Sample #2, 3' to 6'       | SM w/ little gravel | 10     | 66.1 | 23.9  | n/a               | n/a               | n/a                      |
| TP#13, Sample #2, 4' to 9'       | SM w/ gravel        | 23     | 51   | 26    | 10                | 8                 | 2                        |
| TP#14, Sample #2, 0.5' to 3.5'   | SM                  | 0      | 53.2 | 46.8  | n/a               | n/a               | n/a                      |
| TP#15, Sample #2, 4' to<br>11.5' | SM w/ little gravel | 12     | 49.2 | 38.8  | n/a               | n/a               | n/a                      |
| RS-11, 9.5' to 10'               | SM w/ gravel        | 42.8   | 43.1 | 14.1  | NP                | NP                | NP                       |
| RS-11. 17' to 25'                | SP-SM (gravelly)    | 34.8   | 59.0 | 6.2   | NP                | NP                | NP                       |
| RS-11. 25' to 28'                | SP-SM (gravelly)    | 23.0   | 66.8 | 10.2  | NP                | NP                | NP                       |
| RS-11, 28' to 31'                | SM w/ gravel        | 34.2   | 46.8 | 19.0  | NP                | NP                | NP                       |
| RS-11. 31' to 33'                | SM w/ gravel        | 39.1   | 46.4 | 14.5  | NP                | NP                | NP                       |
| RS-17, 2.5' to 4.5'              | SM (gravelly)       | 30.2   | 37.0 | 32.8  | 16.2              | 15.5              | 0.7                      |
| RS-17, 4.5' to 6'                | GM w/ sand          | 43.8   | 43.0 | 13.2  | NP                | NP                | NP                       |
| RS-17, 6' to 7'                  | SM (gravelly)       | 19.9   | 40.0 | 40.1  | NP                | NP                | NP                       |

 Table 3-5
 Geotechnical Classification Results for Category 2/3 Waste Rock Stockpile Soils

(1) NP – non-plastic soil

Borings advanced within the footprint of the Category 2/3 Waste Rock Stockpile indicate bedrock depths ranging from 3.5 to 33 feet below the surface (Table 3-4) Noting that the RS-11 boring, which encountered the greatest depth of overburden, is located north of the northwestern stockpile boundary; the maximum soil depth within the Category 2/3 Waste Rock Stockpile footprint is estimated at 22 feet using the depth to bedrock isopach map (Attachment A). Soils in the highland areas typically consist of sands and gravel with varying amount of silt. Lowland areas are anticipated to contain surficial peat, fine grained soils and organics, underlain by glacial and alluvial deposits.

# 3.4 Site Conditions for Category 4 Waste Rock Stockpile

The Category 4 Waste Rock Stockpile area encompasses 57 acres. Wetland delineation within the Category 4 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Category 4 Waste Rock Stockpile footprint is based on the rotasonic drilling program by Barr in January 2008. Borings developed within the immediate vicinity of the Category 4 Waste Rock Stockpile footprint



(i.e., less than 150 feet from the stockpile) are summarized in Table 3-6. Additional depth to bedrock information in the vicinity of the Category 4 Waste Rock Stockpile is presented in Attachment F.

|          |                         | Bedrock<br>Depth |                                                                                                                                      |
|----------|-------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Test Pit | Location <sup>(1)</sup> | (feet)           | Soil types                                                                                                                           |
| RS-05A   | HL                      | 13.0             | 10 feet of silty sand w/ gravel; 3 feet of silty gravel                                                                              |
| RS-05B   | HL                      | >5               | 5 feet of silty sand w/ gravel                                                                                                       |
| RS-09    | HL                      | 8.0              | 1 feet topsoil; 6 feet of silty sand (w/ gravel); 1 feet of sandy lean clay                                                          |
| RS-12    | HL                      | 22.0             | 2 feet sandy silt w/ organics; 3.5 feet of fine sand (w/ cobbles); 16.5 feet of silty sand (w/ varying amount of gravel and cobbles) |

| Table 3-6 | Category 4 Waste Rock Stockpile Test Pits |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

(1) WL – wetland, HL – highland, WL/HL – wetland/highland boundary

Results from the in-laboratory material classification testing on the highland samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-7.

|                      |              | %      | %    | %     |                   |                          |                   |
|----------------------|--------------|--------|------|-------|-------------------|--------------------------|-------------------|
| Sample               | USCS Class.  | Gravel | Sand | Fines | LL <sup>(1)</sup> | <b>PL</b> <sup>(1)</sup> | PI <sup>(1)</sup> |
| RS-05A, 6' to 11.5'  | SM w/ gravel | 37.9   | 36.2 | 25.9  | NP                | NP                       | NP                |
| RS-05A, 10' to 11.5' | GM w/ sand   | 64.3   | 23.1 | 12.6  | NP                | NP                       | NP                |
| RS-05A, 11.5' to 13' | GM w/ sand   | 61.0   | 24.0 | 15.0  | 14.3              | 13.1                     | 1.2               |
| RS-09, 1' to 7'      | SM w/ gravel | 31.7   | 50.2 | 18.1  | NP                | NP                       | NP                |
| RS-12, 5.5' to 10'   | SM w/ gravel | 21.7   | 55.3 | 23.0  | NP                | NP                       | NP                |
| RS-12, 10' to 15'    | SM w/ gravel | 26.0   | 53.3 | 20.7  | NP                | NP                       | NP                |

| Table 3-7         Geotechnical Classification Results for Category 4 Waste Rock Stockpile Soils |
|-------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|

(1) NP – non-plastic soil

Borings advanced in the vicinity or within the footprint of the Category 4 Waste Rock Stockpile indicate bedrock depths between 5.0 and 22.0 feet below the surface (Table 3-6) with the maximum depth of 26 feet indicated by the depth to bedrock map (Attachment A) As indicated in Table 3-6, the Category 4 Stockpile is primarily founded upon highland soils, which typically consist of sands and gravels with varying amounts of silt, cobbles and boulders. Because the soil samples were collected only in the highland areas at the northeastern and the southwestern end of the stockpile, they may differ from foundation soils



at other locations within the Category 4 Waste Rock Stockpile footprint, especially in wetland areas.

# 3.5 Site Conditions for Ore Surge Pile

The Ore Surge Pile encompasses 31 acres. Wetland delineation within the Ore Surge Pile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Ore Surge Pile footprint is based on the rotasonic investigation completed by Barr in 2008. Geotechnical borings and test pits within the Ore Surge Pile are summarized in Table 3-8. Additional depth to bedrock information in the vicinity of the Ore Surge Pile is presented in Attachment F.

|                   |                         | Bedrock<br>Depth |                                                                                                                                          |
|-------------------|-------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Borehole/Test Pit | Location <sup>(1)</sup> | (feet)           | Soil types                                                                                                                               |
| MW-05-02          | HL                      | 5.0              | 5.0 feet of sandy clay                                                                                                                   |
| RS-08A            | HL                      | 11.0             | 11.0 feet of silty sand (w/ gravel)                                                                                                      |
| RS-18A            | HL                      | 8.0              | 0.5 feet topsoil; 2.5 feet of silty or silty clay (w/ 10% gravel); 2 feet of clayey sand (w/ gravel); 3 feet gravelly silty sand         |
| RS-19A            | HL                      | 9.0              | 1 feet surface boulder; 2.5 feet silty sand (w/ little<br>gravel); 2.5 feet silty sand w/ gravel; 3 feet gravel and<br>cobbles with sand |
| RS-20A            | HL                      | 6.5              | 2.5 feet silty sand (fine grained); 4 feet of silty sand (mixed w/ gravel, cobbles and boulders)                                         |

#### Table 3-8 Ore Surge Pile Borings

(1) WL – wetland, HL – highland, WL/HL – wetland/highland boundary

Results from the in-laboratory material classification testing on the highland samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-9.

| ¥                                         | Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-------------------------------------------|-----------------------|----------------------------------------------------------|
| $P O \underset{\text{MINING}}{L} Y M E T$ | Version: 5            | Page 16                                                  |

|                     |                     | %      | %    | %     |                   |                   |                          |
|---------------------|---------------------|--------|------|-------|-------------------|-------------------|--------------------------|
| Sample              | USCS Class.         | Gravel | Sand | Fines | LL <sup>(1)</sup> | PL <sup>(1)</sup> | <b>PI</b> <sup>(1)</sup> |
| RS-08A, 5' to 11'   | SM w/ gravel        | 30.5   | 42.5 | 27.0  | NP                | NP                | NP                       |
| RS-18, 0' to 5'     | SC-SM w/ gravel     | 26.1   | 44.1 | 29.8  | 23.1              | 17.1              | 6                        |
| RS-18. 5' to 8'     | SM w/ gravel        | 31.6   | 47.1 | 21.3  | NP                | NP                | NP                       |
| RS-19. 1.5' to 3.5' | SM w/ little gravel | 13.0   | 47.0 | 40.0  | 19.1              | 17.8              | 1.3                      |
| RS-19, 1' to 6'     | SM/SC-SM w/ gravel  | 22.4   | 45.0 | 32.6  | 19.7              | 16.1              | 3.6                      |
| RS-20. 2' to 3'     | SM w/ gravel        | 25.4   | 41.5 | 33.1  | NP                | NP                | NP                       |
| RS-20, 2' to 4.5'   | SM w/ gravel        | 28.9   | 41.4 | 29.7  | 15.5              | 15.4              | 0.1                      |

| Table 3-9 Geotechnical Classification Results for Ore Surge Pile Solis | Table 3-9 | Geotechnical Classification Results for Ore Surge Pile Soils |
|------------------------------------------------------------------------|-----------|--------------------------------------------------------------|
|------------------------------------------------------------------------|-----------|--------------------------------------------------------------|

(1) NP – non-plastic soil

Borings advanced in the vicinity or within the footprint of the Ore Surge Pile indicate bedrock depths ranging from 5.0 to 11.0 feet below the surface (Table 3-8), with soil depths up to 12 feet indicated on the depth to bedrock map (Attachment A). However, the soil samples were collected only from the highland areas of the stockpile and may differ from foundation soils at other locations within the Ore Surge Pile stockpile footprint, especially from soils within the lowland areas located on the eastern side of the stockpile.

#### 3.6 Site Conditions Summary

The geotechnical investigations conducted by Golder (2006) and Barr (2008 and 2010) indicate that the site foundation glacial till (overburden) soils were typically silty sands with variable percentages of clay and gravels, which classify according to the USCS as SM, SP, ML, SC and CL. The fines content (percent passing the No. 200 sieve) of the soils encountered ranged from 2% to 67%. The majority of the soils collected were non-plastic. Measured in-situ moisture contents for non-peat material ranged from 1.0% to 26.9%. The permeability of the tested undisturbed native soils ranged from  $3.1 \times 10^{-7}$  to  $9.4 \times 10^{-7}$  cm/sec. The permeability of the tested compacted native soils ranged from  $1.1 \times 10^{-7}$  to  $2.0 \times 10^{-7}$  cm/sec, indicating that the native soils are favorable for use as a compacted soil liner.

Typically, the native glacial tills have sufficiently high fines content, with an exception of the G06-TP8 sample collected from 2 to 4.5 feet, and are considered good candidates for stockpile cover construction. Cover design is discussed in Reference (1).

To optimize stockpile liner designs, additional geotechnical site characterization will be obtained to support an IFC level design. However, collection of additional site geotechnical data will require access to the lowland areas that have both regulatory and logistical constraints. In particular, no additional site disturbance can occur to obtain additional data until the land exchange and appropriate permitting is completed. As a result, the Phase II Geotechnical Investigation will be completed following completion of the land exchange and



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 17                                                  |

appropriate permitting, after the site is dewatered, prior to stockpile construction. This will include additional soil borings and test trenches as appropriate. The overall plan is to excavate and replace unsuitable foundation soils as part of stockpile development. Hence, additional subsurface exploration work will yield information required for annual project planning and for geotechnical analysis updates where needed. However, it is Golder's opinion that the existing geotechnical database, in combination with the requirements for stockpile liner construction subsequently stated herein, is sufficient to technically support the proposed stockpile designs for permitting. Furthermore, because the site geology and subsurface characteristics are generally understood, additional exploration will primarily be for the purpose of stockpile design optimization, confirmation of the design assumptions and earthwork balance computations.

The Phase II Geotechnical Investigation will have the following objectives:

- confirm the Phase I geotechnical classification of native soils, the locations of unsuitable soil materials, and the depth to bedrock and groundwater, and characterize the critical lowland areas prior to or in conjunction with IFC design and construction
- identify and delineate on-site borrow sources for liner and cover materials
- obtain additional samples of site overburden and waste rock materials for inlaboratory testing (if considered necessary) to confirm stability, consolidation, liner durability, and processing requirements
- update geotechnical and groundwater flow characterization analyses required to support the IFC design (i.e., to optimize the sizing and spacing of foundation underdrains, to optimize liner grades)
- provide additional site characterization information to support the bid procurement and construction requirements

As noted previously, the existing geotechnical database, in combination with the requirements for stockpile liner construction (i.e., for lined stockpiles remove all unsuitable foundation materials) subsequently stated herein and knowledge of the local geology is sufficient to technically support the proposed stockpile basic level designs for permitting. It is anticipated that upon completion of project permitting activities, Phase II Geotechnical Investigation activities will proceed in parallel with initial stockpile construction activities to support the IFC level of design.



### 4.0 **Physical Properties of Materials**

#### 4.1 **On-Site Soils**

Golder's 2006 Phase I Geotechnical Investigation and in-laboratory material testing programs and Barr's 2010 overburden geotechnical investigation and material testing programs were conducted to provide preliminary estimates of the shear strength, permeability and consolidation parameters of the Mine Site soils. At the time that Golder's analyses were performed, only the 2006 data were available. Therefore, the following paragraphs describe only the Phase I Geotechnical Investigation test data in greater detail. However, the additional data collected by Barr in 2010 are presented in Attachment E and are reasonably consistent with that collected in 2006. Data for Peat is provided but not relevant to lined stockpile design because Peat is considered an unsuitable foundation material and will be removed prior to construction of lined stockpiles.

Consolidated-undrained (CU) triaxial testing (ASTM D4767) and one-dimensional consolidation testing (ASTM D2435) was conducted on a relatively undisturbed Shelby tube sample of lean clay (CL) obtained from test trench G06-TP5 at a depth of 0.5 to 4.0 feet. In the CU test, the specimen is permitted to drain and consolidate under the confining pressure until the excess pore pressure is equal to zero. The in-situ effective stress strength parameters yielded an effective cohesion of zero with an effective friction angle of 34.6 degrees. The consolidation test indicated a coefficient of consolidation ( $C_v$ ) of 5.3x10<sup>-1</sup> to 9.6x10<sup>-1</sup> square foot per day (feet<sup>2</sup>/day) and a coefficient of compression ( $C_c$ ) of 0.05 to 0.13 under the loading range of 1 to 16 kips per square foot.

In-laboratory material testing included Standard Proctor (ASTM D698) and falling head permeability (ASTM D5084) tests on three samples of native soils to evaluate their potential use as a soil liner and/or the anticipated hydraulic performance as a compacted subgrade. The samples tested included sample G06-TP4 at a depth of 0.5 to 4.5 feet, sample G06-TP7 at a depth of 0.5 to 3.5 feet, and sample G06-TP13 at a depth of 4 to 9 feet. All three samples classified as silty sand (SM) according to the USCS. The maximum standard Proctor dry density of the samples ranged from 118.3 to 125.7 pounds per cubic foot with an optimum moisture content ranging from 12.4 to 14.2%. Prior to permeability testing, the soil samples were remolded to 95% of the maximum standard Proctor dry density at the optimum moisture content. The permeability of the compacted native soils ranged from  $1.1 \times 10^{-7}$  to  $2.0 \times 10^{-7}$  cm/sec.



### 4.2 Waste Rock and Ore

For waste rock and ore stockpile analysis and design, the following physical properties are used:

Mean specific gravity: 2.93

Average dry density of waste rock: 1.90 tons per cubic yard (2.47 tons per cubic yard in place).

Average waste rock porosity (assumed): 23% (30% swell).

Granular Drainage Material 1: Minimum 2 feet of minus one and one-quarter-inch (1.25-inch) crushed rock or native gravelly materials with a minimum permeability of  $1 \times 10^{-2}$  cm/s at 190 psi (to be confirmed by lab testing during the Phase II Geotechnical Investigation). This layer is also referred to as an overliner drainage layer. Maximum vertical stress on liner imposed by equipment not to exceed 8 psi; this criterion requires a minimum 6 feet of overliner material (Granular Drainage Material 1) required for a CAT 992 loader to operate on top of this material at Ore Surge Pile location.

Underdrain permeability: Minimum  $1 \times 10^{-2}$  cm/s.

Compacted Subgrade: Consists of native till soils with upper one (1) foot compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698).

Category 2/3 Waste Rock Stockpile Liner (Category 2 Liner): Consists of native till soils compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698) and to achieve a permeability of equal or less than  $1x10^{-5}$  cm/s. Bentonite admixing may be required to achieve the required maximum permeability. A non-soil component, consisting of a geomembrane liner, will be placed immediately above the soil liner to produce the Category 2/3 Waste Rock Stockpile composite liner system.

Category 4 Waste Rock Stockpile Liner (Category 1 Liner): Consists of native till soils compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698) and to achieve a permeability of equal or less than  $1x10^{-6}$  cm/s. Bentonite admixing may be required to achieve the required maximum permeability. A non-soil component, consisting of a geomembrane liner, will be placed immediately above the soil liner to produce the Category 4 Waste Rock Stockpile composite liner system

Category 1 Waste Rock Stockpile Cover: Consists of a geomembrane hydraulic barrier layer underlain by native till soils processed as needed for use as



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 20                                                  |

geomembrane foundation layer material, with native soils of varying type and organic content placed in layers above the geomembrane hydraulic barrier layer to control surface water runoff and infiltration and to support establishment of a dense vegetative final cover surface layer.



### 5.0 Stockpile Analysis and Design Inputs

The design intent is to use on-site materials and manufactured geomembranes for stockpile liner and cover construction. On-site soils will be utilized and processed as required to meet the design requirements. If on-site soils are not directly suitable for the specified application, the soils will be processed to achieve required material properties (i.e., for liners, a grizzly may need to be used to remove oversized materials and bentonite may be admixed to reduce permeability). The following paragraphs present the design criteria and data used for stockpile analysis and design.

#### 5.1 Climatic Data

The following climatic data were used for stockpile design and analysis:

- average annual precipitation: 29 inches
- average annual PET: 21 inches.
- Climate period for modeling: 1971 to 2000.

#### 5.2 Stockpile Geometry

Stockpile geometry for analysis is as follows:

- minimum width at the top of stockpile: approximately 150 feet or as controlled by the minimum safe turning radius for operating mine haulage trucks
- perimeter access road width (plus allowance for berms) for light truck traffic: 20 feet
- nominal angle of repose slopes: 1.4H:1V (horizontal:vertical) (assumed)
- maximum slope for stockpile foundation excavation: 2H:1V
- grading considerations at closure:
  - for the Category 1 Waste Rock Stockpile: 3.75H:1V regraded interbench slopes for the geomembrane cover
  - regrading is not considered for Categories 2/3 and 4 Waste Rock Stockpiles or the Ore Surge Pile as these are temporary stockpiles
- height of first lift (over geomembrane, where located): 15 feet
- height of second lift (over geomembrane, where located): 25 feet



- nominal lift height (after initial two lifts over geomembrane and where no geomembrane is located): 40 feet
- maximum stockpile heights and interbench slope configurations considered for stability analyses are:
  - 160 feet at interbench slope angles of 1.4H:1V and 2.5H:1V
  - 200 feet at interbench slope angle of 3H:1V
  - 240 feet at interbench slope angle of 3.75H:1V

# 5.3 Stockpile Liner Systems and Foundations

The following information on stockpile liner systems and foundations was used for analysis:

- number of development phases: to be determined
- minimum grade for foundation underdrains: 0.5%
- minimum grade for drainage collection overliner: 0.5%
- liner system design, including piping and underliner and overliner collection points as presented in Section 2.1.3 of Reference (1))
- liner system geomembrane: 80 mil linear low density polyethylene (LLDPE)

# 5.4 Permanent Stockpile Development Sequence

For the Category 1 Waste Rock Stockpile, the basic engineering design assumes all unsuitable soils will be excavated and replaced with structural fill within the initial 100 feet inward from the toe limits (i.e., within 100 feet along the stockpile perimeter) for stability considerations. The perimeter stability will be confirmed based on the results of the Phase II Geotechnical Investigation.

The Category 1 Waste Rock Stockpile will be unlined. Drainage will be collected by a groundwater containment system constructed around the perimeter of the stockpile, as described in Section 2.1.2 of Reference (1)). The containment system will be installed in increments, with each increment installed prior to placement of waste rock in the stockpile segment adjacent increment.

# 5.5 Temporary Stockpile Development Sequence

Each of the liner systems for the temporary stockpiles will need to be constructed on a geotechnically-suitable foundation. The Phase II geotechnical program will be conducted to confirm the subgrade conditions and, if considered necessary, to collect samples for



laboratory testing. Following the Phase II geotechnical program, stockpile stability will be verified and anticipated consolidation settlements will be estimated to confirm the grading plan. As noted previously and described further below, unsuitable foundation soils will be removed from beneath lined stockpiles, thereby adding flexibility to the approach taken during the Phase II Geotechnical Investigation program.

The development concept for stockpile liners includes the following considerations and assumptions:

- conduct Phase II Geotechnical Investigation to verify or modify the design as necessary, based on the encountered geotechnical conditions
- drain the site to allow access for construction equipment
- perform clearing and grubbing activities within stockpile footprints
- excavate and stockpile geotechnical-unsuitable soils (e.g., organic soils, highplasticity soils, unconsolidated clays) for future use as a construction material or reclamation growth medium – leave structurally suitable materials (e.g., non-organic soils, over-consolidated low plasticity clays) in place above bedrock – excavation and re-compaction of these materials is not required
- place structural fill as required to meet the foundation grade requirements (granular soils, low plasticity cohesive soils and Category 1 Waste Rock)
- compact structural fill materials to 95% of the maximum dry density determined by the Standard Proctor test (or to other percentage as may be specified in final construction plans and specifications)
- develop foundation drainage to minimize the potential for development of excess foundation pore water pressures, based on the geotechnical conditions encountered (Section 5.5.1)
- establish the foundation design grades required for drainage collection, stability and other design considerations by placing engineered fill
- construct the liner system dependent upon the reactivity category of the waste rock
- develop foundation grading to provide gravity drainage and collection of drainage from the stockpile to a series of collection sumps. The water collected in the sumps will be managed as described in Reference (2)
- construct overliner cover and drainage system to facilitate drainage collection and to minimize the potential for leaks in the stockpile liner system



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 24                                                  |

It is anticipated that minor sub-excavation of unsuitable soils in the highland areas and that more considerable sub-excavation of unsuitable soils in the lowland areas will be required. The proposed stockpiles will exert significant stress on foundation soils. The definition of geotechnically-unsuitable soils as used herein refers to any foundation soil that may potentially undergo significant deformations, create stability problems, and/or jeopardize the general integrity of the stockpile foundations during stockpile use and after closure. In particular, soft clays or organic soils with low permeability that may exhibit large deformations and development of excess pore water pressure during the loading process are considered unsuitable. These unsuitable soils require excavation and replacement with structural fill. Structural fill materials are anticipated to consist of excavated local till and/or where approved for use, Category 1 Waste Rock, placed as fill in controlled compacted lifts. For foundations constructed solely of local soils, i.e., without Category 1 materials, grading plans are expected to undergo limited modifications in order to further optimize construction quantities.

# 5.5.1 Underdrain System

An underdrain system may be necessary in order to provide foundation drainage to facilitate construction of the liner systems and to minimize the potential for development of excess foundation pore water pressures as the stockpiles are loaded The purpose of the underdrain system is to provide gravity drainage for foundation materials in areas where elevated groundwater is encountered after routine construction dewatering has ceased, and to prevent or minimize the potential for excess pore water pressures to develop as the facility is loaded. The underdrain system may not be necessary in areas where grading fill uses Category 1 material, or in areas where granular moraine soils are present.

Preliminary designs for underdrain systems for the Category 2/3 stockpile, the Category 4 stockpile, and the Ore Surge Pile are presented in Attachment G. Design calculations, which were completed in 2008, used stockpile dimensions which differ slightly from the most current stockpile designs presented in Reference (1). Effects of these slight differences on design of underdrain systems will be resolved, and the extent and location of the underdrain system will be modified based on the results of the Phase II Geotechnical Investigation and/or conditions encountered during construction.

The preliminary underdrain design (Attachment G) includes minimum 4-inch diameter corrugated polyethylene pipes spaced at a nominal distance of 100 feet. This preliminary design is based on a minimum slope of the underdrain pipes of 0.5%, approximately following the liner grades. It is anticipated that the foundation water collected by the underdrain system will be of suitable water quality for off-site discharge through the stormwater system. Nonetheless, the underdrains will be configured to also accommodate water conveyance to the overliner sumps from where the water can be pumped to the mine Waste Water Treatment Facility. The design intent of the underdrain system is not for leakage collection; however, the potential exists that liner leakage, if it occurs, would be captured by the underdrains.



# 5.5.2 Liner System

The stockpile liner systems are designed to be commensurate with the level of environmental risk posed by each waste rock category, and considering the expected operating conditions of the stockpiles. Liner systems are detailed in Reference (1), and summarized in Table 5-1. The Ore Surge Pile requires a thicker overliner than the other temporary stockpiles to meet the design criteria of 8-psi maximum vertical stress on the liner based on the anticipated mine equipment operating on the overliner.

#### Table 5-1 Stockpile Liner System Design

| Stockpile                            | Liner System                                                                                                                                                            |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Category 1 Waste Rock<br>Stockpile   | No liner; drainage collection system at stockpile perimeter                                                                                                             |
| Category 2/3 Waste<br>Rock Stockpile | 12-inch thick compacted (1x10 <sup>-5</sup> cm/s) subgrade (Category 2<br>Liner) overlain by 80 mil LLDPE geomembrane, covered by a<br>24-inch overliner drainage layer |
| Category 4 Waste Rock<br>Stockpile   | 12-inch thick compacted (1x10 <sup>-6</sup> cm/s) subgrade (Category 1<br>Liner) overlain by 80 mil LLDPE geomembrane, covered by a<br>24-inch overliner drainage layer |
| Ore Surge Pile                       | 12-inch thick compacted (1x10 <sup>-6</sup> cm/s) subgrade (Category 1<br>Liner) overlain by 80 mil LLDPE geomembrane, covered by a<br>6-foot overliner drainage layer  |

#### 5.6 Stockpile Reclamation

The Category 1 Waste Rock Stockpile will be progressively reclaimed, starting in Mine Year 14, with an engineered geomembrane cover system (Section 3 of Reference (3)). Cover systems are not needed for the temporary stockpiles (Category 2/3 and Category 4 Waste Rock Stockpiles and Ore Surge Pile). Reclamation of the temporary stockpile footprints is described in Section 7 of Reference (1).



### 6.0 Stockpile Analysis and Design Outcomes

#### 6.1 Stockpile Stability

The requirements for the stockpile geotechnical modeling are based on requirements of the Minnesota Department of Natural Resources Division of Lands and Minerals and are outlined in Attachment H, which describes the requirements for geotechnical analysis. Factors of Safety typically used by Golder for stockpile design at various phases of stockpile development are presented below. For geomembrane lined stockpiles, factors of safety are dependent on the geomembrane/soil liner interface strength parameters. For this analysis an effective friction angle of 19.0 degrees was used for the soil/liner interface strength. Peak friction angles in excess of 25 degrees are commonly reported in the literature, e.g. Williams and Houlihan (Reference (5)), Koutsourais et al. (Reference (6)), Stark et al. (Reference (7)), and Bhatia and Kasturi (Reference (8)). Interface friction angle will be confirmed during a Phase II Geotechnical Evaluation to be implemented prior to the initial stockpile construction. In summary, the stockpiles are designed to achieve the following:

- minimum long-term (effective stress) operational static factor of safety for deepseated failures (waste rock mass thickness in excess of 30 feet): 1.3
- minimum short-term (total stress) operational static factor of safety for deep-seated failures (waste rock mass thickness in excess of 30 feet): 1.1
- minimum composite slope (effective stress) pseudo static factor of safety: 1.0
- minimum composite slope static factor of safety at closure: 1.5
- minimum composite slope pseudo static factor of safety at closure: 1.1
- design earthquake peak ground acceleration (PGA) (operations and closure): 0.05g with a return period of approximately 500 years. The PGA for the NorthMet Mine Site is approximately 0.05g using the FEMA maps (Reference (9)) for the spectral accelerations with a 10% probability of exceedance in 50 years.

The PGA value, based on 10% probability of occurrence in 50 years and given the anticipated site conditions, is considered appropriate for the proposed structures assuming that failure would not represent significant risk to people or result in significant damages. The adopted PGA value of 0.05 g is likely conservative as the project is located in an area of negligible (lowest) seismic hazard for which seismic parameters are difficult to quantify. Further, the USGS reports the PGA value with the return period of approximately 2500 years (2% probability of exceedance in 50 years) to be below 0.04 g (Reference (10)).

Golder conducted global stability analyses to evaluate stockpile stability under static and pseudo-static (i.e., earthquake loading) conditions, to support the basic level engineering designs. Detailed documentation of the stability analyses are presented in Attachment I.



Design cross-sections were developed to represent the following typical conditions at different phases of stockpile development:

- Category 2/3 and Category 4 Waste Rock Stockpiles and Ore Surge Pile: initial operational configuration (single lift of waste rock placed in two stages)
- Category 2/3 and Category 4 Waste Rock Stockpiles: operational configuration at ultimate build-out
- Category 1 Waste Rock Stockpile:, initial operational configuration (a single lift of waste rock with a maximum height of 40 feet placed at the angle of repose)
- Category 1 Waste Rock Stockpile: operational configuration at ultimate buildout prior to reclamation (assume four lifts of waste rock)
- Category 1 Waste Rock Stockpile: reclaimed configuration, interbench slopes regraded to 2.5H:1V
- Category 1 Waste Rock Stockpile: reclaimed configuration, interbench slopes regraded to 3.0H:1V
- Category 1 Waste Rock Stockpile:, reclaimed configuration, interbench slopes regraded to 3.75H:1V

Stability analyses were conducted using RocScience's limit equilibrium program *SLIDE* (Reference (11)). Stability analyses assumed effective stress conditions and considered both circular and non-circular slip surfaces when searching for the critical surface with the minimum factor of safety. The stability analyses utilized the Spencer method (Reference (12)).

Assuming a liner interface (i.e., overliner material/LLDPE geomembrane liner/soil liner) friction angle of 19.0 degrees, all design sections met the minimum required factors of safety outlined above. As reported in Attachment I, computed slope stability factors of safety are equal or greater than the minimum required slope stability factors of safety for the assumed material parameters. As determined by the interface friction angle sensitivity analysis in Attachment I, interface friction angles of 15.7 degrees and greater will yield acceptable slope stability factors of safety for the conditions analyzed.

Stability analyses presented herein may change as a part of the final optimized stockpile design. Anticipated additional configurations to be analyzed during the final design include but are not limited to:

- 180 feet high stockpile with liner, and interbench slope angle of 1.4(H):1(V)
- 240 feet high stockpile without liner, and interbench slope angle of 1.4(H):1(V)



• Other configurations if needed to account for variation in stockpile foundation area topography and interim fill heights as deemed appropriate by the stockpile designer.

As presented in Attachment I, the analyses yielding the smallest computed factor of safety against slope instability are those that consider the 1.4(H):1(V) interbench stockpile slopes above a geomembrane liner system. The assumed liner interface friction, as well as the strength parameters for the considered foundation and stockpile materials, will be confirmed during the Phase II Geotechnical Investigation.

### 6.2 Foundation Settlement

To minimize foundation settlement and to achieve the desired performance characteristics of the stockpile drainage system, compacted waste rock and/or native soils will be used for foundation grading. Structural fill will dominantly consist of native till soils compacted to 95% of the maximum dry density as determined by the standard Proctor compaction test (ASTM D 698), or to other densities as may be specified in final construction plans and specifications. When Category 1 waste rock is used to develop the foundation grades, rock fill placement will need to occur with controlled lifts placed in accordance with a specified rock fill compaction method.

The foundation soils may exhibit moderate settlement under the high-stress design conditions. As a result, a LLDPE geomembrane, or elastic polymer geomembrane with similar biaxial deformation properties, is specified for the geomembrane barrier layer component of the basal liner system for the Category 2/3 Waste Rock Stockpile, Category 4 Waste Rock Stockpile and the Ore Surge Pile due to its ability to accommodate high strain deformations. Foundation settlement and liner strain calculations are presented in Attachment J. Estimated strains are less than 1%; well below the 30% maximum strain allowed for a LLDPE geomembrane.

#### 6.3 Liner Survivability

For angular overliner materials, a geomembrane liner load test will be conducted during the Phase II Geotechnical Investigation to support specification of the acceptable geomembrane thickness. Survivability of the proposed 80 mil LLDPE geomembrane liner for use in stockpile construction under the anticipated loading conditions is discussed in more detail in Attachment K.



| Date: : July 11, 2016 | NorthMet Project<br>Geotechnical Data Package (Volume 3) |
|-----------------------|----------------------------------------------------------|
| Version: 5            | Page 29                                                  |

# 7.0 Revision History

| Date       | Version | Description                                                                                      |
|------------|---------|--------------------------------------------------------------------------------------------------|
| 10/04/2011 | 1       | Initial release                                                                                  |
| 05/29/2012 | 2       | Version 2 with Responses to Comments (ERM and MDNR, EPA, Sutton) Incorporated                    |
| 11/3/2014  | 3       | Version 3 incorporates edits for consistency with Project changes<br>since issuance of Version 2 |
| 11/25/2014 | 4       | Version 4 incorporates edits in Response to Comments (MDNR,<br>Knight Piesold)                   |
| 7/11/2016  | 5       | Updated to include signed PE certification.                                                      |



#### 8.0 References

1. **Poly Met Mining Inc.** NorthMet Project Rock and Overburden Management Plan (v8). July 2016.

2. —. NorthMet Project Water Management Plan - Mine Site (v5). July 2016.

3. —. NorthMet Project Adaptive Water Management Plan (v10). July 2016.

4. **Barr Engineering Co.** Wetland Delineation and Wetland Functional Assessment Report, PolyMet NorthMet RS-14 Draft-02. November 2006.

5. Evaluations of Interface Friction Properties Between Geosynthetics and Soils. Williams, N. D. and Houlihan, M. F. New Orleans : s.n., 1987. Geosynthetics '87. pp. 616-627.

6. Koutsourais, M. M., Sprague, C. J. and Pucetas, R. C. Interfacial Friction Study of Cap and Liner Components for Landfill Design. *Geotextiles and Geomembranes*. s.l. : Elsevier Ltd., 1991, Vol. 10, pp. 531-548.

7. Stark, Timothy D., Williamson, Thomas A. and Eid, Hisham T. HDPE Geomembrane/Geotextile Interface Shear Strength. *Journal of Geotechnical Engineering*. 1998, Vol. 122, 3, pp. 197-203.

8. **Bhatia, Dr. Shobha K. and Kasturi, Gautam.** Comparison of PVC and HDPE Geomembranes - Interface Friction Performance for PVC Geomembrane Institute. Champaign, IL, USA : Department of Civil and Environmental Engineering Syracuse University, November 1996.

9. Federal Emergency Management Agency (FEMA). National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures – Part 1: Provisions, FEMA document No. 368 prepared by the Building Seismic Safety Council, Washington D.C. 2001.

10. **United States Geological Survey.** Hazard Mapping Images Data, 2008 Hazard Map (PGA, 2% in 50 years). *Earthquake Hazards Program.* [Online] 2012. http://earthquake.usgs.gov/hazards/products/graphic2pct50.pdf.

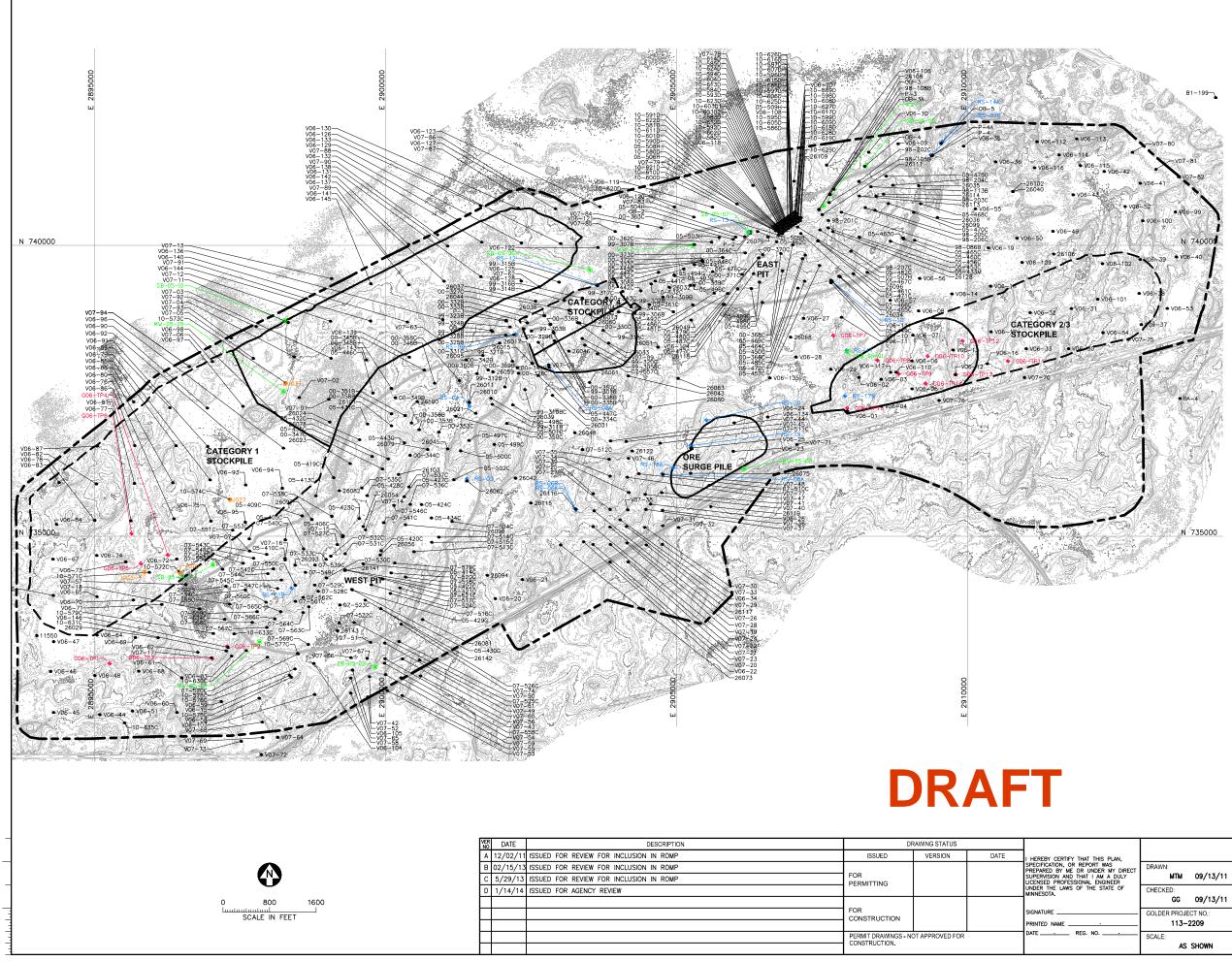
11. RocScience. Users Manual for Slide Version 6.017. Rocscience. 2012.

12. **Spencer, E.** A Method of Analysis of the Stability of Embankments Assuming Parallel Inter Slice Forces. *Geotechnique*. 1967. Vols. XVII, No. 1, pp. 11-26.



# List of Tables

| Table 3-1 | Depth to Bedrock Data from Geotechnical Borings by Barr (2005, 2008) and Test Trench Investigations by Golder (2006) | 7  |
|-----------|----------------------------------------------------------------------------------------------------------------------|----|
| Table 3-2 | Category 1 Waste Rock Stockpile Boring and Test Pits                                                                 | 9  |
| Table 3-3 | Geotechnical Classification Results for Category 1 Waste Rock<br>Stockpile Soils                                     | 11 |
| Table 3-4 | Category 2/3 Waste Rock Stockpile Borings                                                                            | 12 |
| Table 3-5 | Geotechnical Classification Results for Category 2/3 Waste Rock<br>Stockpile Soils                                   | 13 |
| Table 3-6 | Category 4 Waste Rock Stockpile Test Pits                                                                            | 14 |
| Table 3-7 | Geotechnical Classification Results for Category 4 Waste Rock<br>Stockpile Soils                                     | 14 |
| Table 3-8 | Ore Surge Pile Borings                                                                                               | 15 |
| Table 3-9 | Geotechnical Classification Results for Ore Surge Pile Soils                                                         | 16 |
| Table 5-1 | Stockpile Liner System Design                                                                                        | 25 |


# List of Attachments

| Attachment A | Exiting Conditions and Location of Field Investigations                              |
|--------------|--------------------------------------------------------------------------------------|
| Attachment B | Well Installation Field Program - Boring Logs                                        |
| Attachment C | Phase I Geotechnical Investigation                                                   |
| Attachment D | Rotasonic Drilling Investigation – Boring Logs and Classification Testing            |
| Attachment E | Overburden Geotechnical Investigation - Boring Logs and Material Testing Data Sheets |
| Attachment F | Depth to Bedrock Boring ID and Coordinate Location                                   |
| Attachment G | Underdrain Design Computations                                                       |
| Attachment H | Geotechnical Modeling Work Plan                                                      |
| Attachment I | Stockpile Stability Evaluation                                                       |
| Attachment J | Foundation Settlement and Liner Strain Calculation                                   |
| Attachment K | Liner Survivability Evaluation                                                       |

# Attachments

Attachment A

**Exiting Conditions and Location of Field Investigations** 

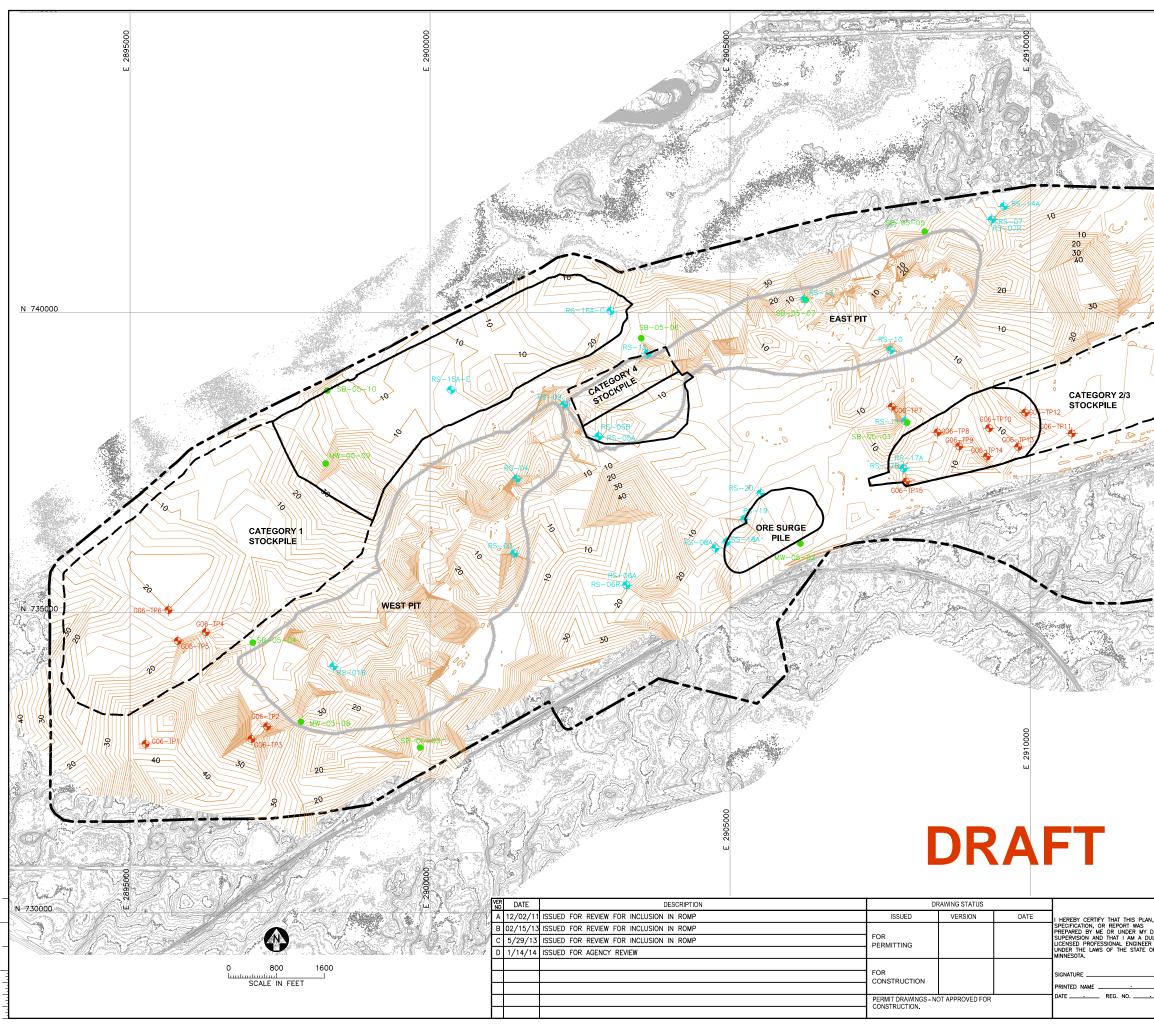


## LEGEND

05-

| JEND              |                                                                |
|-------------------|----------------------------------------------------------------|
|                   |                                                                |
| 1580              | EXISTING GROUND TOPOGRAPHY                                     |
|                   | MINE SITE BOUNDARY                                             |
|                   | YEAR 11 PIT BOUNDARIES (SEE NOTE 1)                            |
|                   | YEAR 1 ORE, AND WASTE ROCK STOCKPILE<br>OUTLINES (SEE NOTE 2)  |
|                   | MAXIMUM ORE, AND WASTE ROCK STOCKPILE<br>OUTLINES (SEE NOTE 2) |
| 06-TP11 🔶         | GOLDER ASSOC. TEST PIT (2006)                                  |
| B-05-01 💿         | BARR ENGINEERING BOREHOLES (2005)                              |
|                   | BARR ENGINEERING BOREHOLES (2008)                              |
| -444PM<br>• 06-58 | BORING OR GEOPHYSICAL SURVEY LOCATION                          |
| J003              | AMERICAN ENGINEERING TESTING, INC.<br>BOREHOLES (2010)         |
|                   |                                                                |
|                   |                                                                |

#### NOTES


- 1. OPEN PIT LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- 4. SEE GEOTECHNICAL DATA PACKAGE VOLUME 3 FOR DETAILS ON TEST PITS, BOREHOLES AND GEOPHYSICAL SURVEYS.

#### **REFERENCES**

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

PLANT DRAWING NUMBER:

|                                        |                                        |          | SITE LAYOUT AND LOCATION<br>OF FIELD INVESTIGATIONS |                                      |                                                                                      |       |  |
|----------------------------------------|----------------------------------------|----------|-----------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------|-------|--|
| PLAN,<br>S<br>AY DIRECT<br>DULY<br>FER | DRAWN:<br>MTM                          | 09/13/11 | POLYMET                                             | POLYMET M<br>NORTHMET<br>HOYT LAKES, | PROJECT                                                                              | 4     |  |
| EER<br>TE OF                           | CHECKED:<br>GG<br>GOLDER PROJE<br>113- |          | Gold                                                | 44 UNIO                              | ASSOCIATES INC.<br>N BOULEVARD, SU<br>D, CO USA 8023<br>980-0540<br>985-2080<br>.com |       |  |
| · · ·                                  | SCALE:<br>AS                           | SHOWN    | DWG. NO. SKP-0                                      |                                      |                                                                                      | rev D |  |



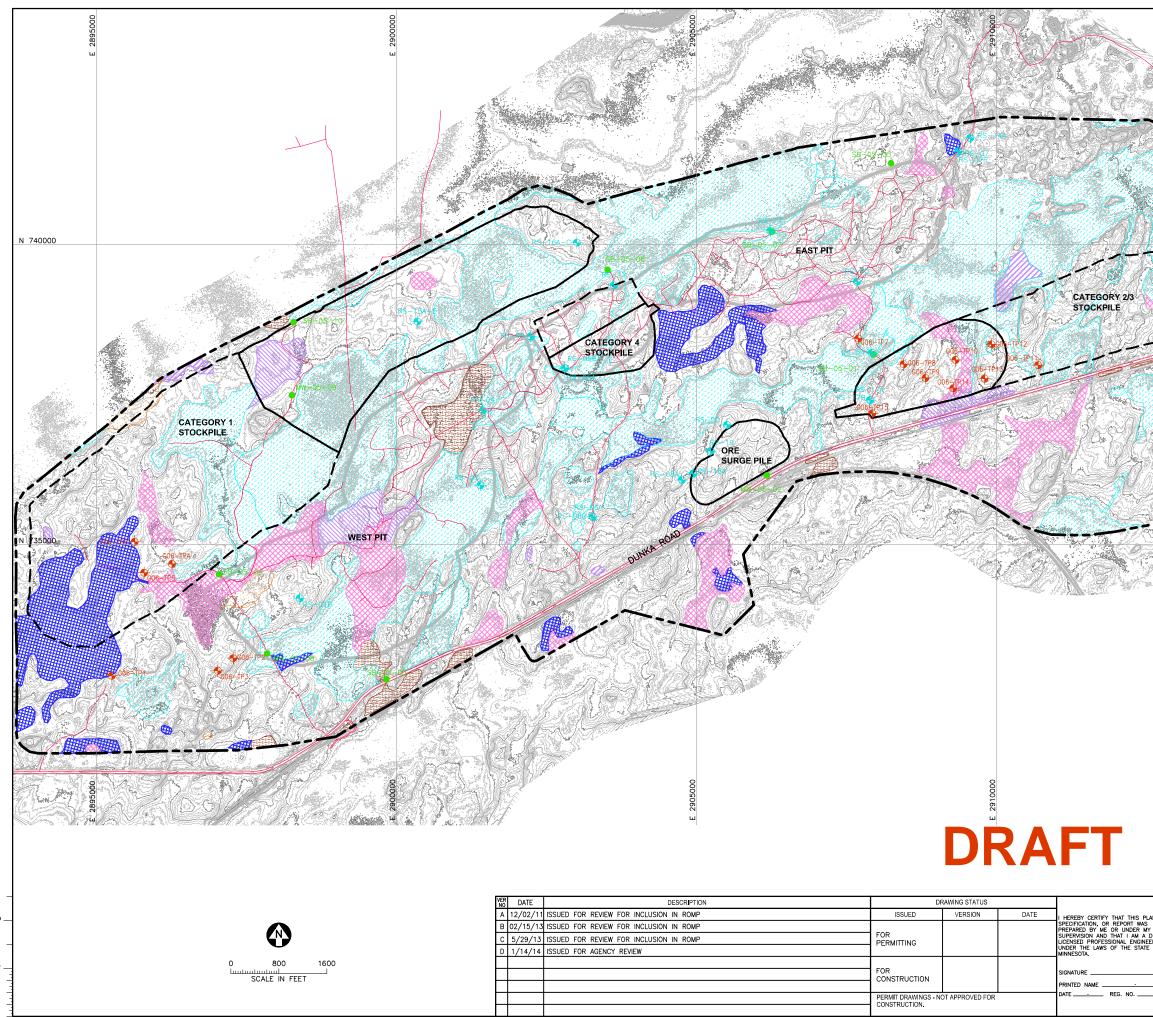
#### LEGEND

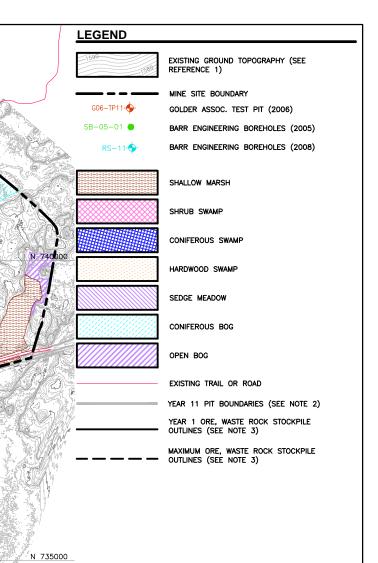
SB-0

N 740000

N 735000

| 1580     | EXISTING GROUND TOPOGRAPHY                                 |
|----------|------------------------------------------------------------|
|          | MINE SITE BOUNDARY                                         |
|          | ESTIMATED DEPTH TO BEDROCK CONTOURS                        |
|          | YEAR 11 PIT BOUNDARIES (SEE NOTE 1)                        |
|          | YEAR 1 ORE, WASTE ROCK STOCKPILE<br>OUTLINES (SEE NOTE 2)  |
|          | MAXIMUM ORE, WASTE ROCK STOCKPILE<br>OUTLINES (SEE NOTE 2) |
| 16-TP11- | GOLDER ASSOC. TEST PIT (2006)                              |
| 05-01 🔴  | BARR ENGINEERING BOREHOLES (2005)                          |
| RS-11-   | BARR ENGINEERING BOREHOLES (2008)                          |
|          |                                                            |


#### NOTES


- 1. OPEN PIT BOUNDARIES PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

|                     |                                                 | PLANT DRAWING NUMBER:                                                                                                     |  |  |  |  |
|---------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                     |                                                 | DEPTH TO BEDROCK ISOPACH MAP                                                                                              |  |  |  |  |
| N,<br>DIRECT<br>JLY | DRAWN:<br>MTM                                   | POLYMET MINING INC<br>NORTHMET PROJECT<br>HOYT LAKES, MINNESOTA                                                           |  |  |  |  |
| òf<br>              | CHECKED:<br>GG<br>BARR PROJECT NO.:<br>113-2209 | Golder ASSOCIATES INC.<br>44 UNION BOULEVARD, SUITE 300<br>LAKEWOOD, CO USA 80233<br>Ph: (303) 985–2080<br>www.golder.com |  |  |  |  |
| <u> </u>            | SCALE:<br>AS SHOWN                              | DWG.NO. SKP-009                                                                                                           |  |  |  |  |

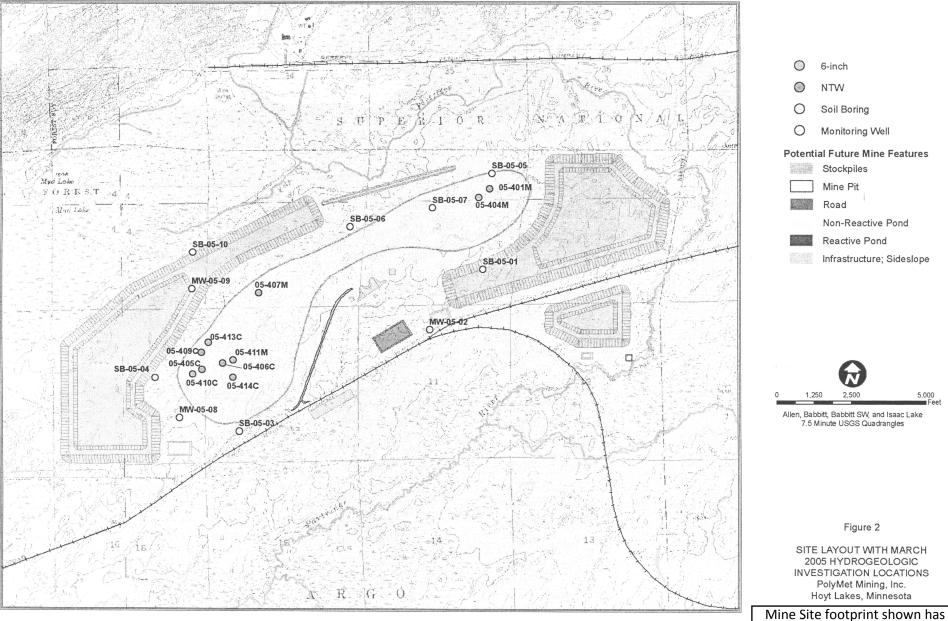




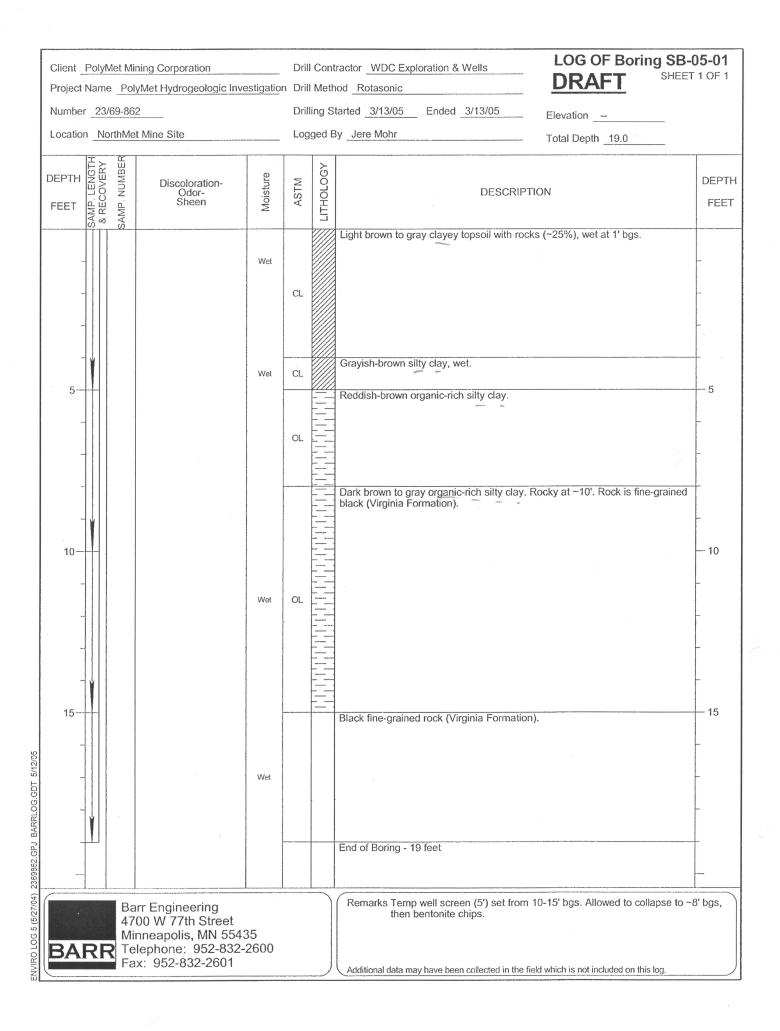
# NOTES

- 1. WETLAND DELINEATION CHARACTERIZATION PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. OPEN PIT LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES


- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH,
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

PLANT DRAWING NUMBER:


|                                       |                                                   | EXISTING SITE CONDITIONS                                                                                                                    |  |  |  |  |  |
|---------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| AN,<br>Y DIRECT<br>DULY<br>ER<br>: OF | DRAWN:<br>MTM                                     | POLYMET MINING INC<br>NORTHMET PROJECT<br>HOYT LAKES, MINNESOTA                                                                             |  |  |  |  |  |
| : OF                                  | CHECKED:<br>GG<br>GOLDER PROJECT NO.:<br>113–2209 | GOLDER ASSOCIATES INC.<br>44 UNION BOULEVARD, SUITE 300<br>LAKEWOOD, CO USA 80233<br>Ph: (303) 985–2080<br>www.golder.com<br>www.golder.com |  |  |  |  |  |
| ·                                     | SCALE:<br>AS SHOWN                                | DWG. NO. SKP-007 REV D                                                                                                                      |  |  |  |  |  |

## Attachment B

Well Installation Field Program - Boring Logs



Vine Site footprint shown has been superceded and is not current



| Client PolyMet Mining Corporation<br>Project Name PolyMet Hydrogeologic Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>-05-02</b><br>ET 1 OF 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Number 23/69-862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drilling Started     3/14/05     Ended     3/15/05     Elevation        Logged By     Jere Mohr     Total Depth     18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| DEPTH     HLX     BW     Discoloration-     Discoloration-     Discoloration-       J     HLX     HLX     HLX     HLX     HLX     HLX       J     HLX     HLX     HLX     HLX     HLX     HLX       J     HLX     HLX     HLX     HLX     HLX     HLX       J     HLX     HLX     HLX     HLX     HLX       J     HLX     HLX     HLX     HLX       J     HLX     HLX     HLX     HLX       J     HLX     HX     HX       J     HX     HX     HX | WELL OR PIEZOMETER<br>CONSTRUCTION<br>DETAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEPTH<br>FEET              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Medium brown sandy clay, upper 1' wet, then moist, very moist at 5'. Chunks of black crystalline rock at 5'.       PRO. CASING Dameter: 6 inches Type: Steel Intervat: 0-4 ft bgs RISER CASING Dameter: 2 inches Type: PVC         ct       Duluth Complex gabbro.       Type: Cenent Intervat: 0-4 ft bgs SANDPACK Type: Red Flint Intervat: 0-4 ft bgs SANDPACK Type: Red Flint Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC Intervat: 5-5 ft bgs SCREEN Diameter: 2 inches Type: PVC         End of Boring - 18 feet       End of Boring - 18 feet | - 5<br>                    |
| Barr Engineering<br>4700 W 77th Street<br>Minneapolis, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-832-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Additional data may have been collected in the field which is not included on this log.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 5/12/05

| Project Name Poly<br>Number 23/69-862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Met Hydrogeologic Inve                                                       | estigation |      |          | nod Rotasonic<br>tarted 3/15/05 Ended 3/15/05                      | Elevation -                     | ET 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------|------|----------|--------------------------------------------------------------------|---------------------------------|------|
| Location NorthMet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mine Site                                                                    |            |      |          | By Jere Mohr                                                       | Total Depth _20.5               |      |
| SAMP. LENGTH<br>SAMP. LENGTH<br>SAMP. NUMBER<br>SAMP. NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Discoloration-<br>Odor-<br>Sheen                                             | Moisture   | ASTM | ПТНОГОСУ | DESCRIPT                                                           | ION                             |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | Moist      | CL   |          | Reddish-brown sandy clay with cobbles.                             |                                 |      |
| v<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | Wet        | CL   |          | Dark brown to gray sandy clay.                                     |                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | Moist      | CL   |          | Reddish brown sandy clay with ~30% rocks                           | s/cobbles (Virginia Formation). |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | Wet        | SM   |          | Gray-brown silty sand.<br>Gray sandy clay with ~20% rocks/pebbles. |                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | Moist      | CL   |          | Boulder (no recovery).                                             |                                 |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |            |      |          | Very dense gray clay.                                              |                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |            | CL   |          | Fine grained black rock (Virginia Formatior                        | 1).                             |      |
| 3DT 5/12/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |            |      |          |                                                                    |                                 | _    |
| 20-<br>20-<br>20-<br>BARRE Fallon Control of the second seco |                                                                              |            |      |          | End of Boring - 20.5 feet                                          |                                 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |            |      |          | Remarks Temp well screen (5') set from                             | 7 5' to 12 5' bas               | -    |
| Ba<br>47<br>Mii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rr Engineering<br>00 W 77th Street<br>nneapolis, MN 554<br>lephone: 952-832- | 35         |      |          |                                                                    | 1.0 W 12.0 bys.                 |      |

| Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Inv | vestigatior |      |          | ractor WDC Exploration & Wells                                        | LOG OF Boring SB-<br>DRAFT SHEE            | • <b>05-04</b><br>T 1 OF 1 |
|--------------------------------------------------------------------------|-------------|------|----------|-----------------------------------------------------------------------|--------------------------------------------|----------------------------|
| Number 23/69-862                                                         |             |      |          | tarted 3/7/05 Ended 3/8/05                                            | Elevation                                  |                            |
| Location NorthMet Mine Site                                              |             |      |          | y Mark Hagley                                                         |                                            |                            |
|                                                                          | 1           |      |          |                                                                       | · · · · · · · · · · · · · · · · · · ·      | 1                          |
| DEPTH                                                                    | Moisture    | ASTM | ПТНОГОСУ | DESCRIF                                                               | PTION                                      | DEPT<br>FEE                |
|                                                                          | -           |      |          | Peat/wetland vegetation, frozen.                                      |                                            |                            |
|                                                                          |             | PT   |          |                                                                       |                                            | -                          |
|                                                                          |             |      |          | Tan - brown clayey silt, uniform, moist to                            | wet.                                       | +                          |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
| F                                                                        |             | ML   |          |                                                                       |                                            | - 5                        |
| 5                                                                        |             |      |          |                                                                       |                                            |                            |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
|                                                                          |             | CL   |          | Dark-gray silty clay, dense.                                          |                                            | _                          |
|                                                                          |             |      |          | Dark-gray, sandy silt with ~10% cobbles                               | (up to 2" diameter)                        | -                          |
|                                                                          |             | ML   |          |                                                                       |                                            |                            |
| 10                                                                       |             |      |          | Gray silty fine sand with 10-20% coarse                               | gravel and cobbles (<1/2" to 3+").         | 10                         |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
|                                                                          |             |      |          |                                                                       |                                            |                            |
|                                                                          |             | SM   |          |                                                                       |                                            |                            |
|                                                                          |             |      |          |                                                                       |                                            |                            |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
| 15                                                                       |             |      |          |                                                                       | O                                          | 15                         |
|                                                                          |             |      |          | Greenish-black crystalline rock - Duluth (                            | Complex gabbro.                            |                            |
|                                                                          |             |      |          |                                                                       |                                            | -                          |
| -                                                                        |             |      |          |                                                                       |                                            | -                          |
|                                                                          |             |      |          |                                                                       |                                            | _                          |
|                                                                          |             |      |          | · · · ·                                                               |                                            |                            |
|                                                                          |             |      |          |                                                                       |                                            |                            |
|                                                                          |             |      |          | End of Boring - 20 feet                                               |                                            |                            |
| Barr Engineering                                                         |             |      |          | Remarks Temp well screen (5') set from 14-20', bentonite chips from 2 | m ~15-20' bgs, allowed to collapse fro     | om                         |
| 4700 W 77th Street<br>Minneapolis, MN 554                                | 135         |      |          |                                                                       |                                            |                            |
| <b>BARR</b><br>Telephone: 952-832<br>Fax: 952-832-2601                   | 2-2600      |      |          |                                                                       |                                            |                            |
| Fax. 332-032-2001                                                        |             |      |          | Additional data may have been collected in the                        | e field which is not included on this log. |                            |

| Client PolyMet Mining Corporation<br>Project Name PolyMet Hydrogeologic Investigation  | Drill Contractor WDC Exploration & Wells Drill Method Rotasonic                              | LOG OF Boring SB-05-05<br>DRAFT SHEET 1 OF 1 |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|
| Number 23/69-862                                                                       | Drilling Started 3/13/05 Ended 3/13/05                                                       | Elevation                                    |
| Location NorthMet Mine Site                                                            | Logged By _Jere Mohr                                                                         | Total Depth 18.0                             |
| DEPTH HIDSOLOGICATION-<br>HIDSOLOGICATION-<br>GOOR-<br>FEET WYS<br>FEET WYS<br>Sheen W | MT RADIA DESCRIPT                                                                            | TION FEET                                    |
| Moist                                                                                  | CL Dark brown to black clayey topsoil.                                                       |                                              |
| 5                                                                                      |                                                                                              | - 5                                          |
| Dry                                                                                    | SM Medium brown silty sand.                                                                  |                                              |
| 10                                                                                     | Dark black fine-grained rock.                                                                | 10                                           |
| - Dry                                                                                  |                                                                                              |                                              |
|                                                                                        |                                                                                              | - 15                                         |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                                           | End of Boring - 18 feet                                                                      |                                              |
| 900.<br>                                                                               |                                                                                              | · .                                          |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                           | Remarks No temp well set - dry borehole<br>Additional data may have been collected in the fi |                                              |

| Client PolyMet Mining Corporation<br>Project Name PolyMet Hydrogeologic Investigation                           | Drill Contractor <u>WDC Exploration &amp; Wells</u><br>Drill Method <u>Rotasonic</u>                              | LOG OF Boring SB-05-06<br>DRAFT SHEET 1 OF 1 |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Number                                                                                                          | Drilling Started 3/14/05 Ended 3/14/05                                                                            | Elevation                                    |
| Location NorthMet Mine Site                                                                                     | Logged By _Jere Mohr                                                                                              | Total Depth 16.0                             |
| DEPTH NUM Discoloration-<br>DEPTH NUM Discoloration-<br>T Odor-<br>Sheen W<br>V W W<br>V Coloration-<br>Sheen W | MLSY DESCRIPTIO                                                                                                   | DEPTH<br>FEET                                |
| 5                                                                                                               | OL Very loose organic rich clay.<br>OL<br>OL<br>OL<br>Boulder - minimal recovery. Granite recovere                | ad from ~9' bgs.                             |
|                                                                                                                 | SM       Light brown silty coarse sand with pebbles.         Light brown silty clay with ~25% pebbles.         CL |                                              |
|                                                                                                                 | Black fine-grained rock.<br>End of Boring - 16 feet                                                               | - 15                                         |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                                                            |                                                                                                                   |                                              |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                                                    | Additional data may have been collected in the field                                                              |                                              |

| Client PolyMet Mining Corporation<br>Project Name PolyMet Hydrogeologic Investigation | Drill Contractor WDC Exploration & Wells UCG OF Boring SB-09<br>Drill Method Rotasonic SHEET 1                                                                                                           | <b>5-07</b><br>1 OF 1 |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                       | Drilling Started 3/12/05 Ended 3/12/05 Elevation                                                                                                                                                         |                       |
| Location NorthMet Mine Site                                                           | Logged By Mark Hagley Total Depth 17.0                                                                                                                                                                   |                       |
| DEPTH<br>H L SN A C A A A A A A A A A A A A A A A A A                                 | DESCRIPTION                                                                                                                                                                                              | DEPTH<br>FEET         |
|                                                                                       | Brown silty sand with 10-20% cobbles and boulders (up to 4" diameter). Frost to 1.5', moist below.         SM         Gray/brown silty sand with trace of clay and 10-20% cobbles (<1/2" to 4").         | -                     |
| 5                                                                                     | SM SM                                                                                                                                                                                                    | 5                     |
| 10                                                                                    | ML Dark gray sandy silt with cobbles.                                                                                                                                                                    | - 10                  |
|                                                                                       | sc                                                                                                                                                                                                       |                       |
|                                                                                       | Green/black coarse crystalline rock (Duluth Complex gabbro).                                                                                                                                             |                       |
|                                                                                       | -                                                                                                                                                                                                        | - 15                  |
|                                                                                       | End of Boring - 17 feet                                                                                                                                                                                  |                       |
| 2369862.GPU E                                                                         |                                                                                                                                                                                                          | _                     |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                          | Remarks Temp well screen (5') set from 8-13' bgs, allowed to collapse up to 6.<br>then bentonite chips above.<br>Additional data may have been collected in the field which is not included on this log. | .2',                  |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Contractor WDC Exploration & Wells                                                                                                                                                                                                                                                                                                                                                                                                      | LOG OF WELL MW-05-08<br>DDACT SHEET 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name PolyMet Hydrogeologic Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drill Method Rotasonic                                                                                                                                                                                                                                                                                                                                                                                                                        | DRAFT SHEET 1 OF 1                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number 23/69-862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drilling Started 3/16/05 Ended 3/16/05                                                                                                                                                                                                                                                                                                                                                                                                        | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Logged By Jere Mohr                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Depth _28.5                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DEPTH H15NB Discoloration-<br>DEPTH Discoloration-<br>J. dWP Discoloration-<br>Gdor-<br>Sheen W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MLSA DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                              | WELL OR PIEZOMETER DEPTH<br>CONSTRUCTION<br>DETAIL FEET                                                                                                                                                                                                                                                                                                                                                                                                     |
| Image: Second state of the second s | SM       Light brown medium to coarse silty sand.         SM       Dark brown, well-sorted medium sand.         SP       Dark brown, well-sorted fine to medium sa         SP       Dark brown, well-sorted fine to medium sa         SP       Grayish brown well-sorted fine to medium sand with silt.         SP       Gray silty clay with granite and mafic rock fragments and pebbles. (Till)         CL       End of Boring - 28.5 feet | PRO. CASING<br>Diameter: 6 inches<br>Type: Steel<br>Interval: 0-5 ft bgs<br>RISER CASING<br>Diameter: 2 inches<br>Type: PVC<br>Interval: 0-7.5 ft bgs<br>GROUT<br>Type: Cement<br>Interval: 0-5 ft bgs<br>SEAL<br>Type: Bentonite<br>Interval: 5-7 ft bgs<br>SANDPACK<br>Type: Red Flint<br>Interval: 7-17 ft bgs<br>SCREEN<br>Diameter: 2 inches<br>Type: PVC<br>Interval: 7.5-17.5 ft bgs<br>Natural formation allowed<br>to cave below 17 5' bgs.<br>-20 |
| Barr Engineering<br>4700 W 77th Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remarks Well installed in adjacent borin<br>in MW-05-08. Heaving sand - c                                                                                                                                                                                                                                                                                                                                                                     | g (boring not logged) due to loss of casing<br>difficult drilling and well installation.                                                                                                                                                                                                                                                                                                                                                                    |
| Minneapolis, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-832-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Additional data may have been collected in the fi                                                                                                                                                                                                                                                                                                                                                                                             | ield which is not included on this log.                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Client PolyMet Mining Corporation                                                                     |          | Drill          | Cont      | ractor WDC Exploration & Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOG OF WELL MW-05-09<br>SHEET 1 OF 1                                                                                                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------|----------|----------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Project Name PolyMet Hydrogeologic Investi                                                            | igation  | Drill          | Meth      | nod Rotasonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRAFT SHEET 1 OF 1                                                                                                                                                                                         |  |  |
| Number _ 23/69-862                                                                                    |          | Drill          | ng S      | tarted 3/10/05 Ended 3/11/05                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elevation                                                                                                                                                                                                  |  |  |
| Location NorthMet Mine Site                                                                           |          | Log            | ged E     | By _Mark Hagley                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Depth 13.0                                                                                                                                                                                           |  |  |
| DEPTH<br>DEPTH<br>THE WAN<br>AND AND<br>THE WAN<br>Discoloration-<br>Odor-<br>Odor-<br>Sheen<br>Sheen | Moisture | ASTM           | ГІТНОГОСУ | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WELL OR PIEZOMETER<br>CONSTRUCTION<br>DETAIL FEET                                                                                                                                                          |  |  |
|                                                                                                       | Dry      | SP<br>SM<br>SP |           | Topsoil.         Brown, fine-grained sand with 5-10% gravel, moist.         Gray-brown, fine-grained silty sand with up to 40% gravel, cobbles and boulders (angular), dry. Very difficult drilling (highly compacted).         Brown, medium to coarse sand, uniform, wet.         Brown silty sand with some clay and trace of gravel and cobbles, moist/wet.         Gray-black, fine grained crystalline rock, magnetic (Iron formation) assumed to be a boulder.         End of Boring - 13 feet | PRO. CASING<br>Diameter: 6 inches<br>Type: Steel<br>Interval: 0-4.5 ft bgs<br>RISER CASING<br>Diameter: 2 inches<br>Type: PVC<br>Interval: 0-7.5 ft bgs<br>GROUT<br>Type: Cement<br>Interval: 0-4.5 ft bgs |  |  |
| Barr Engineering<br>4700 W 77th Street<br>Minneapolis, MN 55435                                       |          |                |           | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                            |  |  |
| <b>BARR</b> Telephone: 952-832-26<br>Fax: 952-832-2601                                                |          |                |           | Additional data may have been collected in the field v                                                                                                                                                                                                                                                                                                                                                                                                                                                | which is not included on this log.                                                                                                                                                                         |  |  |

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 5/12/05

| Client PolyMet Mining Corporation<br>Project Name PolyMet Hydrogeologic Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |           |       | Drill Contractor WDC Exploration & Wells LOG OF Boring SE DRAFT |                                                                                                                                                                      |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|-------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Number 23/69-862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                               |           | Drill | ing S                                                           | started 3/9/05 Ended 3/10/05 Elevation                                                                                                                               |               |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |           |       | ged E                                                           | By Mark Hagley Total Depth _14.5                                                                                                                                     |               |
| A HIT | Discoloration-<br>Odor-<br>Sheen                                                                | Moisture  | ASTM  | ГІТНОГОСУ                                                       | DESCRIPTION                                                                                                                                                          | DEPTH<br>FEET |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |           | PT    |                                                                 | Peat/Organic material. Frozen.                                                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 | -         | SM    |                                                                 | Fine-grained silty sand, brown, with 5-10% gravel and cobbles (up to 1/2", angular).                                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |           |       |                                                                 | Dark gray, fine-grained crystalline rock. Argillite (Virginia Formation).                                                                                            | - 5           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |           |       |                                                                 |                                                                                                                                                                      | - 10          |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 | _         |       |                                                                 | End of Boring - 14.5 feet                                                                                                                                            | 15            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |           |       |                                                                 |                                                                                                                                                                      | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                 |           |       |                                                                 |                                                                                                                                                                      |               |
| 470<br>Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r Engineering<br>00 W 77th Street<br>ineapolis, MN 5543<br>ephone: 952-832-2<br>(: 952-832-2601 | 5<br>2600 |       |                                                                 | Remarks No temporary well set in boring; set in adjacent boring SB-05-10A<br>Additional data may have been collected in the field which is not included on this log. |               |

ENVIRO LOG 5 (5/27/04) 2369852.GPJ BARRLOG.GDT 5/12/05

| Client _PolyMet Mining Corporation<br>Project Name _PolyMet Hydrogeologic Investigation                                   | Drill Contractor WDC Exploration & Wells LOG OF WELL<br>Drill Method Rotasonic DRAFT                    | SHEET 1 OF 1     |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|
| Number23/69-862                                                                                                           | Drilling Started 3/10/05 Ended 3/10/05 Elevation                                                        |                  |
| Location NorthMet Mine Site                                                                                               | Logged By Mark Hagley Total Depth 6.0                                                                   |                  |
| DEPTH HE WIND Discoloration-<br>DEPTH DISCOloration-<br>T DISCOloration-<br>T DISCOloration-<br>DISCOloration-<br>Sheen W | WLSY DESCRIPTION                                                                                        | DEPTH<br>FEET    |
|                                                                                                                           | Peat/Organic material. Frozen.                                                                          |                  |
|                                                                                                                           | Fine-grained silty sand, brown, with 5-10% gravel and cobbles (up to angular).                          | 0 1/2",          |
|                                                                                                                           | Dark brown sandy clay with <5% angular gravel and cobbles (<1/2").                                      |                  |
| 5                                                                                                                         | CL                                                                                                      | 5                |
|                                                                                                                           | End of Boring - 6 feet                                                                                  | -                |
|                                                                                                                           |                                                                                                         |                  |
| 10                                                                                                                        |                                                                                                         | - 10             |
|                                                                                                                           |                                                                                                         |                  |
| 15-                                                                                                                       |                                                                                                         | 15               |
|                                                                                                                           |                                                                                                         | -                |
|                                                                                                                           |                                                                                                         | -                |
|                                                                                                                           |                                                                                                         | -                |
| BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR<br>BARR                                                                      | Remarks Temp well screen (4') set from 2-6' bgs, allowed to collaps<br>then bentonite chips to surface. | se to ~1.5' bgs, |
| <b>BARR</b> Telephone: 952-832-2600<br>Fax: 952-832-2601                                                                  | Additional data may have been collected in the field which is not included on this                      | log.             |

Attachment C

Phase I Geotechnical Investigation

#### Golder Associates Inc.

1346 West Arrowhead Road, #304 Duluth, MN USA 55811 Telephone (218) 724-0088 Fax (218) 724-0089



### **REPORT ON**

#### PHASE I GEOTECHNICAL FIELD INVESTIGATION POLYMET NORTHMET SITE NEAR BABBITT, MINNESOTA

Submitted to:

*PolyMet Mining Corporation P. O. Box 475, County Road No. 666 Hoyt Lakes, Minnesota 55750-0475* 

Submitted by:

Golder Associates Inc. 1346 West Arrowhead Road, #304 Duluth, Minnesota 55803

Distribution:

- 1 Copy PolyMet Mining Corporation Richard Patelke, Project Geologist
- 1 Copy PolyMet Mining Corporation Jim Scott, Assistant Project Manager
- 1 Copy Barr Engineering Nancy Dent
- 1 Copy Golder Associates Inc. Denver, Colorado
- 1 Copy Golder Associates Inc. Duluth, Minnesota

August 29, 2006

053-2209.002

#### Golder Associates Inc.

1346 West Arrowhead Road, #304 Duluth, MN USA 55811 Telephone (218) 724-0088 Fax (218) 724-0089



August 29, 2006

Our Ref.: 053-2209.002

PolyMet Mining Corporation P. O. Box 475, County Road No. 666 Hoyt Lakes, MN 55750-0475

Attention: Mr. Don Hunter, C. Eng., CP

### **RE:** PHASE I GEOTECHNICAL FIELD INVESTIGATION REPORT POLYMET NORTHMET SITE – NEAR BABBITT, MINNESOTA

Dear Mr. Hunter:

This data report summarizes the results of the Phase I geotechnical test trench program performed for the PolyMet NorthMet Project. We trust that this report provides you with the preliminary information that you need at this time.

This report presents the results of the field investigation, referencing the early waste stockpile footprints proposed by PolyMet. Additional recommendations for the waste stockpiles, including locating and sizing of the waste stockpile footprints, are currently being developed by our staff in the Denver office based on recent information received from your design team.

We look forward to continuing to work with you on this interesting project. Please contact Brent Bronson at (303) 980-0540 with any questions regarding this report.

Sincerely,

#### **GOLDER ASSOCIATES INC.**

amy Thoson

Amy C. Thorson, P.E. Senior Engineer

Brent R. Bronson, P.E. Principal and Project Manager

ACT/BRB:dls

### **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION          | 1 |
|-----|-----------------------|---|
| 2.0 | FIELD INVESTIGATION   | 2 |
| 3.0 | SUBSURFACE CONDITIONS | 4 |
| 4.0 | LABORATORY TESTING    | 6 |
| 5.0 | CLOSING               | 9 |

#### LIST OF TABLES

| Table 1 | Test Trench Locations                |
|---------|--------------------------------------|
| Table 2 | Summary of Bedrock Depths            |
| Table 3 | Summary of Index Test Results        |
| Table 4 | Summary of Permeability Test Results |
|         |                                      |

#### **LIST OF FIGURES**

Figure 1 Test Trench Location Map

### LIST OF APPENDICES

| Appendix A | Logs of Test Trenches |
|------------|-----------------------|
|------------|-----------------------|

Appendix B Sieve Analyses

One-Dimensional Consolidation Triaxial Shear Test Report

Moisture Density Relationships

- Permeability Test Data
- Appendix C Soil Classification/Legend ASTM Classification/Index

### **1.0 INTRODUCTION**

This report presents the results of the test trenching exploration and geotechnical laboratory testing program conducted by Golder Associates Inc. (Golder) for the proposed waste stockpiles at PolyMet Mining Corporation's (PolyMet) NorthMet Project near Babbitt, Minnesota. Our work was performed in general accordance with our written proposal dated May 31, 2005. The preliminary selection of test trench locations was determined during a site visit on March 1, 2006. This site visit was performed by Amy Thorson and Brent Bronson of Golder, and Richard Patelke and Jim Scott of PolyMet. The number and location of test trenches was limited to areas accessible from existing logging trails and excluding wetlands (i.e., highland areas only). The purpose of this investigation was to determine subsurface soil conditions for use in providing waste stockpile design recommendations.

Prior to scheduling exploration work, permission was requested from the United States Forest Service (USFS). On March 11, the USFS published a Legal Notice in the Mesabi Daily News regarding the intended services and allowed a 30-day public comment period. After this 30-day period, plus the required 5-day waiting period for any mailed responses, Golder commenced the test trenching operations on April 17, 2006. Presented in this report are field observations and geotechnical laboratory test results.

### 2.0 FIELD INVESTIGATION

On April 7, 2006, the test trench locations were sited on foot by Amy Thorson and Matt Krzewinski of Golder, accompanied in part by Steven Goertz of PolyMet. The purpose of this trip was primarily to verify access after snow melt and to compare the intended locations to wetland maps which were provided after the March 1, 2006 site visit. The 15 selected test trench locations were staked with lath and electronically recorded with GPS. Table 1 lists the northing and easting coordinates for the test trench locations per the NADA83, UTM datum. The test trench locations are illustrated on Figure 1.

| Boring              |                            |           |  |  |  |  |  |  |
|---------------------|----------------------------|-----------|--|--|--|--|--|--|
| Number              | Easting                    | Northing  |  |  |  |  |  |  |
| West Stockpile Area |                            |           |  |  |  |  |  |  |
| G06-TP1             | 574,936                    | 5,272,811 |  |  |  |  |  |  |
| G06-TP2             | 575,553                    | 5,272,900 |  |  |  |  |  |  |
| G06-TP3             | 575,474                    | 5,272,836 |  |  |  |  |  |  |
| G06-TP4             | 575,242                    | 5,273,379 |  |  |  |  |  |  |
| G06-TP5             | 575,100                    | 5,273,334 |  |  |  |  |  |  |
| G06-TP6             | 575,052                    | 5,273,491 |  |  |  |  |  |  |
|                     | <b>Pre-Production Area</b> |           |  |  |  |  |  |  |
| G06-TP7             | 578,727                    | 5,274,524 |  |  |  |  |  |  |
| G06-TP8             | 578,958                    | 5,274,393 |  |  |  |  |  |  |
| G06-TP9             | 579,069                    | 5,274,323 |  |  |  |  |  |  |
| G06-TP15            | 578,799                    | 5,274,143 |  |  |  |  |  |  |
|                     | East Stockpile Area        |           |  |  |  |  |  |  |
| G06-TP10            | 579,221                    | 5,274,415 |  |  |  |  |  |  |
| G06-TP11            | 579,641                    | 5,274,388 |  |  |  |  |  |  |
| G06-TP12            | 579,404                    | 5,274,494 |  |  |  |  |  |  |
| G06-TP13            | 579,369                    | 5,274,320 |  |  |  |  |  |  |
| G06-TP14            | 579,210                    | 5,274,271 |  |  |  |  |  |  |

# TABLE 1TEST TRENCH LOCATIONS

The subsurface exploration program was advanced on April 18 and 19, 2006, by Robert Radotich of Radotich Enterprises, LLC (Radotich) with the test trenches logged and sampled by Matt Krzewinski of Golder. The program consisted of Radotich moving a wide tracked backhoe up the existing logging roads and then around and/or in-between existing trees within existing clear cut areas to access the previously marked trench locations. The actual trenching process consisted of the backhoe removing the soil from an area with a maximum dimension of 5 feet wide by 15 feet long and 20 feet deep. The soil was stockpiled beside the trench in separate piles according to depth it was

encountered, where it was visually classified and sampled by the Golder technician. Upon completion, the soils were carefully replaced in the trench in the same layers as it was removed.

#### **3.0 SUBSURFACE CONDITIONS**

The subsurface conditions encountered at the site are depicted in detail on the Logs of Test Trenches included in Appendix A of this report. The logs also indicate the test trench number, date, and name of the technician that logged the test trenches. The soils were described in general accordance with Golder's protocols and field-classified according to ASTM D2488. The boundaries between different soil types shown on the logs are approximate because the actual transition between soil layers may be gradual. Samples of representative soils were obtained from the test trenches. See Appendix C for further information on soil classification procedures utilized by Golder.

The test trenches encountered up to 6 inches of topsoil over primarily silty sand with boulders and cobbles. Test trenches G06-TP5 and G06-TP6 at the north end of the West Stockpile encountered layers of sandy lean clay and sandy silt. Test trenches G06-TP8 through G06-TP10 near the intersection of the Preproduction Stockpile and the East Stockpile, encoungered layers of sand with silt and course grained sand. The trenches were extended to either auger refusal on bedrock, or 20 feet, which was the limit of the backhoe reach. Table 2 summarizes the depth of bedrock at each test trench location.

| Boring Number | Bedrock Depth<br>Below Existing Grade<br>(ft) |
|---------------|-----------------------------------------------|
| G06-TP1       | Greater than 20                               |
| G06-TP2       | 13.0                                          |
| G06-TP3       | 15.0                                          |
| G06-TP4       | 13.5                                          |
| G06-TP5       | 14.0                                          |
| G06-TP6       | Greater than 20                               |
| G06-TP7       | 3.5                                           |
| G06-TP8       | 4.5                                           |
| G06-TP9       | 8.5                                           |
| G06-TP10      | 8.0                                           |
| G06-TP11      | 6.0                                           |
| G06-TP12      | 5.0                                           |
| G06-TP13      | 9.0                                           |
| G06-TP14      | 3.5                                           |
| G06-TP15      | 11.5                                          |

# TABLE 2SUMMARY OF BEDROCK DEPTHS

Groundwater was encountered in approximately one-half of the test trenches during our field investigation. Groundwater was encountered at depths of 13 to 15 feet below the existing ground surface in test trenches G06-TP2, G06-TP3, and G06-TP5 located in the proposed West Waste Stockpile footprint. Groundwater was encountered at depths of 4 to 5 feet below the existing ground surface in test trenches G06-TP8, G06-TP9, G06-TP10, and G06-TP15 in and near the proposed Pre-Production Waste Stockpile footprint. Due to the existing slow draining site soils, it is likely that groundwater did not have time to stabilize within the test trenches prior to backfilling the trenches. Groundwater levels should be expected to fluctuate both seasonally and with changes in precipitation. Groundwater is often found at the soil/bedrock interface.

#### 4.0 LABORATORY TESTING

Laboratory tests were performed to measure index properties of the samples recovered from the test trenches to confirm field classifications and for use in developing correlations with engineering properties of soils encountered. Sieve analysis and moisture content tests were conducted by Braun Intertec Corporation (Braun Intertec) of Hibbing, Minnesota on each soil type obtained, in accordance with American Society for Testing and Materials (ASTM) Test Methods ASTM C-117, C-136, and D2216. Atterberg Limits were determined by Braun Intertec on three of the samples in accordance with ASTM Test Method D4318. Based on test results, soils were characterized according to the Unified Soil Classification System (USCS). The complete sieve analysis and Atterberg Limit test results are included in Appendix B. Table 3 summarizes the percent passing the #200 sieve, the moisture content, plasticity index, and visual classification of each sample.

| Test Trench<br>Number | Sample Depth<br>below  | Passing #<br>200 (%) | Moisture<br>Content | Plasticity<br>Index | USCS<br>Classification |
|-----------------------|------------------------|----------------------|---------------------|---------------------|------------------------|
|                       | Existing<br>Grade (ft) |                      | (%)                 |                     |                        |
| G06-TP1               | 3 – 12                 | 28.6                 | 7.7                 | -                   | SM                     |
| G06-TP1               | 12 - 20                | 37.5                 | 8.5                 | -                   | SM                     |
| G06-TP2               | 9 – 13                 | 35.6                 | 16.5                | -                   | SM                     |
| G06-TP4               | 0.5 - 4.5              | 31.3                 | 7.2                 | 0                   | SM                     |
| G06-TP4               | 4.5 - 13.5             | 39.3                 | 7.2                 | -                   | SM                     |
| G06-TP5               | 0.5 – 4                | 51.4                 | 10.1                | 9                   | CL                     |
| G06-TP5               | 6 – 14                 | 47.0                 | 12.2                | -                   | SM                     |
| G06-TP6               | 15 - 20                | 51.7                 | 13.0                | -                   | ML                     |
| G06-TP7               | 0.5 - 3.5              | 26.5                 | 12.4                | -                   | SM                     |
| G06-TP8               | 2-4.5                  | 1.8                  | 7.3                 | -                   | SP                     |
| G06-TP11              | 3 - 6                  | 23.9                 | 21.5                | -                   | SM                     |
| G06-TP13              | 4 - 9                  | 26.0                 | 8.0                 | 2                   | SM                     |
| G06-TP14              | 0.5 - 3.5              | 46.8                 | 26.9                | -                   | SM                     |
| G06-TP15              | 4 - 11.5               | 38.8                 | 18.7                | -                   | SM                     |

TABLE 3SUMMARY OF INDEX TEST RESULTS

Additional testing was performed on the fine-grained sample collected from 0.5 to 4 feet below grade in Test Trench G06-TP5. This soil sample was shipped to Golder's soils laboratory in Lakewood, Colorado for additional testing which included a one-dimensional consolidation test (ASTM D2435) and a consolidated-undrained (CU) triaxial shear test (ASTM D4767). These test results are summarized and presented graphically in Appendix B. The CU triaxial shear test was conducted on a sample extruded from an undisturbed Shelby tube sample. The sample was placed in a triaxial compression chamber, subjected to a confining pressure, and then loaded axially to failure. In the CU test, the test specimen is permitted to drain and consolidate under the confining pressure until the excess pore pressure is equal to zero. The deviator stress is then slowly applied to failure, but the specimen's drainage is not permitted. The in-situ effective stress strength parameters yielded an effective cohesion of zero with an effective friction angle of 34.6 degrees.

The consolidation test was conducted on an undisturbed sample of native clayey soil. The test indicated a coefficient of consolidation ( $C_v$ ) of 5.3 x 10<sup>-1</sup> to 9.6 x 10<sup>-1</sup> square foot per day (ft<sup>2</sup>/day) and a coefficient of compression ( $C_c$ ) of 0.05 to 0.13 under the loading range of 1 to 16 kips per square foot (ksf).

Additional testing was also performed on three select samples representing three different foundation soil types (per visual classification). Standard Proctor tests and permeability tests were performed by Braun Intertec on the 0.5- to 4.5-foot sample from test trench G06-TP4, the 0.5- to 3.5-foot sample from test trench G06-TP7, and the 4- to 9-foot sample from test trench G06-TP13. These test results are presented in Appendix B.

The Standard Proctor tests were performed in accordance with ASTM Test Method D698, Method A. The maximum standard Proctor dry density of the site soils ranges from 118.3 to 125.7 pounds per cubic foot (pcf) with an optimum moisture content ranging from 12.4 to 14.2 percent.

Falling head permeability tests were performed in accordance with ASTM Test Method D5084. Permeability test samples were compacted to 95 percent of the maximum standard Proctor dry density at the optimum moisture content. The full test results are summarized and presented graphically in Appendix B. Table 4 summarizes the permeability values for each sample, along with its visual classification. Based on the results the Phase I field geotechnical field and permeability testing program, it is possible that the site soils may be excavated and placed as low permeability soil liner, as the permeability ranges from  $1.1 \times 10^{-7}$  to  $2.0 \times 10^{-7}$  cm/sec. The availability and characteristics of the site soils for use as a soil liner should be further evaluated as part of the Phase II field program conducted to support final design.

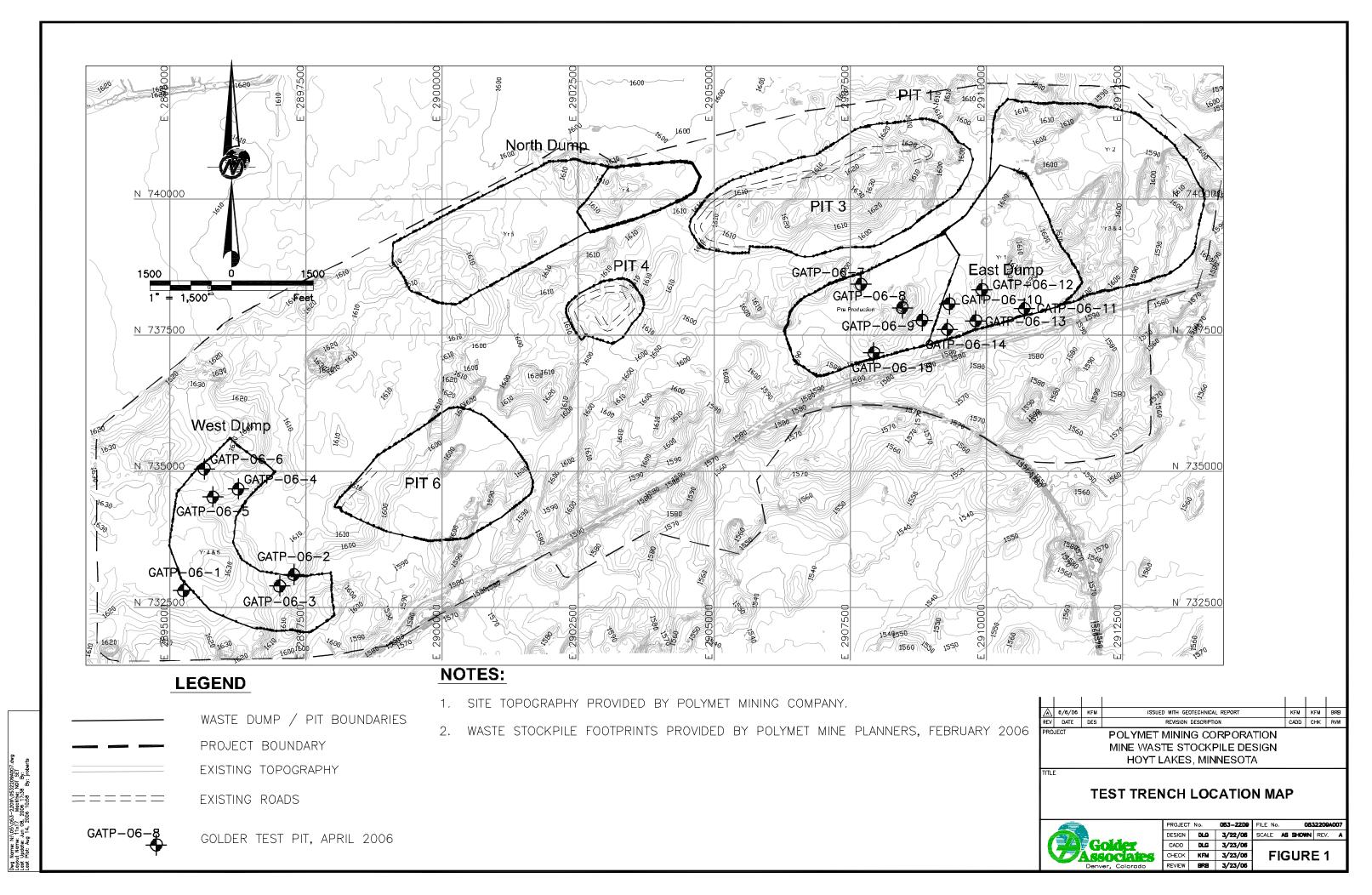
| Test Trench<br>Number | Sample Depth<br>(Below Existing<br>Grade) | Coefficient of Permeability<br>at 95% Compaction | USCS Visual<br>Classification |
|-----------------------|-------------------------------------------|--------------------------------------------------|-------------------------------|
| G06-TP4               | 0.5 – 4.5 ft                              | $1.35 \text{ x } 10^{-7} \text{ cm/sec}$         | SM                            |
| G06-TP7               | 0.5 – 3.5 ft                              | $2.04 \text{ x } 10^{-7} \text{ cm/sec}$         | SM                            |
| G06-TP13              | 4 – 9 ft                                  | $1.06 \text{ x } 10^{-7} \text{ cm/sec}$         | SM                            |

TABLE 4SUMMARY OF PERMEABILITY TEST RESULTS

## 5.0 CLOSING

We appreciate the opportunity to provide engineering design support to PolyMet Mining Corporation for the NorthMet Project. If you have questions or require additional information, please contact Brent Bronson at (303) 980-0540.

Sincerely,


#### **GOLDER ASSOCIATES, INC.**

amy Thoson

Amy C. Thorson, P.E. Senior Engineer MN License No. 42917

Brent R. Bronson, P.E. Principal and Project Manager

**FIGURES** 



# APPENDIX A

# LOGS OF TEST TRENCHES

|                |                 | Cal    | don           |        |              |         |             |               | LOG OF TEST TRENCH                                                           |                   | Sheet Number 1 of 1 |
|----------------|-----------------|--------|---------------|--------|--------------|---------|-------------|---------------|------------------------------------------------------------------------------|-------------------|---------------------|
|                | Ð               | GOI    | der<br>ciates | 6      |              |         |             |               |                                                                              | Test Pit Number   | G06-TP1             |
|                |                 |        |               |        |              | I       | Pro         | ject          | POLYMET                                                                      | Total Depth       |                     |
|                |                 |        |               |        |              | I       | Pro         | ject          | Number053-2209                                                               | Date Begin        | 4/18/06             |
| Ctot           | on / 1 o        | action | W.            |        | 507001111    | 574     | 0.20        | г             | Offect from Conter Line                                                      | Date End          | 4/18/06             |
|                |                 |        | 690 E         |        | , 52728111N, | 5/4     | 930         | E             | Offset from Center Line El                                                   | evalion Reference |                     |
|                |                 |        | Krzewin       |        |              |         |             | Fi            | eld Crew R. Radotich                                                         |                   |                     |
|                |                 |        |               |        | le Data      |         |             |               | Ground Water Data                                                            |                   |                     |
|                | <del>a</del>    |        |               |        |              |         |             |               | Depth in (ft.) Time                                                          |                   |                     |
|                | Depth in (Feet) |        |               |        |              | Sampled | svel        | f             | Date                                                                         |                   |                     |
| Method         | thin            |        | Method        | Number |              | San     | Water Level | Soil Graph    | Symbol                                                                       |                   |                     |
| Met            | Dep             |        | Met           | Nun    |              | Loc.    | Wat         | Soil          |                                                                              |                   |                     |
|                | 0 -             |        |               |        |              |         |             | <u></u> .     | SUBSURFACE MATER                                                             | RIAL              | 0                   |
|                | -               |        |               |        |              |         |             | <br>          | 0.0 - 0.5<br>Topsoil                                                         |                   | Г                   |
| ╞              | 1 -             |        | ~             |        |              |         |             | <b>960</b>    | 0.5 - 3.0                                                                    |                   | 1                   |
|                |                 |        | GRAB          | -      |              |         |             | 10            | Moist, brown, silty SAND with little to some gravel, cobbles (SM)            |                   | 2                   |
| Γ              | 2 -             |        | Б             |        |              |         |             | /             |                                                                              |                   | 2                   |
| L              | 3 -             |        |               |        |              |         |             | .//           | A.A. 10 A                                                                    |                   | 3                   |
|                | -               |        |               |        |              |         |             | M             | 3.0 - 12.0<br>Moist, light brown, silty SAND with gravel, few cobbles and bo | ulders            | 5                   |
| ╞              | 4 -             |        |               |        |              |         |             |               | (SM)                                                                         |                   | 4                   |
|                | _               |        |               |        |              |         |             | /.            |                                                                              |                   |                     |
| F              | 5 -             |        |               |        |              |         |             | °.,           |                                                                              |                   | 5                   |
| L              | 6 -             |        |               |        |              |         |             |               |                                                                              |                   | 6                   |
|                |                 |        |               |        |              |         |             |               |                                                                              |                   | 0                   |
| F              | 7 -             |        | В             |        |              |         |             | 6             |                                                                              |                   | 7                   |
|                | -               |        | GRAB          | 5      |              |         |             | / 💈           |                                                                              |                   |                     |
| F              | 8 -             |        | 9             |        |              |         |             | فكمر          |                                                                              |                   | 8                   |
|                |                 |        |               |        |              |         |             | ø             |                                                                              |                   | 0                   |
| 6              | 9 -             |        |               |        |              |         |             |               |                                                                              |                   | 9                   |
| т<br>Excavaton | 10 -            |        |               |        |              |         |             | , di          |                                                                              |                   | 10                  |
| Exce           |                 |        |               |        |              |         |             | /<br>         |                                                                              |                   |                     |
| F              | 11 -            |        |               |        |              |         |             |               |                                                                              |                   | 11                  |
|                |                 |        |               |        |              |         |             | 10            |                                                                              |                   |                     |
| F              | 12 -            |        |               |        |              |         |             | Æ             | 12.0 - 20.0                                                                  |                   | 12                  |
| L              | 13 -            |        |               |        |              |         |             | ß             | Moist to wet, gray, silty SAND, little to some gravel, cobbles an (SM)       | d boulders        | 13                  |
|                |                 |        |               |        |              |         |             | / 82          |                                                                              |                   | 15                  |
| ╞              | 14 -            |        |               |        |              |         |             | 0             |                                                                              |                   | 14                  |
|                | 4               |        |               |        |              |         |             | / 3           |                                                                              |                   |                     |
| F              | 15 -            |        |               |        |              |         |             |               |                                                                              |                   | 15                  |
| L              | 16 -            |        | GRAB          | 3      |              |         |             | /0            |                                                                              |                   | 16                  |
|                | 10              |        | GR            |        |              |         |             | /             |                                                                              |                   | 10                  |
| F              | 17 -            |        |               |        |              |         |             | j)<br>N       |                                                                              |                   | 17                  |
|                | -               |        |               |        |              |         |             | /<br>         |                                                                              |                   |                     |
| F              | 18 -            |        |               |        |              |         |             |               |                                                                              |                   | 18                  |
|                | 10              |        |               |        |              |         |             | 1             |                                                                              |                   | 10                  |
| Γ              | 19 -            |        |               |        |              |         |             | /             |                                                                              |                   | 19                  |
| L              | 20 -            |        |               |        |              | Щ       |             | 21            |                                                                              |                   | 20                  |
| -<br>-         | -               |        |               |        |              |         |             | BOH<br>20 ft. |                                                                              |                   |                     |
| F              | 21 -            |        |               |        |              |         |             |               | Notes:                                                                       |                   | 21                  |
|                |                 |        |               |        |              |         |             |               | No bedrock encountered.                                                      |                   |                     |
| F              | 22 -            |        |               |        |              |         |             |               |                                                                              |                   | 22                  |
| L              | 23 -            |        |               |        |              |         |             |               |                                                                              |                   | 23                  |
|                | 25              |        |               |        |              |         |             |               |                                                                              |                   | 25                  |
| ╞              | 24 -            |        |               |        |              |         |             |               |                                                                              |                   | 24                  |
|                |                 |        |               |        |              |         |             |               |                                                                              |                   |                     |
| -              | 25 -            |        |               |        |              |         |             |               |                                                                              |                   | 25                  |
|                |                 |        |               |        |              |         |             |               | CHECKED:                                                                     |                   | DATE:               |

| Golder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Pit Number        | G06-TP2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|
| Project POLYMET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Depth            |         |
| Project Number 053-2209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date Begin<br>Date End | 4/18/06 |
| Station / Location West Area, 5272900N, 575553E Offset from Center Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |         |
| Equipment Type     690 ELC     Weather                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |
| Golder Staff M. Krzewinski Field Crew R. Radotich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |         |
| Sample Data Ground Water Data Depth in (ft.) 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
| Vertical     Vert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |         |
| Method<br>Method<br>Mater Le Lo<br>Soui Gran San<br>Method<br>Method<br>Depth in<br>Depth |                        |         |
| SUBSURFACE MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATERIAL                | 0 -     |
| $\sum \frac{\pi}{2} = 0.0 - 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | r       |
| 1 -   2   -       2   -       2   -       2   -       2   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 1 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bbles                  | Г       |
| - 2 - (SM)<br>1.5 - 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 2 -     |
| Moist, brown, silty SAND, little to some gravel, little silt, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | obbles and boulders    | 2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 3 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 4 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | r       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 5 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 6 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 7 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 8 -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 0       |
| 9 - 9 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 9 -     |
| Wet, brown, silty SAND, some silt, with gravel, cobbles and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d boulders             |         |
| - 10 - (SM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | 10 -    |
| a draw a                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 11      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 11 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 12 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
| 13 ▼ <sup>2</sup> / <sub>6</sub><br>BOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | 13 -    |
| 13 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |
| - 14 - Notes:<br>Bedrock encountered at 13.0 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 14 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 15 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 13 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 16 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 17 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 18 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 19 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 19 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 20 -    |
| 98-     18 -       19 -     19 -       20 -     10 -       21 -     10 -       22 -     10 -       23 -     10 -       24 -     10 -       25 -     10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | _0      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 21 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 22 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 22      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 23 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 24 -    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 25 ·    |
| CHECK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KED: D.                | ATE:    |

| Golder     |                 |        |         |         |             |              |             |               | LOG OF TEST TRENCH Sheet Number 1 of                                                                             | f 1       |
|------------|-----------------|--------|---------|---------|-------------|--------------|-------------|---------------|------------------------------------------------------------------------------------------------------------------|-----------|
|            |                 | 1990   | CIAICS  | •       |             |              | Dee         |               | Test Pit Number <u>G06-TP3</u>                                                                                   | _         |
|            |                 |        |         |         |             |              |             |               | POLYMET         Total Depth         15 feet           Number         053-2209         Date Begin         4/18/06 | -         |
| Project NL |                 |        |         |         |             |              | FIC         | jeci          | Date Begin         4/18/06           Date End         4/18/06                                                    | -         |
| Stati      | ion / Loo       | cation | We      | st Area | . 5272836N. | 575          | 5474        | Е             | Offset from Center Line Elevation Reference                                                                      | _         |
|            |                 |        | 690 E   |         | ,           |              |             |               |                                                                                                                  |           |
|            |                 |        | Krzewin | ıski    |             |              |             | Fi            | eld Crew R. Radotich                                                                                             |           |
|            |                 |        |         | Samp    | le Data     | -            |             |               | Ground Water Data           Depth in (ft.)         13                                                            |           |
|            | et)             |        |         |         |             |              |             |               | Time 08:55                                                                                                       |           |
|            | (Fe             |        |         |         |             | nple         | evel        | Чd            | Date 4/18/06                                                                                                     |           |
| Method     | Depth in (Feet) |        | Method  | Number  |             | Loc. Sampled | Water Level | Soil Graph    | Symbol <b>Y</b>                                                                                                  |           |
| Met        | Dep             |        | Met     | Nur     |             | Loc          | Wai         | Soil          |                                                                                                                  |           |
|            | 0 -             |        |         |         |             |              |             | <u></u>       | SUBSURFACE MATERIAL                                                                                              | 0 -       |
|            | -               |        |         |         |             |              |             |               | 0.0 - 0.5<br>Topsoil                                                                                             | -         |
| -          | 1 -             |        |         |         |             |              |             | 9888          | 0.5 - 3.5                                                                                                        | 1 -       |
|            |                 |        | ÅB      |         |             |              |             | 10            | Moist, reddish-brown, silty SAND with gravel, few cobbles (SM)                                                   | -         |
|            | 2 -             |        | GRAB    | -       |             |              |             | /             |                                                                                                                  | 2 -       |
|            | 3 -             |        | Ŭ       |         |             |              |             | °.<br>/       |                                                                                                                  | 3 -       |
|            |                 |        |         |         |             |              |             | [ <u>.</u>    | 25,150                                                                                                           | -         |
| -          | 4 -             |        |         |         |             |              |             | ×             | 3.5 - 15.0<br>Moist to wet, grayish brown, silty SAND, some silt, with gravel, cobbles and boulders              | 4 -       |
|            |                 |        |         |         |             |              |             |               | (SM)                                                                                                             | -         |
| F          | 5 -             |        |         |         |             |              |             | //            |                                                                                                                  | 5 -       |
|            |                 |        |         |         |             |              |             | ;<br>; , ,    |                                                                                                                  | -         |
|            | 6 -             |        |         |         |             |              |             | K             |                                                                                                                  | 6 -       |
| L ion      | 7 -             |        |         |         |             |              |             |               |                                                                                                                  | 7 -       |
| Ivat       | <u> </u>        |        |         |         |             |              |             | 6             |                                                                                                                  | ,<br>-    |
| Excavation | 8 -             |        |         |         |             |              |             | 1             |                                                                                                                  | 8 -       |
|            | -               |        | ~       |         |             |              |             | j.p?          |                                                                                                                  | -         |
| F          | 9 -             |        | GRAB    | 5       |             |              |             | ø             |                                                                                                                  | 9 -       |
|            | 10 -            |        | 5       |         |             |              |             |               |                                                                                                                  | 10        |
| ΓΙ         |                 |        |         |         |             |              |             | de la         |                                                                                                                  | 10 -      |
| -          | 11 -            |        |         |         |             |              |             |               |                                                                                                                  | 11 -      |
|            | -               |        |         |         |             |              |             | 7             |                                                                                                                  | -         |
| -          | 12 -            |        |         |         |             |              |             | 18            |                                                                                                                  | 12 -      |
|            | -               |        |         |         |             |              | -           |               |                                                                                                                  | -         |
|            | 13 -            |        |         |         |             |              | ₽           | / 6           |                                                                                                                  | 13 -      |
|            | 14              |        |         |         |             |              |             | /             |                                                                                                                  | -<br>14 - |
|            | 17              |        |         |         |             |              |             |               |                                                                                                                  | - 14      |
|            | 15 -            |        |         |         |             |              |             | <u>/o.</u> :  |                                                                                                                  | 15 -      |
|            |                 |        |         |         |             |              |             | BOH<br>15 ft. |                                                                                                                  | -         |
| +          | 16 -            |        |         |         |             |              |             |               | Notes:<br>Bedrock encountered at 15.0 feet.                                                                      | 16 -      |
|            | 17              |        |         |         |             |              |             |               |                                                                                                                  | 17        |
|            | 17 -            |        |         |         |             |              |             |               |                                                                                                                  | 17 -      |
| 3L         | 18 -            |        |         |         |             |              |             |               |                                                                                                                  | - 18      |
|            | 10              |        |         |         |             |              |             |               |                                                                                                                  |           |
| ; -        | 19 -            |        |         |         |             |              |             |               |                                                                                                                  | 19 -      |
|            |                 |        |         |         |             |              |             |               |                                                                                                                  | -         |
| ĭ⊢         | 20 -            |        |         |         |             |              |             |               |                                                                                                                  | 20 -      |
|            |                 |        |         |         |             |              |             |               |                                                                                                                  | -         |
| 3F         | 21 -            |        |         |         |             |              |             |               |                                                                                                                  | 21 -      |
| įL         | 22 -            |        |         |         |             |              |             |               |                                                                                                                  | -<br>22 - |
|            |                 |        |         |         |             |              |             |               |                                                                                                                  | <br>-     |
| i-         | 23 -            |        |         |         |             |              |             |               |                                                                                                                  | 23 -      |
|            |                 |        |         |         |             |              |             |               |                                                                                                                  | -         |
|            | 24 -            |        |         |         |             |              |             |               |                                                                                                                  | 24 -      |
|            | 25              |        |         |         |             |              |             |               |                                                                                                                  | -<br>25   |
|            | 25 -            |        |         |         |             |              |             |               |                                                                                                                  | 25 -      |
|            |                 |        |         |         |             |              |             |               | CHECKED: DATE:                                                                                                   |           |

|                  | Â               | Gol  | der<br>ciates           |        |         |         |             |                | LOG OF TEST TRENCH                                                                          | St         | neet Number 1 of 1                 |
|------------------|-----------------|------|-------------------------|--------|---------|---------|-------------|----------------|---------------------------------------------------------------------------------------------|------------|------------------------------------|
|                  |                 | ASSO | ciates                  | 6      |         |         | _           |                | Test Pit I                                                                                  |            | <u>G06-TP4</u>                     |
|                  |                 |      |                         |        |         |         | Pro         | oject          | POLYMET         Total De           Number         053-2209         Date Beg                 | pth<br>gin | <u>13.5 feet</u><br><u>4/17/06</u> |
|                  |                 |      |                         |        |         |         |             |                | Date End                                                                                    | d          | 4/17/06                            |
|                  |                 |      |                         |        |         |         |             |                | Offset from Center Line Elevation Re                                                        | eference   |                                    |
|                  |                 |      | <u>690 E</u><br>Krzewin |        |         |         |             |                | Weather                                                                                     |            |                                    |
|                  |                 |      |                         |        | le Data | _       | _           |                | Ground Water Data Depth in (ft.)                                                            |            |                                    |
|                  | et)             |      |                         |        |         | 5       |             |                | Time                                                                                        |            |                                    |
| 5                | in (Fe          |      | σ                       | 5      |         | Sampled | Level       | raph           | Date                                                                                        |            |                                    |
| Method           | Depth in (Feet) |      | Method                  | Number |         | Loc. S  | Water Level | Soil Graph     | Symbol                                                                                      |            |                                    |
|                  | 0 -             |      | 2                       | ~      |         |         | _           |                | SUBSURFACE MATERIAL                                                                         |            | 0 -                                |
|                  | -               |      |                         |        |         |         |             | <u>×1//</u> .  | Topsoil                                                                                     |            | <b>r</b>                           |
| F                | 1 -             |      |                         |        |         |         |             | 9822           | 0.5 - 4.5<br>Moist to wet, brown, silty SAND with gravel, little silt, cobbles              |            | 1 -                                |
| +                | 2 -             |      | GRAB                    |        |         |         |             | 0              | (SM)                                                                                        |            | 2 -                                |
|                  |                 |      | GR                      | -      |         |         |             | 0              |                                                                                             |            | -                                  |
| Γ                | 3 -             |      |                         |        |         |         |             | /. /<br>./a    |                                                                                             |            | 3 -                                |
| F                | 4 -             |      |                         |        |         |         |             | / <b>***</b> * |                                                                                             |            | 4 -                                |
| F                | 5 -             |      |                         |        |         |         |             | Ø              | 4.5 - 13.5<br>Moist, grayish-brown, silty SAND, some gravel, few cobbles, some silt<br>(SM) |            | 5 -                                |
| tion             | 6 -             |      |                         |        |         |         |             | / 0<br>/       |                                                                                             |            | 6 -                                |
| Excavation       | 7 -             |      |                         |        |         |         |             | 0<br>/ /       |                                                                                             |            | 7 -                                |
| - <sup>ш</sup>   | 8 -             |      |                         |        |         |         |             |                |                                                                                             |            | 8 -                                |
| F                | 9 -             |      | GRAB                    | 5      |         |         |             | / (            |                                                                                             |            | 9 -                                |
| F                | 10 -            |      | U                       |        |         |         |             | p<br>ø         |                                                                                             |            | 10 -                               |
| -                | 11 -            |      |                         |        |         |         |             | Ø              |                                                                                             |            | 11 -                               |
| $\left  \right $ | 12 -            |      |                         |        |         |         |             | 9              |                                                                                             |            | 12 -                               |
| F                | 13 -            |      |                         |        |         |         |             | 10             |                                                                                             |            | 13 -                               |
| -                | 14 -            |      |                         |        |         |         |             | BOH<br>3.5 fi  |                                                                                             |            | 14 -                               |
| F                | 15 -            |      |                         |        |         |         |             |                | Notes:<br>Bedrock encountered at 13.5 feet.                                                 |            | 15 -                               |
| ╞                | 16 -            |      |                         |        |         |         |             |                |                                                                                             |            | 16 -                               |
| ╞                | 17 -            |      |                         |        |         |         |             |                |                                                                                             |            | 17 -                               |
| 00/67/           | 18 -            |      |                         |        |         |         |             |                |                                                                                             |            | 18 -                               |
|                  | 19 -            |      |                         |        |         |         |             |                |                                                                                             |            | 19 -                               |
|                  | 20 -            |      |                         |        |         |         |             |                |                                                                                             |            | 20 -                               |
|                  | 21 -            |      |                         |        |         |         |             |                |                                                                                             |            | 21 -                               |
|                  | 22 -            |      |                         |        |         |         |             |                |                                                                                             |            | 22 -                               |
|                  | 23 -            |      |                         |        |         |         |             |                |                                                                                             |            | 23 -                               |
|                  | 24 -            |      |                         |        |         |         |             |                |                                                                                             |            | 24 -                               |
|                  | 25 -            |      |                         |        |         |         |             |                |                                                                                             |            | 25 -                               |
|                  |                 |      |                         |        | 1       | -       |             |                | CHECKED:                                                                                    | D          | ATE:                               |

|                 | Â               | Gol     | der<br>ciates |         |             |              |             |              | LOG OF TEST TRENCH Sheet Nun                                                                                 | nber 1 of 1 |
|-----------------|-----------------|---------|---------------|---------|-------------|--------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------|-------------|
| `               |                 | Asso    | ciates        | 6       |             |              |             |              | Test Pit NumberG00                                                                                           |             |
|                 |                 |         |               |         |             |              |             |              | POLYMET Total Depth 14 fee                                                                                   |             |
|                 |                 |         |               |         |             | I            | Pro         | ject         | Number         053-2209         Date Begin         4/17/0           Date End         4/17/06         4/17/06 | 6           |
| Stat            | ion / Lo        | ocation | n We          | st Area | . 5273334N. | 575          | 100         | E            | Offset from Center Line Elevation Reference                                                                  |             |
|                 |                 |         | 690 E         |         | ,,          |              |             |              | Weather                                                                                                      |             |
|                 |                 |         | Krzewin       | ski     |             |              |             | Fi           | eld Crew R. Radotich<br>Ground Water Data                                                                    |             |
|                 |                 |         |               | Samp    | le Data     |              |             |              | Depth in (ft.)                                                                                               |             |
|                 | set)            |         |               |         |             | g            |             |              | Time                                                                                                         |             |
|                 | Depth in (Feet) |         | -             | 5       |             | Loc. Sampled | Water Level | aph          | Date                                                                                                         |             |
| Method          | epth            |         | Method        | Number  |             | C. S         | ater        | Soil Graph   | Symbol                                                                                                       |             |
| ž               |                 |         | ž             | ž       |             | 2            | 8           | Sc           | SUBSURFACE MATERIAL                                                                                          |             |
| -               | 0 -             |         |               |         |             |              |             | <u>x1 //</u> | 0.0 - 0.5                                                                                                    | 0 -         |
| L               | 1 -             |         |               |         |             |              |             |              | <u>Topsoil</u><br>0.5 - 4.0                                                                                  |             |
|                 | -               |         |               |         |             |              |             |              | Moist, light brown, sandy lean CLAY, little gravel,                                                          | -           |
| -               | 2 -             |         | GRAB          | -       |             |              |             |              | (CL)                                                                                                         | 2 -         |
|                 | -               |         | B B           |         |             |              |             |              |                                                                                                              | -           |
| F               | 3 -             |         |               |         |             |              |             |              |                                                                                                              | 3 -         |
| Ļ               | 4 -             |         |               |         |             | Ц            |             | 4            |                                                                                                              | 4 -         |
|                 | -               |         | в             |         |             |              |             | ø            | 4.0 - 6.0<br>Moist, reddish-brown, silty SAND, some gravel, few cobbles, little to some silt                 | -           |
| $\vdash$        | 5 -             |         | GRAB          | 7       |             |              |             | /            | (SM)                                                                                                         | 5 -         |
|                 | -               |         |               |         |             |              |             | /            |                                                                                                              | -           |
| 6               | 6 -             |         |               |         |             |              |             | 9            | 6.0 - 14.0                                                                                                   | 6 -         |
| vati            | 7 -             |         |               |         |             |              |             |              | Moist to wet, gray, silty SAND, some silt, some gravel (SM)                                                  | 7 -         |
| ь<br>Excavation | -               |         |               |         |             |              |             | / O.         |                                                                                                              | -           |
| $F^{m}$         | 8 -             |         |               |         |             |              |             | 0            |                                                                                                              | 8 -         |
|                 | -               |         |               |         |             |              |             | / /          |                                                                                                              | -           |
| F               | 9 -             |         | ~ ~           |         |             |              |             | /0           |                                                                                                              | 9 -         |
| F               | 10 -            |         | GRAB          | e<br>S  |             |              |             | 6            |                                                                                                              | 10 -        |
|                 | -               |         | 5             |         |             |              |             | / '          |                                                                                                              | -           |
| F               | 11 -            |         |               |         |             |              |             | p.           |                                                                                                              | 11 -        |
| L               | 12 -            |         |               |         |             |              |             | ø            |                                                                                                              | 12 -        |
|                 | - 12            |         |               |         |             |              |             | /            |                                                                                                              | 12          |
| $\vdash$        | 13 -            |         |               |         |             |              |             | 0            |                                                                                                              | 13 -        |
|                 | -               |         |               |         |             |              |             | 9            |                                                                                                              | -           |
|                 | 14 -            |         |               |         |             |              |             | BOH          |                                                                                                              | 14 -        |
| L               | 15 -            |         |               |         |             |              |             | 14 ft.       | Notes:                                                                                                       | 15 -        |
|                 | 15              |         |               |         |             |              |             |              | Bedrock encountered at 14.0 feet.                                                                            |             |
| ╞               | 16 -            |         |               |         |             |              |             |              |                                                                                                              | 16 -        |
|                 |                 |         |               |         |             |              |             |              |                                                                                                              | -           |
| F               | 17 -            |         |               |         |             |              |             |              |                                                                                                              | 17 -        |
| <u>s</u> L      | 18 -            |         |               |         |             |              |             |              |                                                                                                              | 18 -        |
| 6710            |                 |         |               |         |             |              |             |              |                                                                                                              | -           |
| şΗ              | 19 -            |         |               |         |             |              |             |              |                                                                                                              | 19 -        |
|                 |                 |         |               |         |             |              |             |              |                                                                                                              | -           |
| Ĭ               | 20 -            |         |               |         |             |              |             |              |                                                                                                              | 20 -        |
| j-              | 21 -            |         |               |         |             |              |             |              |                                                                                                              | 21 -        |
|                 |                 |         |               |         |             |              |             |              |                                                                                                              | -           |
|                 | 22 -            |         |               |         |             |              |             |              |                                                                                                              | 22 -        |
|                 | 23 -            |         |               |         |             |              |             |              |                                                                                                              | 23 -        |
| 3               | 23-             |         |               |         |             |              |             |              |                                                                                                              | - 25        |
| -               | 24 -            |         |               |         |             |              |             |              |                                                                                                              | 24 -        |
|                 |                 |         |               |         |             |              |             |              |                                                                                                              | -           |
|                 | 25 -            |         |               |         |             |              |             |              |                                                                                                              | 25 -        |
| 1               |                 |         |               |         |             |              |             |              | CHECKED: DATE:                                                                                               |             |

|            | Â               | Gol  | der<br>ciates |        |            |         |             |                      | LOG OF TEST TRENCH Shee                                                             | et Number 1 of 1 |
|------------|-----------------|------|---------------|--------|------------|---------|-------------|----------------------|-------------------------------------------------------------------------------------|------------------|
|            |                 | Asso | ciates        | 6      |            |         |             |                      |                                                                                     | G06-TP6          |
|            |                 |      |               |        |            |         |             |                      | POLYMET     Total Depth     2       Number     053-2209     Date Begin     4        |                  |
|            |                 |      |               |        |            | I       | PIO         | jeci                 | Number         053-2209         Date Begin         4           Date End        4/   | /17/06           |
|            |                 |      |               |        | , 5273491N | , 575   | 052         | Е                    | Offset from Center Line Elevation Reference                                         |                  |
|            |                 |      | <u>690 E</u>  |        |            |         |             |                      | Weather                                                                             |                  |
| Gold       | der Sta         | п М. | Krzewir       |        | le Data    |         |             | FI                   | eld Crew R. Radotich<br>Ground Water Data                                           |                  |
|            |                 |      |               |        |            | Τ       |             |                      | Depth in (ft.) 15                                                                   |                  |
|            | (Feet           |      |               |        |            | Sampled | <u>k</u>    | Ę                    | Time         17:30           Date         4/17/06                                   |                  |
| Method     | Depth in (Feet) |      | Method        | Number |            | . San   | Water Level | Soil Graph           | Symbol <b>Y</b>                                                                     |                  |
| Mei        | Der             |      | Mei           | Nur    |            | Loc.    | Wa          | Soi                  | SUBSURFACE MATERIAL                                                                 |                  |
|            | 0 -             |      |               |        |            |         |             | <u>× 1/</u>          |                                                                                     | 0 -              |
| L          | 1 -             |      |               |        |            |         |             |                      | <u>Topsoil</u><br>0.5 - 15.0                                                        | ſ                |
|            | -               |      |               |        |            |         |             | /                    | Moist, brown, silty SAND with gravel, little to some silt, few cobbles and boulders | -                |
| F          | 2 -             |      |               |        |            |         |             | 0                    | (SM)                                                                                | 2 -              |
| L          | 3 -             |      |               |        |            |         |             | 0                    |                                                                                     | 3 -              |
|            |                 |      |               |        |            |         |             | /<br>Dec             |                                                                                     | -                |
| F          | 4 -             |      |               |        |            |         |             | *****                |                                                                                     | 4 -              |
| Ļ          | 5 -             |      |               |        |            |         |             | 2                    |                                                                                     | 5 -              |
|            | -               |      |               |        |            |         |             | 10                   |                                                                                     | -                |
| F          | 6 -             |      |               |        |            |         |             | ø                    |                                                                                     | 6 -              |
| L          | 7 -             |      |               |        |            |         |             |                      |                                                                                     | - 7              |
|            | 8 -             |      | GRAB          | -      |            |         |             | /0<br>0              |                                                                                     | - 8 -            |
|            | 9 -             |      |               |        |            |         |             | /<br>n               |                                                                                     | - 9              |
| Excavation | 10 -            |      |               |        |            |         |             |                      |                                                                                     | - 10 -           |
| Exc        | 11 -            |      |               |        |            |         |             | )<br>J               |                                                                                     | -<br>11 -        |
| -          | 12 -            |      |               |        |            |         |             | .o.<br>. <i>j. (</i> |                                                                                     | 12 -             |
| F          | 13 -            |      |               |        |            |         |             | <b>.</b>             |                                                                                     | 13 -             |
| F          | 14 -            |      |               |        |            |         |             | .0<br>/              |                                                                                     | 14 -             |
| F          | 15 -            |      |               |        |            | $\mid$  | Ţ           | 0                    | 15.0 - 20.0<br>Waterbearing, gray, sandy SILT                                       |                  |
| +          | 16 -            |      |               |        |            |         |             |                      | (ML)                                                                                | 16 -             |
|            | 17 -            |      | GRAB          | 5      |            |         |             |                      |                                                                                     | 17 -             |
|            | 18 -            |      | 9             |        |            |         |             |                      |                                                                                     | 18 -             |
|            | 19 -            |      |               |        |            |         |             | //                   |                                                                                     | 19 -             |
|            | 20 -            |      |               |        |            | $\mid$  |             | BOH                  |                                                                                     | 20 -             |
| ž-         | 21 -            |      |               |        |            |         |             | 20 ft.               | Notes:                                                                              | 21 -             |
|            | 22 -            |      |               |        |            |         |             |                      | No bedrock encountered                                                              | - 22 -           |
|            | 23 -            |      |               |        |            |         |             |                      |                                                                                     |                  |
|            | 24 -            |      |               |        |            |         |             |                      |                                                                                     | - 24 -           |
|            | 25 -            |      |               |        |            |         |             |                      |                                                                                     | 25 -             |
|            |                 |      |               |        | 1          |         |             |                      | CHECKED: DATE                                                                       |                  |

|                                                     | Ĝ          | Gol              | der<br>ciates |        |               |         |             |              | LOG OF TEST TRENCH                                                 | S                      | heet Number 1 of 1 |
|-----------------------------------------------------|------------|------------------|---------------|--------|---------------|---------|-------------|--------------|--------------------------------------------------------------------|------------------------|--------------------|
|                                                     | V          | Asso             | ciates        | 5      |               |         |             |              |                                                                    | Test Pit Number        | G06-TP7            |
|                                                     |            |                  |               |        |               |         |             |              | POLYMET                                                            | _ Total Depth          | 3.5 feet           |
|                                                     |            |                  |               |        |               |         | Pro         | oject        | Number 053-2209                                                    | Date Begin<br>Date End | 4/17/06            |
| 6                                                   | Station    | / Location       | ) Pre-        | -Produ | ction Area. 5 | 5274    | 524         | N. 57        | 8727E Offset from Center Line                                      | Elevation Reference    |                    |
|                                                     |            | ent Type         |               |        | ,.            |         | -           | .,           | Weather                                                            |                        |                    |
|                                                     | Golder     | Staff M.         | Krzewin       |        |               |         |             | Fi           | eld Crew R. Radotich<br>Ground Water Data                          |                        |                    |
|                                                     |            |                  |               | Samp   | ole Data      |         | -           |              | Depth in (ft.)                                                     |                        |                    |
|                                                     |            | () aa            |               |        |               | þ       | _           |              | Time                                                               |                        |                    |
| ,                                                   |            |                  | σ             | 5      |               | Sampled | Leve        | raph         | Date Symbol                                                        |                        |                    |
|                                                     | Mernod     | Deptin In (Feet) | Method        | Number |               | Loc. S  | Water Level | Soil Graph   |                                                                    |                        |                    |
|                                                     |            | )                | 2             | 2      |               |         | >           |              | SUBSURFACE MA                                                      | ATERIAL                | 0 -                |
|                                                     | '          |                  |               |        |               |         |             | <u>×`'//</u> | 0.0 - 0.5<br>Topsoil                                               |                        | r -                |
| -                                                   | 5          | 1 -              |               |        |               |         |             |              | 0.5 - 3.5                                                          |                        |                    |
|                                                     | avau       |                  | AB            |        |               |         |             | 0            | Moist, brown, silty SAND with gravel, little silt, few cobble (SM) | es and boulders        | -                  |
|                                                     | Excavation | 2 -              | GRAB          | 1      |               |         |             | /            |                                                                    |                        | 2 -                |
| -                                                   |            | 3 -              |               |        |               |         |             |              |                                                                    |                        | 3 -                |
|                                                     |            | _                |               |        |               |         |             | .⁄<br>ВОН    |                                                                    |                        |                    |
| F                                                   |            | 4 -              |               |        |               |         |             | 3.5 ft.      | Notes:                                                             |                        | 4 -                |
| ╞                                                   | :          | 5 -              |               |        |               |         |             |              | Bedrock encountered at 3.5 feet                                    |                        | 5 -                |
|                                                     |            | c                |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   | '          | 5 -              |               |        |               |         |             |              |                                                                    |                        | 6 -                |
| F                                                   |            | 7 -              |               |        |               |         |             |              |                                                                    |                        | 7 -                |
|                                                     |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   |            | 3 -              |               |        |               |         |             |              |                                                                    |                        | 8 -                |
| F                                                   |            | ) -              |               |        |               |         |             |              |                                                                    |                        | 9 -                |
|                                                     |            | _                |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   |            | 0 -              |               |        |               |         |             |              |                                                                    |                        | 10 -               |
| ╞                                                   | 1          | 1 -              |               |        |               |         |             |              |                                                                    |                        | 11 -               |
|                                                     |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   |            | 2 -              |               |        |               |         |             |              |                                                                    |                        | 12 -               |
| F                                                   | 1          | 3 -              |               |        |               |         |             |              |                                                                    |                        | 13 -               |
|                                                     |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   |            | 4 -              |               |        |               |         |             |              |                                                                    |                        | 14 -               |
| F                                                   | 1          | 5 -              |               |        |               |         |             |              |                                                                    |                        | 15 -               |
|                                                     |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| F                                                   | 1          | 6 -              |               |        |               |         |             |              |                                                                    |                        | 16 -               |
| F                                                   | 1          | 7 -              |               |        |               |         |             |              |                                                                    |                        | 17 -               |
| <i>"</i>                                            |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| /29/0(                                              | 1          | 8 -              |               |        |               |         |             |              |                                                                    |                        | 18 -               |
|                                                     | 1          | 9 -              |               |        |               |         |             |              |                                                                    |                        | 19 -               |
| IR.G                                                |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
|                                                     | 2          | 0 -              |               |        |               |         |             |              |                                                                    |                        | 20 -               |
| DL.G                                                | 2          | 1 -              |               |        |               |         |             |              |                                                                    |                        | 21 -               |
| LOG OF TEST PIT 053-2209.GPJ DUL.GOLDER.GDT 8/29/06 |            |                  |               |        |               |         |             |              |                                                                    |                        | -                  |
| 09.GI                                               | 2          | 2 -              |               |        |               |         |             |              |                                                                    |                        | 22 -               |
| 53-22                                               | ,          | 3 -              |               |        |               |         |             |              |                                                                    |                        | 23 -               |
| ŭ T                                                 |            | -                |               |        |               |         |             |              |                                                                    |                        | -                  |
| IST F                                               | 2          | 4 -              |               |        |               |         |             |              |                                                                    |                        | 24 -               |
|                                                     | ,          | 5                |               |        |               |         |             |              |                                                                    |                        | 25 -               |
| ö -                                                 |            | -                |               | L      |               |         |             |              | CHECK                                                              | ЕD: Г                  | DATE:              |
|                                                     |            |                  |               |        |               |         |             |              | Oneon                                                              |                        |                    |

|            | Â               | Gol  | der           |            |                |         |             |               | LOG OF TEST TRENCH                                                                  | Sheet Number 1 of 1 |
|------------|-----------------|------|---------------|------------|----------------|---------|-------------|---------------|-------------------------------------------------------------------------------------|---------------------|
|            | Ð               | Asso | der<br>ciates | 5          |                |         | Prc         | oject         | POLYMET Total Depth                                                                 |                     |
|            |                 |      |               |            |                |         |             |               | Number 053-2209 Date Begin                                                          | 4/17/06             |
| 01         |                 |      | n             | <b>D</b> 1 |                |         |             |               | Date End                                                                            | 4/17/06             |
|            |                 |      | 690 E         |            | ction Area, 52 | 274:    | 393         | N, 5          | 8958E         Offset from Center Line         Elevation Reference           Weather |                     |
|            |                 |      | Krzewin       |            |                |         |             | Fi            | eld Crew R. Radotich                                                                |                     |
|            |                 |      |               | Samp       | le Data        |         |             |               | Ground Water Data           Depth in (ft.)         4.5                              |                     |
|            | et)             |      |               |            |                | 5       |             |               | Time 10:45                                                                          |                     |
|            | n (Fe           |      |               | L          |                | Sampled | evel.       | hdg           | Date 4/17/06                                                                        |                     |
| Method     | Depth in (Feet) |      | Method        | Number     |                | c. Sa   | Water Level | Soil Graph    | Symbol <b>Y</b>                                                                     |                     |
| ž          |                 |      | ž             | ź          |                | Loc.    | ≥           | Š             |                                                                                     | _                   |
|            | 0 -             |      | ~             |            |                |         |             |               | 0.0 - 2.0                                                                           | 0 ·                 |
| F          | 1 -             |      | GRAB          |            |                |         |             | .,            | Moist, reddish-brown, silty SAND, little gravel, little to some silt (SM)           | 1 -                 |
| ion        | -               |      | 5             |            |                |         |             | 0             |                                                                                     |                     |
| Excavation | 2 -             |      |               |            |                |         |             | o.            | 2.0 - 4.5                                                                           | 2 -                 |
| Exc        | 3 -             |      | AB            |            |                |         |             |               | Moist, brown, medium to coarse grained SAND and GRAVEL, trace silt, (SP)            | 3 -                 |
|            | -               |      | GRAB          | 5          |                |         |             | 0             |                                                                                     |                     |
| -          | 4 -             |      |               |            |                |         | ¥           | 0             |                                                                                     | 4 -                 |
| F          | 5 -             |      |               |            |                |         |             | BOH<br>4.5 ft |                                                                                     | 5 -                 |
|            |                 |      |               |            |                |         |             |               | Notes:<br>Bedrock encountered at 4.5 feet                                           |                     |
| F          | 6 -             |      |               |            |                |         |             |               | Bedrock encountered at 4.5 reet                                                     | 6 -                 |
| F          | 7 -             |      |               |            |                |         |             |               |                                                                                     | 7 -                 |
| -          | 8 -             |      |               |            |                |         |             |               |                                                                                     | 8 -                 |
| F          | 9 -             |      |               |            |                |         |             |               |                                                                                     | 9 -                 |
| F          | 10 -            |      |               |            |                |         |             |               |                                                                                     | 10 -                |
| F          | 11 -            |      |               |            |                |         |             |               |                                                                                     | 11 -                |
| -          | 12 -            |      |               |            |                |         |             |               |                                                                                     | 12 -                |
| F          | 13 -            |      |               |            |                |         |             |               |                                                                                     | 13 -                |
| F          | 14 -            |      |               |            |                |         |             |               |                                                                                     | 14 -                |
| F          | 15 -            |      |               |            |                |         |             |               |                                                                                     | 15 -                |
| F          | 16 -            |      |               |            |                |         |             |               |                                                                                     | 16 -                |
| F          | 17 -            |      |               |            |                |         |             |               |                                                                                     | 17 -                |
| -          | 18 -            |      |               |            |                |         |             |               |                                                                                     | 18 -                |
|            | 19 -            |      |               |            |                |         |             |               |                                                                                     | 19 -                |
| -          | 20 -            |      |               |            |                |         |             |               |                                                                                     | 20 -                |
| -          | 21 -            |      |               |            |                |         |             |               |                                                                                     | 21 -                |
| -          | 22 -            |      |               |            |                |         |             |               |                                                                                     | 22 -                |
|            | 23 -            |      |               |            |                |         |             |               |                                                                                     | 23 -                |
| -          | 24 -            |      |               |            |                |         |             |               |                                                                                     | 24 -                |
| <u> </u>   | 25 -            |      |               |            |                |         |             |               |                                                                                     | 25 ·                |
|            |                 |      |               |            |                |         |             |               | CHECKED:                                                                            | DATE:               |

| Popet         DULY NET         Total Depin         Al 2015           Popet         Al 2016         Date End         Al 2016         Date End         Al 2016           Station / Location         Pre-Production Arts, 52/4338, 73/06         Offset from Center Line         Elevation Reference            Equipment Type         Aff 2016         The Droduction Arts, 52/4338, 73/06         Offset from Center Line         Elevation Reference            Equipment Type         Aff 2016         The Offset from Center Line         Elevation Reference            Image: Aff 2016         Substation Reference               Image: Aff 2016         Substation Reference                Image: Aff 2016         Substation Reference                 Image: Aff 2016         Image: Aff 2016         Image: Aff 2016                Image: Aff 2016         Image: Aff 2016         Image: Aff 2016                Image: Aff 2016         Image: Aff 2016         Image: Aff 2016 <th></th> <th></th> <th>lder<br/>ociates</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>LOG OF TEST TRENCH</th> <th>Sł</th> <th>neet Number 1 of 1</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                | lder<br>ociates |        |               |      |          |        | LOG OF TEST TRENCH                                  | Sł                                    | neet Number 1 of 1 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-----------------|--------|---------------|------|----------|--------|-----------------------------------------------------|---------------------------------------|--------------------|
| Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                | ociates         | 5      |               |      |          |        |                                                     |                                       |                    |
| Station / Location         Pre-Production Area, 52/4323N, 55%696         Offset from Center Line         Elevation Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |                 |        |               |      |          |        |                                                     |                                       |                    |
| Station / Location       The-Production Area, 5274322N, 57909E       Offset from Center line       Elevation Reference          Golder Staff       M. Krzewinski       Field Crew R. Rudoch       Image: Construction Reference          Subscription       Semple Data       Field Crew R. Rudoch       Image: Construction Reference          9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       1       1       1       1       1       1       1       1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>PIC</td> <td>Ject</td> <td>Number053-2209</td> <td></td> <td>4/17/06</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |                 |        |               |      | PIC      | Ject   | Number053-2209                                      |                                       | 4/17/06            |
| Equipment Type       Monthality       Pield Crew       Readorich         Golder Staff       K.Trewinski       Field Crew       R. Radorich         Bage       Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stat     | tion / Locatio | n <u>Pre</u>    | -Produ | ction Area, 5 | 5274 | 323      | N, 5′  | 9069E Offset from Center Line                       | Elevation Reference                   |                    |
| Build of the second s |          |                |                 |        |               |      |          |        | Weather                                             |                                       |                    |
| Image: Constraint of the  | Gol      | der Staff M    | . Krzewir       |        | le Data       |      |          | Fi     | eld Crew R. Radotich<br>Ground Water Data           |                                       |                    |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                 |        |               |      |          |        | Depth in (ft.) 4.5                                  |                                       |                    |
| 0         SUBSURFACE MATERIAL         Column Subsurface Material                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | reet)          |                 |        |               | led  | <u>-</u> |        |                                                     |                                       |                    |
| 0         SUBSURFACE MATERIAL         Column Subsurface Material                                                                                                                                                                                                                                                                                                                                                                                                                                    | g        | l) ii c        | g               | Der    |               | Samp | r Lev    | Braph  |                                                     |                                       |                    |
| 0         SUBSURFACE MATERIAL         Column Subsurface Material                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metho    | Dept           | Meth            | Numt   |               | l o  | Wate     | Soil O |                                                     |                                       |                    |
| -       1       -       1       -       1       -       1         -       2       -       600       -       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                |                 | _      |               |      | -        |        |                                                     | ATERIAL                               | 0 -                |
| -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | -              |                 |        |               |      |          |        |                                                     |                                       | Г                  |
| 2       -       E       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F        | 1 -            |                 |        |               |      |          | 988    | 0.5 - 4.0                                           | · · · · · · · · · · · · · · · · · · · | 1 -                |
| 3       -       3       -       3       -       3       -       3       -       3       -       4       -       4       -       4       -       4       -       4       -       4       -       4       -       5       -       -       4       -       5       -       -       4       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       6       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       1       -       1       -       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L        |                | В               |        |               |      |          | 18     |                                                     | ew cobbles and boulders               | 2 -                |
| 3       -       3       -       3       -       3       -       3       -       3       -       4       -       4       -       4       -       4       -       4       -       4       -       4       -       4       -       4       -       5       -       -       4       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -       5       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                | BRA             |        |               |      |          | /      |                                                     |                                       | 2 -                |
| -       6       -       e       6       -       e       6       -       6       -       7       -       6       -       7       -       7       -       7       -       7       -       7       -       7       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       - <td< td=""><td>╞</td><td>3 -</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>3 -</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ╞        | 3 -            |                 |        |               |      |          | 1      |                                                     |                                       | 3 -                |
| -       6       -       e       6       -       e       6       -       6       -       7       -       6       -       7       -       7       -       7       -       7       -       7       -       7       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       - <td< td=""><td>ion</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ion      | -              |                 |        |               |      |          |        |                                                     |                                       |                    |
| -       6       -       e       6       -       e       6       -       6       -       7       -       6       -       7       -       7       -       7       -       7       -       7       -       7       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       - <td< td=""><td>avat</td><td>4 ]</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>4.0 - 8.5</td><td></td><td> 4 -</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | avat     | 4 ]            |                 |        |               |      | •        |        | 4.0 - 8.5                                           |                                       | 4 -                |
| -       6       -       e       6       -       e       6       -       6       -       7       -       6       -       7       -       7       -       7       -       7       -       7       -       7       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       7       -       8       -       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       8       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       -       10       - <td< td=""><td>Exc</td><td>5</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>Wet, brown, medium to coarse grained SAND and GRAVE</td><td>L, little silt, few cobbles</td><td>5 -</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Exc      | 5              |                 | 1      |               |      |          |        | Wet, brown, medium to coarse grained SAND and GRAVE | L, little silt, few cobbles           | 5 -                |
| -       7       -       8       -       8       -       8         -       9       -       10       -       85 ft       Notes:       9         -       11       -       12       -       11       1       1         -       13       -       14       -       1       1       1         -       15       -       16       -       17       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |                 | 1      |               |      |          | 0      | (~~~~~)                                             |                                       |                    |
| -       7       -       8       -       8       -       8         -       9       -       10       -       85 ft       Notes:       9         -       11       -       12       -       11       1       1         -       13       -       14       -       1       1       1         -       15       -       16       -       17       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F        | 6 -            | (AB             | 5      |               |      |          | ю.     |                                                     |                                       | 6 -                |
| -       8       -       9       -       8       -       9         -       10       -       10       -       Notes:<br>Bedrock encountered at 8.5 feet       10       11         -       11       -       12       -       11       11       11       11         -       13       -       14       -       15       -       14       11       11         -       15       -       16       -       17       -       17       -       11       -       11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                | GR              |        |               |      |          | 2      |                                                     |                                       | -                  |
| -       9       -       10       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       9       -       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Γ        |                |                 |        |               |      |          |        |                                                     |                                       | 7 -                |
| -     10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +        | 8 -            |                 |        |               |      |          | o      |                                                     |                                       | 8 -                |
| -     10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |                 |        |               | -    | -        | BOH    |                                                     |                                       | ·                  |
| -     10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F        | 9 -            |                 |        |               |      |          | 8.5 ft | Notes                                               |                                       | 9 -                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ļ        | 10 -           |                 |        |               |      |          |        | Bedrock encountered at 8.5 feet                     |                                       | 10 -               |
| -     12 -     11       -     13 -     11       -     14 -     11       -     15 -     11       -     16 -     11       -     17 -     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |                 |        |               |      |          |        |                                                     |                                       |                    |
| -     13 -     11       -     14 -     11       -     15 -     11       -     16 -     11       -     17 -     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F        | 11 -           |                 |        |               |      |          |        |                                                     |                                       | 11 -               |
| -     13 -     11       -     14 -     11       -     15 -     11       -     16 -     11       -     17 -     11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ļ        | 12 -           |                 |        |               |      |          |        |                                                     |                                       | 12 -               |
| -     14 -     14 -     14 -       -     15 -     14 -     14 -       -     16 -     14 -     14 -       -     17 -     14 -     14 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                 |        |               |      |          |        |                                                     |                                       |                    |
| - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F        | 13 -           |                 |        |               |      |          |        |                                                     |                                       | 13 -               |
| - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 14 -           |                 |        |               |      |          |        |                                                     |                                       | 14 -               |
| - 16 - 17 - 17 - 11 11 11 11 11 11 11 11 11 11 11 11 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                |                 |        |               |      |          |        |                                                     |                                       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F        | 15 -           |                 |        |               |      |          |        |                                                     |                                       | 15 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L        | 16 -           |                 |        |               |      |          |        |                                                     |                                       | 16 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 10             |                 |        |               |      |          |        |                                                     |                                       | 10                 |
| 98       18       1         19       19       11         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\vdash$ | 17 -           |                 |        |               |      |          |        |                                                     |                                       | 17 -               |
| 18       19       11         19       20       21         21       21       22         22       22       22         23       23       22         24       25       25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g        | 10             |                 |        |               |      |          |        |                                                     |                                       | 10                 |
| 19 -     19 -     1     1       20 -     21 -     2       21 -     2       22 -     2       23 -     2       24 -     2       25 -     25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/29/    |                |                 |        |               |      |          |        |                                                     |                                       | 18 -               |
| 20-     21-     2       22-     22-     2       23-     2       23-     2       24-     2       25-     25-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 19 -           |                 |        |               |      |          |        |                                                     |                                       | 19 -               |
| 20     21       21     2       22     2       23     2       24     2       24     2       25     25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ER.0     | 20             |                 |        |               |      |          |        |                                                     |                                       | 20                 |
| 21 -     22 -     2       100 -     22 -     2       100 -     23 -     2       100 -     24 -     2       100 -     25 -     25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 20 -           |                 |        |               |      |          |        |                                                     |                                       | 20 -               |
| 1     22     23     2       1     24     2       25     25     25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 21 -           |                 |        |               |      |          |        |                                                     |                                       | 21 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SPJ [    |                |                 |        |               |      |          |        |                                                     |                                       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |                |                 |        |               |      |          |        |                                                     |                                       | 22 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        | 23 -           |                 |        |               |      |          |        |                                                     |                                       | 23 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                |                 |        |               |      |          |        |                                                     |                                       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EST      | 24 -           |                 |        |               |      |          |        |                                                     |                                       | 24 -               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | 25             |                 |        |               |      | -        |        |                                                     |                                       | 25 -               |
| CHECKED: DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | · · · ·        |                 |        | ·             |      |          |        | CHECK                                               | (ED: D/                               |                    |

|                 | Â               | Gol        | der<br>ciates | _      |         |              |             |                 | LOG OF TEST TRENCH                                                           | Sheet Number 1 of 1 |
|-----------------|-----------------|------------|---------------|--------|---------|--------------|-------------|-----------------|------------------------------------------------------------------------------|---------------------|
|                 |                 | SSO        | ciates        | 5      |         |              | _           |                 | Test Pit Num                                                                 |                     |
|                 |                 |            |               |        |         |              |             | oject           |                                                                              | 8 feet<br>4/17/06   |
|                 |                 |            |               |        |         |              | 1 10        | Jeer            | Date End                                                                     | 4/17/06             |
|                 |                 |            |               |        |         |              |             |                 | Offset from Center Line Elevation Refere                                     | ence                |
|                 | ipment          |            |               |        |         |              |             |                 |                                                                              |                     |
| GOI             | der Staff       | <u>M</u> . | Krzewir       |        | le Data |              |             |                 | eld Crew R. Radotich<br>Ground Water Data                                    |                     |
|                 |                 |            |               |        |         |              |             |                 | Depth in (ft.) 4                                                             |                     |
|                 | Feet            |            |               |        |         | pled         | /el         |                 | Time         11:10           Date         4/17/06                            |                     |
| por             | Depth in (Feet) |            | por           | ber    |         | Loc. Sampled | Water Level | Soil Graph      | Symbol I                                                                     |                     |
| Method          | Dept            |            | Method        | Number |         | Loc.         | Wate        | Soil            |                                                                              |                     |
| _               | 0 -             |            |               |        |         |              |             | <u>x1 /y.</u> : | SUBSURFACE MATERIAL                                                          | 0 -                 |
|                 | -               |            |               |        |         |              |             |                 | Topsoil                                                                      |                     |
| F               | 1 -             |            |               |        |         |              |             |                 | 0.5 - 4.0<br>Moist, brown, silty SAND, little gravel, some silt, few cobbles | 1 -                 |
| L               | 2               |            | B             |        |         |              |             | 10              | (SM)                                                                         | 2 -                 |
|                 |                 |            | GRAB          | -      |         |              |             | 0               |                                                                              | -                   |
| ╞ <sub>╒</sub>  | 3 -             |            | 0             |        |         |              |             | 1               |                                                                              | 3 -                 |
| atio            |                 |            |               |        |         |              | T           |                 |                                                                              |                     |
| ۱<br>Excavation | 4 -             |            | ÷             |        |         |              | -           | ō               | 4.0 - 6.0<br>Wat brown modium to course grained SAND and CDAVEL trace silt   | 4 -                 |
| Η               | 5 -             |            | GRAB          | 12     |         |              |             |                 | Wet, brown, medium to coarse grained SAND and GRAVEL, trace silt (SP)        | 5 -                 |
|                 | -               |            | Ð             |        |         |              |             | 0               |                                                                              |                     |
| F               | 6 -             |            |               |        |         |              |             | 9               | 6.0 - 8.0                                                                    | 6 -                 |
| L               | 7               |            | GRAB          | 3      |         |              |             | / · /           | Wet, brown, silty SAND with gravel, little silt, some gravel (SP-SM)         | 7 -                 |
|                 |                 |            | GF            |        |         |              |             | 0               |                                                                              |                     |
| _               | 8 -             |            |               |        |         |              |             | BOH             |                                                                              | 8 -                 |
| L               | 9 -             |            |               |        |         |              |             | 8 ft.           | Notes:                                                                       | 9 -                 |
|                 |                 |            |               |        |         |              |             |                 | Bedrock encountered at 8.0 feet                                              | )                   |
| +               | 10 -            |            |               |        |         |              |             |                 |                                                                              | 10 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              | 11                  |
| F               | 11 -            |            |               |        |         |              |             |                 |                                                                              | 11 -                |
| $\vdash$        | 12 -            |            |               |        |         |              |             |                 |                                                                              | 12 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              |                     |
| F               | 13 -            |            |               |        |         |              |             |                 |                                                                              | 13 -                |
| L               | 14 -            |            |               |        |         |              |             |                 |                                                                              | 14 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              |                     |
| ╞               | 15 -            |            |               |        |         |              |             |                 |                                                                              | 15 -                |
| L               | 16 -            |            |               |        |         |              |             |                 |                                                                              | 16 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              | 10                  |
| ╞               | 17 -            |            |               |        |         |              |             |                 |                                                                              | 17 -                |
| ٥               |                 |            |               |        |         |              |             |                 |                                                                              | 10                  |
| 1               | 18 -            |            |               |        |         |              |             |                 |                                                                              | 18 -                |
|                 | 19 -            |            |               |        |         |              |             |                 |                                                                              | 19 -                |
| EK              |                 |            |               |        |         |              |             |                 |                                                                              |                     |
|                 | 20 -            |            |               |        |         |              |             |                 |                                                                              | 20 ·                |
|                 | 21 -            |            |               |        |         |              |             |                 |                                                                              | 21 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              |                     |
| 2               | 22 -            |            |               |        |         |              |             |                 |                                                                              | 22 -                |
| 22-22           | 23 -            |            |               |        |         |              |             |                 |                                                                              | 23 -                |
| 5               |                 |            |               |        |         |              |             |                 |                                                                              | 23                  |
|                 | 24 -            |            |               |        |         |              |             |                 |                                                                              | 24 -                |
|                 |                 |            |               |        |         |              |             |                 |                                                                              | 25                  |
|                 | 25              |            |               |        |         |              |             |                 |                                                                              | 25 -                |
| ا ک             |                 |            |               |        |         |              |             |                 | CHECKED:                                                                     | DATE:               |

|                                                     | Â       | A G     | older<br>sociate |         |            |              |             |               | LOG OF TEST TRENCH                                                       | :                               | Sheet Number 1 of 1 |
|-----------------------------------------------------|---------|---------|------------------|---------|------------|--------------|-------------|---------------|--------------------------------------------------------------------------|---------------------------------|---------------------|
|                                                     | V       | Ass     | sociate          | S       |            |              |             |               |                                                                          | Test Pit Number                 | G06-TP11            |
|                                                     |         |         |                  |         |            |              |             | oject         |                                                                          | _ Total Depth                   | 6 feet              |
|                                                     |         |         |                  |         |            |              | Pro         | oject         | Number053-2209                                                           |                                 | 4/17/06             |
|                                                     | Station | / Locat | ion Ea           | at Araa | 5271200NI  | 570          | 641         | Б             | Offset from Center Line                                                  | Date End<br>Elevation Reference | 4/17/06             |
|                                                     |         |         | be <u>690 E</u>  |         | 3274388IN, |              |             |               |                                                                          |                                 |                     |
|                                                     |         |         | M. Krzewi        |         |            |              |             |               | eld Crew R. Radotich                                                     |                                 |                     |
|                                                     |         |         |                  | Samp    | ole Data   |              |             |               | Ground Water Data Depth in (ft.)                                         |                                 |                     |
|                                                     |         | 5       |                  |         |            |              |             |               | Time                                                                     |                                 |                     |
|                                                     | Ļ       |         |                  |         |            | nplec        | evel        | Чd            | Date                                                                     |                                 |                     |
| Method                                              |         |         | Method           | Number  |            | Loc. Sampled | Water Level | Soil Graph    | Symbol                                                                   |                                 |                     |
| Me                                                  |         |         | We               | InZ     |            | Lo<br>Lo     | Va          | Soi           | SUBSURFACE MA                                                            | ΤΕΡΙΔΙ                          |                     |
|                                                     | - (     | ) +     |                  |         |            | _            | -           | <u>x1 /7.</u> | 0.0 - 0.5                                                                |                                 | 0 -                 |
|                                                     |         |         |                  |         |            |              |             |               | Topsoil                                                                  |                                 |                     |
| F                                                   |         |         | В                |         |            |              |             |               | 0.5 - 3.0<br>Moist, reddish-brown, silty SAND with gravel, some silt, co | bbles                           | 1 -                 |
| L                                                   |         | 2 -     | GRAB             | -       |            |              |             | 0             | (SM)                                                                     |                                 | 2 -                 |
| +i                                                  |         | -       |                  |         |            |              |             | 0             |                                                                          |                                 | -                   |
| L<br>Evoquetion                                     | 29 A 3  | 3 -     |                  |         |            | -            |             |               | 3.0 - 6.0                                                                |                                 | 3 -                 |
| Ц<br>Ц                                              | ĽX      | 1 -     |                  |         |            |              |             | 0             | Moist to wet, brown, fine to coarse grained silty SAND and               | GRAVEL,                         | -                   |
| Γ                                                   |         | * ]     | GRAB             | 12      |            |              |             | 10            | (SM)                                                                     |                                 | 4 -                 |
| F                                                   |         | 5 -     | GF               |         |            |              |             | 6             |                                                                          |                                 | 5 -                 |
|                                                     |         | -       |                  |         |            |              |             | / /           |                                                                          |                                 |                     |
|                                                     | - (     | 5 -     |                  |         |            |              |             | BOH           |                                                                          |                                 | 6 -                 |
| L                                                   |         | 7 -     |                  |         |            |              |             | 6 ft.         | Notes:                                                                   |                                 | 7 -                 |
|                                                     |         | ,<br>   |                  |         |            |              |             |               | Bedrock encountered at 6.0 feet                                          |                                 | , -                 |
| F                                                   | 8       | 3 -     |                  |         |            |              |             |               |                                                                          |                                 | 8 -                 |
|                                                     |         |         |                  |         |            |              |             |               |                                                                          |                                 |                     |
| F                                                   | 9       | ) -     |                  |         |            |              |             |               |                                                                          |                                 | 9 -                 |
| Ļ                                                   | 1       | 0 -     |                  |         |            |              |             |               |                                                                          |                                 | 10 -                |
|                                                     |         | Ĩ       |                  |         |            |              |             |               |                                                                          |                                 |                     |
| F                                                   | 1       | 1 -     |                  |         |            |              |             |               |                                                                          |                                 | 11 -                |
|                                                     | 1       | 2 -     |                  |         |            |              |             |               |                                                                          |                                 | 12 -                |
| Γ                                                   |         | 2       |                  |         |            |              |             |               |                                                                          |                                 | 12 -                |
| F                                                   | 1       | 3 -     |                  |         |            |              |             |               |                                                                          |                                 | 13 -                |
|                                                     |         |         |                  |         |            |              |             |               |                                                                          |                                 |                     |
| F                                                   | 1       | 4 -     |                  |         |            |              |             |               |                                                                          |                                 | 14 -                |
| L                                                   | 1       | 5 -     |                  |         |            |              |             |               |                                                                          |                                 | 15 -                |
|                                                     |         | 5       |                  |         |            |              |             |               |                                                                          |                                 | 15                  |
| ╞                                                   | 1       | 6 -     |                  |         |            |              |             |               |                                                                          |                                 | 16 -                |
|                                                     |         | _       |                  |         |            |              |             |               |                                                                          |                                 |                     |
| F                                                   | 1       | 7 -     |                  |         |            |              |             |               |                                                                          |                                 | 17 -                |
| 90                                                  | 1       | 8 -     |                  |         |            |              |             |               |                                                                          |                                 | 18 -                |
| 8/29                                                |         |         |                  |         |            |              |             |               |                                                                          |                                 |                     |
| Б-                                                  | 1       | 9 -     |                  |         |            |              |             |               |                                                                          |                                 | 19 -                |
| ER.0                                                |         |         |                  |         |            |              |             |               |                                                                          |                                 | -                   |
|                                                     | 2       | 0 -     |                  |         |            |              |             |               |                                                                          |                                 | 20 -                |
| UL.G                                                | 2       | 1 -     |                  |         |            |              |             |               |                                                                          |                                 | 21 -                |
| 2                                                   |         |         |                  |         |            |              |             |               |                                                                          |                                 |                     |
| 39.GI                                               | 2       | 2 -     |                  |         |            |              |             | 1             |                                                                          |                                 | 22 -                |
| 3-22(                                               |         | ,       |                  |         |            |              |             | 1             |                                                                          |                                 | -                   |
| T 05                                                |         | 3 -     |                  |         |            |              |             | 1             |                                                                          |                                 | 23 -                |
|                                                     | 2       | 4 -     |                  |         |            |              |             | 1             |                                                                          |                                 | 24 -                |
| E TES                                               |         |         |                  |         |            |              |             | 1             |                                                                          |                                 | -                   |
| LOG OF TEST PIT 053-2209.GPJ DUL.GOLDER.GDT 8/29/06 | 2       | 5       |                  |         |            |              |             |               |                                                                          |                                 | 25 -                |
| <u>ا</u>                                            |         |         |                  |         |            |              |             |               | CHECKI                                                                   | ED:                             | DATE:               |

|                                                     | Ć         | <b>à</b> G      | older<br>sociate |          |                |              |             |              | LOG OF TEST TRENCH                                                     | Sh                                | eet Number 1 of 1 |
|-----------------------------------------------------|-----------|-----------------|------------------|----------|----------------|--------------|-------------|--------------|------------------------------------------------------------------------|-----------------------------------|-------------------|
|                                                     | N         | AS              | sociate          | es       |                |              |             |              |                                                                        |                                   | G06-TP12          |
|                                                     |           |                 |                  |          |                |              |             | oject        | POLYMET                                                                | Total Depth                       |                   |
|                                                     |           |                 |                  |          |                |              | Pro         | oject        | Number 053-2209                                                        | _ Date Begin                      | 4/17/06           |
|                                                     | Station   |                 | tion E           | act Area | 5274494N       | 570/         | 104         | F            | Offset from Center Line                                                | Date End<br>Elevation Reference _ |                   |
|                                                     |           |                 | pe               |          | , 527447410, . |              |             |              | Weather                                                                |                                   |                   |
|                                                     |           |                 | M. Krzew         |          |                |              |             |              | d Crew R. Radotich                                                     |                                   |                   |
|                                                     |           |                 |                  | Samp     | ole Data       |              |             |              | Ground Water Data     Depth in (ft.)                                   |                                   |                   |
|                                                     |           | j;              |                  |          |                | _            |             |              | Time                                                                   |                                   |                   |
|                                                     |           | (Fee            |                  |          |                | nplec        | evel        | Ь            | Date                                                                   |                                   |                   |
| Mothod                                              |           | Depth in (Feet) | Method           | Number   |                | Loc. Sampled | Water Level | Soil Graph   | Symbol                                                                 |                                   |                   |
| Ň                                                   | Ma        | Del             | Me               | nZ       |                | Loc          | Wa          | Soi          | SUBSURFACE MA                                                          |                                   |                   |
| -                                                   |           | 0               |                  |          |                |              |             | <u></u>      | 0.0 - 0.5                                                              |                                   | 0 -               |
|                                                     |           | -               |                  |          |                |              |             |              | Topsoil                                                                |                                   | <b>r</b> ·        |
| F                                                   |           | 1 -             |                  |          |                |              |             | 7852         | 0.5 - 3.0                                                              | -11                               | 1 -               |
| Lŧ                                                  | 5         | 2 -             | GRAB             | -        |                |              |             | 10           | Moist, brown, silty SAND with gravel, little to some silt, col<br>(SM) | Joles                             | 2 -               |
| 40                                                  | Vau       | -               | 0                |          |                |              |             | /            |                                                                        |                                   | Σ =               |
|                                                     | EXCAVAUOI | 3 -             |                  |          |                |              |             | 1.1.1        | 3.0 - 5.0                                                              |                                   | 3 -               |
|                                                     | -         | -               | E E              |          |                |              |             | ø            | Moist, grayish-brown, silty SAND with gravel, little to some           | e silt, few cobbles               |                   |
| F                                                   |           | 4 -             | GRAB             | 7        |                |              |             | 10           | (SM)                                                                   | ,                                 | 4 -               |
|                                                     |           | 5 -             |                  |          |                |              |             | /            |                                                                        |                                   | 5 -               |
|                                                     |           | 5               |                  |          |                |              |             | BOH<br>5 ft. |                                                                        |                                   |                   |
| +                                                   |           | 6 -             |                  |          |                |              |             | 5 n.         | Notes:                                                                 |                                   | 6 -               |
|                                                     |           |                 |                  |          |                |              |             |              | Bedrock encountered at 5.0 feet                                        |                                   | -                 |
| F                                                   |           | 7 -             |                  |          |                |              |             |              |                                                                        |                                   | 7 -               |
|                                                     |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| F                                                   |           | 8 -             |                  |          |                |              |             |              |                                                                        |                                   | 8 -               |
| L                                                   |           | 9 -             |                  |          |                |              |             |              |                                                                        |                                   | 9 -               |
|                                                     |           | -               |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| ┝                                                   |           | 10 -            |                  |          |                |              |             |              |                                                                        |                                   | 10 -              |
|                                                     |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| F                                                   |           | 11 -            |                  |          |                |              |             |              |                                                                        |                                   | 11 -              |
| L                                                   |           | 12 -            |                  |          |                |              |             |              |                                                                        |                                   | 12 -              |
|                                                     |           |                 |                  |          |                |              |             |              |                                                                        |                                   |                   |
| ┝                                                   |           | 13 -            |                  |          |                |              |             |              |                                                                        |                                   | 13 -              |
|                                                     |           |                 |                  |          |                |              |             |              |                                                                        |                                   |                   |
| F                                                   |           | 14 -            |                  |          |                |              |             |              |                                                                        |                                   | 14 -              |
| L                                                   |           | 15 -            |                  |          |                |              |             |              |                                                                        |                                   | 15 -              |
|                                                     |           | 1.5             |                  |          |                |              |             |              |                                                                        |                                   | 15                |
| ╞                                                   |           | 16 -            |                  |          |                |              |             |              |                                                                        |                                   | 16 -              |
|                                                     |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| F                                                   |           | 17 -            |                  |          |                |              |             |              |                                                                        |                                   | 17 -              |
| 8                                                   |           | 18 -            |                  |          |                |              |             |              |                                                                        |                                   | 18 -              |
| 8/29/                                               |           | 10              |                  |          |                |              |             |              |                                                                        |                                   | 10                |
| 5-                                                  |           | 19 -            |                  |          |                |              |             |              |                                                                        |                                   | 19 -              |
| G.G.                                                |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| <u> </u>                                            | 1         | 20 -            |                  |          |                |              |             |              |                                                                        |                                   | 20 -              |
| 1.60                                                |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
|                                                     |           | 21 -            |                  |          |                |              |             |              |                                                                        |                                   | 21 -              |
| E.                                                  |           | 22 -            |                  |          |                |              |             |              |                                                                        |                                   | 22 -              |
| 2209                                                |           |                 |                  |          |                |              |             |              |                                                                        |                                   |                   |
| 053-                                                |           | 23 -            |                  |          |                |              |             |              |                                                                        |                                   | 23 -              |
| ΗT                                                  |           |                 |                  |          |                |              |             |              |                                                                        |                                   | -                 |
| EST                                                 |           | 24 -            |                  |          |                |              |             |              |                                                                        |                                   | 24 -              |
| LOG OF TEST PIT 053-2209.GPU DUL.GOLDER.GDT 8/29/06 | ,         | 25 —            |                  |          |                |              |             |              |                                                                        |                                   | 25 -              |
| 8                                                   |           |                 |                  |          | 1              | 1            | <u> </u>    | I            | CHECK                                                                  | ED. DV                            |                   |
|                                                     |           |                 |                  |          |                |              |             |              | CHECK                                                                  | DP                                |                   |

|            | <b>A</b> G                             | lder                                            |        |               |              |                           | LOG OF TEST TRENCH                                                                                  | Sheet Number 1 of 1      |
|------------|----------------------------------------|-------------------------------------------------|--------|---------------|--------------|---------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|
| Stati      | _                                      | <b>Der Der Der Der Der Der Der Der Der Der </b> |        | 5274320N 57   | Ρ            | rojec                     |                                                                                                     | _ Date Begin<br>Date End |
| Equi       | ipment Type                            | e 690 E                                         | LC     | 527452014, 57 |              |                           | Weather                                                                                             |                          |
| Gold       | der Staff M                            | 1. Krzewir                                      |        | le Data       |              | F                         | eld Crew R. Radotich<br>Ground Water Data                                                           |                          |
| Method     | Depth in (Feet)                        | Method                                          | Number |               | Loc. Sampled | Water Level<br>Soil Graph | Depth in (ft.)                                                                                      |                          |
|            | 0                                      |                                                 |        |               |              |                           | 0.0 - 0.5                                                                                           | TERIAL 0                 |
| on i i     |                                        | GRAB                                            | _      |               |              |                           | <u>Topsoil</u><br>0.5 - 4.0<br>Moist, reddish-brown, silty SAND with gravel, little to some<br>(SM) | 1                        |
| Excavation | 4 -<br>5 -<br>6 -<br>7 -<br>8 -<br>9 - | GRAB                                            | 7      |               |              |                           | 4.0 - 9.0<br>Moist to wet, grayish-brown, silty SAND with gravel, little t<br>boulders<br>(SM)      |                          |
| -          | 10 -                                   |                                                 |        |               |              | BOI<br>9 ft               | Notes:<br>Bedrock encountered at 9.0 feet                                                           | 10                       |
| -          | 11 -<br>12 -                           |                                                 |        |               |              |                           |                                                                                                     | 11                       |
| -          | 13 -<br>14 -                           |                                                 |        |               |              |                           |                                                                                                     | 13<br>14                 |
| -          | 15 -                                   |                                                 |        |               |              |                           |                                                                                                     | 15                       |
| -          | 16 -                                   |                                                 |        |               |              |                           |                                                                                                     | 16                       |
|            | 17 -<br>18 -                           |                                                 |        |               |              |                           |                                                                                                     | 17                       |
|            | 19 -                                   |                                                 |        |               |              |                           |                                                                                                     | 19                       |
| -          | 20 -                                   |                                                 |        |               |              |                           |                                                                                                     | 20                       |
| -          | 21 -<br>22 -                           |                                                 |        |               |              |                           |                                                                                                     | 21<br>22                 |
| _          | 22 - 23 -                              |                                                 |        |               |              |                           |                                                                                                     | 22 23                    |
| -          | 24 -                                   |                                                 |        |               |              |                           |                                                                                                     | 24                       |
|            | 25                                     |                                                 |        |               |              |                           | CHECK                                                                                               | 25<br>ED: DATE:          |

|            | G               | older<br>sociates |         |          |         |             |                 | LOG OF TEST TRENCH                                            | S                               | Sheet Number 1 of 1 |
|------------|-----------------|-------------------|---------|----------|---------|-------------|-----------------|---------------------------------------------------------------|---------------------------------|---------------------|
|            |                 | sociates          | 5       |          |         |             |                 |                                                               | Test Pit Number                 | G06-TP14            |
|            |                 |                   |         |          |         | Pro         | ject            | POLYMET                                                       | Total Depth                     | 3.5 feet            |
|            |                 |                   |         |          |         | Pro         | oject           | Number 053-2209                                               |                                 | 4/17/06             |
| St         | ation / Locat   | tion Eas          | st Area | 5274271N | 5793    | 2101        | R               | Offset from Center Line                                       | Date End<br>Elevation Reference | 4/1//06             |
|            | uipment Ty      |                   |         |          |         |             |                 | Weather                                                       |                                 |                     |
|            | older Staff     |                   | nski    |          |         |             |                 | eld Crew R. Radotich                                          |                                 |                     |
|            |                 |                   | Samp    | ole Data |         |             |                 | Ground Water Data                                             |                                 |                     |
|            | eet)            |                   |         |          | l p     |             |                 | Time                                                          |                                 |                     |
|            | n (Fe           | _                 | -       |          | Sampled | -evel       | aph             | Date                                                          |                                 |                     |
| Method     | Depth in (Feet) | Method            | Number  |          | Loc. Sa | Water Level | Soil Graph      | Symbol                                                        |                                 |                     |
| ž          |                 | ž                 | ž       |          | 2       | 3           | Ň               | SUBSURFACE MA                                                 | TERIAL                          |                     |
|            | 0               |                   |         |          |         |             | <u>×' '//</u> . | 0.0 - 0.5                                                     |                                 | 0 -                 |
| _ =        |                 |                   |         |          |         |             | Æ               | Topsoil<br>0.5 - 3.5                                          |                                 | ſ                   |
| Excavation | -               | В                 |         |          |         |             | r. 2            | Wet, reddish-brown, silty SAND, little gravel, some silt, few | v cobbles                       | -                   |
| - Lav      | 2 -             | GRAB              | -       |          |         |             | · 0<br>·/       | (SM)                                                          |                                 | 2 -                 |
| E          |                 | 0                 |         |          |         |             | 0               |                                                               |                                 | -                   |
|            | 3 -             |                   |         |          |         |             | / 6             |                                                               |                                 | 3 -                 |
| F          | 4 -             |                   |         |          |         |             | BOH<br>3.5 ft.  |                                                               |                                 | 4 -                 |
|            |                 |                   |         |          |         |             |                 | Notes:<br>Bedrock encountered at 3.5 feet                     |                                 | -                   |
| F          | 5 -             |                   |         |          |         |             |                 | Bedrock encountered at 5.5 reet                               |                                 | 5 -                 |
| F          | 6 -             |                   |         |          |         |             |                 |                                                               |                                 | 6 -                 |
|            |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| F          | 7 -             |                   |         |          |         |             |                 |                                                               |                                 | 7 -                 |
| L          | 8 -             |                   |         |          |         |             |                 |                                                               |                                 | 8 -                 |
|            | 0               |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| F          | 9 -             |                   |         |          |         |             |                 |                                                               |                                 | 9 -                 |
|            | 10              |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| Γ          | 10 -            |                   |         |          |         |             |                 |                                                               |                                 | 10 -                |
| F          | 11 -            |                   |         |          |         |             |                 |                                                               |                                 | 11 -                |
|            |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| F          | 12 -            |                   |         |          |         |             |                 |                                                               |                                 | 12 -                |
| F          | 13 -            |                   |         |          |         |             |                 |                                                               |                                 | 13 -                |
|            |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| F          | 14 -            |                   |         |          |         |             |                 |                                                               |                                 | 14 -                |
| L          | 15 -            |                   |         |          |         |             |                 |                                                               |                                 | 15 -                |
|            |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| F          | 16 -            |                   |         |          |         |             |                 |                                                               |                                 | 16 -                |
| L          | 17 -            |                   |         |          |         |             |                 |                                                               |                                 | - 17                |
|            | 17              |                   |         |          |         |             |                 |                                                               |                                 | - 17                |
| 90/6       | 18 -            |                   |         |          |         |             |                 |                                                               |                                 | 18 -                |
| T 8/2      | 10              |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| 9          | 19 -            |                   |         |          |         |             |                 |                                                               |                                 | 19 -                |
| Щ-         | 20 -            |                   |         |          |         |             |                 |                                                               |                                 | 20 -                |
| 00         |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
|            | 21 -            |                   |         |          |         |             |                 |                                                               |                                 | 21 -                |
|            | 22 -            |                   |         |          |         |             |                 |                                                               |                                 | 22 -                |
| -2209      |                 |                   |         |          |         |             |                 |                                                               |                                 | -                   |
| 053-       | 23 -            |                   |         |          |         |             |                 |                                                               |                                 | 23 -                |
|            | 24 -            |                   |         |          |         |             |                 |                                                               |                                 | 24 -                |
| TES        |                 |                   |         |          |         |             |                 |                                                               |                                 | 24 -                |
| 5          | 25              |                   |         |          |         |             |                 |                                                               |                                 | 25 -                |
| ğ          |                 |                   |         |          |         |             |                 | CHECK                                                         | (ED: [                          | DATE:               |

|                  | Â                   | Gal  | dar           |        |                |         |             |              | LOG OF TEST TRENCH                                                                   | Sheet Nu                          | Imber 1 of 1 |
|------------------|---------------------|------|---------------|--------|----------------|---------|-------------|--------------|--------------------------------------------------------------------------------------|-----------------------------------|--------------|
|                  |                     |      | der<br>ciates | 6      |                |         |             |              |                                                                                      | Test Pit NumberG0                 | 06-TP15      |
|                  |                     |      |               |        |                |         |             | ject         | POLYMET                                                                              | Total Depth11.5 t                 |              |
|                  |                     |      |               |        |                | F       | Pro         | ject         | Number 053-2209                                                                      | Date Begin4/17/<br>Date End4/17/0 | / <u>06</u>  |
|                  |                     |      |               |        | ction Area, 52 | 2741    | 431         | N, 5′        | 8799E Offset from Center Line                                                        | Elevation Reference               |              |
|                  | ipment <sup>-</sup> |      |               |        |                |         |             |              | Weather                                                                              |                                   |              |
| Gold             | der Staf            | I M. | Krzewin       |        | le Data        |         |             | Г            | Ground Water Data                                                                    |                                   |              |
|                  | Ę.                  |      |               |        |                |         |             |              | Depth in (ft.)         5           Time         09:40                                |                                   |              |
|                  | (Fee                |      |               |        |                | Sampled | evel        | hd           | Date 4/17/06                                                                         |                                   |              |
| Method           | Depth in (Feet)     |      | Method        | Number |                | c. Sar  | Water Level | Soil Graph   | Symbol <b>Y</b>                                                                      |                                   |              |
| ž                |                     |      | Ň             | ž      |                | Loc.    | Ň           | So           | SUBSURFACE M/                                                                        | ATERIAL                           |              |
| -                | 0 +                 |      |               |        |                |         |             | <u>×1 /v</u> | 0.0 - 1.0                                                                            |                                   | 0 ·          |
| F                | 1 -                 |      |               |        |                |         |             | <u>//</u>    | Topsoil<br>1.0 - 4.0                                                                 |                                   | 1            |
|                  |                     |      |               |        |                |         |             | 1            | Moist, brown, silty SAND with gravel, some gravel, some s                            | silt                              | 2            |
| [                |                     |      | GRAB          | -      |                |         |             | 10           | (SM)                                                                                 |                                   | 2 ·          |
| F                | 3 -                 |      | G             |        |                |         |             | 0            |                                                                                      |                                   | 3 ·          |
| L                | 4                   |      |               |        |                | Ш       |             | / /          |                                                                                      |                                   | <u> </u>     |
|                  | .                   |      |               |        |                |         |             | Ø            | 4.0 - 11.5<br>Moist, grayish-brown, silty SAND with little gravel, little to<br>(SM) | o some silt, cobbles and boulders | s .          |
| Excavation       | 5 -                 |      |               |        |                |         | Ţ           | / /          | (SM)                                                                                 | ,                                 | 5 -          |
| cava             | 6 -                 |      |               |        |                |         |             | /            |                                                                                      |                                   | 6 -          |
| EX               |                     |      |               |        |                |         |             | / 2          |                                                                                      |                                   | _            |
| -                |                     |      | GRAB          | 5      |                |         |             |              |                                                                                      |                                   | 7 ·          |
|                  | 8 -                 |      | IJ            |        |                |         |             |              |                                                                                      |                                   | 8 ·<br>9 ·   |
|                  | 10                  |      |               |        |                |         |             | ,r<br>je     |                                                                                      |                                   | 9 ·<br>10 ·  |
|                  | 11 -                |      |               |        |                |         |             | ,<br>No.     |                                                                                      |                                   | 11 -         |
| -                | 12 -                |      |               |        |                |         |             | ВОН<br>1.5 f |                                                                                      |                                   | 12 -         |
| -                | 13 -                |      |               |        |                |         |             |              | Notes:<br>Bedrock encountered at 11.5 feet                                           |                                   | 13 -         |
| -                | 14 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 14 -         |
| -                | 15 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 15 -         |
| ╞                | 16 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 16           |
| -                | 17 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 17 ·         |
| ╞                | 18 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 18 -         |
| -                | 19 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 19 -         |
| F                | 20 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 20 ·         |
| -<br>-<br>-<br>- | 21 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 21 ·         |
| F                | 22 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 22 -         |
| F                | 23 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 23           |
| F                | 24 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 24 ·         |
|                  | 25 -                |      |               |        |                |         |             |              |                                                                                      |                                   | 25 ·         |
| L                |                     |      |               |        |                |         |             |              | CHEC                                                                                 | KED: DATE:                        |              |

#### **APPENDIX B**

#### SIEVE ANALYSES ONE-DIMENSIONAL CONSOLIDATION TRIAXIAL SHEAR TEST REPORT MOISTURE DENSITY RELATIONSHIPS PERMEABILITY TEST DATA

#### BRAUN INTERTEC REVISED Braun Intertec Corporation Phone: 218.263.8869 3404 15th Ave East 218.263.6700 Fax: Suite 2 Web: braunintertec.com Hibbing, MN 55746 Sieve Analysis of Aggregate Sample **AASHTO T27 & T11** Date: August 28, 2006 Project No.: HB-06-01173 Client: Ms. Amy C. Smith, PE Project Description: Test Pit Senior Engineer, Manager Duluth Operations Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002) Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811 Field Data: Braun Sample No .: 6 Date Sampled: N/A Date Received: 4-19-06 Date Tested: 4-26-06

Classification: SM-SILTY SAND, fine to medium grained, with GRAVEL, brown

Sample Location: TP #1, Sample #2, 3'-12'

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 89               |
| #4         | 82               |
| #10        | 74               |
| #20        | 64               |
| #40        | 55               |
| #100       | 39               |
| #200       | 28.6             |

**Remarks:** Natural moisture content = 7.7%

Mark W. Gothard

Project Manager

#### BRAUN INTERTEC REVISED Braun Intertec Corporation Phone: 218.263.8869 3404 15th Ave East Fax: 218.263.6700 Suite 2 Web: braunintertec.com Hibbing, MN 55746 Sieve Analysis of Aggregate Sample **AASHTO T27 & T11** Date: August 28, 2006 Project No.: HB-06-01173 Client: Ms. Amy C. Smith, PE Project Description: Test Pit Samples, Hoyt Lakes, Minnesota Senior Engineer, Manager Duluth Operations (Golder Project # 053-2209.002) Golder Associates, Inc.

#### Field Data:

| Braun Sample No.: | 7                                                                          |
|-------------------|----------------------------------------------------------------------------|
| Date Sampled:     | N/A                                                                        |
| Date Received:    | 4-19-06                                                                    |
| Date Tested:      | 4-27-06                                                                    |
| Classification:   | SM– SILTY SAND, very fine to fine grained, with some Gravel, grayish brown |

Sample Location: TP #1, Sample #3, 12'-20'

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 91               |
| #4         | 87               |
| #10        | 80               |
| #20        | 72               |
| #40        | 64               |
| #100       | 48               |
| #200       | 37.5             |

**Remarks:** Natural moisture content = 8.5%

Mark'W. Gothard

Project Manager

# BRAUN REVISED Braun Intertec Corporation Sieve Analysis of Aggregate Sample AASHTO T27 & T11

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE Senior Engineer, Manager Duluth Operations Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811

**Project Description:** Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

#### Field Data:

Date:

August 28, 2006

| Braun Sample No.: | 13                                   |
|-------------------|--------------------------------------|
| Date Sampled:     | N/A                                  |
| Date Received:    | 4-19-06                              |
| Date Tested:      | 4-28-06                              |
| Classification:   | SM – SILTY SAND, fine grained, brown |

Sample Location: TP #2, Sample #3, 9'-13'

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 98               |
| #4         | 96               |
| #10        | 89               |
| #20        | 79               |
| #40        | 69               |
| #100       | 49               |
| #200       | 35.6             |

**Remarks:** Natural moisture content = 16.5%

Mark W. Gothard

Project Manager

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 22, 2006

Client Ms. Amy C. Thorson, PE
Senior Engineer, Manager Duluth Operations Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811 Project No.: HB-06-01173

Braun Intertec Corporation

3404 15th Ave East

Hibbing, MN 55746

Suite 2

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

# REVISED

Braun Sample No.: 4

**Field Data:** 

Date Sampled: N/A

Date Received: 4-19-06

Date Tested: 4-26-06

Classification: SM – SILTY SAND, fine- to medium-grained, brown

Sample Location: TP #4, Sample #1, 1/2'-4 1/2'

Laboratory Results:

| Sieve Size | % Passing |
|------------|-----------|
| 3/4"       | 100       |
| 3/8"       | 98        |
| #4         | 92        |
| #10        | 83        |
| #20        | 72        |
| #40        | 62        |
| #100       | 44        |
| #200       | 31.3      |
| D I M I    | 0         |

Remarks: Natural moisture content = 7.2% LL=7, PL=7, PI=0

au W.

Mark W. Gothard, PE Project Manager

## BRAUN INTERTEC REVISED

Sieve Analysis of Aggregate Sample AASHTO T27 & T11 **Braun Intertec Corporation** 3404 15th Ave East Suite 2 . Hibbing, MN 55746 
 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

| Date:   | August 28, 2006                                                                                                                                         | Project No.: HB-06-01173                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Client: | Ms. Amy C. Smith, PE<br>Senior Engineer, Manager Duluth Operations<br>Golder Associates, Inc.<br>1346 West Arrowhead Road, Box #304<br>Duluth, MN 55811 | <b>Project Description:</b> Test Pit<br>Samples, Hoyt Lakes, Minnesota<br>(Golder Project # 053-2209.002) |

#### Field Data:

| Braun Sample No.: | 2                                                                  |
|-------------------|--------------------------------------------------------------------|
| Date Sampled:     | N/A                                                                |
| Date Received:    | 4-19-06                                                            |
| Date Tested:      | 4-25-06                                                            |
| Classification:   | SM – SILTY SAND, fine grained, with a little Gravel, grayish brown |
| Sample Location:  | TP #4, Sample #2, 4 1/2-13 1/2'                                    |

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 94               |
| #4         | 89               |
| #10        | 82               |
| #20-       | 73               |
| #40        | 65               |
| #100       | 49               |
| #200       | 39.3             |

**Remarks:** Natural moisture content = 7.2%

Mark W. Gothard

Project Manager

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

**Project No.:** HB-06-01173

| <b>Client:</b>                     | Ms. Amy C. Smith, PE                       | Project Description: Test Pit   |
|------------------------------------|--------------------------------------------|---------------------------------|
|                                    | Senior Engineer, Manager Duluth Operations | Samples, Hoyt Lakes, Minnesota  |
|                                    | Golder Associates, Inc.                    | (Golder Project # 053-2209.002) |
| 1346 West Arrowhead Road, Box #304 |                                            |                                 |
|                                    | Duluth, MN 55811                           |                                 |
|                                    |                                            |                                 |

#### Field Data:

| Braun Sample No.: | 8                                                         |
|-------------------|-----------------------------------------------------------|
| Date Sampled:     | N/A                                                       |
| Date Received:    | 4-19-06                                                   |
| Date Tested:      | 4-27-06                                                   |
| Classification:   | CL – SANDY LEAN CLAY, with a little gravel, grayish brown |
| Sample Location:  | TP #5, Sample #1, 0.5'-4'                                 |

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 93               |
| #4         | 87               |
| #10        | 81               |
| #20        | 75               |
| #40        | 69               |
| #100       | 61               |
| #200       | 51.4             |

Remarks: Natural moisture content = 10.1%, LL=25, PL=16, PI=9

an Horles Mark W. Gothard

Project Manager

### BRAUN INTERTEC REVISED

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 28, 2006

**Braun Intertec Corporation** 3404 15th Ave East Suite 2 Hibbing, MN 55746 
 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Project No.: HB-06-01173

Client:Ms. Amy C. Smith, PEProject Description: Test PitSenior Engineer, Manager Duluth OperationsSamples, Hoyt Lakes, MinnesotaGolder Associates, Inc.Golder Project # 053-2209.002)1346 West Arrowhead Road, Box #304Duluth, MN 55811

#### Field Data:

| Braun Sample No.: | 14                                  |
|-------------------|-------------------------------------|
| Date Sampled:     | N/A                                 |
| Date Received:    | 4-19-06                             |
| Date Tested:      | 4-28-06                             |
| Classification:   | SM - SILTY SAND, fine grained, gray |
| Sample Location:  | TP #5, Sample #3, 6'-14'            |

#### Laboratory Results:

| Sieve Size | % Passing |
|------------|-----------|
| 3/4"       | 100       |
| 3/8"       | 100       |
| #4         | 99        |
| #10        | 96        |
| #20        | 89        |
| #40        | 80        |
| #100       | 62        |
| #200       | 47.0      |

**Remarks:** Natural moisture content = 12.2%

Mark W. Gothard

Project Manager

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

**Project No.:** HB-06-01173

Client: Ms. Amy C. Smith, PE Senior Engineer, Manager Duluth Operations Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811 **Project Description:** Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

#### Field Data:

| Braun Sample No.: | 10                        |
|-------------------|---------------------------|
| Date Sampled:     | N/A                       |
| Date Received:    | 4-19-06                   |
| Date Tested:      | 4-27-06                   |
| Classification:   | ML-S – SANDY SILT, gray   |
| Sample Location:  | TP #6, Sample #2, 15'-20' |

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 100              |
| #4         | 100              |
| #10        | 99               |
| #20        | 96               |
| #40        | 90               |
| #100       | 69               |
| #200       | 51.7             |

**Remarks:** Natural moisture content = 13.0%

Mark W. Gothard

Project Manager

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

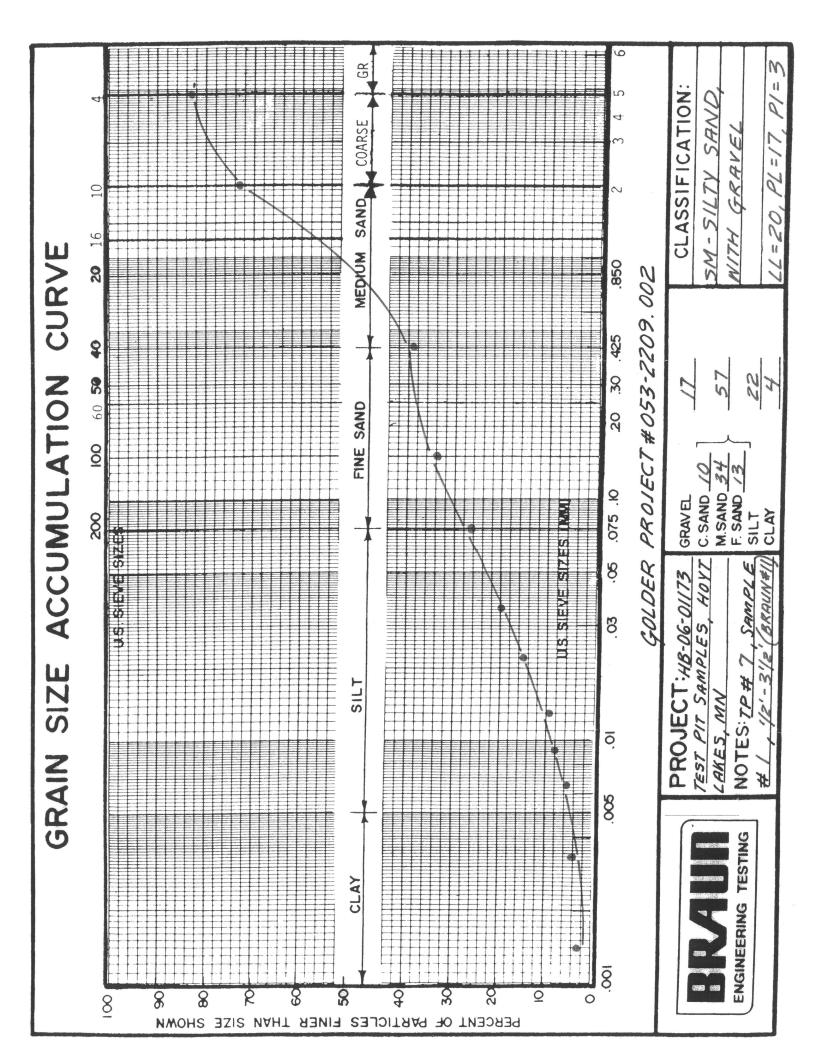
Date: April 28, 2006

**Project No.:** HB-06-01173

Client: Ms. Amy C. Smith, PE Senior Engineer, Manager Duluth Operations Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811 **Project Description:** Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

#### Field Data:

| Braun Sample No.: | 11                                                          |
|-------------------|-------------------------------------------------------------|
| Date Sampled:     | N/A                                                         |
| Date Received:    | 4-19-06                                                     |
| Date Tested:      | 4-27-06                                                     |
| Classification:   | SM – SILTY SAND, fine to medium grained, with GRAVEL, brown |
| Sample Location:  | TP #7, Sample #1, 0.5'-3.5'                                 |


#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 92               |
| #4         | 83               |
| #10        | 73               |
| #20        | 60               |
| #40        | 39               |
| #100       | 34               |
| #200       | 26.5             |

**Remarks:** Natural moisture content = 12.4%

ac. Jack Mark W. Gothard

Project Manager



 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

**Project No.:** HB-06-01173

| <b>Client:</b> | Ms. Amy C. Smith, PE                       | Project Description: Test Pit   |
|----------------|--------------------------------------------|---------------------------------|
|                | Senior Engineer, Manager Duluth Operations | Samples, Hoyt Lakes, Minnesota  |
|                | Golder Associates, Inc.                    | (Golder Project # 053-2209.002) |
|                | 1346 West Arrowhead Road, Box #304         |                                 |
|                | Duluth, MN 55811                           |                                 |

#### Field Data:

| Braun Sample No.: | 1                                                                   |
|-------------------|---------------------------------------------------------------------|
| Date Sampled:     | N/A                                                                 |
| Date Received:    | 4-19-06                                                             |
| Date Tested:      | 4-25-06                                                             |
| Classification:   | SP – POORLY GRADED SAND, fine to coarse grained, with GRAVEL, brown |

Sample Location: TP #8, Sample #2, 2-4 1/2'

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 71               |
| #4         | 60               |
| #10        | 47               |
| #20        | 24               |
| #40        | 13               |
| #100       | 4                |
| #200       | 1.8              |

**Remarks:** Natural moisture content = 7.3%

w.

Mark W. Gothard Project Manager

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

**Project No.:** HB-06-01173

| <b>Client:</b> | Ms. Amy C. Smith, PE                       | Project Description: Test Pit   |
|----------------|--------------------------------------------|---------------------------------|
|                | Senior Engineer, Manager Duluth Operations | Samples, Hoyt Lakes, Minnesota  |
|                | Golder Associates, Inc.                    | (Golder Project # 053-2209.002) |
|                | 1346 West Arrowhead Road, Box #304         |                                 |
|                | Duluth, MN 55811                           |                                 |

#### Field Data:

| Braun Sample No.: | 3                                                                    |
|-------------------|----------------------------------------------------------------------|
| Date Sampled:     | N/A                                                                  |
| Date Received:    | 4-19-06                                                              |
| Date Tested:      | 4-26-06                                                              |
| Classification:   | SM – SILTY SAND, fine to coarse grained, with a little Gravel, brown |

Sample Location: TP #11, Sample #2, 3'-6'

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 97               |
| #4         | 90               |
| #10        | 77               |
| #20        | 68               |
| #40        | 52               |
| #100       | 34               |
| #200       | 23.9             |

**Remarks:** Natural moisture content = 21.5%

Johns alv.

Mark W. Gothard Project Manager

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 22, 2006

Client Ms. Amy C. Thorson, PE
Senior Engineer, Manager Duluth Operations Golder Associates, Inc. 1346 West Arrowhead Road, Box #304 Duluth, MN 55811

## Project No.: HB-06-01173

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

## REVISED

Braun Sample No.: 5

**Field Data:** 

Date Sampled: N/A

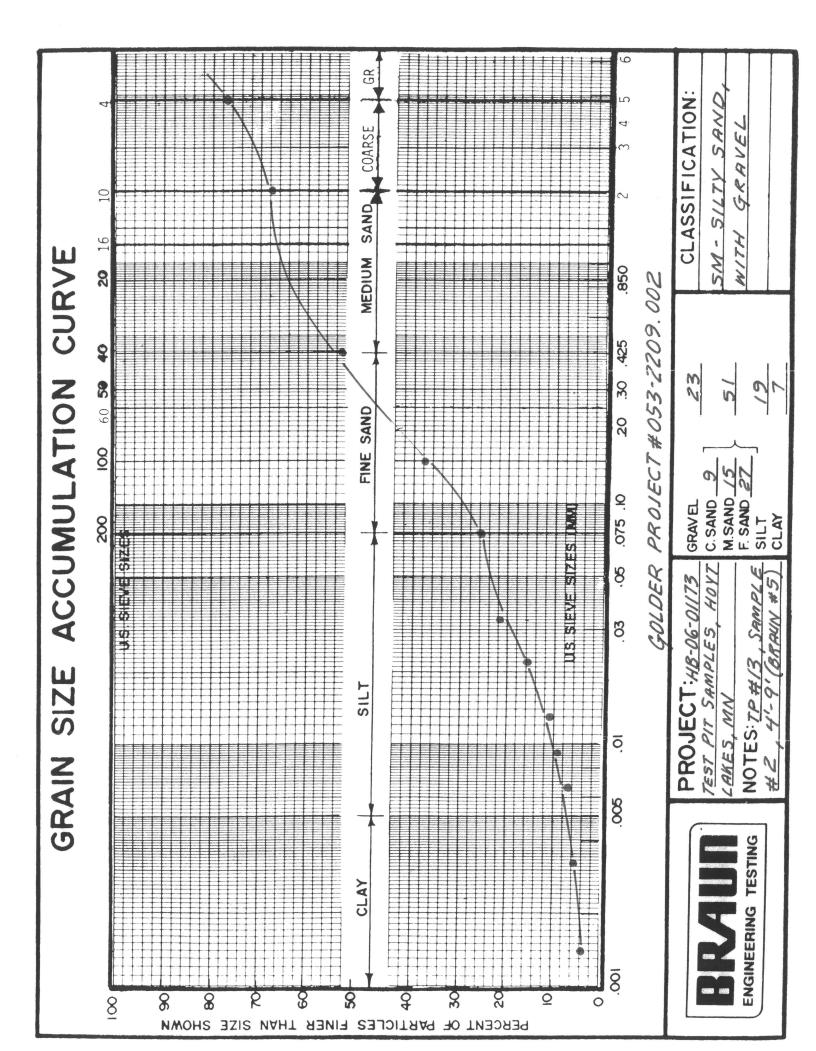
Date Received: 4-19-06

Date Tested: 4-26-06

Classification: SM– SILTY SAND, fine to medium grained, with GRAVEL, brown

Sample Location: TP #13, Sample #2, 4'-9'

#### Laboratory Results:


|          | Sieve Size                         | % Passing                              |  |  |
|----------|------------------------------------|----------------------------------------|--|--|
|          | 3/4"                               | 100                                    |  |  |
|          | 3/8"                               | 83                                     |  |  |
|          | #4                                 | 77                                     |  |  |
|          | #10                                | 68                                     |  |  |
|          | #20                                | 60                                     |  |  |
|          | #40                                | 53                                     |  |  |
|          | #100                               | 38                                     |  |  |
|          | #200                               | 26.0                                   |  |  |
| Remarks: | Natural moisture content = $8.0\%$ | AHAT                                   |  |  |
|          | LL=10, PL=8, PI=2                  | Mark W. Gothard, PE<br>Project Manager |  |  |

Braun Intertec Corporation 3404 15th Ave East Suite 2 Hibbing, MN 55746

 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com



# BRAUN REVISED

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 28, 2006

Braun Intertec Corporation 3404 15th Ave East Suite 2 Hibbing, MN 55746 
 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

#### **Project No.:** HB-06-01173

Client:Ms. Amy C. Smith, PEProject Description: Test PitSenior Engineer, Manager Duluth Operations<br/>Golder Associates, Inc.Samples, Hoyt Lakes, Minnesota<br/>(Golder Project # 053-2209.002)1346 West Arrowhead Road, Box #304<br/>Duluth, MN 55811Duluth, MN 55811

#### Field Data:

Braun Sample No.: 12 Date Sampled: N/A

Date Received: 4-19-06

Date Tested: 4-28-06

Classification: SM – SILTY SAND, fine grained, reddish brown

Sample Location: TP #14, Sample #1, 0.5'-3.5'

#### Laboratory Results:

| Sieve Size | % Passing |
|------------|-----------|
| 3/4"       | 100       |
| 3/8"       | 100       |
| #4         | 100       |
| #10        | 99        |
| #20        | 97        |
| #40        | 33        |
| #100       | 67        |
| #200       | 46.8      |

**Remarks:** Natural moisture content = 26.9%

Mark W. Gothard

Project Manager

# BRAUN REVISED

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 28, 2006

**Braun Interlec Corporation** 3404 15th Ave East Suite 2 Hibbing, MN 55746 
 Phone:
 218.263.8869

 Fax:
 218.263.6700

 Web:
 braunintertec.com

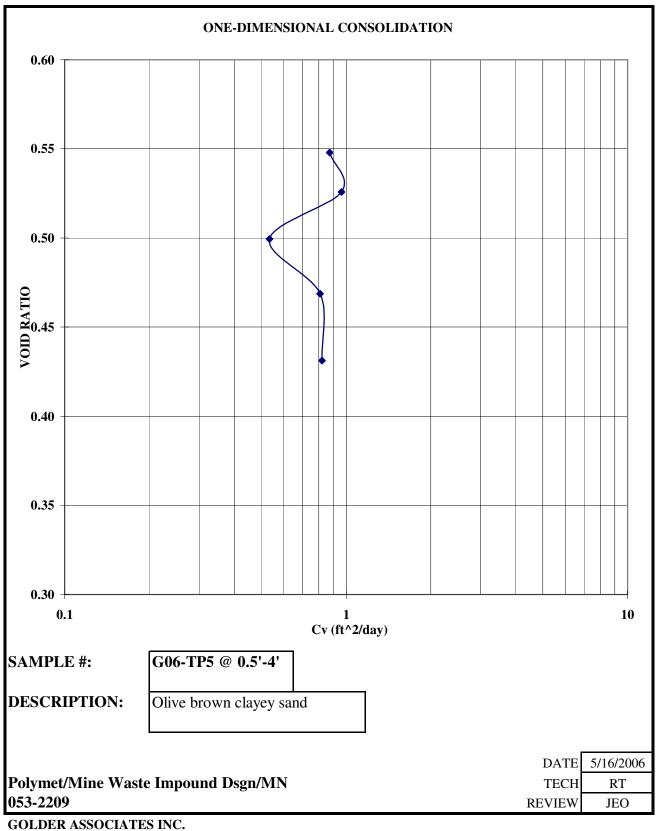
#### **Project No.:** HB-06-01173

Client:Ms. Amy C. Smith, PEProject DescrSenior Engineer, Manager Duluth OperationsSamples, HoyGolder Associates, Inc.Golder Project1346 West Arrowhead Road, Box #304Duluth, MN 55811

**Project Description:** Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

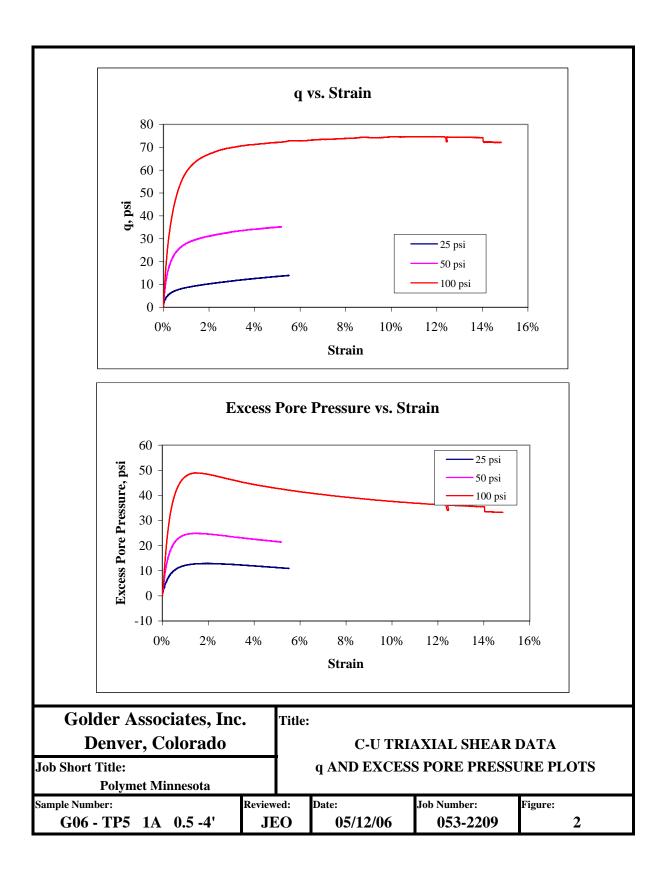
#### Field Data:

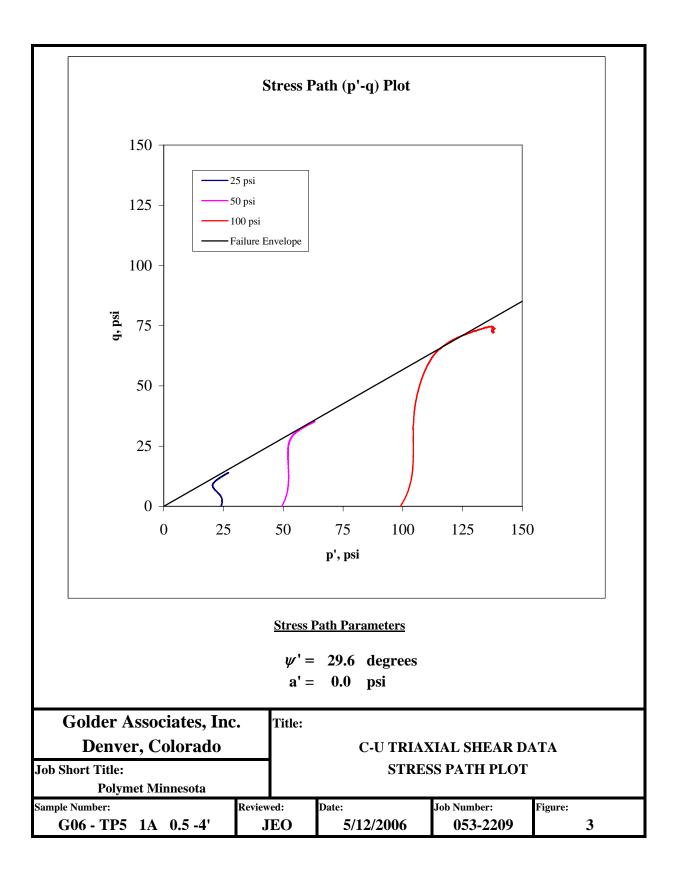
Braun Sample No.:9Date Sampled:N/ADate Received:4-19-06Date Tested:4-27-06Classification:SM -- SILTY SAND, fine to medium grained, with a little gravelSample Location:TP #15, Sample #2, 4'-11.5'

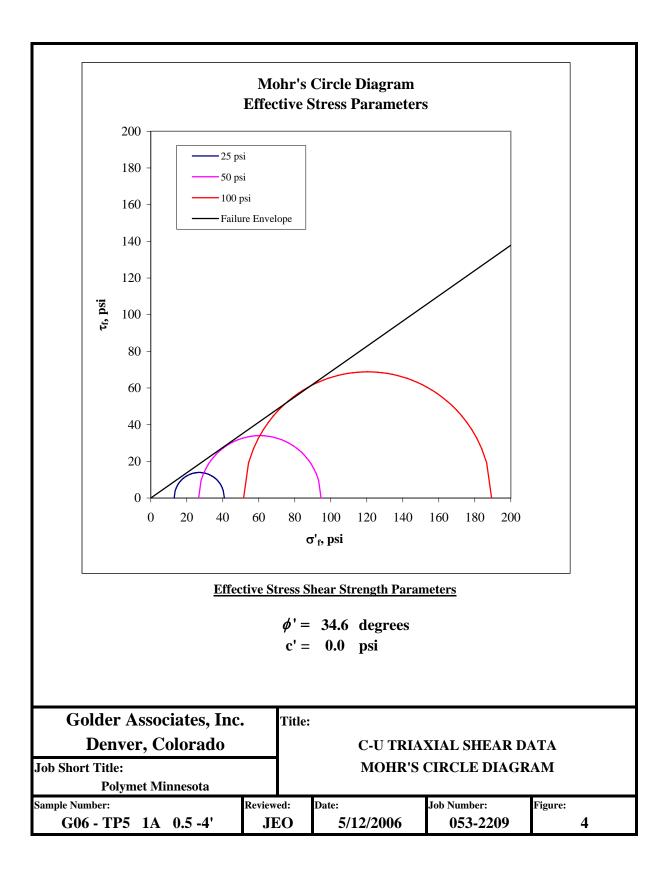

#### Laboratory Results:

| Sieve Size | <u>% Passing</u> |
|------------|------------------|
| 3/4"       | 100              |
| 3/8"       | 94               |
| #4         | 88               |
| #10        | 79               |
| #20        | 70               |
| #40        | 61               |
| #100       | 48               |
| #200       | 38.8             |

**Remarks:** Natural moisture content = 18.7%


Mark W. Gothard


Project Manager




LAKEWOOD, COLORADO

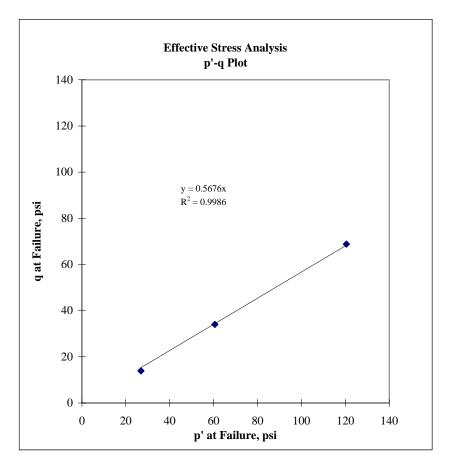
| Sample # =<br>Point # =                                                                                                                                            | G06-TP5<br>1                                                     |                                                                       | Sample # =<br>Point # =                                                                                                                       | G06-TP5<br>2                                                     |                                                                              |     | Sample # =<br>Point # =                                                                                                                      | G06-TP5<br>3                                                     |                                                                              |         |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------|---------|---|
| Length =<br>Diameter =<br>Wet Weight =                                                                                                                             | <b>Initial</b><br>14.73<br>7.22<br>1293.70                       | cm<br>cm<br>g                                                         | Length =<br>Diameter =<br>Wet Weight =                                                                                                        | <b>Initial</b><br>14.73<br>7.22<br>1293.70                       | cm<br>cm<br>g                                                                |     | Length =<br>Diameter =<br>Wet Weight =                                                                                                       | <b>Initial</b><br>14.73<br>7.22<br>1293.70                       | cm<br>cm<br>g                                                                |         |   |
| Area =<br>Sample Area =                                                                                                                                            | 40.9<br>6.35                                                     | $cm^2$<br>$in^2$                                                      | Area =<br>Sample Area =                                                                                                                       | 40.9<br>6.35                                                     | $cm^2$<br>$in^2$                                                             |     | Area =<br>Sample Area =                                                                                                                      | 40.9<br>6.35                                                     | $cm^2$<br>$in^2$                                                             |         |   |
| Volume =<br>Moisture Content =<br>Specific Gravity =<br>Dry Weight of Solids =<br>Wet Unit Weight =<br>Dry Unit Weight =<br>Wet Unit Weight =<br>Dry Unit Weight = | 603.1<br>17.3%<br>-<br>1102.90<br>2.15<br>1.83<br>133.9<br>114.1 | cm <sup>3</sup><br>g<br>g/cm <sup>3</sup><br>g/cm <sup>3</sup><br>pcf | Volume =<br>Moisture Content =<br>Specific Gravity =<br>Dry Weight of Solids =<br>Wet Unit Weight =<br>Dry Unit Weight =<br>Dry Unit Weight = | 603.1<br>17.3%<br>-<br>1102.90<br>2.15<br>1.83<br>133.9<br>114.1 | cm <sup>3</sup><br>g<br>g/cm <sup>3</sup><br>g/cm <sup>3</sup><br>pcf<br>pcf | D   | Volume =<br>Moisture Content =<br>Specific Gravity =<br>ry Weight of Solids =<br>Wet Unit Weight =<br>Dry Unit Weight =<br>Dry Unit Weight = | 603.1<br>17.3%<br>-<br>1102.90<br>2.15<br>1.83<br>133.9<br>114.1 | cm <sup>3</sup><br>g<br>g/cm <sup>3</sup><br>g/cm <sup>3</sup><br>pcf<br>pcf |         |   |
| Cell Pressure =<br>Back Pressure =<br>Confining Pressure =<br>Notes: Sample visua                                                                                  | 75<br>50<br>25<br>Ily describe                                   | psi<br>psi<br>psi                                                     | Cell Pressure =<br>Back Pressure =<br>Confining Pressure =<br>blive brown, sandy to very sandy, pa                                            | 100<br>50<br>50<br>rt clayey san                                 | psi<br>psi<br>psi<br>d. scattered                                            |     | Cell Pressure =<br>Back Pressure =<br>Confining Pressure =<br>and very dark gray cla                                                         | 150<br>50<br>100<br>vstone/shale                                 | psi<br>psi<br>psi<br>fragments                                               |         |   |
| Specimen wa                                                                                                                                                        | s undisturb<br>ed as maxin<br>as 0.05 mm                         | ed Shelby tu<br>num princip<br>/min.                                  |                                                                                                                                               |                                                                  | .,                                                                           |     |                                                                                                                                              | , , , , , , , , , , , , , , , , , , , ,                          |                                                                              |         |   |
| Golder Associat                                                                                                                                                    | <i>,</i>                                                         |                                                                       | Title:                                                                                                                                        |                                                                  |                                                                              |     |                                                                                                                                              |                                                                  |                                                                              |         |   |
| Denver, Colo<br>Job Short Title:<br>Polymet Minnes                                                                                                                 |                                                                  |                                                                       |                                                                                                                                               | S                                                                |                                                                              |     | R TEST REPORT                                                                                                                                | 5                                                                |                                                                              |         |   |
|                                                                                                                                                                    | G06 -                                                            | TP5 1A                                                                | 0.5 -4'                                                                                                                                       |                                                                  | Reviewed:<br>J                                                               | IEO | Date:<br>5/12/2006                                                                                                                           | Job Number:<br>053-1                                             | 2209                                                                         | Figure: | 1 |







#### Consolidated-Undrained Triaxial Lab Data


From: GOLDER ASSOCIATES, INC.

| Project:        | <b>Polymet Minnesota</b> |
|-----------------|--------------------------|
| Project Number: | 053-2209                 |

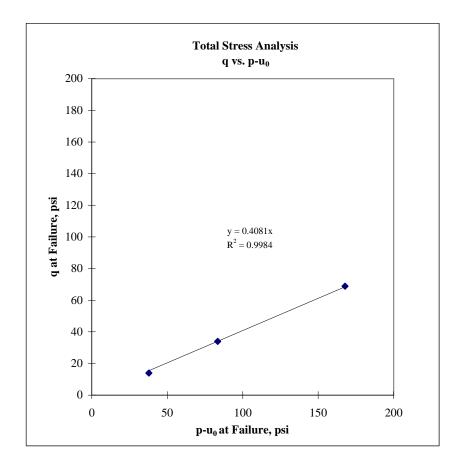
| Sample Number             | G06 - TP5 | 1A | 0.5 -4' |
|---------------------------|-----------|----|---------|
| Effective Stress Analysis |           |    |         |

| Point Number | p'    | q     |
|--------------|-------|-------|
|              | (psi) | (psi) |
| 1            | 26.9  | 13.9  |
| 2            | 60.6  | 34.0  |
| 3            | 120.4 | 68.8  |

| $tan(\psi') =$ | 0.5676 |         |
|----------------|--------|---------|
| a' =           | 0.0    | psi     |
| <b>φ'</b> =    | 34.6   | degrees |
| <b>c'</b> =    | 0.0    | psi     |



#### Consolidated-Undrained Triaxial Lab Data


From: GOLDER ASSOCIATES, INC.

| Project:        | <b>Polymet Minnesota</b> |
|-----------------|--------------------------|
| Project Number: | 053-2209                 |

| Sample Number         | G06 - TP5 1A 0.5 -4' |
|-----------------------|----------------------|
| Total Stress Analysis |                      |

| Point Number | p-u <sub>o</sub><br>(psi) | q<br>(psi) |
|--------------|---------------------------|------------|
| 1            | 37.9                      | 13.9       |
| 2            | 83.4                      | 34.0       |
| 3            | 167.8                     | 68.8       |

| $tan(\psi) =$ | 0.41<br>0.0 |         |
|---------------|-------------|---------|
| a =           | 0.0         | psi     |
| φ =           | 24.1        | degrees |
| <b>c</b> =    | 0.0         | psi     |



Consolidated-Undrained Triaxial Lab DataFrom: GOLDER ASSOCIATES, INC.Project:Polymet MinnesotaProject Number:053-2209

#### Mohr-Coulomb Failure Criteria:

$$\tau_{\rm ff} = c' + \sigma'_{\rm ff} \tan(\phi')$$
  
$$\tau_{\rm ff} = c + \sigma_{\rm ff} \tan(\phi)$$

Where:

c', c = effective and total stress cohesion intercepts

 $\phi$ ,  $\phi$  = effective and total stress friction angles

 $\tau_{\rm ff}$  = shear strength on the failure surface at failure

 $\sigma'_{\rm ff}$ ,  $\sigma_{\rm ff}$  = effective and total normal stresses on the failure surface at failure

#### **Stress Path Space:**

$$q = \frac{\sigma_1 - \sigma_3}{2}$$
  $p' = \frac{\sigma'_1 + \sigma'_3}{2}$   $p = \frac{\sigma_1 + \sigma_3}{2}$ 

Where:

q = maximum shear stress

p', p = mean effective and total stresses

 $\sigma_1$ ,  $\sigma_1$  = effective and total axial stresses

 $\sigma_3$ ,  $\sigma_3$  = effective and total confining stresses

#### **Stress Path Failure Criteria:**

$$q = a'+p'tan(\psi')$$
$$q = a + (p - u_0)tan(\psi)$$

Where:

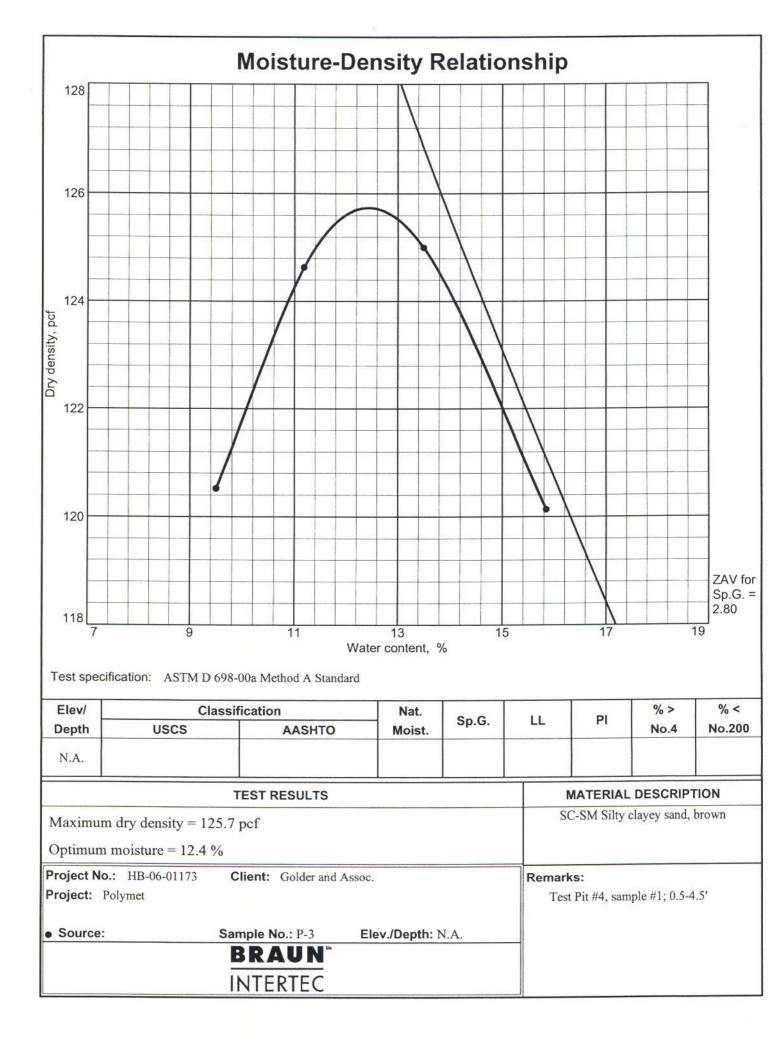
a', a = intercepts of the q-axis in effective stress and total stress spaces

 $\psi'$ ,  $\psi$  = angles of the failure envelopes in effective stress and total stress spaces

q = maximum shear stress at failure

p' = mean effective stress at failure

 $p-u_0 =$  mean total stress at failure minus the initial pore pressure


The relationships between  $\psi$  and  $\phi$  and a and c are as follows:

$$\tan(\psi) = \sin(\phi)$$
$$a = c \cos(\phi)$$

The relationships between  $\psi'$  and  $\phi'$  and a' and c' are as follows:

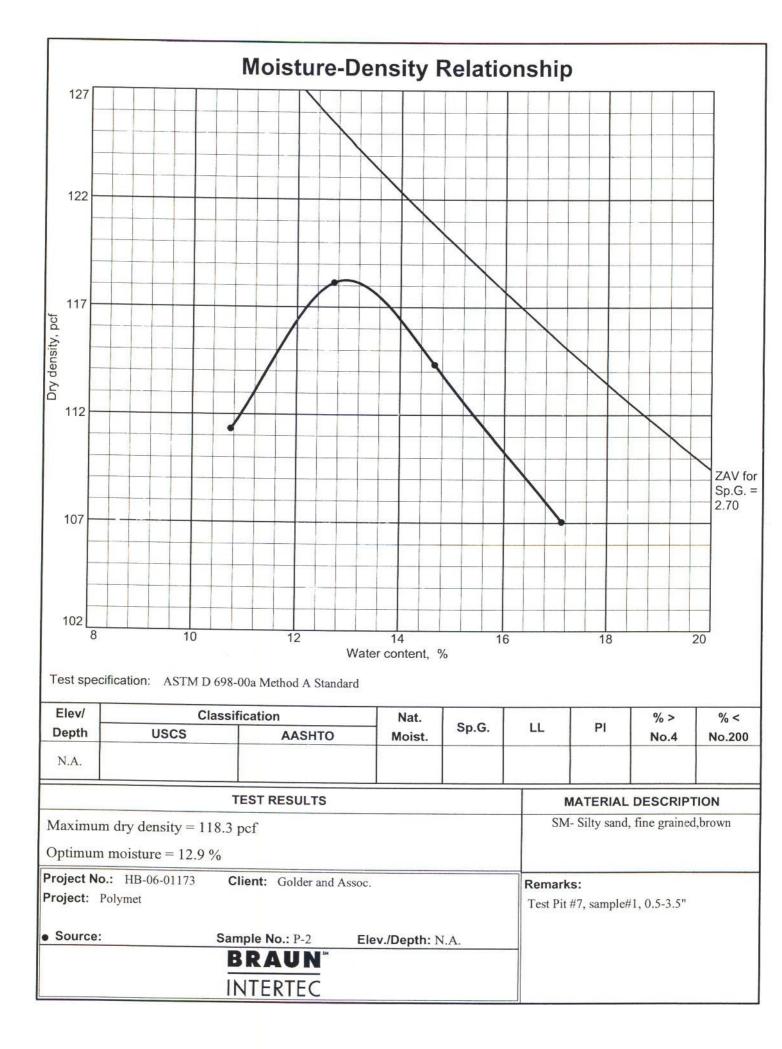
$$\tan(\psi') = \sin(\phi')$$
  
a' = c' cos(\phi')

8 Conton 1 9 IIII DINI 619 dithe 250 4 -0 ------# E 300 OR **BTHS** Staged Triaxial Shear Test **Boring Number** G06-TP5 Polymet/ Minnesota 053-2209 Sample Depth 0.5-4'



# BRAUN INTERTEC

## **Permeability Test Data**


| Date:<br>Client:             | August 11, 2006<br>Ms. Amy C. Thorson, PE, Senior En<br>Manager Duluth Operations<br>Golder Associates, Inc.<br>1346 West Arrowhead Road<br>Box #304<br>Duluth, MN 55811 | gineer Project: HB-06-01173<br>Project Description: Test Pit Samples, Hoy<br>Lakes, Minnesota<br>(Golder Project #053-2209.002) |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sample I<br>Date San         |                                                                                                                                                                          | 3<br>N/A                                                                                                                        |  |  |
|                              | Location:                                                                                                                                                                | TP #4, Sample #1, 0.5-4.5'                                                                                                      |  |  |
|                              | ssification:                                                                                                                                                             | SC-SM – Silty Clayey Sand, brown                                                                                                |  |  |
| Type of Test:                |                                                                                                                                                                          | Falling Head (ASTM D 5084)                                                                                                      |  |  |
| Standard                     | Proctor: Max. Density (pcf):                                                                                                                                             | 125.7                                                                                                                           |  |  |
|                              | Optimum Moisture (%):                                                                                                                                                    | 12.4                                                                                                                            |  |  |
| Density of                   | of Sample (pcf):                                                                                                                                                         | 119.4                                                                                                                           |  |  |
| Percent (                    | Compaction (%)                                                                                                                                                           | 95                                                                                                                              |  |  |
| Specimer                     | n Height (cm):                                                                                                                                                           | 3.99                                                                                                                            |  |  |
| Specimen Diameter (cm):      |                                                                                                                                                                          | 3.80                                                                                                                            |  |  |
| Max. Head Differential (ft): |                                                                                                                                                                          | 4.0                                                                                                                             |  |  |
| Confining                    | g Pressure (effective-psi):                                                                                                                                              | 2.0                                                                                                                             |  |  |
|                              | ent of Permeability:<br>C (cm/sec)                                                                                                                                       | $1.35 \times 10^{-7}$                                                                                                           |  |  |

Notes:

Respectfully Submitted, BRAUN INTERTEC CORPORATION

Gregory N Laine

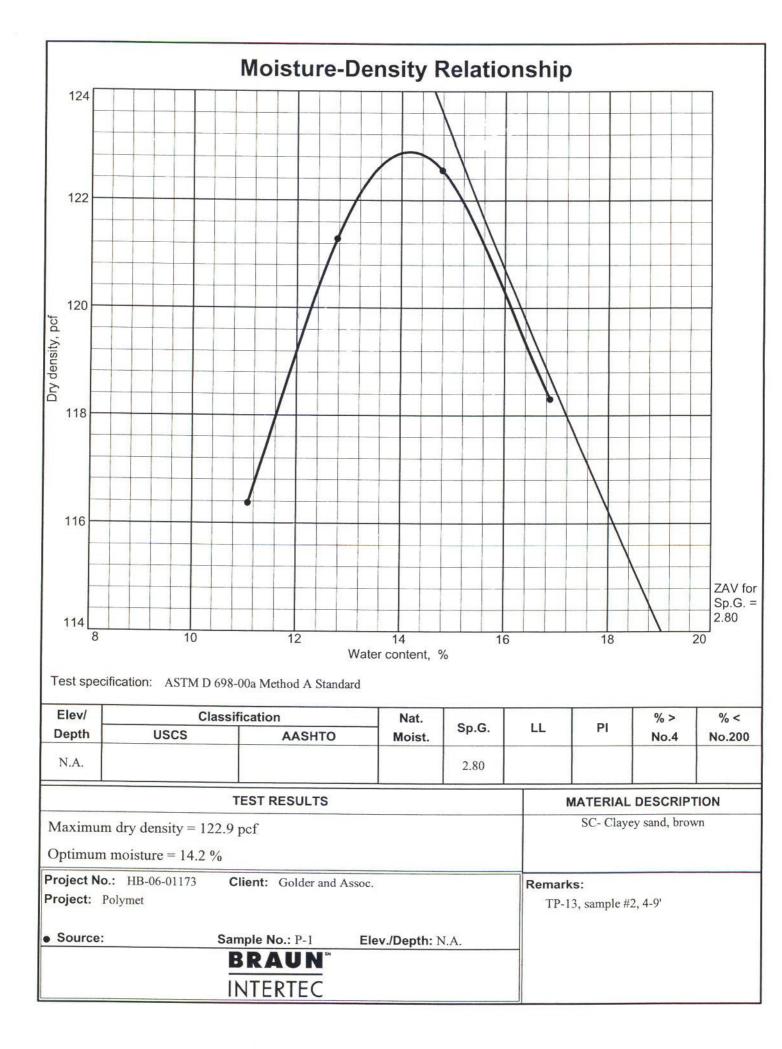
Project Manager





## **Permeability Test Data**

| Date:   | August 11, 2006                                                                                                                                             | <b>Project:</b> | HB-06-01173                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|
| Client: | Ms. Amy C. Thorson, PE, Senior Engineer<br>Manager Duluth Operations<br>Golder Associates, Inc.<br>1346 West Arrowhead Road<br>Box #304<br>Duluth, MN 55811 | Lakes, Minne    | eription: Test Pit Samples, Hoyt<br>esota<br>ect #053-2209.002) |


| Sample Number:                                    | 2                          |  |
|---------------------------------------------------|----------------------------|--|
| Date Sampled:                                     | N/A                        |  |
| Sample Location:                                  | TP #7, Sample #1, 0.5-3.5' |  |
| Soil Classification:                              | SM – Silty Sand, brown     |  |
| Type of Test:                                     | Falling Head (ASTM D 5084) |  |
| Standard Proctor: Max. Density (pcf):             | 118.3                      |  |
| Optimum Moisture (%):                             | 12.9                       |  |
| Density of Sample (pcf):                          | 112.4                      |  |
| Percent Compaction (%)                            | 95                         |  |
| Specimen Height (cm):                             | 10.21                      |  |
| Specimen Diameter (cm):                           | 9.65                       |  |
| Coefficient of Permeability:<br>K@ 20° C (cm/sec) | $2.04 \times 10^{-7}$      |  |

Notes:

Respectfully Submitted, BRAUN INTERTEC CORPORATION

C

Gregory M. Laine Project Manager





## Permeability Test Data

| Date:   | August 11, 2006                                                                                                                                             | <b>Project:</b> | HB-06-01173                                                     |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|
| Client: | Ms. Amy C. Thorson, PE, Senior Engineer<br>Manager Duluth Operations<br>Golder Associates, Inc.<br>1346 West Arrowhead Road<br>Box #304<br>Duluth, MN 55811 | Lakes, Minne    | eription: Test Pit Samples, Hoyt<br>esota<br>ect #053-2209.002) |
|         | Duluth, MN 55811                                                                                                                                            |                 |                                                                 |

| Sample Number:                                    | 1                           |
|---------------------------------------------------|-----------------------------|
| Date Sampled:                                     | N/A                         |
| Sample Location:                                  | TP #13, Sample #2, 4-9'     |
| Soil Classification:                              | SC – Clayey Sand, brown     |
| Type of Test:                                     | Falling Head (ASTM D 5084)  |
| Standard Proctor: Max. Density (pcf):             | 122.9                       |
| Optimum Moisture (%):                             | 14.2                        |
| Density of Sample (pcf):                          | 116.8                       |
| Percent Compaction (%)                            | 95                          |
| Specimen Height (cm):                             | 10.41                       |
| Specimen Diameter (cm):                           | 9.65                        |
| Coefficient of Permeability:<br>K@ 20° C (cm/sec) | $1.06 \mathrm{x} \ 10^{-7}$ |

Notes:

Respectfully Submitted, BRAUN INTERTEC CORPORATION

C

Gregory D. Laine Project Manager

### **APPENDIX C**

### SOIL CLASSIFICATION/LEGEND ASTM CLASSIFICATION/INDEX

|                                                  |                                                                | ,                                                    |          |                                                                                                                   |
|--------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------|
| CRITERIA FOR ASSIGNING GROUP SYMBOLS AND NAMES   |                                                                |                                                      |          | SOIL CLASSIFICATION<br>AND GENERALIZED<br>GROUP DESCRIPTIONS                                                      |
|                                                  | GRAVELS                                                        | CLEAN GRAVELS<br>Less than 5% fines <sup>C</sup>     | GW<br>GP | Well-graded Gravels <sup>F</sup><br>Poorly-graded Gravels <sup>F</sup>                                            |
|                                                  | More than 50% of coarse<br>fraction retained on<br>No. 4 Sieve | GRAVELS WITH FINES<br>More than 12% fines            | GM       | Gravel and Silt Mixtures F, G, H                                                                                  |
| COARSE - GRAINED SOILS<br>More than 50% retained |                                                                |                                                      | GC       | Gravel and Clay Mixtures <sup>F, G, H</sup>                                                                       |
| on No. 200 Sieve                                 | SANDS<br>50% or more of coarse<br>fraction passes No. 4 Sieve  | CLEAN SANDS<br>Less than 5% fines <sup>D</sup>       | SW<br>SP | Well-graded Sands <sup>I</sup><br>Poorly-graded Sands <sup>I</sup>                                                |
|                                                  |                                                                | SANDS WITH FINES<br>More than 12% fines <sup>D</sup> | SM<br>SC | Sand and Silt Mixtures <sup>G, H, I</sup><br>Sand and Clay Mixtures                                               |
|                                                  | SILT AND CLAYS<br>Liquid limit less than 50                    | INORGANIC                                            | CL       | Low-plasticity Clays <sup>K, L, M</sup>                                                                           |
|                                                  |                                                                |                                                      | ML       | Non/Low-Plasticity Silts <sup>K, L, M</sup>                                                                       |
| FINE- GRAINED SOILS<br>50% or more passes        |                                                                | ORGANIC                                              | OL       | Non/Low-Plasticity Organic<br>Clays <sup>K, L, M, N</sup> , Non/Low-Plasti<br>Organic Silts <sup>K, L, M, N</sup> |
| the No. 200 Sieve                                | SILTS AND CLAYS                                                |                                                      | СН       | High-plasticity Clays <sup>K, L, M</sup>                                                                          |
|                                                  |                                                                | INORGANIC                                            | MH       | High-plasticity Silts <sup>K, L, M</sup>                                                                          |
|                                                  | Liquid limit greater than 50                                   | ORGANIC                                              | он       | High-plast. Org. Clays <sup>K, L, M, P</sup><br>High-plast. Organic Silts <sup>K, L, M, '</sup>                   |
| HIGHLY ORGANIC SOILS                             | Primarily organic matter, dark in color, and organic odor      |                                                      | PT       | Peat                                                                                                              |

#### **Unified Soil Classification System**

UU Triax UU CU Triax CU CD Triax CD Permeability Р

Laboratory Tests

Designation

(1)

D

G

Н

(1)

С U

Test

Moisture

Density

Grain Size

Hydrometer

Atterberg Limits

Consolidation

Unconfined

(1) Moisture and Atterberg Limits plotted on boring log.

#### **Criteria for Describing Moisture Condition**

| Dry   | Absence of moisture, dusty, dry to the touch                |
|-------|-------------------------------------------------------------|
| Moist | Damp but no visible water                                   |
| Wet   | Visible free water,<br>usually soil is below<br>water table |
|       |                                                             |

See notes Figure A-1b

#### **Relative Density or Consistency Utilizing Standard Penetration Test Values**

| Cohesionless Soils <sup>(a)</sup>                     |                                                      |                                               | Cohesive Soils <sup>(b)</sup>                            |                                                              |                                                                        |                                                                  |
|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------|
| Density <sup>(c)</sup>                                | N <sub>1</sub> , blows/ft. <sup>(c)</sup>            | Relative<br>Density<br>(%)                    | Consistency                                              | N <sub>1</sub> , blows/ft. <sup>(C)</sup>                    | Undrained <sup>(d)</sup><br>Shear Strength                             | Torvane<br>tsf                                                   |
| Very loose<br>Loose<br>Compact<br>Dense<br>Very Dense | 0 to 4<br>4 to 10<br>10 to 30<br>30 to 50<br>over 50 | 0 -15<br>15 - 35<br>35 - 65<br>65 - 85<br>>85 | Very soft<br>soft<br>firm<br>stiff<br>Very Stiff<br>Hard | 0 to 2<br>2 to 4<br>4 to 8<br>8 to 15<br>15 to 30<br>over 30 | <250<br>250 - 500<br>500 - 1000<br>1000 - 2000<br>2000 - 4000<br>>4000 | <0.1<br>0.1 - 0.3<br>0.3 - 0.5<br>0.5 - 1.0<br>1.0 - 2.0<br>>2.0 |

(a) Soils consisting of gravel, sand, and silt, either separately or in combination possessing no characteristics of plasticity, and exhibiting drained behavior.

(b) Soils possessing the characteristics of plasticity, and exhibiting undrained behavior.

(c) Refer to text of ASTM D 1586-84 for a definition of N; in normally consolidated cohesionless soils Relative Density terms are based on N values corrected for overburden pressures (N). N values may be affected by a number of factors including material size, depth, drilling method, and bore-hole disturbance. N values are only an approximate guide to the consistency of cohesive soils.

Descriptive Terminology Denoting

**Component Proportions** 

Descriptive

Terms

Trace Few

Little

Some

Range of

Proportion

0 - 5% 5 - 10%

15 - 20% 30 - 45%

(d) Undrained shear strength = 1/2 unconfined compression strength.

#### Samples

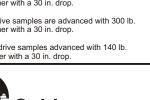
|                                                                      | SS SPT Sampler ( 2 in. O.D.)                                             |                                 |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|--|--|
|                                                                      | SSO                                                                      | Oversize SPT (2.5 in. O.D.)     |  |  |
|                                                                      | HD                                                                       | Heavy Duty Spoon (3.0 in. O.D.) |  |  |
|                                                                      | SH                                                                       | Shelby Tube                     |  |  |
|                                                                      | Р                                                                        | Pitcher Sampler                 |  |  |
|                                                                      | в                                                                        | Bulk                            |  |  |
|                                                                      | с                                                                        | Cored                           |  |  |
| RC Air Rotary Cuttings                                               |                                                                          | Air Rotary Cuttings             |  |  |
|                                                                      | AC                                                                       | Auger Core                      |  |  |
|                                                                      | CUT Auger Cuttings                                                       |                                 |  |  |
| 1. SS drive samples advanced with 140 lb. hammer with a 30 in. drop. |                                                                          |                                 |  |  |
|                                                                      | 2. HD drive samples are advanced with 300 lb. hammer with a 30 in. drop. |                                 |  |  |

3. SSO drive samples advanced with 140 lb. manner with a 30 in. drop.

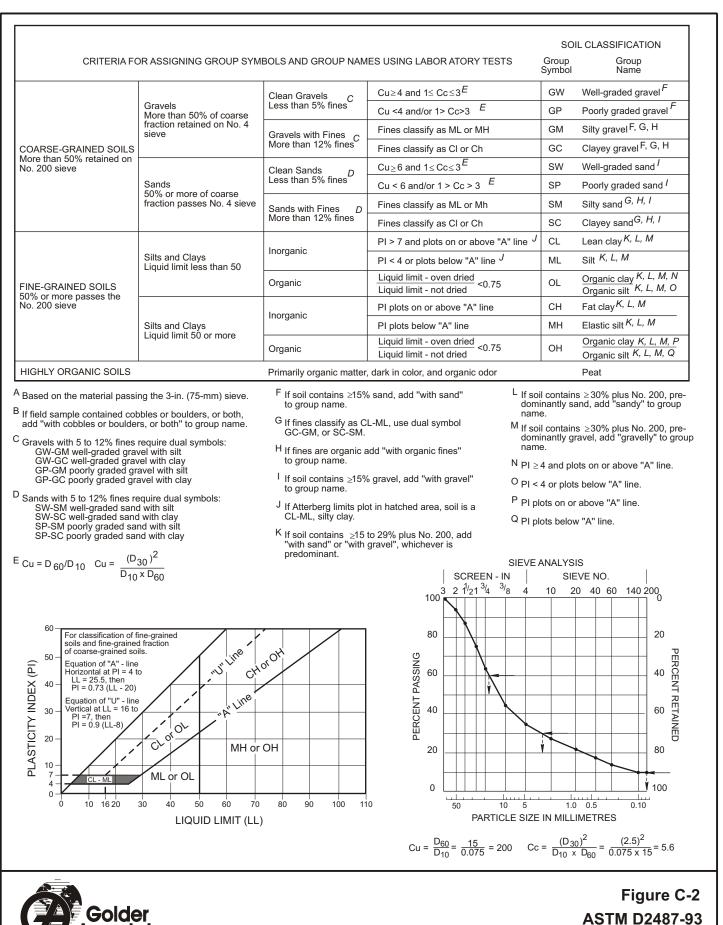
## Gol Associates

REVISED: 01/02

# 


FILE NAME: SOILS/ASTM\_SOILCLASS.CDR

#### Silt and Clay Descriptions


| Description   | Typical Unified<br>Designation |
|---------------|--------------------------------|
| Silt          | ML (non-plastic)               |
| Clayey Silt   | CL-ML (low-plasticity)         |
| Silty Clay    | CL                             |
| Clay          | СН                             |
| Plastic Silt  | мн                             |
| Organic Soils | OL, OH, PT                     |

#### **Component Definitions by Gradation**

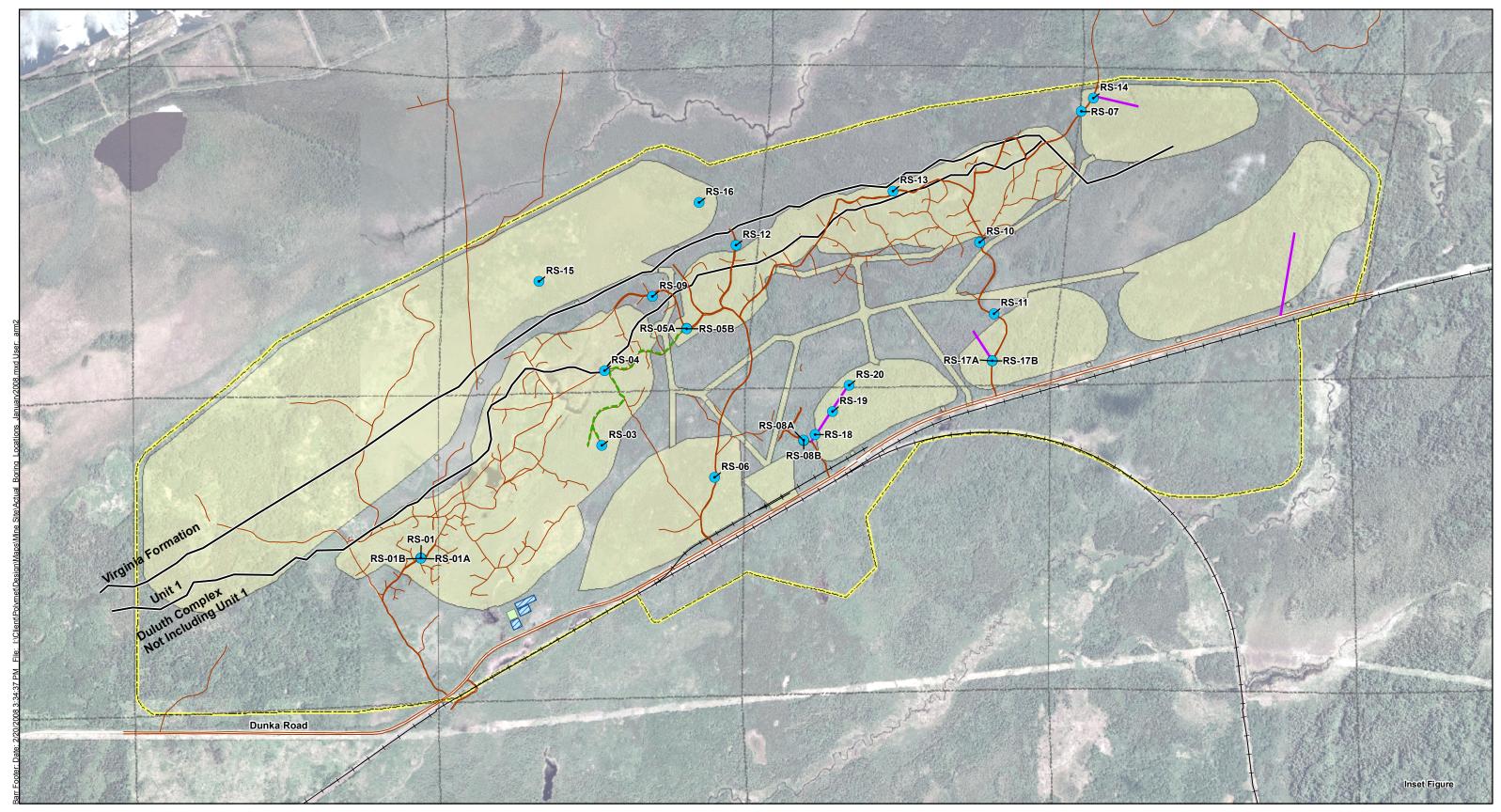
| •                                                                | •                                                                                                                                                                                      |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component                                                        | Size Range                                                                                                                                                                             |
| Boulders                                                         | Above 12 in.                                                                                                                                                                           |
| Cobbles                                                          | 3 in. to 12 in.                                                                                                                                                                        |
| Gravel<br>Coarse gravel<br>Fine gravel                           | 3 in. to No. 4 (4.76mm)<br>3 in. to 3/4 in.<br>3/4 in. to No. 4 (4.76mm)                                                                                                               |
| Sand<br>Coarse sand<br>Medium sand<br>Fine sand<br>Silt and Clay | No. 4 (4.76mm) to No. 200 (0.074mm)<br>No. 4 ( 4.76mm) to No. 10 (2.0mm)<br>No. 10 (2.0mm to No. 40 (0.42mm)<br>No. 40 (0.42mm) to No. 200 (0.074mm)<br>Smaller than No. 200 (0.074mm) |



|           |            | Figure C-1    |
|-----------|------------|---------------|
| ASTM SOIL | CLASSIFICA | FION / LEGEND |



ASTM CLASSIFICATION INDEX


REVISED: 03/02

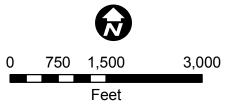
FILE NAME: SOILS/ASTM\_INDEX.CDR

ssociates

Attachment D

**Rotasonic Drilling Investigation – Boring Logs and Classification Testing** 




- Actual Boring Locations-January 2008 
   Project Boundary
- ---- Existing Roads
- Tracked Vehicle Only

Sections

Proposed Access Roads for Wastewater Treatment Facility

Mine Site Footprint-Year 20

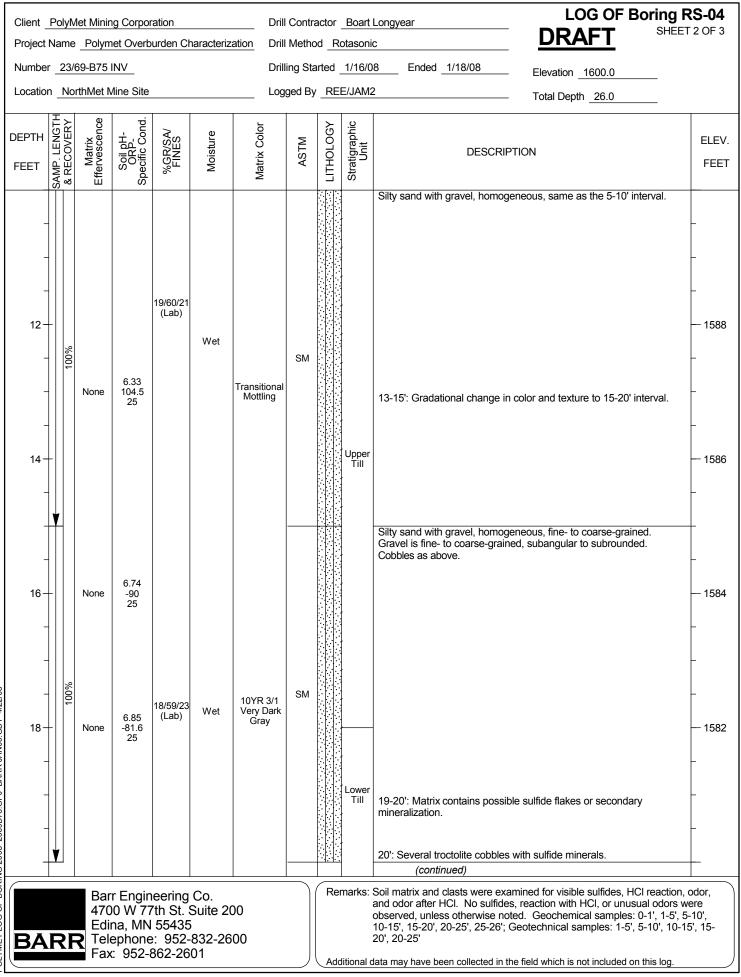
- Stockpile Geotechnical Investigation
- All Trails



Mine Site footprint shown has been superceded and is not current BORING LOCATIONS JANUARY 2008 NorthMet Project PolyMet Mining Inc. Hoyt Lakes, MN

| Client PolyMet Mining Corporation<br>Project Name Polymet Overburden Cha                                                 |                                                    | orill Contracto      |                       | DDAET SHEET                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Number 23/69-B75 INV                                                                                                     | D                                                  | -<br>Drilling Starte | d <u>1/15/0</u>       | 8 Ended <u>1/15/08</u> Elevation 1613.0                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| Location NorthMet Mine Site                                                                                              | Lo                                                 | ogged By <u>N</u>    | /MB/REE               |                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| SAMP: LENGTH<br>SAMP: LENGTH<br>& RECOVERY<br>Brevescence<br>Soli PH-<br>Specific Cond.<br>%GR/SA/<br>FINES              | Moisture<br>Matrix Color                           | ASTM                 | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                             | ELE                     |
| 7.05                                                                                                                     | Frozen 10YR 2/<br>Black                            |                      | Peat                  | Fibrous Peat; 90-100% organic matter, mostly woody material. Up to 10% mineral soil.                                                                                                                                                                                                                                                                                                                                                    | _                       |
| 2                                                                                                                        | 10YR 4/<br>Dry to Dark<br>Moist Yellowisl<br>Brown | h SM                 |                       | Silty sand with gravel, homogeneous, very fine- to fine-grained,<br>angular to subrounded, fine to coarse gravel. Sand fraction is 80%<br>quartz, 15% lithics, and 5% feldspars. Cobbles are 80% granitic<br>rock, 15% black fine-grained metasediment (Virginia Formation?),<br>and 5% other (foliated gneiss).                                                                                                                        | - 16'<br>- 16'<br>- 16' |
| 6-<br>-<br>-<br>-<br>-<br>-<br>8<br><b>V</b><br>None<br>6.55<br>268.1<br>15/75/10<br>(Visual)<br>-<br>-<br>8<br><b>V</b> | 10YR 3/2<br>Very<br>Moist Dark<br>Grayish<br>Brown |                      | Upper<br>Till         | Sand with silt and gravel, homogeneous, medium dense, fine- to<br>medium-grained, gravel is fine- to coarse-grained, angular to<br>subrounded. Cobbles are 70% granitoids, 20% black fine-grained<br>metasediment, and trace schist. Rust-colored coatings along<br>fractures and cobble interfaces, dark red brown (7.5YR 3/4). Less<br>than 2% dendritic or irregular mottles, fine to medium size - dark<br>reddish brown (5YR 3/4). | - 16<br>- 16<br>- 16    |
| - 00<br>- 258.0<br>17                                                                                                    |                                                    |                      |                       | 9-10': 10% dark red (2.5YR 3/6) mottles associated with tiny fractures within matrix.                                                                                                                                                                                                                                                                                                                                                   | -<br>- 16<br>-          |
| Barr Engineering (<br>4700 W 77th St. S<br>Edina, MN 55435<br>Telephone: 952-8<br>Fax: 952-862-260                       | Suite 200<br>332-2600                              | F                    |                       | Soil matrix and clasts were examined for visible sulfides, HCl reaction, and odor after HCl. No sulfides, reaction with HCl, or unusual odors w observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 6 15', 18-20', 20-20.5'; Geotechnical samples: 0-1', 1-5', 5-10', 10-15', 1 15-17.5', 18-20', 20-20.5'                                                                                                               | ere<br>-7', 14-         |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                           | Drill Contractor Boart Longyear CLOG OF Boring RS                                                                                                                                                                                                                                                                                                                                                                                         | <b>5-01B</b>                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                            | Drill Method Rotasonic SHEE                                                                                                                                                                                                                                                                                                                                                                                                               | 12013                                                                    |
| Number 23/69-B75 INV                                                                                                                                                                                                                                        | Drilling Started 1/15/08 Ended 1/15/08 Elevation 1613.0                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                 | Logged By _MMB/REE Total Depth _20.5                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |
| Antice Color Matrix Color Matrix Color Matrix Color Matrix Effervescence Soli PH-Specific Cond.                                                                                                                                                             | ASTM<br>LITHOLOGY<br>Unit<br>Unit<br>DESCLIDION                                                                                                                                                                                                                                                                                                                                                                                           | ELEV.<br>FEET                                                            |
| 12-     None     15/65/20     Very (Visual)       12-     None     15/65/20     Wet       12-     None     6.37       14-     6.37       14-     25/60/15       16-     25/60/15       16-     7.28       18-     7.28       18-     7.28       65.6     34 | <ul> <li>Silty sand with gravel, homogeneous, medium dense, fine- to medium-grained, gravel is fine- to coarse-grained, angular to subrounded. Cobbles are 70% granitoids, 20% black fine-grained metasediment, and trace schist. Rust-colored coatings along fractures and cobble interfaces, dark red brown (7.5YR 3/4). Less than 2% dendritic or irregular mottles, fine to medium size - dark reddish brown (5YR 3/4).</li> </ul>    | - 1602<br>- 1602<br>- 1600<br>- 1598<br>- 1598<br>- 1596<br>1594<br>1594 |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                        | Remarks: Soil matrix and clasts were examined for visible sulfides, HCI reaction,<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors w<br>observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 6<br>15', 18-20', 20-20.5'; Geotechnical samples: 0-1', 1-5', 5-10', 10-15', 1<br>15-17.5', 18-20', 20-20.5'<br>Additional data may have been collected in the field which is not included on this log. | vere<br>5-7', 14-                                                        |


| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contra         | ctor Boart                         | Longyear                                                                                                                           |                                                                                                                                                                                                                                | 6-01B              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Method         | d Rotasoni                         | c                                                                                                                                  | DRAFT SHEE                                                                                                                                                                                                                     | Г 3 OF 3           |
| Number _23/69-B75 INV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drilling Star        | rted 1/15/0                        | 8 Ended 1/15/08                                                                                                                    | Elevation 1613.0                                                                                                                                                                                                               |                    |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By            | MMB/REE                            | <u> </u>                                                                                                                           | Total Depth 20.5                                                                                                                                                                                                               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                    | is ⊇                               |                                                                                                                                    |                                                                                                                                                                                                                                |                    |
| Matrix Color<br>Moisture<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM                 | DLOG<br>graph<br>Jnit              | DESCRIP                                                                                                                            | TION                                                                                                                                                                                                                           | ELEV.              |
| America Color Matrix Color Matr | AS AS                | LITHOLOGY<br>Stratigraphic<br>Unit |                                                                                                                                    |                                                                                                                                                                                                                                | FEET               |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ey1<br>0Y SM<br>Dark |                                    | Gravel is fine- to coarse-grain<br>are black, fine-grained metase                                                                  | nse, very fine- to fine-grained sand.<br>ed, angular to subrounded. Cobbles<br>adiment and granitoid. Olive brown<br>orehole, irregular contact with above.                                                                    | - 1592<br>1592<br> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                    |                                                                                                                                    |                                                                                                                                                                                                                                | -                  |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                    | and odor after HCl. No sulfide:<br>observed, unless otherwise noi<br>15', 18-20', 20-20.5'; Geotechr<br>15-17.5', 18-20', 20-20.5' | mined for visible sulfides, HCI reaction,<br>s, reaction with HCI, or unusual odors w<br>ted. Geochemical samples: 0-1', 1-5', 6<br>nical samples: 0-1', 1-5', 5-10', 10-15', 1<br>ne field which is not included on this log. | ere<br>-7', 14-    |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contractor       | Boart Longyear                                                    | LOG OF Boring RS-03                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Method Ro        | otasonic                                                          | DRAFT SHEET 1 OF 3                                                                                                                                                                                                                                |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drilling Started       | 1/16/08 Ended 1/16/08                                             | Elevation 1595.5                                                                                                                                                                                                                                  |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By REE          | E/JAM2                                                            | Total Depth 22.0                                                                                                                                                                                                                                  |
| Additional and the second and the se | ASTM                   | Stratigraphic<br>Unit<br>DESCRIP                                  | TION FEET                                                                                                                                                                                                                                         |
| 3     3     10     2.5       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -       -     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rR<br>/1<br>dish<br>ck | Fibrous peat; wood and other                                      | organic material. Note: Low recovery                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | (continued)                                                       |                                                                                                                                                                                                                                                   |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | and odor after HCI. No sulfides<br>observed, unless otherwise not | mined for visible sulfides, HCI reaction, odor,<br>s, reaction with HCI, or unusual odors were<br>ed. Geochemical samples: 0-5', 5-10', 10-15',<br>amples: 5-10', 10-15', 15-20', 16', 19', 20-22'<br>ne field which is not included on this log. |

| Client PolyMet Mining Corporation                                                                                    | Drill Contractor Boart Longyear LOG OF Borin                                                                                                                                                                                                                                                                                                                                      | I <b>G RS-03</b><br>HEET 2 OF 3                                                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                     | Drill Method Rotasonic DRAFT                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |
| Number _ 23/69-B75 INV                                                                                               | Drilling Started         1/16/08         Elevation         1595.5                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| Location NorthMet Mine Site                                                                                          | Logged By <u>REE/JAM2</u> Total Depth <u>22.0</u>                                                                                                                                                                                                                                                                                                                                 |                                                                                             |
| HI H                                                                             | ASTM<br>LITHOLOGY<br>DESCUIDION                                                                                                                                                                                                                                                                                                                                                   | ELEV.<br>FEET                                                                               |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                | 1       Y       ML       Sandy silt with a little gravel, loose, homogeneous, up to 5% org matter from 10-12'. Sand is fine- to medium-grained, gravel is fine-grained, subangular to subrounded. Cobbles are black, fine-grained metasediment and troctolite.         1       12-15': No organic matter, increased gravel and sand, cobbles a above.                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| - 8<br>9.08<br>-27<br>37<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                            | SM<br>SM<br>(continued)                                                                                                                                                                                                                                                                                                                                                           | 1578<br>-<br>-<br>1576                                                                      |
|                                                                                                                      | Continued)      Continued      Demodule: Seil metrix and electe were exemined for visible sulfides. LICL reserves                                                                                                                                                                                                                                                                 | tion offer                                                                                  |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601 | Remarks: Soil matrix and clasts were examined for visible sulfides, HCl read<br>and odor after HCl. No sulfides, reaction with HCl, or unusual od<br>observed, unless otherwise noted. Geochemical samples: 0-5', 5<br>15-20', 20-22'; Geotechnical samples: 5-10', 10-15', 15-20', 16',<br>Additional data may have been collected in the field which is not included on this lo | ors were<br>-10', 10-15',<br>19', 20-22'                                                    |

| Client PolyMet Mining Corporation                                                                                    | Drill Contra    | actor Boa                  | rt Longyear                                                                                             |                                                                                                                                                                                                              | <b>RS-03</b><br>ET 3 OF 3 |
|----------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Project Name Polymet Overburden Characterization                                                                     | Drill Metho     | d Rotaso                   | nic                                                                                                     | DRAFT SHEE                                                                                                                                                                                                   |                           |
| Number _ <u>23/69-B75 INV</u>                                                                                        | Drilling Sta    |                            |                                                                                                         | Elevation 1595.5                                                                                                                                                                                             |                           |
| Location NorthMet Mine Site                                                                                          | Logged By       | REE/JAN                    | Л2                                                                                                      | Total Depth 22.0                                                                                                                                                                                             |                           |
| America Color Matrix Color Matrix Color Matrix Color Matrix Effervescence Soli PH-ORP-America Specific Cond.         | ASTM            | LITHOLOGY<br>Stratigraphic | DESCRIPT                                                                                                | ION                                                                                                                                                                                                          | ELEV.<br>FEET             |
|                                                                                                                      | 10Y<br>enish ML | Lowe                       | Gravelly silt, homogenous, grav<br>subangular to subrounded. Col<br>formation, granitoid.               | el is fine- to coarse-grained,<br>obles are magnetic cherty iron                                                                                                                                             | -                         |
|                                                                                                                      |                 |                            | Bedrock at 22.0', troctolite.<br>End of Boring - 22 feet                                                |                                                                                                                                                                                                              | — 1574<br>——<br>–         |
| 24-                                                                                                                  |                 |                            |                                                                                                         |                                                                                                                                                                                                              | -<br>1572<br>-            |
|                                                                                                                      |                 |                            |                                                                                                         |                                                                                                                                                                                                              | -<br>                     |
| 26-                                                                                                                  |                 |                            |                                                                                                         |                                                                                                                                                                                                              | _                         |
|                                                                                                                      |                 |                            |                                                                                                         |                                                                                                                                                                                                              | -<br>1568<br>-            |
|                                                                                                                      |                 |                            |                                                                                                         |                                                                                                                                                                                                              | -                         |
|                                                                                                                      |                 |                            |                                                                                                         |                                                                                                                                                                                                              | - 1566                    |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601 |                 |                            | and odor after HCI. No sulfides,<br>observed, unless otherwise note<br>15-20', 20-22'; Geotechnical san | nined for visible sulfides, HCl reaction<br>reaction with HCl, or unusual odors<br>d. Geochemical samples: 0-5', 5-10<br>nples: 5-10', 10-15', 15-20', 16', 19',<br>field which is not included on this log. | were<br>)', 10-15',       |

| _                                 |              | Met Minir<br>e Polym |                                    |                                                      | paracteriz              |                                    |      |           | <u>Boart</u>          |                                                                                                                                                                                                                                                                                                                                                                                               | <b>RS-04</b><br>ET 1 OF 3        |
|-----------------------------------|--------------|----------------------|------------------------------------|------------------------------------------------------|-------------------------|------------------------------------|------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| -                                 |              | 8/69-B75             |                                    |                                                      |                         |                                    |      | _         | 1/16/0                | $\sim$ Ended 1/18/08                                                                                                                                                                                                                                                                                                                                                                          |                                  |
|                                   |              | orthMet N            |                                    |                                                      |                         |                                    | -    |           | E/JAM                 |                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
|                                   | <br>  I 、    | 0                    |                                    |                                                      |                         |                                    |      |           |                       |                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| DEPTH<br>FEET                     | SAMP. LENGTH | Effervescence        | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES                                     | Moisture                | Matrix Color                       | ASTM | ГІТНОГОСУ | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                   | ELEV.<br>FEET                    |
|                                   |              |                      |                                    | 95%<br>organics                                      | Wet                     | 10YR 2/2<br>Very Dark<br>Brown     | PT   |           | Peat                  | Fibrous peat, composed primarily of woody material with some fine-grained organic material.                                                                                                                                                                                                                                                                                                   | -                                |
| -<br>2-<br>-<br>4-<br>-           |              | None                 | 5.71<br>124.3<br>22                | 30/30/40<br>(Visual)                                 | Wet                     | 2.5Y 3/3<br>Dark<br>Olive<br>Brown | SM   |           | Soil                  | Silty sand with gravel, homogeneous, up to 10% organic material,<br>sand is fine- to coarse-grained, gravel is subangular to subrounded<br>Matrix has dark reddish brown (2.5YR 3/4) mottles.                                                                                                                                                                                                 | 1598<br>1598<br>1596<br>1596     |
| -<br>6-<br>-<br>8-<br>-<br>-<br>- |              | None                 | 5.91<br>82<br>19                   | 30/50/20<br>(Visual)                                 | Wet                     | 10YR 4/3<br>Brown                  | SM   |           | Upper<br>Till         | Silty sand with gravel, homogeneous, fine- to coarse-grained.<br>Gravel is fine- to coarse-grained. Cobbles are fine-grained black<br>metasediment, magnetic cherty iron formation, and granitoid.                                                                                                                                                                                            | 1594<br>1594<br>1592<br>1592<br> |
|                                   |              |                      |                                    |                                                      |                         |                                    |      |           | 1                     | (continued)                                                                                                                                                                                                                                                                                                                                                                                   | $\pm$                            |
| BA                                | R            | 470<br>Edi<br>Tel    | 0 W 77<br>na, MN<br>ephone         | neering<br>7th St. 9<br>1 55435<br>e: 952-<br>862-26 | Suite 20<br>;<br>832-26 |                                    |      |           |                       | Soil matrix and clasts were examined for visible sulfides, HCl reaction<br>and odor after HCl. No sulfides, reaction with HCl, or unusual odors<br>observed, unless otherwise noted. Geochemical samples: 0-1', 1-5',<br>10-15', 15-20', 20-25', 25-26'; Geotechnical samples: 1-5', 5-10', 10<br>20', 20-25'<br>lata may have been collected in the field which is not included on this log. | were<br>5-10',                   |



| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contrac            | ctor Boart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Longyear LOG OF Boring F                                                                                                                                                                                                                                                                                             | <b>RS-04</b><br>T 3 OF 3 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Method             | d <u>Rotasoni</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                      | IJUFJ                    |
| Number _ 23/69-B75 INV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drilling Star            | ted 1/16/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8 Ended <u>1/18/08</u> Elevation <u>1600.0</u>                                                                                                                                                                                                                                                                       |                          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By                | REE/JAM2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 Total Depth <u>26.0</u>                                                                                                                                                                                                                                                                                            |                          |
| Addition of the second of the |                          | )GY<br>phic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                      | ELEV.                    |
| Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASTM                     | LITHOLOGY<br>Stratigraphic<br>Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESCRIPTION                                                                                                                                                                                                                                                                                                          | FEET                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | tion to the second seco | Silty sand with gravel, homogeneous, fine- to coarse-grained.                                                                                                                                                                                                                                                        |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sity sand with gravel, nornogeneous, inne- to coarse-grained.<br>Gravel is fine- to coarse-grained, subangular to subrounded. Matrix<br>has possible secondary sulfide mineralization. Cobbles are<br>sulfide-bearing troctolite, fine-grained black metasediment, magnetic<br>cherty iron formation, and granitoid. | L                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | Γ                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                          |
| 22-1 10YF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B 3/1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | — 1578                   |
| - Constant | ray                      | Lower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      | -                        |
| - None 7.83<br>- 87.6<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | -                        |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ev1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gravel with silt and sand, fine- to coarse-grained. Cobbles are as                                                                                                                                                                                                                                                   | 1576                     |
| (Visual) 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/N ack                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | above.                                                                                                                                                                                                                                                                                                               |                          |
| 6/<br><b>∀</b> 8.10 Gree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /1 p<br>enish c<br>ray 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                          |
| 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Red Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bedrock at 25'. Sulfide-bearing troctolite.                                                                                                                                                                                                                                                                          | Ť                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | Bed-<br>rock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                      |                          |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | End of Boring - 26 feet                                                                                                                                                                                                                                                                                              | 1574                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | F                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | 4570                     |
| 28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | - 1572                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | F                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      | <b>—</b>                 |
| Barr Engineering Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil matrix and clasts were examined for visible sulfides, HCI reaction,                                                                                                                                                                                                                                             |                          |
| 4700 W 77th St. Suite 200<br>Edina, MN 55435<br><b>BARR</b> Telephone: 952-832-2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and odor after HCl. No sulfides, reaction with HCl, or unusual odors w observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 5 10-15', 15-20', 20-25', 25-26'; Geotechnical samples: 1-5', 5-10', 10-1 20', 20-25'                                                                                      | 5-10',                   |
| Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 八                        | Additional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | data may have been collected in the field which is not included on this log.                                                                                                                                                                                                                                         |                          |

| Client PolyMet Mining Corporation<br>Project Name Polymet Overburden Chara                                                   |                                     | ntractor <u>Boart L</u><br>thod Rotasonic |                                                                                                    | LOG OF Boring RS<br>DRAFT                                                                                                                           | <b>6-05A</b><br>1 OF 2                    |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Number 23/69-B75 INV                                                                                                         |                                     | Started 1/18/08                           |                                                                                                    | Elevation 1605.0                                                                                                                                    |                                           |
| Location NorthMet Mine Site                                                                                                  |                                     | By REE                                    |                                                                                                    | Total Depth 13.0                                                                                                                                    |                                           |
| [<br>[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [                                                                                   | 5                                   | × .9                                      |                                                                                                    | ·                                                                                                                                                   |                                           |
| SAMP. LENGTH<br>SAMP. LENGTH<br>& RECOVERY<br>& RECOVERY<br>Britervescence<br>Soil PH-<br>Specific Cond.<br>%GR/SA/<br>FINES | Moisture<br>Matrix Color<br>ASTM    | Stratigraphic<br>Unit                     | DESCRIPTIC                                                                                         | DN                                                                                                                                                  | ELEV.<br>FEET                             |
|                                                                                                                              | Moist 7.5YR 3/3<br>Dark<br>Brown SM |                                           | Low recovery on RS-05A for 0-5                                                                     | . See R5-05B log for description.                                                                                                                   | -<br>- 1604<br>-<br>-<br>-<br>- 1602<br>- |
| 4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                | Moist                               | M                                         | 1% organic matter. Cobbles are fine-grained metasediment, 5% c<br>greenstone. Rust-colored stainin | d, subangular to subrounded. Up to<br>60% granitoid, 30% black<br>herty iron formation, and trace<br>g on some clast surfaces.                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>1598   |
|                                                                                                                              | Moist SM                            |                                           | are same lithologies as above.                                                                     | color change with above. Cobbles<br>mogenized 6-11.5' interval. Grain<br>el, 46% sand, and 26% silt.                                                | - 1596                                    |
| Barr Engineering Co<br>4700 W 77th St. Su<br>Edina, MN 55435<br>Telephone: 952-83<br>Fax: 952-862-2601                       | uite 200<br>32-2600                 | a a                                       | nd odor after HCI. No sulfides, re                                                                 | ned for visible sulfides, HCl reaction,<br>eaction with HCl, or unusual odors w<br>Geochemical samples: 5-10', 10-13<br>6-11.5', 10-11.5', 11.5-13' | ere                                       |
|                                                                                                                              | )                                   | / Additional da                           | ita may have been collected in the fi                                                              | eld which is not included on this log.                                                                                                              |                                           |

|                                                               | Client   | PolyN                      | /let Minir                 | ng Corpo                                         | ration                        |                         | Drill                             | Contra  | actor     | Boart                 | Longyear LOG OF Boring R                                                                                                                                                                                                                                                                                                                                                  | S-05A    |
|---------------------------------------------------------------|----------|----------------------------|----------------------------|--------------------------------------------------|-------------------------------|-------------------------|-----------------------------------|---------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                                                               | Project  | Name                       | Polyn                      | net Overb                                        | ourden Cl                     | haracteriz              | ation Drill                       | Metho   | d R       | otasoni               |                                                                                                                                                                                                                                                                                                                                                                           | T 2 OF 2 |
|                                                               | Numbe    | r <u>23</u> /              | 69-B75                     | INV                                              |                               |                         | Drill                             | ing Sta | arted     | 1/18/0                | 8 Ended <u>1/18/08</u> Elevation <u>1605.0</u>                                                                                                                                                                                                                                                                                                                            |          |
|                                                               | Location | n <u>No</u>                | rthMet N                   | Vine Site                                        |                               |                         | Log                               | ged By  | RE        | E                     | Total Depth 13.0                                                                                                                                                                                                                                                                                                                                                          |          |
|                                                               |          | GTH<br>ERY                 | ince                       | -<br>- pud.                                      | 2                             | υ                       | lor                               |         | ß         | hic                   |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | DEPTH    | COVE                       | Matrix<br>Effervescence    | Soil pH-<br>ORP-<br>Specific Cond.               | %GR/SA/<br>FINES              | Moisture                | Matrix Color                      | ASTM    | ГІТНОГОGY | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                               | ELEV.    |
|                                                               | FEET     | SAMP. LENGTH<br>& RECOVERY | Effer                      | Spec S                                           | 9%<br>H                       | ž                       |                                   | 4       | Ē         | Stra                  |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | -        |                            |                            |                                                  | 64/23/13<br>(Lab)             |                         | 2.5Y 4/2<br>Dark<br>Gray<br>Brown | GM      |           |                       | Silty gravel with sand, fine- to coarse-grained, subangular to<br>subrounded. Cobbles are 60% troctolite, 30% granitoid, 5%<br>magnetic cherty iron formation with rust-colored staining, and 5%<br>black fine-grained metasediment with rust-colored staining.                                                                                                           |          |
|                                                               |          | %                          |                            |                                                  |                               |                         |                                   |         |           | Upper                 |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | -        | 100%                       |                            |                                                  | 70/20/10<br>(Visual)          | Wet                     |                                   |         |           | Till                  | As above, increased clay content, gray.                                                                                                                                                                                                                                                                                                                                   | +        |
|                                                               | -12<br>- | _                          | None                       | 8.9<br>-70<br>88                                 | 61/24/15<br>(Lab)             |                         | 2.5Y 5/1<br>Gray                  | GM      |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | -        |
|                                                               | -        | V                          |                            |                                                  |                               |                         |                                   |         | 0         |                       | Bedrock at 13.0', troctolite.                                                                                                                                                                                                                                                                                                                                             | 1592     |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       | End of Boring - 13 feet                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                               |          |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | 14 -     | -                          |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | -        |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | - 1590   |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | -        |
|                                                               | 16-      | -                          |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               |          |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
|                                                               | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | 1588     |
| 22/08                                                         | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | -        |
| GDT 4/                                                        | 18-      | -                          |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | -        |
| JAN06.                                                        | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
| BARR                                                          | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           |          |
| 75.GPJ                                                        | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | - 1586   |
| 2369B                                                         | -        |                            |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | +        |
| G 2008                                                        | -        | -                          |                            |                                                  |                               |                         |                                   |         |           |                       |                                                                                                                                                                                                                                                                                                                                                                           | F        |
| POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08 | BA       | RF                         | 470<br>Edi<br><b>R</b> Tel | r Engir<br>00 W 77<br>na, MN<br>ephone<br>c 952- | 7th St.<br>  55435<br>e: 952- | Suite 2<br>5<br>-832-26 |                                   |         |           |                       | Soil matrix and clasts were examined for visible sulfides, HCI reaction<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors of<br>observed, unless otherwise noted. Geochemical samples: 5-10', 10-7<br>Geotechnical samples: 0-1', 5-6', 6-11.5', 10-11.5', 11.5-13'<br>data may have been collected in the field which is not included on this log. | were     |

| Client Po  | olyM       | let Minir                    | ng Corpo                           | ration               |                          | Dril                                   | l Contr | actor       | Boart                 | Longyear LOG OF Boring R                                                                                                                                                                                                                                                                          | <b>6-05B</b> |
|------------|------------|------------------------------|------------------------------------|----------------------|--------------------------|----------------------------------------|---------|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Project Na | ame        | Polym                        | iet Overb                          | ourden Ch            | naracteriz               | ation Drill                            | Metho   | od <u>R</u> | otasoni               |                                                                                                                                                                                                                                                                                                   | TUFT         |
| Number _   | 23/6       | 39-B75                       | INV                                |                      |                          | Drill                                  | ing Sta | arted       | 1/18/0                | 8 Ended <u>1/18/08</u> Elevation <u>1605.0</u>                                                                                                                                                                                                                                                    |              |
| Location _ |            | thMet N                      | /line Site                         |                      |                          | Log                                    | lged By | / RE        | E                     | Total Depth 5.0                                                                                                                                                                                                                                                                                   |              |
| DEPTH      | L'R'       | ence                         | - ond.                             | 2.0                  | ē.                       | olor                                   |         | ß           | Shic                  |                                                                                                                                                                                                                                                                                                   |              |
|            | COVE       | Matrix<br>Effervescence      | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES     | Moisture                 | Matrix Color                           | ASTM    | ГІТНОГОСУ   | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                       | ELEV.        |
| FEET WY    | & RECOVERY | Effer                        | Spec S                             | )%                   | Σ                        | Mat                                    |         | Ē           | Stra                  |                                                                                                                                                                                                                                                                                                   | FEEI         |
| -          |            |                              |                                    | 30/50/20<br>(Visual) |                          | 10YR 4/4<br>Dark<br>Yellowish<br>Brown |         |             |                       | Silty sand with gravel, homogeneous, fine- to coarse-grained.<br>Gravel is fine- to coarse-grained, angular to subrounded. Cobbles<br>are 50% granitoid, 30% fine-grained, black metasediment, 20%<br>magnetic cherty iron formation, and trace greenstone or silica rocks<br>(possible Archean). | _<br>— 1604  |
| 2-         | 100%       | None                         | 6.13<br>179.0<br>21                | 30/50/20<br>(Visual) | Moist                    |                                        | SM      |             | Upper<br>Till         |                                                                                                                                                                                                                                                                                                   | -            |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | - 1602       |
|            |            | None                         | 6.54<br>187.0<br>26                |                      |                          | 10YR 4/2<br>Dark<br>Grayish            |         |             |                       | 3.5-4': Lens of dark grayish brown silty sand with gravel.                                                                                                                                                                                                                                        | -            |
| 4-         |            |                              | -                                  |                      |                          | Brown                                  |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
|            |            | None                         | 6.25<br>193.0                      |                      |                          | SA 1-3.5'                              |         |             |                       |                                                                                                                                                                                                                                                                                                   | <br> -       |
| _↓         | <u>'</u>   |                              | 25                                 |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   |              |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       | End of Boring - 5 feet                                                                                                                                                                                                                                                                            |              |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | Ē.           |
| 6+         |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
| -          |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
| -          |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | — 1598       |
| _          |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
| 8-         |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   |              |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   |              |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | - 1596       |
|            |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
| +          |            |                              |                                    |                      |                          |                                        |         |             |                       |                                                                                                                                                                                                                                                                                                   | -            |
| BAF        | ٦F         | 470<br>Edii<br><b>2</b> Tele | 0 W 77<br>na, MN<br>ephone         | 55435                | Suite 20<br>5<br>-832-26 |                                        |         |             |                       | Soil matrix and clasts were examined for visible sulfides, HCI reaction,<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors w<br>observed, unless otherwise noted. Geochemical samples: 1-5'; Geote<br>samples: 1-3.5', 3.5', 3.5-4'                                         | /ere         |

| Client _      | Poly         | уMе        | et Minin                | g Corpor                              | ation                                    |           |                                        |              |           |                       | Longyear                                                                                                                                                                     | LOG OF Boring RS<br>DRAFT SHEET                                                                                                                                                                                                      | <b>-06A</b><br>1 OF 3 |
|---------------|--------------|------------|-------------------------|---------------------------------------|------------------------------------------|-----------|----------------------------------------|--------------|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|               |              |            |                         |                                       | urden Ch                                 | aracteriz |                                        |              |           | otasoni               |                                                                                                                                                                              |                                                                                                                                                                                                                                      |                       |
| Number        |              |            |                         |                                       |                                          |           |                                        |              |           | 1/26/0                |                                                                                                                                                                              | Elevation 1611.0                                                                                                                                                                                                                     |                       |
| Location      | <u> </u>     | lort       | hMet N                  | line Site                             |                                          |           | Log                                    | ged By       | <u>MN</u> | /IB/MJC               | /REE                                                                                                                                                                         | Total Depth 21.0                                                                                                                                                                                                                     |                       |
| DEPTH<br>FEET | SAMP. LENGTH | & RECOVERY | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond.    | %GR/SA/<br>FINES                         | Moisture  | Matrix Color                           | ASTM         | ГІТНОГОСУ | Stratigraphic<br>Unit | DESCRIP                                                                                                                                                                      | TION                                                                                                                                                                                                                                 | ELEV<br>FEET          |
| _             |              |            | None                    | 4.45<br>290.3<br>6                    | 10/50/40<br>(Visual)                     |           | 10YR 4/4<br>Dark<br>Yellowish<br>Brown | SM           |           | Soil                  | coarse-grained, gravel is fine-<br>subangular. Matrix is magneti<br>feldspar, and 20% white fragm<br>fine-grained metasediment, 20<br>granitoid.                             | matter, homogeneous, sand is fine- to<br>to coarse- grained, subrounded to<br>ic. Sand fraction is 70% quartz, 10%<br>nents. Cobbles are 75% black<br>0% magnetic iron formation, and 5%<br>nic matter, homogeneous, sand is fine-   | -<br>1610             |
| -             |              |            | None                    | 4.84                                  | 5/65/30<br>(Visual)                      | Moiot     | 7.5YR 3/2<br>Dark<br>Brown             | SM           |           |                       | to coarse-grained. Matrix has and lenses. Sand fraction is 4                                                                                                                 | dark-brown to black organic masses<br>40% quartz, 50% feldspar, and 10%<br>90% granitoid, 5% fine-grained black                                                                                                                      | _                     |
| 2-            | -            | 100%       | None                    | 313.0<br>5<br>4.99<br>279<br>11       | 20/65/15<br>(Visual)                     | Moist     | 7.5YR 3/4<br>Dark<br>Brown             | SM           |           |                       | than 5% mottles, black (5YR 2<br>is magnetic. Sand fraction is s<br>lithic fragments. Cobbles are                                                                            | e- to coarse grained. Matrix has less<br>2.5/1) and yellowish red (5YR 4/6), and<br>50% quartz, 40% feldspar, and 10%<br>70% granitoid, 30% gabbroic (or<br>ediment) - abundant, rust staining.                                      | -<br>1608<br>         |
| 4             | ▼<br>-       |            | None                    | 5.03<br>316<br>8<br>5.82<br>264<br>12 | 17/26/57<br>(Lab)                        | Dry       |                                        | ML/<br>CL-ML |           | Upper<br>Till         | magnetic and has abundant m<br>(10YR 4/6) and grayish brown<br>quartz, 20% feldspar, and 10%<br>magnetic chert iron formation,<br>block metagadiment                         | minated, sand is fine- to<br>e- to medium-grained. Matrix is<br>nottles (30-40%), dark yellowish gray<br>n (2.5YR 5/2). Sand fraction is 70%<br>% lithic fragments. Cobbles are 80%<br>, 10% granitoid, and 10% fine-grained         | -<br>-<br>1600<br>-   |
|               | -            | 100%       |                         |                                       |                                          |           | 10YR 4/3<br>Brown                      |              |           |                       | coarse-grained, gravel is fine-<br>magnetic, has less than 5% di                                                                                                             | homogeneous, sand is fine- to<br>to coarse-grained. Matrix is slightly<br>isseminated mottles, very dark gray<br>R 3/4), dark yellowish brown (10YR                                                                                  | -<br>1604<br>         |
| -             | V            |            |                         | 6.32<br>251<br>17                     | 24/48/28<br>(Lab)                        |           |                                        | SM           |           |                       | 4/6), and black mottles associat<br>at 10-12'. Matrix has a faint ro<br>odor with depth. Sand fraction<br>10% feldspar, and 20% lithic fr<br>feldspar, and 20% lithic fragme | ated with rootlets. Increased mottles<br>otten egg odor below 15', increasing<br>n lithology transition from 70% quartz,<br>fragments to 15% quartz, 65%<br>tents at 10'. Cobbles are 70% iron<br>d non-magnetic), 25% granitoid, 5% | -<br>160.<br>-        |
|               |              |            | 470<br>Edir             | 0 W 77<br>na, MN                      | eering<br>7th St. 5<br>55435<br>e: 952-4 | Suite 20  |                                        |              | Re        |                       | and odor after HCI. No sulfides observed, unless otherwise not                                                                                                               | mined for visible sulfides, HCl reaction, i<br>s, reaction with HCl, or unusual odors w<br>ted. Geochemical samples: 0.5-2', 2-4',<br>Geotechnical samples: 0-1', 1-2', 2-3.5<br>without thes: 6.7', 15-16', 16-18'                  | ere<br>5-7.5',        |
| BA            |              |            |                         |                                       | 362-260                                  |           |                                        |              | Add       |                       |                                                                                                                                                                              | ne field which is not included on this log.                                                                                                                                                                                          |                       |

| Client PolyMet Mining Corporation                                                                                    | Drill Contracto  | or Boart L            | LOG OF Boring R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>S-06A</b><br>T 2 OF 3                                                               |
|----------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                     | Drill Method _   | Rotasonic             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12013                                                                                  |
| Number _ 23/69-B75 INV                                                                                               | Drilling Started | ed 1/26/08            | B Ended <u>1/26/08</u> Elevation <u>1611.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |
| Location NorthMet Mine Site                                                                                          | Logged By _N     | MMB/MJD/              | REE         Total Depth         21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
| HI H                                                                             | ASTM             | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELEV.<br>FEET                                                                          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                               | 4/3 SM           |                       | Silty sand with gravel, dense, homogeneous, sand is fine- to coarse-grained, gravel is fine- to coarse-grained. Matrix is slightly magnetic, has less than 5% disseminated mottles, very dark gray (10YR 3/1), dark brown (7.5YR 3/4), dark yellowish brown (10YR 4/6), and black mottles associated with rootlets. Increased mottles at 10-12'. Matrix has a faint rotten egg odor below 15', increasing odor with depth. Sand fraction lithology transition from 70% quartz, 65% feldspar, and 20% lithic fragments at 10'. Cobbles are 70% iron formation rocks (magnetic and non-magnetic), 25% granitoid, 5% other (troctolite, gabbroic).(continued) | - 1600<br>- 1598<br>- 1598<br>- 1596<br>- 1596<br>- 1594<br>- 1594<br>- 1592<br>- 1592 |
| Barr Engineering Co.                                                                                                 | [                | Remarks: S            | (continued)<br>Soil matrix and clasts were examined for visible sulfides, HCI reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | odor,                                                                                  |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601 |                  | a<br>7<br>7<br>7      | and odor after HCl. No sulfides, reaction with HCl, or unusual odors of<br>observed, unless otherwise noted. Geochemical samples: 0.5-2', 2-4<br>7.5-10', 10-15', 15-19', 19-21'; Geotechnical samples: 0-1', 1-2', 2-3.<br>7.5', 7.5-10', 10-15', 15-21'; Shelby tubes: 6-7', 15-16', 16-18'<br>ata may have been collected in the field which is not included on this log.                                                                                                                                                                                                                                                                               | vere<br>, 5-7.5',                                                                      |

| Client PolyM                                | et Minir                | ng Corpor                          | ation                        |                           |              | Drill Co | ontra | ctor       | Boart                 | Longyear                                                                                                                                  |                                                                                                                                                                                                                                                              | <b>S-06A</b><br>T 3 OF 3 |
|---------------------------------------------|-------------------------|------------------------------------|------------------------------|---------------------------|--------------|----------|-------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Project Name                                | Polym                   | net Overb                          | urden Cl                     | naracteriza               | ation        | Drill M  | ethoo | d <u>R</u> | otasoni               | <u> </u>                                                                                                                                  | DRAFT SHEE                                                                                                                                                                                                                                                   |                          |
| Number 23/6                                 | 69-B75                  | INV                                |                              |                           |              | Drilling | Star  | ted _      | 1/26/0                | 8 Ended <u>1/26/08</u>                                                                                                                    | Elevation 1611.0                                                                                                                                                                                                                                             |                          |
| Location No                                 | thMet N                 | /line Site                         |                              |                           |              | Logged   | d By  | MM         | 1B/MJD                | /REE                                                                                                                                      | Total Depth 21.0                                                                                                                                                                                                                                             |                          |
| DEDLH<br>PEEL<br>& RECOVERY                 | ince                    | -<br>ond.                          | X                            | Ø                         | lor          |          |       | GΥ         | hic                   |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
|                                             | latrix<br>/esce         | oil pH<br>DRP-<br>ffic Co          | %GR/SA/<br>FINES             | Moisture                  | Matrix Color |          | ASTM  | гітногоду  | Stratigraphic<br>Unit | DESCRIF                                                                                                                                   | PTION                                                                                                                                                                                                                                                        | ELEV.                    |
| FEET dw | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | 9%<br>F                      | W                         | Matr         |          | <     | LITH       | Strat                 |                                                                                                                                           |                                                                                                                                                                                                                                                              | FEET                     |
|                                             |                         |                                    |                              |                           |              |          | -     |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| 100%                                        |                         |                                    |                              |                           |              | 5        | SM .  |            | Upper<br>Till         |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| <b>I I</b>                                  |                         |                                    |                              |                           |              |          |       |            |                       | Field Device 04 feet                                                                                                                      |                                                                                                                                                                                                                                                              |                          |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       | End of Boring - 21 feet                                                                                                                   |                                                                                                                                                                                                                                                              |                          |
| -                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| 22-                                         |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | _                        |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| -                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | - 1588                   |
| _                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| 24-                                         |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| 27                                          |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| -                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| _                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | - 1586                   |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| 26-                                         |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| _                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | - 1584                   |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | - 1564                   |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
| 28-                                         |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | -                        |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | 1582                     |
| _                                           |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              | _                        |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
|                                             |                         |                                    |                              |                           |              |          |       |            |                       |                                                                                                                                           |                                                                                                                                                                                                                                                              |                          |
| BARF                                        | 470<br>Edii<br>Tele     | na. MN                             | 'th St. 3<br>55435<br>: 952- | Suite 20<br>;<br>:832-26( |              |          |       |            |                       | and odor after HCl. No sulfide:<br>observed, unless otherwise no<br>7.5-10', 10-15', 15-19', 19-21';<br>7.5', 7.5-10', 10-15', 15-21'; Sh | amined for visible sulfides, HCl reaction<br>s, reaction with HCl, or unusual odors v<br>ted. Geochemical samples: 0.5-2', 2-4<br>Geotechnical samples: 0-1', 1-2', 2-3.<br>helby tubes: 6-7', 15-16', 16-18'<br>he field which is not included on this log. | were<br>', 5-7.5',       |

| Client PolyMet Mining Corporation                                                               | Drill Contra | ictor Boar                         | t Longyear                         |                                                                                                                                | <b>S-06R</b><br>T 1 OF 3                                                          |
|-------------------------------------------------------------------------------------------------|--------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                | Drill Metho  | d <u>Rotasor</u>                   | ic                                 | DRAFT SHEE                                                                                                                     | ITOF 3                                                                            |
| Number _ 23/69-B75 INV _                                                                        | Drilling Sta | rted 1/29/                         | 08 Ended <u>1/29/08</u>            | Elevation 1611.0                                                                                                               |                                                                                   |
| Location NorthMet Mine Site                                                                     | Logged By    | MMB                                |                                    | Total Depth 21.5                                                                                                               |                                                                                   |
| Matrix Color                                                                                    | ASTM         | LITHOLOGY<br>Stratigraphic<br>Unit | DESCRIP                            | TION                                                                                                                           | ELEV.<br>FEET                                                                     |
|                                                                                                 | SM           |                                    | See RS-06A, 0-1' for descripti     |                                                                                                                                | -                                                                                 |
|                                                                                                 | SM           | Soil                               | See RS-06A, 1-2' for descripti     |                                                                                                                                | — 1610<br>_                                                                       |
| - 100%                                                                                          | SM           |                                    | See RS-06A, 2-4.75' for descr      | iption.                                                                                                                        | -<br>— 1608                                                                       |
|                                                                                                 | CL           |                                    | See RS-06A, 4.75-7.5' for des      | cription.                                                                                                                      | -<br>-<br>- 1606                                                                  |
|                                                                                                 | SM           | Uppe<br>Till                       |                                    | cription.                                                                                                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600 |              | Remarks                            | and odor after HCI. No sulfides    | mined for visible sulfides, HCl reaction,<br>s, reaction with HCl, or unusual odors v<br>ed. See RS-06A log for sampling inter | vere                                                                              |
| Fax: 952-862-2601                                                                               |              | Additional                         | data may have been collected in th | e field which is not included on this log.                                                                                     |                                                                                   |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contra | actor     | Boart                 | Longyear                                                               | LOG OF Bori                                                | ng RS-06R                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------------|------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Metho  | d R       | otasoni               | c                                                                      | <u>DRAFT</u>                                               | SHEET 2 OF 3                    |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drilling Sta | arted _   | 1/29/0                | 8 Ended <u>1/29/08</u>                                                 | Elevation 1611.0                                           |                                 |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By    | / _MN     | 1B                    |                                                                        | Total Depth 21.5                                           |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5            | ≿         | . <u>e</u>            |                                                                        |                                                            |                                 |
| Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ASTM         | DLOG      | graph<br>Init         | DESCRIPTI                                                              | ON                                                         | ELEV.                           |
| Addition of the second of the | AS AS        | ГІТНОГОGY | Stratigraphic<br>Unit |                                                                        |                                                            | FEET                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       | See RS-06A, 7.5-21.0' for descr                                        | iption.(continued)                                         |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | _                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | 1000                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | - 1600                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | _                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | - 1598                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | _                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SM           |           | Upper<br>Till         |                                                                        |                                                            | — 1596                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
| 16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | 1594                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | -                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | - 1592                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            |                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                        |                                                            | F                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       | (continued)                                                            |                                                            | F                               |
| Barr Engineering Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>_</u>     | Rei       |                       | Soil matrix and clasts were exami                                      |                                                            |                                 |
| 4700 W 77th St. Suite 200<br>Edina, MN 55435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           |                       | and odor after HCI. No sulfides, r<br>observed, unless otherwise noted | eaction with HCl, or unusual<br>. See RS-06A log for sampl | l odors were<br>ling intervals. |
| <b>RARR</b> Telephone: 952-832-2600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                       |                                                                        |                                                            |                                 |
| Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | Add       | ditional c            | lata may have been collected in the                                    | field which is not included on th                          | nis log.                        |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contra | actor    | Boart                 | Longyear                            |                                                                                | S-06R    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------------|-------------------------------------|--------------------------------------------------------------------------------|----------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Metho  | d Ro     | otasoni               | C                                   | DRAFT SHEE                                                                     | T 3 OF 3 |
| Number _ 23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drilling Sta | arted _  | 1/29/0                | 8 Ended <u>1/29/08</u>              | Elevation 1611.0                                                               |          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By    | MM       | В                     |                                     | Total Depth 21.5                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Ъ        | hic                   |                                     |                                                                                |          |
| Matrix Color<br>Moisture<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ASTM         | гітногод | Stratigraphic<br>Unit | DESCRIPT                            | ION                                                                            | ELEV.    |
| Additional and a second a second and a second and a second and a second a sec |              | <u> </u> | Stra                  |                                     |                                                                                | FEET     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       | See RS-06A, 7.5-21.0' for desc      | ription.(continued)                                                            |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM           |          | Upper<br>Till         |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       | Bedrock at 21.0'. Troctolite pier   | ce 4" thick                                                                    | 1590     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | Bed-<br>rock          |                                     |                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       | End of Boring - 21.5 feet           |                                                                                |          |
| 22-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | - 1588   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | 1500     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
| 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | — 1586   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
| 26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |                       |                                     |                                                                                | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | - 1584   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                |          |
| 28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | - 1582   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                     |                                                                                | -        |
| Barr Engineering Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | Rer      |                       | and odor after HCI. No sulfides,    | ined for visible sulfides, HCI reaction, reaction with HCI, or unusual odors v | vere     |
| 4700 W 77th St. Suite 200<br>Edina, MN 55435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |                       | observed, unless otherwise noted    | d. See RS-06A log for sampling inter                                           | vals.    |
| <b>BARR</b> Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | ۱.LA     | itional               |                                     | field which is not included an this loss                                       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Add      | itional c             | hata may have been collected in the | field which is not included on this log.                                       |          |

| Client PolyMet Mining Corporation<br>Project Name Polymet Overburden Characteri                                     |                                    | ractor <u>Boart L</u><br>Iod Rotasonic |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Number _23/69-B75 INV_                                                                                              |                                    | tarted 1/24/08                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| Location NorthMet Mine Site                                                                                         | Logged B                           | y MMB/MJD                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| A BAMP LENGTH<br>SAMP LENGTH<br>& RECOVERY<br>Beffervescence<br>Soil pH-<br>Specific Cond.<br>FINES<br>Moisture     | Matrix Color<br>ASTM               | LITHOLOGY<br>Stratigraphic<br>Unit     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                           | ELEV.<br>FEET              |
| - Frozen                                                                                                            | 10YR 2/2<br>Very Dark PT<br>Brown  | Peat                                   | Fibrous peat; grass, roots, twigs.                                                                                                                                                                                                                                                                                                                                                                                                                    | -                          |
| None 5.61<br>97.8 25/42/33<br>45 (Lab) Wet                                                                          | 10YR 2/2<br>Very Dark<br>Brown     |                                        | 95% organic material (roots, grass, branches). Mineral component<br>is silty sand with gravel. Less than 5% dark brown (10YR 3/3)<br>mottles from 1.5-2'.                                                                                                                                                                                                                                                                                             |                            |
| 2-<br>- 8 None 40/42/18 Moist                                                                                       | 2.5Y 3/3<br>Dark<br>Olive<br>Brown | Soil                                   | Gravelly silty sand, 5% organic material, sand is fine- to medium-grained. Less than 5% mottles and layers, dark brown (7.5YR 3/3).                                                                                                                                                                                                                                                                                                                   | – 1606<br>-                |
| 4                                                                                                                   | 7.5YR 3/3<br>Dark<br>Brown<br>SM   |                                        | Gravelly silty sand, homogeneous, trace organic matter, sand is fine-<br>to coarse-grained, gravel is fine- to coarse-grained, subrounded to<br>subangular. Matrix is mottled: irregular, very dark brown (7.5YR<br>2/2) and minor strong brown (7.5YR 5/8) mottles. Sand fraction is<br>10% quartz, 10% feldspar, and 80% lithic fragments. Cobbles are<br>90% fine-grained black metasediment, 5% black cherty iron<br>formation, and 5% granitoid. | -<br>1604<br>-             |
| 6 - 1 30/60/10<br>(Visual)<br>6 - 1 6.40<br>60.0<br>17 47/39/14<br>(Lab)<br>8 - 47/39/14<br>(Lab)<br>8 - 38.0<br>24 | 5Y 2.5/1<br>Black<br>GM            |                                        | Sand with silty gravel, homogeneous, sand is fine- to<br>coarse-grained, gravel is fine- to coarse-grained, subrounded to<br>subangular. Sandier and slightly drier toward 10'. Sand fraction and<br>cobble lithologies are same as 3-6' interval.                                                                                                                                                                                                    | - 1602<br>-<br>-<br>- 1600 |
|                                                                                                                     |                                    |                                        | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Barr Engineering Co.<br>4700 W 77th St. Suite 2<br>Edina, MN 55435<br>Telephone: 952-832-2<br>Fax: 952-862-2601     |                                    |                                        | Soil matrix and clasts were examined for visible sulfides, HCl reaction, od<br>and odor after HCl. No sulfides, reaction with HCl, or unusual odors were<br>observed, unless otherwise noted. Geochemical samples: 1-2', 2-3', 3-5'<br>5', 6-10', 10-11'; Geotechnical samples: 0-2', 2-5', 8-10', 10-11'<br>ata may have been collected in the field which is not included on this log.                                                              | re                         |

| Client _ PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drill Contractor Boart Longyear                          | LOG OF Boring RS-07                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drill Method Rotasonic                                   | DRAFT SHEET 2 OF 2                                                                                                   |
| Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drilling Started <u>1/24/08</u> Ended <u>1/24/08</u> E   | Elevation 1608.0                                                                                                     |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Logged By MMB/MJD/REE 7                                  | Total Depth <u>11.0</u>                                                                                              |
| Admp. LENGTH<br>& RECOVERY<br>& RECOVERY<br>& RECOVERY<br>Soli pH-<br>Soli pH-<br>Soli pH-<br>Specific Cond.<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ASTM<br>LLITHOLOGY<br>Stratigraphic<br>Unit<br>DESCLIDIO | ELEV.<br>FEET                                                                                                        |
| - ♥ None 7.15<br>-23.0 59/30/11 Wet Gle<br>2.5/1<br>(Lab) Wet Bla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0Y GP-GM C D Lower egg odor after HCL, and a very darl   | subrounded. Matrix has a rotten<br>k brown (10YR 2/2) layer from                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | End of Boring - 11 feet                                  | _<br>1596<br>_<br>-                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | -<br>1594<br>-<br>-                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          | -<br>— 1592<br>-                                                                                                     |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                          | -<br>-<br>1590<br>-                                                                                                  |
| BORTER         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           18         18           19         18           19         18           10         18           10         18           10         18           10         18           10         18           10         18           10         18           10         18           10         18           10         18           10         18           10 |                                                          |                                                                                                                      |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          | ction with HCl, or unusual odors were<br>Geochemical samples: 1-2', 2-3', 3-5', 5-<br>les: 0-2', 2-5', 8-10', 10-11' |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contractor Boart Longyear                      | LOG OF Boring RS-07R<br>DRAFT SHEET 1 OF 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Method Rotasonic                               | DRAFT                                      |
| Number <u>23/69-B75 INV</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drilling Started <u>1/29/08</u> Ended <u>1/29/08</u> | Elevation _1608.0                          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By MMB                                        | Total Depth 14.5                           |
| Additional and the second and the se | ASTM ASTM DESCRIP                                    | TION ELEV.<br>FEET                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See RS-07 for description.                           |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PT Peat                                              | -                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OL/OH                                                | _                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM Sil                                               | — 1606<br>_                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM                                                   | 1604                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | -<br>-<br>-<br>- 1600                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | -                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lower<br>Till                                        |                                            |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and odor after HCI. No sulfides                      |                                            |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contra | actor    | Boart                 | Longyear                                                                                                                                                                                                  |                                                                                               | S-07R                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Metho  | _        |                       |                                                                                                                                                                                                           | DRAFT SHEE                                                                                    | T 2 OF 2                   |
| Number _ 23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drilling Sta | arted _  | 1/29/0                | 8 Ended _1/29/08 E                                                                                                                                                                                        | Elevation 1608.0                                                                              |                            |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By    | MM       | B                     |                                                                                                                                                                                                           | Total Depth _14.5                                                                             |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>5</u>     | 2        | hic                   |                                                                                                                                                                                                           |                                                                                               |                            |
| Americ Color<br>Matrix Color<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASTM         | гітногод | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                               | I                                                                                             | ELEV.                      |
| Additional and the second and the se | 4            | <u></u>  | Stra                  |                                                                                                                                                                                                           |                                                                                               | FEET                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          | Lower<br>Till         | Possible fractured bedrock at 9.5' of<br>fractures. Sample is 0.5-4" thick co<br>Virginia formation. Rinse test at 14<br>(floating graphite from graphite-bear<br>rocks?).(continued)                     | bre pieces of biotite argillite of<br>I' has silver metallic sheen                            | -                          |
| 12-<br>-<br>-<br>-<br>-<br>14-<br>7.48<br>-<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          | Bed-<br>rock          |                                                                                                                                                                                                           |                                                                                               | - 1596<br>-<br>-<br>- 1594 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       | End of Boring - 14.5 feet                                                                                                                                                                                 |                                                                                               | -<br>-<br>- 1592           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               | <pre>F</pre>               |
| 18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |          |                       |                                                                                                                                                                                                           |                                                                                               | — 1590                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               | $\vdash$                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               | -                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |                       |                                                                                                                                                                                                           |                                                                                               |                            |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |          |                       | Soil matrix and clasts were examined<br>and odor after HCI. No sulfides, rear<br>observed, unless otherwise noted. C<br>Geotechnical samples: 1-2', 2-3', 3-6<br>ata may have been collected in the field | ction with HCl, or unusual odors v<br>Geochemical samples: 10-12', 13.<br>6', 6-10', 10-14.5' | vere                       |

| Client <u>PolyMet Mining Corporation</u> Project Name Polymet Overburden Characte                                                     |                                            | ractor <u>Boart</u><br>od Rotasoni |                                                                                                                                                                                                                                                                        | LOG OF Boring R<br>DRAFT SHEE                                                                                                                                                                                                                                                                                           | <b>S-08A</b><br>T 1 OF 2        |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Number _ 23/69-B75 INV _                                                                                                              | Drilling Sta                               | arted 1/26/0                       | 08 Ended <u>1/26/08</u>                                                                                                                                                                                                                                                | Elevation 1591.0                                                                                                                                                                                                                                                                                                        |                                 |
| Location NorthMet Mine Site                                                                                                           | Logged By                                  | y <u>MMB/MJC</u>                   | )                                                                                                                                                                                                                                                                      | Total Depth 11.0                                                                                                                                                                                                                                                                                                        |                                 |
| A BAMP. LENGTH<br>SAMP. LENGTH<br>& RECOVERY<br>Matrix<br>Effervescence<br>Soil pH-<br>Specific Cond.<br>%GR/SA/<br>FINES<br>Moisture | Matrix Color<br>ASTM                       | LITHOLOGY<br>Stratigraphic<br>Unit | DESCRIF                                                                                                                                                                                                                                                                | PTION                                                                                                                                                                                                                                                                                                                   | ELEV<br>FEET                    |
| - None 4.35<br>347.5 (Visual) Mois                                                                                                    | 7.5YR 3/4<br>Dark<br>Brown                 | Soil                               | subangular to subrounded. M<br>(2.5YR 3/4) mottles associate<br>pebbles. Also less than 1% g<br>Sand fraction is 65% quartz,                                                                                                                                           | s fine-grained, gravel is fine-grained,<br>latrix has 2-5% dark reddish brown<br>d with disseminated rootlets and<br>ray (5YR 5/1) mottles and layer at 1'.                                                                                                                                                             | -<br>                           |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                 |                                            |                                    | chert/iron formation, less than<br>quartz veins (possibly Archea<br>Silty sand with gravel, homog<br>medium-grained, gravel is fine<br>subangular. Occasional lensœ<br>Matrix is magnetic, has mottle<br>(7.5YR 5/8) irregular to wavy<br>70% quartz, 10% feldspar, an | 5% green-black crystalline rock with<br>n).<br>eneous, loose, sand is fine- to<br>- to coarse-grained, subrounded to<br>es with up to 40% clay (low plasticity).<br>is as above, also 30% strong brown<br>mottles from 3-4'. Sand fraction is<br>id 20% lithic fragments. Cobbles are<br>ent, fine-grained magnetic and | _<br>_<br>_ 1588<br>_<br>_<br>_ |
| 6<br>6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                               | SM<br>10YR 4/2<br>Dark<br>Grayish<br>Brown |                                    | subangular. Matrix has a fain<br>yellowish red (5YR 4/6) mottle<br>feldspar, and 20% lithic fragm                                                                                                                                                                      | to coarse-grained, angular to<br>t rotten egg odor after HCL, 1-2%<br>es. Sand fraction is 75% quartz, 5%<br>tents. Cobbles are 40% magnetic<br>e-grained black metasediment, 25%                                                                                                                                       | - 1586<br>                      |
| Barr Engineering Co.<br>4700 W 77th St. Suite<br>Edina, MN 55435                                                                      |                                            |                                    | and odor after HCI. No sulfide                                                                                                                                                                                                                                         | mined for visible sulfides, HCl reaction<br>s, reaction with HCl, or unusual odors v<br>ted. Geochemical samples: 0.25-1', 1-<br>11'                                                                                                                                                                                    | were                            |
| <b>BARR</b> Telephone: 952-832-<br>Fax: 952-862-2601                                                                                  | 2600                                       | Additional                         | data may have been collected in t                                                                                                                                                                                                                                      | ne field which is not included on this log.                                                                                                                                                                                                                                                                             |                                 |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contra  | ctor Boart                         | Longyear                                                                                                | LOG OF Boring R                                                              | S-08A    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Method  | Rotason                            | ic                                                                                                      | DRAFT SHEE                                                                   | T 2 OF 2 |
| Number _23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drilling Star | ted 1/26/0                         | 08 Ended <u>1/26/08</u>                                                                                 | Elevation <u>1591.0</u>                                                      |          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By     | MMB/MJE                            | )                                                                                                       | Total Depth 11.0                                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | ,<br>≻ is                          |                                                                                                         |                                                                              |          |
| Matrix Color<br>Matrix Color<br>Matrix Color<br>Pecific Cono<br>Matrix Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASTM          | LITHOLOGY<br>Stratigraphic<br>Unit | DESCRIPT                                                                                                | ION                                                                          | ELEV.    |
| Additional and a state of the s | Ä             | LITHOLOGY<br>Stratigraphic<br>Unit |                                                                                                         |                                                                              | FEET     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
| - 6.77<br>- 68.3<br>- 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SM            | Upper                              |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    | Dodrock at 11. Tractalita, no vi                                                                        |                                                                              | 1580     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    | Bedrock at 11'. Troctolite, no vi<br>End of Boring - 11 feet                                            | sidie suilides.                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
| 12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | - 1578   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | - 1576   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | - 1576   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | -        |
| 16-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | - 1574   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | -        |
| 18-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                    |                                                                                                         |                                                                              | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | - 1572   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | +        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                    |                                                                                                         |                                                                              | Ļ        |
| Barr Engineering Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | Remarks <sup>.</sup>               | Soil matrix and clasts were exam                                                                        | ined for visible sulfides, HCI reaction                                      | , odor.  |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                    | and odor after HCI. No sulfides,<br>observed, unless otherwise note<br>Geotechnical samples: 1-5', 5-11 | reaction with HCl, or unusual odors v<br>d. Geochemical samples: 0.25-1', 1- | were     |

| _             |              | Met Minir                  | • .                                |                      |                         |                                                             |        |             |                       | Longyear                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                            | <b>(S-09</b><br>1 OF 1 |
|---------------|--------------|----------------------------|------------------------------------|----------------------|-------------------------|-------------------------------------------------------------|--------|-------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|               |              | e Polym                    |                                    | ourden Cl            | naracteriz              |                                                             |        |             | otasoni               |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            |                        |
|               |              | 3/69-B75                   |                                    |                      |                         |                                                             |        | -           | 1/23/0                | 8 Ended <u>1/23/08</u>                                                                                                                                                                                                            | Elevation 1610.5                                                                                                                                                                                                                                                                                                                                           |                        |
| Location      | <u>N</u>     | orthMet N                  | /line Site                         |                      |                         | Log                                                         | ged By | / <u>RE</u> | E/MJD                 |                                                                                                                                                                                                                                   | Total Depth 8.0                                                                                                                                                                                                                                                                                                                                            |                        |
| DEPTH<br>FEET | SAMP. LENGTH | Matrix<br>Effervescence    | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES     | Moisture                | Matrix Color                                                | ASTM   | ГІТНОГОGY   | Stratigraphic<br>Unit | DESCRIF                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                            | ELEV<br>FEET           |
| -             |              | None                       |                                    | 5/15/80<br>(Visual)  | Frozen                  | 7.5YR<br>2.5/3<br>Very Dark<br>Brown                        | OL/OH  |             | Soil                  | decreases from 75% to 50%.<br>(7.5YR 2.5/1) lenses, matrix i<br>quartz, 30% feldspar, and 20%                                                                                                                                     | sand is fine-grained. Organic content<br>Some grayish mottles and black<br>s magnetic. Sand faction is 50%<br>% lithic fragments. Cobbles are 80%<br>ent and 20% granitoid. Abundant<br>s.                                                                                                                                                                 | - 1610                 |
| - 2           | 1 000%       | None                       | 5.96<br>175.0                      |                      |                         | 10YR 4/4                                                    |        |             |                       | to subrounded, gravel is fine-<br>subrounded. Color change is<br>fraction is 50% quartz, 25% fr<br>Cobbles are 60% fine-grained<br>black siltstone, 5-10% mediur<br>metasediment, 10% granitoid<br>has orange precipitate or oxid | eous, sand is fine-grained, subangular<br>to coarse-grained, subangular to<br>gradational. Matrix is magnetic. Sand<br>eldspars, and 25% lithic fragments.<br>d black metasediment, 20% magnetic<br>n-grained bedded/foliated<br>, and 5% biotite argillite. One cobble<br>lation along microfractures. Increased<br>. Occasional rust colored staining on | -<br><br>- 1608<br>-   |
| 4<br>         | -            |                            | 15                                 | 32/50/18<br>(Lab)    | Dry to<br>Moist         | Dark<br>Yellowish<br>Brown to<br>2.5Y 4/4<br>Olive<br>Brown | SM     |             | Upper<br>Till         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            | -<br>1606<br>-         |
| 6-            | 100%         | None                       | 6.22<br>116.7<br>13                |                      |                         |                                                             |        |             |                       |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                            | -<br>1604              |
| -<br>8-       | 1008/        | %<br>001                   | 5.88<br>182.0<br>2                 | 15/20/65<br>(Visual) | Wet                     | 2.5Y 3/1<br>Very Dark<br>Gray                               | CL     |             | Lower<br>Till         | rotten egg odor after HCL. Si<br>feldspars, and 20% lithic mate<br>fine-grained black metasedim<br>surfaces, and 5% banded red<br>Bedrock at 8'. Troctolite, no v                                                                 | ained. Matrix is magnetic, has faint<br>and fraction is 70% quartz, 10%<br>erial. Cobbles are 75% granitoid, 20%<br>ent with rust-colored staining on some<br>I and black iron formation.                                                                                                                                                                  | -                      |
| -             |              |                            |                                    |                      |                         |                                                             |        |             |                       | End of Boring - 8 feet                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                            | - 1602<br>-            |
| BA            | R            | 470<br>Edi<br><b>R</b> Tel | 0 W 77<br>na, MN<br>ephone         | 55435                | Suite 20<br>;<br>832-26 |                                                             |        |             |                       | and odor after HCl. No sulfide<br>observed, unless otherwise no<br>8'; Geotechnical samples: 0-1'                                                                                                                                 | amined for visible sulfides, HCI reaction,<br>s, reaction with HCI, or unusual odors w<br>ted. Geochemical samples: 0-1', 2-5', 5<br>, 1-7', 7-8'<br>he field which is not included on this log.                                                                                                                                                           | ere                    |

| Client PolyM                                                                     |                         | • .                                |                      |                    |                                           |                     |           |                       | Longyear LOG OF Boring R<br>DRAFT SHEET                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
|----------------------------------------------------------------------------------|-------------------------|------------------------------------|----------------------|--------------------|-------------------------------------------|---------------------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Project Name<br>Number 23/6                                                      |                         |                                    | ourden Cr            | naracteriz         |                                           | l Metho<br>ling Sta |           |                       | $\sim$ Ended $1/25/08$                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| Location Nor                                                                     |                         |                                    |                      |                    |                                           | ing Sta             |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
|                                                                                  |                         |                                    |                      |                    | LOG                                       |                     |           |                       | Total Depth <u>16.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| EEEL SAMP. LEAD                                                                  | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES     | Moisture           | Matrix Color                              | ASTM                | LITHOLOGY | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ELEV<br>FEET   |
| 100%                                                                             | None                    |                                    |                      | Frozen             | 7.5YR<br>2.5/2<br>Very Dark<br>Brown      | OL/OH               |           | Soil                  | Organic soil with sand. 80% organic matter (grass, roots,<br>branches). Mineral fraction is silty sand, laminated lenses [dark<br>yellowish brown (10YR 3/6) and black (10YR 2/1)].                                                                                                                                                                                                                                                                           | — 1602         |
| 2- 100%                                                                          | None                    |                                    | 35/55/10<br>(Visual) | Moist              | 10YR 2/2<br>very Dark<br>Grayish<br>Brown | SP-SM               |           |                       | Sand with silt and gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, subrounded to subangular. Sand fraction is 40% quartz, 40% feldspar, and 20% lithic fragments. Cobbles are 70% granitoid, and 30% fine-grained black metasediment with rust-colored staining.                                                                                                                                                             | _              |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br> | None                    | 6.07<br>193.0<br>30                | 25/60/15<br>(Visual) | Moist              | 10YR 3/6<br>Dark<br>Yellowish<br>Brown    | SM                  |           |                       | Silty sand with gravel, homogeneous, fine- to medium-grained,<br>gravel is fine- to coarse-grained, angular to subangular. Matrix has<br>mottles associated with break-down of pebbles [bluish black (gley2<br>2.5/5PB)]. Sand fraction is 20% quartz, 60% feldspar, and 20%<br>lithic fragments. Cobbles are 30% granitoid and 70% black<br>fine-grained metasediment.                                                                                       | — 1600<br>_    |
| -<br>4-<br>-<br>000%                                                             | None                    | 5.73<br>241.6<br>12                | 40/41/19<br>(Lab)    | Moist              | 7.5YR 3/3<br>Dark<br>Brown                | GM/SN               |           |                       | Sandy, silty gravel, homogeneous, fine- to coarse-grained, trace<br>angular to subangular pebbles and cobbles. Sand fraction is 40%<br>quartz, 30% feldspar, and 30% lithic fragments. Cobbles are 95%<br>fine-grained metasediment with possible trace pyrite or pyrrhotite,<br>and 5% granitoid.                                                                                                                                                            | -<br>1598<br>- |
| -<br>6-<br>-<br>100%                                                             | None                    | 7.08<br>60.2<br>20                 | 20/75/5<br>(Visual)  | Dry to<br>Moist    | 10YR 4/3<br>Brown                         | SP                  |           | Upper<br>Till         | Sand with gravel, homogeneous, fine- to coarse-grained, with 20% fine- to medium-grained gravel, angular to subangular. Matrix is mottled with irregular yellowish red (5YR 4/6) and white (5YR 8/1) mottles. White mottles have no HCL reaction, but appear to be weakly cemented. Sand fraction is 85% quartz, 5% feldspar, and 10% lithic fragments. Cobbles are 95% black fine-grained metasediment and 5% magnetic cherty iron formation.                | -<br>1596<br>  |
| - 8                                                                              | None                    | 6.81<br>152.3<br>30                | 40/40/20<br>(Visual) | Dry                | 5Y 3/1<br>Very Dark<br>Gray               | SM                  |           |                       | Silty sand with gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, angular to subangular. Matrix has a faint odor after HCL. Sand fraction is 10% quartz, 20% feldspar, and 70% lithic fragments. Cobbles are 80% black fine-grained metasediment, 10% magnetic cherty iron formation, and 10% granitoid. Supernatant from 8.0' rinse test has metallic sheen/possible graphite from graphite-bearing Virginia formation rocks. | -<br>1594<br>- |
|                                                                                  |                         |                                    |                      |                    |                                           |                     |           |                       | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -<br> -<br> -  |
| BARF                                                                             | 470<br>Edii<br>Tele     | 0 W 77<br>na, MN<br>ephone         | 55435                | Suite 20<br>832-26 |                                           |                     |           |                       | Soil matrix and clasts were examined for visible sulfides, HCl reaction, c<br>and odor after HCl. No sulfides, reaction with HCl, or unusual odors we<br>observed, unless otherwise noted. Geochemical samples: 0-1', 1-2', 2-<br>5.5', 5.5-7.5', 7.5-10', 10-14'; Geotechnical samples: 2-3', 3.5-5', 5.5-7.<br>10', 10-14'<br>data may have been collected in the field which is not included on this log.                                                  | ere<br>3', 3-  |

| Client PolyMet Mining Corpo                                       | ration                       | Drill Contr                           | ractor E | 3oart I                       | LOG OF Boring F                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
|-------------------------------------------------------------------|------------------------------|---------------------------------------|----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Project Name Polymet Overb                                        |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 OF 2                                                                                  |
| Number 23/69-B75 INV                                              |                              | Drilling St                           | arted 1  | /25/0                         | 8 Ended <u>1/25/08</u> Elevation <u>1602.5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |
| Location NorthMet Mine Site                                       |                              | Logged B                              | y _MMB   | /MJD                          | REE Total Depth 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |
|                                                                   | ω                            | lor                                   | 2        | hic                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
| A RECOVERY<br>Refervescence<br>Soli PH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES<br>Moisture | Matrix Color<br>ASTM                  |          | Stratigraphic<br>Unit         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ELEV.                                                                                   |
| Spe Sem 177                                                       | » Z                          | N N N N N N N N N N N N N N N N N N N |          | Str                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$            | 40/45/5 Moist<br>(Visual)    | 5Y 4/3<br>Olive SP                    |          | Jpper<br>Till<br>Bed-<br>rock | Sand with gravel, homogeneous, fine- to coarse-grained, gravel is<br>fine- to coarse-grained, angular to subangular. Matrix has a few<br>white lenses (precipitate?), no HCL reaction, no odor. Sand fraction<br>is 10% quartz, 10% feldspar, and 80% lithic fragments. Cobbles are<br>65% black fine-grained metasediment, 20% augite trocolite with<br>weathered brown minerals, 10% magnetic, black cherty iron<br>formation with rust-colored staining, and 5% granitoid. | - 1592<br>-<br>-<br>- 1590<br>-<br>-<br>-<br>-<br>1588<br>-<br>-<br>-<br>-<br>-<br>1588 |
| - 4/22/08                                                         |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                       |
| 384R JAN06. GD.                                                   |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -<br>1584                                                                               |
|                                                                   |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                       |
| 386987                                                            |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F                                                                                       |
|                                                                   |                              |                                       |          |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |
| 4700 W 77<br>9                                                    | e: 952-832-2600              |                                       |          |                               | Soil matrix and clasts were examined for visible sulfides, HCI reaction,<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors w<br>observed, unless otherwise noted. Geochemical samples: 0-1', 1-2', 2<br>5.5', 5.5-7.5', 7.5-10', 10-14'; Geotechnical samples: 2-3', 3.5-5', 5.5-7<br>10', 10-14'<br>ata may have been collected in the field which is not included on this log.                                                                        | ere<br>-3', 3-                                                                          |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contra | actor _   | Boart I               | Longyear LOG OF Boring                                                                                                                                                                                                                                                                                                                                                                                          | <b>RS-11</b><br>T 1 OF 4 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Metho  | d Ro      | tasonio               |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| Number <u>23/69-B75 INV</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drilling Sta | _         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By    | / MME     | B/MJD                 | Total Depth 33.0                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Addition of the second of the | ASTM         | LITHOLOGY | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                     | ELEV.<br>FEET            |
| SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2            |           | 50<br>T               | Fibrous peat (grass, roots, root material). Up to approximately 10%                                                                                                                                                                                                                                                                                                                                             | ¥                        |
| - Frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |           |                       | mineral soil below 5'.                                                                                                                                                                                                                                                                                                                                                                                          | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | 1592<br>-                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>1590                |
| <br>▼ None Wet <sup>5</sup> YR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           | Peat                  |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ICK          |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | — 1588<br>-              |
| - 5.89<br>107.1<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | -<br>1586                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                 | _                        |
| - 10YF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |           |                       | Crowelly eithy cond. I goo then 50/ organic metter and in first to                                                                                                                                                                                                                                                                                                                                              | +                        |
| None 43/43/14 Wet Gray Bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vish SM      |           | Upper<br>Till         | Gravelly silty sand. Less than 5% organic matter, sand is fine- to coarse-grained, gravel is fine- to coarse grained. Sand fraction is 30% quartz, 10% feldspar, and 60% lithic fragments. Cobbles are <i>(continued)</i>                                                                                                                                                                                       | +                        |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |           |                       | Soil matrix and clasts were examined for visible sulfides, HCI reaction<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors o<br>observed, unless otherwise noted. Geochemical samples: 0-9.5', 11.<br>17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.<br>25', 25-28', 28-31', 31-33'<br>lata may have been collected in the field which is not included on this log. | were<br>5-17',           |

| Client <u>F</u>        |              |                   |                                    |                      | naracteriza             |                         | ll Contra<br>Il Metho |          |                       | Longyear                                                                                                                                                                                       | LOG OF Boring F                                                                                                                                                                                                              | <b>RS-11</b><br>T 2 OF 4 |
|------------------------|--------------|-------------------|------------------------------------|----------------------|-------------------------|-------------------------|-----------------------|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Number                 |              |                   |                                    |                      |                         |                         | lling Sta             |          |                       |                                                                                                                                                                                                | Elevation 1594.0                                                                                                                                                                                                             |                          |
| Location               | Ν            | orthMet N         | /line Site                         |                      |                         |                         | gged By               |          |                       |                                                                                                                                                                                                | - Total Depth <u>33.0</u>                                                                                                                                                                                                    |                          |
| DEPTH                  | SAMP. LENGTH | Effervescence     | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES     | Moisture                | Matrix Color            | ASTM                  | ПТНОГОСУ | Stratigraphic<br>Unit | DESCRI                                                                                                                                                                                         | PTION                                                                                                                                                                                                                        | ELEV                     |
|                        |              |                   | 6.31<br>-26.7<br>67                | 20/65/15<br>(Visual) |                         | 10YR 2/2<br>Black       |                       |          |                       | Gradational change from silty<br>sand, sand is fine- to coarse-<br>medium-grained. Matrix has<br>and less than 5% reddish mo<br>disseminated, and a faint rott<br>quartz, 5% feldspar, and 65% | less than 5% organic material (black),<br>ottles (less than 1 mm in diameter)<br>en egg odor after HCL. Sand is 30%<br>6 lithic fragments. Cobbles are 80-90%<br>hent, 5-10% granitoid, and 5-10%                            | -<br>-<br>               |
| -                      | 100%         | 3                 | 6.47<br>-61.4<br>47                | 65/20/15<br>(Visual) | Wet                     | 10YR 2/1<br>Black       | SM<br>to GM           |          | Upper<br>Till         |                                                                                                                                                                                                |                                                                                                                                                                                                                              | -                        |
| 14 —<br>-<br>-<br>16 — | ¥            | None              | 6.69<br>-44.1<br>12                |                      |                         |                         |                       |          |                       |                                                                                                                                                                                                |                                                                                                                                                                                                                              | 1580<br>-<br>-<br>1578   |
| -<br>-<br>18<br>-<br>- | %∪UX         | None              | 6.56<br>-37.5<br>30                | 35/59/6<br>(Lab)     | Moist to<br>Wet         | Gley1<br>2.5/N<br>Black | SP-SM                 |          | Out-<br>wash          | gravel is fine- to coarse-grain<br>has a faint rotten egg odor af<br>5% feldspar, and 35% lithic fi                                                                                            | I, sand is medium- to coarse-grained,<br>ed, subrounded to subangular. Matrix<br>ter HCL. Sand fraction is 60% quartz,<br>ragments. Cobbles are 80-90%<br>nent, 5-10% granitoid, and 5-10% chert                             | -<br><br>1576<br>-       |
| BAI                    | R            | 470<br>Edi<br>Tel | 0 W 77<br>na, MN<br>ephone         | 55435                | Suite 20<br>;<br>832-26 |                         |                       |          |                       | and odor after HCl. No sulfide<br>observed, unless otherwise no<br>17-25', 25-28', 28-31', 31-33';<br>25', 25-28', 28-31', 31-33'                                                              | amined for visible sulfides, HCl reaction,<br>es, reaction with HCl, or unusual odors w<br>oted. Geochemical samples: 0-9.5', 11.5<br>Geotechnical samples: 9.5-10', 10-11.5<br>the field which is not included on this log. | vere<br>5-17',           |

| Client PolyMet Mining Corporation                                                                                                                                                                         | Drill Contra       | actor _E  | 3oart I                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>RS-11</b><br>T 3 OF 4                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                          | Drill Metho        | d Rota    | asonio                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                             |
| Number <u>23/69-B75 INV</u>                                                                                                                                                                               | Drilling Sta       |           |                           | B Ended <u>1/25/08</u> Elevation <u>1594.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |
| Location NorthMet Mine Site                                                                                                                                                                               | Logged By          | MMB       | /MJD                      | Total Depth <u>33.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             |
| Additional and the second and the second and the second and the second solid ph-specific Cond. %GR/SA/ FINES Matrix Color Matrix Color                                                                    | ASTM               | LITHOLOGY | Stratigraphic<br>Unit     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ELEV.<br>FEET                                                                               |
| 22-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                      | /N 01-010          |           | Out-<br>wash              | 20-25': Same as 17-20' interval. Note low recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 26 - 0/90/10<br>(Visual)<br>26 - 0<br>- 0/90/10<br>(Visual)<br>Wet 10YF<br>Bla<br>None 6.33<br>31.3<br>(Visual)<br>28 - 0<br>- 0<br>28 - 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0<br>- 0 |                    |           |                           | Gradational change downward: sand with silt to sand with gravel.<br>Sand is fine- to medium-grained, subrounded to subangular. Up to<br>2% organic matter in lower part of sample. Matrix has a faint rotten<br>egg odor after HCL. Sand fraction is 50% quartz, 5% feldspar, and<br>45% lithic fragments. Cobbles are 85% fine-grained black<br>metasediment, 10% magnetic cherty iron formation, and 5%<br>granitoid.<br>Note: Geotechnical laboratory homogenized unit. Grain size analysis<br>indicates 23% gravel, 67% sand, 10% silt. | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |
| None 34/47/19<br>(Lab) Wet Gree<br>Gree                                                                                                                                                                   | ÓY<br>Dark<br>nish |           | .ower<br>Till<br>arks: \$ | Gravelly silty sand, homogeneous, sand is medium-grained, gravel is<br>fine- to medium-grained. Matrix has a faint rotten egg odor after<br>HCL. Sand fraction is 60% quartz, 10% feldspar, and 30% lithic<br>fragments. Cobbles are 70% fine-grained black metasediment, 20%<br>granitoid, and 10% other.<br>(continued)<br>Soil matrix and clasts were examined for visible sulfides, HCI reaction,                                                                                                                                       | -                                                                                           |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                              |                    |           |                           | and odor after HCI. No sulfides, reaction with HCI, or unusual odors v<br>bbserved, unless otherwise noted. Geochemical samples: 0-9.5', 11.5<br>17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.5<br>25', 25-28', 28-31', 31-33'<br>ata may have been collected in the field which is not included on this log.                                                                                                                                                                                                       | /ere<br>5-17',                                                                              |

|                                                               | Client   | PolyN                      | let Minir               | ng Corpor                          | ration                        |                          | I                | Drill Contra | actor     | Boart                 | Longyear                                                                                                                                 | LOG OF Boring F                                                                                                                                                     | RS-11        |
|---------------------------------------------------------------|----------|----------------------------|-------------------------|------------------------------------|-------------------------------|--------------------------|------------------|--------------|-----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                               | _        |                            |                         |                                    |                               | haracteriz               | ation I          | Drill Metho  | d R       | otasoni               | c                                                                                                                                        | DRAFT SHEET                                                                                                                                                         | 「4 OF 4      |
|                                                               | Numbe    | r _23/                     | 69-B75                  | INV                                |                               |                          | I                | Drilling Sta | arted     | 1/25/0                | 8 Ended 1/25/08                                                                                                                          | Elevation 1594.0                                                                                                                                                    |              |
|                                                               | Location | n <u>No</u>                | rthMet N                | /line Site                         |                               |                          | I                | _ogged By    | MN        | 1B/MJD                |                                                                                                                                          | Total Depth 33.0                                                                                                                                                    |              |
| +                                                             |          | Ĕ≿                         | g                       | ġ                                  |                               |                          | <u> </u>         |              |           | U                     |                                                                                                                                          |                                                                                                                                                                     |              |
|                                                               | DEPTH    | SAMP. LENGTH<br>& RECOVERY | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | RSA/<br>ES                    | Moisture                 | Matrix Color     | ASTM         | ГІТНОГОGY | Stratigraphic<br>Unit |                                                                                                                                          |                                                                                                                                                                     | ELEV.        |
|                                                               | FEET     | MP. L<br>RECO              | ferve                   | Soil<br>OR<br>Decific              | %GR/SA/<br>FINES              | Mois                     | Aatrix           | AS           | ITHO      | tratig                | DESCRIPT                                                                                                                                 | ION                                                                                                                                                                 | FEET         |
|                                                               |          | SA<br>&                    | Ш                       | ග්<br>6.50                         |                               |                          | 2                |              |           | S<br>S                | Gravelly silty sand, homogeneo                                                                                                           | ous, sand is medium-grained, gravel is                                                                                                                              |              |
|                                                               | _        |                            |                         | -49.7<br>70                        |                               |                          |                  | SM           |           |                       | fine- to medium-grained. Matrix<br>HCL. Sand fraction is 60% qua                                                                         | x has a faint rotten egg odor after<br>artz, 10% feldspar, and 30% lithic<br>ne-grained black metasediment, 20%                                                     | _            |
|                                                               | _        |                            |                         |                                    |                               |                          |                  |              |           |                       | fine- to medium-grained. Cobb                                                                                                            | ous, fine- to coarse-grained, gravel is les are 65% fine-grained black                                                                                              | -            |
|                                                               | -        | 100%                       |                         |                                    |                               |                          | Gley1            |              |           | Lower<br>Till         | metasediment, 30% granitoid, a                                                                                                           | and 5% gabbroic (no visible sulfides).                                                                                                                              | -            |
|                                                               | 32 -     | -                          | None                    |                                    | 39/46/15<br>(Lab)             | Wet                      | 3/10Y<br>Very Da | ,<br>ark SM  |           |                       |                                                                                                                                          |                                                                                                                                                                     | - 1562       |
|                                                               |          |                            |                         |                                    | (Lub)                         |                          | Greenis<br>Gray  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | -            |
|                                                               | _        |                            |                         |                                    |                               |                          |                  |              |           |                       | Bedrock at 33.0'.                                                                                                                        |                                                                                                                                                                     | +            |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       | End of Boring - 33 feet                                                                                                                  |                                                                                                                                                                     | -            |
|                                                               | 24       |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | 4500         |
|                                                               | 34 -     | -                          |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | - 1560       |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | -            |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | _            |
|                                                               |          |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
|                                                               | 36 -     | -                          |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | — 1558       |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | _            |
|                                                               |          |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
|                                                               | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | -            |
| /22/08                                                        | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | -            |
| GDT 4                                                         | 38-      | -                          |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | — 1556       |
| 1AN06.(                                                       |          |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
| 3ARR J                                                        | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | F            |
| .GPJ E                                                        | -        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | -            |
| 69B75.                                                        | _        |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     | _            |
| 008 23                                                        |          |                            |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
| RING 2                                                        |          | -                          |                         |                                    |                               |                          |                  |              |           |                       |                                                                                                                                          |                                                                                                                                                                     |              |
| POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08 | BA       | RF                         | 470<br>Edi<br>Tel       | na, MN                             | 7th St.<br>  55435<br>e: 952- | Suite 20<br>5<br>-832-26 |                  |              |           |                       | and odor after HCI. No sulfides,<br>observed, unless otherwise note<br>17-25', 25-28', 28-31', 31-33'; Gi<br>25', 25-28', 28-31', 31-33' | nined for visible sulfides, HCl reaction,<br>reaction with HCl, or unusual odors w<br>d. Geochemical samples: 0-9.5', 11.5<br>eotechnical samples: 9.5-10', 10-11.5 | ere<br>-17', |
| Ъ                                                             |          |                            |                         |                                    |                               |                          |                  |              |           | ditional o            | lata may have been collected in the                                                                                                      | e field which is not included on this log.                                                                                                                          |              |

| -             |              |      |                         | g Corpor                           |                            |                         |                                                                                 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOG OF Boring R<br>DRAFT SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|---------------|--------------|------|-------------------------|------------------------------------|----------------------------|-------------------------|---------------------------------------------------------------------------------|--------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|               |              | -    |                         |                                    | uraen Cl                   | naracteriz              |                                                                                 |        |           | tura a contractoria de la contra |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| Number        |              |      |                         | line Site                          |                            |                         |                                                                                 | •      |           | 1/23/0<br>MB/MJD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|               |              |      |                         |                                    | 1                          |                         | LOg                                                                             | yeu by |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Depth <u>22.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| DEPTH<br>FEET | SAMP. LENGTH |      | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES           | Moisture                | Matrix Color                                                                    | ASTM   | ГІТНОГОСУ | Stratigraphic<br>Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ELEV.<br>FEET    |
| -             |              |      | None                    |                                    | 2/30/68<br>(Visual)        | Frozen                  | 7.5YR<br>2.5/2<br>Very Dark<br>Brown to<br>7.5YR<br>2.5/3<br>Very Dark<br>Brown | ML     |           | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sandy silt, homogeneous, sand is fine-grained. Decreasing organic material from 0-2'. Approximately 2% medium-grained charcoal pieces in soil. Several clay coatings, very dark gray (7.5YR 3/1), approximately 2 mm thick at 1.2'. Sand fraction is 70% quartz, 20% feldspar, and 10% lithic fragments.                                                                                                                                                                                                         | -                |
| 2-            |              | %001 |                         | 6.77<br>114.8<br>8                 |                            |                         |                                                                                 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sand, sorted, fine-grained, angular to subround. Matrix has less<br>than 5% carbonate-cemented nodules, weakly cemented, up to 2 cm<br>in size. Several cobbles of black fine-grained metasediment,<br>granitoid, and other lithologies.                                                                                                                                                                                                                                                                         | 1608<br><br>     |
| 4             |              | ,    | Weak                    |                                    | 2/95/3<br>(Visual)         | Dry to<br>Moist         | 10YR 5/4<br>Yellowish<br>Brown                                                  | SP     |           | Out-<br>wash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -<br>1606<br>-   |
|               |              | 80%  | None                    | 7.17<br>111.7<br>33                | 22/55/23<br>(Lab)          | Moist                   | 10YR 4/4<br>Dark<br>Yellowish<br>Brown                                          | SM     |           | Upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silty sand with gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, subrounded to subangular. Matrix has less than 5% dark reddish brown (5YR 3/4) mottles, irregular, up to 1 cm in diameter at 7'. Sand fraction is 80% quartz, 5% feldspar, and 15% lithic fragments. Cobbles are 50% granitoid, 20% black, fine-grained metasediment, 20% magnetic cherty iron formation, 5% troctolite containing approximately 5% disseminated phyrrotite and chalcopyrite, and 5% quartzite. |                  |
| 8-            |              |      |                         |                                    |                            | Moist to<br>Wet         |                                                                                 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-8.5': Zone of weakly cemented carbonate layers and nodules.<br>Occurs as masses or bridges between grains; pink (7.5YR 7/4).                                                                                                                                                                                                                                                                                                                                                                                   | - 1602<br>-<br>- |
| -             |              |      |                         |                                    |                            |                         |                                                                                 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>         |
| BA            | R            | R    | 470<br>Edir<br>Tele     | na, MN                             | 7th St.<br>55435<br>: 952- | Suite 20<br>5<br>832-26 |                                                                                 |        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil matrix and clasts were examined for visible sulfides, HCI reaction, and odor after HCI. No sulfides, reaction with HCI, or unusual odors we observed, unless otherwise noted. Geochemical samples: 3-5', 7-9', 10', 17-20', 20-22'; Geotechnical samples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-1 19.5', 19.5-20.5', 20.5-22'; Jar samples: 0-1', 4-5', 7-9', 20', 21' data may have been collected in the field which is not included on this log.                                                             | ere<br>6-18',    |

| -                                     |                            | Met Minir                   | •                                  |                            | naracterizat              |                           | Drill Conti<br>Drill Meth |           |                       | Longyear                                                                                                                                                                                                                                    | LOG OF Boring F<br>DRAFT SHEE                                                                                                                                                                                                                                                                           | <b>RS-12</b><br>T 2 OF 3                                                                    |
|---------------------------------------|----------------------------|-----------------------------|------------------------------------|----------------------------|---------------------------|---------------------------|---------------------------|-----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                       |                            | /69-B75                     |                                    |                            |                           |                           | Drilling St               |           |                       |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                         |                                                                                             |
|                                       |                            | orthMet N                   |                                    |                            |                           |                           | Logged B                  |           |                       |                                                                                                                                                                                                                                             | Elevation <u>1610.0</u><br>Total Depth 22.0                                                                                                                                                                                                                                                             |                                                                                             |
| DEPTH<br>FEET                         | SAMP. LENGTH<br>& RECOVERY | Matrix<br>Effervescence     | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES           | Moisture                  | Matrix Color              | ASTM                      | LITHOLOGY | Stratigraphic<br>Unit | DESCRIF                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                         | ELEV.<br>FEET                                                                               |
| -<br>-<br>12 -<br>-<br>-<br>14 -      |                            |                             | 7.19<br>116.6<br>15                | 26/53/21<br>(Lab)          | Wet                       | 2.5Y 4/<br>Olive<br>Browr | s SM                      |           | Upper                 | gravel is fine- to coarse-grain<br>has less than 5% dark reddis<br>up to 1 cm in diameter at 7'.<br>feldspar, and 15% lithic fragm<br>black, fine-grained metasedin                                                                         | eneous, fine- to medium-grained,<br>ed, subrounded to subangular. Matrix<br>h brown (5YR 3/4) mottles, irregular,<br>Sand fraction is 80% quartz, 5%<br>nents. Cobbles are 50% granitoid, 20%<br>nent, 20% magnetic cherty iron<br>ining approximately 5% disseminated<br>nd 5% quartzite.(continued)   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -<br>- 16-<br>-<br>-<br>18-<br>-<br>- |                            |                             | 7.14<br>44<br>14                   | 20/70/10<br>(Visual)       | Wet                       | 2.5Y 4/<br>Olive<br>Browr | :                         |           |                       | sand, gravel is fine- to coarse<br>Tiny fractures in soil matrix ha<br>discoloration to dark gray (2.5<br>5% feldspar, and 10% lithic fr<br>fine-grained black metasedim<br>40% black cherty iron formati<br>fractures and rust-colored sta | nogeneous, fine- to coarse-grained<br>-grained, subangular to subrounded.<br>ave approximately 2 mm thick<br>5Y 4/1). Sand fraction is 85% quartz,<br>ragments. Cobbles are 40%<br>lent with common red-brown staining,<br>on with yellow precipitate in some<br>aining on surfaces, and 20% granitoid. | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| -                                     | V                          |                             |                                    | 0/100/0<br>(Visual)        | Wet                       | 10YR 4<br>Browi           |                           |           | Out-<br>wash          | grayish brown (10YR 3/2).<br>Sand, homogeneous, fine- to<br>subrounded.<br>(continued)                                                                                                                                                      | coarse-grained, subangular to                                                                                                                                                                                                                                                                           | _                                                                                           |
| BA                                    | R                          | 470<br>Edi<br><b>R</b> Tele | na, MN                             | 7th St. 3<br>55435<br>952- | Suite 200<br>5<br>832-260 |                           |                           |           |                       | and odor after HCl. No sulfide<br>observed, unless otherwise no<br>17-20', 20-22'; Geotechnical s<br>19.5', 19.5-20.5', 20.5-22'; Jar                                                                                                       | amined for visible sulfides, HCI reaction,<br>is, reaction with HCI, or unusual odors w<br>ted. Geochemical samples: 3-5', 7-9', 1<br>amples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-<br>'s amples: 0-1', 4-5', 7-9', 20', 21'<br>he field which is not included on this log.                                | /ere<br>6-18',                                                                              |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contra | actor     | Boart                 | LOG OF Boring F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>RS-12</b>  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Metho  | d Ro      | otasoni               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 3 OF 3      |
| Number _ 23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drilling Sta | rted _    | 1/23/0                | 8 Ended <u>1/23/08</u> Elevation <u>1610.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By    | MM        | IB/MJD                | Total Depth _22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5            | ۲         | jc                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Addition of the second of the | ASTM         | гітногоду | igrapł<br>Jnit        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ELEV.         |
| Addition of the second of the | A A          | LITH      | Stratigraphic<br>Unit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FEET          |
| 0/100/0 West 10YF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R 4/3<br>SM  |           | Out-<br>wash          | Sand, homogeneous, fine- to coarse-grained, subangular to subrounded.(continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| 22<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ery          |           | Lower<br>Till         | Silty sand with gravel, homogeneous, dense. Sand is fine-to medium-grained, gravel is fine- to coarse-grained, subangular to subrounded. Matrix has rotten-egg odor after HCL which may be associated with yellowish brown (10YR 5/6) mottles that are 1-3 mm in diameter and disseminated throughout 1-2% the matrix. Matrix also contains 20% very dark grayish brown (2.5Y 3/2) mottles from 20.5 to 21'. Sand fraction is 50% quartz, 10% feldspar, and 40% lithic fragments. Cobbles are 40% troctolite containing trace sulfides and patches of iron staining, 30% granitoid, 15% black, fine-grained metasediment, and 5% black chert or siltstone with 2% pyrrhotite veins. Bedrock at 22'. Dark gray-black troctolite containing 2% disseminated sulfides up to 2 mm in diameter. Chalcopyrite and pyrrhotite. End of Boring - 22 feet | - 1588        |
| 24-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             |
| 26-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | — 1584        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             |
| 28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | — 1582        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _             |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |           |                       | Soil matrix and clasts were examined for visible sulfides, HCI reaction,<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors w<br>observed, unless otherwise noted. Geochemical samples: 3-5', 7-9', 1<br>17-20', 20-22'; Geotechnical samples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-1<br>19.5', 19.5-20.5', 20.5-22'; Jar samples: 0-1', 4-5', 7-9', 20', 21'<br>lata may have been collected in the field which is not included on this log.                                                                                                                                                                                                                                                                                                                                                                                 | ere<br>6-18', |

| Client <u>Po</u><br>Project Na |            |                         |                                    |                          | paracteriz              |                                                                          | l Contra<br>I Metho |           |                       | Longyear LOG OF Boring R<br>DRAFT SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|--------------------------------|------------|-------------------------|------------------------------------|--------------------------|-------------------------|--------------------------------------------------------------------------|---------------------|-----------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Number                         |            |                         |                                    |                          |                         |                                                                          | ling Sta            |           |                       | Ended 1/24/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| Location                       |            |                         |                                    |                          |                         |                                                                          | iged By             | -         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                                | ~          | Ð                       | - T                                | 1                        |                         | <br>                                                                     |                     |           | 0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| DEPTH                          | & RECOVERY | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES         | Moisture                | Matrix Color                                                             | ASTM                | ГІТНОГОСУ | Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELEV.<br>FEET       |
| -                              | 100%       | None                    | 6.15<br>62.7<br>42                 | 5/85/10<br>(Visual)      | Frozen<br>Moist         | 7.5R 2.5/3<br>Very Dark<br>Brown                                         | SP-SM               |           | Soil                  | Sand with silt, homogeneous, fine- to coarse-grained, subangular to subrounded. Organic matter decreases from 70% to 10% between 0-1.5'. Sand fraction is 70% quartz, 10% feldspar, and 20% lithic fragments. Several cobbles of fine-grained, black metasediment with rust-colored staining on surfaces.                                                                                                                                                                                                | -                   |
| 2-                             |            | None                    |                                    | 5/65/30<br>(Visual)      | Wet                     | 7.5R 2.5/3<br>Very Dark<br>Brown<br>and 7.5R<br>3/1<br>Very Dark<br>Gray | SM                  |           |                       | Silty sand, variegated, homogeneous, dense, fine- to medium-grained, subangular to subrounded, trace organic material. Several very dark gray (7.5YR 3/1) lenses. Sand fraction is same as 0-1.5' interval, cobbles are fine-grained black metasediment with rust-colored surfaces. Possible perched water at 1.5'.                                                                                                                                                                                      | - 1604              |
| 4                              | 100%       | None                    | 6.07<br>106.6<br>27<br>6.47        | 34/41/25<br>(Lab)        | Moist                   | Gley1<br>4/5GY<br>Dark<br>Greenish<br>Gray                               | SM                  |           | Lower<br>Till         | Gravelly silty sand, homogeneous, dense, fine- to medium-grained.<br>Gravel is fine- to coarse-grained, angular to well-rounded. Matrix<br>has dark gray brown, dark red brown, and black mottles, and has a<br>weak rotten egg odor after HCL. Sand fraction is 80% quartz and<br>20% lithic fragments. Cobbles are 65% black chert/siltstone iron<br>formation containing some rust staining and yellow precipitate, 20%<br>granitoid, 10% black, fine-grained metasediment, and 5% pink<br>quartzite. | -<br>-<br>1602<br>- |
| -<br>6-₩<br>-                  | -          |                         | 72.3<br>22                         |                          |                         |                                                                          |                     |           |                       | Interval is too destroyed by drilling to classify.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>1600<br>       |
|                                | 50%        |                         |                                    |                          |                         |                                                                          |                     |           | Bed-<br>rock          | Bedrock at 8': Dark gray-black troctolite containing 5% visible sulfides (30% pyrrhotite, 50% chalcopyrite, 20% pyrite).                                                                                                                                                                                                                                                                                                                                                                                 | -<br>- 1598<br>-    |
| L V                            |            |                         |                                    |                          |                         |                                                                          |                     |           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| BAF                            | RF         | 470<br>Edi<br>Tel       | na, MN                             | 7th St.<br>55435<br>952- | Suite 20<br>;<br>832-26 |                                                                          |                     | Rei       |                       | End of Boring - 10 feet<br>Soil matrix and clasts were examined for visible sulfides, HCI reaction, of<br>and odor after HCI. No sulfides, reaction with HCI, or unusual odors we<br>observed, unless otherwise noted. Geochemical samples: 0-1.5', 1.5-2<br>2.5-6', 8-10'; Geotechnical samples: 0-1.5', 1.5-2.5', 2.5-6'                                                                                                                                                                               | ere                 |

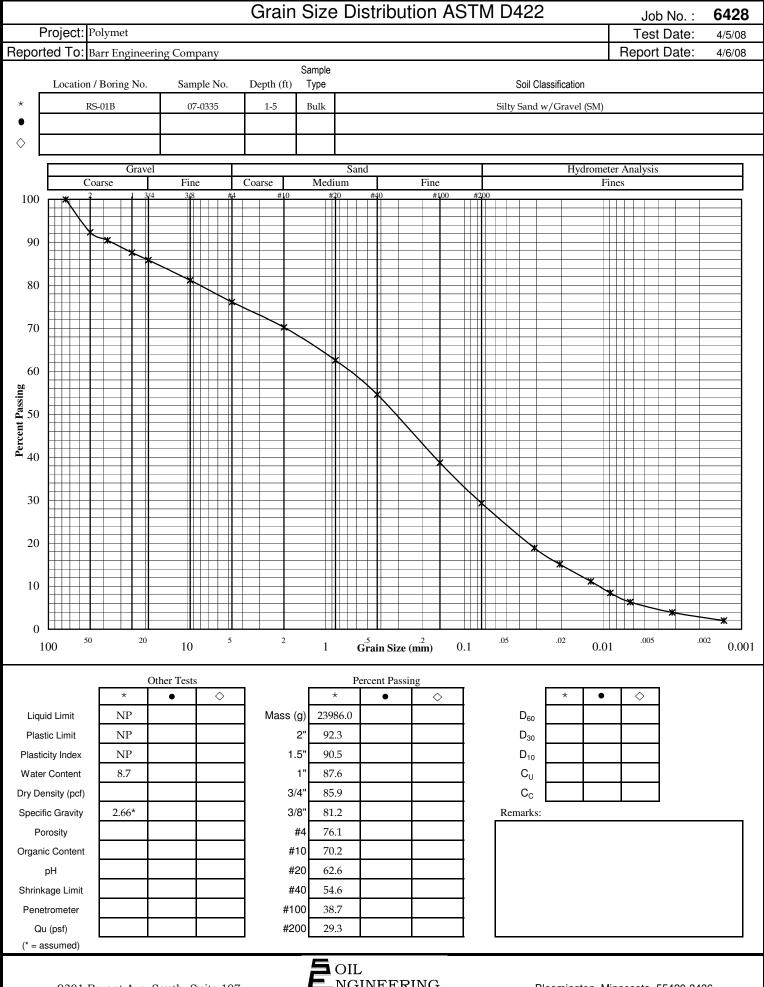
| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contra                  | actor Boar                         | t Longyear                                                                                       | LOG OF Boring RS-14A                                                                                                                                                                                     |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Metho                   | od Rotasor                         | nic                                                                                              | DRAFT SHEET                                                                                                                                                                                              |                                |
| Number <u>23/69-B75 INV</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drilling Sta                  | arted 1/24/                        | 08 Ended <u>1/24/08</u>                                                                          | Elevation 1609.0                                                                                                                                                                                         |                                |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By                     | / REE/MJD                          | )                                                                                                | Total Depth _5.0                                                                                                                                                                                         |                                |
| Addition of the second of the | ASTM                          | LITHOLOGY<br>Stratigraphic<br>Unit | DESCRIF                                                                                          | PTION                                                                                                                                                                                                    | ELEV.<br>FEET                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ck to<br>R 3/6<br>ark<br>wish |                                    |                                                                                                  | anic fines, decreasing organic matter<br>to medium-grained. Gradational color                                                                                                                            | -<br>1608                      |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ark SM                        |                                    | fine- to coarse-grained, subar<br>approximately 10% rootlets w                                   | nd is fine- to medium-grained, gravel is<br>ngular to angular. Matrix has<br>/ith associated very dark brown (7.5YR<br>100% black fine-grained metasediment.                                             | -                              |
| 4 - None 40/36/24 10YF<br>Lab) Yello<br>Bro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ark<br>wish GM                |                                    | medium-grained, gravel is fin                                                                    | eneous, dense, sand is fine- to<br>e- to coarse-grained, subangular to<br>% fine-grained black metasediment, 5%<br>(no sulfides), 5% granitoid.                                                          | — 1606<br>-<br>-               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                    | Bedrock at 5.0'. Black biotite<br>End of Boring - 5 feet                                         | argillite.                                                                                                                                                                                               | — 1604<br>-<br>-<br><br>- 1602 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                    |                                                                                                  |                                                                                                                                                                                                          | -<br>-<br>1600<br>-            |
| BARR<br>BARR<br>BARR<br>BARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                    | and odor after HCl. No sulfide<br>observed, unless otherwise no<br>Geotechnical samples: 0-1.5', | amined for visible sulfides, HCI reaction, or<br>is, reaction with HCI, or unusual odors we<br>oted. Geochemical samples: 0-1.5', 1.5-3'<br>1.5-3', 3-5'<br>the field which is not included on this log. | re                             |

| Client PolyMet Mining Corporation                                                                                    | Drill Contrac | ctor <u>Boa</u>                                                            | t Longyear                                                                                                                                                                        | LOG OF Boring RS-14B<br>SHEET 1 OF 1                       |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|
| Project Name Polymet Overburden Characterization                                                                     | Drill Method  | Rotas                                                                      | nic                                                                                                                                                                               | DRAFT SHEET 1 OF 1                                         |  |  |  |  |  |  |  |
| Number _ 23/69-B75 INV _                                                                                             | Drilling Star | ted 1/24                                                                   | /08 Ended 1/24/08 Ele                                                                                                                                                             | vation 1609.0                                              |  |  |  |  |  |  |  |
| Location NorthMet Mine Site                                                                                          | Logged By     | REE/M.                                                                     | D Tot                                                                                                                                                                             | al Depth <u>5.0</u>                                        |  |  |  |  |  |  |  |
| A HITIX Color<br>Matrix Color<br>Matrix Color<br>Matrix Color                                                        | ASTM          | LITHOLOGY<br>Stratigraphic                                                 | DESCRIPTION                                                                                                                                                                       | ELEV.<br>FEET                                              |  |  |  |  |  |  |  |
|                                                                                                                      | c             | Ma                                                                         | See RS-14A, 0-1.5' interval for descri                                                                                                                                            | ption.                                                     |  |  |  |  |  |  |  |
|                                                                                                                      | GM            | So<br>So<br>So<br>So<br>So<br>So<br>So<br>So<br>So<br>So<br>So<br>So<br>So |                                                                                                                                                                                   | _<br>— 1608                                                |  |  |  |  |  |  |  |
| 2                                                                                                                    | SM            |                                                                            | See RS-14A, 1.5-3' interval for descri                                                                                                                                            | _                                                          |  |  |  |  |  |  |  |
|                                                                                                                      | GM            |                                                                            | Similar to RS-14A, 3.0-5.0' interval. S<br>Mottles are yellowish red (5YR 4/6) ar<br>(10YR 3/2). Rust coloring also seen of<br>85% black fine-grained magnetic cher<br>granitoid. | nd very dark grayish brown<br>on most cobbles. Cobbles are |  |  |  |  |  |  |  |
|                                                                                                                      |               | <u>.IA a</u>                                                               | Bedrock at 5.0'. Black biotite argillite.<br>End of Boring - 5 feet                                                                                                               | - 1604<br>-<br>-<br>-<br>- 1602<br>-                       |  |  |  |  |  |  |  |
|                                                                                                                      |               |                                                                            |                                                                                                                                                                                   | -<br>-<br>1600<br>-<br>-                                   |  |  |  |  |  |  |  |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601 |               |                                                                            |                                                                                                                                                                                   |                                                            |  |  |  |  |  |  |  |

| Client PolyN                                          | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | Drill            | Contra     | actor             | Boart   | Longyear  | LOG OF Boring RS-15A-E |                                                          |                                |          |  |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------|------------|-------------------|---------|-----------|------------------------|----------------------------------------------------------|--------------------------------|----------|--|--|
| Project Name                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  | naracteriz |                   |         |           | otasoni                |                                                          | DRAFT SHEE                     | T 1 OF 1 |  |  |
| Number 23/                                            | 69-B75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INV                                |                  |            | Drill             | ing Sta | rted _    | 1/27/0                 | 8 Ended _1/27/08 El                                      | levation 1615.5                |          |  |  |
| Location No                                           | orthMet N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /line Site                         |                  |            | Log               | ged By  | MN        | IB/REE                 | То                                                       | otal Depth _0.5                |          |  |  |
| E≿                                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ŀ                                  |                  |            | 5                 |         | ۲         | <u>.</u>               |                                                          |                                |          |  |  |
|                                                       | atrix<br>escen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Col<br>Col                         | %GR/SA/<br>FINES | Moisture   | Matrix Color      | ASTM    | DLOG      | graph<br>Init          | DESCRIPTION                                              |                                | ELEV.    |  |  |
| DEPTH HING<br>DEPTH - HING<br>FEET & WES<br>SWECONERY | Matrix<br>Effervescence                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil pH-<br>ORP-<br>Specific Cond. | BN<br>FIN        | Moi        | Matri             | AS      | ГІТНОГОСУ | Stratigraphic<br>Unit  |                                                          |                                | FEET     |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  | Moist      | Black             | OL/OH   |           | Peat                   | Fibrous peat.                                            |                                |          |  |  |
| 100%                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.59<br>275<br>104                 | 1/46/53<br>(Lab) |            | 7.5YR 3/3<br>Dark | ML      |           | Soil                   | Sandy silt with organic material, hom                    | ogeneous, no odor, no mottles, |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                  |                  |            | Brown             |         |           |                        | Hand auger refusal on rocks.<br>End of Boring - 0.5 feet |                                |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | - 1614   |  |  |
| 2-                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
| _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | - 1612   |  |  |
| 4+                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
| _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | - 1610   |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| 6-                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
| _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| _                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | 1608     |  |  |
| 8-                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | -        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | - 1606   |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                | Ļ        |  |  |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |
| BAR                                                   | Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601<br>Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor,<br>and odor after HCl. No sulfides, reaction with HCl, or unusual odors were<br>observed, unless otherwise noted. Geochemical samples: RS-15A-D 0-0.5';<br>Geotechnical samples: 0-0.5'<br>Additional data may have been collected in the field which is not included on this log. |                                    |                  |            |                   |         |           |                        |                                                          |                                |          |  |  |

|                                                               | Client  | PolyN                      | 1et Minir                  | ng Corpor                          | ation                       |                          | Drill              | Contra  | actor     | Boart                 | Longyear                                                                                                                                      | LOG OF Boring RS-                                                   | 16A-C  |
|---------------------------------------------------------------|---------|----------------------------|----------------------------|------------------------------------|-----------------------------|--------------------------|--------------------|---------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------|
|                                                               | Project | Name                       | Polym                      | net Overb                          | urden Cl                    | haracteriz               | ation Drill        | Metho   | d R       | otasoni               | c                                                                                                                                             | DRAFT SHEE                                                          |        |
|                                                               | Numbe   | r <u>23</u> /              | 69-B75                     | INV                                |                             |                          | Drill              | ing Sta | rted _    | 1/27/0                | 8 Ended 1/27/08                                                                                                                               | Elevation 1605.0                                                    |        |
|                                                               | Locatio | n <u>No</u>                | rthMet N                   | Aine Site                          |                             |                          | Log                | ged By  | MN        | IB/REE                |                                                                                                                                               | Total Depth 2.0                                                     |        |
|                                                               |         | sтн<br>RY                  | ec                         | .pu                                |                             |                          | د<br>ت             |         | ۲         | ic                    |                                                                                                                                               |                                                                     |        |
|                                                               | DEPTH   | LENG                       | atrix<br>escer             | RP-<br>RP-<br>ic Co                | %GR/SA/<br>FINES            | Moisture                 | Matrix Color       | ASTM    |           | grapł<br>Jnit         | DESCRIPTIO                                                                                                                                    | N                                                                   | ELEV.  |
|                                                               | FEET    | SAMP. LENGTH<br>& RECOVERY | Matrix<br>Effervescence    | Soil pH-<br>ORP-<br>Specific Cond. | 9%<br>1112                  | Mo                       | Matri              | AS      | ГІТНОГОСУ | Stratigraphic<br>Unit |                                                                                                                                               |                                                                     | FEET   |
|                                                               |         | S &                        | ш                          | 0                                  |                             |                          |                    |         |           |                       | Silty sand, homogeneous, no odo                                                                                                               | r, no mottles, no visible sulfides.                                 |        |
|                                                               | _       |                            |                            |                                    |                             |                          |                    |         |           | -                     |                                                                                                                                               |                                                                     | _      |
|                                                               |         | %                          |                            | 5.29                               | 0/69/31                     |                          | 10YR 3/6<br>Dark   |         |           | -                     |                                                                                                                                               |                                                                     |        |
|                                                               | -       | 100%                       |                            | 290<br>8                           | (Lab)                       | Moist                    | Yellowish<br>Brown | SM      |           | Soil                  |                                                                                                                                               |                                                                     | — 1604 |
|                                                               | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
|                                                               | 2-      | V                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | 2       |                            |                            |                                    |                             |                          |                    |         |           |                       | Hand auger refusal on rocks.<br>End of Boring - 2 feet                                                                                        |                                                                     |        |
|                                                               | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
|                                                               | -       | -                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | - 1602 |
|                                                               |         |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | 4-      | +                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
|                                                               | _       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | _      |
|                                                               |         |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | — 1600 |
|                                                               | -       | -                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
|                                                               | 0       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | 6-      |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
|                                                               | -       | -                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
|                                                               | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | - 1598 |
|                                                               |         |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
| 4/22/06                                                       | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
| GDT 4                                                         | 8-      | +                          |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
| JAN06.                                                        |         |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
| BARR .                                                        | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
| GPJ F                                                         | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | - 1596 |
| 69B75.                                                        | -       |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
| 08 23                                                         |         |                            |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     |        |
| ING 20                                                        | -       | <u>t</u>                   |                            |                                    |                             |                          |                    |         |           |                       |                                                                                                                                               |                                                                     | -      |
| POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08 | BA      | RF                         | 470<br>Edi<br><b>2</b> Tel | na, MN                             | 7th St.<br>55435<br>e: 952- | Suite 20<br>5<br>-832-26 |                    |         |           |                       | Soil matrix and clasts were examine<br>and odor after HCI. No sulfides, re<br>observed, unless otherwise noted.<br>Geotechnical samples: 0-2' | action with HCl, or unusual odors<br>Geochemical samples: RS-16B 0- | were   |
| POL                                                           |         |                            |                            |                                    |                             |                          |                    |         | Add       | litional o            | lata may have been collected in the fie                                                                                                       | eia which is not included on this log.                              |        |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drill Contra | actor Boa                  | rt Longyear                                                                                           |                                                                                                                   | <b>5-17A</b>     |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Metho  | d Rotaso                   | nic                                                                                                   | DRAFT SHEET                                                                                                       | IOFI             |  |  |  |  |  |  |
| Number _ 23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drilling Sta | rted 1/25                  | /08 Ended 1/25/08                                                                                     | Elevation 1598.0                                                                                                  |                  |  |  |  |  |  |  |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Logged By    | MMB                        |                                                                                                       | Total Depth 8.0                                                                                                   |                  |  |  |  |  |  |  |
| Addition of the second of the | ASTM         | LITHOLOGY<br>Stratigraphic | DESCRIPT                                                                                              | ION                                                                                                               | ELEV.<br>FEET    |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                            |                                                                                                       | roots, grass, vegetative material.                                                                                |                  |  |  |  |  |  |  |
| - Frozen Brov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                            |                                                                                                       |                                                                                                                   | _                |  |  |  |  |  |  |
| 2 - Brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | wn           |                            | Gravelly silty sand. Sand is ver<br>to coarse-grained. Possible lov<br>is subangular to subrounded wi | ry fine- to fine-grained. Gravel is fine-<br>w-plasticity clay from 1 to 2.5'. Gravel<br>ith various lithologies. | -<br>1596<br>-   |  |  |  |  |  |  |
| -   -   Moist Day<br>4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                            |                                                                                                       |                                                                                                                   | -<br>-<br>— 1594 |  |  |  |  |  |  |
| 44/43/13<br>(Lab) Moist Brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                            | Silty gravel with sand. Sand is<br>is fine-to coarse-grained with va                                  |                                                                                                                   | - 1502           |  |  |  |  |  |  |
| - 20/40/40 Moist to<br>96<br>96<br>97<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wn SM        |                            | fine- to coarse-grained with var<br>rounded.                                                          | rery fine- to fine-grained, gravel is ious lithologies, subrounded to                                             | — 1592<br>       |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                            | Granitoid boulder.<br>Refusal on boulder at 8.0'.                                                     |                                                                                                                   | _                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                            | End of Boring - 8 feet                                                                                |                                                                                                                   | - 1590           |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                            |                                                                                                       |                                                                                                                   | -                |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                            |                                                                                                       |                                                                                                                   |                  |  |  |  |  |  |  |
| Barr Engineering Co.       4700 W 77th St. Suite 200         Edina, MN 55435       Felephone: 952-832-2600         Fax: 952-862-2601       Additional data may have been collected in the field which is not included on this log.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                            |                                                                                                       |                                                                                                                   |                  |  |  |  |  |  |  |

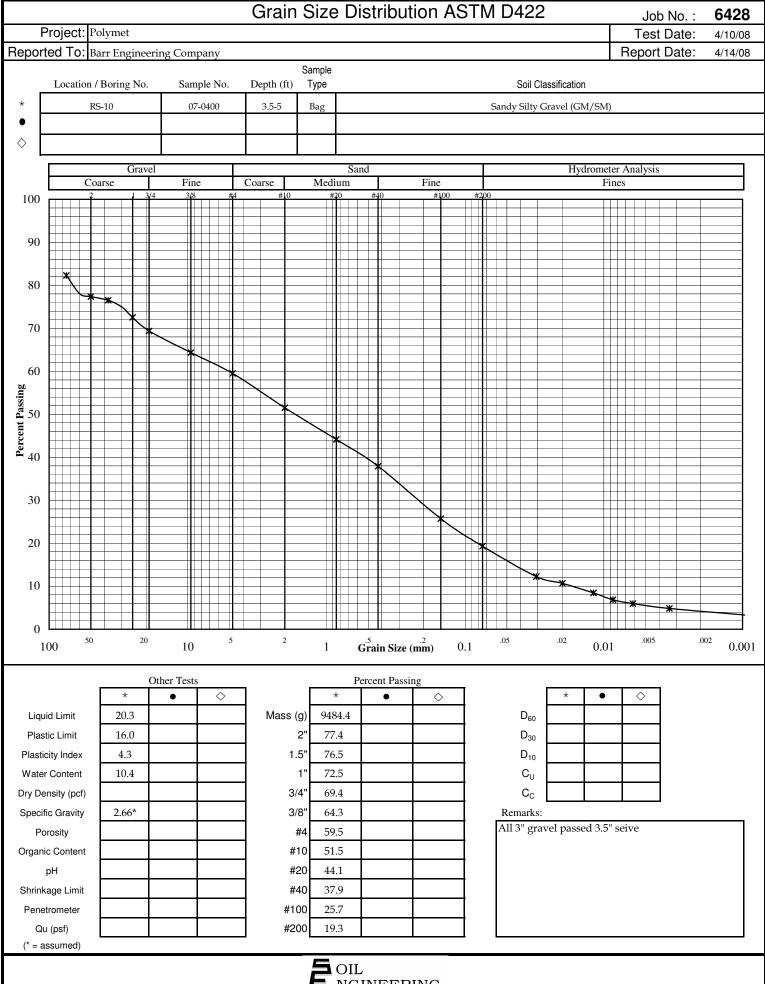

|                                                               | Client        | Po           | уМе        | t Minin                 | g Corpor                           | ation            |             | Dril         | l Contra      | actor     | Boart                 | Longyear                                                       |                                                                        | <b>RS-17B</b><br>ET 1 OF 2 |
|---------------------------------------------------------------|---------------|--------------|------------|-------------------------|------------------------------------|------------------|-------------|--------------|---------------|-----------|-----------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------|
|                                                               | Project       | Nar          | ne _       | Polym                   | et Overb                           | urden Cł         | naracteriza | ation Dril   | I Metho       | d Ro      | otasoni               | с                                                              | DRAFT SHE                                                              |                            |
|                                                               | Numbe         | r _2         | 23/69      | 9-B75 I                 | NV                                 |                  |             | Dril         | ling Sta      | arted _   | 1/25/0                | 8 Ended <u>1/25/08</u>                                         | Elevation 1598.0                                                       |                            |
|                                                               | Locatio       | n _l         | North      | nMet M                  | line Site                          |                  |             | Log          | iged By       | MM        | В                     |                                                                | Total Depth 12.0                                                       |                            |
| -                                                             | DEPTH<br>FEET | SAMP. LENGTH | & RECOVERY | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond. | %GR/SA/<br>FINES | Moisture    | Matrix Color | ASTM          | ГІТНОГОСУ | Stratigraphic<br>Unit | DESCRIPT                                                       | ΓΙΟΝ                                                                   | ELEV.<br>FEET              |
|                                                               |               | 0            | -          | _                       |                                    |                  |             |              |               |           |                       | See RS-17A, 0-1' interval for d                                | lescription.                                                           |                            |
|                                                               | -             |              |            |                         |                                    |                  |             |              | OL/OH         |           | Soil                  |                                                                |                                                                        | _                          |
|                                                               |               |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               | _             |              |            |                         |                                    |                  |             |              |               |           |                       | See RS-17A, 1-4.5' interval for                                | description.                                                           |                            |
|                                                               | -             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | -                          |
|                                                               | 2-            |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | - 1596                     |
|                                                               |               |              | %          |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               | -             |              | 110%       |                         |                                    |                  |             |              | SM            |           |                       |                                                                |                                                                        | -                          |
|                                                               | -             |              |            |                         |                                    |                  |             |              | OW            |           |                       |                                                                |                                                                        | -                          |
|                                                               |               |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               | -             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               | 4 -           | -            |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | — 1594                     |
|                                                               | _             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               |               |              |            |                         |                                    |                  |             |              |               | 609       |                       | See RS-17A, 4.5-6' interval for                                | description.                                                           |                            |
|                                                               | -             |              |            |                         |                                    |                  |             |              | 014           |           |                       |                                                                |                                                                        | -                          |
|                                                               | -             |              |            |                         |                                    |                  |             |              | GM            |           | Upper<br>Till         |                                                                |                                                                        | _                          |
|                                                               |               |              |            |                         |                                    |                  |             |              |               | 000       |                       |                                                                |                                                                        |                            |
|                                                               | 6-            |              |            |                         |                                    |                  |             |              |               |           |                       | See RS-17A, 6-7' interval for d                                | lescription.                                                           | 1592                       |
|                                                               | -             |              | 80%        |                         |                                    |                  |             |              | SM            |           |                       |                                                                |                                                                        | ¥                          |
|                                                               |               |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
|                                                               | -             |              |            |                         |                                    |                  |             |              |               |           |                       | See RS-17A, 7-8' interval for d                                | lescription.                                                           |                            |
| 22/08                                                         | -             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | _                          |
| DT 4/2                                                        | 8-            | V            |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        |                            |
| N06.G                                                         | 0             |              |            |                         |                                    |                  |             |              |               |           |                       | Sand with silt and gravel. Sand Gravel is angular to rounded w | d is very fine- to medium-grained.<br><i>i</i> th various lithologies. | 1550                       |
| RR JA                                                         | -             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | -                          |
| PJ BA                                                         | -             |              | 50%        |                         |                                    | 40/50/10         | Wet         | Brown        | SP-SM         |           |                       |                                                                |                                                                        | _                          |
| B75.GI                                                        |               |              | 1          |                         |                                    | (Visual)         |             |              |               |           |                       |                                                                |                                                                        |                            |
| 2369                                                          | -             |              |            |                         |                                    |                  |             |              |               |           |                       |                                                                |                                                                        | -                          |
| 3 2008                                                        | -             | V            |            |                         |                                    |                  |             |              |               |           |                       | (continued)                                                    |                                                                        | <u> </u>                   |
| POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08 |               |              |            | Der                     | Encir                              | ooring           | Co          |              | $\overline{}$ | Rer       | narks <sup>.</sup>    |                                                                | : 6.0-7.0' shelby tube, 8-11' 5-gallon                                 | bucket                     |
| G OF B                                                        |               |              |            | 470                     |                                    | th St. 3         | Suite 20    | 00           |               |           |                       |                                                                |                                                                        |                            |
| ET LO(                                                        | BA            | P            | P          |                         | na, MN<br>ephone                   | 55435<br>952-    | ;<br>832-26 | 00           |               |           |                       |                                                                |                                                                        |                            |
| OLYME                                                         |               |              |            | Fax                     | 952-8                              | 362-26           | 01          |              | J             | Add       | itional               | data may have been collected in the                            | e field which is not included on this log.                             |                            |
| ٩                                                             | -             |              |            |                         |                                    |                  |             |              |               | _         |                       |                                                                |                                                                        |                            |

| Client PolyMet Mining Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drill Contract                                                               | tor Boart I                        |                                                                                                                                                                                              | LOG OF Boring RS-17B       |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|--|--|
| Project Name Polymet Overburden Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drill Method                                                                 | Rotasonio                          | DRAFT                                                                                                                                                                                        | SHEET 2 OF 2               |  |  |  |  |  |  |  |  |
| Number _ 23/69-B75 INV _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drilling Starte                                                              | ed 1/25/08                         | B Ended <u>1/25/08</u> Elevation <u>1598.0</u>                                                                                                                                               |                            |  |  |  |  |  |  |  |  |
| Location NorthMet Mine Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Logged By _                                                                  | MMB                                | Total Depth 12.0                                                                                                                                                                             |                            |  |  |  |  |  |  |  |  |
| Additional and the second specific Cond. %GR/SA/ % | ASTM                                                                         | LITHOLOGY<br>Stratigraphic<br>Unit | DESCRIPTION                                                                                                                                                                                  | ELEV.<br>FEET              |  |  |  |  |  |  |  |  |
| - 40/50/10<br>(Visual) Wet Brow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vn SP-SM                                                                     | Upper<br>Till<br>Bed-<br>rock      | Sand with silt and gravel. Sand is very fine- to medium-gr<br>Gravel is angular to rounded with various lithologies.( <i>cont</i><br>Troctolite bedrock, 0.8' long intact core-shaped piece. | ained.<br>inued)<br>       |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | ***                                | End of Boring - 12 feet                                                                                                                                                                      | - 1586                     |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                    |                                                                                                                                                                                              | - 1584<br>-<br>-<br>- 1582 |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                    |                                                                                                                                                                                              | -<br>-<br>1580<br>-        |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                                    |                                                                                                                                                                                              | _                          |  |  |  |  |  |  |  |  |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4700 W 77th St. Suite 200<br>Edina, MN 55435<br>BARR Telephone: 952-832-2600 |                                    |                                                                                                                                                                                              |                            |  |  |  |  |  |  |  |  |

| Client _F     | ⊃olyN                      | let Minir               | ng Corpor                             | ration                        |                         | Drill                 | Contra | actor                   | Boart                 | Longyear                                                                                           |                                                                                               | <b>5-18A</b><br>r 1 of 1 |
|---------------|----------------------------|-------------------------|---------------------------------------|-------------------------------|-------------------------|-----------------------|--------|-------------------------|-----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|
| Project N     |                            |                         |                                       | ourden Ch                     | naracteriz              |                       |        |                         | otasoni               |                                                                                                    | DRAFT SHEE                                                                                    |                          |
| Number        |                            |                         |                                       |                               |                         |                       |        |                         | 1/29/0                | 8 Ended <u>1/29/08</u>                                                                             | Elevation 1588.5                                                                              |                          |
| Location      |                            | rthMet N                | /line Site                            |                               |                         | Log                   | ged By | Total Depth <u>10.0</u> |                       |                                                                                                    |                                                                                               |                          |
| DEPTH<br>FEET | SAMP. LENGTH<br>& RECOVERY | Matrix<br>Effervescence | Soil pH-<br>ORP-<br>Specific Cond.    | %GR/SA/<br>FINES              | Moisture                | Matrix Color          | ASTM   | ГІТНОГОGY               | Stratigraphic<br>Unit | DESCRIPT                                                                                           | TON                                                                                           | ELEV.<br>FEET            |
|               |                            |                         |                                       | 20/60/20<br>(Visual)          | Wet                     | Black                 | SM     |                         | Soil                  | Silty sand with gravel, organic                                                                    | rich.                                                                                         |                          |
| -             |                            |                         |                                       | (Visual)                      |                         |                       |        |                         | }                     | Silt with possible low plasticity of                                                               | clay and approximately 10% gravel,                                                            | - 1588                   |
| 2-            | 100%                       |                         |                                       | 10/5/85<br>(Visual)           | Moist                   | Yellowish<br>Brown    | ML     |                         |                       | mottled.                                                                                           |                                                                                               | 1586                     |
|               | $\mathbf{v}$               |                         |                                       |                               |                         |                       |        |                         | Upper<br>Till         |                                                                                                    |                                                                                               |                          |
| 4             | 100%                       |                         |                                       | 30/50/20<br>(Visual)          | Moist                   | Brown                 | SC     |                         |                       | Clayey sand with gravel, sand<br>Note: Geotechnical laboratory l<br>analysis indicates 26% gravel, | is fine-grained.<br>nomogenized 0-5' interval. Grain size<br>44% sand, and 30% silt and clay. | 1584                     |
| 6-            | 100%                       |                         |                                       | 32/47/21<br>(Lab)             | Moist                   | Dark Gray<br>to Black | SM     |                         | Lower<br>Till         | Gravelly silty sand.                                                                               |                                                                                               | -<br>-<br>- 1582<br>-    |
| 8             | 100%                       |                         |                                       |                               |                         |                       |        |                         | Bed-<br>rock          | Bedrock at 8.0'. Troctolite core                                                                   | pieces.                                                                                       | - 1580<br>-              |
|               |                            | Bar                     | r Engin                               | eerina                        | Co.                     |                       |        | Re                      | marks:                | Geotechnical samples: 0-5', 5-8                                                                    |                                                                                               |                          |
| BA            | RF                         | 470<br>Edi<br>Tel       | 0 W 77<br>na, MN<br>ephone<br>c 952-6 | 7th St. 3<br>55435<br>e: 952- | Suite 20<br>;<br>832-26 |                       |        | Add                     | ditional o            | lata may have been collected in the                                                                | e field which is not included on this log.                                                    |                          |

| Client _PolyMet Mining Corpora                                                                          | tion                                                                                                                                                                                                            | Drill                                  | Contra  | actor _   | Boart                 | LOG OF Boring RS<br>DRAFT SHEE                                                                               | <b>S-19A</b><br>T 1 OF 1   |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------|-----------|-----------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|--|--|--|
| Project Name Polymet Overbu                                                                             | rden Characteriz                                                                                                                                                                                                |                                        | Metho   |           |                       |                                                                                                              |                            |  |  |  |  |  |  |
| Number 23/69-B75 INV                                                                                    |                                                                                                                                                                                                                 |                                        | ing Sta | _         |                       | 8 Ended <u>1/31/08</u> Elevation <u>1600.5</u>                                                               |                            |  |  |  |  |  |  |
| Location NorthMet Mine Site                                                                             |                                                                                                                                                                                                                 | Logo                                   | ged By  | MM        | В                     | Total Depth 9.5                                                                                              |                            |  |  |  |  |  |  |
| A BARP: LENGTH<br>SAMP: LENGTH<br>& RECOVERY<br>& Matrix<br>Effervescence<br>Soil pH-<br>Specific Cond. | %GR/SA/<br>FINES<br>Moisture                                                                                                                                                                                    | Matrix Color                           | ASTM    | ГІТНОГОСУ | Stratigraphic<br>Unit | DESCRIPTION                                                                                                  | ELEV.<br>FEET              |  |  |  |  |  |  |
| 80%                                                                                                     | Dry                                                                                                                                                                                                             | Gray                                   |         |           |                       | Boulder                                                                                                      | — 1600                     |  |  |  |  |  |  |
|                                                                                                         | 3/47/40 Moist<br>(Lab)                                                                                                                                                                                          | 10YR 4/4<br>Dark<br>Yellowish<br>Brown | SM      |           |                       | Silty sand with a little gravel, sand is fine- to medium-grained, with 30% irregular gray mottles in matrix. | -<br>-<br>- 1598           |  |  |  |  |  |  |
|                                                                                                         | 20/60/20<br>Visual) Moist                                                                                                                                                                                       | 10YR 4/2<br>Dark<br>Grayish<br>Brown   | SM      |           | Upper<br>Till         | Silty sand with gravel, sand is fine- to medium-grained. Mottled and has less than 5% reddish mottles.       | -<br>- 1596<br>-           |  |  |  |  |  |  |
|                                                                                                         | 80/20/0<br>Visual) Dry                                                                                                                                                                                          | Various                                | GP      |           |                       | gravel by drilling.                                                                                          | - 1594<br>-<br>-<br>- 1592 |  |  |  |  |  |  |
|                                                                                                         |                                                                                                                                                                                                                 |                                        |         |           | Bed-<br>rock          | Bedrock at 9.0'. Troctolite plug in core barrel.<br>End of Boring - 9.5 feet                                 | +                          |  |  |  |  |  |  |
| 4700 W 77t<br>Edina, MN 9<br>BARR Telephone:                                                            | Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601<br>Additional data may have been collected in the field which is not included on this log. |                                        |         |           |                       |                                                                                                              |                            |  |  |  |  |  |  |

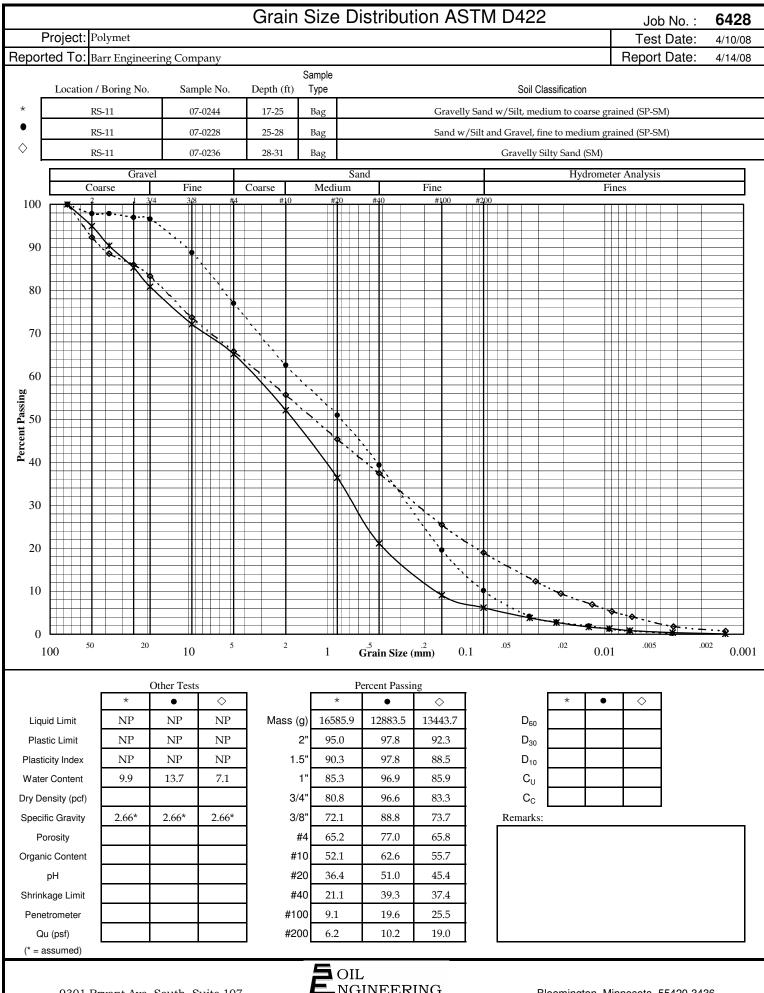
| Client PolyMet Mining Corporation                                                                                                                                                         | Drill Contracto                         | or Boart L                           | ongyear                                                               | LOG OF Boring R                                                         | S-20A         |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|
| Project Name Polymet Overburden Characterization                                                                                                                                          | -                                       |                                      |                                                                       | DRAFT SHEE                                                              | T 1 OF 1      |  |  |  |  |  |  |  |
| Number _ 23/69-B75 INV                                                                                                                                                                    | Drilling Starte                         | ed <u>1/31/08</u>                    | B Ended 1/31/08                                                       | Elevation 1602.5                                                        |               |  |  |  |  |  |  |  |
| Location NorthMet Mine Site                                                                                                                                                               | _ Logged By _M                          | MMB                                  |                                                                       | Total Depth _7.0                                                        |               |  |  |  |  |  |  |  |
| A Moisture Moisture Moisture                                                                                                                                                              | Matrix Color<br>ASTM                    | LI I HOLOGY<br>Stratigraphic<br>Unit | DESCRIP                                                               | TION                                                                    | ELEV.<br>FEET |  |  |  |  |  |  |  |
| - 000<br>Frozen<br>10/60/30<br>(Visual) Moist 00                                                                                                                                          | 5Y 3/3<br>Dark<br>Dlive<br>rown SM      |                                      | Silty sand, sand is fine-grained                                      | l.                                                                      | 1602<br><br>  |  |  |  |  |  |  |  |
| 4 - (Lab)<br>29/41/30<br>(Lab)<br>2.5<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                    | 5Y 4/2<br>Dark<br>rayish<br>irown<br>SM |                                      | Silty sand with gravel, fine- to coarse-grained gravel, boulder clay. | coarse-grained sand, fine- to<br>s and cobbles. Possible low plasticity | - 1600<br>    |  |  |  |  |  |  |  |
|                                                                                                                                                                                           |                                         | rock                                 | Bedrock at 6.5'. Troctolite piec                                      | ces.                                                                    | - 1596<br>    |  |  |  |  |  |  |  |
| Barr Engineering Co.<br>4700 W 77th St. Suite 200<br>Edina, MN 55435<br>Telephone: 952-832-2600<br>Fax: 952-862-2601<br>Remarks: Geotechnical samples: 2-4.5', 4.5-6'; Shelby tubes: 2-3' |                                         |                                      |                                                                       |                                                                         |               |  |  |  |  |  |  |  |



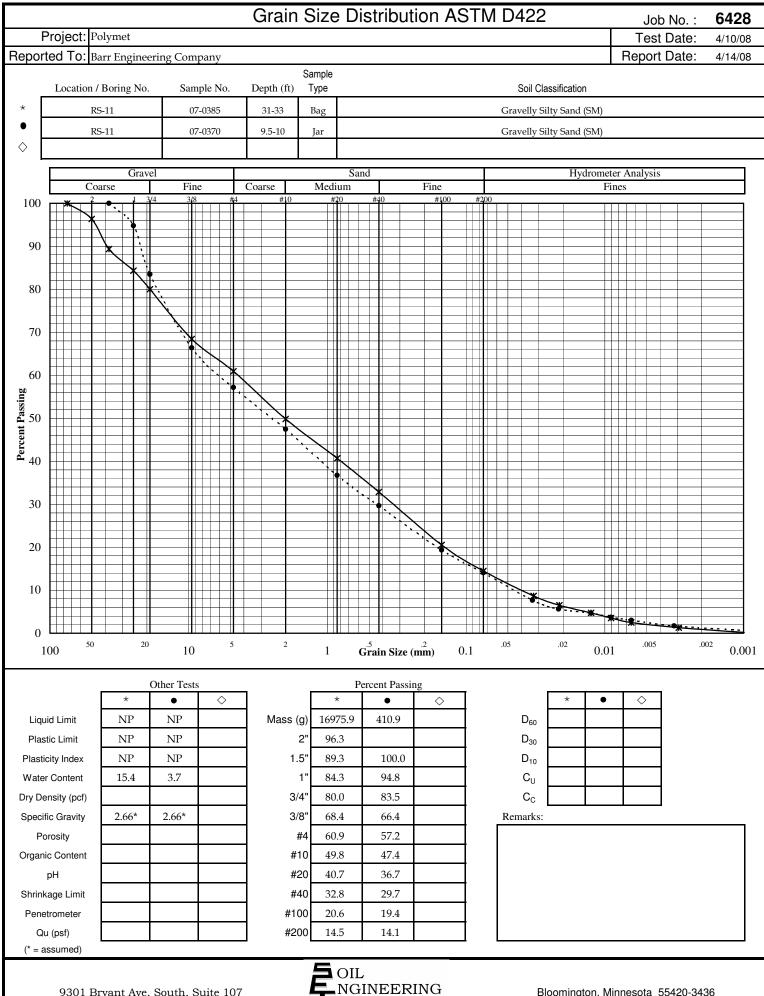

9301 Bryant Ave. South, Suite 107

Bloomington, Minnesota 55420-3436

|        |             |                 |                        | Grain S    | Size           | Distrik      | oution AS         | TM D4 | 122                 | Job No. :           | 6428   |
|--------|-------------|-----------------|------------------------|------------|----------------|--------------|-------------------|-------|---------------------|---------------------|--------|
|        | Project: Po | olymet          |                        |            |                |              |                   |       |                     | Test Date:          | 4/5/08 |
| Repor  | rted To: в  | Barr Engineerir | ng Company             |            |                |              |                   |       |                     | Report Date:        | 4/6/08 |
|        |             | / Boring No.    | Sample No.             | Depth (ft) | Sample<br>Type |              |                   |       | Soil Classification |                     |        |
| Spec 1 |             | S-01B           | 07-0335                | 1-5        | Bulk           |              |                   |       | Sand w/Gravel (SM)  |                     |        |
| Spec 2 |             | P01D            | 0,0000                 | 10         | buik           |              |                   |       | Dana wy Grutter (S) |                     |        |
| Spec 3 |             |                 |                        | +          |                |              |                   |       |                     |                     |        |
| Spec 5 |             |                 | <u> </u>               | <u> </u>   | <br>H'         | ydromet      | er Data           |       |                     |                     |        |
|        |             | Casaimon 1      | 4                      |            |                |              |                   |       | 0                   |                     |        |
| Diar   | neter (mm   | Specimen 1      | <sup>1</sup> % Passing | - <b> </b> | Diamete        | Specir<br>er | nen 2<br>% Passin | a     | Diameter            | Specimen 3<br>% Pas | seina  |
|        | 0.031       | <u>1)</u>       | 18.9                   |            | Jamen          | ei           | /01 00011         | ig    | Diameter            | /01 a3              | sing   |
|        | 0.020       | -+              | 15.1                   |            |                |              |                   |       |                     |                     |        |
|        | 0.012       | <u> </u>        | 11.1                   |            |                |              |                   |       |                     |                     |        |
|        | 0.009       | $\rightarrow$   | 8.5                    |            |                |              |                   |       |                     |                     |        |
|        | 0.006       |                 | 6.3                    | 1          |                | 1            |                   |       |                     |                     |        |
|        | 0.003       |                 | 3.9                    | 1          |                |              |                   |       |                     |                     |        |
|        | 0.001       |                 | 2.0                    |            |                | _            |                   |       |                     |                     |        |
|        |             |                 |                        |            |                |              |                   |       |                     |                     |        |
|        |             |                 |                        |            | 5              | OIL          |                   |       |                     |                     |        |






|        |          |           |          | (           | Grain      | Size           | Distri | bution A | STM [    | )422                    |             | 6.400      |
|--------|----------|-----------|----------|-------------|------------|----------------|--------|----------|----------|-------------------------|-------------|------------|
|        |          |           |          |             |            | 0.20           |        |          |          |                         | Job No.     | : 6428     |
|        | Project: | Polyme    | t        |             |            |                |        |          |          |                         | Test Date   | e: 4/10/08 |
| Repo   | rted To: | Barr En   | gineerii | ng Company  |            |                |        |          |          |                         | Report Date | e: 4/14/08 |
|        | Locatior | n / Borin | g No.    | Sample No.  | Depth (ft) | Sample<br>Type |        |          |          | Soil Classification     |             |            |
| Spec 1 |          | RS-10     |          | 07-0400     | 3.5-5      | Bag            |        |          | Sar      | ndy Silty Gravel (GM/S  | SM)         |            |
|        |          | 10 10     |          | 07 0100     | 0.0 0      | Dug            |        |          | <u> </u> | kty only Gluver (Ghi) e |             |            |
| Spec 2 |          |           |          |             |            |                |        |          |          |                         |             |            |
| Spec 3 |          |           |          |             |            |                |        |          |          |                         |             |            |
|        |          |           |          |             |            | H              |        | ter Data |          |                         |             |            |
|        |          | Speci     | men 1    | _           |            |                | Speci  | men 2    |          |                         | Specimen 3  |            |
| Diar   | neter (m | m)        |          | % Passing   |            | Diamet         | er     | % Pas    | sing     | Diameter                | %           | Passing    |
|        | 0.031    |           |          | 12.2        |            |                |        |          |          |                         |             |            |
|        | 0.020    |           |          | 10.7<br>8.4 |            |                |        |          |          |                         |             |            |
|        | 0.012    |           |          | 6.9         | _          |                |        |          |          |                         |             |            |
|        | 0.006    |           |          | 6.0         |            |                |        |          |          |                         |             |            |
|        | 0.003    |           |          | 4.8         |            |                |        |          |          |                         |             |            |
|        | 0.001    |           |          | 3.3         |            |                |        |          |          |                         |             |            |
|        |          |           |          |             |            |                |        |          |          |                         |             |            |
|        |          |           |          |             |            |                |        |          |          |                         |             |            |
|        |          |           |          |             |            |                |        |          |          |                         |             |            |



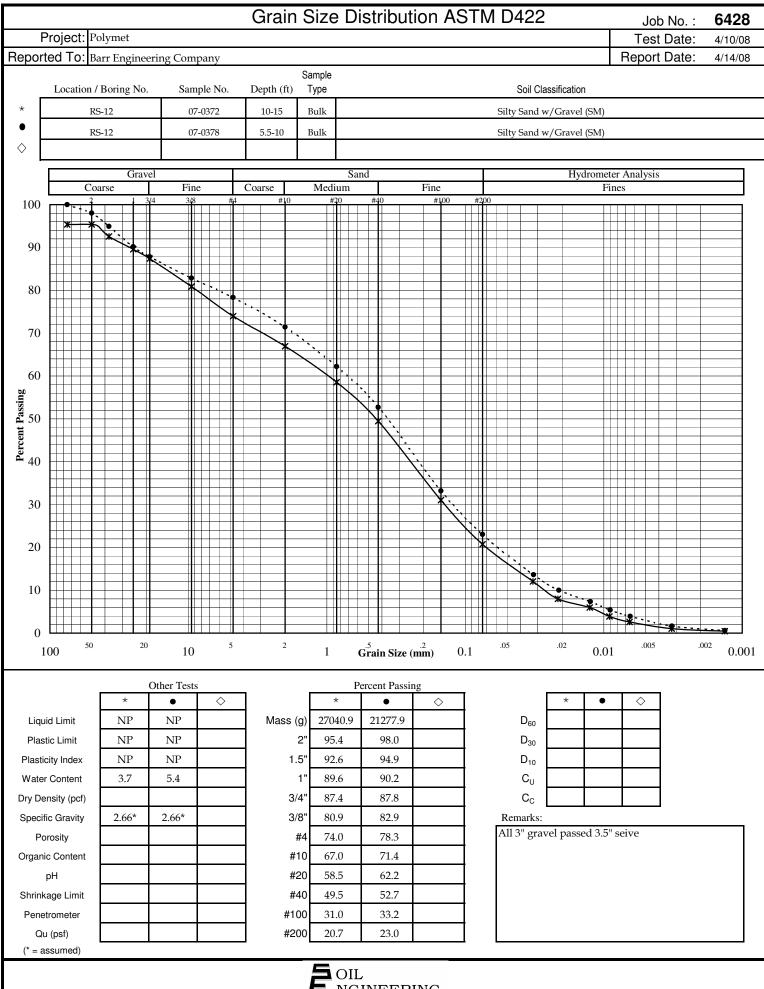






ESTING, INC.

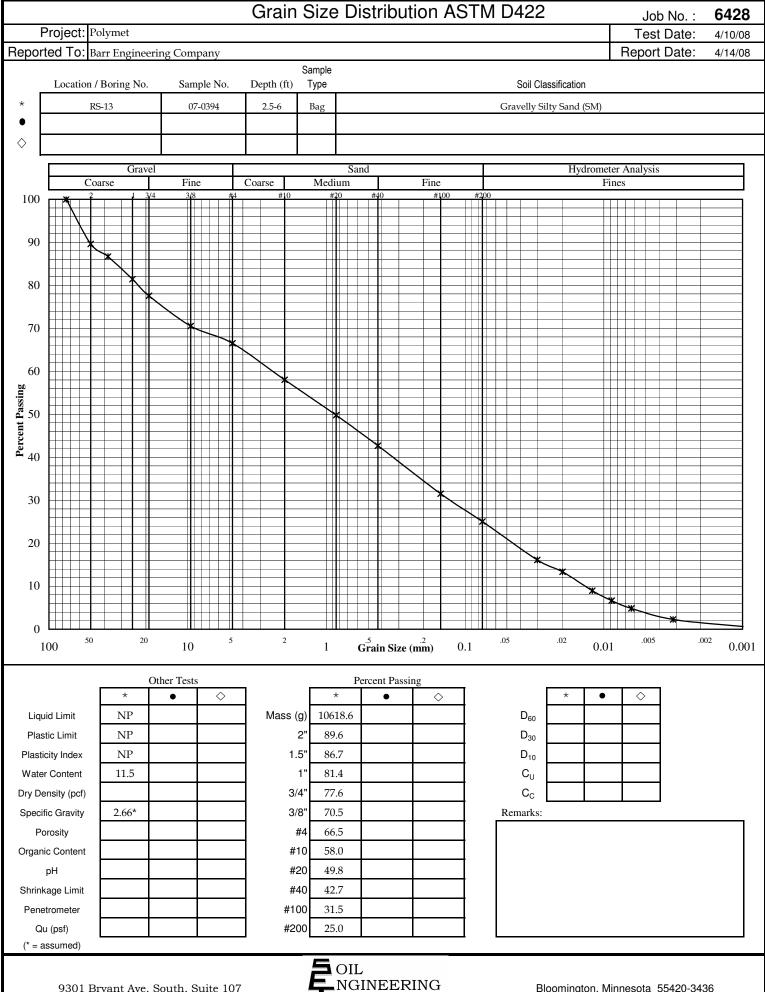
9301 Bryant Ave. South, Suite 107


Bloomington, Minnesota 55420-3436

|        |                  |                | (        | Grain S    | Size D         | Distril | bution ASTN                                            | Л D422        | 2               | Job No. :       | 6428    |
|--------|------------------|----------------|----------|------------|----------------|---------|--------------------------------------------------------|---------------|-----------------|-----------------|---------|
|        | Project: Polymo  | et             |          |            |                |         |                                                        |               |                 | Test Date:      | 4/10/08 |
| Repor  | rted To: Barr Er | ngineering Con | npany    |            |                |         |                                                        |               |                 | Report Date:    | 4/14/08 |
|        | Location / Borin | ng No. Sar     | nple No. | Depth (ft) | Sample<br>Type |         |                                                        | Soil (        | Classification  |                 |         |
| Spec 1 | RS-11            | 0              | 7-0244   | 17-25      | Bag            |         | Gravelly Sar                                           | nd w/Silt, me | dium to coarse  | grained (SP-SM) |         |
| Spec 2 | RS-11            | 0              | 7-0228   | 25-28      | Bag            |         | Sand w/Silt and Gravel, fine to medium grained (SP-SM) |               |                 |                 |         |
| Spec 3 | RS-11            | 0              | 7-0236   | 28-31      | Bag            |         |                                                        | Gravelly      | Silty Sand (SM) |                 |         |
|        |                  |                |          |            | Нус            | dromet  | ter Data                                               |               |                 |                 |         |
|        | Spec             | imen 1         |          |            |                | Specir  | men 2                                                  |               | S               | Specimen 3      |         |
| Diar   | neter (mm)       | % Pa           | ssing    | 0          | Diameter       |         | % Passing                                              |               | Diameter        | % Pa            | ssing   |
|        | 0.035            |                | .8       |            | 0.035          |         | 4.2                                                    |               | 0.032           | 12              |         |
|        | 0.022            | 2.             | .8       |            | 0.022          |         | 2.8                                                    |               | 0.021           | 9.              | 5       |
|        | 0.013            | 1.             | .7       |            | 0.013          |         | 2.0                                                    |               | 0.012           | 6.              | 9       |
|        | 0.009            | 1.             | .3       |            | 0.009          |         | 1.2                                                    |               | 0.009           | 5.              | 3       |
|        | 0.007            | 0.             | .9       |            | 0.007          |         | 0.8                                                    |               | 0.006           | 4.              | 1       |
|        | 0.003            | 0.             | .4       |            | 0.003          |         | 0.2                                                    |               | 0.003           | 1.              | 8       |
|        | 0.001            | 0.             | 1        |            | 0.001          |         | -0.1                                                   |               | 0.001           | 0.              | 7       |



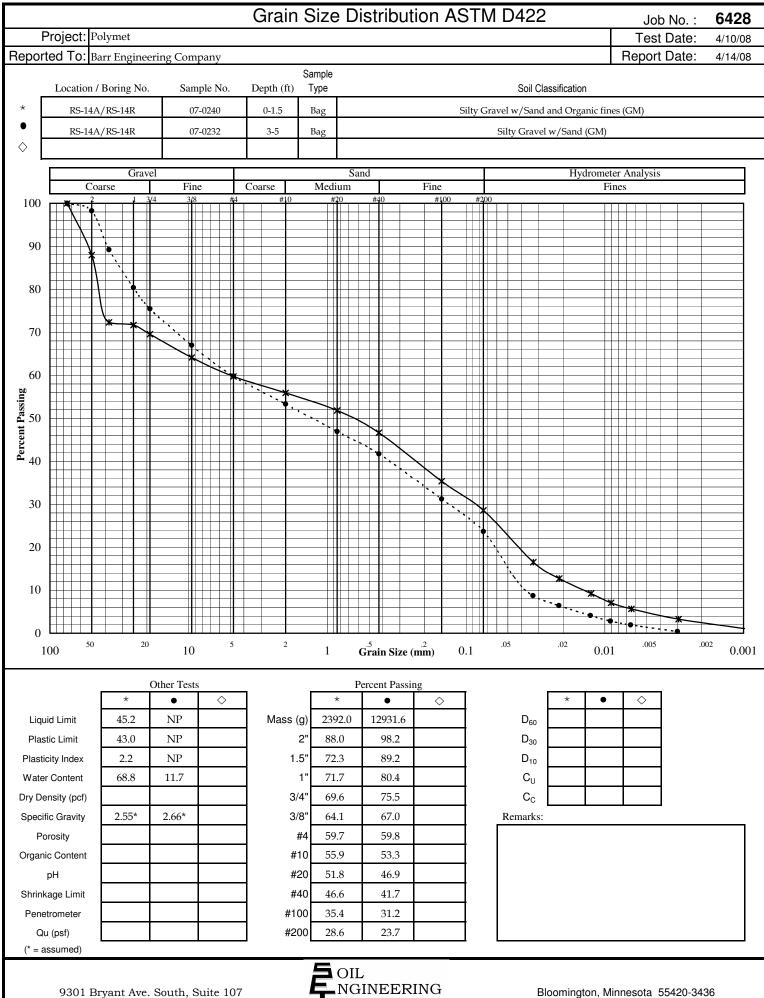
|        |                                  |                |                                       | Grain S    | Size I                                      | Distril      | oution ASTM                                    | D422                     | Job No. :           | 6428    |
|--------|----------------------------------|----------------|---------------------------------------|------------|---------------------------------------------|--------------|------------------------------------------------|--------------------------|---------------------|---------|
| ſ      | Project:                         | Polymet        |                                       |            |                                             |              |                                                |                          | Test Date:          | 4/10/08 |
| Repor  | ted To:                          | Barr Enginee   | ring Company                          |            |                                             |              |                                                |                          | Report Date:        | 4/14/08 |
|        | Location                         | n / Boring No. | Sample No.                            | Depth (ft) | Sample<br>Type                              |              |                                                | Soil Classification      |                     |         |
| Spec 1 |                                  | RS-11          | 07-0385                               | 31-33      | 31-33 Bag Gravelly Silty Sand (SM           |              |                                                |                          |                     |         |
| Spec 2 |                                  | RS-11          | 07-0370                               | 9.5-10     | Jar                                         |              |                                                | Gravelly Silty Sand (SM) | )                   |         |
|        |                                  |                |                                       |            |                                             |              |                                                |                          |                     |         |
| Spec 3 |                                  |                |                                       |            |                                             |              |                                                |                          |                     |         |
| Spec 3 |                                  |                |                                       |            | Hy                                          | /dromet      | er Data                                        |                          |                     |         |
| Spec 3 |                                  | Specimen       | 1                                     | <br>       | Ну                                          |              |                                                |                          | Specimen 3          |         |
|        | neter (m                         | Specimen       | 1<br>% Passing                        |            | Hy<br>Diamete                               | Specir       | nen 2                                          | Diameter                 | Specimen 3<br>% Pa: | ssing   |
| Dian   | neter (m<br>0.033                |                |                                       |            |                                             | Specir<br>er |                                                |                          |                     | ssing   |
| Dian   |                                  |                | % Passing                             |            | Diamete                                     | Specir<br>er | nen 2<br>% Passing                             |                          |                     | ssing   |
| Dian   | 0.033                            |                | % Passing<br>8.7                      |            | Diamete<br>0.033                            | Specir<br>er | nen 2<br>% Passing<br>7.7                      |                          |                     | ssing   |
| Dian   | 0.033<br>0.021                   |                | % Passing<br>8.7<br>6.5               |            | Diamete<br>0.033<br>0.022                   | Specir<br>er | nen 2<br>% Passing<br>7.7<br>5.6               |                          |                     | ssing   |
| Dian   | 0.033<br>0.021<br>0.013          |                | % Passing<br>8.7<br>6.5<br>4.7        |            | Diamete<br>0.033<br>0.022<br>0.013          | Specir<br>er | nen 2<br>% Passing<br>7.7<br>5.6<br>4.7        |                          |                     | ssing   |
| Dian   | 0.033<br>0.021<br>0.013<br>0.009 |                | % Passing<br>8.7<br>6.5<br>4.7<br>3.5 |            | Diamete<br>0.033<br>0.022<br>0.013<br>0.009 | Specir<br>er | nen 2<br>% Passing<br>7.7<br>5.6<br>4.7<br>3.7 |                          |                     | ssing   |








|                |                                                       |                |                                               | Grain S    | Size D                                                | Distribu | ition ASTM                                            | D422                    | Job No. :          | 6428    |
|----------------|-------------------------------------------------------|----------------|-----------------------------------------------|------------|-------------------------------------------------------|----------|-------------------------------------------------------|-------------------------|--------------------|---------|
|                | Project:                                              | Polymet        |                                               |            |                                                       |          |                                                       |                         | Test Date:         | 4/10/08 |
| Repo           | rted To:                                              | Barr Engineer  | ing Company                                   |            |                                                       |          |                                                       |                         | Report Date:       | 4/14/08 |
|                | Location                                              | n / Boring No. | Sample No.                                    | Depth (ft) | Sample<br>Type                                        |          |                                                       | Soil Classification     |                    |         |
| Spec 1         |                                                       | RS-12          | 07-0372                                       | 10-15      | Bulk                                                  |          |                                                       | Silty Sand w/Gravel (SM | I)                 |         |
| Spec 2         |                                                       | RS-12          | 07-0378                                       | 5.5-10     | Bulk                                                  |          |                                                       | Silty Sand w/Gravel (SM | ()                 |         |
|                |                                                       |                |                                               |            |                                                       |          |                                                       |                         |                    |         |
| Spec 3         |                                                       |                |                                               |            |                                                       |          |                                                       |                         |                    |         |
| Spec 3         |                                                       |                |                                               |            | Hyd                                                   | drometer | Data                                                  |                         |                    |         |
| Spec 3         |                                                       | Specimen       | 1                                             |            |                                                       |          |                                                       |                         | Specimen 3         |         |
|                | meter (m                                              |                | 1<br>% Passing                                |            |                                                       | Specime  |                                                       | Diameter                | Specimen 3<br>% Pa | ssing   |
|                |                                                       |                |                                               |            |                                                       | Specime  | n 2                                                   |                         |                    | ssing   |
|                | meter (m<br>0.032<br>0.021                            |                | % Passing<br>12.1<br>8.0                      |            | Diameter<br>0.032<br>0.021                            | Specime  | n 2<br>% Passing<br>13.6<br>10.0                      |                         |                    | ssing   |
|                | meter (m<br>0.032                                     |                | % Passing<br>12.1<br>8.0<br>6.0               |            | Diameter<br>0.032<br>0.021<br>0.012                   | Specime  | n 2<br>% Passing<br>13.6<br>10.0<br>7.4               |                         |                    | ssing   |
|                | meter (m<br>0.032<br>0.021<br>0.013<br>0.009          |                | % Passing<br>12.1<br>8.0<br>6.0<br>3.9        |            | Diameter<br>0.032<br>0.021<br>0.012<br>0.009          | Specime  | n 2<br><u>% Passing</u><br>13.6<br>10.0<br>7.4<br>5.4 |                         |                    | ssing   |
|                | meter (m<br>0.032<br>0.021<br>0.013<br>0.009<br>0.007 |                | % Passing<br>12.1<br>8.0<br>6.0<br>3.9<br>2.6 |            | Diameter<br>0.032<br>0.021<br>0.012<br>0.009<br>0.006 | Specime  | n 2<br>% Passing<br>13.6<br>10.0<br>7.4<br>5.4<br>3.9 |                         |                    | ssing   |
| Spec 3<br>Diar | meter (m<br>0.032<br>0.021<br>0.013<br>0.009          |                | % Passing<br>12.1<br>8.0<br>6.0<br>3.9        |            | Diameter<br>0.032<br>0.021<br>0.012<br>0.009          | Specime  | n 2<br><u>% Passing</u><br>13.6<br>10.0<br>7.4<br>5.4 |                         |                    | ssing   |



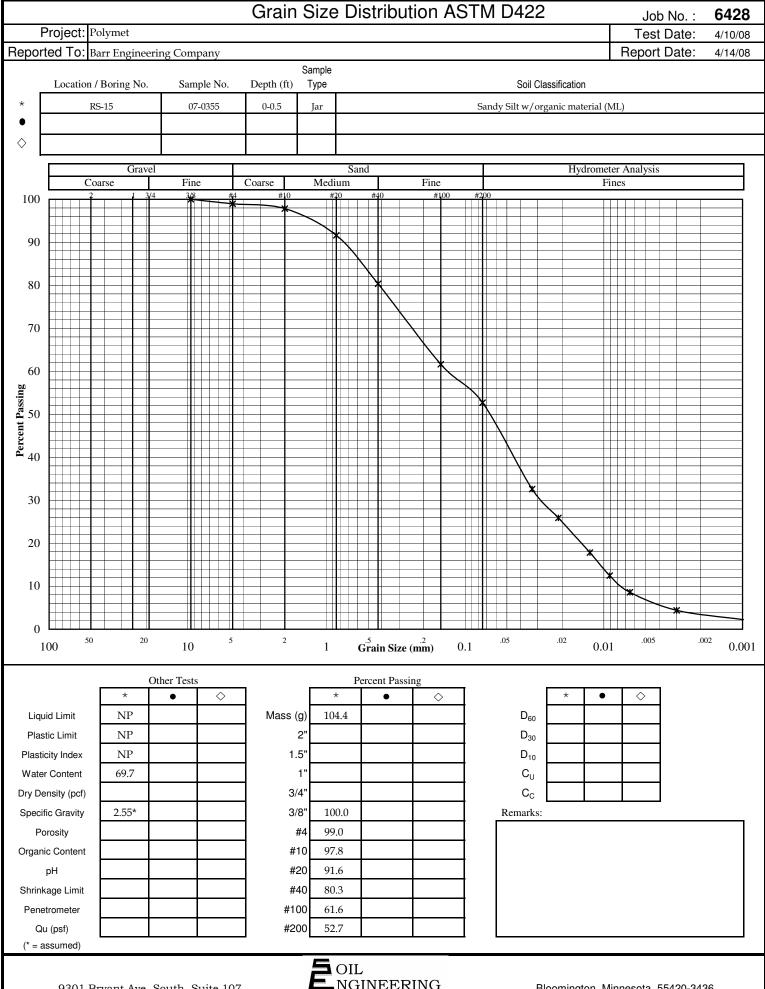



ESTING, INC.

|        |             |            | (             | Grain 9    | Size           | Distri  | bution AS <sup>-</sup> | тм г | )422                    |              |         |
|--------|-------------|------------|---------------|------------|----------------|---------|------------------------|------|-------------------------|--------------|---------|
|        |             |            |               |            | 5120           | DIStill |                        |      | / <i>¬ĽĽ</i>            | Job No. :    | 6428    |
|        | Project: Po | olymet     |               |            |                |         |                        |      |                         | Test Date:   | 4/10/08 |
| Repor  | ted To: Ba  | rr Enginee | ering Company |            |                |         |                        |      |                         | Report Date: | 4/14/08 |
|        | Location /  | Boring No. | Sample No.    | Depth (ft) | Sample<br>Type |         |                        |      | Soil Classification     |              |         |
| Spec 1 | RS          | -13        | 07-0394       | 2.5-6      | Bag            |         |                        | G    | ravelly Silty Sand (SM) |              |         |
| Spec 2 |             | 10         | 07 0001       | 2.0 0      | Dug            |         |                        |      | areny only outer (off)  |              |         |
| Spec 3 |             |            |               |            |                |         |                        |      |                         |              |         |
|        |             |            |               |            | H              | ydrome  | ter Data               |      |                         |              |         |
|        | S           | pecimer    | า 1           |            |                | Specii  | men 2                  |      | S                       | Specimen 3   |         |
| Dian   | neter (mm   | )          | % Passing     |            | Diamet         | er      | % Passin               | ng   | Diameter                | % Pas        | ssing   |
|        | 0.030       |            | 16.1          |            |                |         |                        |      |                         |              |         |
|        | 0.020       |            | 13.4          |            |                |         |                        |      |                         |              |         |
|        | 0.012       |            | 9.0           |            |                |         |                        |      |                         |              |         |
|        | 0.009       |            | 6.7           |            |                |         |                        |      |                         |              |         |
|        | 0.006       |            | 4.8           |            |                |         |                        |      |                         |              |         |
|        | 0.003       |            | 2.3           |            |                |         |                        |      |                         |              |         |
|        | 0.001       |            | 0.6           |            |                |         |                        |      |                         |              |         |
|        |             |            |               |            |                |         |                        |      |                         |              |         |
|        |             |            |               |            |                |         |                        |      |                         |              |         |
|        |             |            |               |            | 5              | ~ **    |                        |      |                         |              |         |



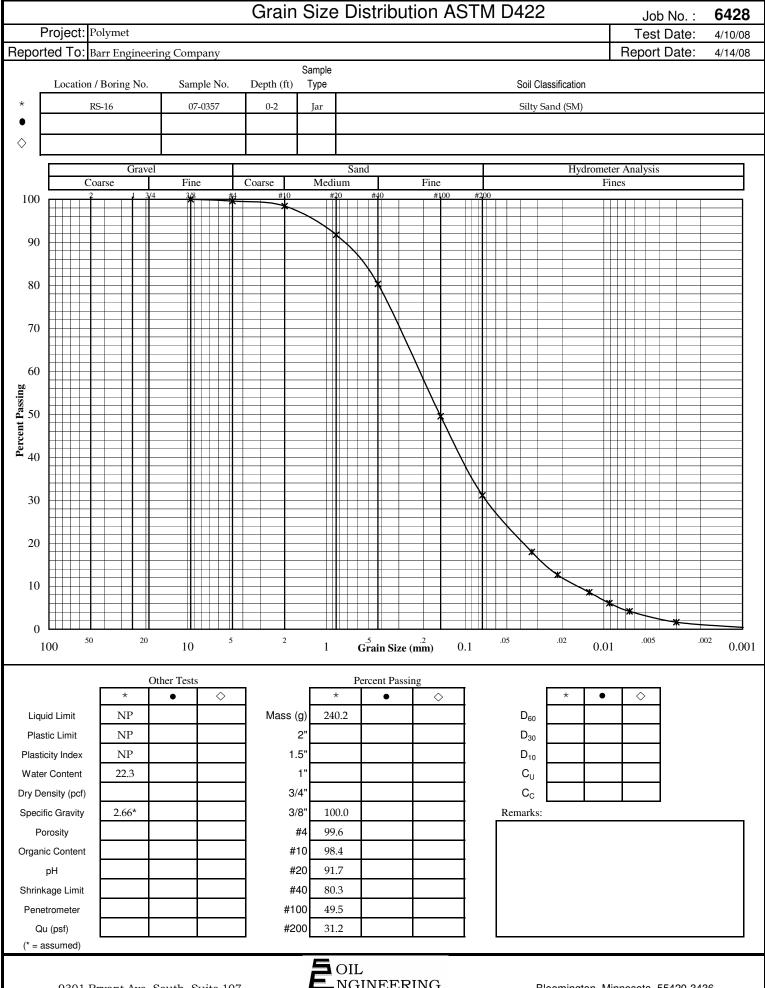



ESTING, INC.

9301 Bryant Ave. South, Suite 107

Bloomington, Minnesota 55420-3436

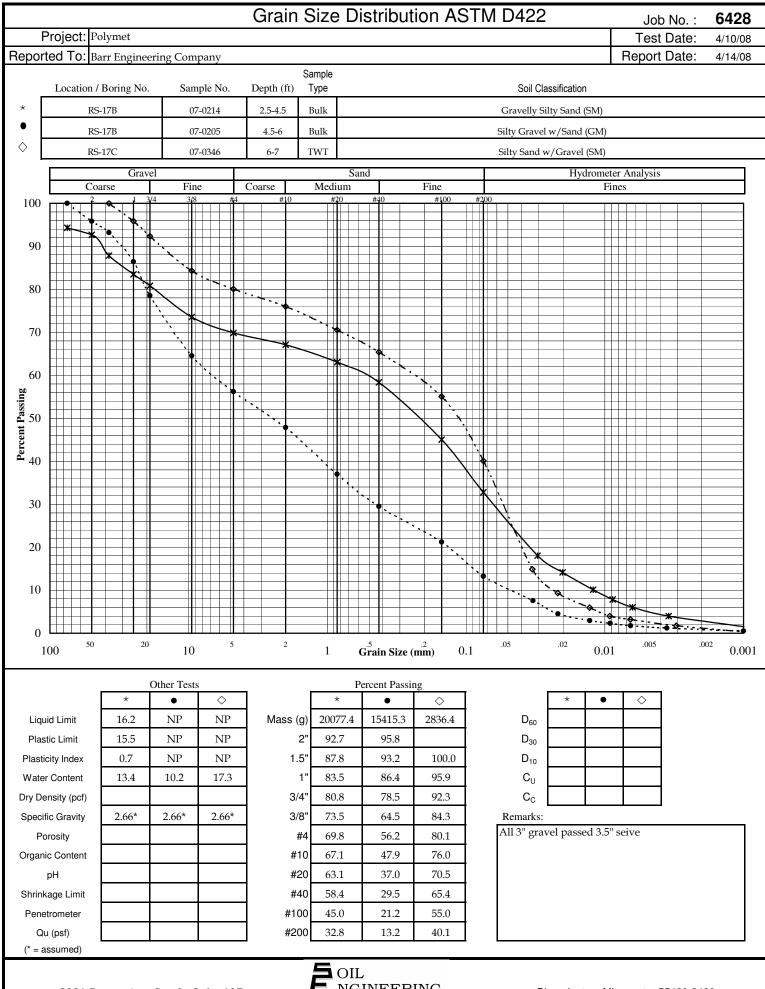
|                  |                                              |                |                                              | Grain S    | Size Dist                                                      | ribution ASTM E                                  | 0422                   | Job No. :          | 6428    |
|------------------|----------------------------------------------|----------------|----------------------------------------------|------------|----------------------------------------------------------------|--------------------------------------------------|------------------------|--------------------|---------|
| F                | Project:                                     | Polymet        |                                              |            |                                                                |                                                  |                        | Test Date:         | 4/10/08 |
| Repor            | rted To:                                     | Barr Engineeri | ing Company                                  |            |                                                                |                                                  |                        | Report Date:       | 4/14/08 |
|                  | Location                                     | n / Boring No. | Sample No.                                   | Depth (ft) | Sample<br>Type                                                 |                                                  | Soil Classification    |                    |         |
| Spec 1           | RS-14                                        | 4A/RS-14R      | 07-0240                                      | 0-1.5      | Bag                                                            | Silty Grave                                      | l w/Sand and Organic i | fines (GM)         |         |
|                  |                                              |                | 07-0232                                      | 3-5        | Bag                                                            | I)                                               |                        |                    |         |
| Spec 2           | RS-14                                        | 4A/RS-14R      | 07-0232                                      | 00         | Ŭ                                                              |                                                  |                        |                    |         |
|                  | RS-14                                        | 4A/RS-14R      | 07-0232                                      |            |                                                                |                                                  |                        |                    |         |
| Spec 2<br>Spec 3 | RS-14                                        | 4A/RS-14K      | 07-0232                                      |            |                                                                | eter Data                                        |                        |                    |         |
|                  | RS-14                                        | Specimen       |                                              |            | Hydrom                                                         |                                                  |                        | Specimen 3         |         |
| Spec 3           | RS-14                                        | Specimen       | 1                                            |            | Hydrom                                                         | eter Data<br>cimen 2<br>% Passing                | Diameter               | Specimen 3<br>% Pa | ssing   |
| Spec 3<br>Dian   |                                              | Specimen       |                                              |            | Hydrom                                                         | cimen 2                                          |                        |                    | ssing   |
| Spec 3<br>Dian   | neter (m                                     | Specimen       | 1<br>% Passing                               |            | Hydrom<br>Spec<br>Diameter                                     | cimen 2<br>% Passing                             |                        |                    | ssing   |
| Spec 3<br>Dian   | neter (m<br>0.033                            | Specimen       | 1<br>% Passing<br>16.5                       |            | Hydrom<br>Sper<br>Diameter<br>0.033                            | cimen 2<br>% Passing<br>8.8                      |                        |                    | ssing   |
| Spec 3<br>Dian   | neter (m<br>0.033<br>0.021                   | Specimen       | 1<br>% Passing<br>16.5<br>12.7               |            | Hydrom<br>Spee<br>Diameter<br>0.033<br>0.021                   | cimen 2<br>% Passing<br>8.8<br>6.4               |                        |                    | ssing   |
| Spec 3<br>Dian   | neter (m<br>0.033<br>0.021<br>0.013          | Specimen       | 1<br>% Passing<br>16.5<br>12.7<br>9.2        |            | Hydrom<br>Spec<br>Diameter<br>0.033<br>0.021<br>0.013          | cimen 2<br>% Passing<br>8.8<br>6.4<br>4.1        |                        |                    | ssing   |
| Spec 3<br>Dian   | neter (m<br>0.033<br>0.021<br>0.013<br>0.009 | Specimen       | 1<br>% Passing<br>16.5<br>12.7<br>9.2<br>7.1 |            | Hydrom<br>Spec<br>Diameter<br>0.033<br>0.021<br>0.013<br>0.009 | cimen 2<br>% Passing<br>8.8<br>6.4<br>4.1<br>2.8 |                        |                    | ssing   |







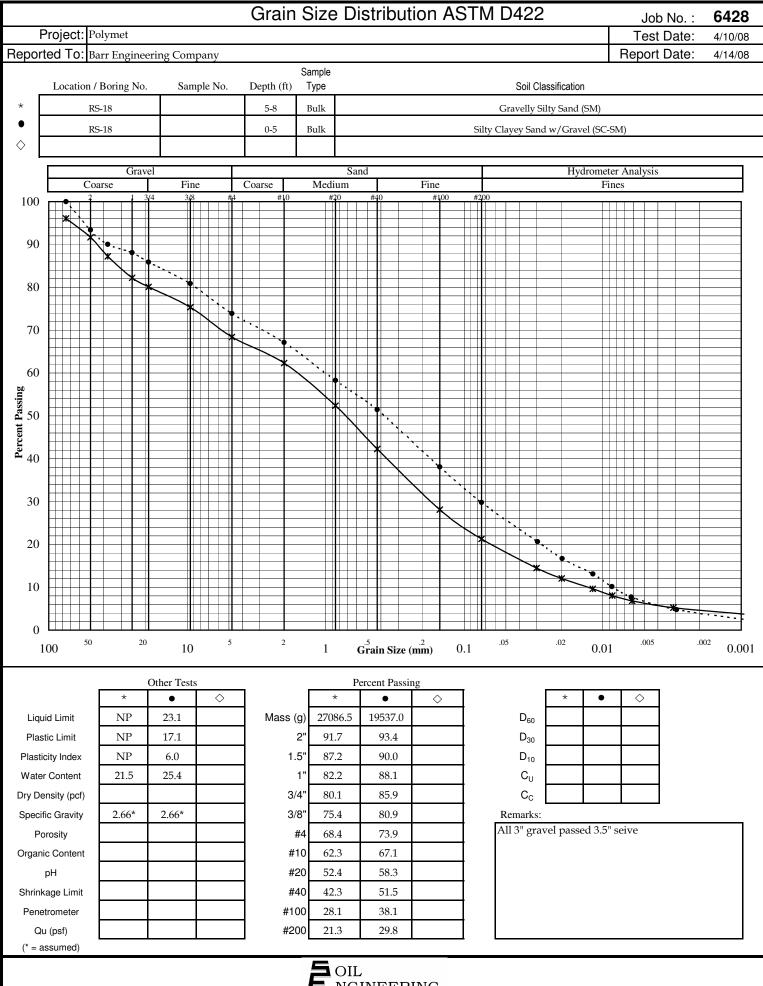

|        |                |            |            | Grain      | Size           | Distril | oution A | STM D | )422                   | Job No. i    | 6428    |
|--------|----------------|------------|------------|------------|----------------|---------|----------|-------|------------------------|--------------|---------|
|        | Project: Polyn | net        |            |            |                |         |          |       |                        | Job No. :    | 0420    |
|        |                | iet        |            |            |                |         |          |       |                        | Test Date:   | 4/10/08 |
| Repor  | ted To: Barr I | Engineerii | ng Company |            |                |         |          |       |                        | Report Date: | 4/14/08 |
|        | Location / Bor | ing No     | Sample No. | Depth (ft) | Sample<br>Type |         |          |       | Soil Classification    |              |         |
|        | Location / Boi | ing No.    | Sample No. | Depui (it) | туре           |         |          |       |                        |              |         |
| Spec 1 | RS-15          |            | 07-0355    | 0-0.5      | Jar            |         |          | Sandy | Silt w/organic materia | l (ML)       |         |
| Spec 2 |                |            |            |            |                |         |          |       |                        |              |         |
| Spec 3 |                |            |            |            |                |         |          |       |                        |              |         |
|        |                |            |            |            | н              | ydromet | er Data  |       |                        |              |         |
|        | Sna            | cimen 1    |            |            |                | Specir  |          |       | ç                      | Specimen 3   |         |
| Dian   | neter (mm)     |            | % Passing  |            | Diamet         |         | % Pase   | sing  | Diameter               | % Pa         | ssina   |
|        | 0.033          |            | 32.6       |            |                |         |          | 3     |                        |              | - 3     |
|        | 0.021          |            | 25.9       |            |                |         |          |       |                        |              |         |
|        | 0.013          |            | 17.8       |            |                |         |          |       |                        |              |         |
|        | 0.009          |            | 12.5       |            |                |         |          |       |                        |              |         |
|        | 0.006          |            | 8.6        |            |                |         |          |       |                        |              |         |
|        | 0.003          | _          | 4.4<br>2.2 |            |                |         |          |       |                        |              |         |
|        |                |            |            | U          |                |         |          |       |                        |              |         |
|        |                |            |            |            |                |         |          |       |                        |              |         |
|        |                |            |            |            |                |         |          |       |                        |              |         |
|        |                |            |            |            |                |         |          |       |                        |              |         |
|        |                |            |            |            |                |         |          |       |                        |              |         |
|        |                |            |            |            |                |         |          |       |                        |              |         |








|        |                 |                   | (           | Grain S    | Size           | Distri | bution AS | TM D | )422                | Job No. :    | 6428    |
|--------|-----------------|-------------------|-------------|------------|----------------|--------|-----------|------|---------------------|--------------|---------|
| I      | Project: Polym  | et                |             |            |                |        |           |      |                     | Test Date:   | 4/10/08 |
| Repor  | ted To: Barr E  | ngineeri          | ng Company  |            |                |        |           |      |                     | Report Date: | 4/14/08 |
|        | Location / Bori | ng No.            | Sample No.  | Depth (ft) | Sample<br>Type |        |           |      | Soil Classification |              |         |
| Spec 1 | RS-16           |                   | 07-0357     | 0-2        | Jar            |        |           |      | Silty Sand (SM)     |              |         |
| Spec 2 |                 |                   |             |            |                |        |           |      |                     |              |         |
| Spec 3 |                 |                   |             |            |                |        |           |      |                     |              |         |
|        |                 |                   |             |            | H              | ydrome | ter Data  |      |                     |              |         |
|        | Spec            | imen <sup>-</sup> | 1           |            |                | Speci  | men 2     |      | S                   | Specimen 3   |         |
| Dian   | neter (mm)      |                   | % Passing   | Г          | Diamet         | er     | % Passir  | าต   | Diameter            | % Pas        | ssina   |
|        | 0.033           |                   | 18.0        |            |                |        | /01 400li | ·9   | Diamotor            | /01 4        | g       |
|        | 0.022 0.013     |                   | 12.7<br>8.6 |            |                |        |           |      |                     |              |         |
|        | 0.009           |                   | 6.1         | _          |                |        |           |      |                     |              |         |
|        | 0.009           |                   | 4.2         | _          |                |        |           |      |                     |              |         |
|        | 0.007           |                   | 1.6         |            |                |        |           |      |                     |              |         |
|        | 0.001           |                   | 0.4         | _          |                |        |           |      |                     |              |         |
|        |                 |                   |             |            |                |        |           |      |                     |              |         |
|        |                 |                   |             |            |                |        |           |      |                     |              |         |
|        |                 |                   |             |            | 5              | 0.11   |           |      |                     |              |         |

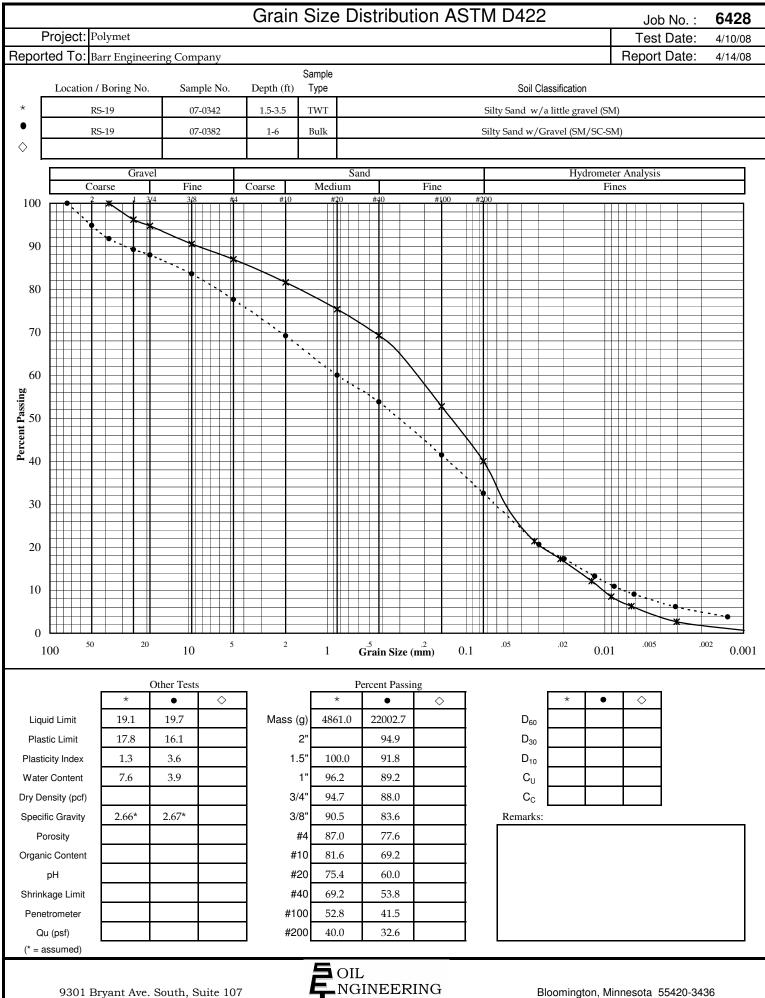







|        |                  |              |            | Grain S    | Size D         | Distri | bution ASTM | D422                     | Job No. :    | 6428    |
|--------|------------------|--------------|------------|------------|----------------|--------|-------------|--------------------------|--------------|---------|
|        | Project: Polymo  | et           |            |            |                |        |             |                          | Test Date:   | 4/10/08 |
| Repo   | rted To: Barr Er | ngineering ( | Company    |            |                |        |             |                          | Report Date: | 4/14/08 |
|        | Location / Borir | ng No.       | Sample No. | Depth (ft) | Sample<br>Type |        |             | Soil Classification      |              |         |
| Spec 1 | RS-17B           |              | 07-0214    | 2.5-4.5    | Bulk           |        |             | Gravelly Silty Sand (SM) |              |         |
| Spec 2 | RS-17B           |              | 07-0205    | 4.5-6      | Bulk           |        | ç           | ilty Gravel w/Sand (GM   | )            |         |
| Spec 3 | RS-17C           |              | 07-0346    | 6-7        | TWT            |        | 5           | Gilty Sand w/Gravel (SM  | )            |         |
|        |                  |              |            |            | Hyd            | drome  | ter Data    |                          |              |         |
|        | Spec             | imen 1       |            |            |                | Speci  | men 2       | S                        | Specimen 3   |         |
| Diar   | neter (mm)       |              | Passing    |            | Diamete        | r      | % Passing   | Diameter                 | % Pas        | ssing   |
|        | 0.031            |              | 18.1       |            | 0.033          |        | 7.6         | 0.033                    | 14           | .9      |
|        | 0.020            |              | 14.2       |            | 0.022          |        | 4.5         | 0.022                    | 9.           | 3       |
|        | 0.012            |              | 10.1       |            | 0.013          |        | 3.0         | 0.013                    | 5.           | 9       |
|        | 0.009            |              | 7.9        |            | 0.009          |        | 2.3         | 0.009                    | 4.           | 0       |
|        | 0.006            |              | 6.0        |            | 0.007          |        | 1.8         | 0.007                    | 3.           | 2       |
|        | 0.003            |              | 4.0        |            | 0.004          |        | 1.2         | 0.003                    | 1.8          | 8       |
|        | 0.001            |              | 1.5        |            | 0.001          |        | 0.5         | 0.001                    | 0.4          | 4       |

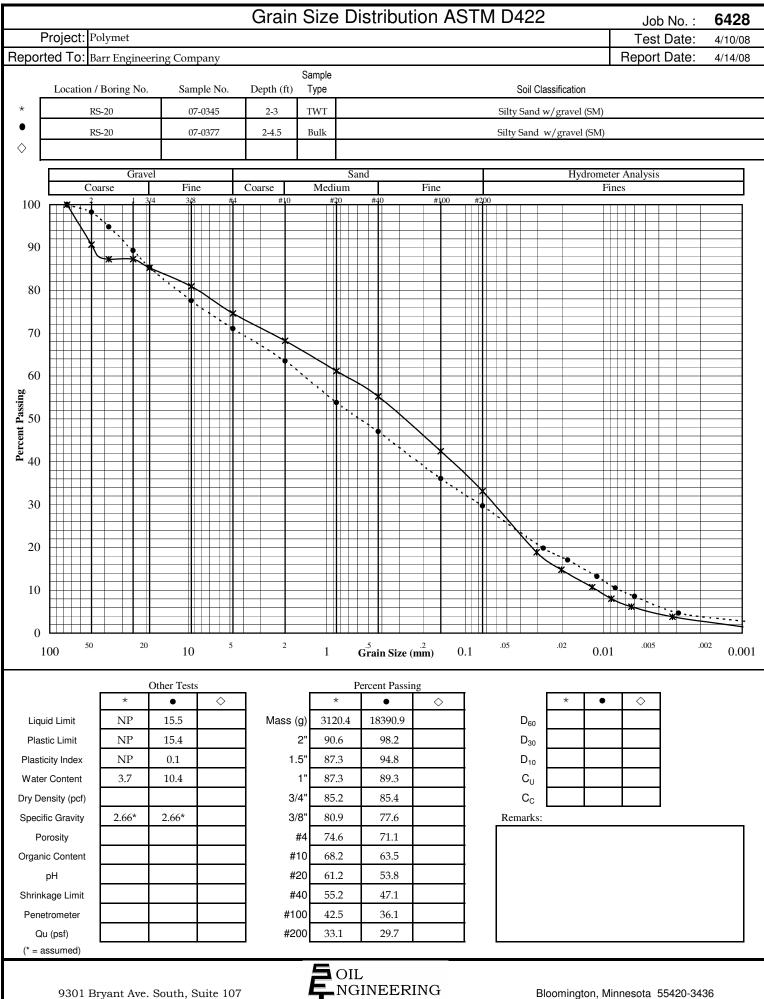





9301 Bryant Ave. South, Suite 107

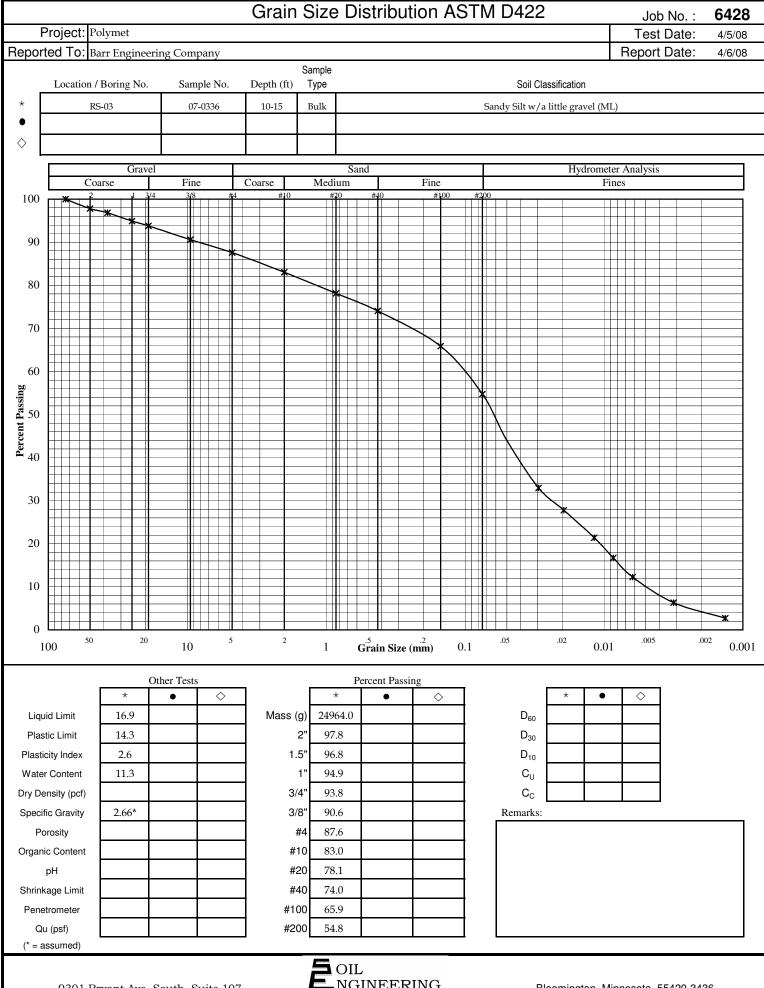
OIL NGINEERING ESTING, INC.

|        |            |                 |            | Grain (    | Size           | Distri | bution ASTM | D422                     | Job No. :    | 6428    |
|--------|------------|-----------------|------------|------------|----------------|--------|-------------|--------------------------|--------------|---------|
|        | Project: I | Polymet         |            |            |                |        |             |                          | Test Date:   | 4/10/08 |
| Repo   | rted To: I | Barr Engineerii | ng Company |            |                |        |             |                          | Report Date: | 4/14/08 |
|        | Location   | ı / Boring No.  | Sample No. | Depth (ft) | Sample<br>Type |        |             | Soil Classification      |              |         |
| Spec 1 | F          | RS-18           |            | 5-8        | Bulk           |        |             | Gravelly Silty Sand (SM) | )            |         |
| Spec 2 | F          | RS-18           |            | 0-5        | Bulk           |        | Silty       | Clayey Sand w/Gravel (S  | iC-SM)       |         |
| Spec 3 |            |                 |            |            |                |        |             |                          |              |         |
|        |            |                 |            |            | H              | ydrome | ter Data    |                          |              |         |
|        |            | Specimen 1      |            |            |                | Speci  | men 2       |                          | Specimen 3   |         |
| Diar   | meter (mr  |                 | % Passing  | - <b> </b> | Diamet         |        | % Passing   | Diameter                 | % Pas        | ssina   |
|        | 0.030      | ,               | 14.5       |            | 0.030          |        | 20.6        |                          |              | /011.3  |
|        | 0.020      |                 | 12.0       |            | 0.020          | 1      | 16.7        |                          |              |         |
|        | 0.012      |                 | 9.6        |            | 0.012          |        | 13.1        |                          |              |         |
|        | 0.009      |                 | 8.1        |            | 0.009          |        | 10.2        |                          |              |         |
|        | 0.006      |                 | 6.8        |            | 0.006          |        | 7.7         |                          |              |         |
|        | 0.003      |                 | 5.2        |            | 0.003          |        | 4.8         |                          |              |         |
|        | 0.001      |                 | 3.7        |            | 0.001          |        | 2.5         |                          |              |         |
|        |            |                 |            |            |                |        |             |                          |              |         |





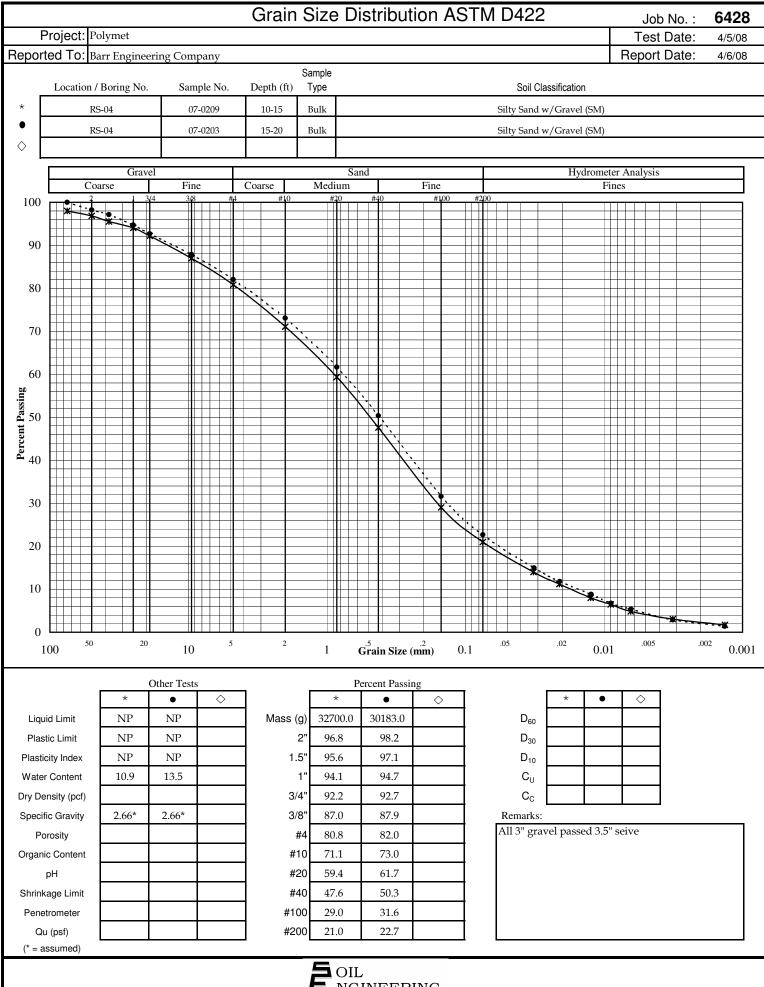

9301 Bryant Ave. South, Suite 107


|        |                 |             |            | Grain S    | Size I         | istribution ASTM I | 0422                     | Job No. :    | 6428    |
|--------|-----------------|-------------|------------|------------|----------------|--------------------|--------------------------|--------------|---------|
|        | Project: Polyn  | net         |            |            |                |                    |                          | Test Date:   | 4/10/08 |
| Repor  | rted To: Barr B | Engineering | g Company  |            |                |                    |                          | Report Date: | 4/14/08 |
|        | Location / Bor  | ing No.     | Sample No. | Depth (ft) | Sample<br>Type |                    | Soil Classification      |              |         |
| Spec 1 | RS-19           |             | 07-0342    | 1.5-3.5    | TWT            | Silty              | Sand w/a little gravel ( | (SM)         |         |
| Spec 2 | RS-19           |             | 07-0382    | 1-6        | Bulk           | Silty              | Sand w/Gravel (SM/SC     | -SM)         |         |
| Spec 3 |                 |             |            |            |                |                    |                          |              |         |
|        |                 |             |            |            | Ну             | Irometer Data      |                          |              |         |
|        | Spe             | cimen 1     |            |            |                | Specimen 2         | 5                        | Specimen 3   |         |
| Diar   | neter (mm)      | 9           | % Passing  | 1          | Diamete        |                    | Diameter                 | % Pas        | ssing   |
|        | 0.032           |             | 21.4       |            | 0.030          | 20.7               |                          |              |         |
|        | 0.021           |             | 17.3       |            | 0.020          | 17.3               |                          |              |         |
|        | 0.012           |             | 12.1       |            | 0.012          | 13.3               |                          |              |         |
|        | 0.009           |             | 8.5        |            | 0.009          | 10.9               |                          |              |         |
|        | 0.006           |             | 6.3        |            | 0.006          | 9.1                |                          |              |         |
|        | 0.003           |             | 2.7        |            | 0.003          | 6.2                |                          |              |         |
|        | 0.001           |             | 0.7        |            | 0.001          | 3.8                |                          |              |         |





|        |          |                 |            | Grain S    | Size I         | istribution ASTM | D422                    | Job No. :    | 6428    |
|--------|----------|-----------------|------------|------------|----------------|------------------|-------------------------|--------------|---------|
| I      | Project: | Polymet         |            |            |                |                  |                         | Test Date:   | 4/10/08 |
| Repor  | ted To:  | Barr Engineerii | ng Company |            |                |                  |                         | Report Date: | 4/14/08 |
|        | Location | n / Boring No.  | Sample No. | Depth (ft) | Sample<br>Type |                  | Soil Classification     |              |         |
| Spec 1 |          | RS-20           | 07-0345    | 2-3        | TWT            | :                | Silty Sand w/gravel (SM | )            |         |
| Spec 2 |          | RS-20           | 07-0377    | 2-4.5      | Bulk           | 5                | Silty Sand w/gravel (SM | )            |         |
| Spec 3 |          |                 |            |            |                |                  |                         |              |         |
|        |          |                 |            |            | Hy             | rometer Data     |                         |              |         |
|        |          | Specimen 1      |            |            |                | Specimen 2       | 5                       | Specimen 3   |         |
| Dian   | neter (m | ım)             | % Passing  | [          | Diamete        |                  | Diameter                | % Pa         | ssing   |
|        | 0.031    |                 | 18.9       |            | 0.027          | 19.8             |                         |              |         |
|        | 0.020    |                 | 14.8       |            | 0.018          | 17.1             |                         |              |         |
|        | 0.012    |                 | 10.7       |            | 0.011          | 13.2             |                         |              |         |
|        | 0.009    |                 | 8.0        |            | 0.008          | 10.5             |                         |              |         |
|        | 0.006    |                 | 6.2        |            | 0.006          | 8.6              |                         |              |         |
|        | 0.003    |                 | 3.8        |            | 0.003          | 4.7              |                         |              |         |
|        | 0.001    |                 | 1.5        |            | 0.001          | 2.8              |                         |              |         |



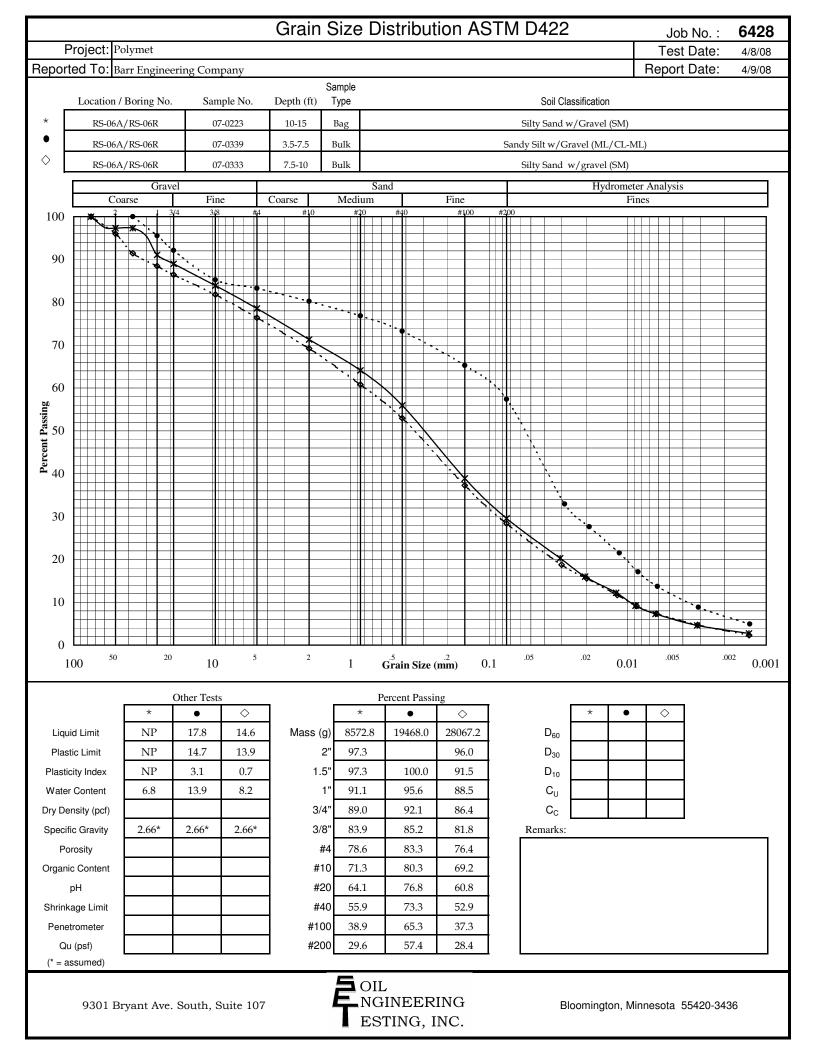





| _      |                  |           |              |            |                |         |                                       |                             |              |        |
|--------|------------------|-----------|--------------|------------|----------------|---------|---------------------------------------|-----------------------------|--------------|--------|
|        |                  |           |              | Grain      | Size           | Distril | oution ASTM                           | D422                        | Job No. :    | 6428   |
|        | Project: Polymo  | et        |              |            |                |         |                                       |                             | Test Date:   | 4/5/08 |
| Repo   | rted To: Barr Er | ngineerii | ng Company   |            |                |         |                                       |                             | Report Date: | 4/6/08 |
|        | Location / Borir | ıg No.    | Sample No.   | Depth (ft) | Sample<br>Type |         |                                       | Soil Classification         |              |        |
| Spec 1 | RS-03            |           | 07-0336      | 10-15      | Bulk           |         | San                                   | dy Silt w/a little gravel ( | ML)          |        |
| Spec 2 |                  |           |              |            |                |         |                                       | <u> </u>                    |              |        |
| Spec 3 |                  |           |              |            |                |         |                                       |                             |              |        |
| Spec 5 |                  |           |              |            | L<br>H'        | /dromet | ter Data                              |                             |              |        |
|        | Snec             | imen 1    |              |            |                | Specir  |                                       |                             | Specimen 3   |        |
| Diar   | neter (mm)       |           | % Passing    |            | Diamet         |         | % Passing                             | Diameter                    | % Pas        | sing   |
|        | 0.030            |           | 33.0         |            |                | -       | ··· ··· · · · · · · · · · · · · · · · |                             |              | - 5    |
|        | 0.019            |           | 27.8         |            |                |         |                                       |                             |              |        |
|        | 0.012            |           | 21.4<br>16.7 |            |                |         |                                       |                             |              |        |
|        | 0.006            |           | 12.3         |            |                |         |                                       |                             |              |        |
|        | 0.003            |           | 6.3          |            |                |         |                                       |                             |              |        |
|        | 0.001            |           | 2.7          |            |                |         |                                       |                             |              |        |
|        |                  |           |              |            |                |         |                                       |                             |              |        |
|        |                  |           |              |            |                |         |                                       |                             |              |        |

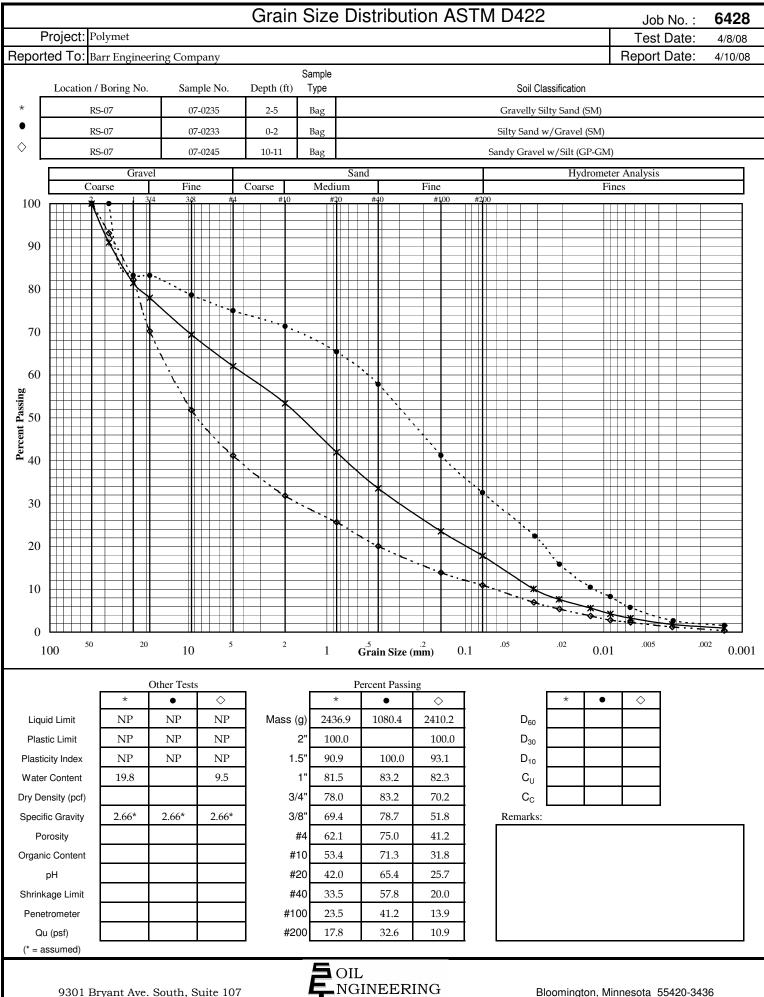




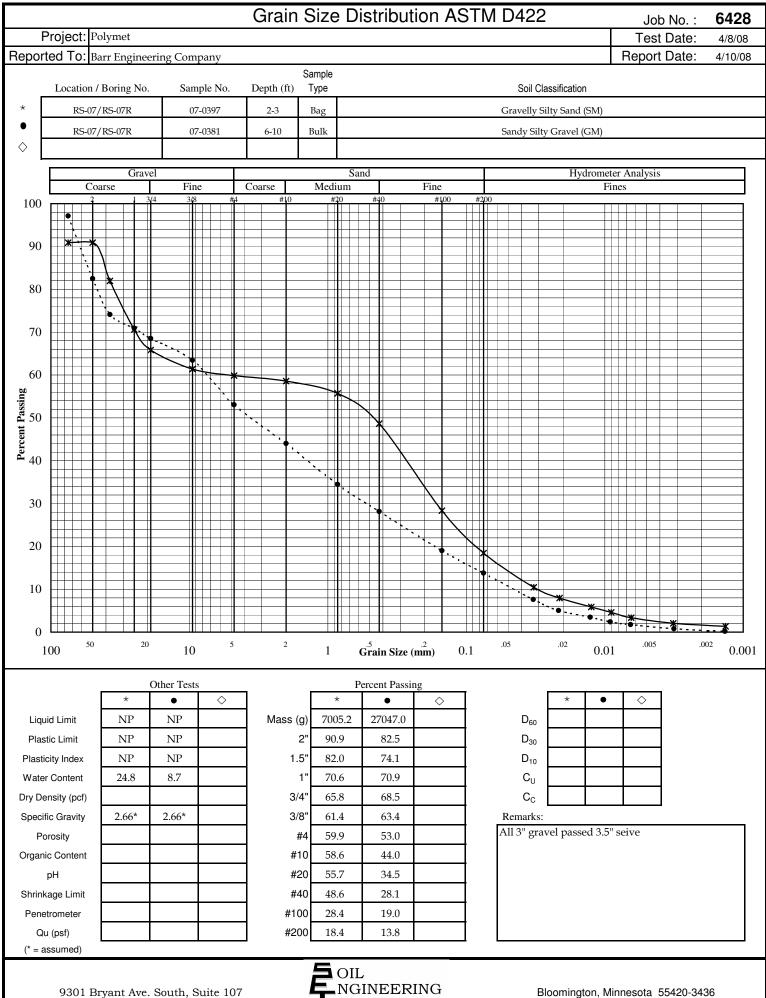



|                |                                              |                |                                              | Grain S    | Size [                                      | Distrib  | oution ASTN                                      | 1 D422                  | Job No. :          | 6428   |
|----------------|----------------------------------------------|----------------|----------------------------------------------|------------|---------------------------------------------|----------|--------------------------------------------------|-------------------------|--------------------|--------|
| F              | Project:                                     | Polymet        |                                              |            |                                             |          |                                                  |                         | Test Date:         | 4/5/08 |
| Repor          | ted To:                                      | Barr Engineeri | ng Company                                   |            |                                             |          |                                                  |                         | Report Date:       | 4/6/08 |
|                | Location                                     | ı / Boring No. | Sample No.                                   | Depth (ft) | Sample<br>Type                              |          |                                                  | Soil Classification     |                    |        |
| Spec 1         | ]                                            | RS-04          | 07-0209                                      | 10-15      | Bulk                                        |          |                                                  | Silty Sand w/Gravel (SM | 1)                 |        |
|                |                                              |                | 07-0203                                      | 15-20      | Bulk                                        |          |                                                  | Silty Sand w/Gravel (SM | 1)                 |        |
| Spec 2         | 1                                            | RS-04          | 07-0203                                      |            |                                             |          |                                                  |                         |                    |        |
|                | ]                                            | RS-04          | 07-0203                                      |            |                                             |          |                                                  |                         |                    |        |
|                | ]                                            | RS-04          | 07-0203                                      |            | Hy                                          | /dromete | er Data                                          |                         |                    |        |
|                |                                              |                |                                              |            | Hy                                          |          |                                                  |                         | Specimen 3         |        |
| Spec 3         |                                              | Specimen       |                                              |            | Hy                                          | Specim   | ien 2                                            | Diameter                | Specimen 3<br>% Pa | ssing  |
| Spec 3<br>Diam |                                              | Specimen       | 1                                            |            |                                             | Specim   |                                                  |                         | Specimen 3<br>% Pa | ssing  |
| Spec 3<br>Diam | neter (m                                     | Specimen       | 1<br>% Passing                               |            | Diamete                                     | Specim   | ien 2<br>% Passing                               |                         |                    | ssing  |
| Spec 3<br>Diam | neter (m<br>0.032                            | Specimen       | 1<br>% Passing<br>14.0                       |            | Diamete<br>0.032                            | Specim   | nen 2<br>% Passing<br>14.9                       |                         |                    | ssing  |
| Spec 3<br>Diam | neter (m<br>0.032<br>0.021                   | Specimen       | 1<br>% Passing<br>14.0<br>11.2               |            | Diamete<br>0.032<br>0.021                   | Specim   | nen 2<br>% Passing<br>14.9<br>11.8               |                         |                    | ssing  |
| Spec 3<br>Diam | neter (m<br>0.032<br>0.021<br>0.012          | Specimen       | 1<br>% Passing<br>14.0<br>11.2<br>8.0        |            | Diamete<br>0.032<br>0.021<br>0.012          | Specim   | nen 2<br>% Passing<br>14.9<br>11.8<br>8.8        |                         |                    | ssing  |
|                | neter (m<br>0.032<br>0.021<br>0.012<br>0.009 | Specimen       | 1<br>% Passing<br>14.0<br>11.2<br>8.0<br>6.5 |            | Diamete<br>0.032<br>0.021<br>0.012<br>0.009 | Specim   | nen 2<br>% Passing<br>14.9<br>11.8<br>8.8<br>6.7 |                         |                    | ssing  |





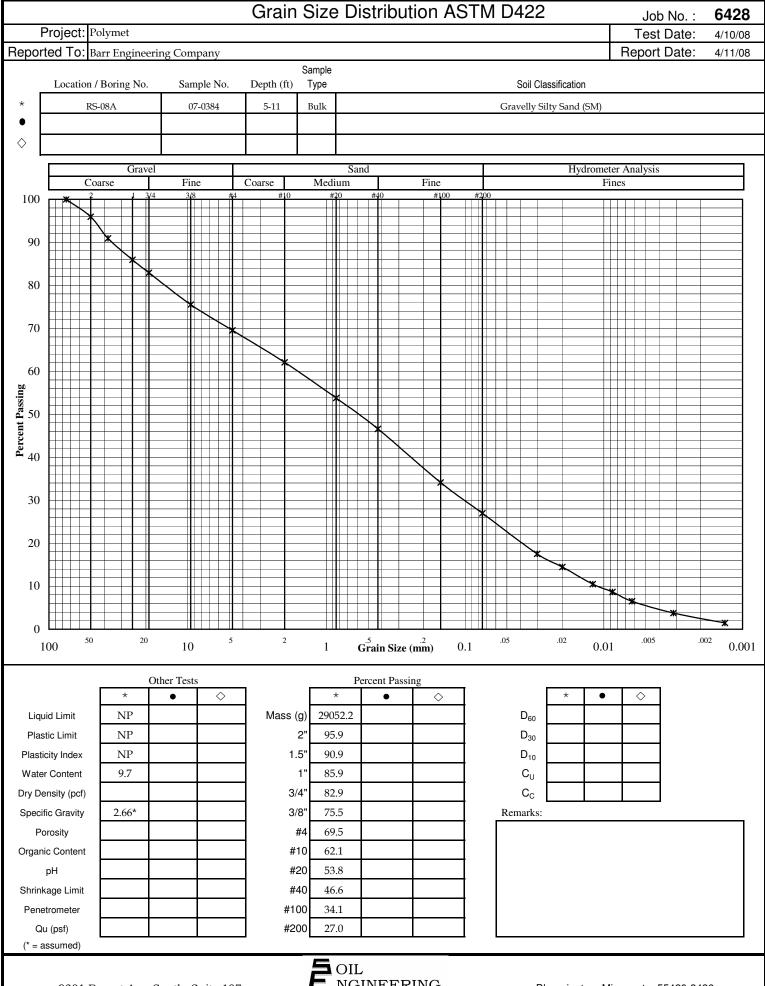

|        |                  |            |            | Grain S    | Size D         | istrib  | ution ASTM | D422                    | Job No. :    | 6428   |
|--------|------------------|------------|------------|------------|----------------|---------|------------|-------------------------|--------------|--------|
|        | Project: Polyme  | et         |            |            |                |         |            |                         | Test Date:   | 4/5/08 |
| Repor  | rted To: Barr Er | ngineering | Company    |            |                |         |            |                         | Report Date: | 4/6/08 |
|        | Location / Borir | ng No.     | Sample No. | Depth (ft) | Sample<br>Type |         |            | Soil Classification     |              |        |
| Spec 1 | RS-05A           |            | 07-0231    | 10-11.5    | Bag            |         |            | Silty Gravel w/sand (GM | ()           |        |
| Spec 2 | RS-05A           |            | 07-0246    | 11.5-13    | Bag            |         |            | Silty Gravel w/sand (GM | [)           |        |
| Spec 3 | RS-05A           |            | 07-0215    | 6-11.5     | Bulk           |         |            | Silty Sand w/Gravel (SM | )            |        |
|        |                  |            |            |            | Hyd            | Iromete | r Data     |                         |              |        |
|        | Spec             | imen 1     |            |            | S              | Specim  | en 2       |                         | Specimen 3   |        |
| Diar   | neter (mm)       |            | Passing    |            | Diameter       |         | % Passing  | Diameter                | % Pas        | ssing  |
|        | 0.031            |            | 7.9        |            | 0.030          |         | 10.7       | 0.031                   | 17           |        |
|        | 0.020            |            | 6.6        |            | 0.020          |         | 9.1        | 0.020                   | 13           | .5     |
|        | 0.012            |            | 5.1        |            | 0.012          |         | 7.4        | 0.012                   | 10           | .2     |
|        | 0.009            |            | 4.1        |            | 0.009          |         | 6.2        | 0.009                   | 7.           | 8      |
|        | 0.006            |            | 3.1        |            | 0.006          |         | 5.0        | 0.006                   | 6.           | 3      |
|        | 0.003            |            | 2.3        |            | 0.003          |         | 3.6        | 0.003                   | 3.           | 7      |
|        | 0.001            |            | 1.5        |            | 0.001          |         | 2.4        | 0.001                   | 2.4          | 4      |




|        |                  |                 | G     | rain S     | Size D         | Distril | bution ASTM | D422                   | Job No. :    | 6428   |
|--------|------------------|-----------------|-------|------------|----------------|---------|-------------|------------------------|--------------|--------|
| ļ      | Project: Polyme  | t               |       |            |                |         |             |                        | Test Date:   | 4/8/08 |
| Repor  | rted To: Barr Er | gineering Compa | ny    |            |                |         |             |                        | Report Date: | 4/9/08 |
|        | Location / Borin | g No. Sample    | No. I | Depth (ft) | Sample<br>Type |         |             | Soil Classification    |              |        |
| Spec 1 | RS-06A/RS-0      | 6R 07-02        | 23    | 10-15      | Bag            |         |             | Silty Sand w/Gravel (S | SM)          |        |
| Spec 2 | RS-06A/RS-0      | 6R 07-03        | 39    | 3.5-7.5    | Bulk           |         | Sa          | ndy Silt w/Gravel (ML/ | CL-ML)       |        |
| Spec 3 | RS-06A/RS-0      | 6R 07-03        | 33    | 7.5-10     | Bulk           |         |             | Silty Sand w/gravel (S | SM)          |        |
|        |                  |                 |       |            | Нус            | dromet  | ter Data    |                        |              |        |
|        | Spec             | men 1           |       |            |                | Specir  | men 2       |                        | Specimen 3   |        |
| Dian   | neter (mm)       | % Passi         | ng    | E          | Diamete        | r       | % Passing   | Diameter               | r % Pa       | ssing  |
|        | 0.031            | 20.3            |       |            | 0.029          |         | 33.0        | 0.030                  | 18           | 3.7    |
|        | 0.020            | 16.0            |       |            | 0.019          |         | 27.6        | 0.020                  | 15           | i.6    |
|        | 0.012            | 12.2            |       |            | 0.012          |         | 21.5        | 0.012                  | 11           | .7     |
|        | 0.009            | 9.2             |       |            | 0.008          |         | 17.1        | 0.009                  | 9            | .1     |
|        | 0.006            | 7.3             |       |            | 0.006          |         | 13.7        | 0.006                  | 7            | .4     |
|        | 0.003            | 4.6             |       |            | 0.003          |         | 8.9         | 0.003                  | 4            | .7     |
|        | 0.001            | 2.7             |       |            | 0.001          |         | 4.9         | 0.001                  | 2            | .3     |



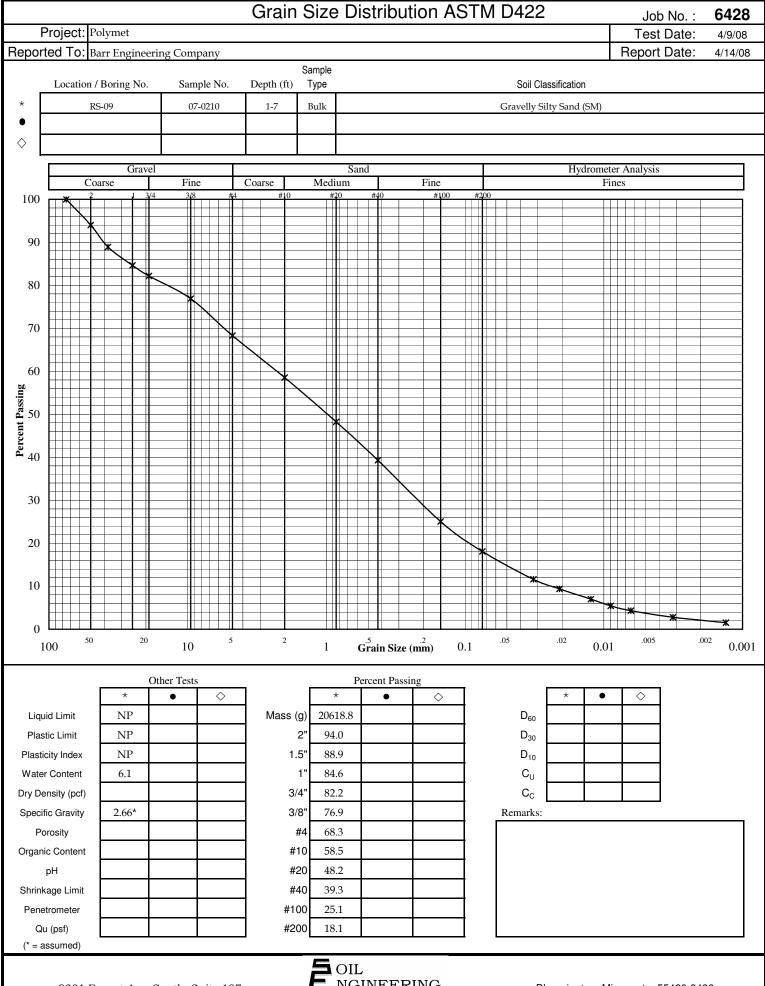



|        |                  | (                 | Grain S    | Size Dis       | strib | ution ASTM [ | 0422                     | Job No. :    | 6428    |
|--------|------------------|-------------------|------------|----------------|-------|--------------|--------------------------|--------------|---------|
|        | Project: Polyme  | t                 |            |                |       |              |                          | Test Date:   | 4/8/08  |
| Repor  | rted To: Barr En | gineering Company |            |                |       |              |                          | Report Date: | 4/10/08 |
|        | Location / Borin | g No. Sample No.  | Depth (ft) | Sample<br>Type |       |              | Soil Classification      |              |         |
| Spec 1 | RS-07            | 07-0235           | 2-5        | Bag            |       | (            | Gravelly Silty Sand (SM) |              |         |
| Spec 2 | RS-07            | 07-0233           | 0-2        | Bag            |       | S            | ilty Sand w/Gravel (SM)  | )            |         |
| Spec 3 | RS-07            | 07-0245           | 10-11      | Bag            |       | San          | dy Gravel w/Silt (GP-G   | M)           |         |
|        |                  |                   |            | Hydro          | omete | er Data      |                          |              |         |
|        | Speci            | men 1             |            | Sp             | pecim | en 2         | S                        | Specimen 3   |         |
| Dian   | neter (mm)       | % Passing         |            | Diameter       |       | % Passing    | Diameter                 | % Pas        | ssing   |
|        | 0.032            | 10.1              |            | 0.031          |       | 22.4         | 0.032                    | 7.           | 0       |
|        | 0.021            | 7.7               |            | 0.021          |       | 15.8         | 0.021                    | 5.           | 4       |
|        | 0.012            | 5.6               |            | 0.013          |       | 10.5         | 0.012                    | 3.           | 8       |
|        | 0.009            | 4.2               |            | 0.009          |       | 8.3          | 0.009                    | 2.           | 8       |
|        | 0.006            | 3.3               |            | 0.006          |       | 5.7          | 0.006                    | 2.           | 3       |
|        | 0.003            | 1.8               |            | 0.003          |       | 2.6          | 0.003                    | 1.           | 2       |
|        | 0.001            | 0.9               |            | 0.001          |       | 1.6          | 0.001                    | 0.           | 4       |



9301 Bryant Ave. South, Suite 107

|        |                                  |               |                                               | Grain S    | Size [                                      | Distrib | ution ASTM                                    | D422                     | Job No. :           | 6428    |
|--------|----------------------------------|---------------|-----------------------------------------------|------------|---------------------------------------------|---------|-----------------------------------------------|--------------------------|---------------------|---------|
| F      | Project:                         | Polymet       |                                               |            |                                             |         |                                               |                          | Test Date:          | 4/8/08  |
| Repor  | ted To:                          | Barr Engine   | eering Company                                |            |                                             |         |                                               |                          | Report Date:        | 4/10/08 |
|        | Location                         | n / Boring No | o. Sample No.                                 | Depth (ft) | Sample<br>Type                              |         |                                               | Soil Classification      |                     |         |
| Spec 1 | RS-(                             | 07/RS-07R     | 07-0397                                       | 2-3        | Bag                                         |         |                                               | Gravelly Silty Sand (SM) | )                   |         |
| Spec 2 | RS-0                             | 07/RS-07R     | 07-0381                                       | 6-10       | Bulk                                        |         |                                               | Sandy Silty Gravel (GM)  | )                   |         |
|        |                                  |               |                                               |            |                                             |         |                                               |                          |                     |         |
| Spec 3 |                                  |               |                                               |            |                                             |         |                                               |                          |                     |         |
| Spec 3 |                                  |               |                                               |            | Hy                                          | dromete | r Data                                        |                          |                     |         |
| Spec 3 |                                  | Specime       | en 1                                          | <u> </u>   | Hy                                          |         |                                               |                          | Specimen 3          |         |
|        | neter (m                         | Specime       |                                               |            | Hy<br>Diamete                               | Specim  | en 2                                          | Diameter                 | Specimen 3<br>% Pa: | ssing   |
| Diam   | neter (m<br>0.033                |               | n 1<br>% Passing<br>10.5                      |            |                                             | Specim  |                                               |                          | Specimen 3<br>% Pa  | ssing   |
| Diam   | 1                                |               | % Passing                                     |            | Diamete                                     | Specim  | en 2<br>% Passing                             |                          |                     | ssing   |
| Diam   | 0.033                            |               | % Passing<br>10.5                             |            | Diamete<br>0.033                            | Specim  | en 2<br>% Passing<br>7.6                      |                          |                     | ssing   |
| Diam   | 0.033                            |               | % Passing<br>10.5<br>7.9                      |            | Diamete<br>0.033<br>0.022                   | Specim  | en 2<br>% Passing<br>7.6<br>5.0               |                          |                     | ssing   |
| Diam   | 0.033<br>0.021<br>0.013          |               | % Passing<br>10.5<br>7.9<br>5.9<br>4.6<br>3.3 |            | Diamete<br>0.033<br>0.022<br>0.013          | Specim  | en 2<br>% Passing<br>7.6<br>5.0<br>3.5        |                          |                     | ssing   |
| Diam   | 0.033<br>0.021<br>0.013<br>0.009 |               | % Passing<br>10.5<br>7.9<br>5.9<br>4.6        |            | Diamete<br>0.033<br>0.022<br>0.013<br>0.009 | Specim  | en 2<br>% Passing<br>7.6<br>5.0<br>3.5<br>2.4 |                          |                     | ssing   |








|        |               |                                                   |             | Grain      | Sizo           | Dictri | bution A |       | 1422                |              |         |
|--------|---------------|---------------------------------------------------|-------------|------------|----------------|--------|----------|-------|---------------------|--------------|---------|
|        |               |                                                   |             | Grain      | 5126           | DISIII |          |       | J422                | Job No. :    | 6428    |
|        | Project: Poly | met                                               |             |            |                |        |          |       |                     | Test Date:   | 4/10/08 |
| Repor  | ted To: Barr  | Engineer                                          | ing Company |            |                |        |          |       |                     | Report Date: | 4/11/08 |
|        | Location / B  | oring No.                                         | Sample No.  | Depth (ft) | Sample<br>Type |        |          |       | Soil Classification |              |         |
| Spec 1 | RS-08         | RS-08A 07-0384 5-11 Bulk Gravelly Silty Sand (SM) |             |            |                |        |          |       |                     |              |         |
| Spec 2 |               |                                                   |             |            |                |        |          |       |                     |              |         |
| Spec 3 |               |                                                   |             |            |                |        |          |       |                     |              |         |
| Spec 5 |               |                                                   |             |            | I<br>H'        | vdrome | ter Data |       |                     |              |         |
|        | Sn            | ecimen                                            | 1           |            |                |        | men 2    |       | (                   | Specimen 3   |         |
| Dian   | neter (mm)    |                                                   | % Passing   | [          | Diamet         |        | % Pas    | ssing | Diameter            | % Passing    |         |
|        | 0.030         |                                                   | 17.5        |            | -              |        |          | Ŭ.    |                     |              | Ŭ       |
|        | 0.020         |                                                   | 14.5        |            |                |        |          |       |                     |              |         |
|        | 0.012 0.009   |                                                   | 10.5<br>8.7 |            |                |        |          |       |                     |              |         |
|        | 0.009         |                                                   | 6.5         | _          |                |        |          |       |                     |              |         |
|        | 0.003         |                                                   | 3.8         |            |                |        |          |       |                     |              |         |
|        | 0.001         |                                                   | 1.5         |            |                |        |          |       |                     |              |         |
|        |               |                                                   |             |            |                |        |          |       |                     |              |         |
|        |               |                                                   |             |            |                |        |          |       |                     |              |         |





9301 Bryant Ave. South, Suite 107

| -      |                   |          |          |            | _          |                |                                         |                          |                     |                                       |         |
|--------|-------------------|----------|----------|------------|------------|----------------|-----------------------------------------|--------------------------|---------------------|---------------------------------------|---------|
|        |                   |          |          |            | Grain S    | Size           | Distribution A                          | ASTM E                   | 0422                | Job No. :                             | 6428    |
|        | Project:          | Polyme   | t        |            |            |                |                                         |                          |                     | Test Date:                            | 4/9/08  |
| Repor  | ted To:           | Barr Eng | gineerii | ng Company |            |                |                                         |                          |                     | Report Date:                          | 4/14/08 |
|        | Location          | / Boring | g No.    | Sample No. | Depth (ft) | Sample<br>Type |                                         |                          | Soil Classification |                                       |         |
| Spec 1 | RS-09 07-0210 1-7 |          |          | 1-7        | Bulk       |                | C                                       | Gravelly Silty Sand (SM) |                     |                                       |         |
| Spec 2 |                   |          |          |            |            |                |                                         |                          |                     |                                       |         |
| Spec 3 |                   |          |          |            |            |                |                                         |                          |                     |                                       |         |
|        |                   |          |          |            |            | H              | drometer Data                           |                          |                     |                                       |         |
|        |                   | Speci    | men 1    |            |            |                | Specimen 2                              |                          | S                   | pecimen 3                             |         |
| Dian   | neter (m          |          |          | % Passing  |            | Diamet         |                                         | ssina                    | Diameter            | % Pas                                 | sing    |
|        | 0.032             | ,        |          | 11.6       |            |                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                          |                     | ,,, , , , , , , , , , , , , , , , , , | 3       |
|        | 0.021             |          |          | 9.4        |            |                |                                         |                          |                     |                                       |         |
|        | 0.012             |          |          | 7.0<br>5.4 | _          |                |                                         |                          |                     |                                       |         |
|        | 0.009             |          |          | <u> </u>   |            |                |                                         |                          |                     |                                       |         |
|        | 0.003             |          |          | 2.8        |            |                |                                         |                          |                     |                                       |         |
|        | 0.001             |          |          | 1.5        |            |                |                                         |                          |                     |                                       |         |
|        |                   |          |          |            |            |                |                                         |                          |                     |                                       |         |
|        |                   |          |          |            |            | 5              | OIL                                     |                          |                     |                                       |         |



Attachment E

**Overburden Geotechnical Investigation - Boring Logs and Material Testing Data Sheets** 



Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803 Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com *An EEO Employer* 

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND

# **Technical Memorandum**

| To:      | James Tieberg and Rich Patelke, PolyMet Mining |
|----------|------------------------------------------------|
| From:    | Vicki Hagberg, EIT                             |
|          | Tom Radue, PE                                  |
|          | Nancy Dent, PE                                 |
| Subject: | 2010 Polymet Geotechnical Investigation        |
| Date:    | August 16, 2010                                |
| Project: | 23/69-0C29.09                                  |

This document summarizes the work completed during the 2010 geotechnical investigation and overburden characterization within the overburden and Category 1 (CAT 1) waste rock stockpile area at the proposed Polymet NorthMet mine site near Hoyt Lakes, Minnesota. The purpose of the work was to further characterize the soil stratigraphy and strength characteristics within the proposed CAT 1 stockpile area.

Exploratory borings with standard penetration testing (SPT) were completed by American Engineering Testing (AET) at each of four drilling sites: J003, J010, J027, and J037. Boring locations are shown on the Boring Locations diagram included in the appendix to this memorandum. Using the information from the SPT borings, thinwall samples were collected from new offset boreholes at J003, J010, and J027. Pressuremeter tests were then also completed in new offset boreholes. Thinwall sample collection and pressuremeter testing were not completed at J037 because of the shallow depth to auger refusal. Drilling was completed between February 16 and February 26, 2010. In-laboratory geotechnical testing was completed on the soil samples at Soil Engineering Testing (SET) in April and May, 2010. Drilling observation and test data analysis was completed by Barr Engineering (Barr) and is summarized in the balance of this memorandum.

# **Soil Characteristics**

SPT borings were completed at four locations to investigate the soil stratigraphy within the overburden and CAT 1 waste rock stockpile area. The borings were completed to auger refusal which correlated to the expected depth to bedrock as provided by PolyMet. Two-foot SPT samples were driven every 2.5 feet, and samples were logged using the USCS soil classification system and saved in jars for testing.

\\mplsdfs\projects\Mpls\23 MN\69\2369C29 PolyMet NorthMet Engineering\Work Authorization 10\Work Files\Memo\Polymet Geotech Sampling Memo\_Final.doc

Index and strength testing were completed on the soils encountered. The boring logs and test results are included in the appendix. SPT sampling and the laboratory testing indicated that there are three general soil types at the CAT 1 stockpile area: peat, silt, and silty sand with clay and gravel (silty sand). The silt and silty sand are glacial till materials with varying amounts of clay, silt, sand, and gravel. In addition, a small quantity of topsoil and fill material were encountered on site but are considered to be minor components of the site geology. The characteristics of the three soil types are described in the sections below. However, based on the small number of borings completed within the CAT 1 stockpile area, it should not be assumed that these borings fully describe the soil conditions between borings. It is quite likely that the stratigraphy is variable and that additional soil types may occur on site. A summary of the soil test results is provided in the following table.

#### **Soil Parameters Summary Table**

|            | 0-1                             | Moist<br>Unit<br>Weight<br>[pcf] | Dry<br>Unit<br>Weight<br>[pcf] | Permeability<br>[ft/s] |                        | Soil Shear Strength |                             |                   |                             |  |
|------------|---------------------------------|----------------------------------|--------------------------------|------------------------|------------------------|---------------------|-----------------------------|-------------------|-----------------------------|--|
|            | Sat.<br>Unit<br>Weight<br>[pcf] |                                  |                                |                        |                        | ESSA (drained)      |                             | USSA (undrained)  |                             |  |
| Material   |                                 |                                  |                                |                        | Permeability<br>[cm/s] | Cohesion<br>[psf]   | Friction<br>Angle<br>[deg.] | Cohesion<br>[psf] | Friction<br>Angle<br>[deg.] |  |
| Peat       | 75 <sup>1</sup>                 | 66 <sup>2</sup>                  | 15 <sup>3</sup>                | 1.18E-08 <sup>4</sup>  | 3.60E-07 <sup>4</sup>  | 500 <sup>1</sup>    | 0 1                         | 280 <sup>5</sup>  | 0 5                         |  |
| Silt       | 126 <sup>7</sup>                | 126 <sup>2</sup>                 | 101 <sup>3</sup>               | 3.28E-09 <sup>1</sup>  | 1.00E-07 <sup>1</sup>  | 580 <sup>8</sup>    | 0 8                         | 580 <sup>5</sup>  | 0 5                         |  |
| Silty Sand | 155 <sup>1</sup>                | 150 <sup>2</sup>                 | 139 <sup>3</sup>               | 1.69E-08 <sup>4</sup>  | 5.15E-07 <sup>4</sup>  | 0 6                 | 38.5 <sup>6</sup>           | 0 6               | 35.3 <sup>6</sup>           |  |

Notes: 1. Assumed value

2. Calculated as (1+[average moisture content % of soil type])\*[dry unit weight of soil type]

3. Average dry unit weight value from test data

4. Geometric mean of permeability test values

5. Calculated as 0.5\*(unconfined compressive strength) from test data

6. Minimum of consolidated undrained triaxial (CIU) with pore pressure measurements test failure envelopes.

7. Calculated as (1+[average moisture content % of soil type])\*[dry unit weight of soil type]. Assumes soil is saturated as tested.

8. Drained case assumed to be the same as the undrained case.

As indicated in the table above, two types of Soil Shear Strength are reported, corresponding to the two types of stability analyses typically performed for stockpiles of this type: the Undrained Strength Stability Analysis (USSA) and the Effective Stress Stability Analysis (ESSA). The USSA is performed to analyze the case in which loading or unloading is applied rapidly and excess porewater pressures do not have sufficient time to dissipate during shearing. This scenario typically applies to loading from, for example, stockpile construction where the loading takes place quickly. It is often referred to as the "end-of-construction" case. The ESSA is performed to account for much slower loading or unloading, or no external loading, in which the drained shear strength of the materials is mobilized and no shear-induced

porewater pressures are developed. For example, a stockpile after porewater pressures have dissipated from construction is best analyzed using the ESSA method. For this reason, the ESSA is often referred to as the "long term" case. Testing was completed to analyze the soil strength under both of these conditions. In addition, consolidation and soil elasticity parameters were also evaluated by lab and pressuremeter testing of the soils. Soil test results are described in greater detail in the following paragraphs.

#### Peat

Peat was encountered at the surface of borings J003 and J027. The peat layer at J003 was one foot thick and was frozen at the time of drilling, so testing was not completed on peat samples from boring J003. The peat layer at J027 was approximately 7 feet thick and was generally sapric (highly decomposed) as classified in the boring logs provided by AET. The peat layer was characterized by N-values tranging from 1 to 2 indicating the layer is very soft and loose. The organic content of the peat ranged from 40.6% to 52.8% and the moisture content ranged from 287.3% to 404.6% as tested by SET. The dry density of the peat ranged from 12.8 to 16.9 pounds per cubic foot.

In addition to the SPT information and index testing, strength, consolidation, and permeability testing was also completed on peat samples. Unconfined strength testing (ASTM D2166) resulted in an unconfined compressive strength of the peat of 560 psf and corresponding undrained shear strength 2of 280 psf. Permeability testing on the peat resulted in saturated hydraulic conductivity at  $1.18 \times 10^{-8}$  ft/s ( $3.60 \times 10^{-7}$  cm/s).

Consolidation testing on the peat at boring J027 resulted in the following parameters: preconsolidation pressure (Pc) = 500 psf, compression index (Cc) = 2.82, and recompression index (Cr) = 0.50. During consolidation testing, the maximum displacement limit was reached during the 8000 psf loading sequence. The consolidation parameters and the results of the test indicate that the peat would

<sup>1</sup> N-value is used to correlate to undrained strength of a soil. N-values are the sum of the 6-12" and 12-18" blow counts. The 0-6" and 18-24" blow counts are not included in the N-value.

<sup>2</sup> Cohesion is the same as undrained shear strength in the mohr-coulomb soil model used to describe the failure envelopes of the soil encountered. The terms "shear strength" and "cohesion" are used interchangeably. This is an undrained strength value, not a drained strength value.

consolidate/settle significantly under the load of a large stockpile. If the peat layer is left unexcavated beneath the stockpile, consolidation would likely be of large magnitude and continue over a long period of time. The amount of consolidation would also be dependent on the depth of the peat formation beneath the stockpile area. Detailed consolidation modeling would be necessary to further evaluate the extent of the consolidation of a peat layer beneath the CAT 1 stockpile. The in-laboratory test results and boring logs for the peat and other soils encountered during the exploration are included in the appendix of this report.

#### Silt

Silt was encountered beneath the peat at borings J003 and J027 and beneath the fill material at boring J010. The silt layer was generally less than one foot thick and contained some organic material, although less than the peat. The silt also contained some sand and clay. The N-values in the silt layer ranged from 5 to 8 indicating that the layer is soft. The silt layer at J027 was too thin to provide valuable testing results. The moisture content ranged from 21.8% to 27.6% and 67.4% of the soil passed the #200 sieve in the grain size distribution test by SET. The dry density of the silt ranged from 97 to 105.2 pounds per cubic foot.

In addition to the SPT information and index testing, strength, consolidation, and permeability testing was also completed on the silt samples. Unconfined strength testing (ASTM D2166) resulted in an unconfined compressive strength of the peat of 1,160 psf and corresponding undrained shear strength of 580 psf. Permeability testing was not completed on the silt because of the small amount of material encountered while drilling.

Consolidation testing on the silt at boring J003 resulted in the following parameters: preconsolidation pressure (Pc) = 3200 psf, compression index (Cc) = 0.155, and recompression index (Cr) = 0.02. These results indicate that the silt will consolidate much less than the peat under the same loading, however, some consolidation would be expected to occur. Consolidation of the silt layer would also be limited by the thin thickness of the soil layer as encountered while drilling. Detailed consolidation modeling would be necessary to further evaluate the extent of the consolidation of a silt layer beneath the CAT 1 stockpile. Laboratory test results and boring logs are included in the appendix of this report.

### Silty Sand

Silty sand was encountered at all borings conducted during the 2010 geotechnical exploration. The silty sand layer made up the bulk of the soil found on the site and extended from the bottom of the silt layer to bedrock. The silty sand is a well graded material which also contained clay, gravel and cobbles. Gravel and cobbles were encountered during drilling at all boring locations. The N-values in the silty sand layer ranged from 14 blows to hammer refusal with an average of 42 blows indicating that the layer is generally very stiff and dense. The moisture content ranged from 6.3% to 9.8% with an average of 7.7%; however these values are likely lower than insitu moisture contents because of the sandy nature of the soil and related moisture losses while sampling. A saturated unit weight of 155 pcf was assumed for the silty sand which corresponds to an insitu moisture content of 11%. This saturated moisture content tests. The dry density of the silty sand ranged from 133.8 to 143.3 pounds per cubic foot. Seven grain size distributions were completed on this soil type with 21.1% to 34.9% of the soil passing the #200 sieve.

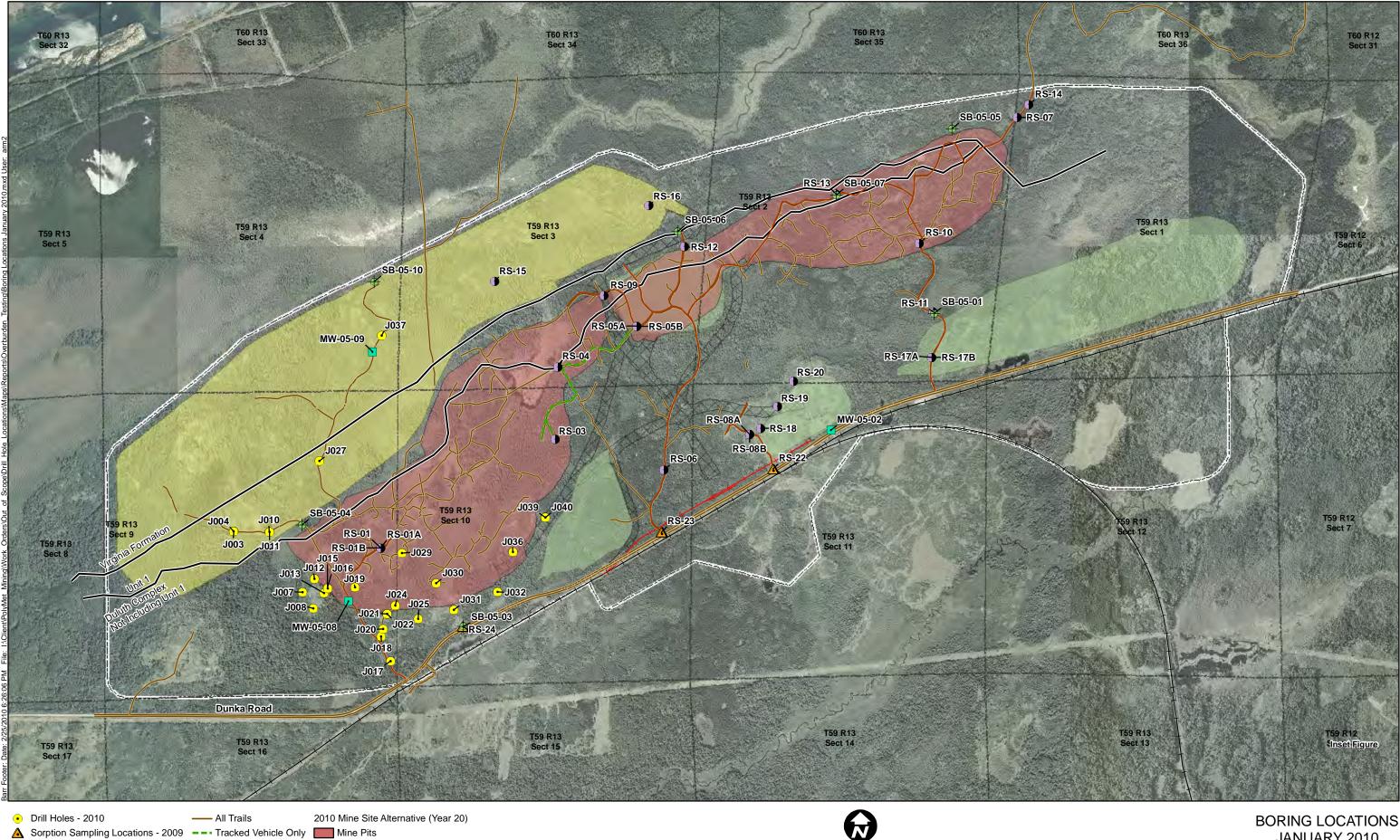
In addition to the SPT information and index testing, strength, consolidation, compaction, and permeability testing was also completed on the silty sand samples. Consolidated undrained triaxial tests with porepressure measurements (ASTM D4767) were completed to evaluate shear strength of the silty sand samples in both drained (ESSA) and undrained (USSA) conditions. The effective friction angle of the silty sand ranged from 38.5° to 42.4°. A friction angle of 38.5° indicates a relatively strong soil. The undrained friction angle ranged from 35.3° to 42.2° which correlates well with undrained shear strength and blow count correlations in the silty sand zone (Kulhawy and Mayne, 1990), which ranged from 33.4° to 46.1°. An undrained friction angle of 35.3° indicates a relatively strong soil. It is assumed that the silty sand will not have a significant cohesive strength in either the drained or undrained case because of the relatively low amount of clay encountered in the soil samples.

Permeability testing on the silty sand resulted in saturated hydraulic conductivity ranging from  $1.02 \times 10^{-8}$  ft/s to  $3.08 \times 10^{-8}$  ft/s ( $3.11 \times 10^{-7}$  to  $9.39 \times 10^{-7}$  cm/s) with a geometric mean of  $1.69 \times 10^{-8}$  ft/s ( $5.15 \times 10^{-7}$  cm/s). In addition to the permeability testing, a standard proctor test was completed on a composite sample of silty sand from borings J003, J010 and J027 since a bulk sample was not available to complete the proctor test. The resulting optimum moisture was 6.7% and the maximum density was 138.7 pcf after corrections for gravel in the samples.

Pressuremeter testing (ASTM 4719) was conducted in the silty sand zone to determine the elastic behavior of the soil under load. Pressuremeter testing requires good preparation of the borehole, so testing in soil with gravel and cobbles is difficult because of the difficulty in maintaining a clean and stable borehole. Fourteen tests were attempted with six having marginal or good data, as interpreted by AET. Good tests were completed to full yield and the borehole preparation was considered of the best quality. Marginal tests may have reached yield but did not reach soil failure or the soil may have been slightly disturbed. Poor tests occurred at locations with poor borehole quality and are not included in this report. The elastic modulus of the soil ( $E_0$ ) generally increases with depth. The results of the pressuremeter testing are summarized in the table below and are included in the report appendix.

| Boring | Top Depth [ft] | Bottom Depth [ft] | Test Quality | E₀ [psf] |
|--------|----------------|-------------------|--------------|----------|
| J003   | 3.1            | 4.6               | Marginal     | 26,000   |
| J003   | 6.1            | 7.6               | Marginal     | 102,000  |
| J003   | 6.6            | 8.4               | Good         | 278,000  |
| J003   | 21.6           | 23.4              | Good         | 528,000  |
| J003   | 13.8           | 15.3              | Marginal     | 152,000  |
| J003   | 16.9           | 18.7              | Good         | 458,000  |

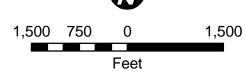
**Pressuremeter Test Results** 


Laboratory test results and boring logs are included in the appendix of this report.

## Conclusion

The 2010 geotechnical investigation at the Polymet overburden and Category 1 (CAT 1) waste rock stockpile was completed in February, 2010. Exploratory borings with Standard Penetration Testing were completed at four locations in the CAT 1 stockpile area. Thinwall sample collection and pressuremeter testing were completed in offset borings at three of the four locations. Boring logs and pressuremeter testing were completed by AET and are attached to the appendix of this report.

Laboratory testing and analysis was conducted from April through June, 2010, and the results are summarized in this document. Laboratory testing included moisture testing, organic content, grain size distribution, consolidation testing, unconfined compressive strength testing, triaxial testing, permeability testing, and standard proctor testing, and the results are included in the appendix of this document.


Peat, silt, and silty sand were the three general soil types encountered while drilling at the CAT 1 stockpile. The peat is very soft and loose and has low shear strength. The peat is also expected to consolidate greatly under stockpile loading. A thin layer of silt underlies the peat layer. The silt is soft with relatively low shear strength and a moderate capacity to consolidate limited by the thin layer thickness. The silty sand makes up the bulk of the soil encountered on site and also includes some clay, gravel and cobbles. The silty sand is generally very stiff and has high shear strength. The silty sand is unlikely to consolidate substantially.



- Sorption Sampling Locations 2009
   Rotasonic Drilling Locations 2008
- Monitoring Wells 2005
- + Soil Borings 2005
- Future Railroad
   Existing Railroad
   Troject Boundary

----- Existing Roads

Permanent Stockpile Reclaimed Stockpile



BORING LOCATIONS JANUARY 2010 NorthMet Project PolyMet Mining Inc. Hoyt Lakes, MN



CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

June 14, 2010

PolyMet Mining Corporation c/o Ms. Vicki Hagberg, EIT Barr Engineering 3128 14<sup>th</sup> Avenue East Hibbing, MN 55746

Re: Geotechnical Exploration Summary PolyMet Northmet Overburden Geotechnical Investigation Hoyt Lakes, Minnesota AET Project #07-04509 Barr Project # 23/69-0C29.07 WA1A

## **Introduction**

We understand Barr Engineering (Barr) is providing project management and design services for the PolyMet Mining Corporation (PolyMet) Northmet mine near Hoyt Lakes, Minnesota. On behalf of PolyMet, Barr authorized American Engineering Testing, Inc. (AET) to provide geotechnical exploration services to aid in site planning.

AET recently completed a subsurface exploration program at the PolyMet Northmet mine site. The exploration consisted of advancing four standard penetration test borings, collecting Pitcher tube samples, collecting thinwall tube samples, and performing pressuremeter testing in offset borings. This report presents the results of the subsurface exploration.

## **Scope of Services**

Our scope of services, as authorized by Barr, consisted of:

- Arranging for the location of existing public underground utilities through the Gopher State One-Call Service;
- Performing four standard penetration test (SPT) borings at locations denoted in the field by Barr;
- Performing Pitcher tube and thinwall tube sampling in offset borings at each of the four SPT boring locations;
- Performing eleven pressuremeter tests in offset borings at each of the four SPT boring locations (fourteen attempts were made at performing pressuremeter tests due to difficult soil conditions); and,

Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 2 of 4

• Providing a data report that includes logs of the test borings, pressuremeter test results and a summary of subsurface conditions encountered in the test borings.

## **Test Boring and Sampling Methods**

SPT borings and offset borings for pressuremeter testing were advanced in unconsolidated material using 3.25" inner diameter hollow stem augers (HSA). Offset borings for Pitcher tube and thinwall tube sampling were performed using 6.625" inner diameter HSA. Soil samples were obtained from the SPT borings using a standard split spoon sampler in general accordance with ASTM designation D1586. Pitcher tube and thinwall tube samples were collected in general accordance with ASTM D1587.

Pressuremeter testing was performed in general accordance with ASTM 4719. The borehole was prepared using a clean-out tube (COT) consisting of one or more of the following: a standard split-spoon sampler, a California sampler, and a slotted casing.

Boreholes were abandoned per Minnesota Department of Heath regulations. Soil classifications were performed on recovered samples in general accordance with ASTM designation D2488.

Barr provided the test boring GPS coordinates and elevations for the SPT borings to AET, which are shown on the SPT boring logs. The GPS coordinates reference Minnesota State Plane North, NAD83. Elevations reference mean sea level.

## **Results**

## Geologic Conditions

Logs of the test borings are attached to this letter for your review. Please refer to the logs for information concerning soil layering, soil classification, geologic description, and moisture. Relative density or consistency based on the standard penetration resistance (N-value) recorded while using with the standard split spoon sampler is also noted on the SPT and pressuremeter testing logs.

In general, the SPT borings indicate swamp deposits, existing fill, or topsoil overlying till. Swamp deposits were encountered in test borings J003 and J027, and extend to depths of approximately  $2\frac{1}{2}$  and  $7\frac{1}{2}$  feet, respectively. The swamp deposits consist of peat and organic silt. The existing fill encountered in test boring J010 consists of mixtures of silty sand, gravel, organic sandy silt and/or organic silty sand. The silty sand encountered between the depths of approximately  $2\frac{1}{2}$  and 5 feet in test boring J003 may be existing fill (tailings). Approximately 6 inches of topsoil was encountered in J037, and is composed of organic silt.

Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 3 of 4

Till was encountered in all of the test borings. The till is comprised of sandy silt, silty sand, silty sand with gravel, and gravelly silty sand. The recorded N-values indicate the till is mainly medium dense to dense. Apparent cobbles were encountered in the till in test boring J027 and J037.

Auger refusal was encountered in each of the SPT borings at depths between 18.7 and 24.5 feet. Pitcher sampler refusal was also encountered in offset test boring J027-T at a depth of 15.1 feet. Refusal may have been caused by cobbles, boulders, or bedrock. Rock coring would need to be performed to document the cause of auger refusal.

#### Water Levels

Groundwater was encountered in test borings J003, J010, J027, J003-P, J010-P, and J010-T at depths between 3 and 11 feet below the existing ground surface. Groundwater levels representing static conditions cannot be reliably measured unless measurements are taken from piezometers installed at the site.

#### Pressuremeter Tests

A total of 14 pressuremeter tests were attempted. The pressuremeter test data from three tests is considered complete, while the data is considered marginal for three tests, and the data from the remaining eight tests is considered poor. The poor tests are mainly the result of an enlarged and irregular borehole caused by the sloughing of cobbles and dense sandy soils encountered in the borings. The enlarged borehole prevented the pressuremeter probe from making suitable contact with the borehole during the application of a test. The results of the completed and marginal tests are attached to this report.

#### Laboratory Tests

Laboratory testing was performed by others on SPT, Pitcher, and thinwall samples selected by Barr. The laboratory test results were provided to AET, and are attached to this report. Results that could be included in the logs are shown in the respective columns on the right side of the logs.

## **Limitations**

The data derived through the exploration program have been used to develop our opinions about the subsurface conditions at your site. However, because no exploration program can reveal totally what is in the subsurface, conditions between borings and between samples and at other times, may differ from conditions described in this report. The exploration we conducted identified subsurface conditions only at those points where we took samples or observed ground water conditions. Depending on the sampling methods and sampling Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 4 of 4

frequency, every soil layer may not be observed, and some materials or layers which are present in the ground may not be noted on the boring logs.

If conditions encountered during construction differ from those indicated by our borings, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

The extent and detail of information about the subsurface condition are directly related to the scope of the exploration. It should be understood, therefore, that more detailed information can be obtained by means of additional exploration.

#### Standard of Care

Our services for your project have been conducted to those standards considered normal for services of this type at this time and location. Other than this, no warranty, either expressed or implied, is intended.

#### Closing

We trust that this letter report provides you with the information that you need at this time. If you should have any questions, or if you require additional information, please contact AET at 628-1518.

Reported by: American Engineering Testing, Inc.

Sara L. Leow, PE Geotechnical Engineer sleow@amengtest.com

Attachments:

Reviewed by: American Engineering Testing, Inc.

Robert J. Wahlstrom, PE, PG

Senior Geotechnical Engineer rwahlstrom@amengtest.com

Test Boring Logs (9 pages) Boring Log Notes (1 page) Unified Soil Classification System (1 page) Geologic Terminology (1 page) Pressuremeter Test Results (6 pages) Laboratory Testing Results Provided by Barr (25 pages)



## AMERICAN ENGINEERING TESTING, INC.

# SUBSURFACE TEST BORING LOG

|              | No                                                             |                           |            | BA             | RR J        | OB N            | <b>IO: 2</b> 3 | 3/69-        | -0C29.      | .07 W            | AIA       |              |           |       |        |                |
|--------------|----------------------------------------------------------------|---------------------------|------------|----------------|-------------|-----------------|----------------|--------------|-------------|------------------|-----------|--------------|-----------|-------|--------|----------------|
| AET JO       | OB NO: <b>07-04509</b>                                         |                           |            |                |             |                 | LC             | OG OF        | BO          | RING             | NO        | JO           | 03        | (p. 1 | of 1   | )              |
| PROJE        | CT: PolyMet Nort                                               | thmet M                   | ine; Ho    | yt La          | kes,        | MN              |                |              |             |                  |           |              |           |       |        |                |
| DEPTH        | SURFACE ELEVATION:                                             | 1617.0                    |            |                | GE          | OLOGY           | N              | MC           | SA          | MPLE             | REC       | FIELI        |           | ABORA | TORY   | TESTS          |
| IN<br>FEET   | MATERIAL                                                       | DESCRIPTI                 | ON         |                |             | 02001           | N              | MC           | ] ]         | MPLE<br>TYPE     | IN.       | WC           | %<br>ORC  | G LL  | PL     | <b>%-</b> #200 |
| 1 -          | PEAT, fibric with wood, l<br>about 12" (PT)                    | ,                         | en above   |                |             | AMP<br>OSIT     |                | F/M          | ł           | SU               |           | 329          | 40.6      | 5     |        |                |
| 2 -          | ORGANIC SILT, dark br                                          | . ,                       |            |                |             | 0511            | 5              | M            | М           | SS               | 11        |              |           |       |        |                |
| 3 - 4 -      | SILTY SAND, fine graine<br>be tailings)                        |                           |            | _              |             | ARSE<br>JUVIUM  | 5              | IVI          | A           | 20               | 11        |              |           |       |        |                |
| 5 —          | SILTY SAND, dark gray,<br>tailings)                            | , ,                       |            |                | OR          | LINGS           | 8              | M/W          |             | SS               | 11        | 25           |           |       |        | 67             |
| 6 —<br>7 —   | $\overline{SANDY SILT}$ , dark gray,<br>(ML) (may be tailings) |                           |            | s        <br>/ |             |                 |                |              | Ł           |                  |           |              |           |       |        |                |
| 8 -          | SILTY SAND WITH GR<br>moist with wet lenses (SM                | AVEL, gra<br>1)           | y, loose,  |                |             |                 | 8              | M/W          | Å           | SS               | 7         |              |           |       |        |                |
| 9<br>10      | SILTY SAND, a little gra<br>with wet lenses, medium            | vel, dark g<br>dense (SM) | ray, moist |                | ·<br>·<br>· |                 | 14             |              |             | SS               | 8         |              |           |       |        |                |
| 11 -         |                                                                |                           | ,          |                |             |                 | 14             | <b>_</b>     | $\bigwedge$ | 20               | 0         |              |           |       |        |                |
| 12 -<br>13 - |                                                                |                           |            |                |             |                 | 15             | M            |             | SS               | 10        |              |           |       |        |                |
| 14 -         | SILTY SAND WITH GR                                             |                           |            |                |             |                 |                |              | Ł           |                  |           |              |           |       |        |                |
| 15 —<br>16 — | medium dense, moist with<br>wet fine to coarse grained         | s, lens of<br>gravel fror | n          | TILL           | -           | 23              | M              | A            | SS          | 10               |           |              |           |       |        |                |
| 17 -         | about 24.9-25.1' (SM)                                          |                           |            |                |             |                 | 32             | M            |             | SS               | 7         |              |           |       |        |                |
| 18 —<br>19 — |                                                                |                           |            |                |             |                 |                |              | Ł           | 55               | ,         |              |           |       |        |                |
| 20 -<br>21 - |                                                                |                           |            |                |             |                 | 36             | M            | $\square$   | SS               | 11        | 8            |           |       |        | 35             |
| 21 22 -      |                                                                |                           |            |                |             |                 |                |              | ł           |                  |           |              |           |       |        |                |
| 23 —<br>24 — |                                                                |                           |            |                |             |                 | 25             | M            | Х<br>И      | SS               | 10        |              |           |       |        |                |
| 25 -         |                                                                |                           |            |                |             |                 | 30             | W            |             | SS               | 13        |              |           |       |        |                |
| 26 -         |                                                                |                           |            |                |             |                 |                |              | रि          |                  |           |              |           |       |        |                |
| 27 -         | AUGER REFUSAL AT<br>SAMPLER REFUSAL A                          |                           |            | <u> </u>       |             |                 | 50/0.1         | W            |             | - <del>SS</del>  | -1-       |              |           |       |        |                |
|              | Borehole backfilled with 1                                     |                           |            |                |             |                 |                |              |             |                  |           |              |           |       |        |                |
|              | Laboratory test results on                                     |                           |            |                |             |                 |                |              |             |                  |           |              |           |       |        |                |
|              | by Barr; laboratory tests<br>Engineering Testing, Inc.         | were perfoi               | rmed by So | pil            |             |                 |                |              |             |                  |           |              |           |       |        |                |
|              |                                                                |                           |            |                |             |                 |                |              |             |                  |           |              |           |       |        |                |
|              |                                                                |                           |            |                |             |                 |                |              |             |                  |           |              |           |       |        |                |
| DEF          | PTH: DRILLING METHOD                                           |                           |            | WAT            | ER LE       | EVEL MEA        | ASUR           | EMEN         | VTS         |                  |           |              | $\square$ | NOTE: | REFI   | ER TO          |
| 0-           | -27' 3.25" HSA                                                 | DATE                      | TIME       | SAMP<br>DEP    | LED<br>FH   | CASING<br>DEPTH | CAV<br>DE      | /E-IN<br>PTH | I<br> FL    | DRILLI<br>UID LE | NG<br>VEL | WATI<br>Leve | ER<br>EL  | THE A | ATTAC  | CHED           |
|              |                                                                | 2/16/10                   | 13:47      | 27.            | 1           | 27.0            | 2              | 5.5          |             |                  |           | 10.7         |           | SHEE  |        |                |
|              |                                                                |                           |            |                |             |                 |                |              |             |                  |           |              |           | EXPLA |        |                |
| BORIN        | NG<br>LETED: <b>2/16/10</b>                                    |                           |            |                |             |                 |                |              |             |                  |           |              |           |       |        | GY ON          |
| DR: L        | A LG: TDD Rig: 27C                                             |                           |            |                |             |                 |                |              |             |                  |           |              |           | TH    | IIS LO | G              |



| AET JO              | DB NO: <b>07-04509</b>                           |               |           |             |     |           | LC | G OF       | BC  | RING N        | 10         | <b>J00</b>   | 3-P           | <b>(p.</b> )  | l of 1 | l)              |
|---------------------|--------------------------------------------------|---------------|-----------|-------------|-----|-----------|----|------------|-----|---------------|------------|--------------|---------------|---------------|--------|-----------------|
| PROJE               | CT: PolyMet Nort                                 | thmet M       | ine; Ho   | yt La       | kes | s, MN     |    |            |     |               |            |              |               |               |        |                 |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                               | DESCRIPTI     |           |             | G   | EOLOGY    | N  | МС         | SĄ  | AMPLE<br>FYPE | REC<br>IN. | FIELI<br>WC  | 0 & L<br>% #4 | ABORA         |        | TESTS<br>%-#200 |
| TLLI                | See boring J003 for mater                        |               |           |             |     |           |    |            | R   |               |            |              | 70 11-        |               | 112    | /0-#200         |
| 1 -                 |                                                  | -             |           |             |     |           |    |            | Ħ   |               |            |              |               |               |        |                 |
| 2 -                 |                                                  |               |           |             |     |           | _  |            | 1   |               |            |              |               |               |        |                 |
| 3 -                 | Marginal pressure meter to                       | est perform   | ed betwee | en          |     |           | 5  | <u> </u>   |     | COT           |            |              |               |               |        |                 |
| 4<br>5              | 3.1 and 4.6 feet                                 |               |           |             |     |           |    |            |     | СОТ           |            |              |               |               |        |                 |
| 6-                  |                                                  |               |           |             |     |           | 38 |            | -   |               |            |              |               |               |        |                 |
| 7 -                 | Marginal pressure meter to 6.1 and 7.6 feet      | est perform   | ed betwee | en          |     |           | 28 |            |     | СОТ           |            |              |               |               |        |                 |
| 8 -                 |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
| 9 -                 |                                                  |               |           |             |     |           |    |            | ł   |               |            |              |               |               |        |                 |
| 10 -                |                                                  |               |           |             |     |           | 32 |            | ¥   |               |            |              |               |               |        |                 |
| 11 -                | Poor pressure meter test p                       | erformed b    | etween 10 | .8          |     |           | 52 |            |     | СОТ           |            |              |               |               |        |                 |
| 12 -                | and 12.3 feet                                    |               |           |             |     |           | 32 |            |     | 001           |            |              |               |               |        |                 |
| 13 -                | D                                                | <b>f</b> 1 1- |           |             |     |           | 38 |            |     |               |            |              |               |               |        |                 |
| 14 —<br>15 —        | Poor pressure meter test p and 15.1 feet         | etween 13     | .0        |             |     | 24        |    |            | СОТ |               |            |              |               |               |        |                 |
| 15 -                |                                                  |               |           |             |     |           | 24 |            |     |               |            |              |               |               |        |                 |
| 17 -                |                                                  |               |           |             |     |           |    |            | 1   |               |            |              |               |               |        |                 |
| 18                  | Poor pressure meter test p                       | erformed b    | etween 17 | .6          |     |           | 27 |            |     |               |            |              |               |               |        |                 |
| 19 -                | and 19.1 feet                                    |               |           |             |     |           | 39 |            |     | СОТ           |            |              |               |               |        |                 |
| 20 -                | END OF BORING AT 2<br>Borehole backfilled with 1 |               | t grout   |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     | <i>Offset 4' southeast of bori</i>               | ng 1003 T     | -         |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     | Offset 4 southeast of born                       | ng 5005-1     |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     | See borings J003-P2 and                          | J003-P3       |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
|                     |                                                  |               |           |             |     |           |    |            |     |               |            |              |               |               |        |                 |
| DEP                 | TH: DRILLING METHOD                              |               | _         |             |     | LEVEL MEA |    |            | 1   | DRILLI        |            | WATI         |               | NOTE:         |        |                 |
| 0-                  | -17' 3.25" HSA                                   | DATE          | TIME      | SAMP<br>DEP |     |           |    | PTH        | FL  | UID LE        | VEL        | WATI<br>LEVE | EL            | THE A         |        |                 |
|                     |                                                  | 2/24/10       | 8:45      | 16.         | U   | None      |    | <b>3.0</b> |     |               |            | 3.0          | _             | SHEE<br>EXPLA |        |                 |
| BORIN               | G<br>Leted: <b>2/24/10</b>                       |               |           |             |     |           |    |            |     |               |            |              |               | FERMI         |        |                 |
| DR: L               |                                                  |               |           |             |     |           |    |            |     |               |            | TH           | IS LO         | 3             |        |                 |



| AET JC              | DB NO: <b>07-04509</b>                                  |             |            |               |           |                 | LC  | OG OF        | BC       | ORING N            | IO        | J003         | 3-P2   | 2 (p. | 1 of   | 1)     |
|---------------------|---------------------------------------------------------|-------------|------------|---------------|-----------|-----------------|-----|--------------|----------|--------------------|-----------|--------------|--------|-------|--------|--------|
| PROJE               | CT: PolyMet Nort                                        | hmet M      | ine; Ho    | yt La         | kes       | s, MN           |     |              |          |                    |           |              |        |       |        |        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                      |             |            |               | G         | EOLOGY          | N   | MC           | SA       | AMPLE<br>FYPE      | REC       |              |        | ABORA | TORY   | TESTS  |
| FËÈT                | MATERIAL                                                |             |            |               |           |                 |     |              |          | ГҮРЕ               | IN.       | WC           | %#4    | 4 LL  | PL     | %-#200 |
| 1 -                 | See boring J003 for mater                               | ial descrip | tion       |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 2 -                 |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 3 -                 |                                                         |             |            |               |           |                 |     |              | Ħ        |                    |           |              |        |       |        |        |
| 4 —                 |                                                         |             |            |               |           |                 |     |              | Ħ        |                    |           |              |        |       |        |        |
| 5 —                 |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 6 —                 |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 7 —                 | Good pressure meter test p<br>and 8.4 feet              | performed   | between 6. | .6            |           |                 |     |              |          | СОТ                |           |              |        |       |        |        |
| 8 —                 | and 0.4 leet                                            |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 9 —                 |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 10 -                |                                                         |             |            |               |           |                 |     |              | <u>र</u> |                    |           |              |        |       |        |        |
| 11 -                |                                                         |             |            |               |           |                 |     |              | Ŧ        |                    |           |              |        |       |        |        |
| 12 -                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 13 —                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 14 —<br>15 —        |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 15 -                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 17 -                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 18 -                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 19 -                |                                                         |             |            |               |           |                 |     |              | ł        |                    |           |              |        |       |        |        |
| 20 -                |                                                         |             |            |               |           |                 | 20  |              | Р        |                    |           |              |        |       |        |        |
| 21 -                |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 22 –                | Good pressure meter test p<br>21.6 and 23.4 feet        | performed   | between    |               |           |                 | 31  |              |          | СОТ                |           |              |        |       |        |        |
| 23 —                | 21.0 and 23.4 leet                                      |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 24 —                |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| 25 —                | <b>END OF BORING AT 2</b><br>Borehole backfilled with r |             | t grout    |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
|                     | Offset 4' east of boring J00                            | 03-P        |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
|                     | See borings J003-P and J0                               | 003-P3      |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
|                     |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        |       |        |        |
| DEP                 | TH: DRILLING METHOD                                     |             |            | WAT           | ER L      | EVEL MEA        | SUR | EMEN         | ITS      |                    |           | ı            |        | NOTE: | REFE   | R TO   |
| 0-19                | 9½' 3.25" HSA                                           | DATE        | TIME       | SAMPI<br>DEPT | LED<br>TH | CASING<br>DEPTH | CAV | /E-IN<br>PTH | I<br>FI  | DRILLIN<br>JUID LE | NG<br>VEL | WATH<br>LEVE | ER     | THE A |        |        |
| 0-1.                |                                                         |             |            |               |           |                 |     |              |          |                    |           |              |        | SHEE  | FS FOI | R AN   |
|                     | 2                                                       |             |            |               |           |                 |     |              |          |                    |           |              |        | EXPLA |        |        |
| BORIN<br>COMPI      | G<br>Leted: <b>2/24/10</b>                              |             |            |               |           |                 |     |              |          |                    |           |              | FERMIN |       |        |        |
| DR: L               | A LG: TDD Rig: 27C                                      |             |            |               |           |                 |     |              |          |                    |           |              | TH     | IS LO | ť      |        |



| AET JO              | DB NO: <b>07-04509</b>                                  |             |             |               |           |                 | LC        | G OF         | BC | ORING N            | NO         | J003         | 3-P3     | 6 (p.       | 1 of  | 1)             |
|---------------------|---------------------------------------------------------|-------------|-------------|---------------|-----------|-----------------|-----------|--------------|----|--------------------|------------|--------------|----------|-------------|-------|----------------|
| PROJE               | CT: PolyMet Nort                                        | hmet M      | line; Hoy   | rt La         | kes       | s, MN           |           |              |    |                    |            |              |          |             |       |                |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                      |             |             |               | G         | EOLOGY          | N         | мс           | SA | AMPLE<br>FYPE      | REC        |              | r        | ABORA       | TORY  | TESTS          |
| FËÈT                | MATERIAL I                                              |             |             |               |           |                 | 1         | MC           |    | ГҮРЕ               | IN.        | WC           | % #4     | LL          | PL    | <b>%-</b> #200 |
| 1                   | See boring J003 for mater                               | ial descrip | otion       |               |           |                 |           |              | Ħ  |                    |            |              |          |             |       |                |
| 2 -                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 3 -                 |                                                         |             |             |               |           |                 |           |              | Ħ  |                    |            |              |          |             |       |                |
| 4 -                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 5 —                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 6 -                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 7 —                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 8 -                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 9 -                 |                                                         |             |             |               |           |                 |           |              | ł  |                    |            |              |          |             |       |                |
| 10 -                |                                                         |             |             |               |           |                 |           |              | И  |                    |            |              |          |             |       |                |
| 11 -                | Poor pressure meter test pe<br>and 12.3 feet            | erformed b  | etween 10.  | 8             |           |                 |           |              |    | СОТ                |            |              |          |             |       |                |
| 12 —<br>13 —        |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
| 13                  | Marginal program mater to                               | ad hatwaa   |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
| 15 -                | Marginal pressure meter te<br>13.8 and 15.3 feet        | st periorn  | ied between | 1             |           |                 |           |              |    | СОТ                |            |              |          |             |       |                |
| 16 -                |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
| 17 —                | Good pressure meter test r                              | erformed    | hetween     |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
| 18 -                | Good pressure meter test p<br>16.9 and 18.7 feet        | eriorined   | oetween     |               |           |                 |           |              |    | СОТ                |            |              |          |             |       |                |
| 19 —                |                                                         |             |             |               |           |                 | 52        |              |    |                    |            |              |          |             |       |                |
| 20 -                |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     | <b>END OF BORING AT 2</b><br>Borehole backfilled with n |             | t grout     |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     | Offset 4.5' north of J003-P                             | ,           |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     | See borings J003-P and J0                               | 003-P2      |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          |             |       |                |
| DEP                 | TH: DRILLING METHOD                                     |             | Г Г         |               |           | LEVEL MEA       |           |              | 1  |                    |            |              |          | NOTE:       | REFE  | ER TO          |
| 0-14                | 4½' 4.25" HSA                                           | DATE        | TIME        | SAMPI<br>DEPT | LED<br>ГН | CASING<br>DEPTH | CAV<br>DE | 'E-IN<br>PTH | FL | DRILLIN<br>LUID LE | NG<br>EVEL | WATI<br>LEVE | ER<br>EL | THE A       |       |                |
|                     |                                                         |             |             |               |           |                 |           |              |    |                    |            |              |          | SHEET       |       |                |
| BORIN               | IG                                                      |             |             |               |           |                 |           |              |    |                    |            |              |          | EXPLA       |       |                |
|                     | G<br>LETED: 2/26/10                                     |             |             |               |           |                 |           |              |    |                    |            |              |          | ERMIN<br>TH | IS LO |                |
| DR: L               | A LG: TDD Rig: 51                                       |             |             |               |           |                 |           |              |    |                    |            |              | 111      | 10 10       | 9     |                |



| AET JO                                               | DB NO: <b>07-04509</b>                                                                                                                            |             |             |               |           |                 | LC        | OG OF        | BC      | ORING N            | NO         | J00          | <b>3-</b> T | <b>(p.</b> ] | l of 1 | l)                      |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|---------------|-----------|-----------------|-----------|--------------|---------|--------------------|------------|--------------|-------------|--------------|--------|-------------------------|
| PROJE                                                | CT: PolyMet Nort                                                                                                                                  | hmet M      | ine; Ho     | yt La         | kes       | s, MN           |           |              |         |                    |            |              |             |              |        |                         |
| DEPTH<br>IN<br>FEET                                  | SURFACE ELEVATION:                                                                                                                                |             |             |               | G         | GEOLOGY         | N         | мс           | SĄ      | AMPLE<br>FYPE      | REC<br>IN. |              | 1           | ABORA        |        |                         |
| FEET                                                 | MATERIAL                                                                                                                                          | DESCRIPTI   | ON          |               |           |                 |           |              |         | IYPE               | IN.        | WC           | % #4        | LL           | PL     | q <sub>u</sub><br>(psf) |
| 1 - 2 - 3 - 4 - 4                                    | 3 Inch thinwall sample fro                                                                                                                        | m 1.5 to 3  | .5 feet.    |               |           |                 |           | М            | 2221    | TW                 | 21.5       |              |             |              |        |                         |
| 5<br>6<br>7<br>8<br>9                                | 3 Inch thinwall sample fro                                                                                                                        | m 5.0 to 7  | .0 feet.    |               |           |                 |           | M/W          |         | TW                 | 20.5       | 22           | 105         |              |        | 1160                    |
| 10 - 11 - 12 - 13 - 13 - 10 - 10 - 10 - 10 - 10 - 10 | Pitcher sampler from 10.0                                                                                                                         | et.         |             |               |           |                 | М         |              | TW      | 26.5               | 7          | 142          |             |              |        |                         |
| 14                                                   | Pitcher sampler from 15.0                                                                                                                         |             |             |               |           | М               |           | TW           | 19      | 8                  | 140<br>136 |              |             |              |        |                         |
| 21 —<br>22 —                                         | Pitcher sampler from 20.0                                                                                                                         | to 23.0 fee | et.         |               |           |                 |           | М            |         | TW                 | 10.5       |              |             |              |        |                         |
| 23 -                                                 | <b>END OF BORING AT 2</b><br>Borehole backfilled with r<br>Laboratory test results on<br>by Barr; laboratory tests w<br>Engineering Testing, Inc. | this log we | ere provide | ed<br>pil     |           |                 |           |              |         |                    |            |              |             |              |        |                         |
| DEF                                                  | TH: DRILLING METHOD                                                                                                                               |             |             | WAT           | L<br>ER I | LEVEL MEA       | SUR       | L<br>EMEN    | VTS     |                    |            | 1            |             | NOTE:        | REFE   | R TO                    |
| 0-                                                   | -20' 6 5/8" HSA                                                                                                                                   | DATE        | TIME        | SAMPI<br>DEPT | LED<br>TH | CASING<br>DEPTH | CAV<br>DE | /E-IN<br>PTH | I<br>FL | DRILLII<br>LUID LE | NG<br>EVEL | WATI<br>LEVE | ER          | THE A        | TTAC   | HED                     |
|                                                      |                                                                                                                                                   |             |             |               |           |                 |           |              |         |                    |            |              |             | EXPLA        | NATIC  | ON OF                   |
| BORIN<br>COMP                                        | IG<br>LETED: <b>2/23/10</b>                                                                                                                       |             |             |               |           |                 |           |              |         |                    |            |              | 1           | FERMIN       | NOLOC  | GY ON                   |
|                                                      | A LG: TDD Rig: 27C                                                                                                                                |             |             |               |           |                 |           |              |         |                    |            |              |             | TH           | IS LOO | 3                       |



AMERICAN ENGINEERING TESTING, INC.

# SUBSURFACE TEST BORING LOG

|              | Northing: 734378         Easting: 2896460         BARR JOB NO: 23/69-0C29.07 WA1A           AET JOB NO:         07-04509         LOG OF BORING NO.         J010 (p. 1 of 1) |                                              |                          |             |           |                  |                  |                          |           |                   |           |              |          |               |               |                |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------|-------------|-----------|------------------|------------------|--------------------------|-----------|-------------------|-----------|--------------|----------|---------------|---------------|----------------|
| AET JO       | OB NO: <b>07-04509</b>                                                                                                                                                      |                                              |                          |             |           |                  | LC               | OG OF                    | BO        | RINGN             | NO        | JO           | 10 (     | ( <b>p.</b> 1 | <b>of 1</b> ) |                |
| PROJE        | CT: PolyMet Nort                                                                                                                                                            | thmet M                                      | ine; Ho                  | yt La       | ikes      | s, MN            |                  |                          |           |                   |           |              |          |               |               |                |
| DEPTH        | SURFACE ELEVATION:                                                                                                                                                          | 1611.1                                       |                          |             | G         | EOLOGY           | N                | MC                       | SA        | MPLE<br>TYPE      | REC       | FIELI        | D & LA   | BORA          | TORY          | TESTS          |
| IN<br>FEET   | MATERIAL                                                                                                                                                                    |                                              |                          |             |           |                  | IN               | MC                       | ]         | ГҮРЕ              | IN.       | WC           | % #4     | LL            | PL            | <b>%-</b> #200 |
| 1            | FILL, a mixture of silty sa<br>cobbles, and organic sand<br>brown and dark brown, from<br>FILL, a mixture of silty sa                                                       | y silt with<br>ozen above                    | trace roots<br>about 12" |             | FIL       | L                |                  | F/M                      |           | SU                |           |              |          |               |               |                |
| 3            | slightly organic silty sand<br>gray<br>SILTY SAND WITH GR.                                                                                                                  | , dark brow                                  | n and dark               | ۲   ۲   ۲   | ×         |                  | 5                | $\stackrel{M}{\searrow}$ | X<br>R    | SS                | 7         |              |          |               |               |                |
| 5 —<br>6 —   | (SM)                                                                                                                                                                        | AVEL, DIC                                    | own, moist               |             |           |                  | 79               | M                        | Å         | SS                | 10        | 8            |          |               |               | 31             |
| 7 —<br>8 —   |                                                                                                                                                                             |                                              |                          |             |           |                  | 43               | М                        | 1         | SS                | 2         |              |          |               |               |                |
| 9 —<br>10 —  | SILTY SAND, a little gra<br>dense (SM)                                                                                                                                      | vel, dark g                                  | ray, moist,              |             | TIL       | L                | 33               | М                        | ł         | SS                | 8         |              |          |               |               | 32             |
| 11 —<br>12 — | SILTY SAND WITH GR.<br>moist, very dense (SM)                                                                                                                               | AVEL, dar                                    | k gray,                  |             |           |                  |                  |                          | ł         | 99                | 1.5       |              |          |               |               |                |
| 13 —<br>14 — |                                                                                                                                                                             |                                              |                          |             |           | 64               | M                | Å                        | SS        | 15                |           |              |          |               |               |                |
| 15 —<br>16 — |                                                                                                                                                                             |                                              |                          |             |           | 47/0.5<br>50/0.3 |                  | X<br>F<br>{              | SS        | 7                 |           |              |          |               |               |                |
| 17 -         |                                                                                                                                                                             |                                              |                          |             |           |                  | 9/0.5'           | W                        | <u>دا</u> | SS                | 10        |              |          |               |               |                |
| 18 -         | Obstruction - possible bed                                                                                                                                                  | rock                                         |                          |             | 8 BFI     | DROCK            | 23/0.5<br>50/0.2 |                          | A         | 66                | 10        |              |          |               |               |                |
|              | AUGER REFUSAL AT<br>Borehole backfilled with the<br>Laboratory test results on<br>by Barr; laboratory tests to<br>Engineering Testing, Inc.                                 | <b>18.7 FEE</b><br>neat cemen<br>this log we | t grout<br>ere provide   | ed sed      |           |                  |                  |                          |           |                   |           |              |          |               |               |                |
| DEF          | PTH: DRILLING METHOD                                                                                                                                                        |                                              |                          |             |           | LEVEL MEA        |                  |                          | -         |                   |           |              |          | NOTE:         | REFE          | ER TO          |
| 0-1          | 8.7' 3.25" HSA                                                                                                                                                              | DATE                                         | TIME                     | SAMP<br>DEP | LED<br>TH | CASING<br>DEPTH  | CAV<br>DE        | /E-IN<br>PTH             | FL        | DRILLII<br>UID LE | NG<br>VEL | WATI<br>LEVE | ER<br>EL | THE A         | TTAC          | HED            |
|              |                                                                                                                                                                             | 2/16/10                                      | 9:45                     | 18.         | 2         | 18.7             | 15               | 5.0                      |           |                   |           | 3.8          |          | SHEE          |               |                |
|              |                                                                                                                                                                             | 2/16/10                                      | 10:35                    | 18.         | 2         | 18.7             | 15               | 5.0                      |           |                   | $\square$ | 4.4          |          | EXPLA         |               |                |
| COMP         | NG<br>LETED: <b>2/16/10</b>                                                                                                                                                 |                                              |                          |             |           |                  |                  |                          |           |                   |           |              | T        |               |               | GY ON          |
| DR: L        | A LG: TDD Rig: 27C                                                                                                                                                          |                                              |                          |             |           |                  |                  |                          |           |                   |           |              |          | TH            | IS LO         | G              |



| AET JC              | DB NO: <b>07-04509</b>                                  |             |                   |               |          |              | LC               | G OF      | BO       | RING N        | [O         | J01  | 0-P  | <b>(p.</b> 1 | of 1  | l)     |
|---------------------|---------------------------------------------------------|-------------|-------------------|---------------|----------|--------------|------------------|-----------|----------|---------------|------------|------|------|--------------|-------|--------|
| PROJE               | CT: PolyMet Nort                                        | thmet M     | ine; Ho           | yt La         | kes,     | , MN         |                  |           |          |               |            |      |      |              |       |        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                      |             |                   |               | GE       | OLOGY        | N                | МС        | SA       | AMPLE<br>FYPE | REC<br>IN. |      |      | ABORA        |       |        |
| FËÈT                | MATERIAL                                                |             |                   |               |          |              |                  |           |          | TYPE          | IN.        | WC   | % #4 | LL           | PL    | %-#200 |
| 1 -                 | See boring J010 for mater                               | ial descrip | tion              |               |          |              |                  |           | ł        |               |            |      |      |              |       |        |
| 2 -                 |                                                         |             |                   |               |          |              |                  |           | ł        |               |            |      |      |              |       |        |
| 3 —                 |                                                         |             |                   |               |          |              |                  |           | ł        |               |            |      |      |              |       |        |
| 4 -                 |                                                         |             |                   |               |          |              |                  |           | ł        |               |            |      |      |              |       |        |
| 5 —                 |                                                         |             |                   |               |          |              | 50               |           | <u>s</u> |               |            |      |      |              |       |        |
| 6 -                 | Poor pressure meter test pe<br>and 7.3 feet             | erformed b  | etween 5.8        | 8             |          |              | 50               |           |          | СОТ           |            |      |      |              |       |        |
| 7 -                 |                                                         |             |                   |               |          |              | 46               | <u> </u>  |          |               |            |      |      |              |       |        |
| 8 —<br>9 —          |                                                         |             |                   |               |          |              | 13/0.5<br>13/0.5 |           |          | СОТ           |            |      |      |              |       |        |
| 10 -                |                                                         |             |                   |               |          |              | 50/0.2           |           | Ł        |               |            |      |      |              |       |        |
| 11 -                |                                                         |             |                   |               |          |              | 42               |           |          | СОТ           |            |      |      |              |       |        |
| 12 -                |                                                         |             |                   |               |          |              |                  |           | प्त      |               |            |      |      |              |       |        |
| 13 —                |                                                         |             |                   |               |          |              |                  |           | R        |               |            |      |      |              |       |        |
| 14 —                |                                                         |             |                   |               |          |              | 117              |           |          | СОТ           |            |      |      |              |       |        |
| 15 —                |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
| 16 —                | <b>END OF BORING AT 1</b><br>Borehole backfilled with r | 6.0 FEET    | t grout           |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     | Dorenote backfined with I                               | leat cemen  | t grout           |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   |               |          |              |                  |           |          |               |            |      |      |              |       |        |
|                     |                                                         |             |                   | WAT.          |          |              |                  |           |          |               |            |      |      |              |       |        |
| DEP                 | TH: DRILLING METHOD                                     | DATE        | TRAT              | SAMPI<br>DEPT |          | EVEL MEA     | CAV              | 'E-IN     | I        | ORILLIN       | JG         | WATI |      | NOTE:        |       |        |
|                     |                                                         | DATE        | TIME <b>13.00</b> |               |          | DEPTH<br>5.0 | DE               | РТН<br>.0 | FL       | UID LE        | VEL        | LEVE | EL   | THE A        |       |        |
|                     |                                                         | 2/25/10     | 13:00             | 8.0           | <b>'</b> | 3.0          | ð                | .0        | -        |               |            | 7.0  |      | EXPLA        |       |        |
| BORIN<br>COMPI      | G<br>LETED: <b>2/25/10</b>                              |             |                   |               |          |              |                  |           | $\vdash$ |               |            |      | 1    | FERMIN       | IOLOG | GY ON  |
|                     | A LG: TDD Rig: 27C                                      |             |                   |               |          |              |                  |           |          |               |            |      | TH   | IS LOO       | 3     |        |



| AET JO              | DB NO: <b>07-04509</b>                                                                 | LC                        | OG OF                     | BC            | ORING N   | NO              | J01       | 0-T          | ( <b>p.</b> 1 | lof               | 1)  |             |            |          |        |        |
|---------------------|----------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------|-----------|-----------------|-----------|--------------|---------------|-------------------|-----|-------------|------------|----------|--------|--------|
| PROJE               | CT: PolyMet Nort                                                                       | thmet M                   | ine; Ho                   | yt La         | kes       | , MN            |           |              |               |                   |     |             |            |          |        |        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                                                     |                           |                           |               | Gl        | EOLOGY          | N         | MC           | SĄ            | AMPLE<br>FYPE     | REC |             |            | ABORA    |        |        |
| FEET                | MATERIAL                                                                               | DESCRIPTI                 | ON                        |               |           |                 |           |              | R             | ITPE              | IN. | WC          | %#         | 4 LL     | PL     | %-#200 |
| 1                   |                                                                                        |                           |                           |               |           |                 |           |              | ł             |                   |     |             |            |          |        |        |
| 2 -                 |                                                                                        |                           |                           |               |           |                 |           |              | H             |                   |     |             |            |          |        |        |
| 3 -                 | 3 inch thinwall sample fro                                                             | om 2.0 to 4.              | 0 feet.                   |               |           |                 |           | Ţ            |               | TW                | 20  |             |            |          |        |        |
| 4 -                 |                                                                                        |                           |                           |               |           |                 |           |              | É             |                   |     |             |            |          |        |        |
| 5 —<br>6 —          |                                                                                        |                           |                           |               |           |                 |           |              | ¥             |                   |     |             |            |          |        |        |
| 7 –                 | Pitcher sampler from 5.5 t                                                             | to 8.0 feet               |                           |               |           |                 |           | М            |               | TW                | 23  | 9<br>10     | 127<br>134 | '  <br>_ |        |        |
| 8 -                 |                                                                                        |                           |                           |               |           |                 |           |              | A             |                   |     | 14          | 123        |          |        |        |
| 9 -                 | Pitcher sampler from 8.0 t                                                             | o 10 5 feet               |                           |               |           |                 |           | М            |               | TW                | 14  |             |            |          |        |        |
| 10 -                | - rener sumpler from 0.0 t                                                             |                           |                           |               |           |                 |           |              |               |                   |     |             |            |          |        |        |
| 11 -                |                                                                                        |                           |                           |               |           |                 |           |              | Ħ             |                   |     |             |            |          |        |        |
| 12 -                |                                                                                        |                           |                           |               |           |                 |           |              | Ŧ             |                   |     |             |            |          |        |        |
| 13 —<br>14 —        |                                                                                        |                           |                           |               |           |                 |           |              | ł             |                   |     |             |            |          |        |        |
| 14                  |                                                                                        |                           |                           |               |           |                 |           |              |               |                   |     |             |            |          |        |        |
| 16 -                | Pitcher sampler from 14.0                                                              | to 16.5 fee               | et                        |               |           |                 |           | Μ            |               | TW                | 23  |             |            |          |        |        |
|                     | <b>END OF BORING AT 1</b><br>Borehole backfilled with r                                |                           | t grout                   |               |           |                 |           |              |               |                   |     |             |            |          |        |        |
|                     | Offset 5.5' south-southwes                                                             | t of boring               | - J010                    |               |           |                 |           |              |               |                   |     |             |            |          |        |        |
|                     | Laboratory test results on<br>by Barr; laboratory tests v<br>Engineering Testing, Inc. | this log we<br>were perfo | ere provide<br>rmed by Sc | ed<br>il      |           |                 |           |              |               |                   |     |             |            |          |        |        |
| DEP                 | TH: DRILLING METHOD                                                                    |                           |                           | WAT           | L<br>ER L | EVEL MEA        | L<br>ASUR | L<br>EMEN    | U<br>JTS      |                   |     | 1           |            | NOTE:    | REE1   |        |
|                     |                                                                                        | DATE                      | TIME                      | SAMPI<br>DEPT |           | CASING<br>DEPTH | CAV       | /E-IN<br>PTH | I             | DRILLI<br>JUID LE | NG  | WAT<br>LEVI | ER         | THE A    |        |        |
| 0-                  | -14' 6 5/8" HSA                                                                        | 2/22/10                   | 10:25                     | 10.5          |           | 5.5             |           | .0           |               |                   |     | 3.5         |            | SHEE     | rs foi | R AN   |
|                     |                                                                                        |                           |                           |               |           |                 |           |              |               |                   |     |             |            | EXPLA    |        |        |
| BORIN<br>COMP       | IG<br>LETED: <b>2/22/10</b>                                                            |                           |                           |               |           |                 |           |              |               |                   |     |             | ,          | FERMI    |        |        |
| DR: L               | A LG: TDD Rig: 27C                                                                     |                           |                           |               |           |                 |           |              |               |                   |     |             |            | TH       | IS LO  | G      |



## AMERICAN ENGINEERING TESTING, INC.

## SUBSURFACE TEST BORING LOG

Northing: 735628 Easting: 2897327 BARR JOB NO: 23/69-0C29.07 WA1A

| AET JC              | OB NO: <b>07-04509</b>                                 |                   |             |              |      | LC            | OG OF  | во                 | RINGN        | NO        | JO  | 27           | (p. 1    | <b>of 1</b>    | )      |                        |
|---------------------|--------------------------------------------------------|-------------------|-------------|--------------|------|---------------|--------|--------------------|--------------|-----------|-----|--------------|----------|----------------|--------|------------------------|
| PROJE               | CT: PolyMet Nort                                       | thmet M           | ine; Ho     | yt La        | kes  | s, MN         |        |                    |              |           |     |              |          |                |        |                        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:                                     | 1607.6            |             |              | G    | EOLOGY        | N      | MC                 | SA           | MPLE      | REC | FIELI        |          | ABORA          | TORY   | TESTS                  |
| FEET                | MATERIAL                                               |                   |             |              |      |               | 1      | wic                | ]            | ГҮРЕ      | IN. | WC           | %<br>ORC | LL             | PL     | <b>%-</b> #20 <b>0</b> |
| 1                   | PEAT, sapric, dark brown 12" (PT)                      | , frozen ab       | ove about   | <u></u>      |      |               |        | F/M                | Ħ            | SU        |     |              |          |                |        |                        |
| 2 -                 |                                                        |                   |             | <u></u>      |      |               |        |                    | I            | ~ ~       |     |              |          |                |        |                        |
| 3 —                 |                                                        |                   |             | <u></u>      |      |               | 2      | М                  | X            | SS        | 2   |              |          |                |        |                        |
| 4 —                 |                                                        |                   |             | <u></u>      |      | AMP           |        |                    | रि           |           |     |              |          |                |        |                        |
| 5 —                 |                                                        |                   |             | <u></u>      | DE   | POSIT         | <1     | М                  | $\mathbb{N}$ | SS        | 8   | 287          | 52.8     |                |        |                        |
| 6 —                 |                                                        |                   |             | <u></u>      |      |               | ~1     | IVI                | A            | 55        | 0   | 207          | 52.0     | ,              |        |                        |
| 7 —                 | ORGANIC SILT, brown (                                  | $\overline{(0L)}$ |             |              |      |               |        |                    | 붬            |           |     |              |          |                |        |                        |
| 8 —                 | SILTY SAND, a little gra                               |                   | ray, wet    |              | 1    |               | 6      | M/W                | W            | SS        | 9   |              |          |                |        |                        |
| 9 —                 | (SM)<br>SILTY SAND WITH GR                             | AVFL dar          | k orav      | _            | -    |               |        |                    | 3            |           |     |              |          |                |        |                        |
| 10 —                | moist with wet lenses, me                              | dium dense        | e(SM)       |              |      |               | 20     | M/W                | М            | SS        | 1   |              |          |                |        |                        |
| 11 -                |                                                        |                   |             |              |      |               |        |                    | प्ति         |           |     |              |          |                |        |                        |
| 12 —                |                                                        |                   |             |              |      |               | 24     |                    | R            | 00        |     |              |          |                |        | 01                     |
| 13 —                | GRAVELLY SILTY SAN                                     | ND, appare        | nt cobbles, |              |      |               | 24     | M/W                | Д            | SS        | 8   | 7            |          |                |        | 21                     |
| 14 —                | dark gray, moist, medium (SM)                          | dense to v        | ery dense   |              |      |               |        | <u> </u>           | 1            |           |     |              |          |                |        |                        |
| 15 —                | ()                                                     |                   |             |              | TIL  | T             | 30     | М                  | X            | SS        | 3   |              |          |                |        |                        |
| 16 —                |                                                        |                   |             |              | 111  |               |        |                    | रि           |           |     |              |          |                |        |                        |
| 17 —                |                                                        |                   |             |              |      |               | 53     | М                  | $\mathbb{N}$ | SS        | 16  |              |          |                |        |                        |
| 18 -                |                                                        |                   |             |              |      |               | 55     |                    | P            | 55        | 10  |              |          |                |        |                        |
| 19 —<br>20 —        |                                                        |                   |             |              |      |               |        |                    | 붬            |           |     |              |          |                |        |                        |
| 20 -                | SILTY SAND WITH GR. cobbles, gray, moist to we         |                   | parent      |              |      |               | 48     | M                  | М            | SS        | 8   |              |          |                |        |                        |
| 21<br>22 -          | coopies, gray, moist to we                             | a (SMI)           |             |              |      |               |        |                    | ł            |           |     |              |          |                |        |                        |
| 22 - 23 -           |                                                        |                   |             |              |      |               | 15     | W                  | M            | SS        | 18  | 7            |          |                |        | 31                     |
| 24 -                |                                                        |                   |             |              |      |               |        |                    | रि           |           |     |              |          |                |        |                        |
| -                   | AUGER REFUSAL AT                                       |                   |             |              |      |               | 70/0.1 | W                  | A            | <u>SS</u> | -1- |              |          |                |        |                        |
|                     | <b>SAMPLER REFUSAL</b> A<br>Borehole backfilled with r |                   |             |              |      |               |        |                    |              |           |     |              |          |                |        |                        |
|                     | Laboratory test results on                             |                   | C           | od .         |      |               |        |                    |              |           |     |              |          |                |        |                        |
|                     | by Barr; laboratory tests                              | were perfo        | rmed by So  | oil          |      |               |        |                    |              |           |     |              |          |                |        |                        |
|                     | Engineering Testing, Inc.                              |                   |             |              |      |               |        |                    |              |           |     |              |          |                |        |                        |
| DEP                 | TH: DRILLING METHOD                                    |                   |             | WATI         | ER I | LEVEL MEA     | SUR    | L<br>EMEN          | UTS          |           |     |              |          |                |        |                        |
|                     |                                                        | DATE              | TIME        | SAMPI        |      |               | CAV    | /E-IN              | I            | ORILLI    | NG  | WATI<br>LEVE |          | NOTE:<br>THE A |        |                        |
| 0-24                | 4½' 3.25" HSA                                          | 2/17/10           | 11:18       | DEPT<br>24.6 |      | DEPTH<br>24.5 |        | РТН<br>7 <b>.8</b> | FL           | UID LE    | VEL | LEVE<br>14.0 |          | SHEE           |        |                        |
|                     |                                                        | 2/17/10           | 11:16       | 24.0         |      | 24.5          |        | 7.7                |              |           |     | 14.0         |          | EXPLA          |        |                        |
| BORIN               | G<br>Leted: <b>2/17/10</b>                             |                   |             |              | -    |               |        | ••                 |              |           |     | ,            |          | FERMI          | NOLO   | GY ON                  |
|                     | <b>A</b> LG: <b>TDD</b> Rig: <b>27C</b>                |                   |             |              |      |               |        |                    |              |           |     |              |          | TH             | IIS LO | G                      |



| AET JC              | DB NO: 07-04509             |            |             |               |       |          | LO   | G OF                 | BO               | RING N      | IO  | J02          | 7-P  | (p. 1          | of 1   | l)     |
|---------------------|-----------------------------|------------|-------------|---------------|-------|----------|------|----------------------|------------------|-------------|-----|--------------|------|----------------|--------|--------|
| PROJE               | CT: <b>PolyMet Nort</b>     | hmet M     | line; Hoy   | rt La         | kes   | , MN     |      |                      |                  |             |     |              |      |                |        |        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:          |            |             |               | GE    | EOLOGY   | N    | MC                   | SA               | MPLE<br>YPE | REC |              |      | BORA           |        |        |
| FÊÈT                | MATERIAL I                  |            |             |               |       |          |      |                      |                  | YPE         | IN. | WC           | % #4 | LL             | PL     | %-#200 |
| 1 -                 | See boring J027 for mater   | al descrip | otion       |               |       |          |      |                      | ł                |             |     |              |      |                |        |        |
| 2 -                 |                             |            |             |               |       |          |      |                      | ł                |             |     |              |      |                |        |        |
| 3 —                 |                             |            |             |               |       |          |      |                      | ł                |             |     |              |      |                |        |        |
| 4 —                 |                             |            |             |               |       |          |      |                      | ł                |             |     |              |      |                |        |        |
| 5 —                 |                             |            |             |               |       |          |      |                      | ł                |             |     |              |      |                |        |        |
| 6 -                 |                             |            |             |               |       |          |      |                      |                  | СОТ         |     |              |      |                |        |        |
| 7 —                 |                             |            |             |               |       |          |      |                      |                  | 001         |     |              |      |                |        |        |
| 8 -                 |                             |            |             |               |       |          |      |                      |                  | СОТ         |     |              |      |                |        |        |
| 9 -                 |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
| 10 -                | Poor pressure meter test pe | erformed b | etween 10.2 | 2             |       |          |      |                      |                  | COT         |     |              |      |                |        |        |
| 11 —<br>12 —        | and 11.7 feet               |            |             |               |       |          |      |                      |                  | COT         |     |              |      |                |        |        |
| 13 -                | Poor pressure meter test pe | erformed b | etween 12.  | 6             |       |          |      |                      | $\left  \right $ |             |     |              |      |                |        |        |
| 14 -                | and 14.1 feet               |            |             |               |       |          |      |                      | COT              |             |     |              |      |                |        |        |
| 15 —                | END OF BORING AT 1          | 5.0 FEET   |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     | Borehole backfilled with n  | eat cemen  | t grout     |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     | See boring J027-P2          |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
|                     |                             |            |             |               |       |          |      |                      |                  |             |     |              |      |                |        |        |
| DEP                 | TH: DRILLING METHOD         |            |             | WATE          | ER LI | EVEL MEA | SURI | EMEN                 |                  |             |     |              |      |                | DEFE   |        |
|                     |                             | DATE       | TIME        | SAMPL<br>DEPT |       | CASING   |      | ENIEN<br>E-IN<br>PTH | D                | RILLIN      | NG  | WATI<br>LEVE |      | NOTE:<br>THE A |        |        |
|                     |                             | DUID       | 1 111112    | DEPT          | H     | DEPTH    | DEI  | РТН                  | FL               | UID LE      | VEL | LEVE         |      | SHEET          |        |        |
|                     |                             |            |             |               | -+    |          |      |                      |                  |             | -+  |              |      | XPLA           |        |        |
| BORIN<br>COMP       | G<br>LETED: 2/25/10         |            |             |               | +     |          |      |                      | -                |             | -+  |              | T    | ERMIN          | IOLOG  | GY ON  |
| DR: L               |                             |            |             |               |       |          |      |                      |                  |             |     |              |      | TH             | IS LOO | 3      |



| AET JO              | DB NO: <b>07-04509</b>        |             |               |       |                 |           | LC           | OG OF                                  | BC                 | RING N        | 10.          | <b>J</b> 02' | 7-P2  | (p.    | 1 of  | 1)     |
|---------------------|-------------------------------|-------------|---------------|-------|-----------------|-----------|--------------|----------------------------------------|--------------------|---------------|--------------|--------------|-------|--------|-------|--------|
| PROJE               | CT: PolyMet Nort              | hmet M      | line; Hoy     | yt La | kes             | s, MN     |              |                                        |                    |               |              |              |       |        |       |        |
| DEPTH<br>IN<br>FEET | SURFACE ELEVATION:            |             |               |       | G               | EOLOGY    | N            | MC                                     | SÆ                 | AMPLE<br>FYPE | REC<br>IN.   |              |       | ABORA  | TORY  | TESTS  |
| FËÈT                | MATERIAL I                    |             |               |       |                 |           | 1            |                                        |                    | ГҮРЕ          | IN.          | WC           | % #4  | LL     | PL 9  | %-#200 |
| 1                   | See boring J027 for mater     | ial descrip | otion         |       |                 |           |              |                                        | Į                  |               |              |              |       |        |       |        |
| 2 -                 |                               |             |               |       |                 |           |              |                                        | Ħ                  |               |              |              |       |        |       |        |
| 3 -                 |                               |             |               |       |                 |           |              |                                        | Ħ                  |               |              |              |       |        |       |        |
| 4 -                 |                               |             |               |       |                 |           |              |                                        | Ħ                  |               |              |              |       |        |       |        |
| 5 —                 |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| 6 -                 |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| 7 —                 |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| 8 —                 |                               |             |               |       |                 |           |              |                                        |                    | СОТ           |              |              |       |        |       |        |
| 9 –                 | Poor pressure meter test pe   | erformed b  | etween 9.1    |       |                 |           |              |                                        |                    | 001           |              |              |       |        |       |        |
| 10 -                | and 10.9 feet                 |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| 11 -                |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| 12 -                | END OF BORING AT 12           | ) 5 FFFT    |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     | Borehole backfilled with a    | ngs         |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     | Offset 5' southeast of boring |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     | See boring J027-P             |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
|                     |                               |             |               |       |                 |           |              |                                        |                    |               |              |              |       |        |       |        |
| DEP                 | TH: DRILLING METHOD           |             | WAT           | ER I  | LEVEL MEA       | L<br>ASUR | L<br>EMEN    |                                        |                    |               | <u> </u>     | <br>  .      | NOTE: | REFE   | R TO  |        |
|                     |                               | TIME        | SAMPI<br>DEPT | LED   | CASING<br>DEPTH | CAV       | /E-IN<br>PTH | I                                      | DRILLIN<br>JUID LE | NG<br>VEI     | WATI<br>LEVE | ER           | THE A |        |       |        |
| 0-4                 | 4½' 3.25" HSA                 |             | DEPI          | п     | DEFIN           | DE        | пп           | LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL | JOID LE            | V EL          | LEVE         | <u>ы.</u>    | SHEET |        |       |        |
|                     |                               |             |               |       |                 |           |              | $\vdash$                               |                    |               |              |              | EXPLA | NATIC  | ON OF |        |
| BORIN<br>COMPI      | G<br>LETED: 2/25/10           |             |               |       |                 |           |              |                                        |                    |               |              | Т            | ERMIN | IOLOC  | GY ON |        |
| DR: L               |                               |             |               |       |                 |           |              |                                        |                    |               |              |              | TH    | IS LOO | Ĵ     |        |



| <b>BARR JOB NO:</b> | 23/69-0C29.07 | WA1A |
|---------------------|---------------|------|
|---------------------|---------------|------|

| AET JOB NO: 07-04509                           |                                                          |             |             |               |        |                 |     | G OF  | BO             | RING N | NO   | J02         | 7-T | (p. 1 | l of 1         | l)                      |
|------------------------------------------------|----------------------------------------------------------|-------------|-------------|---------------|--------|-----------------|-----|-------|----------------|--------|------|-------------|-----|-------|----------------|-------------------------|
| PROJECT: PolyMet Northmet Mine; Hoyt Lakes, MN |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
| DEPTH<br>IN<br>FEET                            | SURFACE ELEVATION:                                       |             |             |               | GI     | EOLOGY          | N   | МС    | SA             | MPLE   | REC  |             | r   | ABORA |                |                         |
| FEET                                           | MATERIAL I                                               | DESCRIPTI   | ON          |               |        |                 |     |       |                | YPE    | IN.  | WC          | %#  | 4 LL  | PL             | q <sub>u</sub><br>(psf) |
| 1 -                                            |                                                          |             |             |               |        |                 |     | Μ     | ł              |        |      |             |     |       |                |                         |
| 2 -                                            | 2 in the driver all second for                           |             | 5 6         |               |        |                 |     | М     |                | TW     | 1    |             |     |       |                |                         |
| 3 -                                            | 3 inch thinwall sample fro                               | m 1.5 to 5. | 5 leet.     |               |        |                 |     | IVI   |                | 1 vv   | 1    |             |     |       |                |                         |
| 4 -                                            |                                                          |             |             |               |        |                 |     |       | ¥              |        |      |             |     |       |                |                         |
| 5 —                                            | 3 inch thinwall sample fro                               | m 4.5 to 6. | 5 feet.     |               |        |                 |     | М     |                | TW     | 14.5 | 310         | 17  |       |                | 560                     |
| 6 -                                            |                                                          |             |             |               |        |                 |     |       |                |        |      |             | -   |       |                |                         |
| 7 -                                            |                                                          |             |             |               |        |                 |     |       | ł              |        |      |             |     |       |                |                         |
| 8 -                                            |                                                          |             |             |               |        |                 |     |       | ł              |        |      |             |     |       |                |                         |
| 9 —<br>10 —                                    |                                                          |             |             |               |        |                 |     |       | ł              |        |      |             |     |       |                |                         |
| 10 -                                           |                                                          |             |             |               |        |                 |     |       |                |        |      | 9           | 140 |       |                |                         |
| 12 -                                           | Pitcher sampler from 10.0                                | to 12.5 fee | et          |               |        |                 |     | М     | Ø              | TW     | 22   | 9<br>8<br>8 | 140 |       |                |                         |
| 13 -                                           |                                                          |             |             |               |        |                 | Ł   |       |                | 0      | 140  |             |     |       |                |                         |
| 14 -                                           |                                                          |             |             |               |        |                 | ł   |       |                |        |      |             |     |       |                |                         |
| 15 —                                           | Pitcher sampler from 15.0                                |             |             | _             |        |                 |     |       | 1]             | TW-    | 0    |             |     |       |                |                         |
|                                                | PITCHER SAMPLER R<br>FEET                                |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                | Borehole backfilled with n                               | leat cemen  | t grout     |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                | Offset 8' northeast of bori                              |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                | Laboratory test results on                               | this log we | ere provide | ed            |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                | by Barr; laboratory tests v<br>Engineering Testing, Inc. | vere perfoi | rmed by So  |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
|                                                |                                                          |             |             |               |        |                 |     |       |                |        |      |             |     |       |                |                         |
| DEP                                            | TH: DRILLING METHOD                                      |             |             |               |        | EVEL MEA        | SUD |       | <u> </u><br>די |        |      |             |     |       |                |                         |
|                                                | III. DKILLING METHOD                                     |             | TIME        |               |        | EVEL MEA        | CAV | 'E-IN | Ι              | ORILLI | NG   | WATI        | ER  | NOTE: |                |                         |
| 0-                                             | 15' 6 5/8" HSA                                           | DATE        | TIME        | SAMPI<br>DEPT | ΓĤ     | CASING<br>DEPTH | DE  | PTH   | FĹ             | UID LE | VEL  | LEVE        | EĹ  |       | TTAC<br>IS FOF |                         |
|                                                |                                                          |             |             |               | _      |                 |     |       | -              |        |      |             |     | EXPLA |                |                         |
| BORIN                                          | G<br>LETED: <b>2/19/10</b>                               |             |             |               | +      |                 |     |       | -              |        |      |             |     | ΓERMΠ |                |                         |
| DR: L                                          |                                                          |             |             |               | $\neg$ |                 |     |       | $\vdash$       |        |      |             |     | TH    | IS LOO         | Ĵ                       |



| AET JO                                         | DB NO: <b>07-04509</b>                                                                 |            |                           |               |           |                 | LC   | OG OF        | BOF      | RING N           | IO        | <b>J02</b>   | 7-T2              | 2 (p. | 1 of   | 1)     |
|------------------------------------------------|----------------------------------------------------------------------------------------|------------|---------------------------|---------------|-----------|-----------------|------|--------------|----------|------------------|-----------|--------------|-------------------|-------|--------|--------|
| PROJECT: PolyMet Northmet Mine; Hoyt Lakes, MN |                                                                                        |            |                           |               |           |                 |      |              |          |                  |           |              |                   |       |        |        |
| DEPTH<br>IN<br>FEET                            | SURFACE ELEVATION:                                                                     |            |                           |               | GE        | EOLOGY          | N    | MC           | SA       | MPLE<br>YPE      | REC       |              | <b>) &amp;</b> LA | ABORA | TORY   | TESTS  |
| FËÈT                                           | MATERIAL I                                                                             | DESCRIPTI  | ON                        |               |           |                 | 1    |              | Т        | YPE              | IN.       | WC           | % #4              | LL    | PL 9   | %-#200 |
| 1                                              |                                                                                        |            |                           |               |           |                 |      |              | Ŧ        |                  |           |              |                   |       |        |        |
| 2 -                                            |                                                                                        |            |                           |               |           |                 |      |              |          | -                | 10        |              |                   |       |        |        |
| 3 —                                            | 3 inch thinwall sample fro                                                             | m 1.5 to 3 | .5 feet.                  |               |           |                 |      | W/M          |          | TW               | 13        | 405          | 13                |       |        |        |
| 4 -                                            |                                                                                        |            |                           |               |           |                 |      |              | 3        |                  |           |              |                   |       |        |        |
| 5 —                                            |                                                                                        |            |                           |               |           |                 |      |              | ł        |                  |           |              |                   |       |        |        |
| 6 -                                            |                                                                                        |            |                           |               |           |                 |      |              | Ħ        |                  |           |              |                   |       |        |        |
| 7 —                                            |                                                                                        |            |                           |               |           |                 |      |              | Ħ        |                  |           |              |                   |       |        |        |
| 8 -                                            |                                                                                        |            |                           |               |           |                 |      |              | Ħ        |                  |           |              |                   |       |        |        |
| 9 -                                            |                                                                                        |            |                           |               |           |                 |      |              | Ħ        |                  |           |              |                   |       |        |        |
| 10 -                                           |                                                                                        |            |                           |               |           |                 |      |              |          |                  |           |              |                   |       |        |        |
| 11 —<br>12 —                                   | Pitcher sampler from 10 to                                                             | 13 feet    |                           |               |           |                 |      |              |          | TW               | 0         |              |                   |       |        |        |
| 12                                             |                                                                                        |            |                           |               |           |                 |      |              | 0        |                  |           |              |                   |       |        |        |
| 10                                             | END OF BORING AT 1.<br>Borehole backfilled with n<br>auger cuttings                    |            | t grout and               |               |           |                 |      |              |          |                  |           |              |                   |       |        |        |
|                                                | Offset 7' north-northeast o                                                            | f boring J | 027-T                     |               |           |                 |      |              |          |                  |           |              |                   |       |        |        |
|                                                |                                                                                        |            |                           |               |           |                 |      |              |          |                  |           |              |                   |       |        |        |
|                                                | Laboratory test results on<br>by Barr; laboratory tests v<br>Engineering Testing, Inc. | this log w | ere provide<br>rmed by So | ed<br>il      |           |                 |      |              |          |                  |           |              |                   |       |        |        |
| DEP                                            | TH: DRILLING METHOD                                                                    |            |                           | WAT           | ER LI     | EVEL MEA        | ASUR | EMEN         | ITS      |                  | l         | 1            |                   | NOTE: | REFE   | R TO   |
| •                                              | -10' 6 5/8" HSA                                                                        | DATE       | TIME                      | SAMPI<br>DEPT | LED<br>TH | CASING<br>DEPTH | CAV  | /E-IN<br>PTH | D<br>FLI | RILLIN<br>JID LE | NG<br>VEL | WATH<br>LEVE | ER                | THE A |        |        |
| <del>_</del>                                   | 10 0 J/0 115/X                                                                         |            |                           | 1             | -         |                 |      |              |          |                  |           | 1            |                   | SHEET | TS FOF | R AN   |
|                                                |                                                                                        |            |                           |               |           |                 |      |              |          |                  |           |              | 1                 | EXPLA | NATIC  | ON OF  |
| BORIN<br>COMP                                  | G<br>LETED: <b>2/19/10</b>                                                             |            |                           |               |           |                 |      |              |          |                  |           |              | Г                 | ERMIN |        |        |
| DR: L                                          | A LG: TDD Rig: 27C                                                                     |            |                           |               |           |                 |      |              |          |                  |           |              |                   | TH    | IS LOO | ť      |



# AMERICAN

# ENGINEERING TESTING, INC. Northing: 737624 Easting: 2898282 BARR JOB NO: 23/69

|                        | Northing: 737624 Easting: 2898282                                                                                                                                     |                                                         |                                      |                  |                   | BARR JOB NO: 23/69-0C29.07 WA1A |              |                            |         |              |            |             |        |        |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------|------------------|-------------------|---------------------------------|--------------|----------------------------|---------|--------------|------------|-------------|--------|--------|
| AET JO                 | OB NO: <b>07-04509</b>                                                                                                                                                |                                                         |                                      |                  |                   | LO                              | G OF         | BORING 1                   | NO      | JO           | 37 (       | <b>p.</b> 1 | of 1)  |        |
| PROJE                  | PROJECT: PolyMet Northmet Mine; Hoyt Lakes, MN                                                                                                                        |                                                         |                                      |                  |                   |                                 |              |                            |         |              |            |             |        |        |
| DEPTH<br>IN<br>FEET    | SURFACE ELEVATION:_                                                                                                                                                   | 1609.8                                                  |                                      |                  | GEOLOGY           | N                               | MC           | SAMPLE<br>TYPE             | REC     | FIELI        | ) & LA     | BORA        | TORY   | TESTS  |
| FEET                   |                                                                                                                                                                       |                                                         |                                      |                  |                   | 1                               | wic          | TYPE                       | IN.     | WC           | % #4       | LL          | PL     | %-#200 |
| 1<br>2<br>3<br>4<br>5  | SANDY SILT, trace roots<br>brown, frozen above abou<br>SILTY SAND, a little gra<br>trace roots, brown and ora<br>moist (SM)<br>SILTY SAND WITH GR                     | s, apparent<br>t 10" (ML)<br>vel, appare<br>ingish brow | boulders,<br>nt cobbles<br>n mottled | <br>             | OPSOIL            | 14<br>50/0.5'<br>50/0.4'        |              | SU<br>SS<br>SS<br>SS<br>SS | 11<br>0 |              |            |             |        |        |
| 6<br>7<br>8<br>9<br>10 | moist (SM)<br>SILTY SAND, a little gra<br>grayish brown, moist, med                                                                                                   |                                                         |                                      |                  | ILL               | 25/0.5'<br>50/0.1'              |              | SS<br>SS                   | 4       |              |            |             |        |        |
| 10 -<br>11 -<br>12 -   | -                                                                                                                                                                     |                                                         |                                      |                  |                   | 25<br>25/0.5'                   | M<br>M       | SS<br>F<br>SS<br>SS        | 10<br>6 | 8            |            |             |        | 33     |
|                        | Obstruction - possible we<br>AUGER REFUSAL AT<br>Borehole backfilled with the<br>Laboratory test results on<br>by Barr; laboratory tests<br>Engineering Testing, Inc. | <b>12.9 FEE</b><br>neat cemen<br>this log we            | Г<br>t grout<br>ere provide          | ed               | OCK               |                                 |              |                            |         |              |            |             |        |        |
| DEI                    | PTH: DRILLING METHOD                                                                                                                                                  |                                                         |                                      | 1                | LEVEL ME          |                                 |              | 1                          |         |              |            | NOTE:       | REFE   | R TO   |
| 0-1                    | 2.9' 3.25" HSA                                                                                                                                                        | DATE                                                    | TIME                                 | SAMPLEI<br>DEPTH | D CASING<br>DEPTH | CAV<br>DEI                      | 'E-IN<br>PTH | DRILLI<br>Fluid Le         |         | WATI<br>LEVE | ER  <br>EL | THE A       | TTAC   | HED    |
|                        |                                                                                                                                                                       | 2/17/10                                                 | 14:25                                | 12.7             | 12.0              | 12                              | 2.0          |                            |         | Non          | e          | SHEET       |        |        |
| DOPT                   |                                                                                                                                                                       |                                                         |                                      |                  |                   |                                 |              |                            |         |              |            | XPLA        |        |        |
| BORIN<br>COMP          | NG<br>PLETED: <b>2/17/10</b>                                                                                                                                          |                                                         |                                      |                  |                   |                                 |              |                            |         |              | T          | ERMIN       |        |        |
| DR: L                  | A LG: TDD Rig: 27C                                                                                                                                                    |                                                         |                                      |                  |                   |                                 |              |                            |         |              |            | TH          | IS LOO | Ĵ      |

## **BORING LOG NOTES**

## DRILLING AND SAMPLING SYMBOLS

| Symbol        | Definition                                                |
|---------------|-----------------------------------------------------------|
| Symbol        | Definition                                                |
| B,H,N:        | Size of flush-joint casing                                |
| CA:           | Crew Assistant (initials)                                 |
| CAS:          | Pipe casing, number indicates nominal diameter in         |
| CAD.          | inches                                                    |
| CC:           | Crew Chief (initials)                                     |
| COT:          | Clean-out tube                                            |
| DC:           | Drive casing; number indicates diameter in inches         |
| DM:           | Drilling mud or bentonite slurry                          |
| DR:           | Driller (initials)                                        |
| DS:           | Disturbed sample from auger flights                       |
| FA:           | Flight auger; number indicates outside diameter in inches |
| HA:           | Hand auger; number indicates outside diameter             |
| HSA:          | Hollow stem auger; number indicates inside diameter       |
|               | in inches                                                 |
| LG:           | Field logger (initials)                                   |
| MC:           | Column used to describe moisture condition of             |
|               | samples and for the ground water level symbols            |
| N (BPF):      | Standard penetration resistance (N-value) in blows per    |
|               | foot (see notes)                                          |
| NQ:           | NQ wireline core barrel                                   |
| PQ:           | PQ wireline core barrel                                   |
| RD:           | Rotary drilling with fluid and roller or drag bit         |
| REC:          | In split-spoon (see notes) and thin-walled tube           |
|               | sampling, the recovered length (in inches) of sample.     |
|               | In rock coring, the length of core recovered (expressed   |
|               | as percent of the total core run). Zero indicates no      |
|               | sample recovered.                                         |
| REV:          | Revert drilling fluid                                     |
| SS:           | Standard split-spoon sampler (steel; 13/8" is inside      |
|               | diameter; 2" outside diameter); unless indicated          |
|               | otherwise                                                 |
| SU            | Spin-up sample from hollow stem auger                     |
| TW:           | Thin-walled tube; number indicates inside diameter in     |
|               | inches                                                    |
| WASH:         | Sample of material obtained by screening returning        |
|               | rotary drilling fluid or by which has collected inside    |
| W/II          | the borehole after "falling" through drilling fluid       |
| WH:           | Sampler advanced by static weight of drill rod and        |
| WD            | 140-pound hammer                                          |
| WR:           | Sampler advanced by static weight of drill rod            |
| 94mm:         | 94 millimeter wireline core barrel                        |
| ▼:            | Water level measured in borehole prior to                 |
| <u> </u>      | abandonment                                               |
| $\overline{}$ |                                                           |
| <u> </u>      | Interim water level measurement or estimated water        |
|               | level based on sample appearance                          |

#### TEST SYMBOLS

| Symbol           | Definition                                            |
|------------------|-------------------------------------------------------|
| CONS:            | One-dimensional consolidation test                    |
| DEN:             | Dry density, pcf                                      |
| DST:             | Direct shear test                                     |
| E:               | Pressuremeter Modulus, tsf                            |
| HYD:             | Hydrometer analysis                                   |
| LL:              | Liquid Limit, %                                       |
| LP:              | Pressuremeter Limit Pressure, tsf                     |
| OC:              | Organic Content, %                                    |
| PERM:            | Coefficient of permeability (K) test; F - Field;      |
|                  | L - Laboratory                                        |
| PL:              | Plastic Limit, %                                      |
| q <sub>p</sub> : | Pocket Penetrometer strength, tsf (approximate)       |
| $q_c$ :          | Static cone bearing pressure, tsf                     |
| $q_u$ :          | Unconfined compressive strength, psf                  |
| R:               | Electrical Resistivity, ohm-cms                       |
| RQD:             | Rock Quality Designation of Rock Core, in percent     |
|                  | (aggregate length of core pieces 4" or more in length |
|                  | as a percent of total core run)                       |
| SA:              | Sieve analysis                                        |
| TRX:             | Triaxial compression test                             |
| VSR:             | Vane shear strength, remoulded (field), psf           |
| VSU:             | Vane shear strength, undisturbed (field), psf         |
| WC:              | Water content, as percent of dry weight               |
| 0/ 200.          | Demant of motorial finan than #200 sizes              |

%-200: Percent of material finer than #200 sieve

#### STANDARD PENETRATION TEST NOTES

The standard penetration test consists of driving the sampler with a 140 pound hammer and counting the number of blows applied in each of three 6" increments of penetration. If the sampler is driven less than 18" (usually in highly resistant material), permitted in ASTM:D1586, the blows for each complete 6" increment and for each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM:D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").

#### UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

#### AMERICAN ENGINEERING TESTING, INC.



|                                                      |                                              |                                          |                                                                                                  |                             |                                                            | TESTING, INC.                                                                                                 |
|------------------------------------------------------|----------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                      |                                              |                                          |                                                                                                  | 5                           | Soil Classification                                        | Notes                                                                                                         |
| Criteria for                                         | r Assigning Group Syn                        | mbols and Group N                        | Names Using Laboratory Tests <sup>A</sup>                                                        | Group<br>Symbol             | Group Name <sup>B</sup>                                    | <sup>A</sup> Based on the material passing the 3-in (75-mm) sieve.                                            |
| Coarse-Grained<br>Soils More                         | Gravels More<br>than 50% coarse              | Clean Gravels<br>Less than 5%            | $Cu \ge 4$ and $1 \le Cc \le 3^E$                                                                | GW                          | Well graded gravel <sup>F</sup>                            | boulders, or both, add "with cobbles or                                                                       |
| than 50%<br>retained on                              | fraction retained<br>on No. 4 sieve          | fines <sup>C</sup>                       | Cu<4 and/or 1>Cc>3 <sup>E</sup>                                                                  | GP                          | Poorly graded grave                                        | <sup>c</sup> Gravels with 5 to 12% fines require dual                                                         |
| No. 200 sieve                                        |                                              | Gravels with<br>Fines more               | Fines classify as ML or MH                                                                       | GM                          | Silty gravel <sup>F.G.H</sup>                              | symbols:<br>GW-GM well-graded gravel with silt                                                                |
|                                                      |                                              | than 12% fines <sup>C</sup>              |                                                                                                  | GC                          | Clayey gravel <sup>F.G.H</sup>                             | GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt                                       |
|                                                      | Sands 50% or<br>more of coarse               | Clean Sands<br>Less than 5%              | $Cu \ge 6$ and $1 \le Cc \le 3^E$                                                                | SW                          | Well-graded sand <sup>1</sup>                              | GP-GC poorly graded gravel with clay <sup>D</sup> Sands with 5 to 12% fines require dual                      |
|                                                      | fraction passes<br>No. 4 sieve               | fines <sup>D</sup>                       | Cu<6 and 1>Cc>3 <sup>E</sup>                                                                     | SP                          | Poorly-graded sand <sup>I</sup>                            | symbols:<br>SW-SM well-graded sand with silt                                                                  |
|                                                      |                                              | Sands with<br>Fines more                 | Fines classify as ML or MH                                                                       | SM                          | Silty sand <sup>G.H.I</sup>                                | SW-SC well-graded sand with clay<br>SP-SM poorly graded sand with silt                                        |
| Fine-Grained                                         | Silts and Clays                              | than 12% fines <sup>1</sup><br>inorganic | <ul> <li>Fines classify as CL or CH</li> <li>PI&gt;7 and plots on or above</li> </ul>            | SC<br>CL                    | Clayey sand <sup>G.H.I</sup><br>Lean clay <sup>K.L.M</sup> | SP-SC poorly graded sand with clay                                                                            |
| Soils 50% or<br>more passes                          | Liquid limit less<br>than 50                 |                                          | "A" line <sup>J</sup><br>PI<4 or plots below                                                     | ML                          | Silt <sup>K.L.M</sup>                                      | <sup>E</sup> Cu = $D_{60}/D_{10}$ , Cc = $(D_{30})^2$                                                         |
| the No. 200<br>sieve                                 |                                              | organic                                  | "A" line <sup>J</sup>                                                                            |                             | Organic clay <sup>K.L.M.N</sup>                            | D <sub>10</sub> x D <sub>60</sub>                                                                             |
| (see Plasticity                                      |                                              | organie                                  | <u>Liquid limit–oven dried</u> <0.75<br>Liquid limit – not dried                                 | 5 01                        | Organic silt <sup>K.L.M.O</sup>                            | <sup>F</sup> If soil contains $\geq$ 15% sand, add "with sand" to group name.                                 |
| Chart below)                                         | Silts and Clays                              | inorganic                                | PI plots on or above "A" line                                                                    | е СН                        | Fat clay <sup>K.L.M</sup>                                  | <sup>G</sup> If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.                                     |
|                                                      | Liquid limit 50<br>or more                   |                                          | PI plots below "A" line                                                                          | МН                          | Elastic silt <sup>K.L.M</sup>                              | <sup>H</sup> If fines are organic, add "with organic fines" to group name.                                    |
|                                                      |                                              | organic                                  | Liquid limit–oven dried <0.75                                                                    |                             | Organic clay <sup>K.L.M.P</sup>                            | If soil contains $\geq$ 15% gravel, add "with gravel" to group name.                                          |
|                                                      |                                              |                                          | Liquid limit – not dried                                                                         | 5                           | Organic silt <sup>K.L.M.Q</sup>                            | <sup>J</sup> If Atterberg limits plot is hatched area, soils is a CL-ML silty clay.                           |
| Highly organic                                       |                                              |                                          | Primarily organic matter,                                                                        |                             | Peat <sup>R</sup>                                          | <sup>K</sup> If soil contains 15 to 29% plus No. 200<br>add "with sand" or "with gravel",                     |
| soil                                                 |                                              |                                          | in color, and organic in odd                                                                     | Dr                          |                                                            | whichever is predominant.<br><sup>L</sup> If soil contains $\geq$ 30% plus No. 200,                           |
| Screen Opening (i<br>3 2 1% 1 % %                    | SIEVE ANALYSIS<br>in.)                       | 00                                       | 60<br>For classification of fine-grained soils and<br>fine-grained fraction of coarse-grained so |                             |                                                            | predominantly sand, add "sandy" to group name.                                                                |
| .100                                                 |                                              | . 0                                      | 50-<br>E<br>Horizontal at PI = 4 to LL = 25.5.<br>then PI = 0.73 (LL-20)                         | JUINE OH                    | . M. LINE                                                  | <sup>M</sup> If soil contains ≥30% plus No. 200,<br>predominantly gravel, add "gravelly"                      |
| .80                                                  |                                              |                                          | Equation of "U"-line<br>Vertical at LL = 16 to Pl = 7.                                           | UNA OH                      | 1ALL                                                       | to group name.<br>$^{N}Pl \ge 4$ and plots on or above "A" line.                                              |
| BASS 100                                             | _Deo = 15mm                                  | .40<br>LL. RETA                          | 30                                                                                               |                             |                                                            | <sup>o</sup> Pl<4 or plots below "A" line.<br><sup>P</sup> Pl plots on or above "A" line.                     |
| bercent                                              | D <sub>20</sub> = 2.5mm                      | PERCENT : RETAINED<br>09.                | SP1 20-                                                                                          | »                           |                                                            | <sup>Q</sup> Pl plots below "A" line.<br><sup>R</sup> Fiber Content description shown below.                  |
| .20                                                  |                                              | .80<br>                                  | .10                                                                                              |                             |                                                            |                                                                                                               |
| .0                                                   | 5 1'.0 0'.5 0'.1                             | 100                                      |                                                                                                  | 0 50 60 7                   | 70 80 90 .100                                              |                                                                                                               |
|                                                      | E SIZE IN MILLIMETERS                        | 56                                       | אי של, יטביסו, שו, יט,                                                                           | LIQUID LIMIT (LL)           | ບ ມນ ສປ .100                                               |                                                                                                               |
| $C_{\rm u} = \frac{1}{D_{10}} = \frac{1}{0.075} = 1$ |                                              |                                          | OLOGY NOTES USED BY AE                                                                           | Plasticity Chart            | NTIFICATION ANI                                            | DESCRIPTION                                                                                                   |
|                                                      | Grain Size                                   | IONAL TERMIN                             | Gravel Percentages                                                                               |                             | of Plastic Soils                                           | Relative Density of Non-Plastic Soils                                                                         |
| Term                                                 | Particle S                                   | <u>Size</u>                              | Term Percent                                                                                     | Term                        | <u>N-Value, BPF</u>                                        | <u>Term</u> <u>N-Value, BPF</u>                                                                               |
| Boulders<br>Cobbles                                  | Over 1<br>3" to 12                           | -                                        | A Little Gravel3% - 14%With Gravel15% - 29%                                                      | Very Soft<br>Soft           | less than 2<br>2 - 4                                       | Very Loose 0 - 4<br>Loose 5 - 10                                                                              |
| Gravel                                               | #4 sieve                                     | to 3" (                                  | Gravelly 30% - 50%                                                                               | Firm                        | 5 - 8                                                      | Medium Dense 11 - 30                                                                                          |
| Sand<br>Fines (silt & cla                            | #200 to #4<br>ay) Pass #200                  |                                          |                                                                                                  | Stiff<br>Very Stiff         | 9 - 15<br>16 - 30                                          | Dense 31 - 50<br>Very Dense Greater than 50                                                                   |
|                                                      | isture/Frost Condition                       |                                          | Layering Notes                                                                                   | Hard                        | Greater than 30<br>ontent of Peat                          | Organic/Roots Description (if no lab tests)                                                                   |
| D (Dry):                                             | (MC Column)<br>Absense of moisture           | 1                                        | Laminations: Layers less than $\frac{1}{2}$ " thick of                                           | Term                        | Fiber Content<br>(Visual Estimate)                         | Soils are described as <u>organic</u> , if soil is not peat<br>and is judged to have sufficient organic fines |
| M (Moist):                                           | touch.<br>Damp, although free                | water not                                | differing material or color.                                                                     | Fibric Peat:                | Greater than 67%                                           | content to influence the soil properties. <u>Slightly</u><br><u>organic</u> used for borderline cases.        |
|                                                      | visible. Soil may sti<br>water content (over | "optimum"). I                            | Lenses: Pockets or layers                                                                        | Hemic Peat:<br>Sapric Peat: | 33 – 67%<br>Less than 33%                                  | With roots: Judged to have sufficient quantity                                                                |
| W (Wet/<br>Waterbearing):                            | Free water visible in describe non-plastic   |                                          | greater than <sup>1</sup> / <sub>2</sub> "<br>thick of differing                                 | -                           |                                                            | of roots to influence the soil properties.                                                                    |
| <u>,</u>                                             | Waterbearing usuall<br>sands and sand with   | y relates to                             | material or color.                                                                               |                             |                                                            | Trace roots: Small roots present, but not judged<br>to be in sufficient quantity to                           |
| F (Frozen):                                          | Soil frozen                                  |                                          |                                                                                                  |                             |                                                            | significantly affect soil properties.                                                                         |

## GEOLOGIC TERMINOLOGY (SOILS)

General categories of geologic deposits used, descriptive information and common soil types is as follows:

**FILL** (**F**): Soils, rock and/or waste products placed or disturbed by man rather than through geologic processes. Mixed soils are usually easy to identify. Uniform material is more difficult, and signs such as small inclusions, underlying topsoil, topography or knowledge of below grade improvements (e.g., basement backfill, utility trenches, etc.) may be needed to properly judge. When mixed condition is stratified horizontally, the soil may be a weathered natural soil rather than fill.

**TOPSOIL** (**TS**): Upper darker colored layer formed by weathering of inorganic soil and accumulation of organic material. Usually black, dark brown, dark gray or dark grayish brown. Often transitions from darker to lighter color.

**SLOPEWASH (SW):** Organic and/or inorganic materials (sometimes interlayered) washed from slopes and redeposited. Usually stratified. Will be located in depressed areas where they can be washed in from slopes. When topsoil layers are thick in depressed areas, there is a good chance the soil is slopewash.

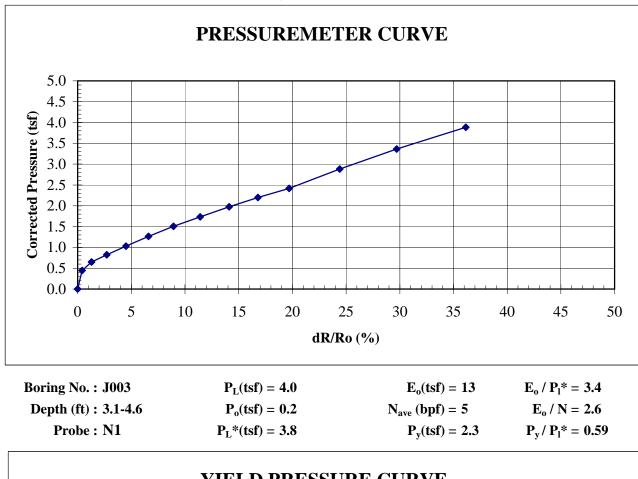
**SWAMP DEPOSITS (SD):** Highly organic material (peats and organic clays) which are formed through accumulation of organic material under water. **Peat, Organic clay** 

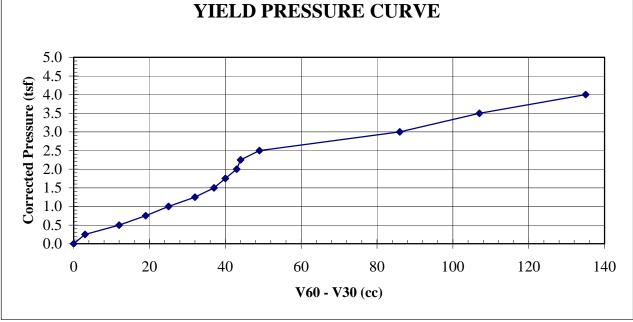
**COARSE ALLUVIUM (CA):** Sandy (and gravelly). Stratified. Deposited from fast moving waters in streams and rivers. Includes glacial outwash. **Sand, Sand with silt, Silty sand, Gravels** 

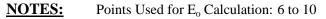
**FINE ALLUVIUM (FA):** Clayey and/or silty. Stratified. Deposited from slow moving waters in streams, rivers, lakes and ponds. Includes glacial outwash. Lean clay, Fat clay, Silty clay, Silt, Sandy silt

MIXED ALLUVIUM (MA): Combination of Fine and Coarse Alluvium. Clayey sand, Sandy lean clay, interlayered CA/FA

**LACUSTRINE** (LAC): Fine grained lake bed deposits (lakes may or may not still be in existence). Usually in very flat topography. Fat clay, Lean clay, Silty clay, Silt


**LOESS** (**LOESS**): Uniform, non-stratified, silty material (or very fine sand) which is deposited by wind. Can include significant clay content, and grain contacts may be cemented by clay or calcareous (limestone/chalky) material. **Silt, Sandy silt, Silty clay, Lean clay** 

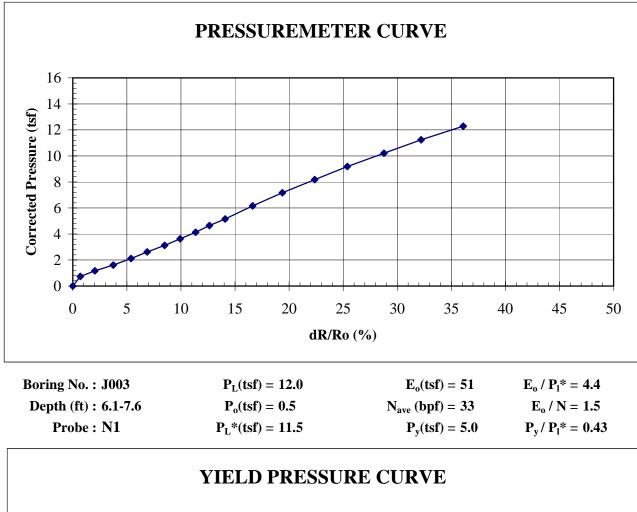

TILL (T): Normally contains a wide range of grain sizes, from boulders through clay. Usually non-stratified (not sorted through water action). Deposited directly from glaciers. Silty sand, Clayey sand, Sandy lean clay, usually contains gravel

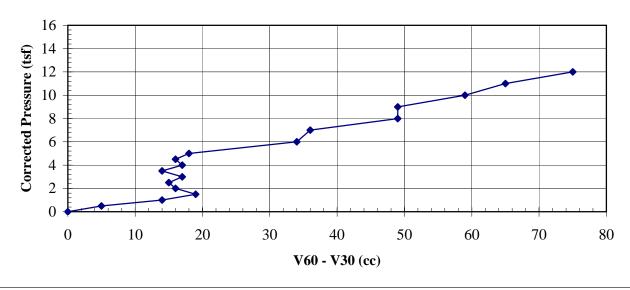

**WEATHERED TILL (WT):** Tills which have been altered by exposure to the action of frost, water, or chemicals. Often softer than underlying soils. May be stratified with varying colors/soil types due to filling in or other changes in frost lensed zones.

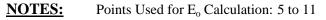
**COLLUVIUM (COL):** Dominantly gravel, boulders and rock slabs, sometimes intermixed or layered with soils. Deposited from gravity flow down hills or cliffs.

PRESSUREMETER TEST RESULTS PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A



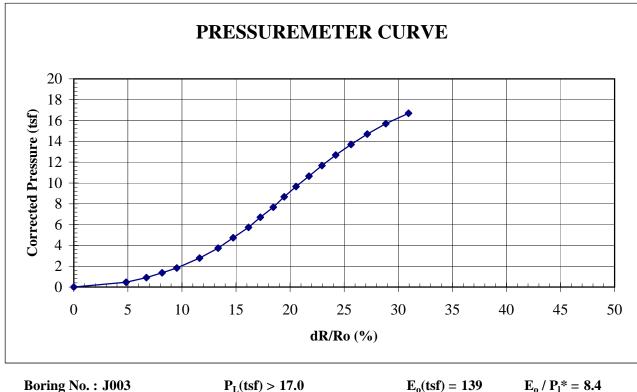




Marginal test; disturbed soil.

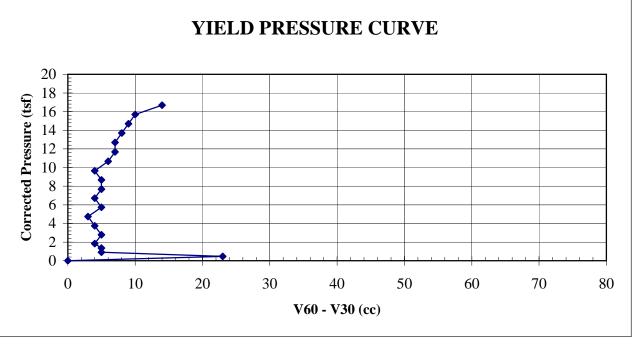
PRESSUREMETER TEST RESULTS

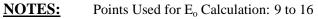
PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A







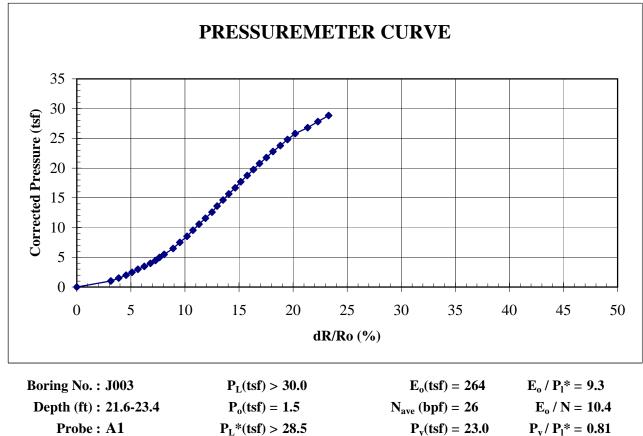


Marginal test; disturbed soil.

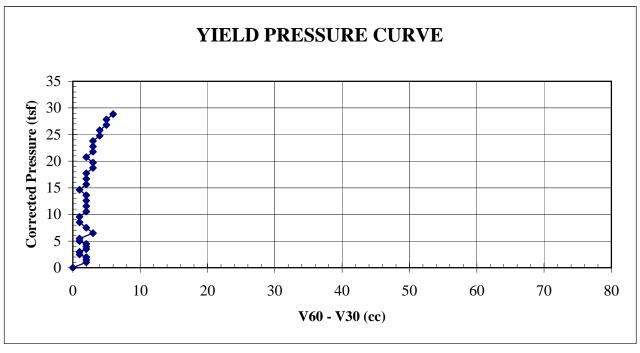

PRESSUREMETER TEST RESULTS PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A



Boring No. : J003 Depth (ft) : 6.6-8.4 Probe : A1 
$$\begin{split} P_{L}(tsf) > 17.0 \\ P_{o}(tsf) = 0.5 \\ P_{L}^{*}(tsf) > 16.5 \end{split}$$

| $\mathbf{E}_{o}(\mathbf{tsf}) = 139$ | $E_{o} / P_{l}^{*} = 8.4$ |
|--------------------------------------|---------------------------|
| $N_{ave}$ (bpf) = 33                 | $E_{o} / N = 4.2$         |
| $P_{y}(tsf) = 13.0$                  | $P_y / P_l^* = 0.79$      |



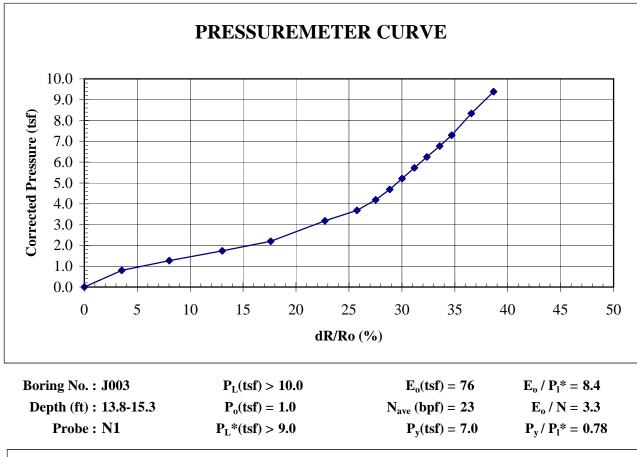



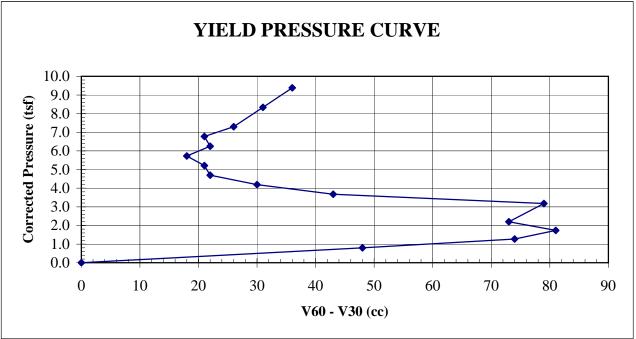

Good test; reached yield but not failure.

## PRESSUREMETER TEST RESULTS

PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A



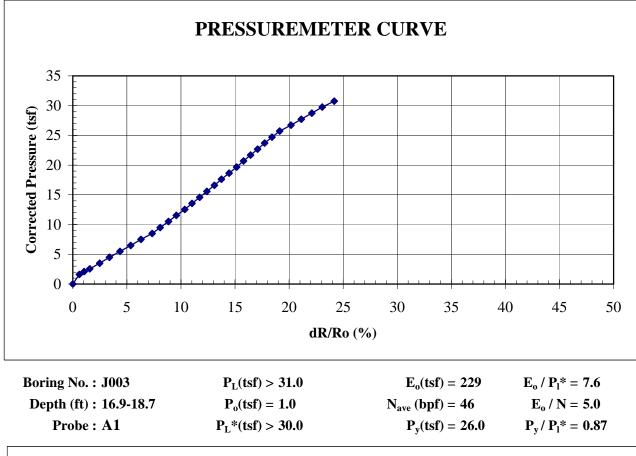


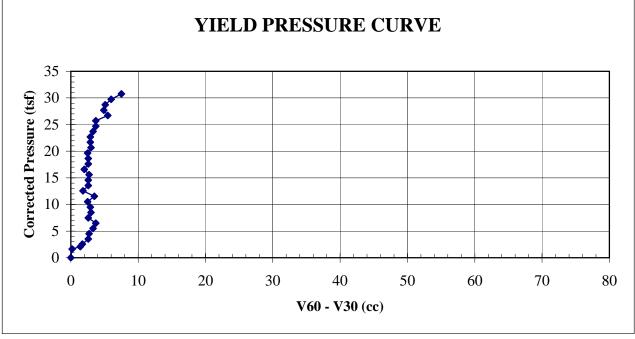


## **NOTES:** Points Used for E<sub>o</sub> Calculation: 14 to 28

Good test; reached yield but not failure.

PRESSUREMETER TEST RESULTS

PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A

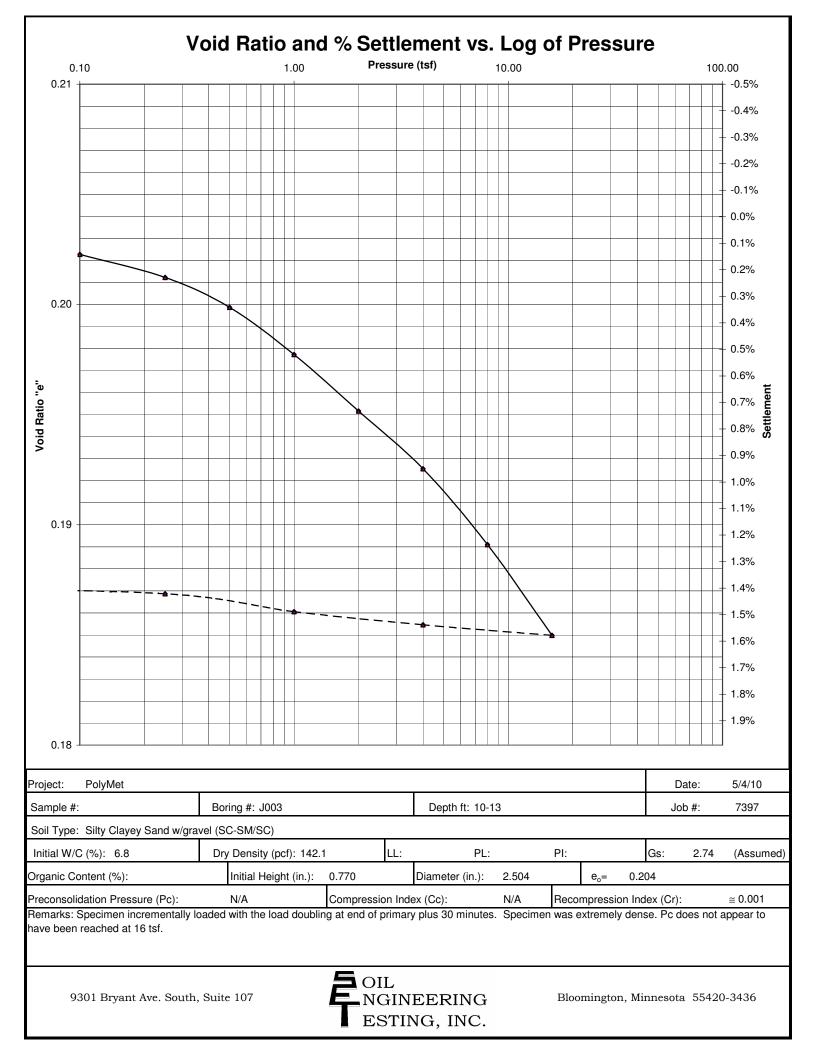


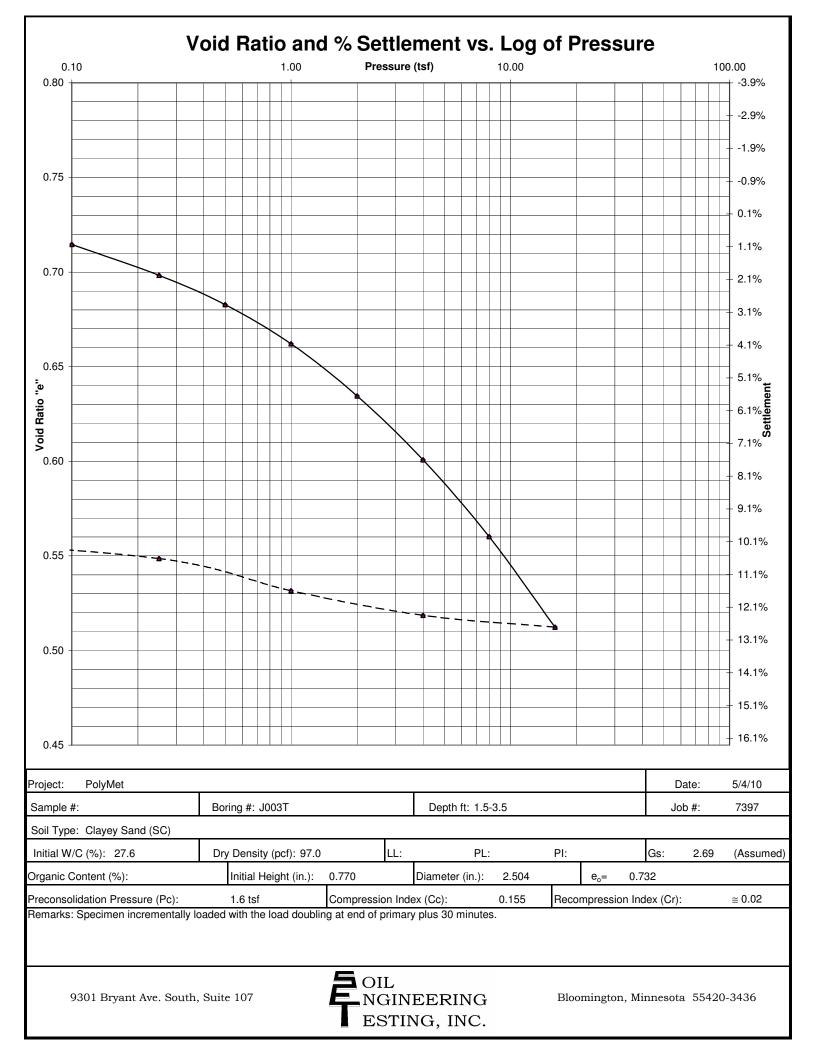



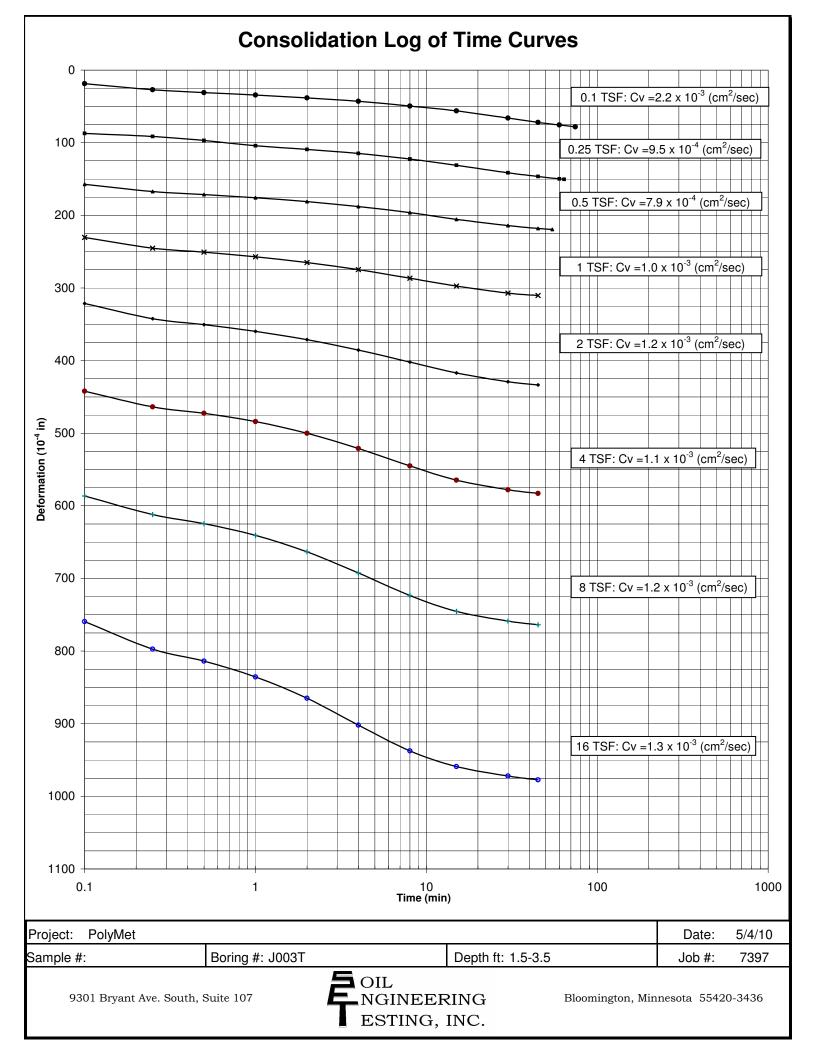

<sup>&</sup>lt;u>NOTES</u>: Points Used for  $E_0$  Calculation: 9 to 13 Marginal test: may have reached yield; did not reach failure.

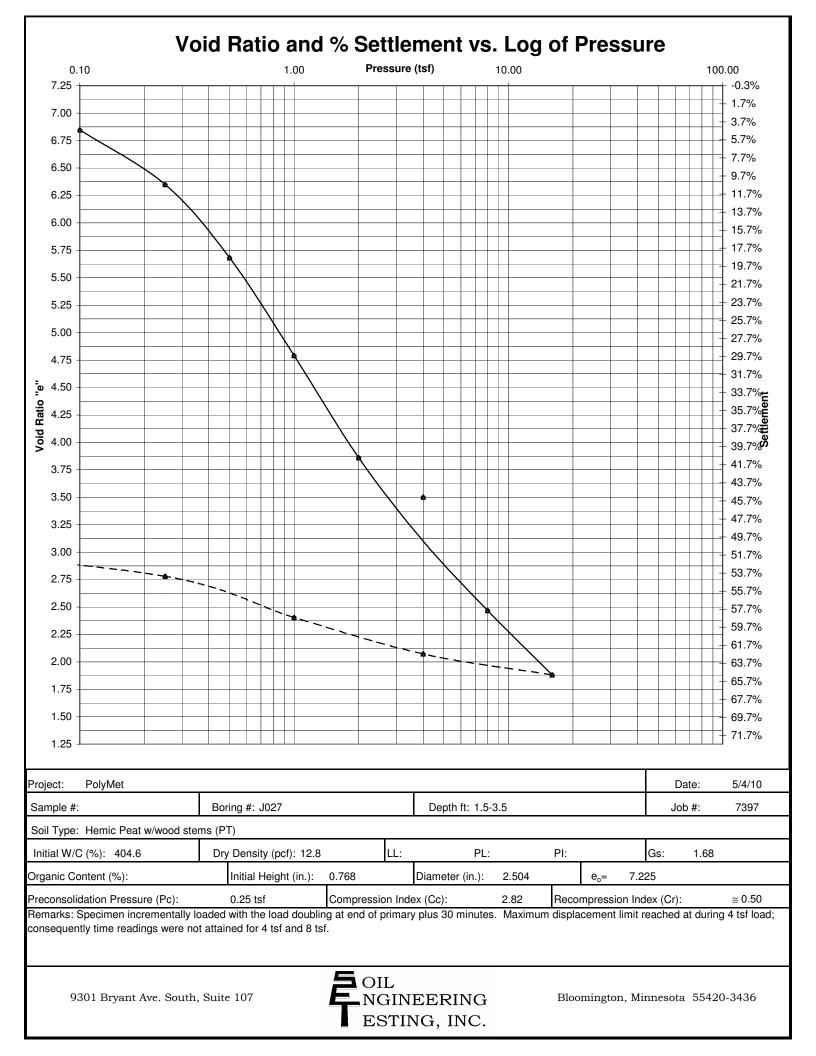
#### PRESSUREMETER TEST RESULTS

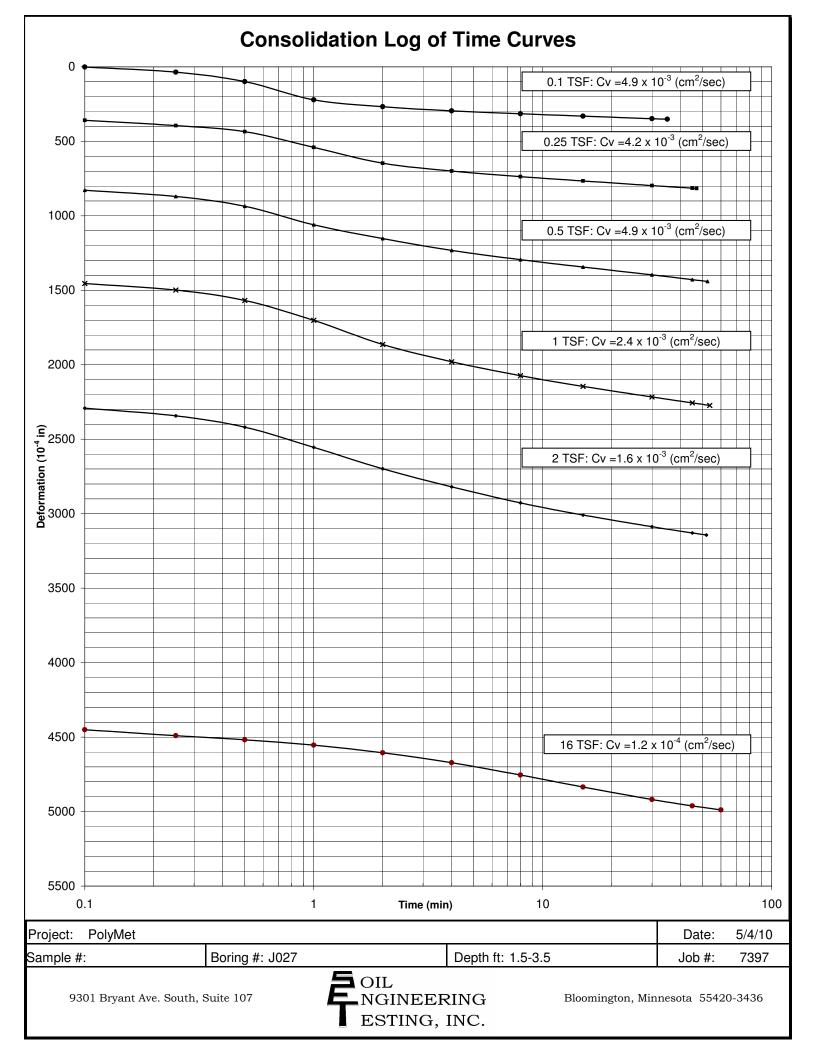
PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A

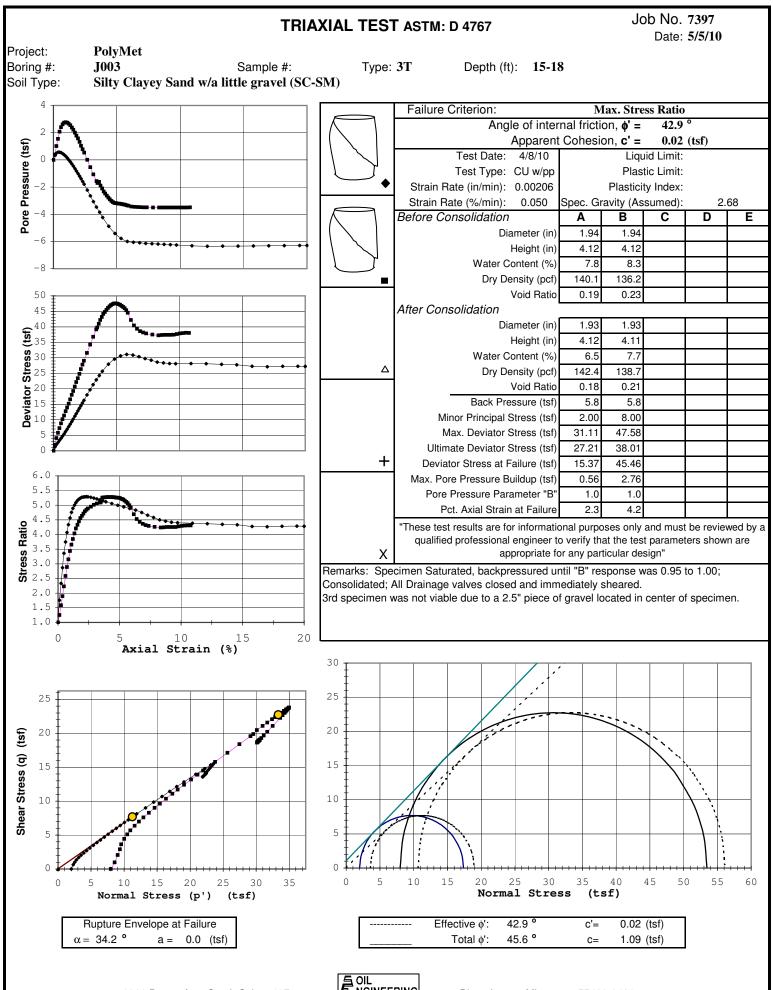


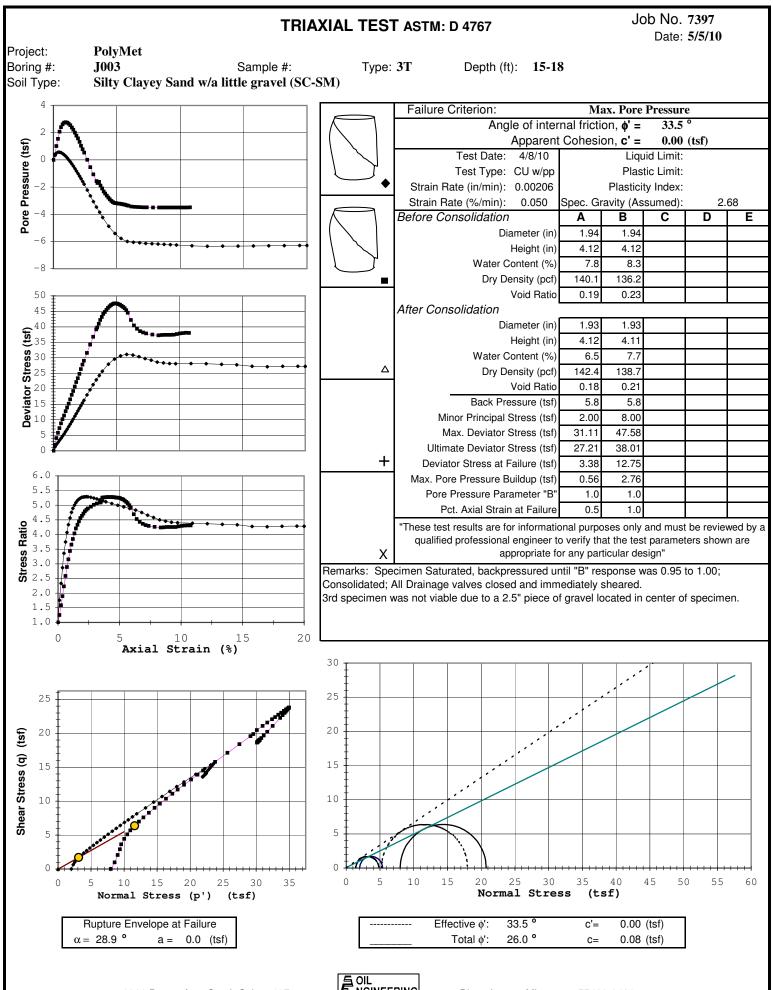



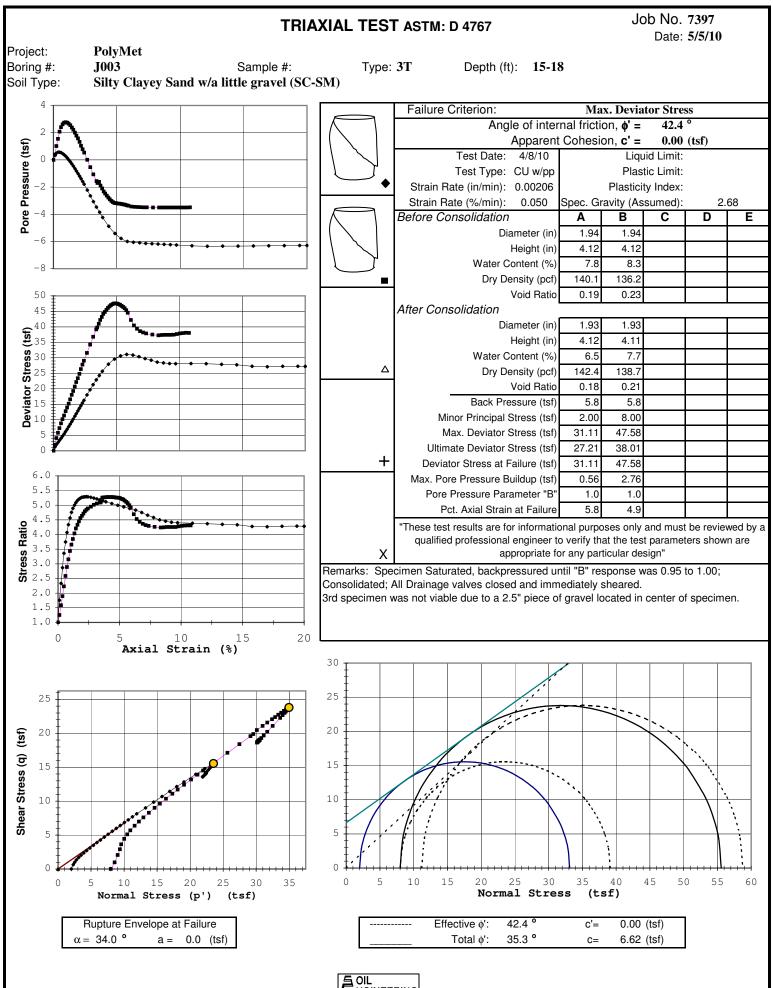


Points Used for E<sub>o</sub> Calculation: 14 to 26


Good test; just starting to yield at end of test.

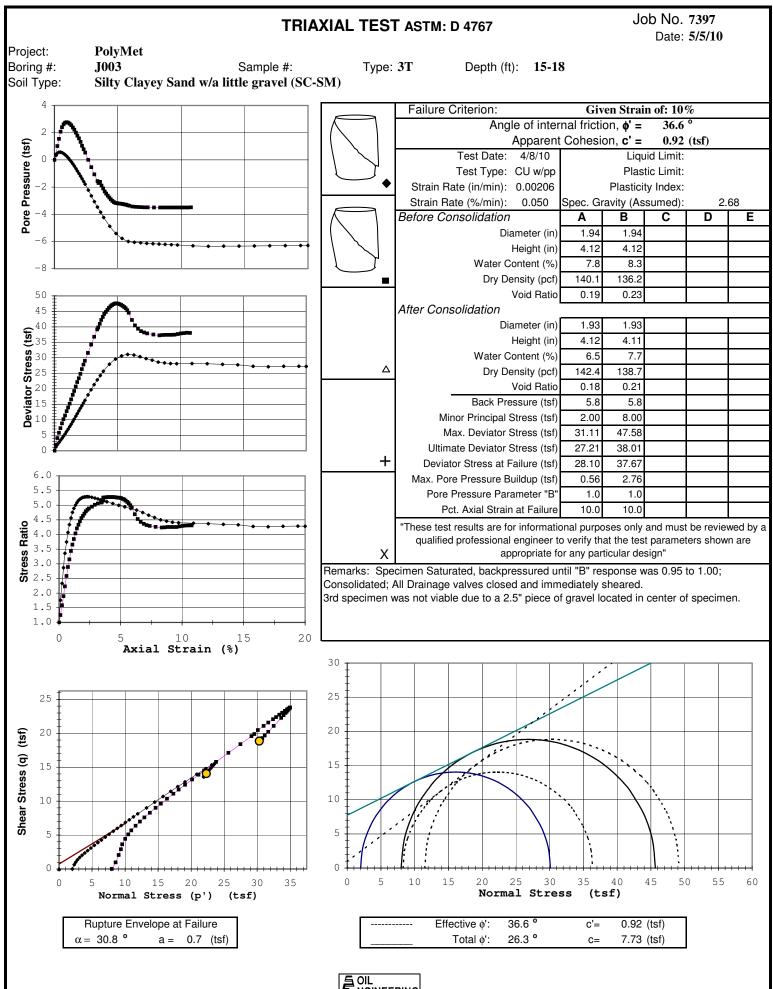




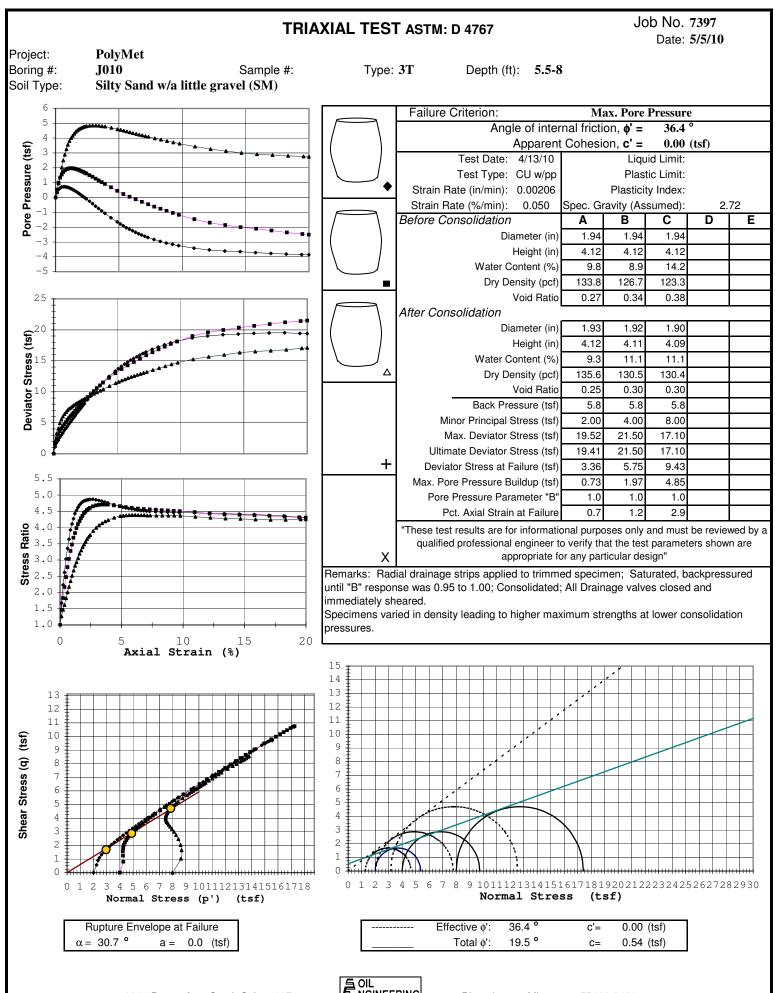


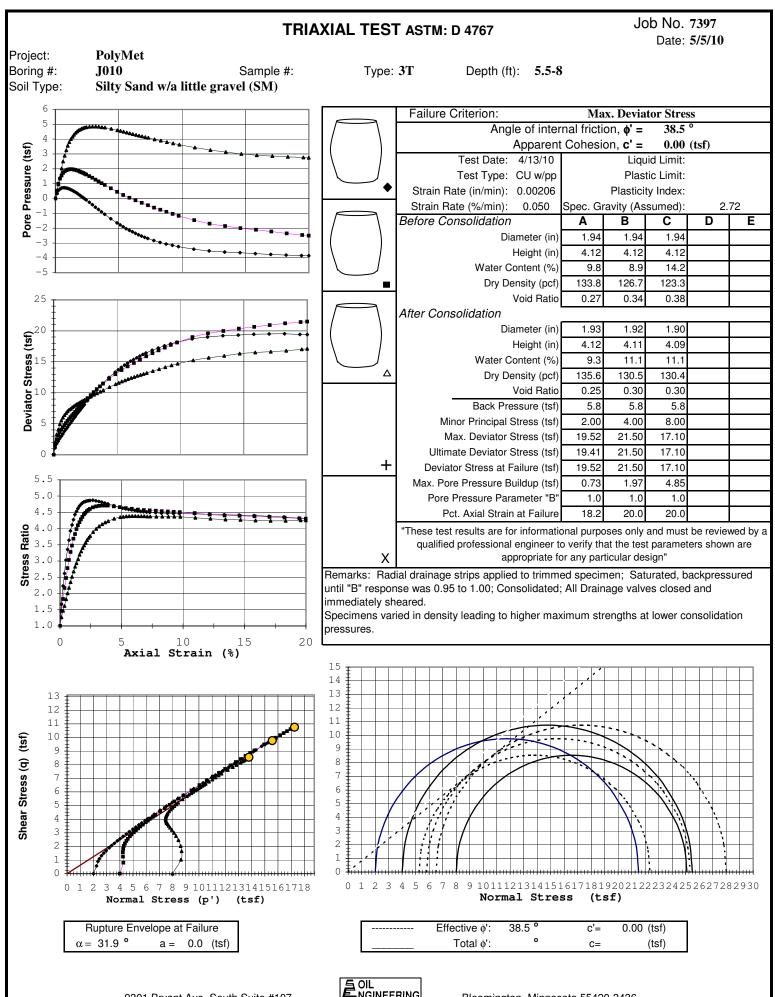



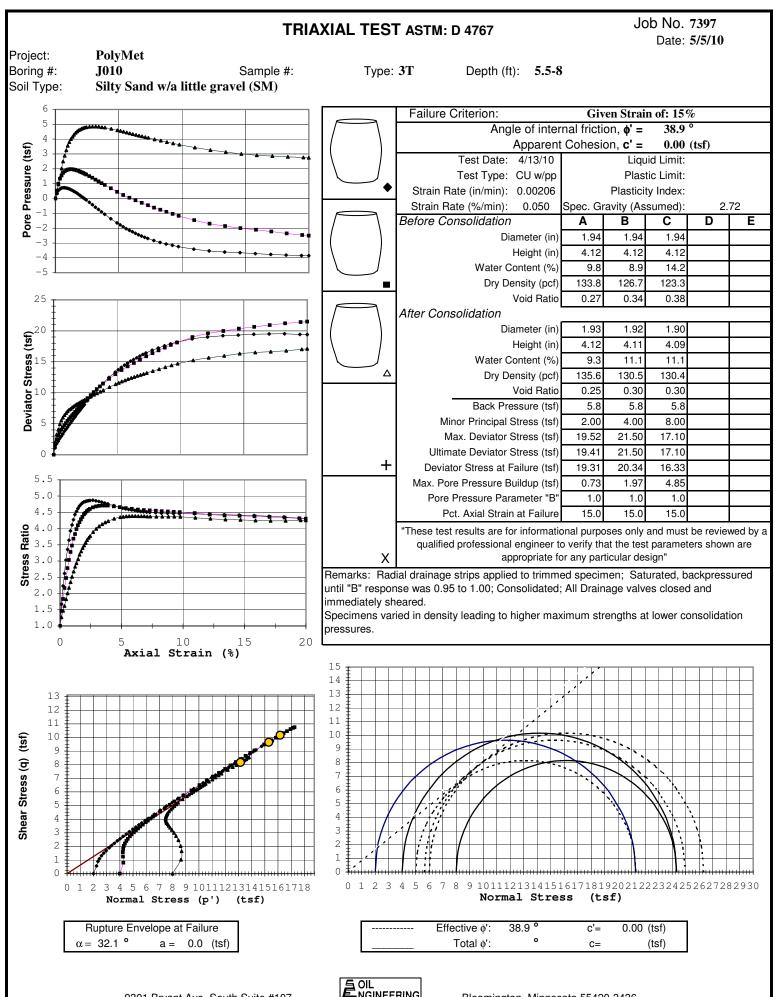






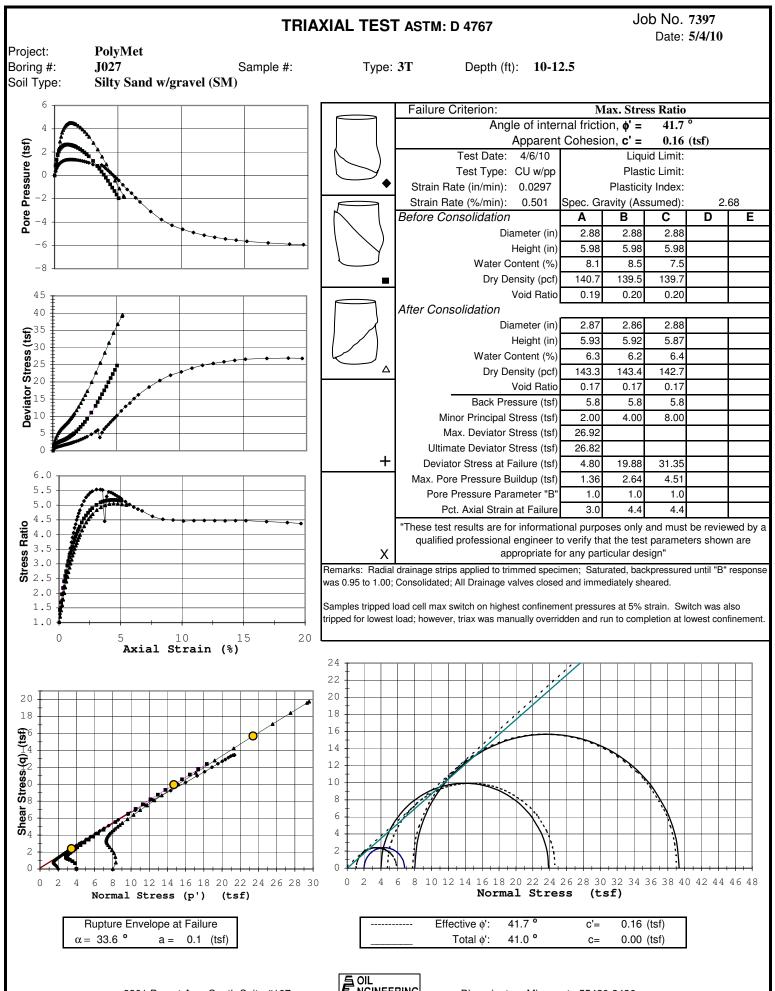



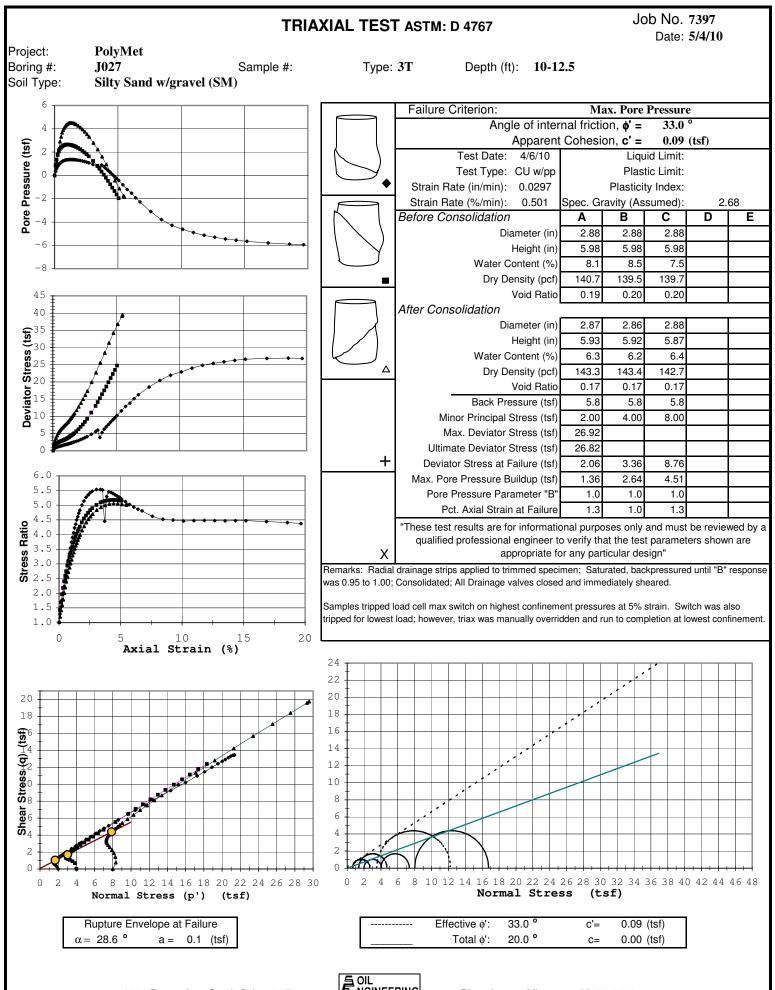



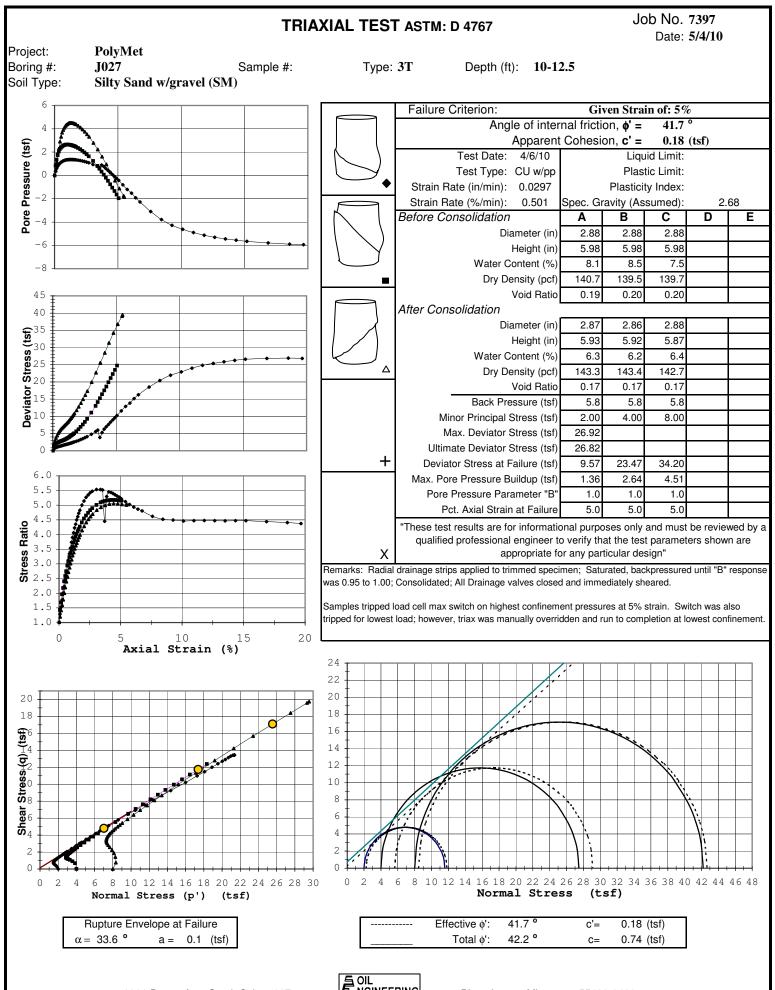

| Boring: J0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triaxial Plot Data<br>15-18                                      |                                                                  | Job: 7397<br>Date: 40303                                         |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| Sample 1                                                         | Sample 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample 3                                                         | Sample 4                                                         | Sample 5                                                         |
| Strain (%)<br>Deviator<br>Stress (tsf)<br>Pore Pressure<br>(tsf) | Strain (%)<br>Deviator<br>Stress (tsf)<br>Pore Pressure<br>(tsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strain (%)<br>Deviator<br>Stress (tsf)<br>Pore Pressure<br>(tsf) | Strain (%)<br>Deviator<br>Stress (tsf)<br>Pore Pressure<br>(tsf) | Strain (%)<br>Deviator<br>Stress (tsf)<br>Pore Pressure<br>(tsf) |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$            | 0.00 $0.00$ $0.00$ $0.00$ $0.12$ $1.93$ $0.39$ $0.24$ $4.09$ $1.01$ $0.36$ $5.80$ $1.54$ $0.49$ $7.29$ $2.07$ $0.61$ $8.85$ $2.40$ $0.73$ $10.18$ $2.61$ $0.85$ $11.35$ $2.73$ $0.97$ $12.75$ $2.76$ $1.09$ $13.97$ $2.73$ $1.22$ $15.20$ $2.66$ $1.34$ $16.58$ $2.54$ $1.46$ $18.01$ $2.38$ $1.58$ $19.27$ $2.21$ $1.70$ $20.70$ $2.01$ $1.82$ $22.18$ $1.77$ $2.07$ $24.81$ $1.32$ $2.19$ $26.36$ $1.04$ $2.31$ $27.78$ $0.77$ $2.43$ $29.01$ $0.53$ $2.67$ $31.57$ $0.01$ $2.92$ $34.25$ $-0.54$ $3.16$ $36.79$ $-1.07$ $3.40$ $39.15$ $-1.57$ $3.48$ $39.75$ $-1.71$ $3.61$ $40.96$ $-1.62$ $3.73$ $42.18$ $-1.89$ $3.85$ $43.16$ $-2.11$ $3.97$ $44.78$ $-2.48$ $4.21$ $45.46$ $-2.64$ $4.33$ $46.06$ $-2.78$ $4.46$ $46.58$ $-2.90$ $4.58$ $47.01$ $-3.02$ $4.70$ $47.31$ $-3.11$ $3.97$ $44.78$ $-2.43$ $5.91$ $44.52$ $-3.38$ $6.16$ $42.18$ <td></td> <td></td> <td></td> |                                                                  |                                                                  |                                                                  |





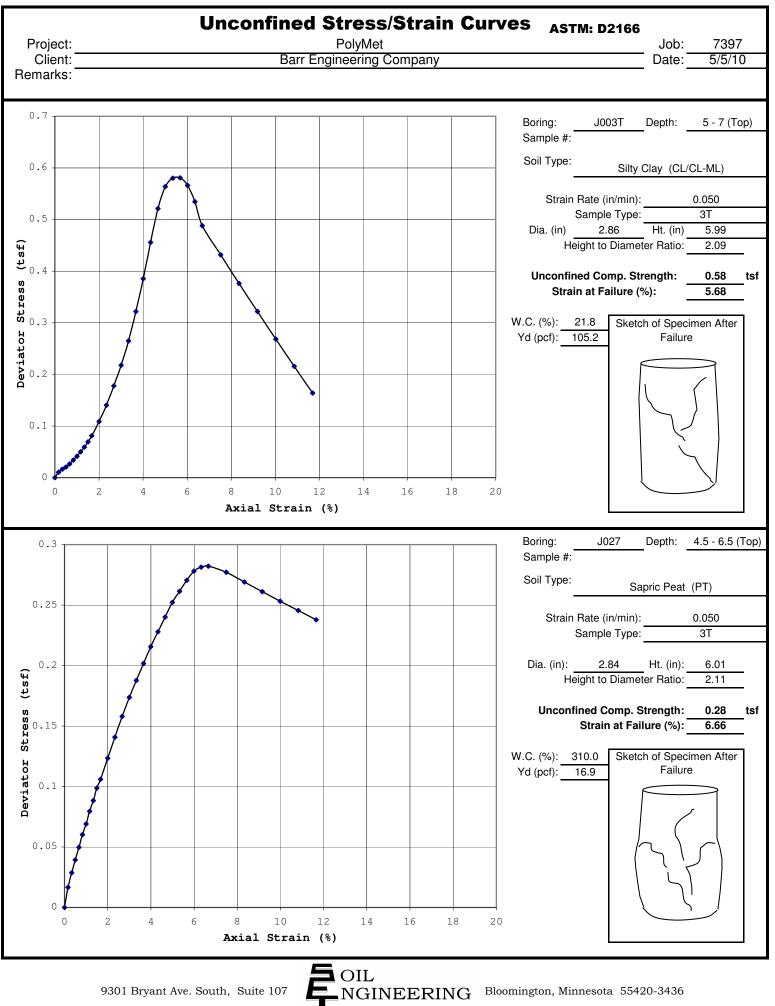




Triaxial Plot Data

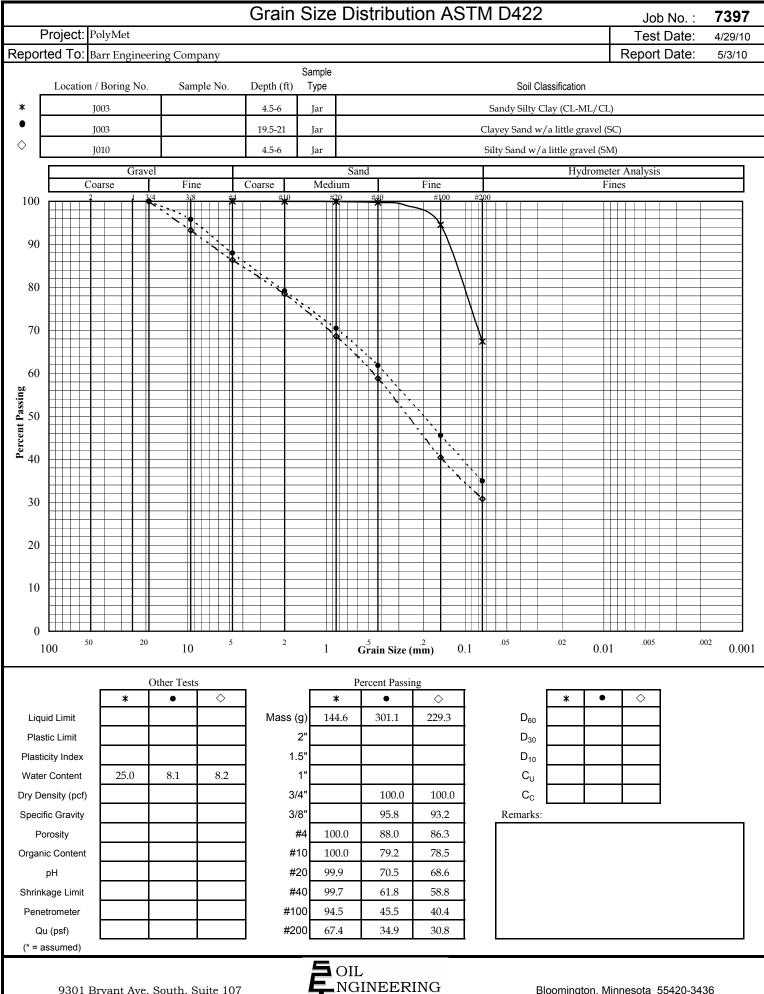
Job: 7397

| Sample 1Sample 2Sample 3Sample 4 $(\frac{8}{8})$ $(\frac{19}{8})$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.12 $1.12$ $0.33$ $0.12$ $1.61$ $0.53$ $0.12$ $2.44$ $0.38$ $0.24$ $1.79$ $0.55$ $0.24$ $2.49$ $0.99$ $0.24$ $3.29$ $0.96$ $0.36$ $2.20$ $0.64$ $0.37$ $3.13$ $1.33$ $0.37$ $4.05$ $1.41$ $0.49$ $2.63$ $0.70$ $0.49$ $3.61$ $1.55$ $0.49$ $4.92$ $2.02$ $0.61$ $3.00$ $0.73$ $0.61$ $4.66$ $1.72$ $0.61$ $5.53$ $2.50$ $0.73$ $3.67$ $0.73$ $4.42$ $1.82$ $0.73$ $5.99$ $2.88$ $0.85$ $3.79$ $0.71$ $0.85$ $4.17$ $1.90$ $0.66$ $6.41$ $3.25$ $0.97$ $4.11$ $0.68$ $0.97$ $5.10$ $1.94$ $0.98$ $6.74$ $3.55$ $0.97$ $4.44$ $0.64$ $1.00$ $5.46$ $1.97$ $1.10$ $7.03$ $3.81$ $1.21$ $4.82$ $0.59$ $1.22$ $5.75$ $1.97$ $1.122$ $7.27$ $4.01$ $1.34$ $5.13$ $0.57$ $1.97$ $1.122$ $7.27$ $4.01$ $1.46$ $6.62$ $1.93$ $1.59$ $7.83$ $4.43$ $1.70$ $6.62$ $1.93$ $1.59$ $7.83$ $4.43$ $1.70$ $6.62$ $1.83$ $1.59$ $7.83$ $4.43$ $1.70$ $6.62$ $1.83$ $1.69$ $4.60$ $1.84$ $6.24$ $8.16$ $4.60$ $1.84$ $6.24$ $8.84$ </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

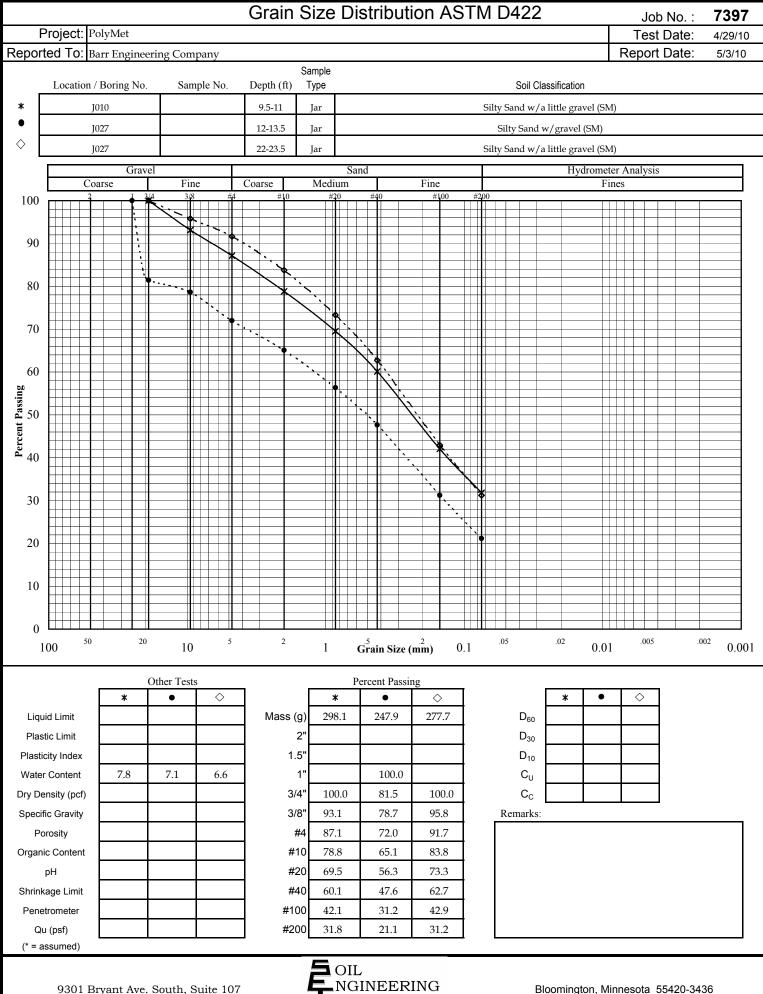






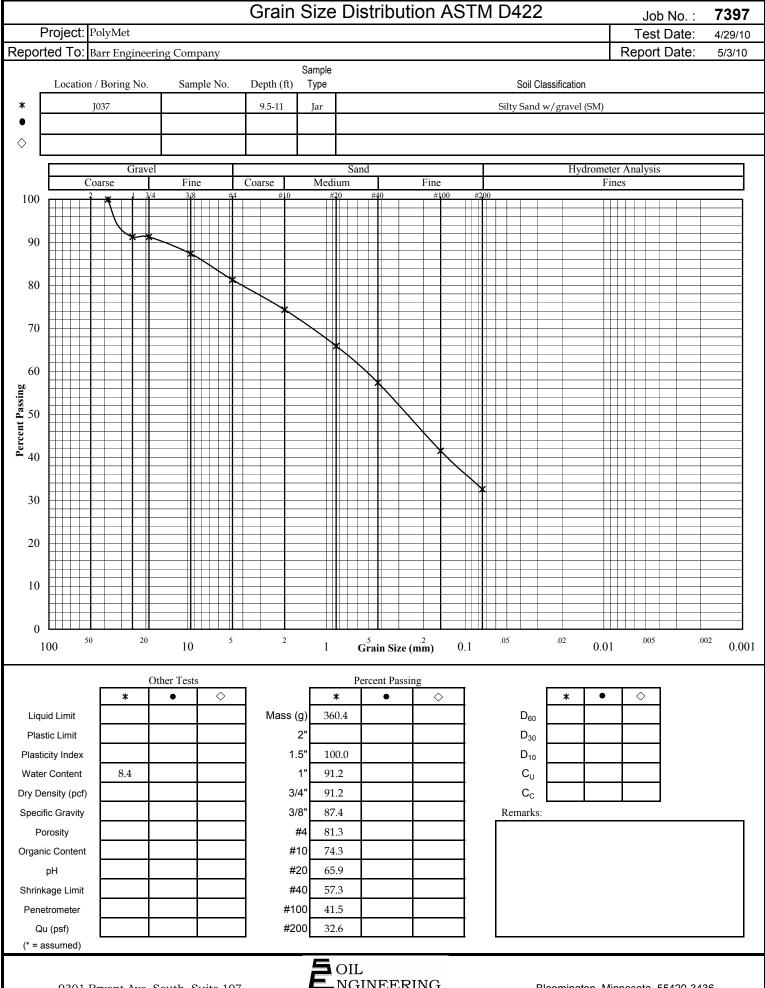

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                  | Triaxi                                                                                                                                                                                                                                                                       | al Plo                                                                                                                                                                                                                                                                             | t Data                                                                                                                                                                                                                                                                    |            |                          |                        | Job:       |                          | 397                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|------------------------|------------|--------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oring:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                          | epth:                                                                                                                                                                                                                                            | 10-1                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |            |                          |                        | Date:      |                          | 2010                   |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S                                                                                                                                                                                                                                                                              | ample                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                  | S                                                                                                                                                                                                                                                                            | ample                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                           |            | Sample                   |                        | S          | ample                    |                        |
| Strain (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Deviator<br>Stress (tsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pore Pressure<br>(tsf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Strain (%)                                                                                                                                                                                                                                                                     | Deviator<br>Stress (tsf)                                                                                                                                                                                                                                                                                 | Pore Pressure<br>(tsf)                                                                                                                                                                                                                           | Strain (%)                                                                                                                                                                                                                                                                   | Deviator<br>Stress (tsf)                                                                                                                                                                                                                                                           | Pore Pressure<br>(tsf)                                                                                                                                                                                                                                                    | Strain (%) | Deviator<br>Stress (tsf) | Pore Pressure<br>(tsf) | Strain (%) | Deviator<br>Stress (tsf) | Pore Pressure<br>(tsf) |
| 0.00<br>0.08<br>0.17<br>0.25<br>0.34<br>0.42<br>0.51<br>0.67<br>0.76<br>0.84<br>0.93<br>1.01<br>1.10<br>1.18<br>1.27<br>1.35<br>1.43<br>1.52<br>1.60<br>1.69<br>2.53<br>2.70<br>3.04<br>3.71<br>3.88<br>4.05<br>4.22<br>4.39<br>5.66<br>5.74<br>6.07<br>6.41<br>6.75<br>7.59<br>8.43<br>9.28<br>10.12<br>10.97<br>11.81<br>12.65<br>13.51<br>13.51<br>12.65<br>13.54<br>10.12<br>10.97<br>11.81<br>12.65<br>13.54<br>15.60<br>5.74<br>6.71<br>6.41<br>15.75<br>15.91<br>12.65<br>13.54<br>15.66<br>5.74<br>6.75<br>7.59<br>8.43<br>9.28<br>10.12<br>10.97<br>11.81<br>12.65<br>13.54<br>15.66<br>14.55<br>15.66<br>15.67<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61<br>15.61 | $\begin{array}{c} 0.48\\ 0.75\\ 0.94\\ 1.08\\ 1.18\\ 1.29\\ 1.37\\ 1.46\\ 1.54\\ 1.63\\ 1.70\\ 1.80\\ 1.88\\ 1.97\\ 2.06\\ 2.15\\ 2.25\\ 2.34\\ 2.44\\ 2.55\\ 2.76\\ 2.99\\ 3.24\\ 3.49\\ 3.80\\ 4.11\\ 4.80\\ 5.56\\ 5.98\\ 3.84\\ 5.30\\ 6.28\\ 6.97\\ 7.63\\ 8.34\\ 8.97\\ 9.57\\ 10.22\\ 11.57\\ 12.90\\ 13.87\\ 15.14\\ 16.26\\ 18.50\\ 20.41\\ 21.96\\ 22.93\\ 23.99\\ 24.81\\ 25.40\\ 20.41\\ 21.96\\ 22.93\\ 23.99\\ 24.81\\ 25.63\\ 26.55\\ 26.59\\ 26.82\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.92\\ 26.9$ | 0.00<br>0.35<br>0.60<br>0.79<br>0.93<br>1.04<br>1.13<br>1.24<br>1.28<br>1.31<br>1.33<br>1.34<br>1.35<br>1.36<br>1.36<br>1.36<br>1.35<br>1.34<br>1.28<br>1.24<br>1.33<br>1.31<br>1.28<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.36<br>1.22<br>-0.81<br>-1.52<br>-1.92<br>-2.27<br>-3.11<br>-5.55<br>-5.55<br>-5.55<br>-5.55<br>-5.579<br>-5.95 | 0.00<br>0.08<br>0.17<br>0.25<br>0.34<br>0.42<br>0.51<br>0.59<br>0.68<br>0.93<br>1.01<br>1.10<br>1.18<br>1.27<br>1.35<br>1.44<br>1.52<br>1.61<br>1.69<br>1.86<br>2.03<br>2.20<br>2.374<br>2.54<br>2.71<br>3.04<br>3.38<br>3.55<br>3.72<br>3.89<br>4.06<br>4.23<br>4.390<br>5.07 | 0.00<br>1.36<br>1.82<br>2.14<br>2.31<br>2.46<br>2.57<br>2.68<br>2.82<br>2.93<br>3.07<br>3.22<br>3.36<br>3.52<br>4.35<br>4.59<br>4.80<br>5.08<br>5.63<br>6.24<br>6.91<br>7.62<br>8.39<br>9.25<br>11.06<br>13.03<br>14.14<br>15.24<br>16.40<br>17.50<br>18.64<br>19.88<br>21.11<br>22.26<br>23.47<br>24.74 | 0.00<br>0.84<br>1.35<br>1.78<br>2.04<br>2.25<br>2.38<br>2.47<br>2.55<br>2.59<br>2.62<br>2.64<br>2.64<br>2.63<br>2.62<br>2.59<br>2.45<br>2.35<br>2.24<br>2.11<br>1.96<br>1.81<br>1.63<br>1.24<br>0.32<br>0.06<br>-0.20<br>-0.46<br>-1.34<br>-1.96 | 0.00<br>0.09<br>0.17<br>0.26<br>0.34<br>0.61<br>0.60<br>0.68<br>0.77<br>0.85<br>0.94<br>1.02<br>1.11<br>1.19<br>1.28<br>1.36<br>1.45<br>1.62<br>1.70<br>1.88<br>2.05<br>2.22<br>2.39<br>2.56<br>2.73<br>3.07<br>3.41<br>3.75<br>4.09<br>4.43<br>4.77<br>5.12<br>5.46<br>5.50 | 0.00<br>1.50<br>2.84<br>3.73<br>4.44<br>5.13<br>5.62<br>6.05<br>6.41<br>6.72<br>7.05<br>7.37<br>7.68<br>8.05<br>8.36<br>8.76<br>9.15<br>9.51<br>9.96<br>10.38<br>10.83<br>11.74<br>12.77<br>13.87<br>14.99<br>16.19<br>17.36<br>22.68<br>25.58<br>28.46<br>31.35<br>39.46<br>39.46 | 0.00<br>0.41<br>1.14<br>1.75<br>2.30<br>2.90<br>3.31<br>3.66<br>3.91<br>4.09<br>4.24<br>4.34<br>4.41<br>4.47<br>4.50<br>4.51<br>4.49<br>4.46<br>4.43<br>4.26<br>4.11<br>3.93<br>3.74<br>3.52<br>3.31<br>2.79<br>2.23<br>1.60<br>0.95<br>0.266<br>-0.466<br>-1.13<br>-1.83 |            |                          |                        |            |                          |                        |




ESTING, INC.

|                                         |                                                   | Hydrau                                        | lic Conduc                           | ctivity Test                                               | Data |       |          |
|-----------------------------------------|---------------------------------------------------|-----------------------------------------------|--------------------------------------|------------------------------------------------------------|------|-------|----------|
| Project:                                |                                                   |                                               | PolyMet                              |                                                            |      | Date: | 5/5/2010 |
| Reported To:                            |                                                   | Barr Engineering Company                      |                                      |                                                            |      |       |          |
| Boring No.:                             | J003                                              | J010                                          | J010                                 | J027                                                       |      |       |          |
| Sample No.:                             |                                                   |                                               |                                      |                                                            |      |       |          |
| Depth (ft)                              | 10-13                                             | 5.5-8 (mid)                                   | 14-16.5 (mid)                        | 4.5-6.5                                                    |      |       |          |
|                                         |                                                   |                                               |                                      |                                                            |      |       |          |
| Location:                               |                                                   |                                               |                                      |                                                            |      |       |          |
| Sample Type:                            | 3Т                                                | 3Т                                            | ЗT                                   | 3Т                                                         |      |       |          |
| Soil Type:                              | Silty Clayey Sand<br>w/gravel, gray<br>(SC-SM/SM) | Silty Sand w/a<br>little gravel<br>(SM/SC-SM) | Silty Sand<br>w/gravel<br>(SM/SC-SM) | Sapric Peat w/a<br>few pieces of<br>stems and wood<br>(PT) |      |       |          |
| Atterberg Limits                        |                                                   |                                               |                                      |                                                            |      |       |          |
| LL                                      |                                                   |                                               |                                      |                                                            |      |       |          |
| PL                                      |                                                   |                                               |                                      |                                                            |      |       |          |
| PI                                      |                                                   |                                               |                                      |                                                            |      |       |          |
| Permeability Test                       | Undisturbed                                       | Undisturbed                                   | Undisturbed                          | Undisturbed                                                |      |       |          |
| Saturation %:<br>Porosity:<br>Ht. (in): |                                                   |                                               |                                      |                                                            |      |       |          |
| Porosity:                               |                                                   |                                               |                                      |                                                            |      |       |          |
| ರ Ht. (in):<br>ಹ                        | 3.31                                              | 2.87                                          | 3.00                                 | 3.42                                                       |      |       |          |
| Dia. (in):                              | 2.89                                              | 2.87                                          | 2.86                                 | 2.82                                                       |      |       |          |
| Dry Density (pcf):                      | 134.2                                             | 134.7                                         | 138.1                                | 16.0                                                       |      |       |          |
| <sup>III</sup> Water Content:           | 9.0%                                              | 11.2%                                         | 8.1%                                 | 327.6%                                                     |      |       |          |
| Test Type:                              | Falling                                           | Falling                                       | Falling                              | Falling                                                    |      |       |          |
| Max Head (ft):<br>Confining press.      | 5.0                                               | 5.0                                           | 5.0                                  | 5.0                                                        |      |       |          |
| (Effective-psi):                        | 2.0                                               | 2.0                                           | 2.0                                  | 2.0                                                        |      |       |          |
| Trial No.:                              | 12-16                                             | 3-7                                           | 6-10                                 | 7-11                                                       |      |       |          |
| Water Temp °C:                          | 22.0                                              | 22.0                                          | 22.0                                 | 21.0                                                       |      |       |          |
| % Compaction                            |                                                   |                                               |                                      |                                                            |      |       |          |
| % Saturation<br>(After Test)            | 99.4%                                             | 99.1%                                         | 99.4%                                |                                                            |      |       |          |
|                                         | 00.770                                            |                                               | Coefficient of I                     | Permeability                                               |      |       |          |
| K @ 20 °C (cm/sec)                      | 3.1 x 10 <sup>-7</sup>                            | 4.7 x 10 <sup>-7</sup>                        | 9.4 x 10 <sup>-7</sup>               | 3.6 x 10 <sup>-7</sup>                                     |      |       |          |
| K @ 20 °C (ft/min)                      | 6.2 x 10 <sup>-7</sup>                            | 9.3 x 10 <sup>-7</sup>                        | 1.8 x 10 <sup>-6</sup>               | 7.0 x 10 <sup>-7</sup>                                     |      |       |          |
| Notes:                                  |                                                   |                                               |                                      |                                                            |      |       |          |








ESTING, INC.

9301 Bryant Ave. South, Suite 107

Bloomington, Minnesota 55420-3436





| Project:             |                     | Poly                                               | rmet          |              | Job:     | <u>7397</u>   |
|----------------------|---------------------|----------------------------------------------------|---------------|--------------|----------|---------------|
| Client:              |                     | Barr Engineer                                      |               |              | Date:    | <u>5/3/10</u> |
|                      |                     |                                                    |               |              |          |               |
|                      |                     | Sample Info                                        | ormation & Cl | assification | <u>г</u> |               |
| Boring No.           | J003                | J027                                               |               |              |          |               |
| Sample No.           |                     |                                                    |               |              |          |               |
| Depth                | 0-2                 | 4.5-6                                              |               |              |          |               |
| Sample Type          | Jar                 | Jar                                                |               |              |          |               |
|                      | Sapric Peat<br>(PT) | Sapric Peat w/a<br>few pieces of<br>stems and wood |               |              |          |               |
| Classification       |                     | (PT)                                               |               |              |          |               |
| Noisture Content (%) | 328.7               | 287.3                                              |               |              |          |               |
|                      |                     | Organic                                            | Content (AST  | M:D2974)     |          |               |
| Organic Content (%)  | 40.6                | 52.8                                               |               |              |          |               |
| Organic Content (%)  | 40.6                | 52.8                                               |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |
|                      |                     |                                                    |               |              |          |               |

Г



1

Attachment F

Depth to Bedrock Boring ID and Coordinate Location

| ID                 | Easting                | Northing             | Depth (ft) |
|--------------------|------------------------|----------------------|------------|
| 26024              | 2899039.8              | 736964               | 40         |
| 07-551C            | 2897364.3              | 735116.6             | 17.6       |
| 10-571C            | 2895923.4              | 734404.5             | 30.4       |
| 10-572C            | 2896441.8              | 734404.9             | 11.7       |
| 10-573C            | 2898280.8              | 737636.9             | 9.5        |
| 10-574C            | 2897307.4              | 735649               | 17.7       |
| MW-05-09           | 2898244.9              | 737485               | 13         |
| SB-05-10           | 2898269                | 738706               | 4          |
| TGP-4              | 2896257.1              | 734678.1             | 13.5       |
| TGP-5              | 2895791.3              | 734529.8             | 14         |
| TGP-6              | 2895633.1              | 735044.8             | 20         |
| V06-126            | 2903006.8              | 740029.6             | 19         |
| V06-128            | 2902328.4              | 739385.5             | 17         |
| V06-120            | 2901635.8              | 739460.1             | 12         |
| V06-131            | 2901651.5              | 740054.1             | 17         |
| V06-132            | 2900980.5              | 738724.1             | 17         |
| V06-137            | 2901002.6              | 739383.7             | 11         |
| V06-137            | 2901064.1              | 739987.6             | 9          |
| V06-140            | 2900373.5              | 738680.6             | 7          |
| V06-140            | 2900375.5              | 739320.6             | 8          |
| V06-141            | 2899740.1              | 738699.5             | 9          |
| V06-144<br>V06-145 | 2899740.1              | 739339.4             |            |
|                    |                        |                      | 17         |
| V06-65             | 2895040.6              | 733961.1             | 17         |
| V06-66             | 2894289.1              | 733983               | 13         |
| V06-67             | 2894284.9              | 734606.5             |            |
| V06-70<br>V06-72   | 2895664.2              | 733902.8             | 28<br>19   |
| V06-72<br>V06-73   | 2896411.4<br>2895535.3 | 734609.4             | 13         |
|                    |                        | 734559               |            |
| V06-74<br>V06-75   | 2895036.4              | 734669.9<br>735259.9 | 10<br>4    |
|                    | 2896998                |                      | -          |
| V06-78             | 2895002.7              | 735273.7             | 18         |
| V06-79             | 2896983.9              | 735968.8             | 9<br>21    |
| V06-80             | 2896344.1              | 735918.7             |            |
| V06-82             | 2895031.4              | 735900.5             | 21         |
| V06-83             | 2894388.2              | 735922.6             | 13         |
| V06-84             | 2894346.5              | 735203.9             | 27         |
| V06-85             | 2896399                | 736555.4             | 6          |
| V06-86             | 2895690.2              | 736557.7             | 11         |
| V06-87             | 2895043.7              | 736550.3             | 16         |
| V06-89             | 2896293.1              | 737208.3             | 7          |
| V06-90             | 2896936.3              | 737202.6             | 5          |
| V06-91             | 2896943.8              | 736543               | 10         |
| V06-92             | 2897554.1              | 736583.2             | 7          |
| V06-93             | 2897594.4              | 735881               | 8          |
| V06-94             | 2898224.5              | 735826               | 6          |
| V06-95             | 2897588.7              | 735241               | 18         |
| V06-96             | 2898243.3              | 736515.2             | 23         |
| V06-98             | 2898091.5              | 737122.1             | 30         |



# Table 1Depth to Bedrock Data - Category 1 Stockpile

| ID     | Easting   | Northing | Depth (ft) |
|--------|-----------|----------|------------|
| V07-01 | 2899023.2 | 737353   | 23         |
| V07-02 | 2898514.5 | 737381.9 | 38         |
| V07-03 | 2899061.7 | 738058.6 | 8          |
| V07-04 | 2898428.3 | 738084.1 | 5          |
| V07-05 | 2897726   | 738056.9 | 14         |
| V07-06 | 2897023.8 | 738003.4 | 9          |
| V07-11 | 2898325.7 | 738674.6 | 6          |
| V07-12 | 2899051   | 738695.3 | 11         |
| V07-63 | 2900915.3 | 738386   | 8          |



| ID      | Easting   | Northing | Depth (ft) |
|---------|-----------|----------|------------|
| RS-17B  | 2907889.1 | 737407.6 | 11         |
| TGP-10  | 2909310.1 | 738095.3 | 8          |
| TGP-11  | 2910688.5 | 738008.6 | 6          |
| TGP-12  | 2909910.3 | 738355.4 | 5          |
| TGP-13  | 2909796.2 | 737784.2 | 9          |
| TGP-14  | 2909274.6 | 737622.7 | 3.5        |
| TGP-15  | 2907926.4 | 737200.9 | 11.5       |
| TGP-8   | 2908447.1 | 738022   | 4.5        |
| TGP-9   | 2908811.7 | 737792.8 | 8.5        |
| V06-01  | 2907933.1 | 737148.4 | 7          |
| V06-02  | 2908129.2 | 737729.5 | 1.5        |
| V06-03  | 2908513.2 | 737697.2 | 1          |
| V06-05  | 2909041.7 | 737533.8 | 18         |
| V06-06  | 2909041.1 | 738012.9 | 2          |
| V06-07  | 2909056.9 | 738456   | 5          |
| V06-101 | 2912232.7 | 739073.9 | 3          |
| V06-102 | 2912313.9 | 739684.4 | 1          |
| V06-110 | 2908769   | 737819   | 2          |
| V06-117 | 2908673.8 | 737815.6 | 5          |
| V06-12  | 2909786.3 | 737774.4 | 9          |
| V06-13  | 2909749.7 | 738200.9 | 16         |
| V06-16  | 2910334.1 | 737965.5 | 9          |
| V06-17  | 2910399   | 738513.6 | 2          |
| V06-30  | 2911731.7 | 738223.3 | 1          |
| V06-31  | 2911780   | 738912.5 | 1          |
| V06-32  | 2911071.3 | 738842.6 | 4.5        |
| V06-33  | 2911003.2 | 738222.3 | 6          |
| V06-37  | 2912981.5 | 738638.4 | 3          |
| V06-38  | 2912944.6 | 739173.3 | 24         |
| V06-39  | 2912963.5 | 739757.4 | 16         |
| V06-54  | 2912322   | 738499.7 | 1          |





| ID       | Easting   | Northing | Depth (ft) |
|----------|-----------|----------|------------|
| 26013    | 2903513.3 | 738815.5 | 8.7        |
| 26033    | 2903830.1 | 738320   | 8          |
| 26038    | 2902726.9 | 738789.4 | 9          |
| 26046    | 2903147.7 | 738180   | 5          |
| 26060    | 2903516.8 | 738812   | 10         |
| 00-327C  | 2903150.4 | 738883   | 5          |
| 00-329B  | 2902373   | 738564   | 13         |
| 00-330C  | 2903328.7 | 738664.9 | 5          |
| 00-333B  | 2902433.3 | 738668   | 10         |
| 00-335B  | 2902623.2 | 738332.7 | 17         |
| 00-336B  | 2902833.4 | 738642   | 11         |
| 00-338B  | 2902900.8 | 738360   | 11         |
| 00-343C  | 2903797.2 | 739094   | 7          |
| 00-357C  | 2902886.5 | 738494   | 5          |
| 05-447G  | 2902809.4 | 737893.4 | 10.8       |
| 07-557C  | 2903638.4 | 738135   | 9          |
| 99-301B  | 2902879.4 | 738507   | 8.5        |
| 99-302B  | 2904215.9 | 738942   | 9          |
| 99-303B  | 2902503.6 | 738527   | 14         |
| 99-305BC | 2903421.5 | 738283.3 | 9          |
| 99-306B  | 2904003.4 | 738854   | 11         |
| 99-314B  | 2903067.8 | 739052   | 7          |
| 99-315B  | 2903635.2 | 739307   | 28         |
| 99-316B  | 2903380.4 | 739094   | 15         |
| 99-318C  | 2903736.5 | 738538   | 10         |
| 99-320C  | 2903377.2 | 738396   | 10         |
| RS-05A   | 2902806.1 | 737941.6 | 13         |
| RS-12    | 2903622.1 | 739320.2 | 22         |
| V07-09   | 2903297.4 | 738671.4 | 5          |





# Table 4Depth to Bedrock Data - Ore Surge Pile

| ID     | Easting   | Northing | Depth (ft) |
|--------|-----------|----------|------------|
| 26075  | 2905238   | 736082   | 6          |
| RS-18A | 2904940.5 | 736178.5 | 8          |
| V06-23 | 2905971.6 | 736459.9 | 8.5        |
| V06-24 | 2905987.3 | 736948.9 | 8          |
| V07-77 | 2905558.9 | 735875.2 | 9          |



Attachment G

**Underdrain Design Computations** 



NorthMet Project

Underdrain Design

| Made by    | EF                |
|------------|-------------------|
| Checked by | <sup>y</sup> GG   |
| Approved   | <sup>by</sup> BRB |

| Job No   | 083-2209   |
|----------|------------|
| Date     | 09/11/2008 |
| Sheet No | ' 1 of 8   |

# **OBJECTIVE:**

The objective is to estimate the required underdrain pipe sizes capable of accommodating seepage flows due to consolidation of subgrade materials when subjected to waste rock loading. Four cases were analyzed:

- Case 1: A double drained layer assuming relatively pervious fractured bedrock and a hydraulic conductivity of subgrade soils of  $1 \times 10^{-7}$  cm/sec.
- Case 2: A single drained layer assuming impervious bedrock surface and a hydraulic conductivity of subgrade soils of  $1 \times 10^{-7}$  cm/sec.
- Case 3: A double drained layer with a hydraulic conductivity of subgrade soils of  $1 \times 10^{-5}$  cm/sec.
- Case 4: A single drained layer with a subgrade soils hydraulic conductivity of  $1 \times 10^{-5}$  cm/sec.

# **GIVEN:**

- Maximum depth to bedrock (see Attachment 2).
- Maximum height of stockpile fill year 1, year 5 and year 20 (see Attachment 2).
- Underdrain pipe layout configuration.

# **GEOMETRY:**

• Figure 1 shows the depth to bedrock isopach map and site layout.

# MATERIAL PROPERTIES:

• The parameters presented in Table 1 were used for the underdrain calculations.

# Table 1Material Parameters

| Case     | Parameter                                                | Value |
|----------|----------------------------------------------------------|-------|
| 1 and 2  | Consolidation coefficient $(C_v) (m^2/day)^1$            | 0.075 |
| 1 thru 4 | Rock waste unit weight (kN/m <sup>3</sup> ) <sup>1</sup> | 19.98 |
| 1 thru 4 | Manning (ASD N-12) <sup>2</sup>                          | 0.012 |

<sup>1</sup> per Golder (2006) <sup>2</sup> ASD (2007)



NorthMet Project

Made by EF Checked by GG Approved by BRB

| Job No   | 083-2209   |
|----------|------------|
| Date     | 09/11/2008 |
| Sheet No | 2 of 8     |

### **METHOD:**

### Flow Rate Calculation

The seepage flow from the compressible soil layer can be calculated from Darcy's equation:

$$v = -K_s \,\frac{\partial h}{\partial z} \tag{1}$$

where: v = water flux;

 $K_s$  = coefficient of permeability; and  $\partial h/\partial z$  = hydraulic gradient in the z direction.

The pressure head can be calculated from the developed pore water pressure:

$$h = \frac{u}{\gamma_w} \tag{2}$$

where: h = total head;u = average pressure; and

 $\gamma_w$  = water unit weight

One can utilize Terzaghi's consolidation theory to determine the pore pressure distribution within a compressible soil layer as:

$$u = \sum_{n=1}^{n=\infty} \left(\frac{1}{H} \int_0^{2H} u_i \sin\frac{n \pi z}{2H} dz\right) \sin\left(\frac{n \pi z}{2H}\right) \exp\left(\frac{-n^2 \pi^2 T_v}{4}\right)$$
(3)

where: u = pore pressure;

H = length of the longest drainage path;

 $n=\ 2m+1$ 

- z =location of point of evaluation in the z direction; and
- $T_{v}$  = nondimensional time factor is equal to  $C_{v} t / H^{2}$ , where  $C_{v}$  is the coefficient of consolidation and t is time.

|            | Subject PolyMet Mining | Made by EF      | Job No 083-2209 |
|------------|------------------------|-----------------|-----------------|
| Golder     | NorthMet Project       | Checked by GG   | Date 09/11/2008 |
| Associates | Underdrain Design      | Approved by BRB | Sheet No 3 of 8 |

For the case of a constant water pressure with depth, Equation 3 can be simplified to (Das 1997):

$$u_{(z,t)} = \sum_{m=0}^{m=\infty} \frac{2u_0}{M} \sin\left(\frac{M z}{H}\right) \exp(-M^2 T_v)$$
(4)

where:  $u_0 = \text{initial water pore pressure}$ M = (2m + 1)  $\pi/2$ 

Combining Equations 1, 2, and 4, one obtains the expression for Darcy's velocity as:

$$v_{(z,t)} = -\frac{Ks}{\gamma_w} \sum_{m=1}^{m=\infty} \frac{2 u_0}{H} \cos\left(\frac{M z}{H}\right) \exp(-M^2 T_v)$$
(5)

For Case 1, where a double drained layer is assumed, the length of the longest drainage path (H) is equal to half of the total layer thickness. For Case 2, where a single drainage path is considered, the length of the longest drainage path (H) is equal to the total thickness of the compressible layer.

A flow rate reporting to a single underdrain pipe can be approximated as:

$$q = v_{(0,t)} A \tag{6}$$

where: q = flow rate;

 $v_{(0,t)}$  = water flux at z=0; and

A= loading area reporting to a single underdrain pipe;

Equation 6 was used to determine required underdrain pipe capacities.

#### Selection of Equivalent Loading Time

Equations 5 and 6 assume instantaneous loading scenarios. In reality, the waste rock stockpiles are loaded gradually. Therefore, underdrain flows were determined for an equivalent loading time, the time expected to provide an estimate of a maximum seepage flow reporting to an underdrain pipe over the loading area under consideration. The following procedure was used to calculate the equivalent loading time in (days):

- Estimate the waste rock stockpile footprint;
- Calculate the area per day required to cover the waste rock stockpile footprint for the years 1, 5, 10, 15, and 20. The following equation was used:

 $area per day = \frac{waste rock stockpile total area for the evaluated year}{number of days required to cover the area for the evaluated year}$ 



NorthMet Project

| Made by   | EF                |
|-----------|-------------------|
| Checked b | y GG              |
| Approved  | <sup>by</sup> BRB |

| Job No   | 083-2209   |
|----------|------------|
| Date     | 09/11/2008 |
| Sheet No | 4 of 8     |

• Estimate the tertiary underdrain pipe tributary area (i.e., loading area reporting to a single tertiary pipe).

tributary area = maximum pipe length x maximum pipe spacing

• The number of days (equivalent loading time) required to cover the tributary area of an underdrain pipe is calculated by:

number of days 
$$=$$
  $\frac{\text{tributary area}}{\text{area per day}}$ 

• Both cumulative tertiary pipe flows and the corresponding tributary areas for years 1, 5, 10, 15, and 20 were considered for the primary and secondary pipe sizing.

#### **Discharge Rate Calculation**

Discharge rates were calculated from the Manning's equation:

$$Q = \frac{1.486 \, A \, R^{2/3} \, S^{1/2}}{n} \tag{7}$$

where: Q = pipe capacity (cfs);

*n* = Manning's "n";

A = cross-sectional flow area of the pipe  $(ft^2)$ ;

R = hydraulic radius (ft), where R = A/P, P is the wetted perimeter in ft;

S = pipe slope (feet/foot)

For a specific full-flowing pipe the parameters n, A, and R could be defined as constants. The conveyance factor for a specific pipe size can then be defined as:

$$k = \frac{1.486 \, A \, R^{2/3}}{n} \tag{8}$$

After substituting Equation 8 in Equation 7, Manning's formula can be reduced to:

$$Q = k S^{1/2}$$
 (9)



| Subject | PolyMet Mining |
|---------|----------------|
| Northl  | Met Project    |
| Under   | drain Design   |

| Made by    | EF                |
|------------|-------------------|
| Checked by | GG                |
| Approved b | <sup>yy</sup> BRB |

| Job No   | 083-2209   |
|----------|------------|
| Date     | 09/11/2008 |
| Sheet No | 5 of 8     |

Equation 9 can be written as:

$$k = \frac{Q}{S^{1/2}} \tag{10}$$

Attachment 3 shows the conveyance factor for different pipe sizes (ADS, 2007).

# <u>Tertiary Underdrain Pipes</u>

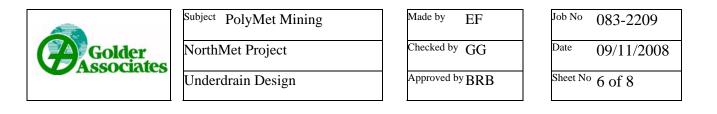
The tertiary underdrain pipes were designed based on:

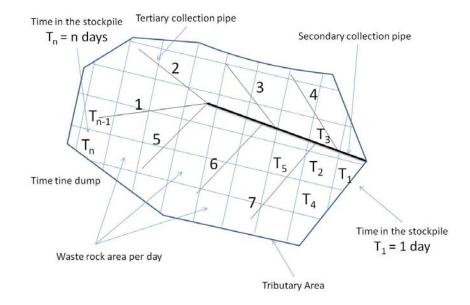
- The tributary area (e.g 350 ft x 100 ft); and
- The flux rate at the calculated equivalent loading time (equal to the number of days required to cover the tributary area for a single underdrain pipe).

#### Secondary Underdrain Collector Pipes

The secondary underdrain pipes were designed to accommodate the time-variant flux from the tertiary underdrain pipes. The flow was calculated using the loading rate required to cover the corresponding stockpile footprint and the time required to load the corresponding tributary area:

$$Q_{secondary} = Av_{(0,T1)} + Av_{(0,T2)} \dots + Av_{(0,Tn-1)} + Av_{(0,Tn)}$$
(11)


$$Q_{secondary} = A \sum_{T=1 \, day}^{T=n \, days} v_{(0,T)}$$
(12)


where:

 $Q_{secondary} =$  water flow in the secondary pipe (volume per day); A = calculated loading rate (area per day) required to cover the waste rock stockpile footprint under consideration in N years;  $v_{(0,T)} =$  calculated seepage rate at time T and Z=0 (see Equation 5);

The number of days "n" can be calculated from the following expression:

number of days = 
$$\frac{\text{tributary area}}{\text{area per day}}$$





The tributary area "A" can be estimated by multiplying the tertiary pipe spacing (100 ft) with the total length of tertiary pipes.

#### ASSUMPTIONS:

- Minimum drain pipe slope 0.5%;
- Compressible subgrade soil layer is homogenous;
- The compressible subgrade soil layer is saturated;
- Darcy's law is valid;
- The coefficient of consolidation  $C_v$  is constant during the consolidation;
- A factor of safety (FS) of 1.2 will be applied to the capacity of pipes;
- The maximum length for the Category 1 Stockpile tertiary underdrain pipe is 350 feet;
- The maximum pipe length for the waste rock stockpile tertiary underdrain collector pipe is 256 feet except for Category 1 Stockpile;
- The maximum spacing between tertiary underdrain pipes is 100 feet;
- The parameters in Table 2 were used for seepage calculations and underdrain pipe sizing.



NorthMet Project

Underdrain Design

Made by EF Checked by GG Approved by BRB

| Job No   | 083-2209   |
|----------|------------|
| Date     | 09/11/2008 |
| Sheet No | 7 of 8     |

# Table 2Assumed Material Parameters for Calculations

| Case    | Parameter                                                 |                    |
|---------|-----------------------------------------------------------|--------------------|
| 1 and 2 | Consolidation coefficient $(C_v) (m^2/day)^1$             | 0.075              |
| 1 and 2 | Soil Hydraulic Conductivity (Ks) (cm/sec)                 | $1 \times 10^{-7}$ |
| 3 and 4 | Consolidation coefficient ( $C_v$ ) (m <sup>2</sup> /day) | 0.058              |
| 3 and 4 | Soil Hydraulic Conductivity (Ks) (cm/sec)                 | 1x10 <sup>-5</sup> |

# **CALCULATIONS:**

#### **Flow Rate Calculation**

Flow rate calculations for each considered case are shown in the following attachments:

| ٠ | Attachment 4-1:   | Case 1 and Case 2, Category 1 Stockpile, year 1;  |
|---|-------------------|---------------------------------------------------|
| • | Attachment 4-1-1: | Case 1 and Case 2, Category 1 Stockpile, year 20; |
| • | Attachment 4-2:   | Case 3 and Case 4, Category 1 Stockpile, year 1;  |
| • | Attachment 4-2-1: | Case 3 and Case 4, Category 1 Stockpile, year 20; |
|   |                   |                                                   |

- Attachment 4-3: Case 1 and Case 2, Ore Surge Pile, year 1;
- Attachment 4-4: Case 3 and Case 4, Ore Surge Pile, year 1;
- Attachment 4-5: Case 1 and Case 2, Category 4 Stockpile, year 1;
- Attachment 4-5-1: Case 1 and Case 2, Category 4 Stockpile, year 20;
- Attachment 4-6: Case 3 and Case 4, Category 4 Stockpile, year 1;
- Attachment 4-6-1: Case 3 and Case 4, Category 4 Stockpile, year 20;
- Attachment 4-9: Case 1 and Case 2, Category 2/3 Stockpile, year 1;
- Attachment 4-9-1: Case 1 and Case 2, Category 2/3 Stockpile, year 20;
- Attachment 4-10: Case 3 and Case 4, Category 2/3 Stockpile, year 1;
- Attachment 4-10-1: Case 3 and Case 4, Category 2/3 Stockpile, year 20;



NorthMet Project

Underdrain Design

Made by EF Checked by GG Approved by BRB 
 Job No
 083-2209

 Date
 09/11/2008

 Sheet No
 8 of 8

# **Time Selection**

• The equivalent loading time calculations are shown in Attachment 5.

# <u>Tertiary Underdrain Pipes</u>

Detailed calculations used for the tertiary underdrain pipe sizing are enclosed as:

- Attachment 6-1: Calculations for  $Ks=1x10^{-7}$  cm/sec;
- Attachment 6-2: Calculations for  $Ks = 1x10^{-5}$  cm/sec.

# **Primary and Secondary Underdrain Pipes**

The primary and secondary underdrain pipes will be laid approximately perpendicular to the stockpile liner contours. The pipes were sized to collect the inflows from the corresponding tributary areas as shown in the following Attachments:

- Attachment 7-1: Category 1 Stockpile, year 1;
- Attachment 7-2 Ore Surge Pile, year 1;
- Attachment 7-3: Category 4 Stockpile, year 1;
- Attachment 7-5: Category 2/3 Stockpile, year 1;

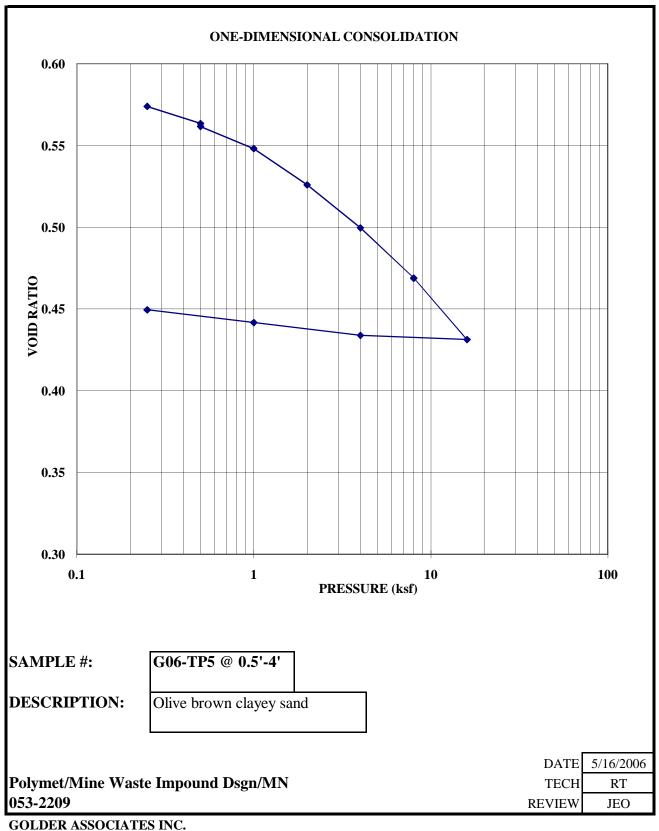
# **RESULTS:**

Calculations indicate that Case 4 is critical for the tertiary pipe sizing. The calculated pipe diameter varies from 6-inch to 18-inch.

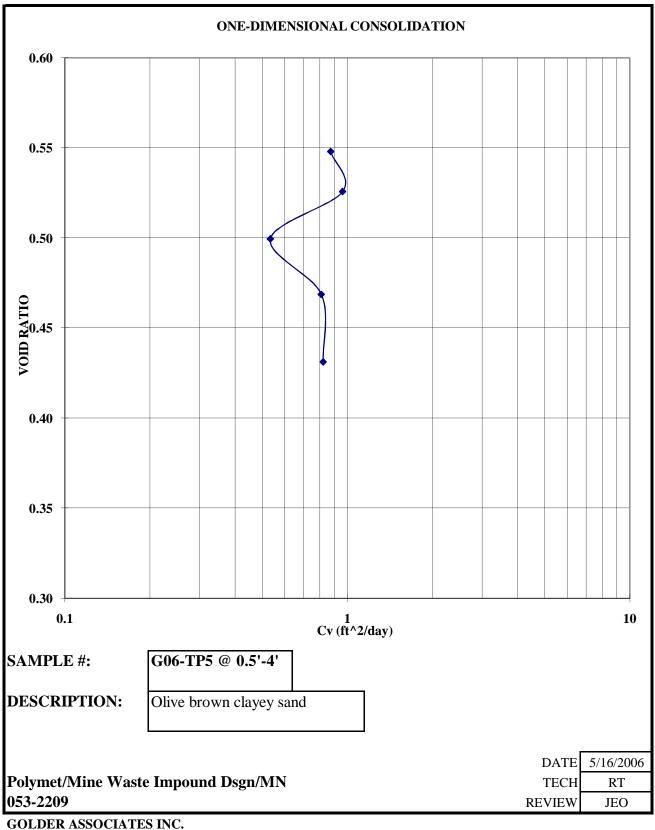
# **REFERENCES:**

Das, B. M. (1997). Advanced soil mechanics, Taylor & Francis, Washington, DC.

Advanced Drainage Systems, Inc. ADS (2007). Section 3 - Drainage handbook, Ohio. August, 2007.


# **ATTACHMENT 1**

# **CONSOLIDATION PARAMETERS**


# **ONE-DIMENSIONAL CONSOLIDATION**

ASTM D 2435

| Polymet/Mine Waste Impound Dsgn/MN<br>953-2209 |                                                                                                                                                                               | S         | SAMPLE:                                                                                                                      | G06-TP5           | @ 0.5'-4'                   |                                                                                                                              |                      |                                              | DATE<br>TECH<br>REVIEW | 5/16/200<br>RT<br>JEO           |            |       |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|------------------------|---------------------------------|------------|-------|
|                                                | SAMPLE D                                                                                                                                                                      | ATA, GENE | RAL                                                                                                                          |                   | SAMPLE DATA, INITIAL        |                                                                                                                              |                      |                                              | SAMPLE DATA, FINAL     |                                 |            |       |
|                                                | height (in) $1.075$ diameter (in) $1.928$ area (in^2) $2.919$ volume (in^3) $3.138$ specimen weight,wet (g) $104.82$ specimen weight,dry (g) $87.67$ water weight (g) $17.15$ |           | total height (in)<br>height of solids (in)<br>height of voids (in)<br>void ratio<br>dry density (pcf)<br>moist density (pcf) |                   |                             | 1.075total height (in0.678height of solid0.397height of voids0.585void ratio106.2dry density (point127.2moist density (point |                      | ds (in) 0.678<br>ds (in) 0.304<br>pcf) 116.5 |                        |                                 |            |       |
|                                                | DESCRIPTI                                                                                                                                                                     | ON        |                                                                                                                              |                   | MOISTURE                    | E CONTENT                                                                                                                    |                      | MOISTURE CONTENT, FINAL                      |                        |                                 |            |       |
| Ĩ                                              |                                                                                                                                                                               |           |                                                                                                                              |                   | tare #                      |                                                                                                                              | G5                   | ]                                            | tare #                 |                                 | M9         |       |
|                                                | Olive brown clayey sand                                                                                                                                                       |           |                                                                                                                              |                   | wt soil&tare,               |                                                                                                                              | 48.94<br>43.22       |                                              | wt soil&tare,          |                                 | 127.60     |       |
|                                                |                                                                                                                                                                               |           |                                                                                                                              |                   | wt soil&tare,dry<br>wt tare |                                                                                                                              |                      | wt soil&tare,dry                             |                        |                                 | 110.60     |       |
|                                                | LL: -                                                                                                                                                                         |           |                                                                                                                              |                   | wt tare                     |                                                                                                                              |                      | wt tare                                      |                        |                                 | 25.54      |       |
| PL: -                                          |                                                                                                                                                                               |           |                                                                                                                              | wt moisture       |                             |                                                                                                                              | 5.72                 | wt moisture                                  |                        |                                 | 17.00      |       |
|                                                | PI: -                                                                                                                                                                         |           | wt dry soil                                                                                                                  |                   | 29.24                       | wt dry soil                                                                                                                  |                      | 85.06                                        |                        |                                 |            |       |
| Gs: 2.70 Assumed                               |                                                                                                                                                                               |           | % moisture                                                                                                                   |                   | 19.6% % moisture            |                                                                                                                              | 20.0%                |                                              |                        |                                 |            |       |
|                                                | h100                                                                                                                                                                          | D50       | t50                                                                                                                          | C                 | VOID                        |                                                                                                                              | GE PATH              |                                              | CEDATU                 | COEFEK                          | VIENT OF   |       |
| PRESSURE                                       | Sample                                                                                                                                                                        | Sample    | TIME (min)                                                                                                                   | Sample<br>Density | RATIO                       |                                                                                                                              | OE PATH<br>DRAINAGE) | DRAINAGE PATH<br>(DOUBLE DRAINAGE)           |                        | COEFFICIENT OF<br>CONSOLIDATION |            | Cc    |
| (ksf)                                          | Height                                                                                                                                                                        | Height    | TIVIL (IIIII)                                                                                                                | (pcf)             | e                           | H (in)                                                                                                                       | H (cm)               | H^2 (in^2)                                   | H^2 (cm^2)             | Cv (cm^2/sec)                   | (ft^2/day) | cc    |
| 0.250                                          | 1.0662                                                                                                                                                                        | -         | -                                                                                                                            | 107.1             | 0.574                       | -                                                                                                                            | -                    | -                                            | -                      | -                               | -          | -     |
| 0.500                                          | 1.0591                                                                                                                                                                        | -         | -                                                                                                                            | 107.8             | 0.563                       | -                                                                                                                            | -                    | _                                            | -                      | -                               | -          | -     |
| 0.500                                          | 1.0579                                                                                                                                                                        | -         | -                                                                                                                            | 107.9             | 0.562                       | -                                                                                                                            | -                    | -                                            | -                      | -                               | -          | -     |
| 1.0                                            | 1.0487                                                                                                                                                                        | 1.0542    | 0.6288                                                                                                                       | 108.8             | 0.548                       | 0.5271                                                                                                                       | 1.3389               | 0.2778                                       | 1.7925                 | 9.36E-03                        | 8.73E-01   | 0.045 |
| 2.0                                            | 1.0337                                                                                                                                                                        | 1.0412    | 0.5571                                                                                                                       | 110.4             | 0.526                       | 0.5206                                                                                                                       | 1.3224               | 0.2710                                       | 1.7487                 | 1.03E-02                        | 9.62E-01   | 0.074 |
| 4.0                                            | 1.0159                                                                                                                                                                        | 1.0236    | 0.9694                                                                                                                       | 112.4             | 0.500                       | 0.5118                                                                                                                       | 1.3000               | 0.2619                                       | 1.6900                 | 5.72E-03                        | 5.34E-01   | 0.087 |
| 8.0                                            | 0.9950                                                                                                                                                                        | 1.0046    | 0.6170                                                                                                                       | 114.7             | 0.469                       | 0.5023                                                                                                                       | 1.2759               | 0.2523                                       | 1.6279                 | 8.66E-03                        | 8.08E-01   | 0.102 |
| 16.0                                           | 0.9696                                                                                                                                                                        | 0.9822    | 0.5803                                                                                                                       | 117.7             | 0.431                       | 0.4911                                                                                                                       | 1.2474               | 0.2412                                       | 1.5561                 | 8.80E-03                        | 8.21E-01   | 0.125 |
| 4.0                                            | 0.9713                                                                                                                                                                        | -         | -                                                                                                                            | 117.5             | 0.434                       | -                                                                                                                            | -                    | -                                            | _                      | -                               | -          | -     |
| 4.0                                            | 0.9766                                                                                                                                                                        | -         | -                                                                                                                            | 116.9             | 0.442                       | -                                                                                                                            | -                    | -                                            | -                      | -                               | -          | -     |
| 1.0                                            |                                                                                                                                                                               |           | 1                                                                                                                            | 116.2             | 0.449                       | _                                                                                                                            |                      | _                                            | _                      | _                               | -          |       |



LAKEWOOD, COLORADO



LAKEWOOD, COLORADO

## **ATTACHMENT 2**

## MAXIMUM DEPTHS TO BEDROCK

|   |                         |          |          | max       | max       | max       | max       | max       | max       |
|---|-------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | Proposed Stockpile name | max      | max      | height of |
|   |                         | depth to | depth to | stockpile | stockpile | stockpile | stockpile | stockpile | stockpile |
|   |                         | bedrock  | bedrock  | fill      | fill      | fill      | fill      | fill      | fill      |
|   |                         | (ft)     | (m)      | 1-yr      | 1-yr      | 5-yr      | 5-yr      | 20-yr     | 20-yr     |
|   |                         |          |          | (ft)      | (m)       | (ft)      | (m)       | (ft)      | (m)       |
| 1 | Category 1 Stockpile    | 38       | 11.58    | 40        | 12.19     | 120       | 36.58     | 240       | 73.15     |
| 2 | Ore Surge Pile          | 10       | 3.05     | 40        | 12.19     | 40        | 12.19     | na        | na        |
| 3 | Category 4 Stockpile    | 28       | 8.53     | 40        | 12.19     | 80        | 24.38     | 90        | 27.43     |
| 5 | Category 2/3 Stockpile  | 40       | 12.19    | 40        | 12.19     | 80        | 24.38     | 160       | 48.77     |

# Attachment 2: Bedrock Depths and Stockpile Heights For Various Years

Golder Associates Inc.

## **ATTACHMENT 3**

# **CONVEYANCE FACTORS (ADS, 2007)**

### Table 3-1 **Conveyance Factors (Standard Units)**

| Design Manning's Values for HDPE Pipe *                            |           |                      |  |  |  |
|--------------------------------------------------------------------|-----------|----------------------|--|--|--|
| Product                                                            | Diameter  | Design Manning's "n" |  |  |  |
| N-12 <sup>®</sup> , N-12 <sup>®</sup> ST, and N-12 <sup>®</sup> WT | 4" - 60"  | "n" = 0.012          |  |  |  |
| AASHTO and Single Wall                                             | 18" - 24" | "n" = 0.024          |  |  |  |
|                                                                    | 12" - 15" | "n" = 0.022          |  |  |  |
|                                                                    | 10"       | "n" = 0.019          |  |  |  |
|                                                                    | 8"        | "n" = 0.019          |  |  |  |
|                                                                    | 3" - 6"   | "n" = 0.017          |  |  |  |
| Smoothwall                                                         | 3" - 6"   | "n" = 0.009 **       |  |  |  |
| Conveyance Equations: k = Q/(s^0.5) Q = k s^0.5                    |           |                      |  |  |  |

|               | Conveyance Factors for Circular Pipe Flowing Full |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------------|---------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|               | Manning's "n" Values                              |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Dia.<br>(in.) | Area<br>(sq. ft.)                                 | 0.009  | 0.010  | 0.011  | 0.012  | 0.013  | 0.014  | 0.015  | 0.016  | 0.017  | 0.018  | 0.019  | 0.020  | 0.021  | 0.022  | 0.023  | 0.024  | 0.025  |
| 3             | 0.05                                              | 1.3    | 1.1    | 1.0    | 1.0    | 0.9    | 0.8    | 0.8    | 0.7    | 0.7    | 0.6    | 0.6    | 0.6    | 0.5    | 0.5    | 0.5    | 0.5    | 0.5    |
| 4             | 0.09                                              | 2.7    | 2.5    | 2.2    | 2.1    | 1.9    | 1.8    | 1.6    | 1.5    | 1.5    | 1.4    | 1.3    | 1.2    | 1.2    | 1.1    | 1.1    | 1.0    | 1.0    |
| 6             | 0.20                                              | 8.1    | 7.3    | 6.6    | 6.1    | 5.6    | 5.2    | 4.9    | 4.6    | 4.3    | 4.1    | 3.8    | 3.6    | 3.5    | 3.3    | 3.2    | 3.0    | 2.9    |
| 8             | 0.35                                              | 17.5   | 15.7   | 14.3   | 13.1   | 12.1   | 11.2   | 10.5   | 9.8    | 9.2    | 8.7    | 8.3    | 7.9    | 7.5    | 7.1    | 6.8    | 6.5    | 6.3    |
| 10            | 0.55                                              | 31.6   | 28.5   | 25.9   | 23.7   | 21.9   | 20.3   | 19.0   | 17.8   | 16.8   | 15.8   | 15.0   | 14.2   | 13.6   | 12.9   | 12.4   | 11.9   | 11.4   |
| 12            | 0.79                                              | 51.5   | 46.3   | 42.1   | 38.6   | 35.6   | 33.1   | 30.9   | 28.9   | 27.2   | 25.7   | 24.4   | 23.2   | 22.1   | 21.1   | 20.1   | 19.3   | 18.5   |
| 15            | 1.23                                              | 93.3   | 84.0   | 76.3   | 70.0   | 64.6   | 60.0   | 56.0   | 52.5   | 49.4   | 46.7   | 44.2   | 42.0   | 40.0   | 38.2   | 36.5   | 35.0   | 33.6   |
| 18            | 1.77                                              | 151.7  | 136.6  | 124.1  | 113.8  | 105.0  | 97.5   | 91.0   | 85.3   | 80.3   | 75.9   | 71.9   | 68.3   | 65.0   | 62.1   | 59.4   | 56.9   | 54.6   |
| 21            | 2.41                                              | 228.9  | 206.0  | 187.3  | 171.6  | 158.4  | 147.1  | 137.3  | 128.7  | 121.2  | 114.4  | 108.4  | 103.0  | 98.1   | 93.6   | 89.6   | 85.8   | 82.4   |
| 24            | 3.14                                              | 326.8  | 294.1  | 267.3  | 245.1  | 226.2  | 210.1  | 196.1  | 183.8  | 173.0  | 163.4  | 154.8  | 147.0  | 140.0  | 133.7  | 127.9  | 122.5  | 117.6  |
| 27            | 3.98                                              | 447.3  | 402.6  | 366.0  | 335.5  | 309.7  | 287.6  | 268.4  | 251.6  | 236.8  | 223.7  | 211.9  | 201.3  | 191.7  | 183.0  | 175.0  | 167.8  | 161.0  |
| 30            | 4.91                                              | 592.5  | 533.2  | 484.7  | 444.3  | 410.2  | 380.9  | 355.5  | 333.3  | 313.7  | 296.2  | 280.6  | 266.6  | 253.9  | 242.4  | 231.8  | 222.2  | 213.3  |
| 33            | 5.94                                              | 763.9  | 687.5  | 625.0  | 572.9  | 528.9  | 491.1  | 458.3  | 429.7  | 404.4  | 382.0  | 361.9  | 343.8  | 327.4  | 312.5  | 298.9  | 286.5  | 275.0  |
| 36            | 7.07                                              | 963.4  | 867.1  | 788.2  | 722.6  | 667.0  | 619.3  | 578.0  | 541.9  | 510.0  | 481.7  | 456.4  | 433.5  | 412.9  | 394.1  | 377.0  | 361.3  | 346.8  |
| 42            | 9.62                                              | 1453.2 | 1307.9 | 1189.0 | 1089.9 | 1006.1 | 934.2  | 871.9  | 817.5  | 769.4  | 726.6  | 688.4  | 654.0  | 622.8  | 594.5  | 568.7  | 545.0  | 523.2  |
| 45            | 11.04                                             | 1746.8 | 1572.1 | 1429.2 | 1310.1 | 1209.3 | 1122.9 | 1048.1 | 982.6  | 924.8  | 873.4  | 827.4  | 786.1  | 748.6  | 714.6  | 683.5  | 655.0  | 628.8  |
| 48            | 12.57                                             | 2074.8 | 1867.4 | 1697.6 | 1556.1 | 1436.4 | 1333.8 | 1244.9 | 1167.1 | 1098.4 | 1037.4 | 982.8  | 933.7  | 889.2  | 848.8  | 811.9  | 778.1  | 746.9  |
| 54            | 15.90                                             | 2840.5 | 2556.4 | 2324.0 | 2130.4 | 1966.5 | 1826.0 | 1704.3 | 1597.8 | 1503.8 | 1420.2 | 1345.5 | 1278.2 | 1217.4 | 1162.0 | 1111.5 | 1065.2 | 1022.6 |
| 60            | 19.63                                             | 3762.0 | 3385.8 | 3078.0 | 2821.5 | 2604.4 | 2418.4 | 2257.2 | 2116.1 | 1991.6 | 1881.0 | 1782.0 | 1692.9 | 1612.3 | 1539.0 | 1472.1 | 1410.7 | 1354.3 |
| 72            | 28.27                                             | 6117.3 | 5505.6 | 5005.1 | 4588.0 | 4235.1 | 3932.6 | 3670.4 | 3441.0 | 3238.6 | 3058.7 | 2897.7 | 2752.8 | 2621.7 | 2502.5 | 2393.7 | 2294.0 | 2202.2 |

\* Utah Water Research Laboratory, "Manning Friction Coefficient Testing of 4-, 10-, 12- and 15-inch Corrugated Plastic Pipe"<sup>3</sup> \*\* "Lingedburg, Michael, "Civil Engineer Reference Manual"<sup>4</sup>

### **ATTACHMENT 4**

## FLOW RATE CALCULATIONS

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

# Attachment 4-1: Case 1 and Case 2, Category 1 Stockpile, year 1;

| Column height       | $H_{T}$          | 11.58 m        |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-05 m/day |
| Water density       | $\gamma_{w}$     | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.075 m^2/day  |

|          | Flux Rate<br>(m/day) |                      |  |  |  |
|----------|----------------------|----------------------|--|--|--|
|          | For z=               | 0.0                  |  |  |  |
|          | Case1                | Case 2               |  |  |  |
|          | Single drain         | Double drain         |  |  |  |
|          | $H=H_{T}$            | H=0.5*H <sub>T</sub> |  |  |  |
| t (days) | 11.6                 | 5.8                  |  |  |  |
| 0        | -3.583E-02           | -7.165E-02           |  |  |  |
| 1        | -4.274E-03           | -4.274E-03           |  |  |  |
| 2        | -3.022E-03           | -3.022E-03           |  |  |  |
| 4        | -2.137E-03           | -2.137E-03           |  |  |  |
| 10       | -1.352E-03           | -1.352E-03           |  |  |  |
| 20       | -9.558E-04           | -9.558E-04           |  |  |  |
| 30       | -7.804E-04           | -7.804E-04           |  |  |  |
| 50       | -6.045E-04           | -6.043E-04           |  |  |  |
| 100      | -4.274E-04           | -4.177E-04           |  |  |  |
| 200      | -3.022E-04           | -2.377E-04           |  |  |  |
| 365      | -2.204E-04           | -9.563E-05           |  |  |  |
| 1000     | -9.018E-05           | -2.877E-06           |  |  |  |
| 2000     | -2.270E-05           | -1.155E-08           |  |  |  |
| 3000     | -5.714E-06           | -4.637E-11           |  |  |  |
| 4000     | -1.438E-06           | -1.862E-13           |  |  |  |
| 5000     | -3.621E-07           | -7.474E-16           |  |  |  |

# Attachment 4-1-1: Case 1 and Case 2, Category 1 Stockpile year 20;

| Column height       | $H_{T}$          | 11.58 m        |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-05 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 1413.5 kN/m^2  |
| Consolidation coef. | CV               | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |  |  |  |
|----------|--------------------|----------------------|--|--|--|--|
|          | For z=             | 0.0                  |  |  |  |  |
|          | Case 1             | Case 2               |  |  |  |  |
|          | Single drain       | Double drain         |  |  |  |  |
|          | $H=H_T$            | H=0.5*H <sub>T</sub> |  |  |  |  |
| t (days) | 11.6               | 5.8                  |  |  |  |  |
| 0        | -2.150E-01         | -4.299E-01           |  |  |  |  |
| 1        | -2.565E-02         | -2.565E-02           |  |  |  |  |
| 2        | -1.813E-02         | -1.813E-02           |  |  |  |  |
| 5        | -1.147E-02         | -1.147E-02           |  |  |  |  |
| 10       | -8.110E-03         | -8.110E-03           |  |  |  |  |
| 20       | -5.735E-03         | -5.735E-03           |  |  |  |  |
| 43       | -3.911E-03         | -3.911E-03           |  |  |  |  |
| 100      | -2.565E-03         | -2.506E-03           |  |  |  |  |
| 200      | -1.813E-03         | -1.426E-03           |  |  |  |  |
| 365      | -1.322E-03         | -5.738E-04           |  |  |  |  |
| 400      | -1.253E-03         | -4.730E-04           |  |  |  |  |
| 1000     | -5.411E-04         | -1.726E-05           |  |  |  |  |
| 2000     | -1.362E-04         | -6.930E-08           |  |  |  |  |
| 3000     | -3.428E-05         | -2.782E-10           |  |  |  |  |
| 3650     | -1.399E-05         | -7.705E-12           |  |  |  |  |
| 4000     | -8.630E-06         | -1.117E-12           |  |  |  |  |
| 5000     | -2.172E-06         | -4.484E-15           |  |  |  |  |

# Attachment 4-2: Case 3 and Case 4, Category 1 Stockpile, year 1;

| Column height       | $H_{T}$          | 11.58 m        |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-03 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |  |  |  |
|----------|--------------------|----------------------|--|--|--|--|
|          | For z=             |                      |  |  |  |  |
|          | Case 3             | Case 4               |  |  |  |  |
|          | Single drain       | Double drain         |  |  |  |  |
|          | H=H <sub>T</sub>   | H=0.5*H <sub>⊤</sub> |  |  |  |  |
| t (days) | 11.6               | 5.8                  |  |  |  |  |
| 0        | -3.583E+00         | -7.165E+00           |  |  |  |  |
| 1        | -4.861E-01         | -4.861E-01           |  |  |  |  |
| 2        | -3.437E-01         | -3.437E-01           |  |  |  |  |
| 4        | -2.430E-01         | -2.430E-01           |  |  |  |  |
| 10       | -1.537E-01         | -1.537E-01           |  |  |  |  |
| 20       | -1.087E-01         | -1.087E-01           |  |  |  |  |
| 30       | -8.874E-02         | -8.874E-02           |  |  |  |  |
| 50       | -6.874E-02         | -6.874E-02           |  |  |  |  |
| 100      | -4.861E-02         | -4.831E-02           |  |  |  |  |
| 200      | -3.437E-02         | -3.055E-02           |  |  |  |  |
| 400      | -2.415E-02         | -1.300E-02           |  |  |  |  |
| 1000     | -1.233E-02         | -1.005E-03           |  |  |  |  |
| 2000     | -4.243E-03         | -1.409E-05           |  |  |  |  |
| 3000     | -1.460E-03         | -1.976E-07           |  |  |  |  |
| 4000     | -5.024E-04         | -2.771E-09           |  |  |  |  |
| 5000     | -1.729E-04         | -3.885E-11           |  |  |  |  |

# Attachment 4-2-1: Case 3 and Case 4, Category 1 Stockpile, year 20

| Column height       | $H_{T}$      | 11.58 m        |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-03 m/day |
| Water density       | $\gamma_w$   | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 1413.5 kN/m^2  |
| Consolidation coef. | CV           | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |  |  |
|----------|--------------------|----------------------|--|--|--|
|          | For z=             | 0.0                  |  |  |  |
|          | Case 3             | Case 4               |  |  |  |
|          | Single drain       | Double drain         |  |  |  |
|          | $H=H_T$            | H=0.5*H <sub>T</sub> |  |  |  |
| t (days) | 11.6               | 5.8                  |  |  |  |
| 0        | -2.150E+01         | -4.299E+01           |  |  |  |
| 1        | -2.916E+00         | -2.916E+00           |  |  |  |
| 2        | -2.062E+00         | -2.062E+00           |  |  |  |
| 5        | -1.304E+00         | -1.304E+00           |  |  |  |
| 10       | -9.222E-01         | -9.222E-01           |  |  |  |
| 20       | -6.521E-01         | -6.521E-01           |  |  |  |
| 44       | -4.397E-01         | -4.397E-01           |  |  |  |
| 100      | -2.916E-01         | -2.898E-01           |  |  |  |
| 200      | -2.062E-01         | -1.833E-01           |  |  |  |
| 365      | -1.521E-01         | -9.057E-02           |  |  |  |
| 400      | -1.449E-01         | -7.800E-02           |  |  |  |
| 1000     | -7.399E-02         | -6.029E-03           |  |  |  |
| 2000     | -2.546E-02         | -8.454E-05           |  |  |  |
| 3000     | -8.760E-03         | -1.185E-06           |  |  |  |
| 3650     | -4.379E-03         | -7.402E-08           |  |  |  |
| 4000     | -3.014E-03         | -1.662E-08           |  |  |  |
| 5000     | -1.037E-03         | -2.331E-10           |  |  |  |

# Attachment 4-3: Case 1 and Case 2, Ore Surge Pile, year 1

| Column height       | $H_{T}$          | 3.05 m         |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-05 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | H=H <sub>T</sub>   | H=0.5*H <sub>T</sub> |  |
| t (days) | 3.0                | 1.5                  |  |
| 0        | -1.361E-01         | -2.723E-01           |  |
| 1        | -4.274E-03         | -4.274E-03           |  |
| 2        | -3.022E-03         | -3.022E-03           |  |
| 4        | -2.137E-03         | -2.135E-03           |  |
| 10       | -1.352E-03         | -1.230E-03           |  |
| 20       | -9.519E-04         | -5.533E-04           |  |
| 30       | -7.553E-04         | -2.494E-04           |  |
| 48       | -5.236E-04         | -5.944E-05           |  |
| 100      | -1.857E-04         | -9.434E-07           |  |
| 200      | -2.534E-05         | -3.269E-10           |  |
| 400      | -4.717E-07         | -3.924E-17           |  |
| 1000     | -3.042E-12         | -6.790E-38           |  |
| 2000     | -6.799E-21         | -1.693E-72           |  |
| 3000     | -1.519E-29         | -4.223E-107          |  |
| 4000     | -3.395E-38         | -1.053E-141          |  |
| 5000     | -7.587E-47         | -2.626E-176          |  |

## Attachment 4-4:

# Case 3 and Case 4, Ore Surge Pile, year 1

| Column height       | $H_{T}$      | 3.05 m         |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-03 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 235.6 kN/m^2   |
| Consolidation coef. | CV           | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 3             | Case 4               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 3.0                | 1.5                  |  |
| 0        | -1.361E+01         | -2.723E+01           |  |
| 1        | -4.861E-01         | -4.861E-01           |  |
| 2        | -3.437E-01         | -3.437E-01           |  |
| 4        | -2.430E-01         | -2.430E-01           |  |
| 10       | -1.537E-01         | -1.481E-01           |  |
| 20       | -1.086E-01         | -7.941E-02           |  |
| 30       | -8.789E-02         | -4.288E-02           |  |
| 48       | -6.517E-02         | -1.414E-02           |  |
| 100      | -2.917E-02         | -5.742E-04           |  |
| 200      | -6.252E-03         | -1.211E-06           |  |
| 400      | -2.871E-04         | -5.384E-12           |  |
| 1000     | -2.780E-08         | -4.734E-28           |  |
| 2000     | -5.677E-15         | -8.232E-55           |  |
| 3000     | -1.159E-21         | -1.431E-81           |  |
| 4000     | -2.367E-28         | -2.489E-108          |  |
| 5000     | -4.834E-35         | -4.328E-135          |  |

Golder Associates Inc.

## Attachment 4-5:

# Case 1 and Case 2, Category 4 Stockpile, year 1

| Column height       | $H_{T}$          | 8.53 m         |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-05 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For $z = 0.0$      |                      |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 8.5                | 4.3                  |  |
| 0        | -4.862E-02         | -9.724E-02           |  |
| 1        | -4.274E-03         | -4.274E-03           |  |
| 2        | -3.022E-03         | -3.022E-03           |  |
| 4        | -2.137E-03         | -2.137E-03           |  |
| 10       | -1.352E-03         | -1.352E-03           |  |
| 20       | -9.558E-04         | -9.558E-04           |  |
| 30       | -7.804E-04         | -7.799E-04           |  |
| 48       | -6.169E-04         | -6.091E-04           |  |
| 100      | -4.274E-04         | -3.521E-04           |  |
| 200      | -2.975E-04         | -1.274E-04           |  |
| 400      | -1.760E-04         | -1.669E-05           |  |
| 1000     | -3.832E-05         | -3.751E-08           |  |
| 2000     | -3.020E-06         | -1.447E-12           |  |
| 3000     | -2.380E-07         | -5.583E-17           |  |
| 4000     | -1.876E-08         | -2.154E-21           |  |
| 5000     | -1.478E-09         | -8.309E-26           |  |

# Attachment 4-5-1: Case 1 and Case 2, Category 4 Stockpile, year 20

| Column height       | $H_{T}$      | 8.53 m         |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-05 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 530.0 kN/m^2   |
| Consolidation coef. | CV           | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | H=H <sub>T</sub>   | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 8.5                | 4.3                  |  |
| 0        | -1.094E-01         | -2.188E-01           |  |
| 1        | -9.617E-03         | -9.617E-03           |  |
| 2        | -6.800E-03         | -6.800E-03           |  |
| 5        | -4.301E-03         | -4.301E-03           |  |
| 10       | -3.041E-03         | -3.041E-03           |  |
| 20       | -2.150E-03         | -2.150E-03           |  |
| 50       | -1.360E-03         | -1.339E-03           |  |
| 100      | -9.616E-04         | -7.921E-04           |  |
| 159      | -7.593E-04         | -4.348E-04           |  |
| 365      | -4.330E-04         | -5.359E-05           |  |
| 400      | -3.961E-04         | -3.755E-05           |  |
| 1000     | -8.622E-05         | -8.441E-08           |  |
| 2000     | -6.795E-06         | -3.256E-12           |  |
| 3000     | -5.355E-07         | -1.256E-16           |  |
| 4000     | -4.220E-08         | -4.846E-21           |  |
| 5000     | -3.326E-09         | -1.869E-25           |  |

Golder Associates Inc. J:\08JOBS\083-2209 Polymet\EF-files\Underdrain\Terzaghi-EF-2.xlsm

## Attachment 4-6:

# Case 3 and Case 4, Category 4 Stockpile, year 1

| Column height       | $H_{T}$          | 8.53 m         |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-03 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 3             | Case 4               |  |
|          | Single drain       | Double drain         |  |
|          | H=H <sub>T</sub>   | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 8.5                | 4.3                  |  |
| 0        | -4.862E+00         | -9.724E+00           |  |
| 1        | -4.861E-01         | -4.861E-01           |  |
| 2        | -3.437E-01         | -3.437E-01           |  |
| 5        | -2.174E-01         | -2.174E-01           |  |
| 10       | -1.537E-01         | -1.537E-01           |  |
| 20       | -1.087E-01         | -1.087E-01           |  |
| 30       | -8.874E-02         | -8.874E-02           |  |
| 48       | -7.016E-02         | -6.995E-02           |  |
| 100      | -4.861E-02         | -4.440E-02           |  |
| 200      | -3.424E-02         | -2.019E-02           |  |
| 400      | -2.220E-02         | -4.193E-03           |  |
| 1000     | -6.816E-03         | -3.755E-05           |  |
| 2000     | -9.555E-04         | -1.450E-08           |  |
| 3000     | -1.339E-04         | -5.600E-12           |  |
| 4000     | -1.878E-05         | -2.162E-15           |  |
| 5000     | -2.632E-06         | -8.350E-19           |  |

# Attachment 4-6-1: Case 3 and Case 4, Category 4 Stockpile, year 20

| Column height       | Η <sub>T</sub> | 8.53 m         |
|---------------------|----------------|----------------|
| Hydrulic cond.      | k              | 8.64E-03 m/day |
| Water density       | γw             | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$   | 19.98 kN/m^3   |
| Load on surface     | р              | 530.0 kN/m^2   |
| Consolidation coef. | CV             | 0.06 m^2/day   |

|          | Flux Rate<br>m/day |                      |  |  |
|----------|--------------------|----------------------|--|--|
|          | For z= 0.0         |                      |  |  |
|          | Case 3             | Case 4               |  |  |
|          | Single drain       | Double drain         |  |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |  |
| t (days) | 8.5                | 4.3                  |  |  |
| 0        | -1.094E+01         | -2.188E+01           |  |  |
| 1        | -1.094E+00         | -1.094E+00           |  |  |
| 2        | -7.733E-01         | -7.733E-01           |  |  |
| 5        | -4.891E-01         | -4.891E-01           |  |  |
| 10       | -3.458E-01         | -3.458E-01           |  |  |
| 20       | -2.445E-01         | -2.445E-01           |  |  |
| 50       | -1.547E-01         | -1.541E-01           |  |  |
| 100      | -1.094E-01         | -9.989E-02           |  |  |
| 159      | -8.667E-02         | -6.271E-02           |  |  |
| 365      | -5.357E-02         | -1.242E-02           |  |  |
| 400      | -4.995E-02         | -9.435E-03           |  |  |
| 1000     | -1.534E-02         | -8.449E-05           |  |  |
| 2000     | -2.150E-03         | -3.263E-08           |  |  |
| 3000     | -3.014E-04         | -1.260E-11           |  |  |
| 4000     | -4.225E-05         | -4.865E-15           |  |  |
| 5000     | -5.922E-06         | -1.879E-18           |  |  |

## Attachment 4-7:

# Case 1 and Case 2, Category 3 Lean Ore Stockpile, year 1

| Column height       | $H_{T}$      | 6.71 m         |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-05 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 235.6 kN/m^2   |
| Consolidation coef. | CV           | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z=             |                      |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>T</sub> |  |
| t (days) | 6.7                | 3.4                  |  |
| 0        | -6.188E-02         | -1.238E-01           |  |
| 1        | -4.274E-03         | -4.274E-03           |  |
| 2        | -3.022E-03         | -3.022E-03           |  |
| 6        | -1.745E-03         | -1.745E-03           |  |
| 10       | -1.352E-03         | -1.352E-03           |  |
| 20       | -9.558E-04         | -9.547E-04           |  |
| 30       | -7.804E-04         | -7.698E-04           |  |
| 50       | -6.045E-04         | -5.442E-04           |  |
| 100      | -4.253E-04         | -2.386E-04           |  |
| 200      | -2.721E-04         | -4.600E-05           |  |
| 400      | -1.193E-04         | -1.709E-06           |  |
| 1000     | -1.010E-05         | -8.774E-11           |  |
| 2000     | -1.648E-07         | -6.220E-18           |  |
| 3000     | -2.689E-09         | -4.409E-25           |  |
| 4000     | -4.387E-11         | -3.126E-32           |  |
| 5000     | -7.158E-13         | -2.216E-39           |  |

# Attachment 4-7-1: Case 1 and Case 2, Category 3 Lean Ore Stockpile, year 20

| Column height       | Η <sub>T</sub>   | 6.71 m         |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-05 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 1177.9 kN/m^2  |
| Consolidation coef. | CV               | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 6.7                | 3.4                  |  |
| 0        | -3.094E-01         | -6.188E-01           |  |
| 1        | -2.137E-02         | -2.137E-02           |  |
| 2        | -1.511E-02         | -1.511E-02           |  |
| 5        | -9.558E-03         | -9.558E-03           |  |
| 10       | -6.758E-03         | -6.758E-03           |  |
| 20       | -4.779E-03         | -4.774E-03           |  |
| 50       | -3.022E-03         | -2.721E-03           |  |
| 93       | -2.209E-03         | -1.339E-03           |  |
| 200      | -1.360E-03         | -2.300E-04           |  |
| 365      | -6.889E-04         | -1.521E-05           |  |
| 400      | -5.965E-04         | -8.547E-06           |  |
| 1000     | -5.049E-05         | -4.387E-10           |  |
| 2000     | -8.238E-07         | -3.110E-17           |  |
| 3000     | -1.344E-08         | -2.205E-24           |  |
| 4000     | -2.193E-10         | -1.563E-31           |  |
| 5000     | -3.579E-12         | -1.108E-38           |  |

# Attachment 4-8: Case 3 and Case 4, Category 3 Lean Ore Stockpile, year 1

| Column height       | $H_{T}$      | 6.71 m         |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-03 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 235.6 kN/m^2   |
| Consolidation coef. | CV           | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z=             | 0.0                  |  |
|          | Case 3             | Case 4               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 6.7                | 3.4                  |  |
| 0        | -6.188E+00         | -1.238E+01           |  |
| 1        | -4.861E-01         | -4.861E-01           |  |
| 2        | -3.437E-01         | -3.437E-01           |  |
| 6        | -1.984E-01         | -1.984E-01           |  |
| 10       | -1.537E-01         | -1.537E-01           |  |
| 20       | -1.087E-01         | -1.087E-01           |  |
| 50       | -6.874E-02         | -6.589E-02           |  |
| 30       | -8.874E-02         | -8.846E-02           |  |
| 100      | -4.856E-02         | -3.465E-02           |  |
| 200      | -3.294E-02         | -9.701E-03           |  |
| 400      | -1.733E-02         | -7.604E-04           |  |
| 1000     | -2.567E-03         | -3.662E-07           |  |
| 2000     | -1.064E-04         | -1.084E-12           |  |
| 3000     | -4.415E-06         | -3.206E-18           |  |
| 4000     | -1.831E-07         | -9.486E-24           |  |
| 5000     | -7.594E-09         | -2.807E-29           |  |

# Attachment 4-8-1: Case 3 and Case 4, Category 3 Lean Ore Stockpile, year 20

| Column height       | $H_{T}$          | 6.71 m         |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-03 m/day |
| Water density       | γw               | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 1177.9 kN/m^2  |
| Consolidation coef. | CV               | 0.058 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z= 0.0         |                      |  |
|          | Case 3             | Case 4               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |
| t (days) | 6.7                | 3.4                  |  |
| 0        | -3.094E+01         | -6.188E+01           |  |
| 1        | -2.430E+00         | -2.430E+00           |  |
| 2        | -1.718E+00         | -1.718E+00           |  |
| 5        | -1.087E+00         | -1.087E+00           |  |
| 10       | -7.685E-01         | -7.685E-01           |  |
| 20       | -5.434E-01         | -5.434E-01           |  |
| 50       | -3.437E-01         | -3.294E-01           |  |
| 93       | -2.519E-01         | -1.894E-01           |  |
| 200      | -1.647E-01         | -4.851E-02           |  |
| 365      | -9.684E-02         | -5.936E-03           |  |
| 400      | -8.663E-02         | -3.802E-03           |  |
| 1000     | -1.283E-02         | -1.831E-06           |  |
| 2000     | -5.322E-04         | -5.418E-12           |  |
| 3000     | -2.207E-05         | -1.603E-17           |  |
| 4000     | -9.155E-07         | -4.743E-23           |  |
| 5000     | -3.797E-08         | -1.403E-28           |  |

# Attachment 4-9:

# Case 1 and Case 2, Category 2/3 Stockpile, year 1

| Column height       | $H_{T}$      | 12.19 m        |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-05 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 235.6 kN/m^2   |
| Consolidation coef. | CV           | 0.075 m^2/day  |

|          | Flux Rate<br>m/day |                      |  |
|----------|--------------------|----------------------|--|
|          | For z=             | 0.0                  |  |
|          | Case 1             | Case 2               |  |
|          | Single drain       | Double drain         |  |
|          | $H=H_T$            | H=0.5*H <sub>T</sub> |  |
| t (days) | 12.2               | 6.1                  |  |
| 0        | -3.404E-02         | -6.807E-02           |  |
| 1        | -4.274E-03         | -4.274E-03           |  |
| 2        | -3.022E-03         | -3.022E-03           |  |
| 4        | -2.137E-03         | -2.137E-03           |  |
| 10       | -1.352E-03         | -1.352E-03           |  |
| 20       | -9.558E-04         | -9.558E-04           |  |
| 36       | -7.124E-04         | -7.124E-04           |  |
| 50       | -6.045E-04         | -6.044E-04           |  |
| 100      | -4.274E-04         | -4.214E-04           |  |
| 200      | -3.022E-04         | -2.515E-04           |  |
| 365      | -2.218E-04         | -1.106E-04           |  |
| 400      | -2.107E-04         | -9.287E-05           |  |
| 1000     | -9.801E-05         | -4.680E-06           |  |
| 2000     | -2.822E-05         | -3.218E-08           |  |
| 3000     | -8.127E-06         | -2.212E-10           |  |
| 4000     | -2.340E-06         | -1.521E-12           |  |
| 5000     | -6.738E-07         | -1.046E-14           |  |

# Attachment 4-9-1: Case 1 and Case 2, Category 2/3 Stockpile, year 20

| Column height       | $H_{T}$      | 12.19 m        |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-05 m/day |
| Water density       | γw           | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 942.3 kN/m^2   |
| Consolidation coef. | CV           | 0.075 m^2/day  |

|          | Flux Rate           |                      |  |
|----------|---------------------|----------------------|--|
|          | m/day<br>For z= 0.0 |                      |  |
|          | Case 1              | Case 2               |  |
|          | Single drain        | Double drain         |  |
|          | H=H <sub>T</sub>    | H=0.5*H <sub>T</sub> |  |
| t (days) | 12.2                | 6.1                  |  |
| 0        | -1.361E-01          | -2.723E-01           |  |
| 1        | -1.710E-02          | -1.710E-02           |  |
| 2        | -1.209E-02          | -1.209E-02           |  |
| 5        | -7.646E-03          | -7.646E-03           |  |
| 10       | -5.407E-03          | -5.407E-03           |  |
| 20       | -3.823E-03          | -3.823E-03           |  |
| 50       | -2.418E-03          | -2.418E-03           |  |
| 100      | -1.710E-03          | -1.686E-03           |  |
| 228      | -1.132E-03          | -8.749E-04           |  |
| 365      | -8.871E-04          | -4.422E-04           |  |
| 400      | -8.428E-04          | -3.715E-04           |  |
| 1000     | -3.920E-04          | -1.872E-05           |  |
| 2000     | -1.129E-04          | -1.287E-07           |  |
| 3000     | -3.251E-05          | -8.850E-10           |  |
| 4000     | -9.360E-06          | -6.085E-12           |  |
| 5000     | -2.695E-06          | -4.184E-14           |  |

## Attachment 4-10:

# Case 3 and Case 4, Category 2/3 Stockpile, year 1

| Column height       | $H_{T}$      | 12.19 m        |
|---------------------|--------------|----------------|
| Hydrulic cond.      | k            | 8.64E-03 m/day |
| Water density       | $\gamma_{w}$ | 9.81 kN/m^3    |
| Soil density        | $\gamma_{s}$ | 19.98 kN/m^3   |
| Load on surface     | р            | 235.6 kN/m^2   |
| Consolidation coef. | CV           | 0.06 m^2/day   |

|          | Flux Rate<br>m/day |                      |  |  |  |
|----------|--------------------|----------------------|--|--|--|
|          | For z=             | ,                    |  |  |  |
|          | Case 3             | Case 4               |  |  |  |
|          | Single drain       | Double drain         |  |  |  |
|          | $H=H_T$            | H=0.5*H <sub>⊤</sub> |  |  |  |
| t (days) | 12.2               | 6.1                  |  |  |  |
| 0        | -3.404E+00         | -6.807E+00           |  |  |  |
| 1        | -4.861E-01         | -4.861E-01           |  |  |  |
| 2        | -3.437E-01         | -3.437E-01           |  |  |  |
| 5        | -2.174E-01         | -2.174E-01           |  |  |  |
| 10       | -1.537E-01         | -1.537E-01           |  |  |  |
| 20       | -1.087E-01         | -1.087E-01           |  |  |  |
| 36       | -8.101E-02         | -8.101E-02           |  |  |  |
| 50       | -6.874E-02         | -6.874E-02           |  |  |  |
| 100      | -4.861E-02         | -4.845E-02           |  |  |  |
| 200      | -3.437E-02         | -3.158E-02           |  |  |  |
| 365      | -2.540E-02         | -1.669E-02           |  |  |  |
| 400      | -2.422E-02         | -1.459E-02           |  |  |  |
| 1000     | -1.300E-02         | -1.447E-03           |  |  |  |
| 2000     | -4.962E-03         | -3.076E-05           |  |  |  |
| 3000     | -1.895E-03         | -6.539E-07           |  |  |  |
| 4000     | -7.235E-04         | -1.390E-08           |  |  |  |
| 5000     | -2.763E-04         | -2.955E-10           |  |  |  |

# Attachment 4-10-1: Case 3 and Case 4, Category 2/3 Stockpile, year 20

| Column height       | $H_{T}$          | 12.19 m        |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-03 m/day |
| Water density       | $\gamma_{w}$     | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 942.3 kN/m^2   |
| Consolidation coef. | CV               | 0.06 m^2/day   |

|          | Flux Rate<br>m/day |                      |  |  |  |
|----------|--------------------|----------------------|--|--|--|
|          | For z=             | 0.0                  |  |  |  |
|          | Case 3             | Case 4               |  |  |  |
|          | Single drain       | Double drain         |  |  |  |
|          | $H=H_T$            | H=0.5*H <sub>T</sub> |  |  |  |
| t (days) | 12.2               | 6.1                  |  |  |  |
| 0        | -1.361E+01         | -2.723E+01           |  |  |  |
| 1        | -1.944E+00         | -1.944E+00           |  |  |  |
| 2        | -1.375E+00         | -1.375E+00           |  |  |  |
| 5        | -8.695E-01         | -8.695E-01           |  |  |  |
| 10       | -6.148E-01         | -6.148E-01           |  |  |  |
| 20       | -4.347E-01         | -4.347E-01           |  |  |  |
| 50       | -2.750E-01         | -2.750E-01           |  |  |  |
| 100      | -1.944E-01         | -1.938E-01           |  |  |  |
| 200      | -1.375E-01         | -1.263E-01           |  |  |  |
| 228      | -1.288E-01         | -1.133E-01           |  |  |  |
| 400      | -9.689E-02         | -5.835E-02           |  |  |  |
| 1000     | -5.201E-02         | -5.788E-03           |  |  |  |
| 2000     | -1.985E-02         | -1.230E-04           |  |  |  |
| 3000     | -7.579E-03         | -2.616E-06           |  |  |  |
| 4000     | -2.894E-03         | -5.560E-08           |  |  |  |
| 5000     | -1.105E-03         | -1.182E-09           |  |  |  |

### **ATTACHMENT 5**

### EQUIVALENT LOADING TIMES

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

### Attachment 5: Equivalent Loading Times

|   |                               | Year 1  | Year 5   | Year 10  | Year 15  | Year 20  |
|---|-------------------------------|---------|----------|----------|----------|----------|
| 1 | Category 1 Stockpile          | 3031253 | 13025197 | 16412619 | 16412619 | 16412619 |
| 2 | Lean Ore Surge Pile           | 2375443 | 2375442  | 2375884  | 2375442  | 2759736  |
| 3 | Category 4 Stockpile          | 194781  | 1743009  | 2759691  | 2759736  |          |
| 4 | Category 3 Lean Ore Stockpile | 1540756 | 2778949  | 4257310  | 6830487  | 6830487  |
| 5 | Category 2/3 Stockpile        | 257713  | 1115804  | 2041077  | 3135871  | 3135871  |

### Waste Rock Stockpile Footprint ( ft<sup>2</sup>)

#### Area per day required to cover the footprint at the corresponding year

|   |                               | ft²/day | ft²/day | ft²/day | ft²/day | ft²/day |
|---|-------------------------------|---------|---------|---------|---------|---------|
| 1 | Category 1 Stockpile          | 8304.8  | 7137.1  | 4496.6  | 2997.7  | 2248.3  |
| 2 | Lean Ore Surge Pile           | 6508.1  | 1301.6  | 650.9   | 433.9   | 378.0   |
| 3 | Category 4 Stockpile          | 533.6   | 955.1   | 756.1   | 504.1   |         |
| 4 | Category 3 Lean Ore Stockpile | 4221.3  | 1522.7  | 1166.4  | 1247.6  | 935.7   |
| 5 | Category 2/3 Stockpile        | 706.1   | 611.4   | 559.2   | 572.8   | 429.6   |

Maximum Underdrain Pipe Tributary Area (350 ft x 100 ft and 256 ft x 100 ft)

|   |                               | ft <sup>2</sup> |
|---|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1 | Category 1 Stockpile          | 35000.0         | 35000.0         | 35000.0         | 35000.0         | 35000.0         |
| 2 | Lean Ore Surge Pile           | 25600.0         | 25600.0         | 25600.0         | 25600.0         | 25600.0         |
| 3 | Category 4 Stockpile          | 25600.0         | 25600.0         | 25600.0         | 25600.0         |                 |
| 4 | Category 3 Lean Ore Stockpile | 25600.0         | 25600.0         | 25600.0         | 25600.0         | 25600.0         |
| 5 | Category 2/3 Stockpile        | 25600.0         | 25600.0         | 25600.0         | 25600.0         | 25600.0         |

Number of Days Required to Cover the Maximum Tributary Area of a Under Drain Pipe

|   |                               | Year 1 | Year 5 | Year 10 | Year 15 | Year 20 | Years 1-20 |
|---|-------------------------------|--------|--------|---------|---------|---------|------------|
|   |                               | Days   | Days   | Days    | Days    | Days    | Total Days |
| 1 | Category 1 Stockpile          | 4      | 5      | 8       | 12      | 16      | 44         |
| 2 | Lean Ore Surge Pile           | 4      | 20     | 39      | 59      | 68      | 190        |
| 3 | Category 4 Stockpile          | 48     | 27     | 34      | 51      |         |            |
| 4 | Category 3 Lean Ore Stockpile | 6      | 17     | 22      | 21      | 27      | 93         |
| 5 | Category 2/3 Stockpile        | 36     | 42     | 46      | 45      | 60      | 228        |

## **ATTACHMENT 6**

## SIZING OF TERTIARY UNDERDRAIN PIPES

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

| Attachment 6-1: | Tertiary underdrain | pipe selection | assuming Ks=1e-7 cm/sec |
|-----------------|---------------------|----------------|-------------------------|
|                 |                     |                |                         |

|   | FLUX (m/day)                  |              |              |      |                 |              |      |
|---|-------------------------------|--------------|--------------|------|-----------------|--------------|------|
|   |                               | For Y        | 'ear 1       | time | time For Year 1 |              | time |
|   |                               | Single layer | Double layer | days | Single layer    | Double layer | days |
| 1 | Category 1 Stockpile          | 2.1E-03      | 2.1E-03      | 4    | 3.9E-03         | 3.9E-03      | 44   |
| 2 | Lean Ore Surge Pile           | 2.1E-03      | 2.1E-03      | 4    |                 |              |      |
| 3 | Category 4 Stockpile          | 6.2E-04      | 6.1E-04      | 48   | 7.6E-04         | 4.3E-04      | 159  |
| 4 | Category 3 Lean Ore Stockpile | 1.7E-03      | 1.7E-03      | 6    | 2.2E-03         | 1.3E-03      | 93   |
| 5 | Category 2/3 Stockpile        | 7.1E-04      | 7.1E-04      | 36   | 1.1E-03         | 8.7E-04      | 228  |

### Factored FLUX (m/dav)

|   |   |                               | Factored FLU> | ( (m/day)    | FS=1.2       |              |  |
|---|---|-------------------------------|---------------|--------------|--------------|--------------|--|
|   |   |                               | For Y         | 'ear 1       | For Year 20  |              |  |
|   |   |                               | Single layer  | Double layer | Single layer | Double layer |  |
|   | 1 | Category 1 Stockpile          | 2.6E-03       | 2.6E-03      | 4.7E-03      | 4.7E-03      |  |
|   | 2 | Lean Ore Surge Pile           | 2.6E-03       | 2.6E-03      |              |              |  |
|   | 3 | Category 4 Stockpile          | 7.4E-04       | 7.3E-04      | 9.1E-04      | 5.2E-04      |  |
| Γ | 4 | Category 3 Lean Ore Stockpile | 2.1E-03       | 2.1E-03      | 2.7E-03      | 1.6E-03      |  |
| Ľ | 5 | Category 2/3 Stockpile        | 8.5E-04       | 8.5E-04      | 1.4E-03      | 1.0E-03      |  |

### FLOW (ft3/sec)

|   |                               | For Year 1   |              | For Year 20  |              |
|---|-------------------------------|--------------|--------------|--------------|--------------|
|   |                               | Single layer | Double layer | Single layer | Double layer |
| 1 | Category 1 Stockpile          | 3.4E-03      | 3.4E-03      | 6.2E-03      | 6.2E-03      |
| 2 | Lean Ore Surge Pile           | 3.4E-03      | 3.4E-03      |              |              |
| 3 | Category 4 Stockpile          | 9.8E-04      | 9.7E-04      | 1.2E-03      | 6.9E-04      |
| 4 | Category 3 Lean Ore Stockpile | 2.8E-03      | 2.8E-03      | 3.5E-03      | 2.1E-03      |
| 5 | Category 2/3 Stockpile        | 1.1E-03      | 1.1E-03      | 1.8E-03      | 1.4E-03      |

|   |                               | Commodity Fa | ctor k       | S=0.5%       |              |  |
|---|-------------------------------|--------------|--------------|--------------|--------------|--|
|   |                               | For Y        | 'ear 1       | For Year 20  |              |  |
|   |                               | Single layer | Double layer | Single layer | Double layer |  |
| 1 | Category 1 Stockpile          | 0.048        | 0.048        | 0.088        | 0.088        |  |
| 2 | Lean Ore Surge Pile           | 0.048        | 0.048        |              |              |  |
| 3 | Category 4 Stockpile          | 0.0139       | 0.0137       | 0.0171       | 0.0098       |  |
| 4 | Category 3 Lean Ore Stockpile | 0.039        | 0.039        | 0.050        | 0.030        |  |
| 5 | Category 2/3 Stockpile        | 0.016        | 0.016        | 0.026        | 0.020        |  |

### Selected Pipe Dia (in)

|   |                               | Yea          | ar 1         | Year 20      |              |  |
|---|-------------------------------|--------------|--------------|--------------|--------------|--|
|   |                               | Single layer | Double layer | Single layer | Double layer |  |
| 2 | Category 1 Stockpile          | 3            | 3            | 3            | 3            |  |
| 3 | Lean Ore Surge Pile           | 3            | 3            |              |              |  |
| 4 | Category 4 Stockpile          | 3            | 3            | 3            | 3            |  |
| 5 | Category 3 Lean Ore Stockpile | 3            | 3            | 3            | 3            |  |
| 6 | Category 2/3 Stockpile        | 3            | 3            | 3            | 3            |  |

### Selected Pipe commodity value k (ASD 2008) n=0.012

|   |                               | Ye           | ar 1         | Year 20      |              |  |
|---|-------------------------------|--------------|--------------|--------------|--------------|--|
|   |                               | Single layer | Double layer | Single layer | Double layer |  |
| 2 | Category 1 Stockpile          | 1.0          | 1.0          | 1.0          | 1.0          |  |
| 3 | Lean Ore Surge Pile           | 1.0          | 1.0          |              |              |  |
| 4 | Category 4 Stockpile          | 1.0          | 1.0          | 1.0          | 1.0          |  |
| 5 | Category 3 Lean Ore Stockpile | 1.0          | 1.0          | 1.0          | 1.0          |  |
| 6 | Category 2/3 Stockpile        | 1.0          | 1.0          | 1.0          | 1.0          |  |

### Attachment 6-2: Tertiary underdrain pipe selection assuming Ks=1e-5 cm/sec

|   |                               | FLUX (m/day)                                             |         |              |         |         |      |
|---|-------------------------------|----------------------------------------------------------|---------|--------------|---------|---------|------|
|   |                               | Yea                                                      | ar 1    | time Year 20 |         |         | time |
|   |                               | Single layer Double layer days Single layer Double layer |         |              |         | days    |      |
| 1 | Category 1 Stockpile          | 2.4E-01                                                  | 2.4E-01 | 4            | 4.4E-01 | 4.4E-01 | 44   |
| 2 | Lean Ore Surge Pile           | 2.4E-01                                                  | 2.4E-01 | 4            |         |         |      |
| 3 | Category 4 Stockpile          | 7.0E-02                                                  | 7.0E-02 | 48           | 8.7E-02 | 6.3E-02 | 159  |
| 4 | Category 3 Lean Ore Stockpile | 2.0E-01                                                  | 2.0E-01 | 6            | 2.5E-01 | 1.9E-01 | 93   |
| 5 | Category 2/3 Stockpile        | 8.1E-02                                                  | 8.1E-02 | 36           | 1.3E-01 | 1.1E-01 | 228  |

|   |                               | Factored FLU> | (m/day)      |              | FS=1.2       |
|---|-------------------------------|---------------|--------------|--------------|--------------|
|   |                               | Yea           | ar 1         | Yea          | ır 20        |
|   |                               | Single layer  | Double layer | Single layer | Double layer |
| 1 | Category 1 Stockpile          | 2.9E-01       | 2.9E-01      | 5.3E-01      | 5.3E-01      |
| 2 | Lean Ore Surge Pile           | 2.9E-01       | 2.9E-01      |              |              |
| 3 | Category 4 Stockpile          | 8.4E-02       | 8.4E-02      | 1.0E-01      | 7.5E-02      |
| 4 | Category 3 Lean Ore Stockpile | 2.4E-01       | 2.4E-01      | 3.0E-01      | 2.3E-01      |
| 5 | Category 2/3 Stockpile        | 9.7E-02       | 9.7E-02      | 1.5E-01      | 1.4E-01      |

| FLOW (ft3/sec) |   |                               |              |              |              |         |  |  |
|----------------|---|-------------------------------|--------------|--------------|--------------|---------|--|--|
|                |   |                               | Yea          | ar 1         | Year 20      |         |  |  |
| _              |   |                               | Single layer | Single layer | Double layer |         |  |  |
|                | 1 | Category 1 Stockpile          | 3.9E-01      | 3.9E-01      | 7.0E-01      | 7.0E-01 |  |  |
|                | 2 | Lean Ore Surge Pile           | 3.9E-01      | 3.9E-01      |              |         |  |  |
|                | 3 | Category 4 Stockpile          | 1.1E-01      | 1.1E-01      | 1.4E-01      | 1.0E-01 |  |  |
|                | 4 | Category 3 Lean Ore Stockpile | 3.2E-01      | 3.2E-01      | 4.0E-01      | 3.0E-01 |  |  |
|                | 5 | Category 2/3 Stockpile        | 1.3E-01      | 1.3E-01      | 2.1E-01      | 1.8E-01 |  |  |

|   |                               | Commodity Fa | ctor k       | S=0.5%       |              |  |  |
|---|-------------------------------|--------------|--------------|--------------|--------------|--|--|
|   |                               | Ye           | ar 1         | Yea          | r 20         |  |  |
|   |                               | Single layer | Double layer | Single layer | Double layer |  |  |
| 1 | Category 1 Stockpile          | 5.5          | 5.5          | 9.9          | 9.9          |  |  |
| 2 | Lean Ore Surge Pile           | 5.5          | 5.5          |              |              |  |  |
| 3 | Category 4 Stockpile          | 1.6          | 1.6          | 2.0          | 1.4          |  |  |
| 4 | Category 3 Lean Ore Stockpile | 4.5          | 4.5          | 5.7          | 4.3          |  |  |
| 5 | Category 2/3 Stockpile        | 1.8          | 1.8          | 2.9          | 2.6          |  |  |

### Selected Pipe Dia (in)

|   |   |                               | Yea          | ar 1         | Year 20      |              |  |
|---|---|-------------------------------|--------------|--------------|--------------|--------------|--|
|   |   |                               | Single layer | Double layer | Single layer | Double layer |  |
|   | 2 | Category 1 Stockpile          | 6            | 6            | 8            | 8            |  |
|   | 3 | Lean Ore Surge Pile           | 6            | 6            |              |              |  |
| Γ | 4 | Category 4 Stockpile          | 4            | 4            | 6            | 6            |  |
| Γ | 5 | Category 3 Lean Ore Stockpile | 6            | 6            | 6            | 6            |  |
| Γ | 6 | Category 2/3 Stockpile        | 4            | 4            | 6            | 6            |  |

### Selected Pipe commodity value k (ASD 2008) n=0.012

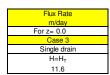
 Year 1
 Year 20

 Single layer
 Double layer
 Single layer

 Category 1 Stockpile
 6.10
 6.10
 13.10

| 3 | Lean Ore Surge Pile           | 6.10 | 6.10 |      |      |
|---|-------------------------------|------|------|------|------|
| 4 | Category 4 Stockpile          | 2.10 | 2.10 | 6.10 | 6.10 |
| 5 | Category 3 Lean Ore Stockpile | 6.10 | 6.10 | 6.10 | 6.10 |
| 6 | Category 2/3 Stockpile        | 2.10 | 2.10 | 6.10 | 6.10 |

2


### ATTACHMENT 7

## SIZING OF PRIMARY AND SECONDARY UNDERDRAIN PIPES

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

### Attachment 7-1: Category 1 Stockpile, year 1;

| Column height       | H⊤ | 11.58 m        |
|---------------------|----|----------------|
| Hydrulic cond.      | k  | 8.64E-03 m/day |
| Water density       | γw | 9.81 kN/m^3    |
| Soil density        | γs | 19.98 kN/m^3   |
| Load on surface     | р  | 235.6 kN/m^2   |
| Consolidation coef. | CV | 0.058 m^2/day  |
| time                | t  | 1 day          |



| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k     | Dia. | Notes                        |
|---------|----------------------------------|--------------------|-----------------------------|--------------|--------|-----------|--------------------|-------|------|------------------------------|
|         | (ft)                             | (ft <sup>2</sup> ) | (ft <sup>2</sup> )          | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |       | (in) |                              |
| 1       | 240                              | 24000.0            | 24000.0                     | 8304.8       | 2.0    | 7.691E+02 | 0.3                | 4.4   | 8    |                              |
| 2       | 435                              | 43500.0            | 67500.0                     | 8304.8       | 8.0    | 3.076E+03 | 1.3                | 17.8  | 10   |                              |
| 3       | 535                              | 53500.0            | 121000.0                    | 8304.8       | 14.0   | 5.383E+03 | 2.2                | 31.1  | 12   |                              |
| 4       | 550                              | 55000.0            | 176000.0                    | 8304.8       | 21.0   | 8.075E+03 | 3.3                | 46.7  | 15   |                              |
| 5       | 560                              | 56000.0            | 232000.0                    | 8304.8       | 27.0   | 1.038E+04 | 4.2                | 60.0  | 15   |                              |
| 6       | 570                              | 57000.0            | 289000.0                    | 8304.8       | 34.0   | 1.307E+04 | 5.3                | 75.6  | 18   |                              |
| 7       | 520                              | 52000.0            | 341000.0                    | 8304.8       | 41.0   | 1.577E+04 | 6.4                | 91.1  | 18   |                              |
| 8       | 580                              | 58000.0            | 399000.0                    | 8304.8       | 48.0   | 1.846E+04 | 7.5                | 106.7 | 18   |                              |
| 9       | 550                              | 55000.0            | 454000.0                    | 8304.8       | 54.0   | 2.076E+04 | 8.5                | 120.0 | 21   |                              |
| 10      | 460                              | 46000.0            | 500000.0                    | 8304.8       | 60.0   | 2.307E+04 | 9.4                | 133.4 | 21   |                              |
| 11      | 430                              | 43000.0            | 543000.0                    | 8304.8       | 65.0   | 2.499E+04 | 10.2               | 144.5 | 21   |                              |
| 12      | -                                |                    | 543000.0                    | 8304.8       | 65.0   | 2.499E+04 | 10.2               | 144.5 | 21   |                              |
| 13      | 30                               | 3000.0             | 546000.0                    | 7137.1       | 76.0   | 2.511E+04 | 10.3               | 145.2 | 21   |                              |
| 14      | 390                              | 39000.0            | 585000.0                    | 7137.1       | 81.0   | 2.677E+04 | 10.9               | 154.7 | 21   |                              |
| 15      | 320                              | 32000.0            | 617000.0                    | 7137.1       | 86.0   | 2.842E+04 | 11.6               | 164.3 | 21   |                              |
| 16      | 370                              | 37000.0            | 654000.0                    | 7137.1       | 91.0   | 3.007E+04 | 12.3               | 173.8 | 24   |                              |
| 17      | 410                              | 41000.0            | 695000.0                    | 7137.1       | 97.0   | 3.205E+04 | 13.1               | 185.3 | 24   |                              |
| 18      | 545                              | 54500.0            | 749500.0                    | 7137.1       | 105.0  | 3.470E+04 | 14.2               | 200.6 | 24   |                              |
| 19      | 590                              | 59000.0            | 808500.0                    | 7137.1       | 113.0  | 3.734E+04 | 15.3               | 215.9 | 24   |                              |
| 20      | 590                              | 59000.0            | 867500.0                    | 7137.1       | 121.0  | 3.999E+04 | 16.3               | 231.1 | 24   |                              |
| 21      | 510                              | 51000.0            | 918500.0                    | 7137.1       | 128.0  | 4.230E+04 | 17.3               | 244.5 | 24   |                              |
| 22      | 350                              | 35000.0            | 953500.0                    | 7137.1       | 133.0  | 4.395E+04 | 18.0               | 254.1 | 27   |                              |
| 23      | 700                              | 70000.0            | 1023500.0                   | 7137.1       | 143.0  | 4.726E+04 | 19.3               | 273.2 | 27   |                              |
| 24      | 700                              | 70000.0            | 1093500.0                   | 7137.1       | 153.0  | 5.056E+04 | 20.7               | 292.3 | 27   |                              |
| 25      | 700                              | 70000.0            | 1163500.0                   | 7137.1       | 163.0  | 5.386E+04 | 22.0               | 311.4 | 27   |                              |
| 26      | 700                              | 70000.0            | 1233500.0                   | 7137.1       | 172.0  | 5.684E+04 | 23.2               | 328.6 | 27   |                              |
| 27      | 700                              | 70000.0            | 1303500.0                   | 7137.1       | 182.0  | 6.014E+04 | 24.6               | 347.7 | 30   |                              |
| 28      | 700                              | 70000.0            | 1373500.0                   | 7137.1       | 192.0  | 6.345E+04 | 25.9               | 366.8 | 30   |                              |
| 29      | 700                              | 70000.0            | 1443500.0                   | 7137.1       | 202.0  | 6.675E+04 | 27.3               | 385.9 | 30   |                              |
| 30      | 700                              | 70000.0            | 1513500.0                   | 7137.1       | 212.0  | 7.006E+04 | 28.6               | 405.0 | 30   |                              |
| 31      | 700                              | 70000.0            | 1583500.0                   | 7137.1       | 221.0  | 7.303E+04 | 29.9               | 422.1 | 30   |                              |
| 32      | 700                              | 70000.0            | 1653500.0                   | 7137.1       | 231.0  | 7.634E+04 | 31.2               | 441.3 | 30   |                              |
| 33      | 700                              | 70000.0            | 1723500.0                   | 7137.1       | 241.0  | 7.964E+04 | 32.6               | 460.4 | 33   | 1                            |
| 34      | 700                              | 70000.0            | 1793500.0                   | 7137.1       | 251.0  | 8.295E+04 | 33.9               | 479.5 | 33   |                              |
| 35      | 700                              | 70000.0            | 1863500.0                   | 7137.1       | 261.0  | 8.625E+04 | 35.3               | 498.6 | 33   | ]                            |
| 36      | 700                              | 70000.0            | 1933500.0                   | 7137.1       | 270.0  | 8.922E+04 | 36.5               | 515.7 | 33   |                              |
| 37      | 700                              | 70000.0            | 2003500.0                   | 7137.1       | 280.0  | 9.253E+04 | 37.8               | 534.9 | 33   | ]                            |
| 38      | 700                              | 70000.0            | 2073500.0                   | 7137.1       | 290.0  | 9.583E+04 | 39.2               | 554.0 | 33   | ]                            |
| 39      | 700                              | 70000.0            | 2143500.0                   | 7137.1       | 300.0  | 9.914E+04 | 40.5               | 573.1 | 36   |                              |
| 39      | -                                |                    | 3583200.0                   | 7137.1       | 502.0  | 1.659E+05 | 67.8               | 958.9 |      | inflow from branches # 7 & 6 |

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                 |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-----------------------|
|         | (ft)                                | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                       |
| 1       | 330                                 | 33000.0                    | 33000.0                     | 7137.1       | 4.0    | 9.201E+02 | 0.4                | 5.3  | 8    |                       |
| 2       | 530                                 | 53000.0                    | 86000.0                     | 7137.1       | 12.0   | 1.854E+03 | 0.8                | 10.7 | 8    |                       |
| 3       | 600                                 | 60000.0                    | 146000.0                    | 7137.1       | 20.0   | 2.510E+03 | 1.0                | 14.5 | 10   |                       |
| 4       | 636                                 | 63600.0                    | 209600.0                    | 7137.1       | 29.0   | 3.107E+03 | 1.3                | 18.0 | 10   |                       |
| 5       | 680                                 | 68000.0                    | 277600.0                    | 7137.1       | 38.0   | 3.618E+03 | 1.5                | 20.9 | 10   |                       |
| 6       | 630                                 | 63000.0                    | 340600.0                    | 7137.1       | 47.0   | 4.072E+03 | 1.7                | 23.5 | 10   |                       |
| 7       | 360                                 | 36000.0                    | 376600.0                    | 7137.1       | 52.0   | 4.306E+03 | 1.8                | 24.9 | 12   |                       |
| 8       | 310                                 | 31000.0                    | 407600.0                    | 7137.1       | 57.0   | 4.529E+03 | 1.9                | 26.2 | 12   |                       |
| 9       | 470                                 | 47000.0                    | 454600.0                    | 7137.1       | 63.0   | 4.784E+03 | 2.0                | 27.7 | 12   |                       |
| 10      | -                                   |                            | 409800.0                    | 7137.1       | 57.0   | 4.529E+03 | 1.9                | 26.2 | 12   | inflow from branch#2a |
| 11      | 580                                 | 58000.0                    | 467800.0                    | 7137.1       | 65.0   | 4.866E+03 | 2.0                | 28.1 | 12   |                       |
| 12      | 580                                 | 58000.0                    | 525800.0                    | 7137.1       | 73.0   | 5.184E+03 | 2.1                | 30.0 | 12   |                       |
| 13      | 650                                 | 65000.0                    | 590800.0                    | 7137.1       | 82.0   | 5.521E+03 | 2.3                | 31.9 | 12   |                       |
| 14      | 630                                 | 63000.0                    | 653800.0                    | 7137.1       | 91.0   | 5.839E+03 | 2.4                | 33.8 | 12   |                       |
| 15      | 630                                 | 63000.0                    | 716800.0                    | 7137.1       | 100.0  | 6.143E+03 | 2.5                | 35.5 | 12   |                       |
| 16      | 630                                 | 63000.0                    | 779800.0                    | 7137.1       | 109.0  | 6.433E+03 | 2.6                | 37.2 | 12   |                       |
| 17      | 500                                 | 50000.0                    | 829800.0                    | 7137.1       | 116.0  | 6.651E+03 | 2.7                | 38.4 | 12   |                       |
| 18      | 350                                 | 35000.0                    | 864800.0                    | 7137.1       | 121.0  | 6.803E+03 | 2.8                | 39.3 | 15   |                       |
| 19      | 280                                 | 28000.0                    | 892800.0                    | 7137.1       | 125.0  | 6.921E+03 | 2.8                | 40.0 | 15   |                       |

#### BRANCH 2a

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 1673                                        | 167300.0                             | 167300.0                                          | 7137.1                    | 23.0        | 2.721E+03        | 1.1                           | 15.7 | 10           |       |
| 2       | 990                                         | 99000.0                              | 266300.0                                          | 7137.1                    | 37.0        | 3.565E+03        | 1.5                           | 20.6 | 10           |       |
| 3       | 605                                         | 60500.0                              | 326800.0                                          | 7137.1                    | 45.0        | 3.976E+03        | 1.6                           | 23.0 | 10           |       |
| 4       | 550                                         | 55000.0                              | 381800.0                                          | 7137.1                    | 53.0        | 4.352E+03        | 1.8                           | 25.2 | 12           |       |
| 5       | 280                                         | 28000.0                              | 409800.0                                          | 7137.1                    | 57.0        | 4.529E+03        | 1.9                           | 26.2 | 12           |       |

### BRANCH 3

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                  |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|------------------------|
|         | ( <b>ft</b> )                       | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                        |
| 1       | 240                                 | 24000.0                    | 24000.0                     | 7137.1       | 3.0    | 7.549E+02 | 0.3                | 4.4  | 8    |                        |
| 2       | 480                                 | 48000.0                    | 72000.0                     | 7137.1       | 10.0   | 1.659E+03 | 0.7                | 9.6  | 8    |                        |
| 3       | 480                                 | 48000.0                    | 120000.0                    | 7137.1       | 16.0   | 2.202E+03 | 0.9                | 12.7 | 8    |                        |
| 4       | 640                                 | 64000.0                    | 184000.0                    | 7137.1       | 25.0   | 2.855E+03 | 1.2                | 16.5 | 10   |                        |
| 5       | 690                                 | 69000.0                    | 253000.0                    | 7137.1       | 35.0   | 3.455E+03 | 1.4                | 20.0 | 10   |                        |
| 6       | 350                                 | 35000.0                    | 288000.0                    | 7137.1       | 40.0   | 3.723E+03 | 1.5                | 21.5 | 10   |                        |
| 7       | 680                                 | 68000.0                    | 356000.0                    | 7137.1       | 49.0   | 4.167E+03 | 1.7                | 24.1 | 12   |                        |
| 8       | -                                   |                            | 646400.0                    | 7137.1       | 90.0   | 5.805E+03 | 2.4                | 33.6 | 12   | inflow from bracnh #3a |
| 9       | -                                   |                            | 728900.0                    | 7137.1       | 102.0  | 6.209E+03 | 2.5                | 35.9 | 12   | inflow from branch #4  |
| 10      | -                                   |                            | 1621700.0                   | 7137.1       | 227.0  | 9.486E+03 | 3.9                | 54.8 | 15   | inflow from branch#2   |

### BRANCH 3a

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 1244                                        | 124400.0                             | 124400.0                                          | 7137.1                    | 17.0        | 2.282E+03        | 0.9                           | 13.2 | 10           |       |
| 2       | 990                                         | 99000.0                              | 223400.0                                          | 7137.1                    | 31.0        | 3.227E+03        | 1.3                           | 18.7 | 10           |       |
| 3       | 410                                         | 41000.0                              | 264400.0                                          | 7137.1                    | 37.0        | 3.565E+03        | 1.5                           | 20.6 | 10           |       |
| 4       | 50                                          | 5000.0                               | 269400.0                                          | 7137.1                    | 37.0        | 3.565E+03        | 1.5                           | 20.6 | 10           |       |
| 5       | 210                                         | 21000.0                              | 290400.0                                          | 7137.1                    | 40.0        | 3.723E+03        | 1.5                           | 21.5 | 10           |       |

### BRANCH 4

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|----------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 150                                         | 15000.0        | 15000.0                                           | 7137.1                    | 2.0         | 5.641E+02        | 0.2                           | 3.3  | 8            |       |
| 2       | 235                                         | 23500.0        | 38500.0                                           | 7137.1                    | 5.0         | 1.068E+03        | 0.4                           | 6.2  | 8            |       |
| 3       | 240                                         | 24000.0        | 62500.0                                           | 7137.1                    | 8.0         | 1.445E+03        | 0.6                           | 8.4  | 8            |       |
| 4       | 200                                         | 20000.0        | 82500.0                                           | 7137.1                    | 11.0        | 1.759E+03        | 0.7                           | 10.2 | 8            |       |

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area    | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|-------------------------------------|-------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | ( <b>ft</b> )                       | $(\mathbf{ft}^2)$ | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 230                                 | 23000.0           | 23000.0                     | 7137.1       | 3.0    | 7.549E+02 | 0.3                | 4.4  | 8    |       |
| 2       | 420                                 | 42000.0           | 65000.0                     | 7137.1       | 9.0    | 1.555E+03 | 0.6                | 9.0  | 8    |       |
| 3       | 620                                 | 62000.0           | 127000.0                    | 7137.1       | 17.0   | 2.282E+03 | 0.9                | 13.2 | 10   |       |
| 4       | 510                                 | 51000.0           | 178000.0                    | 7137.1       | 24.0   | 2.789E+03 | 1.1                | 16.1 | 10   |       |
| 5       | 370                                 | 37000.0           | 215000.0                    | 7137.1       | 30.0   | 3.167E+03 | 1.3                | 18.3 | 10   |       |
| 6       | 150                                 | 15000.0           | 230000.0                    | 7137.1       | 32.0   | 3.285E+03 | 1.3                | 19.0 | 10   |       |
| 7       | 160                                 | 16000.0           | 246000.0                    | 7137.1       | 34.0   | 3.399E+03 | 1.4                | 19.7 | 10   |       |

### BRANCH 6

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                           |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|---------------------------------|
|         | ( <b>ft</b> )                       | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                 |
| 1       | 190                                 | 19000.0                    | 19000.0                     | 7137.1       | 2.0    | 5.641E+02 | 0.2                | 3.3  | 8    |                                 |
| 2       | 210                                 | 21000.0                    | 40000.0                     | 7137.1       | 5.0    | 1.068E+03 | 0.4                | 6.2  | 8    |                                 |
| 3       | 760                                 | 76000.0                    | 116000.0                    | 7137.1       | 16.0   | 2.202E+03 | 0.9                | 12.7 | 8    |                                 |
| 4       | 1108                                | 110800.0                   | 226800.0                    | 7137.1       | 31.0   | 3.227E+03 | 1.3                | 18.7 | 10   |                                 |
| 5       | 1013                                | 101300.0                   | 328100.0                    | 7137.1       | 45.0   | 3.976E+03 | 1.6                | 23.0 | 10   |                                 |
| 6       | 232                                 | 23200.0                    | 351300.0                    | 7137.1       | 49.0   | 4.167E+03 | 1.7                | 24.1 | 12   |                                 |
| 7       | 257                                 | 25700.0                    | 451000.0                    | 7137.1       | 63.0   | 4.784E+03 | 2.0                | 27.7 | 12   | includes inflow from branch #6a |
| 8       | 360                                 | 36000.0                    | 487000.0                    | 7137.1       | 68.0   | 4.987E+03 | 2.0                | 28.8 | 12   |                                 |
| 9       | 620                                 | 62000.0                    | 549000.0                    | 7137.1       | 76.0   | 5.298E+03 | 2.2                | 30.6 | 12   |                                 |
| 10      | 670                                 | 67000.0                    | 616000.0                    | 7137.1       | 86.0   | 5.664E+03 | 2.3                | 32.7 | 12   |                                 |
| 11      | 700                                 | 70000.0                    | 686000.0                    | 7137.1       | 96.0   | 6.010E+03 | 2.5                | 34.7 | 12   |                                 |
| 12      | 700                                 | 70000.0                    | 756000.0                    | 7137.1       | 105.0  | 6.306E+03 | 2.6                | 36.5 | 12   |                                 |
| 13      | 700                                 | 70000.0                    | 826000.0                    | 7137.1       | 115.0  | 6.620E+03 | 2.7                | 38.3 | 12   |                                 |
| 14      | 700                                 | 70000.0                    | 896000.0                    | 7137.1       | 125.0  | 6.921E+03 | 2.8                | 40.0 | 15   |                                 |
| 15      | 350                                 | 35000.0                    | 931000.0                    | 7137.1       | 130.0  | 7.068E+03 | 2.9                | 40.9 | 15   |                                 |
| 16      | -                                   |                            | 1177000.0                   | 7137.1       | 164.0  | 7.994E+03 | 3.3                | 46.2 | 15   | inflow from branch #5           |

### BRANCH 6a

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area    | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes |
|---------|-------------------------------------|-------------------|-----------------------------|--------------|--------|-----------|--------------------|-----|------|-------|
|         | (ft)                                | $(\mathbf{ft}^2)$ | $(\mathbf{ft}^2)$           | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |     | (in) |       |
| 1       | 740                                 | 74000.0           | 74000.0                     | 7137.1       | 10.0   | 1.659E+03 | 0.7                | 9.6 | 8    |       |

#### BRANCH 7

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                 |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-----------------------|
|         | (ft)                                | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                       |
| 1       | 490                                 | 49000.0                    | 49000.0                     | 7137.1       | 6.0    | 1.203E+03 | 0.5                | 7.0  | 8    |                       |
| 2       | 360                                 | 36000.0                    | 85000.0                     | 7137.1       | 11.0   | 1.759E+03 | 0.7                | 10.2 | 8    |                       |
| 3       | 370                                 | 37000.0                    | 122000.0                    | 7137.1       | 17.0   | 2.282E+03 | 0.9                | 13.2 | 10   |                       |
| 4       | 610                                 | 61000.0                    | 183000.0                    | 7137.1       | 25.0   | 2.855E+03 | 1.2                | 16.5 | 10   |                       |
| 5       | 570                                 | 57000.0                    | 240000.0                    | 7137.1       | 33.0   | 3.343E+03 | 1.4                | 19.3 | 10   |                       |
| 6       | 330                                 | 33000.0                    | 273000.0                    | 7137.1       | 38.0   | 3.618E+03 | 1.5                | 20.9 | 10   |                       |
| 7       | 970                                 | 97000.0                    | 370000.0                    | 7137.1       | 51.0   | 4.260E+03 | 1.7                | 24.6 | 12   |                       |
| 8       | 262                                 | 26200.0                    | 396200.0                    | 7137.1       | 55.0   | 4.441E+03 | 1.8                | 25.7 | 12   |                       |
| 9       | 340                                 | 34000.0                    | 430200.0                    | 7137.1       | 60.0   | 4.658E+03 | 1.9                | 26.9 | 12   |                       |
| 10      | 330                                 | 33000.0                    | 463200.0                    | 7137.1       | 64.0   | 4.825E+03 | 2.0                | 27.9 | 12   |                       |
| 11      | 455                                 | 45500.0                    | 508700.0                    | 7137.1       | 71.0   | 5.106E+03 | 2.1                | 29.5 | 12   |                       |
| 12      | -                                   |                            | 583700.0                    | 7138.1       | 81.0   | 5.485E+03 | 2.2                | 31.7 | 12   | inflow from branch #8 |

### BRANCH 8

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k   | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|-----|--------------|-------|
| 1       | 85                                          | 8500.0                               | 8500.0                                            | 7137.1                    | 1.0         | 3.305E+02        | 0.1                           | 1.9 | 8            |       |
| 2       | 355                                         | 35500.0                              | 44000.0                                           | 7137.1                    | 6.0         | 1.203E+03        | 0.5                           | 7.0 | 8            |       |
| 3       | 250                                         | 25000.0                              | 69000.0                                           | 7137.1                    | 9.0         | 1.555E+03        | 0.6                           | 9.0 | 8            |       |
| 4       | 60                                          | 6000.0                               | 75000.0                                           | 7137.1                    | 10.0        | 1.659E+03        | 0.7                           | 9.6 | 8            |       |

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 110                                      | 11000.0 | 11000.0                                           | 7137.1                    | 1.0         | 3.305E+02        | 0.1                           | 1.9  | 8            |       |
| 2       | 380                                      | 38000.0 | 49000.0                                           | 7137.1                    | 6.0         | 1.203E+03        | 0.5                           | 7.0  | 8            |       |
| 3       | 410                                      | 41000.0 | 90000.0                                           | 7137.1                    | 12.0        | 1.854E+03        | 0.8                           | 10.7 | 8            |       |
| 4       | 300                                      | 30000.0 | 120000.0                                          | 7137.1                    | 16.0        | 2.202E+03        | 0.9                           | 12.7 | 8            |       |
| 5       | 234                                      | 23400.0 | 143400.0                                          | 7137.1                    | 20.0        | 2.510E+03        | 1.0                           | 14.5 | 10           |       |

Appendix 7-1

### BRANCH 10

|   | Plan Length of<br>Tertiary Pipng |                            | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                          |
|---|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|--------------------------------|
|   | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                |
| 1 | 240                              | 24000.0                    | 24000.0                     | 7137.1       | 3.0    | 7.549E+02 | 0.3                | 4.4  | 8    |                                |
| 2 | 500                              | 50000.0                    | 74000.0                     | 7137.1       | 10.0   | 1.659E+03 | 0.7                | 9.6  | 8    |                                |
| 3 | 650                              | 65000.0                    | 139000.0                    | 7137.1       | 19.0   | 2.436E+03 | 1.0                | 14.1 | 10   |                                |
| 4 | 700                              | 70000.0                    | 209000.0                    | 7137.1       | 29.0   | 3.107E+03 | 1.3                | 18.0 | 10   |                                |
| 5 | 700                              | 70000.0                    | 279000.0                    | 7137.1       | 39.0   | 3.671E+03 | 1.5                | 21.2 | 10   |                                |
| 6 | 700                              | 70000.0                    | 349000.0                    | 7137.1       | 48.0   | 4.120E+03 | 1.7                | 23.8 | 12   |                                |
| 7 | 200                              | 20000.0                    | 369000.0                    | 7137.1       | 51.0   | 4.260E+03 | 1.7                | 24.6 | 12   |                                |
| 8 | 140                              | 14000.0                    | 526400.0                    | 7137.1       | 73.0   | 5.184E+03 | 2.1                | 30.0 | 12   | includes inflow from branch #9 |

### BRANCH 11

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                   |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------------------------|
| 1       | 180                                      | 18000.0 | 18000.0                                           | 7137.1                    | 2.0         | 5.641E+02        |                               | 3.3  |              |                         |
| 2       | 320                                      | 32000.0 | 50000.0                                           | 7137.1                    | 7.0         | 1.328E+03        | 0.5                           | 7.7  | 8            |                         |
| 3       | 370                                      | 37000.0 | 87000.0                                           | 7137.1                    | 12.0        | 1.854E+03        | 0.8                           | 10.7 | 8            |                         |
| 4       | -                                        |         | 202200.0                                          | 7137.1                    | 28.0        | 3.046E+03        | 1.2                           | 17.6 | 10           | inflow from branch #11a |
| 5       | 700                                      | 70000.0 | 272200.0                                          | 7137.1                    | 38.0        | 3.618E+03        | 1.5                           | 20.9 | 10           |                         |
| 6       | 630                                      | 63000.0 | 335200.0                                          | 7137.1                    | 46.0        | 4.024E+03        | 1.6                           | 23.3 | 10           |                         |
| 7       | 375                                      | 37500.0 | 372700.0                                          | 7137.1                    | 52.0        | 4.306E+03        | 1.8                           | 24.9 | 12           |                         |
| 8       | 100                                      | 10000.0 | 382700.0                                          | 7137.1                    | 53.0        | 4.352E+03        | 1.8                           | 25.2 | 12           |                         |
| 9       | -                                        |         | 909100.0                                          | 7138.1                    | 127.0       | 6.981E+03        | 2.9                           | 40.4 | 15           | inflow from branch #10  |
| 10      | -                                        |         | 2578700.0                                         | 7139.1                    | 361.0       | 1.208E+04        | 4.9                           | 69.9 | 15           | inflow from branch #12  |

### BRANCH 11a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 502                              | 50200.0                    | 50200.0                     | 7137.1       | 7.0    | 1.328E+03 | 0.5                | 7.7  | 8    |       |
| 2       | 315                              | 31500.0                    | 81700.0                     | 7137.1       | 11.0   | 1.759E+03 | 0.7                | 10.2 | 8    |       |
| 3       | 335                              | 33500.0                    | 115200.0                    | 7137.1       | 16.0   | 2.202E+03 | 0.9                | 12.7 | 8    |       |

### BRANCH 12

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                   |
|---------|----------------------------------|--------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------------------------|
|         | (ft)                             | (ft <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                         |
| 1       | 350                              | 35000.0            | 35000.0                     | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |                         |
| 2       | 490                              | 49000.0            | 84000.0                     | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                         |
| 3       | 570                              | 57000.0            | 141000.0                    | 8305.8       | 16.0   | 2.563E+03 | 1.0                | 14.8 | 10   |                         |
| 4       | 530                              | 53000.0            | 194000.0                    | 8306.8       | 23.0   | 3.167E+03 | 1.3                | 18.3 | 10   |                         |
| 5       | 490                              | 49000.0            | 243000.0                    | 8307.8       | 29.0   | 3.617E+03 | 1.5                | 20.9 | 10   |                         |
| 6       | -                                |                    | 893500.0                    | 8308.8       | 107.0  | 7.416E+03 | 3.0                | 42.9 | 15   | inflow from branch #12b |
| 7       | -                                |                    | 893500.0                    | 8309.8       | 107.0  | 7.417E+03 | 3.0                | 42.9 | 15   | inflow from branch #12c |
| 8       | 270                              | 27000.0            | 920500.0                    | 8310.8       | 110.0  | 7.528E+03 | 3.1                | 43.5 | 15   |                         |
| 9       | 480                              | 48000.0            | 968500.0                    | 8311.8       | 116.0  | 7.746E+03 | 3.2                | 44.8 | 15   |                         |
| 10      | 700                              | 70000.0            | 1038500.0                   | 8312.8       | 124.0  | 8.027E+03 | 3.3                | 46.4 | 15   |                         |
| 11      | -                                |                    | 1256000.0                   | 8313.8       | 151.0  | 8.914E+03 | 3.6                | 51.5 | 15   | inflow from branch #12d |
| 12      | 350                              | 35000.0            | 1291000.0                   | 8314.8       | 155.0  | 9.039E+03 | 3.7                | 52.3 | 15   |                         |
| 13      | -                                |                    | 1354600.0                   | 8315.8       | 162.0  | 9.254E+03 | 3.8                | 53.5 | 15   | inflow from branch #12e |
| 14      | 440                              | 44000.0            | 1398600.0                   | 8316.8       | 168.0  | 9.435E+03 | 3.9                | 54.5 | 15   |                         |
| 15      | 700                              | 70000.0            | 1468600.0                   | 8317.8       | 176.0  | 9.671E+03 | 4.0                | 55.9 | 15   |                         |
| 16      | 700                              | 70000.0            | 1538600.0                   | 8318.8       |        |           | 4.0                | 57.2 | 15   |                         |
| 17      | 700                              | 70000.0            | 1608600.0                   | 8319.8       |        |           | 4.2                | 58.7 | 15   |                         |
| 18      | 610                              | 61000.0            | 1669600.0                   | 8320.8       |        |           |                    | 59.8 | 15   |                         |

### BRANCH 12a

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 355                                      | 35500.0                              | 35500.0                                           | 8304.8                    | 4.0         | 1.071E+03        | 0.4                           | 6.2  | 8            |       |
| 2       | 345                                      | 34500.0                              | 70000.0                                           | 8304.8                    | 8.0         | 1.681E+03        | 0.7                           | 9.7  | 8            |       |
| 3       | 190                                      | 19000.0                              | 89000.0                                           | 8305.8                    | 10.0        | 1.931E+03        | 0.8                           | 11.2 | 8            |       |
| 4       | 100                                      | 10000.0                              | 99000.0                                           | 8306.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |       |

### BRANCH 12b

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                             |
|---------|------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-----------------------------------|
| 1       | 350                                      | 35000.0                              | 35000.0                                           | 8304.8                    | 4.0         | 1.071E+03        | 0.4                           | 6.2  | 8            |                                   |
| 2       | 410                                      | 41000.0                              | 76000.0                                           | 8304.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |                                   |
| 3       | 480                                      | 48000.0                              | 124000.0                                          | 8305.8                    | 14.0        | 2.367E+03        | 1.0                           | 13.7 | 10           |                                   |
| 4       | 560                                      | 56000.0                              | 180000.0                                          | 8306.8                    | 21.0        | 3.005E+03        | 1.2                           | 17.4 | 10           |                                   |
| 5       | 650                                      | 65000.0                              | 245000.0                                          | 8307.8                    | 29.0        | 3.617E+03        | 1.5                           | 20.9 | 10           |                                   |
| 6       | 700                                      | 70000.0                              | 315000.0                                          | 8308.8                    | 37.0        | 4.150E+03        | 1.7                           | 24.0 | 12           |                                   |
| 7       | 680                                      | 68000.0                              | 482000.0                                          | 8309.8                    | 58.0        | 5.324E+03        | 2.2                           | 30.8 | 12           | includes inflow from branch # 12a |
| 8       | 475                                      | 47500.0                              | 529500.0                                          | 8310.8                    | 63.0        | 5.571E+03        | 2.3                           | 32.2 | 12           |                                   |
| 9       | 395                                      | 39500.0                              | 569000.0                                          | 8311.8                    | 68.0        | 5.808E+03        | 2.4                           | 33.6 | 12           |                                   |
| 10      | 515                                      | 51500.0                              | 620500.0                                          | 8312.8                    | 74.0        | 6.082E+03        | 2.5                           | 35.2 | 12           |                                   |
| 11      | 300                                      | 30000.0                              | 650500.0                                          | 8313.8                    | 78.0        | 6.259E+03        | 2.6                           | 36.2 | 12           |                                   |

### BRANCH 12c

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 320                                      | 32000.0 | 32000.0                                           | 8304.8                    | 3.0         | 8.784E+02        |                               | 5.1  | 8            |       |
| 2       | 475                                      | 47500.0 | 79500.0                                           | 8304.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |       |
| 3       | 635                                      | 63500.0 | 143000.0                                          | 8305.8                    | 17.0        | 2.656E+03        | 1.1                           | 15.4 | 10           |       |
| 4       | 660                                      | 66000.0 | 209000.0                                          | 8306.8                    | 25.0        | 3.323E+03        | 1.4                           | 19.2 | 10           |       |
| 5       | 600                                      | 60000.0 | 269000.0                                          | 8307.8                    | 32.0        | 3.824E+03        | 1.6                           | 22.1 | 10           |       |
| 6       | 180                                      | 18000.0 | 287000.0                                          | 8308.8                    | 34.0        | 3.958E+03        | 1.6                           | 22.9 | 10           |       |

### BRANCH 12d

| Segment | Plan Length of<br>Tertiary Pipng |                            | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 100                              | 10000.0                    | 10000.0                     | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2  | 8    |       |
| 2       | 275                              | 27500.0                    | 37500.0                     | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |       |
| 3       | 480                              | 48000.0                    | 85500.0                     | 8305.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |       |
| 4       | 525                              | 52500.0                    | 138000.0                    | 8306.8       | 16.0   | 2.563E+03 | 1.0                | 14.8 | 10   |       |
| 5       | 295                              | 29500.0                    | 167500.0                    | 8307.8       | 20.0   | 2.922E+03 | 1.2                | 16.9 | 10   |       |
| 6       | 440                              | 44000.0                    | 211500.0                    | 8308.8       | 25.0   | 3.324E+03 | 1.4                | 19.2 | 10   |       |
| 7       | 60                               | 6000.0                     | 217500.0                    | 8309.8       | 26.0   | 3.399E+03 | 1.4                | 19.7 | 10   |       |

### BRANCH 12e

| Segment | Plan Length of<br>Tertiary Pipng |                            | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|-----|------|-------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |     | (in) |       |
| 1       | 136                              | 13600.0                    | 13600.0                     | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2 | 8    |       |
| 2       | 230                              | 23000.0                    | 36600.0                     | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2 | 8    |       |
| 3       | 170                              | 17000.0                    | 53600.0                     | 8305.8       | 6.0    | 1.400E+03 | 0.6                | 8.1 | 8    |       |
| 4       | 100                              | 10000.0                    | 63600.0                     | 8306.8       | 7.0    | 1.545E+03 | 0.6                | 8.9 | 8    |       |

### BRANCH 13

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 430                                      | 43000.0 | 43000.0                                           | 8304.8                    | 5.0         | 1.243E+03        | 0.5                           | 7.2  | 8            |       |
| 2       | 620                                      | 62000.0 | 105000.0                                          | 8304.8                    | 12.0        | 2.158E+03        | 0.9                           | 12.5 | 8            |       |
| 3       | 670                                      | 67000.0 | 172000.0                                          | 8305.8                    | 20.0        | 2.921E+03        | 1.2                           | 16.9 | 10           |       |
| 4       | 600                                      | 60000.0 | 232000.0                                          | 8306.8                    | 27.0        | 3.472E+03        | 1.4                           | 20.1 | 10           |       |
| 5       | 550                                      | 55000.0 | 287000.0                                          | 8307.8                    | 34.0        | 3.957E+03        | 1.6                           | 22.9 | 10           |       |
| 6       | 410                                      | 41000.0 | 328000.0                                          | 8308.8                    | 39.0        | 4.274E+03        | 1.7                           | 24.7 | 12           |       |
| 7       | 260                                      | 26000.0 | 354000.0                                          | 8309.8                    | 42.0        | 4.455E+03        | 1.8                           | 25.8 | 12           |       |

### BRANCH 14

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                           |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|---------------------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                 |
| 1       | 420                              | 42000.0                    | 42000.0                     | 8304.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    |                                 |
| 2       | 225                              | 22500.0                    | 64500.0                     | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |                                 |
| 3       | 245                              | 24500.0                    | 89000.0                     | 8305.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                                 |
| 4       | 225                              | 22500.0                    | 111500.0                    | 8306.8       | 13.0   | 2.265E+03 | 0.9                | 13.1 | 8    |                                 |
| 5       | -                                |                            | 601500.0                    | 8307.8       | 72.0   | 5.989E+03 | 2.4                | 34.6 | 12   | inflow from branches #14b & 14c |
| 6       | -                                |                            | 601500.0                    | 8308.8       | 72.0   | 5.990E+03 | 2.4                | 34.6 | 12   |                                 |
| 7       | 420                              | 42000.0                    | 643500.0                    | 8309.8       | 77.0   | 6.212E+03 | 2.5                | 35.9 | 12   |                                 |
| 8       | 470                              | 47000.0                    | 690500.0                    | 8310.8       | 83.0   | 6.471E+03 | 2.6                | 37.4 | 12   |                                 |
| 9       | 665                              | 66500.0                    | 757000.0                    | 8311.8       | 91.0   | 6.801E+03 | 2.8                | 39.3 | 15   |                                 |
| 10      | 690                              | 69000.0                    | 826000.0                    | 8312.8       | 99.0   | 7.117E+03 | 2.9                | 41.1 | 15   |                                 |
| 11      | 500                              | 50000.0                    | 876000.0                    | 8313.8       | 105.0  | 7.346E+03 | 3.0                | 42.5 | 15   |                                 |
| 12      | 180                              | 18000.0                    | 894000.0                    | 8314.8       | 107.0  | 7.421E+03 | 3.0                | 42.9 | 15   |                                 |
| 12      | -                                |                            | 1248000.0                   | 8315.8       | 150.0  | 8.885E+03 | 3.6                | 51.4 | 15   | inflow from branch #13          |
| 13      | 140                              | 14000.0                    | 1262000.0                   | 8316.8       | 151.0  | 8.917E+03 | 3.6                | 51.5 | 15   |                                 |
| 14      | -                                |                            | 1396000.0                   | 8317.8       | 167.0  | 9.406E+03 | 3.8                | 54.4 | 15   | inflow from branch #15          |

### BRANCH 14a

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 305                                      | 30500.0 | 30500.0                                           | 8304.8                    |             | 8.784E+02        |                               | 5.1  | 8            |       |
| 2       | 605                                      | 60500.0 | 91000.0                                           | 8304.8                    | 10.0        | 1.931E+03        | 0.8                           | 11.2 | 8            |       |
| 3       | 645                                      | 64500.0 | 155500.0                                          | 8305.8                    | 18.0        | 2.747E+03        | 1.1                           | 15.9 | 10           |       |
| 4       | 515                                      | 51500.0 | 207000.0                                          | 8306.8                    | 24.0        | 3.246E+03        | 1.3                           | 18.8 | 10           |       |
| 5       | 430                                      | 43000.0 | 250000.0                                          | 8307.8                    | 30.0        | 3.687E+03        | 1.5                           | 21.3 | 10           |       |
| 6       | 305                                      | 30500.0 | 280500.0                                          | 8308.8                    | 33.0        | 3.892E+03        | 1.6                           | 22.5 | 10           |       |
| 7       | 200                                      | 20000.0 | 300500.0                                          | 8309.8                    | 36.0        | 4.087E+03        | 1.7                           | 23.6 | 10           |       |

### BRANCH 14b

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                   |
|---------|------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------------------------|
| 1       | 305                                      | 30500.0                              | 30500.0                                           | 8304.8                    | 3.0         | 8.784E+02        | 0.4                           | 5.1  | 8            |                         |
| 2       | 620                                      | 62000.0                              | 92500.0                                           | 8304.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |                         |
| 3       | 350                                      | 35000.0                              | 127500.0                                          | 8305.8                    | 15.0        | 2.467E+03        | 1.0                           | 14.3 | 10           |                         |
| 4       | -                                        |                                      | 300500.0                                          | 8306.8                    | 36.0        | 4.086E+03        | 1.7                           | 23.6 | 10           | inflow from branch #14a |

### BRANCH 14c

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributery Aree | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|----------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 230                                      | 23000.0        | 23000.0                                           | 8304.8                    | 2.0         | 6.564E+02        | 0.3                           | 3.8  | 8            |       |
| 2       | 360                                      | 36000.0        | 59000.0                                           | 8304.8                    | 7.0         | 1.545E+03        | 0.6                           | 8.9  | 8            |       |
| 3       | 640                                      | 64000.0        | 123000.0                                          | 8305.8                    | 14.0        | 2.367E+03        | 1.0                           | 13.7 | 10           |       |
| 4       | 665                                      | 66500.0        | 189500.0                                          | 8306.8                    | 22.0        | 3.087E+03        | 1.3                           | 17.8 | 10           |       |

#### BRANCH 15

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area | Cumulated<br>Tributary Area<br>(ff <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|----------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
|         |                                          | (11)           | (10)                                              |                           |             |                  |                               |      | (III)        |       |
| 1       | 400                                      | 40000.0        | 40000.0                                           | 8304.8                    | 4.0         | 1.071E+03        | 0.4                           | 6.2  | 8            |       |
| 2       | 350                                      | 35000.0        | 75000.0                                           | 8304.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |       |
| 3       | 410                                      | 41000.0        | 116000.0                                          | 8305.8                    | 13.0        | 2.265E+03        | 0.9                           | 13.1 | 8            |       |
| 4       | 180                                      | 18000.0        | 134000.0                                          | 8306.8                    | 16.0        | 2.563E+03        | 1.0                           | 14.8 | 10           |       |

### BRANCH 16

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                   |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------------------------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | (ft <sup>2</sup> )          | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                         |
| 1       | 200                              | 20000.0                    | 20000.0                     | 8304.8       | 2.0    | 6.564E+02 | 0.3                | 3.8  | 8    |                         |
| 2       | 505                              | 50500.0                    | 70500.0                     | 8304.8       | 8.0    | 1.681E+03 | 0.7                | 9.7  | 8    |                         |
| 3       | 660                              | 66000.0                    | 136500.0                    | 8305.8       | 16.0   | 2.563E+03 | 1.0                | 14.8 | 10   |                         |
| 4       | 510                              | 51000.0                    | 187500.0                    | 8306.8       | 22.0   | 3.087E+03 | 1.3                | 17.8 | 10   |                         |
| 5       | 640                              | 64000.0                    | 251500.0                    | 8307.8       | 30.0   | 3.687E+03 | 1.5                | 21.3 | 10   |                         |
| 6       | 375                              | 37500.0                    | 289000.0                    | 8308.8       | 34.0   | 3.958E+03 | 1.6                | 22.9 | 10   |                         |
| 7       | -                                |                            | 446500.0                    | 8309.8       | 53.0   | 5.067E+03 | 2.1                | 29.3 | 12   | inflow from branch #16a |
| 8       | -                                |                            | 538000.0                    | 8310.8       | 64.0   | 5.619E+03 | 2.3                | 32.5 | 12   | inflow from branch #16b |
| 9       | 410                              | 41000.0                    | 579000.0                    | 8311.8       | 69.0   | 5.855E+03 | 2.4                | 33.8 | 12   |                         |
| 10      | 495                              | 49500.0                    | 628500.0                    | 8312.8       | 75.0   | 6.127E+03 | 2.5                | 35.4 | 12   |                         |
| 11      | <u>916</u>                       | 91600.0                    | 720100.0                    | 8313.8       | 86.0   | 6.598E+03 | 2.7                | 38.1 | 12   |                         |
| 12      | 435                              | 43500.0                    | 763600.0                    | 8314.8       | 91.0   | 6.803E+03 | 2.8                | 39.3 | 15   |                         |
| 13      | 460                              | 46000.0                    | 809600.0                    | 8315.8       | 97.0   | 7.042E+03 | 2.9                | 40.7 | 15   |                         |
| 14      | 200                              | 20000.0                    | 829600.0                    | 8316.8       | 99.0   | 7.120E+03 | 2.9                | 41.2 | 15   |                         |

### BRANCH 16a

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 55                                       | 5500.0  | 5500.0                                            | 8304.8                    | 1.0         | 3.845E+02        | 0.2                           | 2.2  | 8            |       |
| 2       | 565                                      | 56500.0 | 62000.0                                           | 8304.8                    | 7.0         | 1.545E+03        | 0.6                           | 8.9  | 8            |       |
| 3       | 610                                      | 61000.0 | 123000.0                                          | 8305.8                    | 14.0        | 2.367E+03        | 1.0                           | 13.7 | 10           |       |
| 4       | 345                                      | 34500.0 | 157500.0                                          | 8306.8                    | 18.0        | 2.747E+03        | 1.1                           | 15.9 | 10           |       |

### BRANCH 16b

| Segment | Plan Length of<br>Tertiary Pipng | Tributory Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 340                              | 34000.0                    | 34000.0                     | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |       |
| 2       | 295                              | 29500.0                    | 63500.0                     | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |       |
| 3       | 280                              | 28000.0                    | 91500.0                     | 8305.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |       |

Golder Associates Inc.

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                   |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                         |
| 1       | 320                              | 32000.0                    | 32000.0                     | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 8    |                         |
| 2       | 525                              | 52500.0                    | 84500.0                     | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                         |
| 3       | 590                              | 59000.0                    | 143500.0                    | 8305.8       | 17.0   | 2.656E+03 | 1.1                | 15.4 | 10   |                         |
| 4       | 600                              | 60000.0                    | 203500.0                    | 8306.8       | 24.0   | 3.246E+03 | 1.3                | 18.8 | 10   |                         |
| 5       | 610                              | 61000.0                    | 264500.0                    | 8307.8       | 31.0   | 3.756E+03 | 1.5                | 21.7 | 10   |                         |
| 6       | 650                              | 65000.0                    | 329500.0                    | 8308.8       | 39.0   | 4.274E+03 | 1.7                | 24.7 | 12   |                         |
| 7       | 350                              | 35000.0                    | 364500.0                    | 8309.8       | 43.0   | 4.513E+03 | 1.8                | 26.1 | 12   |                         |
| 8       | -                                |                            | 531000.0                    | 8310.8       | 63.0   | 5.571E+03 | 2.3                | 32.2 | 12   | inflow from branch #17a |
| 9       | 420                              | 42000.0                    | 573000.0                    | 8311.8       | 68.0   | 5.808E+03 | 2.4                | 33.6 | 12   |                         |
| 10      | 435                              | 43500.0                    | 616500.0                    | 8312.8       | 74.0   | 6.082E+03 | 2.5                | 35.2 | 12   |                         |
| 11      | -                                |                            | 689000.0                    | 8313.8       | 82.0   | 6.431E+03 | 2.6                | 37.2 | 12   | inflow from branch #17b |
| 12      | 105                              | 10500.0                    | 699500.0                    | 8314.8       | 84.0   | 6.516E+03 | 2.7                | 37.7 | 12   |                         |

### BRANCH 17a

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 185                                      | 18500.0 | 18500.0                                           | 8304.8                    |             | 6.564E+02        |                               | 3.8  |              |       |
| 2       | 350                                      | 35000.0 | 53500.0                                           | 8304.8                    | 6.0         | 1.400E+03        | 0.6                           | 8.1  | 8            |       |
| 3       | 235                                      | 23500.0 | 77000.0                                           | 8305.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |       |
| 4       | 470                                      | 47000.0 | 124000.0                                          | 8306.8                    | 14.0        | 2.368E+03        | 1.0                           | 13.7 | 10           |       |
| 5       | 340                                      | 34000.0 | 158000.0                                          | 8307.8                    | 19.0        | 2.836E+03        | 1.2                           | 16.4 | 10           |       |
| 6       | 85                                       | 8500.0  | 166500.0                                          | 8308.8                    | 20.0        | 2.922E+03        | 1.2                           | 16.9 | 10           |       |

### BRANCH 17b

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|-----|------|-------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |     | (in) |       |
| 1       | 565                              | 56500.0                    | 56500.0                     | 8304.8       | 6.0    | 1.400E+03 | 0.6                | 8.1 | 8    |       |
| 2       | 160                              | 16000.0                    | 72500.0                     | 8304.8       | 8.0    | 1.681E+03 | 0.7                | 9.7 | 8    |       |

### BRANCH 18

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                          |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|--------------------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                |
| 1       | 340                              | 34000.0                    | 34000.0                     | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |                                |
| 2       | 400                              | 40000.0                    | 74000.0                     | 8304.8       | 8.0    | 1.681E+03 | 0.7                | 9.7  | 8    |                                |
| 3       | 400                              | 40000.0                    | 114000.0                    | 8305.8       | 13.0   | 2.265E+03 | 0.9                | 13.1 | 8    |                                |
| 4       | 400                              | 40000.0                    | 154000.0                    | 8306.8       | 18.0   | 2.747E+03 | 1.1                | 15.9 | 10   |                                |
| 5       | -                                |                            | 1196000.0                   | 8307.8       | 143.0  | 8.654E+03 | 3.5                | 50.0 | 15   | inflow from branches #17 & 18a |
| 6       | -                                |                            | 1196000.0                   | 8308.8       | 143.0  | 8.655E+03 | 3.5                | 50.0 | 15   |                                |
| 7       | 350                              | 35000.0                    | 1231000.0                   | 8309.8       | 148.0  | 8.815E+03 | 3.6                | 51.0 | 15   |                                |
| 6       | 450                              | 45000.0                    | 1276000.0                   | 8310.8       | 153.0  | 8.973E+03 | 3.7                | 51.9 | 15   |                                |
| 7       | 485                              | 48500.0                    | 1324500.0                   | 8311.8       | 159.0  | 9.159E+03 | 3.7                | 52.9 | 15   |                                |
| 8       | 450                              | 45000.0                    | 1369500.0                   | 8312.8       | 164.0  | 9.311E+03 | 3.8                | 53.8 | 15   |                                |
| 9       | 575                              | 57500.0                    | 1427000.0                   | 8313.8       | 171.0  | 9.520E+03 | 3.9                | 55.0 | 15   |                                |
| 10      | 170                              | 17000.0                    | 1444000.0                   | 8314.8       | 173.0  | 9.580E+03 | 3.9                | 55.4 | 15   |                                |
| 11      | -                                |                            | 3004500.0                   | 8315.8       | 361.0  | 1.408E+04 | 5.8                | 81.4 | 18   | inflow from branches #16 & 19  |

### BRANCH 18a

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days)   | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|---------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 510                                      | 51000.0 | 51000.0                                           | 8304.8                    | (days)<br>6.0 |                  |                               | 8.1  | (III)<br>8   |       |
| 2       | 505                                      | 50500.0 | 101500.0                                          | 8304.8                    |               |                  |                               | -    | 8            |       |
| 3       | 660                                      | 66000.0 | 167500.0                                          | 8305.8                    | 20.0          | 2.921E+03        | 1.2                           | 16.9 | 10           |       |
| 4       | 700                                      | 70000.0 | 237500.0                                          | 8306.8                    | 28.0          | 3.545E+03        | 1.4                           | 20.5 | 10           |       |
| 5       | 700                                      | 70000.0 | 307500.0                                          | 8307.8                    | 37.0          | 4.149E+03        | 1.7                           | 24.0 | 12           |       |
| 6       | 350                                      | 35000.0 | 342500.0                                          | 8308.8                    | 41.0          | 4.395E+03        | 1.8                           | 25.4 | 12           |       |

### BRANCH 19

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                   |
|---------|------------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------------------------|
|         |                                          | ( <b>ft</b> <sup>2</sup> ) | (ft <sup>2</sup> )          | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                         |
| 1       | 442                                      | 44200.0                    | 44200.0                     | 8304.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    |                         |
| 2       | 520                                      | 52000.0                    | 96200.0                     | 8304.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |                         |
| 3       | 650                                      | 65000.0                    | 161200.0                    | 8305.8       | 19.0   | 2.835E+03 | 1.2                | 16.4 | 10   |                         |
| 4       | 660                                      | 66000.0                    | 227200.0                    | 8306.8       | 27.0   | 3.472E+03 | 1.4                | 20.1 | 10   |                         |
| 5       | 700                                      | 70000.0                    | 297200.0                    | 8307.8       | 35.0   | 4.022E+03 | 1.6                | 23.2 | 10   |                         |
| 6       | 700                                      | 70000.0                    | 367200.0                    | 8308.8       | 44.0   | 4.571E+03 | 1.9                | 26.4 | 12   |                         |
| 7       | 700                                      | 70000.0                    | 437200.0                    | 8309.8       | 52.0   | 5.014E+03 | 2.0                | 29.0 | 12   |                         |
| 8       | 700                                      | 70000.0                    | 507200.0                    | 8310.8       | 61.0   | 5.473E+03 | 2.2                | 31.6 | 12   |                         |
| 9       | 170                                      | 17000.0                    | 524200.0                    | 8311.8       | 63.0   | 5.571E+03 | 2.3                | 32.2 | 12   |                         |
| 10      | -                                        |                            | 730900.0                    | 8312.8       | 87.0   | 6.639E+03 | 2.7                | 38.4 | 12   | inflow from branch #19a |

#### BRANCH 19a

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 510                                         | 51000.0                              | 51000.0                                           | 8304.8                    | 6.0         | 1.400E+03        | 0.6                           | 8.1  | 8            |       |
| 2       | 612                                         | 61200.0                              | 112200.0                                          | 8304.8                    | 13.0        | 2.264E+03        | 0.9                           | 13.1 | 8            |       |
| 3       | 435                                         | 43500.0                              | 155700.0                                          | 8305.8                    | 18.0        | 2.747E+03        | 1.1                           | 15.9 | 10           |       |
| 4       | 360                                         | 36000.0                              | 191700.0                                          | 8306.8                    | 23.0        | 3.167E+03        | 1.3                           | 18.3 | 10           |       |
| 5       | 150                                         | 15000.0                              | 206700.0                                          | 8307.8                    | 24.0        | 3.246E+03        | 1.3                           | 18.8 | 10           |       |

#### BRANCH 20

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                   |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------------------------|
| 1       | 265                                         | 26500.0                              | 26500.0                                           | 8304.8                    | 3.0         | 8.784E+02        | 0.4                           | 5.1  | 8            |                         |
| 2       | 590                                         | 59000.0                              | 85500.0                                           | 8304.8                    | 10.0        | 1.931E+03        | 0.8                           | 11.2 | 8            |                         |
| 3       | 490                                         | 49000.0                              | 134500.0                                          | 8305.8                    | 16.0        | 2.563E+03        | 1.0                           | 14.8 | 10           |                         |
| 4       | 700                                         | 70000.0                              | 204500.0                                          | 8306.8                    | 24.0        | 3.246E+03        | 1.3                           | 18.8 | 10           |                         |
| 5       | -                                           |                                      | 417000.0                                          | 8307.8                    | 50.0        | 4.905E+03        | 2.0                           | 28.4 | 12           | inflow from branch #20a |

#### BRANCH 20a

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 290                                         | 29000.0                              | 29000.0                                           | 8304.8                    | 3.0         | 8.784E+02        | 0.4                           | 5.1  | 8            |       |
| 2       | 650                                         | 65000.0                              | 94000.0                                           | 8304.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |       |
| 3       | 885                                         | 88500.0                              | 182500.0                                          | 8305.8                    | 21.0        | 3.005E+03        | 1.2                           | 17.4 | 10           |       |
| 4       | 300                                         | 30000.0                              | 212500.0                                          | 8306.8                    | 25.0        | 3.323E+03        | 1.4                           | 19.2 | 10           |       |

#### **BRANCH 21**

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                          |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|--------------------------------|
|         | (ft)                                | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                |
| 1       | 300                                 | 30000.0                    | 30000.0                     | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 8    |                                |
| 2       | 620                                 | 62000.0                    | 92000.0                     | 8304.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |                                |
| 3       | 700                                 | 70000.0                    | 162000.0                    | 8305.8       | 19.0   | 2.835E+03 | 1.2                | 16.4 | 10   |                                |
| 4       | 700                                 | 70000.0                    | 232000.0                    | 8306.8       | 27.0   | 3.472E+03 | 1.4                | 20.1 | 10   |                                |
| 5       | -                                   |                            | 354000.0                    | 8307.8       | 42.0   | 4.454E+03 | 1.8                | 25.7 | 12   | inflow from branch #21a        |
| 6       | -                                   |                            | 533000.0                    | 8308.8       | 64.0   | 5.618E+03 | 2.3                | 32.5 | 12   | inflow from branch #21b        |
| 7       | -                                   |                            | 533000.0                    | 8309.8       | 64.0   | 5.618E+03 | 2.3                | 32.5 | 12   |                                |
| 8       | 700                                 | 70000.0                    | 603000.0                    | 8310.8       | 72.0   | 5.991E+03 | 2.4                | 34.6 | 12   |                                |
| 9       | 420                                 | 42000.0                    | 645000.0                    | 8311.8       | 77.0   | 6.214E+03 | 2.5                | 35.9 | 12   |                                |
| 10      | 700                                 | 70000.0                    | 715000.0                    | 8312.8       | 86.0   | 6.597E+03 | 2.7                | 38.1 | 12   |                                |
| 11      | -                                   |                            | 885500.0                    | 8313.8       | 106.0  | 7.383E+03 | 3.0                | 42.7 | 15   | inflow from branch #21c        |
| 12      | 555                                 | 55500.0                    | 941000.0                    | 8314.8       | 113.0  | 7.641E+03 | 3.1                | 44.2 | 15   |                                |
| 13      | 650                                 | 65000.0                    | 1006000.0                   | 8315.8       | 120.0  | 7.891E+03 | 3.2                | 45.6 | 15   |                                |
| 14      | 390                                 | 39000.0                    | 1045000.0                   | 8316.8       | 125.0  | 8.066E+03 | 3.3                | 46.6 | 15   |                                |
| 15      | 320                                 | 32000.0                    | 1077000.0                   | 8317.8       | 129.0  | 8.203E+03 | 3.4                | 47.4 | 15   |                                |
| 16      | 110                                 | 11000.0                    | 1088000.0                   | 8318.8       | 130.0  | 8.238E+03 | 3.4                | 47.6 | 15   |                                |
| 17      | -                                   |                            | 2003500.0                   | 8319.8       | 240.0  | 1.139E+04 | 4.7                | 65.8 | 15   | inflow from branches # 20 & 22 |

#### BRANCH 21a

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | ( <b>ft</b> )                       | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 310                                 | 31000.0                    | 31000.0                     | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 8    |       |
| 2       | 560                                 | 56000.0                    | 87000.0                     | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |       |
| 3       | 350                                 | 35000.0                    | 122000.0                    | 8305.8       | 14.0   | 2.367E+03 | 1.0                | 13.7 | 10   |       |

#### BRANCH 21b

| Segment | Plan Length<br>of Tertiary<br>Pipng<br>(ft) | Tributary Area | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|---------------------------------------------|----------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 385                                         | 38500.0        | 38500.0                                           | 8304.8                    | 4.0         | 1.071E+03        | 0.4                           | 6.2  | 8            |       |
| 2       | 605                                         | 60500.0        | 99000.0                                           | 8304.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |       |
| 3       | 490                                         | 49000.0        | 148000.0                                          | 8305.8                    | 17.0        | 2.656E+03        | 1.1                           | 15.4 | 10           |       |
| 4       | 310                                         | 31000.0        | 179000.0                                          | 8306.8                    | 21.0        | 3.005E+03        | 1.2                           | 17.4 | 10           |       |

#### BRANCH 21c

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Tributary Area    | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|-------------------------------------|----------------------------|-------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                                | ( <b>ft</b> <sup>2</sup> ) | $(\mathbf{ft}^2)$ | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 85                                  | 8500.0                     | 8500.0            | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2  | 8    |       |
| 2       | 300                                 | 30000.0                    | 38500.0           | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |       |
| 3       | 270                                 | 27000.0                    | 65500.0           | 8305.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |       |
| 4       | 315                                 | 31500.0                    | 97000.0           | 8306.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |       |
| 5       | 490                                 | 49000.0                    | 146000.0          | 8307.8       | 17.0   | 2.657E+03 | 1.1                | 15.4 | 10   |       |
| 6       | 245                                 | 24500.0                    | 170500.0          | 8308.8       | 20.0   | 2.922E+03 | 1.2                | 16.9 | 10   |       |

#### BRANCH 22

| Segment | Plan Length<br>of Tertiary<br>Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|-------------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                                | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 290                                 | 29000.0                    | 29000.0                     | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 8    |       |
| 2       | 600                                 | 60000.0                    | 89000.0                     | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |       |
| 3       | 655                                 | 65500.0                    | 154500.0                    | 8305.8       | 18.0   | 2.747E+03 | 1.1                | 15.9 | 10   |       |
| 4       | 680                                 | 68000.0                    | 222500.0                    | 8306.8       | 26.0   | 3.398E+03 | 1.4                | 19.6 | 10   |       |
| 5       | 700                                 | 70000.0                    | 292500.0                    | 8307.8       | 35.0   | 4.022E+03 | 1.6                | 23.2 | 10   |       |
| 6       | 700                                 | 70000.0                    | 362500.0                    | 8308.8       | 43.0   | 4.513E+03 | 1.8                | 26.1 | 12   |       |
| 7       | 700                                 | 70000.0                    | 432500.0                    | 8309.8       | 52.0   | 5.014E+03 | 2.0                | 29.0 | 12   |       |
| 8       | 660                                 | 66000.0                    | 498500.0                    | 8310.8       | 59.0   | 5.375E+03 | 2.2                | 31.1 | 12   |       |

### Attachment 7-2: Lean Ore Surge Pile, year 1

| Column height       | HT | 3.05 m         |
|---------------------|----|----------------|
| Hydrulic cond.      | k  | 8.64E-03 m/day |
| Water density       | γw | 9.81 kN/m^3    |
| Soil density        | γs | 19.98 kN/m^3   |
| Load on surface     | р  | 235.6 kN/m^2   |
| Consolidation coef. | CV | 0.058 m^2/day  |
|                     | t  | 1 day          |
|                     |    |                |

| Flux Rate        |
|------------------|
| m/day            |
| For z= 0.0       |
| Case 3           |
| Single drain     |
| H=H <sub>T</sub> |
| 3.0              |
|                  |

#### BRANCH 1

| Second  | Plan Length of | Tributary Area             | Cumulate<br>d              |              | т      |           | Cumulative |       |      |                       |
|---------|----------------|----------------------------|----------------------------|--------------|--------|-----------|------------|-------|------|-----------------------|
| Segment | Tertiary Pipng | Tributary Area             | Tributary                  | Area per day | 1      | Flow      | Flow       | k     | Dia. | Notes                 |
|         | (ft)           | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> ) | (ft2/day)    | (days) | (m3/day)  | (ft3/s)    |       | (in) |                       |
| 1       | 106            | 10600.0                    | 10600.0                    | 8304.8       | 1.0    | 3.845E+02 | 0.2        | 2.2   | 6    |                       |
| 2       | 120            | 12000.0                    | 22600.0                    | 8304.8       | 2.0    | 7.691E+02 | 0.3        | 4.4   | 6    |                       |
| 3       | 159            | 15900.0                    | 38500.0                    | 8305.8       | 4.0    | 1.538E+03 | 0.6        | 8.9   | 8    |                       |
| 4       | 256            | 25600.0                    | 64100.0                    | 8306.8       | 7.0    | 2.692E+03 | 1.1        | 15.6  | 10   |                       |
| 5       | 137            | 13700.0                    | 77800.0                    | 8307.8       | 9.0    | 3.462E+03 | 1.4        | 20.0  | 10   |                       |
| 6       | 256            | 25600.0                    | 103400.0                   | 8308.8       | 12.0   | 4.617E+03 | 1.9        | 26.7  | 12   |                       |
| 7       | 138            | 13800.0                    | 117200.0                   | 8309.8       | 14.0   | 5.387E+03 | 2.2        | 31.1  | 12   |                       |
| 8       | 256            | 25600.0                    | 142800.0                   | 8310.8       | 17.0   | 6.542E+03 | 2.7        | 37.8  | 12   |                       |
| 9       | 137            | 13700.0                    | 156500.0                   | 8311.8       | 18.0   | 6.927E+03 | 2.8        | 40.0  | 15   |                       |
| 10      | 256            | 25600.0                    | 182100.0                   | 8312.8       | 21.0   | 8.083E+03 | 3.3        | 46.7  | 15   |                       |
| 11      | 256            | 25600.0                    | 207700.0                   | 8313.8       | 24.0   | 9.239E+03 | 3.8        | 53.4  | 15   |                       |
| 12      | 96             | 9600.0                     | 217300.0                   | 8314.8       | 26.0   | 1.001E+04 | 4.1        | 57.9  | 15   |                       |
| 13      | 116            | 11600.0                    | 228900.0                   | 8315.8       | 27.0   | 1.040E+04 | 4.2        | 60.1  | 15   |                       |
| 14      | 284            | 28400.0                    | 257300.0                   | 8316.8       | 30.0   | 1.155E+04 | 4.7        | 66.8  | 15   |                       |
| 15      | 133            | 13300.0                    | 270600.0                   | 8317.8       | 32.0   | 1.232E+04 | 5.0        | 71.2  | 18   |                       |
| 16      | 101            | 10100.0                    | 280700.0                   | 8318.8       | 33.0   | 1.271E+04 | 5.2        | 73.5  | 18   |                       |
| 17      |                |                            | 355100.0                   | 8319.8       | 42.0   | 1.618E+04 | 6.6        | 93.5  | 18   | Inflow from branch 1a |
| 18      | 121            | 12100.0                    | 367200.0                   | 8320.8       | 44.0   | 1.695E+04 | 6.9        | 98.0  | 18   |                       |
| 19      | 92             | 9200.0                     | 376400.0                   | 8321.8       | 45.0   | 1.734E+04 | 7.1        | 100.2 | 18   |                       |
| 20      | 125            | 12500.0                    | 388900.0                   | 8322.8       | 46.0   | 1.773E+04 | 7.2        | 102.5 | 18   |                       |
| 21      | 125            | 12500.0                    | 401400.0                   | 8323.8       | 48.0   | 1.850E+04 | 7.6        | 106.9 | 18   |                       |
| 22      | 129            | 12900.0                    | 414300.0                   | 8324.8       | 49.0   | 1.889E+04 | 7.7        | 109.2 | 18   |                       |
| 23      | 257            | 25734.0                    | 440034.0                   | 8325.8       | 52.0   | 2.005E+04 | 8.2        | 115.9 | 21   | Actual length 123 ft  |
| 24      | 124            | 12400.0                    | 452434.0                   | 8326.8       | 54.0   | 2.082E+04 | 8.5        | 120.3 | 21   |                       |
| 25      | 276            | 27643.0                    | 480077.0                   | 8327.8       | 57.0   | 2.198E+04 | 9.0        | 127.0 |      | Actual length 126 ft  |
| 26      | 122            | 12200.0                    | 492277.0                   | 8328.8       | 59.0   | 2.275E+04 | 9.3        | 131.5 | 21   |                       |
| 27      | 126            | 12600.0                    | 504877.0                   | 8329.8       | 60.0   | 2.314E+04 | 9.5        | 133.8 | 21   |                       |
| 28      | 127            | 12700.0                    | 517577.0                   | 8330.8       | 62.0   | 2.392E+04 | 9.8        | 138.2 | 21   |                       |
| 29      | 111            | 11100.0                    | 528677.0                   | 8331.8       | 63.0   | 2.430E+04 | 9.9        | 140.5 | 21   |                       |
| 30      | 130            | 13000.0                    | 541677.0                   | 8332.8       | 65.0   | 2.508E+04 | 10.3       | 145.0 | 21   | ]                     |
| 31      | 44             | 4400.0                     | 546077.0                   | 8333.8       | 65.0   | 2.508E+04 | 10.3       | 145.0 | 21   | ]                     |
| 32      | 86             | 8600.0                     | 554677.0                   | 8334.8       | 66.0   | 2.547E+04 | 10.4       | 147.2 | 21   | ]                     |
| 33      | 32             | 3200.0                     | 557877.0                   | 8335.8       | 66.0   | 2.547E+04 | 10.4       | 147.2 | 21   | ]                     |
| 34      |                |                            | 1156618.0                  | 8336.8       | 138.0  | 5.327E+04 | 21.8       | 307.9 | 27   | Inflow from branch #5 |
| 35      | 89             | 8900.0                     | 1165518.0                  | 8337.8       | 139.0  | 5.366E+04 | 21.9       | 310.2 | 27   | ]                     |

#### BRANCH 1a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulate<br>d              | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|--------------------|----------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> ) | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 98                               | 9800.0             | 9800.0                     | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2  | 6    |       |
| 2       | 185                              | 18500.0            | 28300.0                    | 8304.8       | 3.0    | 1.154E+03 | 0.5                | 6.7  | 8    |       |
| 3       | 181                              | 18100.0            | 46400.0                    | 8305.8       | 5.0    | 1.923E+03 | 0.8                | 11.1 | 8    |       |
| 4       | 280                              | 28000.0            | 74400.0                    | 8306.8       | 8.0    | 3.077E+03 | 1.3                | 17.8 | 10   |       |

| <u>BRANCH 2</u><br>Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulate<br>d<br>Tributarv | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                  |
|----------------------------|----------------------------------|----------------------------|----------------------------|--------------|--------|-----------|--------------------|------|------|------------------------|
|                            | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | (ft <sup>2</sup> )         | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                        |
| 1                          | 120                              | 12000.0                    | 12000.0                    | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2  | 6    |                        |
| 2                          | 173                              | 17300.0                    | 29300.0                    | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 6    |                        |
| 3                          | 146                              | 14600.0                    | 43900.0                    | 8305.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    |                        |
| 4                          | 256                              | 25600.0                    | 69500.0                    | 8306.8       | 8.0    | 1.681E+03 | 0.7                | 9.7  | 8    |                        |
| 5                          | 120                              | 12000.0                    | 81500.0                    | 8307.8       | 9.0    | 1.810E+03 | 0.7                | 10.5 | 8    |                        |
| 6                          | 256                              | 25600.0                    | 107100.0                   | 8308.8       | 12.0   | 2.159E+03 | 0.9                | 12.5 | 8    |                        |
| 7                          | 256                              | 25600.0                    | 132700.0                   | 8309.8       | 15.0   | 2.468E+03 | 1.0                | 14.3 | 10   |                        |
| 8                          | 161                              | 16100.0                    | 148800.0                   | 8310.8       | 17.0   | 2.658E+03 | 1.1                | 15.4 | 10   |                        |
| 9                          | 256                              | 25600.0                    | 174400.0                   | 8311.8       | 20.0   | 2.923E+03 | 1.2                | 16.9 | 10   |                        |
| 10                         | 149                              | 14900.0                    | 189300.0                   | 8312.8       | 22.0   | 3.089E+03 | 1.3                | 17.9 | 10   |                        |
| 11                         | 256                              | 25600.0                    | 214900.0                   | 8313.8       | 25.0   | 3.325E+03 | 1.4                | 19.2 | 10   |                        |
| 12                         | 166                              | 16600.0                    | 231500.0                   | 8314.8       | 27.0   | 3.474E+03 | 1.4                | 20.1 | 10   |                        |
| 13                         | 256                              | 25600.0                    | 257100.0                   | 8315.8       | 30.0   | 3.687E+03 | 1.5                | 21.3 | 10   |                        |
| 14                         | 177                              | 17700.0                    | 274800.0                   | 8316.8       | 33.0   | 3.889E+03 | 1.6                | 22.5 | 10   |                        |
| 15                         | 256                              | 25600.0                    | 300400.0                   | 8317.8       | 36.0   | 4.081E+03 | 1.7                | 23.6 | 10   |                        |
| 16                         | 182                              | 18200.0                    | 318600.0                   | 8318.8       | 38.0   | 4.204E+03 | 1.7                | 24.3 | 12   |                        |
| 17                         | 256                              | 25600.0                    | 344200.0                   | 8319.8       | 41.0   | 4.380E+03 | 1.8                | 25.3 | 12   |                        |
| 18                         | 190                              | 19000.0                    | 363200.0                   | 8320.8       | 43.0   | 4.494E+03 | 1.8                | 26.0 | 12   |                        |
| 19                         | 251                              | 25100.0                    | 388300.0                   | 8321.8       | 46.0   | 4.657E+03 | 1.9                | 26.9 | 12   |                        |
| 20                         | 256                              | 25600.0                    | 413900.0                   | 8322.8       | 49.0   | 4.812E+03 | 2.0                | 27.8 | 12   |                        |
| 21                         | 178                              | 17800.0                    | 431700.0                   | 8323.8       | 51.0   | 4.912E+03 | 2.0                | 28.4 | 12   |                        |
| 22                         | 171                              | 17100.0                    | 448800.0                   | 8324.8       | 53.0   | 5.009E+03 | 2.0                | 29.0 | 12   |                        |
| 23                         | 140                              | 14000.0                    | 462800.0                   | 8325.8       | 55.0   | 5.103E+03 | 2.1                | 29.5 | 12   |                        |
| 24                         | 254                              | 25400.0                    | 488200.0                   | 8326.8       | 58.0   | 5.239E+03 | 2.1                | 30.3 | 12   |                        |
| 25                         | 185                              | 18500.0                    | 506700.0                   | 8327.8       | 60.0   | 5.326E+03 | 2.2                | 30.8 | 12   |                        |
| 26                         | 205                              | 20500.0                    | 527200.0                   | 8328.8       | 63.0   | 5.451E+03 | 2.2                | 31.5 | 12   |                        |
| 27                         | 270                              | 27000.0                    | 554200.0                   | 8329.8       | 66.0   | 5.571E+03 | 2.3                | 32.2 | 12   |                        |
| 28                         | 110                              | 11000.0                    | 565200.0                   | 8330.8       | 67.0   | 5.610E+03 | 2.3                | 32.4 | 12   |                        |
| 29                         | 317                              | 31700.0                    | 596900.0                   | 8331.8       | 71.0   | 5.759E+03 | 2.4                | 33.3 | 12   |                        |
| 30                         | 306                              | 30600.0                    | 627500.0                   | 8332.8       | 75.0   | 5.899E+03 | 2.4                | 34.1 | 12   |                        |
| 31                         |                                  |                            | 1061776.0                  | 8333.8       | 127.0  | 7.108E+03 | 2.9                | 41.1 | 15   | Inflow from branch #3  |
| 32                         |                                  |                            | 1136489.0                  | 8334.8       | 136.0  | 7.236E+03 | 3.0                | 41.8 | 15   | Inflow from branch #2a |

#### BRANCH 2a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulate<br>d<br>Tributary<br>Area | Area per day | т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes                |
|---------|----------------------------------|--------------------|------------------------------------|--------------|--------|-----------|--------------------|-----|------|----------------------|
|         | (ft)                             | (ft <sup>2</sup> ) | (ft <sup>2</sup> )                 | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            | к   | (in) |                      |
| 1       | 399                              | 39913.0            | 39913.0                            | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2 | 8    | Actual length 240 ft |
| 2       | 348                              | 34800.0            | 74713.0                            | 8304.8       | 8.0    | 1.681E+03 | 0.7                | 9.7 | 8    |                      |

#### BRANCH 3

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulate<br>d<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                |
|---------|----------------------------------|----------------------------|------------------------------------|--------------|--------|-----------|--------------------|------|------|----------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )         | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                      |
| 1       | 284                              | 28358.0                    | 28358.0                            | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 6    | Actual length 210 ft |
| 2       | 142                              | 14200.0                    | 42558.0                            | 8304.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    |                      |
| 3       | 275                              | 27500.0                    | 70058.0                            | 8305.8       | 8.0    | 1.681E+03 | 0.7                | 9.7  | 8    |                      |
| 4       | 194                              | 19400.0                    | 89458.0                            | 8306.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                      |
| 5       | 207                              | 20700.0                    | 110158.0                           | 8307.8       | 13.0   | 2.265E+03 | 0.9                | 13.1 | 8    |                      |
| 6       | 337                              | 33700.0                    | 143858.0                           | 8308.8       | 17.0   | 2.657E+03 | 1.1                | 15.4 | 10   |                      |
| 7       | 192                              | 19200.0                    | 163058.0                           | 8309.8       | 19.0   | 2.836E+03 | 1.2                | 16.4 | 10   |                      |
| 8       | 343                              | 34300.0                    | 197358.0                           | 8310.8       | 23.0   |           |                    | 18.3 |      |                      |
| 9       | 193                              | 19300.0                    | 216658.0                           | 8311.8       | 26.0   |           | 1.4                | 19.6 |      |                      |
| 10      | 180                              | 18000.0                    | 234658.0                           | 8312.8       | 28.0   | 3.545E+03 | 1.4                | 20.5 | 10   |                      |
| 11      | 185                              | 18500.0                    | 253158.0                           | 8313.8       | 30.0   | 3.686E+03 | 1.5                | 21.3 | 10   |                      |
| 12      | 342                              | 34200.0                    | 287358.0                           | 8314.8       | 34.0   | 3.953E+03 | 1.6                | 22.9 | 10   |                      |
| 13      | 191                              | 19100.0                    | 306458.0                           | 8315.8       | 36.0   | 4.080E+03 | 1.7                | 23.6 | 10   |                      |
| 14      | 169                              | 16900.0                    | 323358.0                           | 8316.8       | 38.0   | 4.203E+03 | 1.7                | 24.3 | 12   |                      |
| 15      | 363                              | 36300.0                    | 359658.0                           | 8317.8       | 43.0   | 4.492E+03 | 1.8                | 26.0 | 12   |                      |
| 16      | 164                              | 16400.0                    | 376058.0                           | 8318.8       | 45.0   | 4.602E+03 | 1.9                | 26.6 | 12   |                      |
| 17      | 461                              | 46118.0                    | 422176.0                           | 8319.8       | 50.0   | 4.861E+03 | 2.0                | 28.1 |      | Actual length 349 ft |
| 19      | 121                              | 12100.0                    | 434276.0                           | 8320.8       | 52.0   | 4.959E+03 | 2.0                | 28.7 | 12   |                      |

Golder Associates Inc.

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulate<br>d<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                  |
|---------|------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|------------------------|
| 1       | 157                                      | 15700.0                              | 15700.0                                                  | 8304.8                    | 1.0         | 3.845E+02        | 0.2                           | 2.2  | 6            |                        |
| 2       | 198                                      | 19800.0                              | 35500.0                                                  | 8304.8                    | 4.0         | 1.071E+03        | 0.4                           | 6.2  | 8            |                        |
| 3       | 192                                      | 19200.0                              | 54700.0                                                  | 8305.8                    | 6.0         | 1.400E+03        | 0.6                           | 8.1  | 8            |                        |
| 4       | 245                                      | 24500.0                              | 79200.0                                                  | 8306.8                    | 9.0         | 1.810E+03        | 0.7                           | 10.5 | 8            |                        |
| 5       | 319                                      | 31900.0                              | 111100.0                                                 | 8307.8                    | 13.0        | 2.265E+03        | 0.9                           | 13.1 | 8            |                        |
| 6       | 264                                      | 26400.0                              | 137500.0                                                 | 8308.8                    | 16.0        | 2.564E+03        | 1.0                           | 14.8 | 10           |                        |
| 7       |                                          | 0.0                                  | 236600.0                                                 | 8309.8                    | 28.0        | 3.544E+03        | 1.4                           | 20.5 | 10           | Inflow from branch #4a |

#### BRANCH 4a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulate<br>d<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|----------------------------|------------------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )         | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 349                              | 34900.0                    | 34900.0                            | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |       |
| 2       | 293                              | 29300.0                    | 64200.0                            | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |       |
| 3       | 349                              | 34900.0                    | 99100.0                            | 8305.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |       |

#### BRANCH 5

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulate<br>d<br>Tributary<br>Area | Area per day | т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                 |
|---------|----------------------------------|----------------------------|------------------------------------|--------------|--------|-----------|--------------------|------|------|-----------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | $(\mathbf{ft}^2)$                  | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                       |
| 1       | 452                              | 45154.0                    | 45154.0                            | 8304.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    | Actual length 175 ft  |
| 2       | 159                              | 15900.0                    | 61054.0                            | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |                       |
| 3       | 358                              | 35808.0                    | 96862.0                            | 8305.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    | Actual length 148 ft  |
| 4       | 160                              | 16000.0                    | 112862.0                           | 8306.8       | 13.0   | 2.265E+03 | 0.9                | 13.1 | 8    |                       |
| 5       | 332                              | 33225.0                    | 146087.0                           | 8307.8       | 17.0   | 2.657E+03 | 1.1                | 15.4 | 10   | Actual length 131 ft  |
| 6       | 155                              | 15500.0                    | 161587.0                           | 8308.8       | 19.0   | 2.836E+03 | 1.2                | 16.4 | 10   |                       |
| 7       | 276                              | 27555.0                    | 189142.0                           | 8309.8       | 22.0   | 3.088E+03 | 1.3                | 17.8 | 10   | Actual length 134 ft  |
| 8       | 154                              | 15400.0                    | 204542.0                           | 8310.8       | 24.0   | 3.247E+03 | 1.3                | 18.8 | 10   |                       |
| 9       | 252                              | 25150.0                    | 229692.0                           | 8311.8       | 27.0   | 3.473E+03 | 1.4                | 20.1 | 10   | Actual length 135 ft  |
| 10      | 160                              | 16000.0                    | 245692.0                           | 8312.8       | 29.0   | 3.616E+03 | 1.5                | 20.9 | 10   |                       |
| 11      | 216                              | 21577.0                    | 267269.0                           | 8313.8       | 32.0   | 3.822E+03 | 1.6                | 22.1 | 10   | Actual length 127 ft  |
| 12      | 157                              | 15700.0                    | 282969.0                           | 8314.8       | 34.0   | 3.953E+03 | 1.6                | 22.9 | 10   |                       |
| 13      | 176                              | 17605.0                    | 300574.0                           | 8315.8       | 36.0   | 4.080E+03 | 1.7                | 23.6 | 10   | Actual length 132 ft  |
| 14      | 184                              | 18400.0                    | 318974.0                           | 8316.8       | 38.0   | 4.203E+03 | 1.7                | 24.3 | 12   |                       |
| 15      |                                  | 0.0                        | 418074.0                           | 8317.8       | 50.0   | 4.859E+03 | 2.0                | 28.1 | 12   | Inflow from branch #4 |
| 16      | 572                              | 57160.0                    | 475234.0                           | 8318.8       | 57.0   | 5.189E+03 | 2.1                | 30.0 | 12   | Actual length 146 ft  |
| 17      | 157                              | 15700.0                    | 490934.0                           | 8319.8       | 59.0   | 5.278E+03 | 2.2                | 30.5 | 12   |                       |
| 18      | 573                              | 57298.0                    | 548232.0                           | 8320.8       | 65.0   | 5.526E+03 | 2.3                | 31.9 | 12   | Actual length 190 ft  |
| 19      | 153                              | 15300.0                    | 563532.0                           | 8321.8       | 67.0   | 5.604E+03 | 2.3                | 32.4 | 12   |                       |
| 20      | 214                              | 21409.0                    | 584941.0                           | 8322.8       | 70.0   | 5.716E+03 | 2.3                | 33.0 | 12   | Actual length 185 ft  |
| 21      | 138                              | 13800.0                    | 598741.0                           | 8323.8       | 71.0   | 5.753E+03 | 2.4                | 33.3 | 12   |                       |



478 - Indicates areas where secondary piping acts as tertiary piping.
512 - Relevant areas converted to equivalent tertiary piping length for ease of table calculations.
125 - Indicates areas where secondary piping acts as tertiary piping, and where equivalent lengths are used.

### Attachment 7-3: Category 4 Stockpile, year 1

| Column height       | HT | 8.53 m         |
|---------------------|----|----------------|
| Hydrulic cond.      | k  | 8.64E-03 m/day |
| Water density       | γw | 9.81 kN/m^3    |
| Soil density        | γs | 19.98 kN/m^3   |
| Load on surface     | р  | 235.6 kN/m^2   |
| Consolidation coef. | CV | 0.058 m^2/day  |
|                     | t  | 1 day          |

| Flux Rate        |
|------------------|
| m/day            |
| For z= 0.0       |
| Case 3           |
| Single drain     |
| H=H <sub>T</sub> |
| 8.5              |

#### BRANCH 1

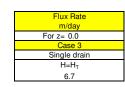
| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | т      | Flow      | Cumulative<br>Flow | k     | Dia. | Notes                 |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|-------|------|-----------------------|
|         | (ft)                             | (ft <sup>2</sup> ) | (ft <sup>2</sup> )             | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |       | (in) |                       |
| 1       | 383                              | 38300.0            | 38300.0                        | 8304.8       | 4.0    | 1.538E+03 | 0.6                | 8.9   | 8    |                       |
| 2       | 410                              | 41000.0            | 79300.0                        | 8304.8       | 9.0    | 3.461E+03 | 1.4                | 20.0  | 10   |                       |
| 3       | 491                              | 49100.0            | 128400.0                       | 8304.8       | 15.0   | 5.768E+03 | 2.4                | 33.3  | 12   |                       |
| 4       | 512                              | 51200.0            | 179600.0                       | 8304.8       | 21.0   | 8.075E+03 | 3.3                | 46.7  | 15   |                       |
| 5       | 512                              | 51200.0            | 230800.0                       | 8304.8       | 27.0   | 1.038E+04 | 4.2                | 60.0  | 15   |                       |
| 6       | 512                              | 51200.0            | 282000.0                       | 8304.8       | 33.0   | 1.269E+04 | 5.2                | 73.3  | 18   |                       |
| 7       | 512                              | 51200.0            | 333200.0                       | 8304.8       | 40.0   | 1.538E+04 | 6.3                | 88.9  | 18   |                       |
| 8       | 250                              | 25000.0            | 358200.0                       | 8304.8       | 43.0   | 1.653E+04 | 6.8                | 95.6  | 18   |                       |
| 9       | -                                |                    | 436200.0                       | 8304.8       | 52.0   | 2.000E+04 | 8.2                | 115.6 | 21   | inflow from branch #2 |
| 10      | 512                              | 51200.0            | 487400.0                       | 8304.8       | 58.0   | 2.230E+04 | 9.1                | 128.9 | 21   |                       |
| 11      | 512                              | 51200.0            | 538600.0                       | 8304.8       | 64.0   | 2.461E+04 | 10.1               | 142.3 | 21   |                       |
| 12      | 512                              | 51200.0            | 589800.0                       | 8304.8       | 71.0   | 2.730E+04 | 11.2               | 157.8 | 21   |                       |
| 13      | 410                              | 41000.0            | 630800.0                       | 8304.8       | 75.0   | 2.884E+04 | 11.8               | 166.7 | 21   |                       |
| 14      | 420                              | 42000.0            | 672800.0                       | 8304.8       | 81.0   | 3.115E+04 | 12.7               | 180.0 | 24   |                       |
| 15      | 380                              | 38000.0            | 710800.0                       | 8304.8       | 85.0   | 3.268E+04 | 13.4               | 188.9 | 24   |                       |
| 16      | 484                              | 48400.0            | 759200.0                       | 8304.8       | 91.0   | 3.499E+04 | 14.3               | 202.3 | 24   |                       |
| 17      | 484                              | 48400.0            | 807600.0                       | 8304.8       | 97.0   | 3.730E+04 | 15.2               | 215.6 | 24   |                       |
| 18      | 512                              | 51200.0            | 858800.0                       | 8304.8       | 103.0  | 3.961E+04 | 16.2               | 228.9 | 24   |                       |
| 19      | 512                              | 51200.0            | 910000.0                       | 8304.8       | 109.0  | 4.191E+04 | 17.1               | 242.3 | 24   |                       |
| 20      | -                                |                    | 1239100.0                      | 8304.8       | 149.0  | 5.729E+04 | 23.4               | 331.2 | 27   | inflow from branch #3 |

#### BRANCH 2

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | (ft <sup>2</sup> )             | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 680                              | 68000.0            | 68000.0                        | 8304.8       | 8.0    | 3.076E+03 | 1.3                | 17.8 | 10   |       |
| 2       | 100                              | 10000.0            | 78000.0                        | 8304.8       | 9.0    | 3.461E+03 | 1.4                | 20.0 | 10   |       |

#### BRANCH 3

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 580                                      | 58000.0                              | 58000.0                                              | 8304.8                    | 6.0         | 2.307E+03        | 0.9                           | 13.3 | 10           |       |
| 2       | 316                                      | 31600.0                              | 89600.0                                              | 8304.8                    | 10.0        | 3.845E+03        | 1.6                           | 22.2 | 10           |       |
| 3       | 580                                      | 58000.0                              | 147600.0                                             | 8305.8                    | 17.0        | 6.538E+03        | 2.7                           | 37.8 | 12           |       |
| 4       | 570                                      | 57000.0                              | 204600.0                                             | 8306.8                    | 24.0        | 9.231E+03        | 3.8                           | 53.4 | 15           |       |
| 5       | 520                                      | 52000.0                              | 256600.0                                             | 8307.8                    | 30.0        | 1.154E+04        | 4.7                           | 66.7 | 15           |       |
| 6       | 350                                      | 35000.0                              | 291600.0                                             | 8308.8                    | 35.0        | 1.346E+04        | 5.5                           | 77.8 | 18           |       |
| 7       | 300                                      | 30000.0                              | 321600.0                                             | 8309.8                    | 38.0        | 1.462E+04        | 6.0                           | 84.5 | 18           |       |
| 8       | 75                                       | 7500.0                               | 329100.0                                             | 8310.8                    | 39.0        | 1.501E+04        | 6.1                           | 86.7 | 18           |       |


| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                 |
|---------|----------------------------------|----------------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|-----------------------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                       |
| 1       | 105                              | 10500.0                    | 10500.0                        | 8304.8       | 1.0    | 3.845E+02 | 0.2                | 2.2  | 6    |                       |
| 2       | 225                              | 22500.0                    | 33000.0                        | 8304.8       | 3.0    | 8.784E+02 | 0.4                | 5.1  | 6    |                       |
| 3       | 250                              | 25000.0                    | 58000.0                        | 8304.8       | 6.0    | 1.400E+03 | 0.6                | 8.1  | 8    |                       |
| 4       | 255                              | 25500.0                    | 83500.0                        | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                       |
| 5       | 290                              | 29000.0                    | 112500.0                       | 8304.8       | 13.0   | 2.264E+03 | 0.9                | 13.1 | 8    |                       |
| 6       | 350                              | 35000.0                    | 147500.0                       | 8304.8       | 17.0   | 2.656E+03 | 1.1                | 15.4 | 10   |                       |
| 7       | 345                              | 34500.0                    | 182000.0                       | 8304.8       | 21.0   | 3.004E+03 | 1.2                | 17.4 | 10   |                       |
| 8       | 375                              | 37500.0                    | 219500.0                       | 8304.8       | 26.0   | 3.397E+03 | 1.4                | 19.6 | 10   |                       |
| 9       | -                                |                            | 219500.0                       | 8304.8       | 26.0   | 3.397E+03 | 1.4                | 19.6 | 10   |                       |
| 10      | 590                              | 59000.0                    | 278500.0                       | 8304.8       | 33.0   | 3.890E+03 | 1.6                | 22.5 | 10   |                       |
| 11      | 675                              | 67500.0                    | 346000.0                       | 8304.8       | 41.0   | 4.393E+03 | 1.8                | 25.4 | 12   |                       |
| 12      | 690                              | 69000.0                    | 415000.0                       | 8304.8       | 49.0   | 4.849E+03 | 2.0                | 28.0 | 12   |                       |
| 13      | 600                              | 60000.0                    | 475000.0                       | 8304.8       | 57.0   | 5.270E+03 | 2.2                | 30.5 | 12   |                       |
| 14      | 350                              | 35000.0                    | 510000.0                       | 8304.8       | 61.0   | 5.470E+03 | 2.2                | 31.6 | 12   |                       |
| 15      | 610                              | 61000.0                    | 571000.0                       | 8304.8       | 68.0   | 5.804E+03 | 2.4                | 33.5 | 12   |                       |
| 16      | 450                              | 45000.0                    | 616000.0                       | 8304.8       | 74.0   | 6.076E+03 | 2.5                | 35.1 | 12   |                       |
| 17      | 435                              | 43500.0                    | 659500.0                       | 8304.8       | 79.0   | 6.296E+03 | 2.6                | 36.4 | 12   |                       |
| 18      | 440                              | 44000.0                    | 703500.0                       | 8304.8       | 84.0   | 6.508E+03 | 2.7                | 37.6 | 12   |                       |
| 19      | 350                              | 35000.0                    | 738500.0                       | 8304.8       | 88.0   | 6.673E+03 | 2.7                | 38.6 | 12   |                       |
| 20      | -                                |                            | 1977600.0                      | 8304.8       | 238.0  | 1.131E+04 | 4.6                | 65.4 | 15   | inflow from branch #1 |



478 - indicates value includes estimate of areas where secondary piping acts as tertiary piping.
 Relevant areas converted to equivalent tertiary piping length for ease of table

#### Attachment 7-4: Category 3 Lean Ore Stockpile, year 1

| Column height       | HT | 6.71 m         |
|---------------------|----|----------------|
| Hydrulic cond.      | k  | 8.64E-03 m/day |
| Water density       | γw | 9.81 kN/m^3    |
| Soil density        | γs | 19.98 kN/m^3   |
| Load on surface     | р  | 235.6 kN/m^2   |
| Consolidation coef. | CV | 0.058 m^2/day  |
|                     | t  | 1 day          |



#### BRANCH 1

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | т      | Flow      | Cumulative<br>Flow | k     | Dia. | Notes |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|-------|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | (ft <sup>2</sup> )             | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |       | (in) |       |
| 1       | 556                              | 55600.0            | 55600.0                        | 8304.8       | 6.0    | 2.307E+03 | 0.9                | 13.3  | 10   |       |
| 2       | 512                              | 51200.0            | 106800.0                       | 8304.8       | 12.0   | 4.614E+03 | 1.9                | 26.7  | 12   |       |
| 3       | 477                              | 47700.0            | 154500.0                       | 8305.8       | 18.0   | 6.922E+03 | 2.8                | 40.0  | 15   |       |
| 4       | 429                              | 42900.0            | 197400.0                       | 8306.8       | 23.0   | 8.846E+03 | 3.6                | 51.1  | 15   |       |
| 5       | 380                              | 38000.0            | 235400.0                       | 8307.8       | 28.0   | 1.077E+04 | 4.4                | 62.3  | 15   |       |
| 6       | 256                              | 25600.0            | 261000.0                       | 8308.8       | 31.0   | 1.193E+04 | 4.9                | 68.9  | 15   |       |
| 7       | 365                              | 36500.0            | 297500.0                       | 8309.8       | 35.0   | 1.347E+04 | 5.5                | 77.8  | 18   |       |
| 8       | 366                              | 36600.0            | 334100.0                       | 8310.8       | 40.0   | 1.539E+04 | 6.3                | 89.0  | 18   |       |
| 9       | 519                              | 51900.0            | 386000.0                       | 8311.8       | 46.0   | 1.770E+04 | 7.2                | 102.3 | 18   |       |
| 10      | 241                              | 24100.0            | 410100.0                       | 8312.8       | 49.0   | 1.886E+04 | 7.7                | 109.0 | 18   |       |
| 11      | 340                              | 34000.0            | 444100.0                       | 8313.8       | 53.0   | 2.040E+04 | 8.3                | 117.9 | 21   |       |
| 12      | 654                              | 65400.0            | 509500.0                       | 8314.8       | 61.0   | 2.348E+04 | 9.6                | 135.7 | 21   |       |
| 13      | 455                              | 45500.0            | 555000.0                       | 8315.8       | 66.0   | 2.541E+04 | 10.4               | 146.9 | 21   |       |

#### BRANCH 2

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k     | Dia.<br>(in) | Notes |
|---------|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|-------|--------------|-------|
| 1       | 355                                      | 35500.0                              | 35500.0                                              | 8304.8                    | 4.0         | 1.538E+03        | 0.6                           | 8.9   | 8            |       |
| 2       | 256                                      | 25600.0                              | 61100.0                                              | 8304.8                    | 7.0         | 2.692E+03        | 1.1                           | 15.6  | 10           |       |
| 3       | 512                                      | 51200.0                              | 112300.0                                             | 8305.8                    | 13.0        | 4.999E+03        | 2.0                           | 28.9  | 12           |       |
| 4       | 512                                      | 51200.0                              | 163500.0                                             | 8306.8                    | 19.0        | 7.308E+03        | 3.0                           | 42.2  | 15           |       |
| 5       | 463                                      | 46300.0                              | 209800.0                                             | 8307.8                    | 25.0        | 9.617E+03        | 3.9                           | 55.6  | 15           |       |
| 6       | 399                                      | 39900.0                              | 249700.0                                             | 8308.8                    | 30.0        | 1.154E+04        | 4.7                           | 66.7  | 15           |       |
| 7       | 328                                      | 32800.0                              | 282500.0                                             | 8309.8                    | 33.0        | 1.270E+04        | 5.2                           | 73.4  | 18           |       |
| 8       | 618                                      | 61800.0                              | 344300.0                                             | 8310.8                    | 41.0        | 1.578E+04        | 6.4                           | 91.2  | 18           |       |
| 9       | 551                                      | 55100.0                              | 399400.0                                             | 8311.8                    | 48.0        | 1.847E+04        | 7.6                           | 106.8 | 18           |       |

#### BRANCH 3

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k      | Dia. | Notes                 |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|--------|------|-----------------------|
|         | ( <b>ft</b> )                    | (ft <sup>2</sup> ) | (ft <sup>2</sup> )             | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |        | (in) |                       |
| 1       | 417                              | 41700.0            | 41700.0                        | 8304.8       | 5.0    | 1.923E+03 | 0.8                | 11.1   | 8    |                       |
| 2       | 512                              | 51200.0            | 92900.0                        | 8304.8       | 11.0   | 4.230E+03 | 1.7                | 24.4   | 12   |                       |
| 3       | 512                              | 51200.0            | 144100.0                       | 8305.8       | 17.0   | 6.538E+03 | 2.7                | 37.8   | 12   |                       |
| 4       | 512                              | 51200.0            | 195300.0                       | 8306.8       | 23.0   | 8.846E+03 | 3.6                | 51.1   | 15   |                       |
| 5       | 512                              | 51200.0            | 246500.0                       | 8307.8       | 29.0   | 1.116E+04 | 4.6                | 64.5   | 15   |                       |
| 6       | 477                              | 47700.0            | 294200.0                       | 8308.8       | 35.0   | 1.346E+04 | 5.5                | 77.8   | 18   |                       |
| 7       | 410                              | 41000.0            | 335200.0                       | 8309.8       | 40.0   | 1.539E+04 | 6.3                | 89.0   | 18   |                       |
| 8       | 383                              | 38300.0            | 373500.0                       | 8310.8       | 44.0   | 1.693E+04 | 6.9                | 97.9   | 18   |                       |
| 9       | 256                              | 25600.0            | 399100.0                       | 8311.8       | 48.0   | 1.847E+04 | 7.6                | 106.8  | 18   |                       |
| 10      | 196                              | 19600.0            | 418700.0                       | 8312.8       | 50.0   | 1.924E+04 | 7.9                | 111.2  | 18   |                       |
| 11      | 154                              | 15400.0            | 434100.0                       | 8313.8       | 52.0   | 2.002E+04 | 8.2                | 115.7  | 21   |                       |
| 12      | 99                               | 9900.0             | 444000.0                       | 8314.8       | 53.0   | 2.040E+04 | 8.3                | 117.9  | 21   |                       |
| 13      |                                  | 1229300.0          | 1673300.0                      | 8315.8       | 201.0  | 7.739E+04 | 31.6               | 447.4  | 33   | inflow from branch #4 |
| 14      |                                  | 1628700.0          | 3302000.0                      | 8316.8       | 397.0  | 1.529E+05 | 62.5               | 883.7  | 42   | inflow from branch #2 |
| 15      | 430                              | 43000.0            | 3345000.0                      | 8317.8       | 402.0  | 1.548E+05 | 63.3               | 894.9  | 42   |                       |
| 16      | 200                              | 20000.0            | 3365000.0                      | 8318.8       | 404.0  | 1.556E+05 | 63.6               | 899.5  | 42   |                       |
| 17      |                                  | 575000.0           | 3940000.0                      | 8319.8       | 473.0  | 1.822E+05 | 74.5               | 1053.2 | 42   | inflow from branch #1 |

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                           |
|---------|----------------------------------|----------------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|---------------------------------|
|         | (ft)                             | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                 |
| 1       | 356                              | 35600.0                    | 35600.0                        | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2  | 8    |                                 |
| 2       | 512                              | 51200.0                    | 86800.0                        | 8304.8       | 10.0   | 1.931E+03 | 0.8                | 11.2 | 8    |                                 |
| 3       | 512                              | 51200.0                    | 138000.0                       | 8305.8       | 16.0   | 2.563E+03 | 1.0                | 14.8 | 10   |                                 |
| 4       | 512                              | 51200.0                    | 189200.0                       | 8306.8       | 22.0   | 3.087E+03 | 1.3                | 17.8 | 10   |                                 |
| 5       | 512                              | 51200.0                    | 240400.0                       | 8307.8       | 28.0   | 3.545E+03 | 1.4                | 20.5 | 10   |                                 |
| 6       | 512                              | 51200.0                    | 291600.0                       | 8308.8       | 35.0   | 4.023E+03 | 1.6                | 23.3 | 10   |                                 |
| 7       | 512                              | 51200.0                    | 342800.0                       | 8309.8       | 41.0   | 4.395E+03 | 1.8                | 25.4 | 12   |                                 |
| 8       | 512                              | 51200.0                    | 394000.0                       | 8310.8       | 47.0   | 4.742E+03 | 1.9                | 27.4 | 12   |                                 |
| 9       | 424                              | 42400.0                    | 436400.0                       | 8311.8       | 52.0   | 5.015E+03 | 2.0                | 29.0 | 12   |                                 |
| 10      | 512                              | 51200.0                    | 487600.0                       | 8312.8       | 58.0   | 5.326E+03 | 2.2                | 30.8 | 12   |                                 |
| 11      |                                  | 731800.0                   | 1219400.0                      | 8313.8       | 146.0  | 8.749E+03 | 3.6                | 50.6 | 15   | includes inflow from branch # 5 |

#### BRANCH 5

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                           |
|---------|------------------------------------------|---------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|---------------------------------|
| 1       | 462                                      | 46200.0 | 46200.0                                              | 8304.8                    | 5.0         | 1.243E+03        | 0.5                           | 7.2  | 8            |                                 |
| 2       | 512                                      | 51200.0 | 435300.0                                             | 8304.8                    | 52.0        | 5.011E+03        | 2.0                           | 29.0 | 12           | includes inflow from branch #5a |
| 3       | 356                                      | 35600.0 | 470900.0                                             | 8305.8                    | 56.0        | 5.220E+03        | 2.1                           | 30.2 | 12           |                                 |
| 4       | 256                                      | 25600.0 | 559500.0                                             | 8306.8                    | 67.0        | 5.758E+03        | 2.4                           | 33.3 | 12           | includes flow from branch #5b   |
| 5       | 369                                      | 36900.0 | 596400.0                                             | 8307.8                    | 71.0        | 5.944E+03        | 2.4                           | 34.4 | 12           |                                 |
| 6       | 842                                      | 84200.0 | 680600.0                                             | 8308.8                    | 81.0        | 6.384E+03        | 2.6                           | 36.9 | 12           |                                 |

#### BRANCH 5a

|   | Plan Length of<br>Tertiary Pipng<br>(ft) |          | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---|------------------------------------------|----------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1 | 182                                      | 18200.0  | 18200.0                                              | 8304.8                    | 2.0         | 6.564E+02        | 0.3                           | 3.8  | 6            |       |
| 2 | 775                                      | 77500.0  | 95700.0                                              | 8304.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |       |
| 3 | 352                                      | 35200.0  | 130900.0                                             | 8305.8                    | 15.0        | 2.467E+03        | 1.0                           | 14.3 | 10           |       |
| 4 | 983                                      | 98300.0  | 229200.0                                             | 8306.8                    | 27.0        | 3.472E+03        | 1.4                           | 20.1 | 10           |       |
| 5 | 1087                                     | 108700.0 | 337900.0                                             | 8307.8                    | 40.0        | 4.334E+03        | 1.8                           | 25.1 | 12           |       |

#### BRANCH 5b

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|-----|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |     | (in) |       |
| 1       | 404                              | 40400.0            | 40400.0                        | 8304.8       | 4.0    | 1.071E+03 | 0.4                | 6.2 | 8    |       |
| 2       | 226                              | 22600.0            | 63000.0                        | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9 | 8    |       |

#### BRANCH 6

| Segment | Tertiary Pipng |                            | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------|----------------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)           | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 243            | 24300.0                    | 24300.0                        | 8304.8       | 2.0    | 6.564E+02 | 0.3                | 3.8  | 6    |       |
| 2       | 242            | 24200.0                    | 48500.0                        | 8304.8       | 5.0    | 1.243E+03 | 0.5                | 7.2  | 8    |       |
| 3       | 241            | 24100.0                    | 72600.0                        | 8305.8       | 8.0    | 1.681E+03 | 0.7                | 9.7  | 8    |       |
| 4       | 212            | 21200.0                    | 93800.0                        | 8306.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |       |
| 5       | 195            | 19500.0                    | 113300.0                       | 8307.8       | 13.0   | 2.265E+03 | 0.9                | 13.1 | 8    |       |
| 6       | 800            | 80000.0                    | 193300.0                       | 8308.8       | 23.0   | 3.168E+03 | 1.3                | 18.3 | 10   |       |

| BRANCH 7<br>Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(davs) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                           |
|---------------------|------------------------------------------|----------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|---------------------------------|
| 1                   | 274                                      | 27400.0        | 27400.0                                              | 8304.8                    |             | 8.784E+02        | 0.4                           | 5.1  | 6            |                                 |
| 2                   | 321                                      | 32100.0        | 59500.0                                              | 8304.8                    |             | 1.545E+03        | 0.4                           | 8.9  | 8            |                                 |
| 3                   | 326                                      | 32600.0        | 92100.0                                              | 8305.8                    |             | 2.047E+03        | 0.8                           | 11.8 | 8            |                                 |
| 4                   | 326                                      | 32600.0        | 124700.0                                             | 8306.8                    |             | 2.467E+03        | 1.0                           | 14.3 | 10           |                                 |
| 5                   | 326                                      | 32600.0        | 157300.0                                             | 8307.8                    |             | 2.747E+03        | 1.0                           | 14.9 | 10           |                                 |
| 6                   | 326                                      | 32600.0        | 189900.0                                             | 8308.8                    |             | 3.088E+03        | 1.3                           | 17.8 | 10           |                                 |
| 7                   | 316                                      | 31600.0        | 221500.0                                             | 8309.8                    |             | 3.399E+03        | 1.5                           | 19.7 | 10           |                                 |
| 8                   | 472                                      | 47200.0        | 268700.0                                             | 8310.8                    |             | 3.826E+03        | 1.6                           | 22.1 | 10           |                                 |
| 9                   | 512                                      | 51200.0        | 319900.0                                             | 8311.8                    |             | 4.214E+03        | 1.7                           | 24.4 | 12           |                                 |
| 10                  | 512                                      | 51200.0        | 371100.0                                             | 8312.8                    |             | 4.573E+03        | 1.9                           | 26.4 | 12           |                                 |
| 11                  | 512                                      | 51200.0        | 422300.0                                             | 8313.8                    | 50.0        | 4.909E+03        | 2.0                           | 28.4 | 12           |                                 |
| 12                  | 512                                      | 51200.0        | 473500.0                                             | 8314.8                    | 56.0        | 5.225E+03        | 2.1                           | 30.2 | 12           |                                 |
| 13                  | 470                                      | 47000.0        | 520500.0                                             | 8315.8                    | 62.0        | 5.526E+03        | 2.3                           | 31.9 | 12           |                                 |
| 14                  | 441                                      | 44100.0        | 564600.0                                             | 8316.8                    | 67.0        | 5.765E+03        | 2.4                           | 33.3 | 12           |                                 |
| 15                  | 384                                      | 38400.0        | 603000.0                                             | 8317.8                    | 72.0        | 5.996E+03        | 2.5                           | 34.7 | 12           |                                 |
| 16                  | 344                                      | 34400.0        | 637400.0                                             | 8318.8                    | 76.0        | 6.175E+03        | 2.5                           | 35.7 | 12           |                                 |
| 17                  | 150                                      | 15000.0        | 652400.0                                             | 8319.8                    | 78.0        | 6.264E+03        | 2.6                           | 36.2 | 12           |                                 |
| 18                  | 130                                      | 13000.0        | 665400.0                                             | 8320.8                    | 79.0        | 6.308E+03        | 2.6                           | 36.5 | 12           |                                 |
| 19                  | 120                                      | 12000.0        | 677400.0                                             | 8321.8                    | 81.0        | 6.394E+03        | 2.6                           | 37.0 | 12           |                                 |
| 20                  | 140                                      | 14000.0        | 1820200.0                                            | 8322.8                    | 218.0       | 1.076E+04        | 4.4                           | 62.2 | 15           | includes inflow from branch # 9 |
| 21                  | 229                                      | 22900.0        | 1843100.0                                            | 8323.8                    | 221.0       | 1.084E+04        | 4.4                           | 62.6 | 15           |                                 |
| 22                  |                                          | -              | 2036400.0                                            | 8324.8                    | 244.0       | 1.138E+04        | 4.7                           | 65.8 | 15           | inflow from Branch #6           |
| 23                  | 184                                      | 18400.0        | 2054800.0                                            | 8325.8                    | 246.0       | 1.142E+04        | 4.7                           | 66.0 | 15           |                                 |
| 24                  | <b>190</b>                               | 19000.0        | 2073800.0                                            | 8326.8                    | 249.0       | 1.149E+04        | 4.7                           | 66.4 | 15           |                                 |
| 25                  | 427                                      | 42700.0        | 2116500.0                                            | 8327.8                    | 254.0       | 1.160E+04        | 4.7                           | 67.1 | 15           |                                 |
| 26                  | 517                                      | 51700.0        | 2168200.0                                            | 8328.8                    | 260.0       | 1.173E+04        | 4.8                           | 67.8 | 15           |                                 |

#### BRANCH 8

| Segment | Tertiary Pipng |                   | Area              | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------|-------------------|-------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)           | $(\mathbf{ft}^2)$ | $(\mathbf{ft}^2)$ | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 507            | 50700.0           | 50700.0           | 8304.8       | 6.0    | 1.400E+03 | 0.6                | 8.1  | 8    |       |
| 2       | 512            | 51200.0           | 101900.0          | 8304.8       | 12.0   | 2.158E+03 | 0.9                | 12.5 | 8    |       |
| 3       | 512            | 51200.0           | 153100.0          | 8305.8       | 18.0   | 2.747E+03 | 1.1                | 15.9 | 10   |       |
| 4       | 512            | 51200.0           | 204300.0          | 8306.8       | 24.0   | 3.246E+03 | 1.3                | 18.8 | 10   |       |
| 5       | 512            | 51200.0           | 255500.0          | 8307.8       | 30.0   | 3.687E+03 | 1.5                | 21.3 | 10   |       |
| 6       | 182            | 18200.0           | 273700.0          | 8308.8       | 32.0   | 3.825E+03 | 1.6                | 22.1 | 10   |       |
| 7       | 527            | 52700.0           | 326400.0          | 8309.8       | 39.0   | 4.274E+03 | 1.7                | 24.7 | 12   |       |

#### BRANCH 9

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                          |
|---------|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|--------------------------------|
| 1       | 161                                      | 16100.0                              | 16100.0                                              | 8304.8                    | 1.0         | 3.845E+02        | 0.2                           | 2.2  | 6            |                                |
| 2       | 607                                      | 60700.0                              | 76800.0                                              | 8304.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |                                |
| 3       | 63                                       | 6300.0                               | 83100.0                                              | 8305.8                    | 10.0        | 1.931E+03        | 0.8                           | 11.2 | 8            |                                |
| 4       | 157                                      | 15700.0                              | 98800.0                                              | 8306.8                    | 11.0        | 2.047E+03        | 0.8                           | 11.8 | 8            |                                |
| 5       |                                          |                                      | 935900.0                                             | 8307.8                    | 112.0       | 7.597E+03        | 3.1                           | 43.9 | 15           | inflows from branches # 8 & 10 |
| 6       |                                          |                                      | 1043600.0                                            | 8308.8                    | 125.0       | 8.055E+03        | 3.3                           | 46.6 | 15           | inflow from branch # 9a        |
| 7       | 332                                      | 33200.0                              | 1076800.0                                            | 8309.8                    | 129.0       | 8.192E+03        | 3.3                           | 47.4 | 15           |                                |
| 8       | 520                                      | 52000.0                              | 1128800.0                                            | 8310.8                    | 135.0       | 8.392E+03        | 3.4                           | 48.5 | 15           |                                |

#### BRANCH 9a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area     | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 939                              | 93900.0            | 93900.0                        | 8304.8       | 11.0   | 2.047E+03 | 0.8                | 11.8 | 8    |       |
| 2       | 138                              | 13800.0            | 107700.0                       | 8304.8       | 12.0   | 2.158E+03 | 0.9                | 12.5 | 8    |       |

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(davs) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                   |
|---------|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------------------------|
| 1       | 916                                      | 91600.0                              | 91600.0                                              | 8304.8                    |             | 2.047E+03        | <u> </u>                      | 11.8 |              |                         |
| 2       | 133                                      | 13300.0                              | 104900.0                                             | 8304.8                    |             | 2.158E+03        |                               | 12.5 | 8            |                         |
| 3       | 320                                      | 32000.0                              | 136900.0                                             | 8305.8                    | 16.0        | 2.563E+03        | 1.0                           | 14.8 | 10           |                         |
| 4       |                                          |                                      | 195600.0                                             | 8306.8                    | 23.0        | 3.167E+03        | 1.3                           | 18.3 | 10           | inflow from branch #10a |
| 5       | 1169                                     | 116900.0                             | 312500.0                                             | 8307.8                    | 37.0        | 4.149E+03        | 1.7                           | 24.0 | 12           |                         |
| 6       | 40                                       | 4000.0                               | 316500.0                                             | 8308.8                    | 38.0        | 4.212E+03        | 1.7                           | 24.3 | 12           |                         |
| 7       | 421                                      | 42100.0                              | 358600.0                                             | 8309.8                    | 43.0        | 4.513E+03        | 1.8                           | 26.1 | 12           |                         |
| 8       | 372                                      | 37200.0                              | 395800.0                                             | 8310.8                    | 47.0        | 4.742E+03        | 1.9                           | 27.4 | 12           |                         |
| 9       | 399                                      | 39900.0                              | 435700.0                                             | 8311.8                    | 52.0        | 5.015E+03        | 2.0                           | 29.0 | 12           |                         |
| 10      | 494                                      | 49400.0                              | 485100.0                                             | 8312.8                    | 58.0        | 5.326E+03        | 2.2                           | 30.8 | 12           |                         |
| 11      | 256                                      | 25600.0                              | 510700.0                                             | 8313.8                    | 61.0        | 5.475E+03        | 2.2                           | 31.7 | 12           |                         |

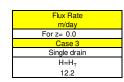
#### BRANCH 10a

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k   | Dia. | Notes |
|---------|----------------------------------|----------------------------|--------------------------------|--------------|--------|-----------|--------------------|-----|------|-------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | $(\mathbf{ft}^2)$              | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |     | (in) |       |
| 1       | 587                              | 58700.0                    | 58700.0                        | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9 | 8    |       |

#### BRANCH 11

| 、 | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes                            |
|---|------------------------------------------|--------------------------------------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|----------------------------------|
| 1 | 828                                      | 82800.0                              | 82800.0                                              | 8304.8                    | 9.0         | 1.809E+03        | 0.7                           | 10.5 | 8            |                                  |
| 2 | 199                                      | 19900.0                              | 102700.0                                             | 8304.8                    | 12.0        | 2.158E+03        | 0.9                           | 12.5 | 8            |                                  |
| 3 | 1123                                     | 112300.0                             | 215000.0                                             | 8305.8                    | 25.0        | 3.322E+03        | 1.4                           | 19.2 | 10           |                                  |
| 4 | 670                                      | 67000.0                              | 282000.0                                             | 8306.8                    | 33.0        | 3.891E+03        | 1.6                           | 22.5 | 10           |                                  |
| 5 | 256                                      | 25600.0                              | 307600.0                                             | 8307.8                    | 37.0        | 4.149E+03        | 1.7                           | 24.0 | 12           |                                  |
| 6 | 200                                      | 20000.0                              | 327600.0                                             | 8308.8                    | 39.0        | 4.274E+03        | 1.7                           | 24.7 | 12           |                                  |
| 7 | 178                                      | 17800.0                              | 504600.0                                             | 8309.8                    | 60.0        | 5.424E+03        | 2.2                           | 31.4 | 12           | includes inflow from branch #11a |
| 8 | 117                                      | 11700.0                              | 516300.0                                             | 8310.8                    | 62.0        | 5.522E+03        | 2.3                           | 31.9 | 12           |                                  |

#### BRANCH 11a


| Segment | Plan Length of<br>Tertiary Pipng |                    | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes |
|---------|----------------------------------|--------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|-------|
|         | (ft)                             | (ft <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |       |
| 1       | 1592                             | 159200.0           | 159200.0                       | 8304.8       | 19.0   | 2.835E+03 | 1.2                | 16.4 | 10   |       |

478 - indicates value includes estimate of areas where secondary piping acts as tertiary piping.
 Relevant areas converted to equivalent tertiary piping length for ease of table

Golder Associates Inc. C:Documents and Settings\EFarfan\My Documents\PROJECTS\063-2208\Terzaghi-EF-secondary.xlsm

### Attachment 7-5: Category 2/3 Stockpile, year 1

| Column height       | Η <sub>T</sub>   | 12.19 m        |
|---------------------|------------------|----------------|
| Hydrulic cond.      | k                | 8.64E-03 m/day |
| Water density       | $\gamma_w$       | 9.81 kN/m^3    |
| Soil density        | $\gamma_{\rm s}$ | 19.98 kN/m^3   |
| Load on surface     | р                | 235.6 kN/m^2   |
| Consolidation coef. | CV               | 0.06 m^2/day   |
|                     | t                | 1.00 day       |



#### BRANCH 1

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k     | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|-------|--------------|-------|
| 1       | 758                                      | 75800.0 | 75800.0                                           | 8304.8                    | 9.0         | 3.461E+03        | 1.4                           | 20.0  | 10           |       |
| 2       | 446                                      | 44600.0 | 120400.0                                          | 8304.8                    | 14.0        | 5.383E+03        | 2.2                           | 31.1  | 12           |       |
| 3       | 658                                      | 65800.0 | 186200.0                                          | 8305.8                    | 22.0        | 8.461E+03        | 3.5                           | 48.9  | 15           |       |
| 4       | 461                                      | 46100.0 | 232300.0                                          | 8306.8                    | 27.0        | 1.038E+04        | 4.2                           | 60.0  | 15           |       |
| 5       | 575                                      | 57500.0 | 289800.0                                          | 8307.8                    | 34.0        | 1.308E+04        | 5.3                           | 75.6  | 18           |       |
| 6       | 620                                      | 62000.0 | 351800.0                                          | 8308.8                    | 42.0        | 1.616E+04        | 6.6                           | 93.4  | 18           |       |
| 7       | 150                                      | 15000.0 | 366800.0                                          | 8309.8                    | 44.0        | 1.693E+04        | 6.9                           | 97.9  | 18           |       |
| 8       | 450                                      | 45000.0 | 411800.0                                          | 8310.8                    | 49.0        | 1.886E+04        | 7.7                           | 109.0 | 18           |       |
| 9       | 510                                      | 51000.0 | 462800.0                                          | 8311.8                    | 55.0        | 2.117E+04        | 8.7                           | 122.4 | 21           |       |
| 10      | 550                                      | 55000.0 | 517800.0                                          | 8312.8                    | 62.0        | 2.386E+04        | 9.8                           | 137.9 | 21           |       |

#### BRANCH 2

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) | Tributary Area<br>(ft <sup>2</sup> ) | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|--------------------------------------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 745                                      | 74500.0                              | 74500.0                                           | 8304.8                    | 8.0         | 3.076E+03        | 1.3                           | 17.8 | 10           |       |
| 2       | 512                                      | 51200.0                              | 125700.0                                          | 8304.8                    | 15.0        | 5.768E+03        | 2.4                           | 33.3 | 12           |       |
| 3       | 758                                      | 75800.0                              | 201500.0                                          | 8305.8                    | 24.0        | 9.230E+03        | 3.8                           | 53.4 | 15           |       |
| 4       | 410                                      | 41000.0                              | 242500.0                                          | 8306.8                    | 29.0        | 1.115E+04        | 4.6                           | 64.5 | 15           |       |
| 5       | 700                                      | 70000.0                              | 312500.0                                          | 8307.8                    | 37.0        | 1.423E+04        | 5.8                           | 82.3 | 18           |       |

#### BRANCH 3

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary Area | Area per day | т      | Flow      | Cumulative<br>Flow | k     | Dia. | Notes                       |
|---------|----------------------------------|----------------------------|-----------------------------|--------------|--------|-----------|--------------------|-------|------|-----------------------------|
|         | ( <b>f</b> t)                    | ( <b>ft</b> <sup>2</sup> ) | (ft <sup>2</sup> )          | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |       | (in) |                             |
| 1       | 256                              | 25600.0                    | 25600.0                     | 8304.8       | 3.0    | 1.154E+03 | 0.5                | 6.7   | 8    |                             |
| 2       | 460                              | 46000.0                    | 71600.0                     | 8304.8       | 8.0    | 3.076E+03 | 1.3                | 17.8  | 10   |                             |
| 3       | 385                              | 38500.0                    | 110100.0                    | 8305.8       | 13.0   | 4.999E+03 | 2.0                | 28.9  | 12   |                             |
| 4       | 430                              | 43000.0                    | 153100.0                    | 8306.8       | 18.0   | 6.923E+03 | 2.8                | 40.0  | 15   |                             |
| 5       | 765                              | 76500.0                    | 229600.0                    | 8307.8       | 27.0   | 1.039E+04 | 4.2                | 60.0  | 15   |                             |
| 6       | 280                              | 28000.0                    | 257600.0                    | 8308.8       | 31.0   | 1.193E+04 | 4.9                | 68.9  | 15   |                             |
| 7       | 380                              | 38000.0                    | 295600.0                    | 8309.8       | 35.0   | 1.347E+04 | 5.5                | 77.8  | 18   |                             |
| 8       | 385                              | 38500.0                    | 334100.0                    | 8310.8       | 40.0   | 1.539E+04 | 6.3                | 89.0  | 18   |                             |
| 9       | -                                |                            | 646600.0                    | 8311.8       | 77.0   | 2.963E+04 | 12.1               | 171.3 | 21   | inflow from branch #2       |
| 10      | 435                              | 43500.0                    | 690100.0                    | 8312.8       | 83.0   | 3.195E+04 | 13.1               | 184.7 | 24   |                             |
| 11      | 200                              | 20000.0                    | 710100.0                    | 8313.8       | 85.0   | 3.272E+04 | 13.4               | 189.1 | 24   |                             |
| 12      | -                                |                            | 1248700.0                   | 8314.8       | 150.0  | 5.775E+04 | 23.6               | 333.8 | 27   | inflow from branch #5       |
| 13      | -                                |                            | 2827700.0                   | 8315.8       | 340.0  | 1.309E+05 | 53.5               | 756.7 | 42   | Inflow from branches #1 & 7 |

#### BRANCH 4

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 500                                      | 50000.0 | 50000.0                                           | 8304.8                    | 6.0         | 2.307E+03        | 0.9                           | 13.3 | 10           |       |
| 2       | 456                                      | 45600.0 | 95600.0                                           | 8304.8                    | 11.0        | 4.230E+03        | 1.7                           | 24.4 | 12           |       |
| 3       | 430                                      | 43000.0 | 138600.0                                          | 8305.8                    | 16.0        | 6.153E+03        | 2.5                           | 35.6 | 12           |       |
| 4       | 692                                      | 69200.0 | 207800.0                                          | 8306.8                    | 25.0        | 9.615E+03        | 3.9                           | 55.6 | 15           |       |
| 5       | 176                                      | 17600.0 | 225400.0                                          | 8307.8                    | 27.0        | 1.039E+04        | 4.2                           | 60.0 | 15           |       |

#### BRANCH 5

|   | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(davs) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k     | Dia.<br>(in) | Notes                 |
|---|------------------------------------------|---------|---------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|-------|--------------|-----------------------|
| 1 | 326                                      | 32600.0 | 32600.0                                           | 8304.8                    |             | 1.154E+03        |                               | 6.7   | 8            |                       |
| 2 | 607                                      | 60700.0 | 93300.0                                           | 8304.8                    | 11.0        | 4.230E+03        | 1.7                           | 24.4  | 12           |                       |
| 3 | 639                                      | 63900.0 | 157200.0                                          | 8305.8                    | 18.0        | 6.922E+03        | 2.8                           | 40.0  | 15           |                       |
| 4 | 605                                      | 60500.0 | 217700.0                                          | 8306.8                    | 26.0        | 1.000E+04        | 4.1                           | 57.8  | 15           |                       |
| 5 | 485                                      | 48500.0 | 266200.0                                          | 8307.8                    | 32.0        | 1.231E+04        | 5.0                           | 71.2  | 18           |                       |
| 6 | -                                        |         | 491600.0                                          | 8308.8                    | 59.0        | 2.270E+04        | 9.3                           | 131.2 | 21           | inflow from branch #4 |
| 7 | 470                                      | 47000.0 | 538600.0                                          | 8309.8                    | 64.0        | 2.462E+04        | 10.1                          | 142.3 | 21           |                       |

| Segment | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(davs) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---------|------------------------------------------|---------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1       | 256                                      | 25600.0 | 25600.0                                              | 8304.8                    |             | 8.784E+02        | <u> </u>                      | 5.1  | 6            |       |
| 2       | 356                                      | 35600.0 | 61200.0                                              | 8304.8                    | 7.0         | 1.545E+03        | 0.6                           | 8.9  | 8            |       |
| 3       | 439                                      | 43900.0 | 105100.0                                             | 8305.8                    | 12.0        | 2.158E+03        | 0.9                           | 12.5 | 8            |       |
| 4       | 472                                      | 47200.0 | 152300.0                                             | 8306.8                    | 18.0        | 2.747E+03        | 1.1                           | 15.9 | 10           |       |
| 5       | 434                                      | 43400.0 | 195700.0                                             | 8307.8                    | 23.0        | 3.168E+03        | 1.3                           | 18.3 | 10           |       |
| 6       | 474                                      | 47400.0 | 243100.0                                             | 8308.8                    | 29.0        | 3.617E+03        | 1.5                           | 20.9 | 10           |       |
| 7       | 470                                      | 47000.0 | 290100.0                                             | 8309.8                    | 34.0        | 3.958E+03        | 1.6                           | 22.9 | 10           |       |
| 8       | 474                                      | 47400.0 | 337500.0                                             | 8310.8                    | 40.0        | 4.336E+03        | 1.8                           | 25.1 | 12           |       |
| 9       | 256                                      | 25600.0 | 363100.0                                             | 8311.8                    | 43.0        | 4.515E+03        | 1.8                           | 26.1 | 12           |       |

#### BRANCH 7

| Segment | Plan Length of<br>Tertiary Pipng | Tributary Area             | Cumulated<br>Tributary<br>Area | Area per day | Т      | Flow      | Cumulative<br>Flow | k    | Dia. | Notes                           |
|---------|----------------------------------|----------------------------|--------------------------------|--------------|--------|-----------|--------------------|------|------|---------------------------------|
|         | ( <b>ft</b> )                    | ( <b>ft</b> <sup>2</sup> ) | ( <b>ft</b> <sup>2</sup> )     | (ft2/day)    | (days) | (m3/day)  | (ft3/s)            |      | (in) |                                 |
| 1       | 235                              | 23500.0                    | 23500.0                        | 8304.8       | 2.0    | 6.564E+02 | 0.3                | 3.8  | 6    |                                 |
| 2       | 369                              | 36900.0                    | 60400.0                        | 8304.8       | 7.0    | 1.545E+03 | 0.6                | 8.9  | 8    |                                 |
| 3       | 472                              | 47200.0                    | 107600.0                       | 8305.8       | 12.0   | 2.158E+03 | 0.9                | 12.5 | 8    |                                 |
| 4       | 491                              | 49100.0                    | 156700.0                       | 8306.8       | 18.0   | 2.747E+03 | 1.1                | 15.9 | 10   |                                 |
| 5       | 491                              | 49100.0                    | 205800.0                       | 8307.8       | 24.0   | 3.246E+03 | 1.3                | 18.8 | 10   |                                 |
| 6       | 456                              | 45600.0                    | 251400.0                       | 8308.8       | 30.0   | 3.688E+03 | 1.5                | 21.3 | 10   |                                 |
| 7       | 246                              | 24600.0                    | 276000.0                       | 8309.8       | 33.0   | 3.892E+03 | 1.6                | 22.5 | 10   |                                 |
| 8       | <u>681</u>                       | 68100.0                    | 344100.0                       | 8310.8       | 41.0   | 4.396E+03 | 1.8                | 25.4 | 12   |                                 |
| 9       | 598                              | 59800.0                    | 403900.0                       | 8311.8       | 48.0   | 4.798E+03 | 2.0                | 27.7 | 12   |                                 |
| 10      | -                                |                            | 767000.0                       | 8312.8       | 92.0   | 6.842E+03 | 2.8                | 39.5 | 15   | inflow from branch # 6          |
| 11      | 430                              | 43000.0                    | 810000.0                       | 8313.8       | 97.0   | 7.040E+03 | 2.9                | 40.7 | 15   |                                 |
| 12      | 410                              | 41000.0                    | 851000.0                       | 8314.8       | 102.0  | 7.233E+03 | 3.0                | 41.8 | 15   |                                 |
| 13      | 435                              | 43500.0                    | 894500.0                       | 8315.8       | 107.0  | 7.422E+03 | 3.0                | 42.9 | 15   |                                 |
| 14      | 366                              | 36600.0                    | 1061200.0                      | 8316.8       | 127.0  | 8.134E+03 | 3.3                | 47.0 | 15   | includes inflow from bracnh # 8 |

#### BRANCH 8

|   | Plan Length of<br>Tertiary Pipng<br>(ft) |         | Cumulated<br>Tributary<br>Area<br>(ft <sup>2</sup> ) | Area per day<br>(ft2/day) | T<br>(days) | Flow<br>(m3/day) | Cumulative<br>Flow<br>(ft3/s) | k    | Dia.<br>(in) | Notes |
|---|------------------------------------------|---------|------------------------------------------------------|---------------------------|-------------|------------------|-------------------------------|------|--------------|-------|
| 1 | 177                                      | 17700.0 | 17700.0                                              | 8304.8                    | 2.0         | 6.564E+02        | 0.3                           | 3.8  | 6            |       |
| 2 | 499                                      | 49900.0 | 67600.0                                              | 8304.8                    | 8.0         | 1.681E+03        | 0.7                           | 9.7  | 8            |       |
| 3 | 375                                      | 37500.0 | 105100.0                                             | 8305.8                    | 12.0        | 2.158E+03        | 0.9                           | 12.5 | 8            |       |
| 4 | 250                                      | 25000.0 | 130100.0                                             | 8306.8                    | 15.0        | 2.467E+03        | 1.0                           | 14.3 | 10           |       |

478 - Indicates value includes estimate of areas where secondary piping acts as tertiary piping.
 Relevant areas converted to equivalent tertiary piping length for ease of table calculations.

Attachment H

Geotechnical Modeling Work Plan

Version 3 5/3/2013

This document is the Work Plan for geotechnical modeling of the NorthMet Project as requested by the Geotechnical Stability Impact Assessment Planning Summary Memo, NorthMet Project EIS, dated May 18, 2011. The findings from the geotechnical modeling will be incorporated into a 3-Volume Geotechnical Data Package – and summarized and referenced as needed. NorthMet Project Geotechnical Data Package Volumes 1 through 3 will consist of:

- Volume 1 Flotation Tailings Basin
- Volume 2 Hydrometallurgical Residue Facility
- Volume 3 Stockpiles

### **Project:**

The project that will be evaluated is the project described in the Co-lead Agency Draft Alternative Summary as amended 03/04/11. This Work Plan will be reviewed and amended as necessary in response to project changes in the event such changes require substantive changes to previously analyzed facility designs.

### **Background:**

The NorthMet Project includes two material disposal facilities that include dams, consisting of the Flotation Tailings Basin for final deposition of flotation tailings, and the Hydrometallurgical Residue Facility for final deposition of the hydrometallurgical residue. The Flotation Tailings Basin and Hydrometallurgical Residue Facility are designed using an iterative process whereby facility capacity requirements and geotechnical requirements are utilized to determine the facility geometry and overall sizing requirements to contain the tailings and residue expected to be generated through the life of the project. A third type of material disposal facility, which does not require dams but does entail foundation and slope construction, is the waste rock stockpiles at the Mine Site (a.k.a. Stockpiles).

An important input parameter to the facility designs are the slope stability Factors of Safety. Applicable slope stability Factors of Safety are selected and then the facilities (Flotation Tailings Basin and Hydrometallurgical Residue Facility) are configured to achieve these Factors of Safety as computed by modeling performed during facility design. In the case of Stockpiles, MDNR-mandated design requirements have been developed that result in acceptable Factors of Safety.

The slope stability analysis methods that are used to compute slope stability Factors of Safety are not required universally. In other words, some types of analysis are appropriate to some facility configurations while not applicable to other configurations. For example, undrained strength stability analysis (USSA) for slope stability is appropriate for the upstream construction approach planned for the Flotation Tailings Basin. It is not necessary for the Hydrometallurgical Residue Facility which will utilize downstream construction with a liner system. Within this context the Geotechnical Modeling Work Plans for the Flotation Tailings Basin, Hydrometallurgical Residue Facility, and Stockpiles are outlined below.

Version 3 5/3/2013

### Flotation Tailings Basin Geotechnical Model for SDEIS, FEIS and Permitting:

The objective of the Flotation Tailings Basin Geotechnical Modeling for the SDEIS, FEIS and Permitting is to demonstrate the ability of the Critical Cross-Section (i.e., Cross-Section F; that cross-section anticipated to yield the lowest slope stability Factors of Safety as indicated in the Preliminary Geotechnical Evaluation – March 2009) to comply with the required global slope stability Factors of Safety. The information content of the November 21, 2012 Geotechnical Data Package – Volume 1 – Version 3, Flotation Tailings Basin (which now supersedes and entirely replaces the Preliminary Geotechnical Evaluation – March 2009) will be updated and formatted to accommodate the Co-lead Agency Comments and to incorporate updated slope stability analysis for scenarios derived from the February 25 and 26, 2013 Geotechnical Workshop (February Workshop) with the Co-lead Agency geotechnical team.. This will be Geotechnical Data Package – Volume 1 – Version 4, Flotation Tailings Basin. The following is a step-by-step summary of the planned Flotation Tailings Basin geotechnical modeling process. Descriptions of previously completed process steps, outcomes of which are reported in Geotechnical Data Package – Volume 1 – Version 3, are preserved below to maintain Work Plan continuity. Work Plan updates derived specifically from the February Workshop are noted as such.

The following paragraphs describe the work that will be included in Geotechnical Data Package – Volume 1 – Version 4, Flotation Tailings Basin which is expected to provide information for the SDEIS.

- 1. Gather existing conditions data (i.e. basin topography, stratigraphy, soil and tailings strength and hydraulic characteristics), and other data as needed to support geotechnical modeling and Flotation Tailings Basin design. Note this data has previously been compiled and presented in the Preliminary Geotechnical Evaluation March 2009. This information will be incorporated into the Geotechnical Data Package Volume 1, which will present the analyses outlined in this Work Plan. Results of in-laboratory testing of liquefied shear strength of NorthMet flotation tailings, completed subsequent the March 2009 evaluation, will be incorporated into the work prescribed in this Geotechnical Modeling Work Plan.
- 2. Develop Flotation Tailings Basin slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for the Flotation Tailings Basin for seepage and stability modeling. Models will utilize surveyed cross-sections of the existing basin and proposed cross-sections of future dam raises; existing models will be reconfigured as needed to accommodate the modeling approach outlined in this Work Plan. This information will then be incorporated into the Geotechnical Data Package Volume 1.
- 3. Develop seepage and stability models of the Flotation Tailings Basin using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W, SIGMA/W and QUAKE/W; or other appropriate geomechanical models) as necessary.
- 4. Using geotechnical data from Step 1, establish design data for use in Effective Stress Stability Analysis and Undrained Strength Stability Analysis. Also utilize established criteria (Olson and Stark – 2003 "Yield Strength Ratio and Liquefaction Analysis of

Version 3 5/3/2013

Slopes and Embankments" as updated by Olson 2009) to determine which materials behave in a contractive manner and could transition from non-liquefied strengths to liquefied (steady state) strengths.

Produce graphical representations of each strength data set and basis for selection of design parameters. Plots should include the number of data used to develop each plot.

- 5. Utilize design data to design slopes to achieve the following:
  - a. Effective Stress Stability Analysis (ESSA) Factor of Safety  $\geq 1.5$  for conditions using drained (i.e., effective-stress based) shear strength parameters. Analyze the following effective stress stability scenarios:
    - i. Existing conditions.
    - ii. Normal operating condition at incremental lift heights up to maximum dam height for normal pool elevation with steady-state seepage conditions and including reduced infiltration rates for bentonite amended exterior face of new dams.
    - iii. Long-term closure conditions (at 2,000 years) using design drained shear strengths with aging factors included (for decomposition and secondary compression).
  - b. Undrained Strength Stability Analysis (USSA) Factor of Safety ≥ 1.3 for conditions using undrained yield shear strengths for materials that are expected to behave in an undrained manner (i.e., end of construction case per dam raise). Analyze the following undrained strength stability scenarios:
    - i. Normal operating condition at incremental lift heights up to maximum dam height for normal pool elevation and including reduced infiltration rates for bentonite amended exterior face of new dams.
    - ii. Veneer stability to evaluate the stability of the bentonite amended exterior face of new dams. Veneer stability will be evaluated by computing the infinite slope Factor of Safety (using the no-seepage formulation where tailings seepage is not emerging on the slope, and the parallel-seepage formulation where tailings seepage is emerging on the slope), with the soil friction angle chosen as a conservative value based on literature review. Laboratory direct shear testing will be performed to measure a friction angle for site-specific bentonite amended tailings and the Factor of Safety will then be recomputed. Slope design will be adjusted as needed to achieve Factor of a Safety  $\geq 1.3$  for veneer stability.
  - c. Liquefaction Triggering and Post-Triggering Analysis Factor of Safety  $\geq 1.1$  for post-triggering slope stability considering liquefied shear strengths (computed from design liquefied strength ratios) applied to segments of materials in the triggering stability analysis with FS<sub>triggering</sub> < 1.1; design drained strengths applied to materials above the capillary zone; and yield shear strength (computed from

Version 3 5/3/2013

design yield strength ratios) for all other materials. From the February 2013 workshop, analyze the following credible triggering scenarios:

- i. Baseline Lift 8
  - Realistic phreatic surface from seepage analysis including capillarity.
  - Normal pool steady-state seepage.
  - Capillarity 10' above computed steady-state phreatic line.
  - Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (i.e., design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
- ii. Elevated Phreatic Surface (i.e., drain ineffective) Lift 8
  - Permeability of plugged drain set to permeability of flotation tailings.
  - Normal pool steady-state seepage.
  - Capillarity 10' above computed steady-state phreatic line.
  - Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (i.e., design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
  - Consideration of baseline effective vertical stresses (prior to rise in phreatic surface).
- iii. High Construction Rate of Loading Lift 1
  - 15' of construction fill placed rapidly.
  - Baseline phreatic surface including capillarity.
  - Normal pool steady-state seepage.
  - Capillarity 10' above computed steady-state phreatic line.
  - Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
  - Consideration of baseline effective vertical stresses (prior to new fill placement).

iv. Local Erosion/Scour of Slope (pipe break) - Lift 8

- Incrementally remove material above buttress (retrogressive).
- Baseline phreatic surface including capillarity.
- Normal pool steady-state seepage.
- Capillarity 10' above computed steady-state phreatic line.

Version 3 5/3/2013

- Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
- Consideration of baseline effective vertical stresses (prior to erosion).
- v. Elevated Phreatic Surface (drain ineffective) w/High Pond Lift 1
  - Elevated Pond (drain ineffective).
  - Permeability of plugged drain set to permeability of flotation tailings.
  - Steady-state seepage with elevated pond set at overflow elevation.
  - Capillarity 10' above computed steady state phreatic line.
  - Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
  - Consideration of initial effective vertical stresses (prior to placement of 1<sup>st</sup> lift).
- vi. Long-Term Case (20, 200, and 2000 years after closure)
  - Final geometry including surface erosion of material above buttress.
  - Impoundment phreatic surface drained down (as determined by analysis) reflecting bentonite cover.
  - Surcharge load from surficial pond.
  - Pond set at overflow elevation.
  - Design drained shear strengths with aging factors included (for decomposition and secondary compression), applied to materials above the top of the capillary zone.
  - Design liquefied shear strengths for flotation tailings and LTVSMC fine tailings/slimes) with aging factors included (for decomposition and secondary compression), applied to materials below the top of the capillary zone.
- d. Lift 8 Baseline Conditions assuming Unknown Triggering Mechanism Factor of Safety ≥ 1.1 for post-triggering slope stability applying design liquefied shear strengths to all LTVSMC fine tailings and slimes and all Flotation Tailings below top of capillary zone.
  - i. Lift 8
  - ii. Realistic phreatic surface from seepage analysis including capillarity.
  - iii. Normal pool steady-state seepage.
  - iv. Capillarity 10' above computed steady-state phreatic line.

Version 3 5/3/2013

- v. Design liquefied shear strengths applied below top of capillary zone to all LTVSMC fine tailings and slimes and all Flotation Tailings.
- e. Seismic Liquefaction (i.e., induced by seismic event).
  - i. Perform a screening analysis for triggering of liquefaction based on Boulanger and Idriss (2004). If the factor of safety against triggering is less than 1.2 for a seismic event with a 2475-year return period, perform further seismic triggering analyses as described below.
  - ii. Develop material damping coefficients for LTVSMC and NorthMet tailings.
  - iii. Use Geo-Slope software to compute initial stresses and steady-state pore-water pressure distribution.
  - iv. Apply earthquake loads via appropriate geomechanical models (such as QUAKE/W, FLAC, Plaxis, or others; earthquake loads to be obtained from probabilistic seismic hazard analysis [PSHA]) and compare results to a SLOPE/W yield undrained model (or other appropriate model) to identify the elements within the model that liquefy as a result of the seismic loading.
  - v. Use published triggering relationships and model results to determine segments along the slip surface where liquefaction will be triggered (Olson & Stark, 2003, Yield Strength Ratios and Liquefaction Analysis of Slopes and Embankments).
  - vi. Perform slope stability analysis in SLOPE/W or other appropriate geomechanical model (using liquefied shear strengths applied to elements shown to liquefy) to compute  $FS_{Flow}$  for the entire cross section.
    - If  $FS_{Flow} > 1.2$  no further action is needed.
    - If  $FS_{Flow} < 1.0$  modify or redesign cross section.
    - If  $FS_{Flow} > 1.0$  and < 1.2, perform deformation modeling in SIGMA/W or other suitable geomechanical model to predict the magnitude of deformation. If the level of deformation is acceptable to Dam Safety, no further action is needed. If the level of deformation is unacceptable to Dam Safety, modify or redesign cross section.

### 6. Reporting:

Volume 1 – Version 4 will present the background/supporting information and results of the Flotation Tailings Basin geotechnical analyses described in this Work Plan. It will contain the pertinent content previously presented in the Preliminary Geotechnical Evaluation – March 2009 and Geotechnical Data Packages – Volume 1 – Versions 1 through 3. However, analysis methods and results will supersede contents of the previously published Geotechnical Evaluation and Data Packages. Included in Volume 1 – Version 4 (and/or the Flotation Tailings Management Plan) will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time following

Version 3 5/3/2013

Flotation Tailings Basin closure. Include design and operating requirements necessary to maintain required slope stability Factors of Safety for the critical slope cross-section (assumed to be Cross-Section F for SDEIS modeling). This detail shall be included in Volume 1 – Version 4 and/or the Flotation Tailings Management Plan.

The following paragraphs describe the work that will be included in a future Geotechnical Data Package – Volume 1 – Version 5, Flotation Tailings Basin, which is expected to provide information for the FEIS and Dam Safety permitting.

- 1. After MDNR publication of the SDEIS and prior to Final EIS (FEIS) publication and Permitting, execute a supplement to this Work Plan to include:
  - a. For normal operation conditions with maximum lift height perform a sensitivity analysis using the USSA slope stability model with yield undrained shear strength values. The Flotation Tailings Basin designer's engineering judgment shall be used to establish a range for these data inputs and the basis for the range shall be described. Evaluate the impact of data variability on computed slope stability Factors of Safety for the purpose of focusing operational-phase data gathering on the most critical stability model data inputs.
  - b. Prepare and execute a second Sensitivity Analysis the intent of which is to evaluate the variation in Factor of Safety (and the probability of FS < 1.0) for an unknown triggering case, using the ESSA and yield USSR strengths utilized for the current Work Plan, but with  $USSR_{(Liq)}$  varied within the range identified during liquefied strength design parameter evaluation.
- 2. Following MDNR Dam Safety review and approval of Critical Cross-Section modeling process/procedures and outcomes, proceed with modeling cross-sections G (north side of Cell 2E) and N (south side of Cell 1E) for final Flotation Tailings Basin design (for input to FEIS or Permitting as determined by MDNR).

Version 3 5/3/2013

# Hydrometallurgical Residue Facility Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Hydrometallurgical Residue Facility Geotechnical Modeling for the SDEIS, FEIS and Permitting is to:

- demonstrate the ability of the most sensitive slope cross-section to comply with the required slope stability Factors of Safety for global stability,
- demonstrate the ability of the composite liner system to comply with infinite slope stability Factor of Safety requirements, and to
- demonstrate the capability of the composite liner system to withstand the strain anticipated due to differential settlement that may occur in the facility foundation materials.

The following is a step-by-step summary of the planned Hydrometallurgical Residue Facility geotechnical modeling process.

- Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data, hydrogeologic data and other data as needed to support geotechnical modeling of the Hydrometallurgical Residue Facility). Note – portions of this data have previously been compiled and presented in the Preliminary Geotechnical Evaluation – March 2009. This information will be incorporated into the Geotechnical Data Package Volume 2 and will be supplemented with additional facility location-specific data. Data on existing baseline water sources at the site, including surface discharges from the surrounding highlands, will be gathered for consideration during hydrometallurgical residue facility design. The facility will be designed to accommodate any such surface discharges and hence these discharges will not impact geotechnical modeling of the hydrometallurgical residue facility.
- 2. Gather additional residue strength and hydraulic conductivity data and/or representative published data for use in facility design. This information will be incorporated into the Geotechnical Data Package Volume 2 to the extent needed to facilitate the modeling outlined herein.
- 3. Develop residue facility layout and slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for proposed residue facility stability and deformation modeling. Note seepage through the residue facility embankments will be inhibited by the composite liner system and seepage modeling will be an unnecessary component of this analysis.
- 4. Develop global and infinite slope stability models and deformation models of the facility using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W and SIGMA/W as necessary). Model the following:
  - a. Deformation of hydromet residue facility foundation and liner system.

- b. Infinite slope stability of hydromet residue facility liner system (if necessary/applicable).
- c. Global stability of hydromet residue facility embankments.

Model maximum residue facility dam height with minimum and maximum pond elevation, and post closure – cover effective with minimum pond elevation. Model for effective shear stress conditions. Modeling for undrained shear strength conditions will not be necessary due to lined facility design with imported and mechanically placed dam fill and lack of seepage through the dam.

- Configure geotechnical data for model input. Model input parameters will be based on data collected for and presented in the Preliminary Geotechnical Evaluation – March 2009. For materials to be imported for construction, engineering judgment will be used to select conservative shear strength parameters for input to the slope stability analysis and liner deformation analysis.
- 6. Use SLOPE/W to calculate the Factor of Safety for the following conditions:
  - a. Effective Stress Stability Analysis (ESSA) Factor of Safety  $\geq 1.5$
  - b. Slope failures on external face and internal face of residue facility embankments.
- 7. Perform infinite slope stability analysis to confirm that load from residue deposition will be transferred to facility foundation soils and will not induce excess strain in facility liner materials.
- 8. Perform deformation modeling to predict magnitude of deformation and resulting strain in the facility liner system for comparison to allowable strain in liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the facility liner.
- 9. Report final basin design and operating requirements necessary to maintain required slope stability Factor of Safety and deformation requirements.
- 10. Reporting the Geotechnical Data Package Volume 2 will present the background/supporting information and results of the Hydrometallurgical Residue Facility geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

Version 3 5/3/2013

### Stockpile Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Stockpile Geotechnical Modeling for the SDEIS, FEIS and Permitting is to comply with Mn Rule 6132.2400 (stockpile slopes will be as required by 6132.2400 Subp. 2. B. and stockpile foundations will be as required by 6132.2400 Subp. 2. A. (1)). These are design requirements that have been established to insure acceptable slope stability Factors of Safety for global stability and acceptable foundation stability, the latter of which relates to the capability of the geomembrane liner system to withstand the strain anticipated due to differential settlement that may occur in the stockpile foundation materials.

The following is a step-by-step summary of the planned Stockpile geotechnical modeling process.

- 1. Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data and other data as needed to support foundation design). Existing site information will be utilized for analysis performed in support of the SDEIS and FEIS, with additional data gathered and designs updated as needed for final design in conjunction with permitting. Existing information will be incorporated into the Geotechnical Data Package Volume 3.
- 2. Configure stockpile slopes to meet or exceed minimum dimensional requirements established by Mn Rule 6132.2400.
- 3. Perform stockpile subgrade settlement analysis to predict magnitude of deformation and resulting strain in the stockpile liners for comparison to allowable strain in the liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the stockpile liners.
- 4. Report final stockpile design and operating requirements necessary to maintain required slope stability Factors of Safety and liner performance requirements.
- 5. Reporting the Geotechnical Data Package Volume 3 will present the background/supporting information and results of the Stockpile geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

Attachment I

**Stockpile Stability Evaluation** 



## **TECHNICAL MEMORANDUM**

Date:October 19, 2015Document No.:1132209 TM02 Rev0To:Tom RadueCompany:Barr EngineeringFrom:Gordan Gjerapic and Brent BronsonEmail:GGjerapic@Golder.comRE:WASTE ROCK STOCKPILES STABILITY ANALYSIS

### **1.0 INTRODUCTION**

This document summarizes the approach and results of preliminary stability analyses for the proposed waste rock stockpiles at the PolyMet NorthMet site located near Babbitt, Minnesota. Due to limited information on subsurface conditions, especially in lowland areas, the analyses presented herein are expected to be updated based on the results of a future Phase II geotechnical investigation.

Stability analyses were conducted for: (1) reactive waste rock stockpiles and (2) the non-reactive waste rock, i.e., Category 1 stockpile. Reactive stockpiles include the Category 2/3 stockpile, Category 4 stockpile, and Ore Surge Pile. The liner system for reactive stockpiles consists of linear low-density polyethylene (LLDPE) geomembrane overlying soil liner or prepared subgrade. The Category 1 stockpile is designed without a liner system and instead uses a groundwater containment system. The Category 1 stockpile will be reclaimed while the reactive stockpile materials will be used to backfill pits prior to closure. Consequently, slope stability analyses for closure configurations were performed only for the Category 1 stockpile.

### 2.0 OBJECTIVE

Perform slope stability analyses for waste rock stockpiles considering both static and pseudo-static (earthquake loading) conditions. Calculate factors of safety (FS) for operational and reclaimed/closure configurations.

### 3.0 STABILITY MODEL INPUTS

### 3.1 Assumptions

### 3.1.1 Stockpile Geometry

- Nominal lift height is 40 feet
- Temporary operational slopes are 1.4(H):1(V)
- The critical (maximum) subgrade and liner slopes are 0.5%

I:\11\2209\0100\0122 TM\TM02 Rev0\1132209 TM02 Rev0 WasteRockStabilityAnalysis 19OCT15.docx





Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

- Reactive stockpiles design assumptions:
  - Unsuitable soils within the reactive stockpile footprints will be removed and replaced with structural fill
  - Liner system is a minimum of 1 foot of soil liner overlain by LLDPE geomembrane
  - The phreatic surface is located 2 feet above the liner/subgrade surface, i.e., the bottom 2 feet of the waste rock are saturated
  - Stockpiles will be used for pit backfill, i.e., no closure configurations are considered
- Category 1 stockpile design assumptions:
  - Unsuitable soils, if any, within first 100 feet from the toe of the Category 1 stockpile will be excavated and replaced with structural fill
  - Closure bench width is a minimum of 30 feet, measured from the crest of the lower lift to the toe of the next lift
  - Reclamation slope design includes interbench slopes of 3.75(H):1(V)
  - The reclaimed stockpile will be covered with a textured 60-mil polyethylene geomembrane after re-grading is completed. The waste rock surface is expected to be graded smooth and compacted prior to geomembrane placement. Alternatively, a soil bedding layer or selected subgrade soil layer may be placed prior to geomembrane installation to ensure good contact and prevent puncture of the geomembrane.
  - A reclamation cover composed of a 12-inch thick lateral drainage layer will overlie the geomembrane, which will be overlain by an additional 18-inch thick vertical percolation layer.

### 3.1.2 Site Conditions and Available Data

- Pre-construction topography and current topography
- Geotechnical site and laboratory exploration results
- Peak ground acceleration of 0.05g

### 3.1.3 Minimum Acceptable Factors of Safety

Factors of safety (FS) for the stability analyses were adopted in accordance with the industry practice for non-impounding structures constructed of mine waste materials with the consideration of economical and safety risks for similar structures, see, e.g., ADEQ (2004) and Solseng et al. (2015).

- Minimum long-term (effective stress) operational FS for deep seated failures is 1.3
- Minimum short-term (total stress) operational FS (if applicable) is 1.0
- Minimum long-term (effective stress) operational FS under pseudo-static conditions is 1.0
- Minimum acceptable FS for static condition at closure is 1.5
- Minimum acceptable FS for pseudo-static conditions at closure is 1.1



### 3.2 **Design Sections**

The following critical design sections were analyzed:

### 3.2.1 Reactive Stockpiles

- Design Section R-1 (see Figure 1): Waste rock stockpile, operational configuration, one lift placed in two stages. This configuration represents the initial stockpile conditions considering placement of the first 15 feet of material on top of the liner (Lift 1a) prior to placement of the remaining 25 feet of material (Lift 1b) to reach the specified first lift height of 40 feet. Subsequent lifts with thickness of 40 feet will be placed on top of the first lift (i.e., without the restriction for the two-stage placement required for the first lift to protect the liner system).
  - Initial waste rock fill height of 40 feet placed in two stages (lifts)
  - Interbench slopes at 1.4(H):1(V)
  - Height of the initial stage fill over liner (Lift 1a): 15 feet
  - Height of the remaining fill (Lift 1b): 25 feet
  - Assume 10-foot wide bench between initial 15-foot thick first lift (Lift 1a) and the remainder of the first lift (Lift 2a) extending to 40 feet
- Design Section R-2 (see Figure 2): Waste rock stockpile, operational configuration, ultimate height
  - Waste rock fill height of 160 feet (a maximum height for reactive stockpiles at ultimate buildout)
  - Interbench slopes at 1.4(H):1(V)
  - Waste rock stockpile is constructed in individual lifts with the maximum lift height of 40 feet and the minimum bench width of 30 feet

### 3.2.2 Category 1 Stockpile

- Design Section C1-1 (see Figure 3): Waste rock stockpile, operational configuration, initial construction of the first lift with the maximum lift height of 40 feet
  - Waste rock height of 40 feet
  - Interbench slopes at 1.4(H):1(V)
- Design Section C1-2 (see Figure 4): Waste rock stockpile, operational configuration, ultimate height constructed in 40-foot lifts
  - Waste rock height of 160 feet
  - Interbench slopes at 1.4(H):1(V)
- Design Section C1-3 (see Figure 5): Waste rock stockpile, reclaimed configuration, ultimate height constructed in 40-foot lifts
  - Waste rock height of 240 feet
  - Interbench slopes regraded to 3.75(H):1(V)
  - Proposed cover layer subsurface drain pipes are not shown

The design section geometries are provided in Figures 1 through 5.



### **3.3 Material Properties**

The parameters presented in Table 1 were used in the global slope stability analysis described in Section 4.0.

| Table 1: | Material Strength | Parameters |
|----------|-------------------|------------|
|----------|-------------------|------------|

| Material                                               | Total<br>Unit Weight<br>(pcf) | Effective<br>Friction Angle<br>(degrees) | Effective<br>Cohesion<br>(psf) |
|--------------------------------------------------------|-------------------------------|------------------------------------------|--------------------------------|
| Waste Rock                                             | 126.0                         | 35.5                                     | 0.1                            |
| Construction Fill                                      | 130.6                         | 34.6                                     | 0.1                            |
| Smooth LLDPE/Soil Liner Interface1                     | N/A                           | 19.0                                     | 0.0                            |
| Textured Geomembrane/Cover Soil Interface <sup>2</sup> | N/A                           | 29.0                                     | 0.0                            |
| Existing Subgrade (Peat)                               | 80.0                          | 17.0                                     | 0.0                            |
| Bedrock                                                | 170.0                         | 55.0                                     | 200.0                          |
| Notes:                                                 |                               |                                          |                                |

1. Estimated from Golder Database (2012).

2. Based on Golder Database (2012) and Bhatia and Kasturi (1996), see Attachment 2.

### 4.0 STABILITY ANALYSES

Global slope stability was analyzed using Spencer's method (Spencer 1967) implemented in RocScience's two-dimensional limit equilibrium slope stability analysis program SLIDE 6.017 (2012). Minimum FS was determined using the program's search algorithm for both circular and non-circular (block) failure surfaces. Pseudo-static stability analyses were conducted by using a horizontal seismic factor of 0.025 g, which corresponds to half of the peak ground acceleration of 0.05 g (Hynes-Griffin and Franklin 1984). Conceptual geometries for one lift and the ultimate heights were investigated to establish the most sensitive mechanism of failure for the waste rock stockpile slopes.

Input and output files for the SLIDE seepage and slope stability analyses for each design section and loading condition are presented in Attachment 1.

Infinite slope stability analyses were performed for the geomembrane and reclamation cover that will be placed on the Category 1 stockpile. Based on Bhatia and Kasturi (1996) results and Golder Database (2012) on liner interfaces, a residual interface friction angle of 29 degrees between a textured 60-mil polyethylene geomembrane and soil layer at low confining stresses is assumed to calculate the factor of safety at closure (see Attachment 2). Cohesion along the geomembrane/reclamation cover interface is assumed to be zero.

Assuming a one-dimensional cover failure and adequate control of precipitation infiltrating the slope above the cover system geomembrane (via the subsurface drainpipes), the FS can be calculated as follows:



 $FS = tan \delta' / tan \beta$ 

Where: FS = factor of safety

- $\delta'$  = effective geomembrane-soil interface friction angle
- $\beta$  = slope angle

### 5.0 RESULTS

Results of the global slope stability analyses for each of the design sections are summarized in Table 2. Design Section R-2 (the temporary operational 1.4(H):1(V) slopes for the reactive stockpiles) exhibits the lowest but still acceptable FS, with a portion of the sliding surface occurring along the stockpile interface with the geomembrane liner.



5

| Table 2: | Summary of Slope Stability Analyses, Conceptual Waste Rock Stockpile Geometries     |  |
|----------|-------------------------------------------------------------------------------------|--|
|          | ourinnary of otope of ability Analyses, conceptual Maste Rook of complete ocontenes |  |

| File Name |      | Static or<br>Seismic |     | Failure<br>Through                                                                           | Surface<br>Type | Computed<br>FS | FS<br>Design<br>Criteria |
|-----------|------|----------------------|-----|----------------------------------------------------------------------------------------------|-----------------|----------------|--------------------------|
| R-1-c     | R-1  | Static               | 40  | Middle of the waste rock stockpile, exit at toe                                              | Circular        | 2.04           | ≥ 1.3                    |
| R-1-nc    | R-1  | Static               | 40  | Middle of the waste rock stockpile, along the liner interface, exit at toe                   | Block           | 1.39           | ≥ 1.3                    |
| R-1-nc-s  | R-1  | Seismic              | 40  | Middle of the waste rock stockpile, along the liner interface, exit at toe                   | Block           | 1.31           | ≥ 1.0                    |
| R-2-c     | R-2  | Static               | 160 | Middle of the waste rock stockpile, exit at toe                                              | Circular        | 1.55           | ≥ 1.3                    |
| R-2-nc    | R-2  | Static               | 160 | Middle of the waste rock stockpile, along the liner interface, exit at toe                   | Block           | 1.39           | ≥ 1.3                    |
| R-2-nc-s  | R-2  | Seismic              | 160 | Middle of the waste rock stockpile, along the liner interface, exit at toe                   | Block           | 1.30           | ≥ 1.0                    |
| C1-1-c    | C1-1 | Static               | 40  | Middle of the waste rock stockpile, shallow subgrade, exit near toe                          | Circular        | 1.53           | ≥ 1.3                    |
| C1-1-nc   | C1-1 | Static               | 40  | Middle of the waste rock stockpile, along the waste rock and subgrade interface, exit at toe | Block           | 1.56           | ≥ 1.3                    |
| C1-1-c-s  | C1-1 | Seismic              | 40  | Middle of the waste rock stockpile, shallow subgrade, exit near toe                          | Circular        | 1.45           | ≥ 1.0                    |
| C1-2-c    | C1-2 | Static               | 160 | Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe      | Circular        | 1.93           | ≥ 1.3                    |
| C1-2-nc   | C1-2 | Static               | 160 | Middle of the waste rock stockpile, along the waste rock and subgrade interface, exit at toe | Block           | 2.09           | ≥ 1.3                    |
| C1-2-c-s  | C1-2 | Seismic              | 160 | Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe      | Circular        | 1.78           | ≥ 1.0                    |
| C1-3-c    | C1-3 | Static               | 240 | Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe      | Circular        | 2.31           | ≥ 1.5                    |
| C1-3-c-s  | C1-3 | Seismic              | 240 | Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe      | Circular        | 2.07           | ≥ 1.1                    |

6



Because site soil samples have not been obtained to conduct site-specific laboratory testing to determine the smooth LLDPE/soil liner interface strength, a sensitivity analysis was performed to assess the effect of variability of the interface friction angle on the calculated FS for global stability of the reactive stockpiles. The results for the most critical temporary operational slope (Section R-2) are shown in Table 3. The plot for the accompanying sensitivity analysis is included in Attachment 1.

| Table 3: | Summary of Sensitivity Analyses for Waste Rock Slope Failure for Different Effective |
|----------|--------------------------------------------------------------------------------------|
|          | Interface Friction Angles                                                            |

| Design<br>Section | Material                          | Effective<br>Friction<br>Angle<br>(degrees) | Computed<br>FS | FS<br>Design<br>Criteria |
|-------------------|-----------------------------------|---------------------------------------------|----------------|--------------------------|
| R-2               | Smooth LLDPE/Soil Liner Interface | 22.6                                        | 1.5            | ≥ 1.3                    |
| R-2               | Smooth LLDPE/Soil Liner Interface | 19.2                                        | 1.4            | ≥ 1.3                    |
| R-2               | Smooth LLDPE/Soil Liner Interface | 15.7                                        | 1.3            | ≥ 1.3                    |

For the Category 1 waste rock stockpile cover, because site soil samples have not been obtained to conduct site-specific laboratory testing to determine the geomembrane/soil liner interface strength, a sensitivity analysis was performed to assess the effect of variability of the interface friction angle on the calculated FS for infinite slope stability of the stockpile cover. Since cover soil imposes low confining stresses on the cover system geomembrane, it has been assumed that a textured geomembrane will be used for the cover system. Results of the infinite slope stability analyses for the geomembrane cover that will be placed on the Category 1 stockpile are summarized in Table 4.

| Table 4: | Summary of Sensitivity Analyses for Cover Slope Failure for Different Effective |
|----------|---------------------------------------------------------------------------------|
|          | Interface Friction Angles                                                       |

| Material                            | Effective<br>Friction<br>Angle<br>(degrees) | Computed<br>FS | FS<br>Design<br>Criteria |
|-------------------------------------|---------------------------------------------|----------------|--------------------------|
| Textured Geomembrane/Soil Interface | 28.1                                        | 2.0            | ≥ 1.5                    |
| Textured Geomembrane/Soil Interface | 24.4                                        | 1.7            | ≥ 1.5                    |
| Textured Geomembrane/Soil Interface | 21.8                                        | 1.5            | ≥ 1.5                    |

The design criteria for the cover system infinite slope stability are based on achieving an FS equal to or greater than 1.5 using residual geomembrane-soil interface friction angles. Data summarized in Attachment 2 indicate that a friction angle of 21.8 degrees or greater for the textured geomembrane-soil interface is expected to be achievable.



### 6.0 CONCLUSIONS

All design sections meet the minimum factors of safety (FS) for global stability, assuming an LLDPE geomembrane/soil liner interface friction angle of 19 degrees. The design Section R-2, with the maximum height of failure surface of 160 feet, a slope face of 1.4(H):1(V), and a liner grade of 0.5%, represents the most critical condition, while still meeting FS criteria. Note that the staged first lift placement is expected to result in an increased FS.

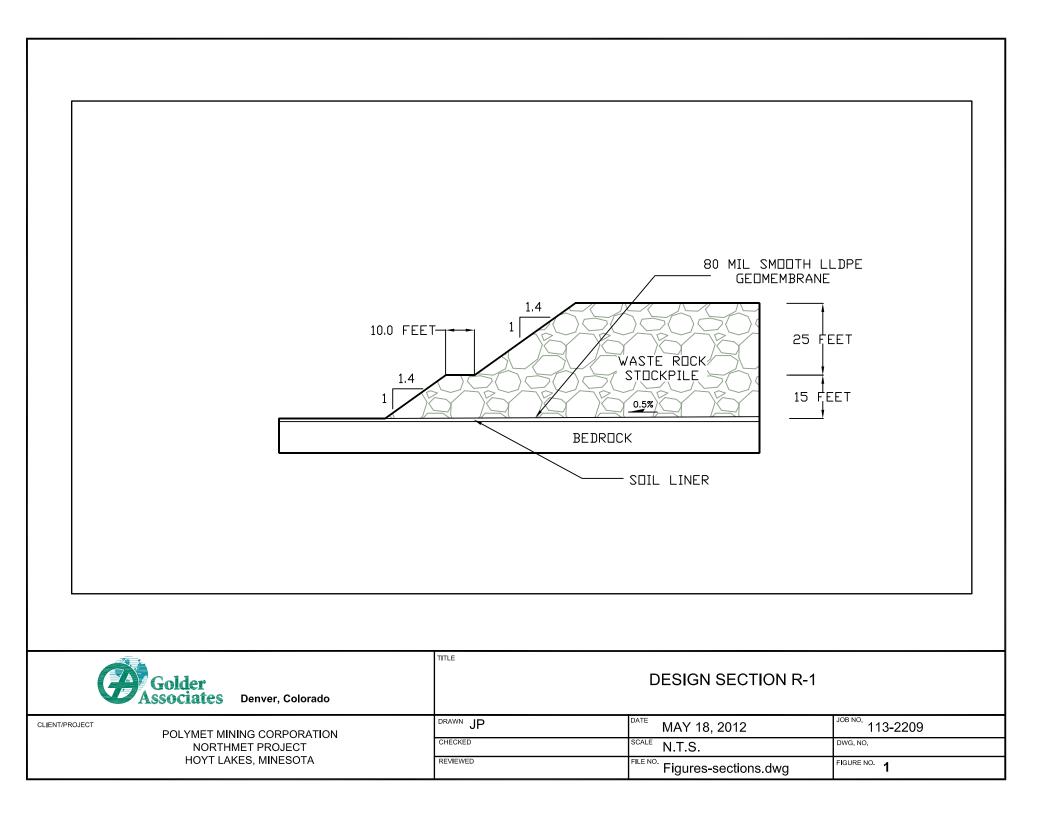
8

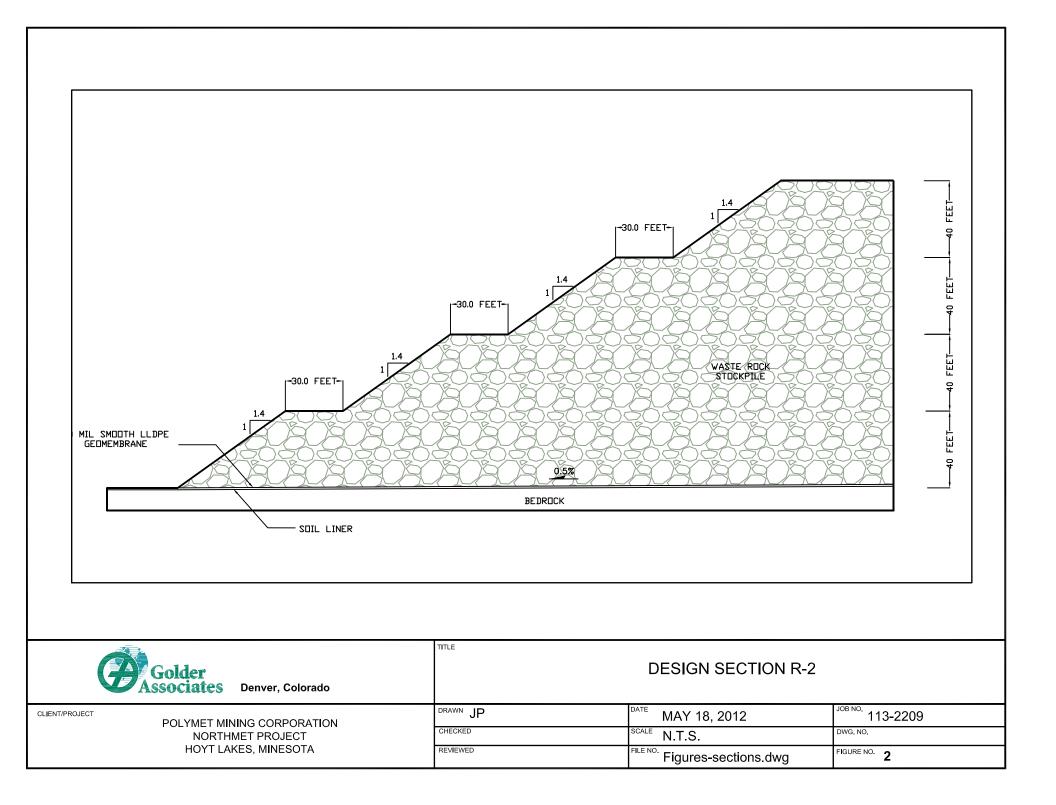
The results of the slope stability analysis for the critical design section indicate that a minimum LLDPE/soil liner interface friction angle of 15.7 degrees will be required to achieve an FS of 1.3 under static operating conditions based on a block failure mode.

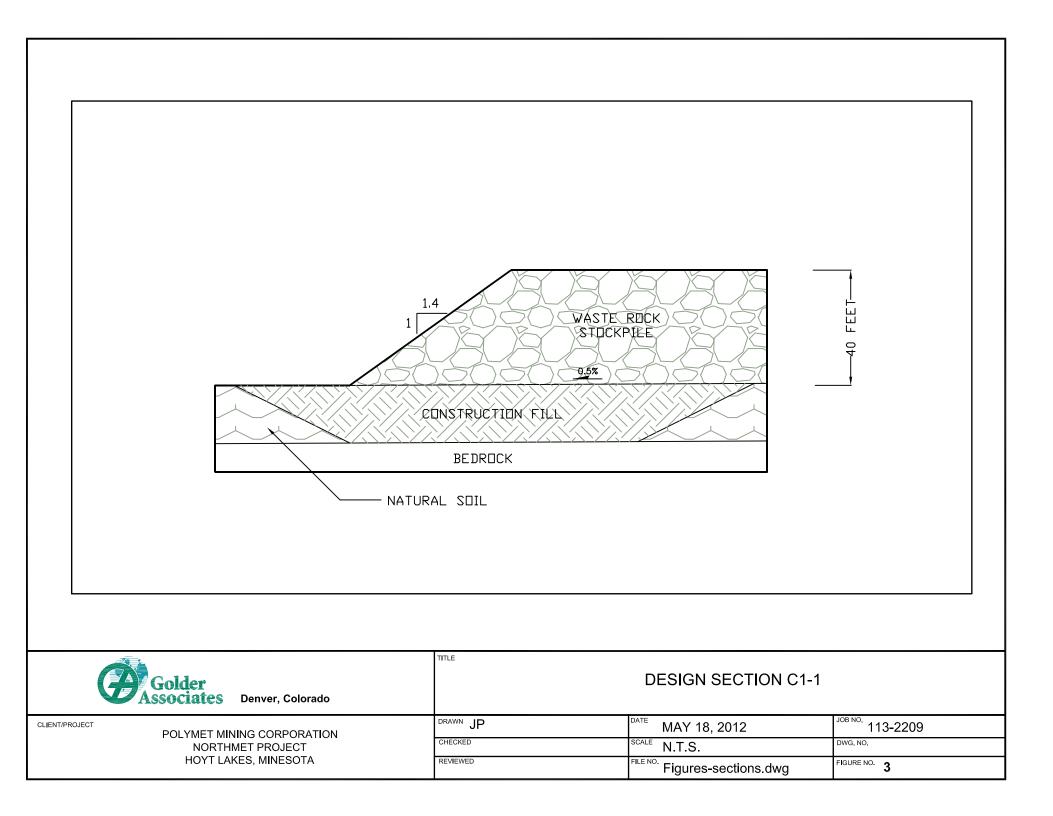
In general, static conditions are more critical than seismic conditions due to the higher required factors of safety and relatively low design peak ground acceleration.

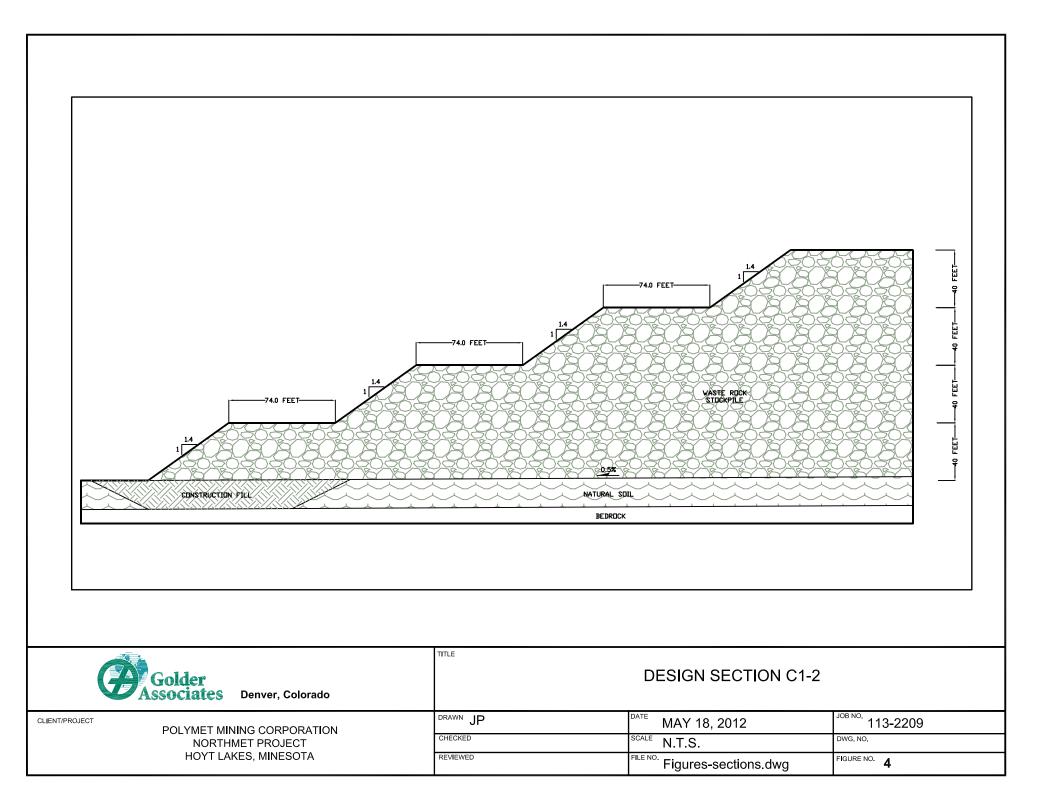
Closure calculations indicate that a minimum geomembrane/soil interface friction or 21.8 degrees will be required to achieve an FS of 1.5 under static conditions at closure for the design interbench slopes of 3.75H:1V. Project-specific geomembrane-soil interface friction angle testing will be performed prior final cover construction to aid in final geomembrane type selection.

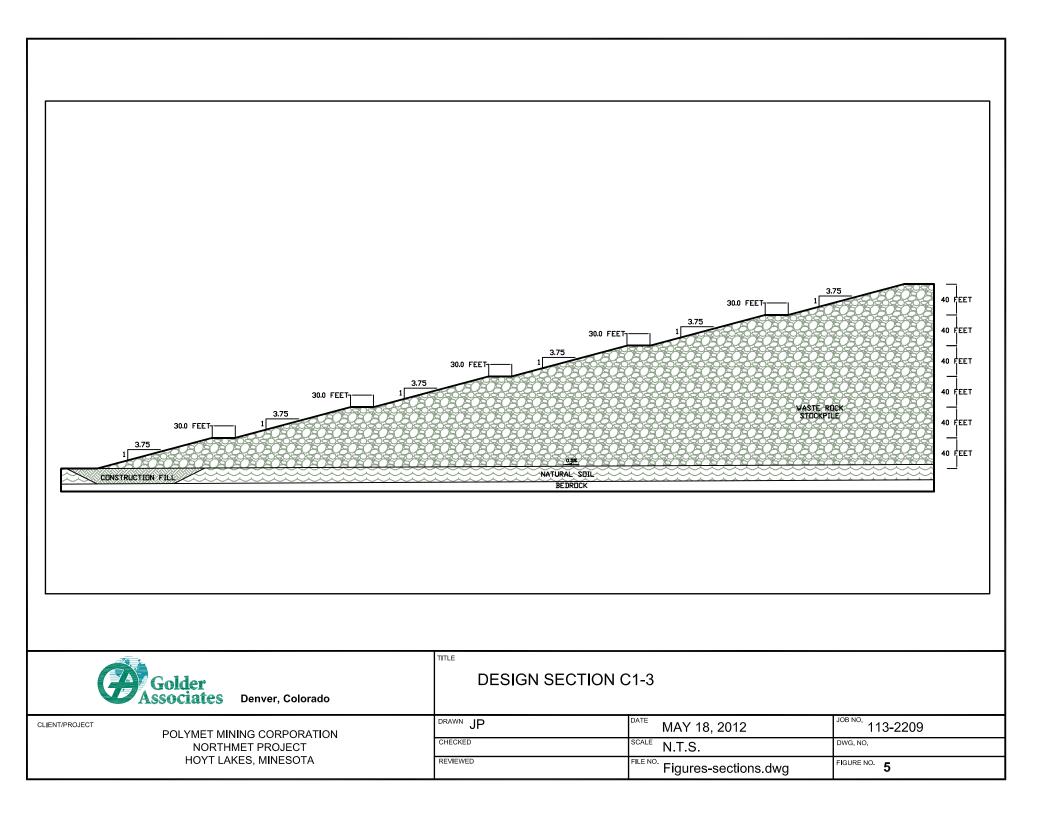
### 7.0 **REFERENCES**


- Arizona Department of Environmental Quality (ADEQ). 2004. "Arizona Mining Guidance Manual BADCT" Aquifer Protection Program. Publication # TB-04-01. Phoenix, Arizona: Arizona Department of Environmental Quality.
- Bhatia, S.K., and G. Kasturi. 1996. "Comparison of PVC and HDPE Geomembranes Interface Friction Performance" PVC Geomembrane Institute, Champaign, Illinois, USA, November.
- Golder Associates Inc. (Golder). 2012. "Direct Shear Database."
- Hynes-Griffin, M.E., and A.G. Franklin. 1984. "Rationalizing the Seismic Coefficient Method" U.S. Department of the Army. Waterways Experiment Station. U.S. Army Corps of Engineers (USACE). Miscellaneous Paper GL-84-13.

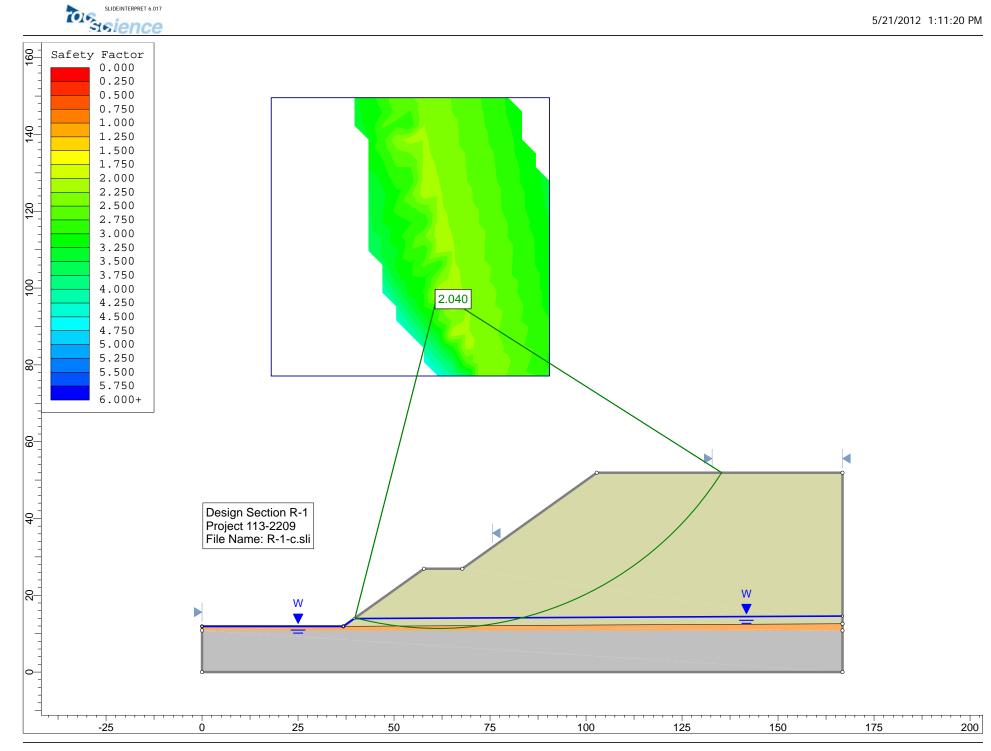

RocScience. 2012. SLIDE V6.017, Toronto.


- Solseng, P.B., T.W. Skoglund, and S.K. Dickinson, Jr. 2015. "Responsible Tailings Disposal at Minnesota Taconite Mines", Responsible Mining – Case Studies in Managing Social & Environmental Risks in the Developed World, Michelle E. Jarvie-Eggart Editor, Part VI Tailings and Waste Rock, published by Society for Mining, Metallurgy & Exploration (SME), ISBN-13: 978-0873353731 (ISBN-10: 0873353730).
- Spencer, E. 1967. "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces." Geotechnique, Vol. XVII, No. 1, pp. 11-26.

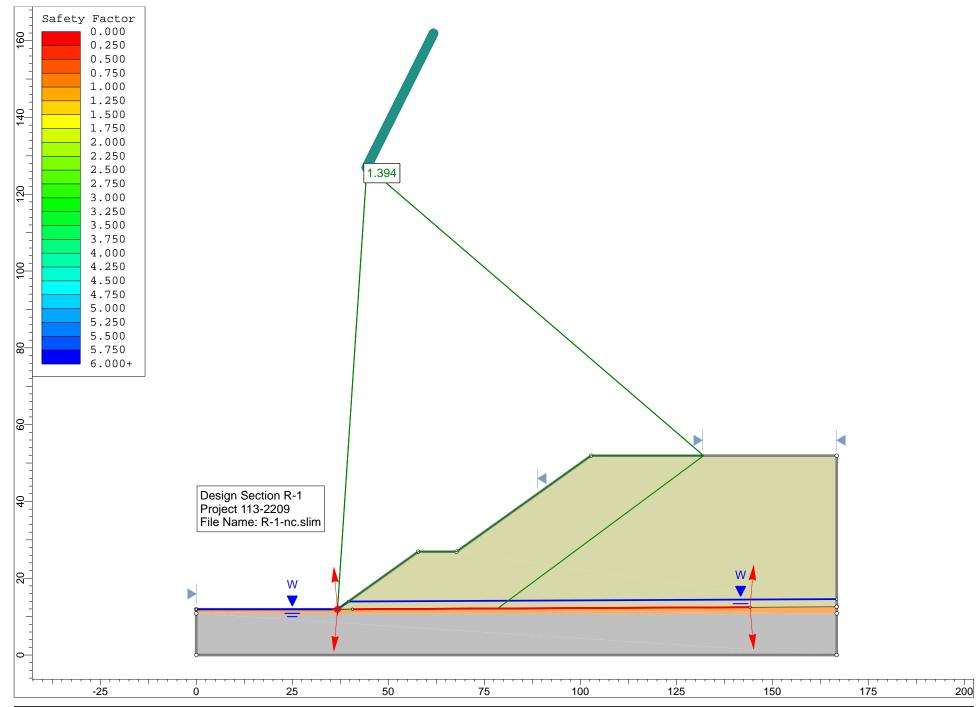




FIGURES

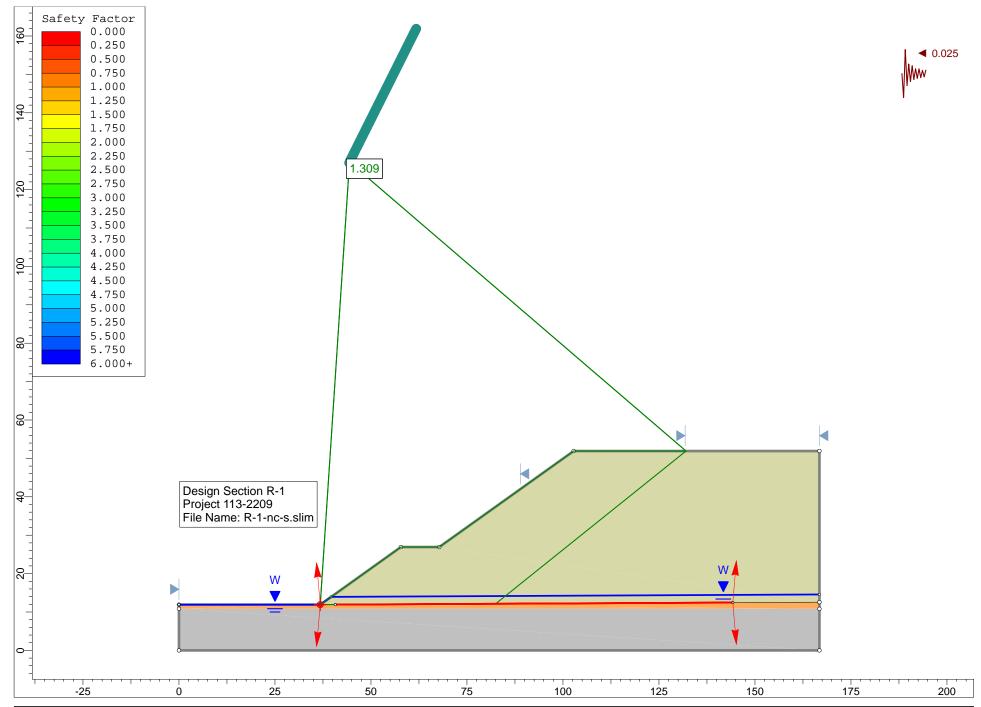


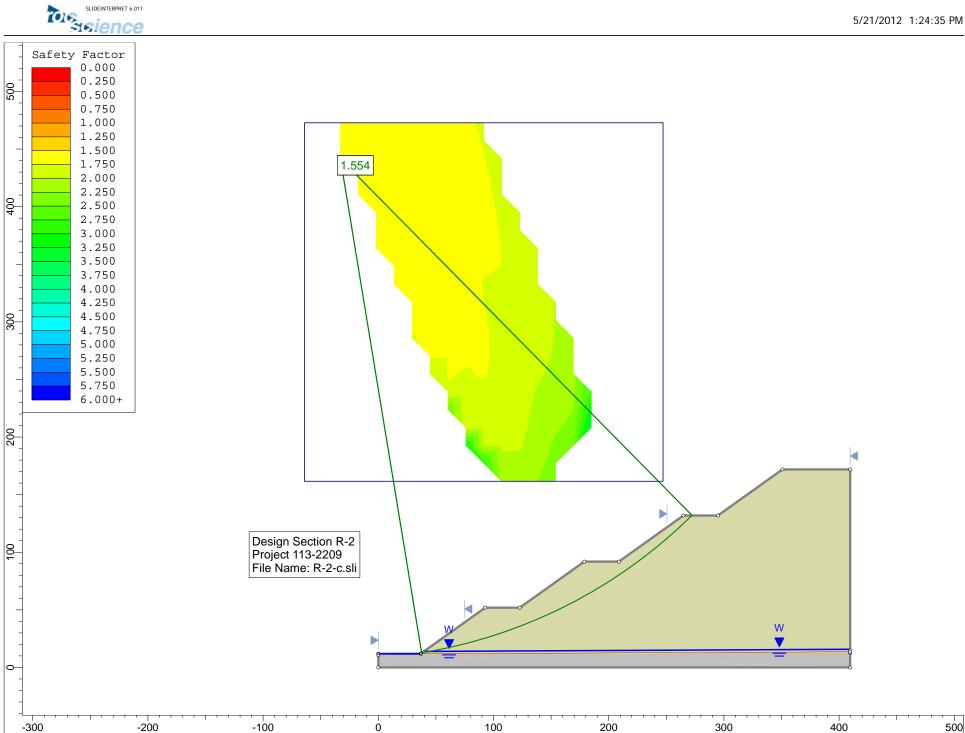




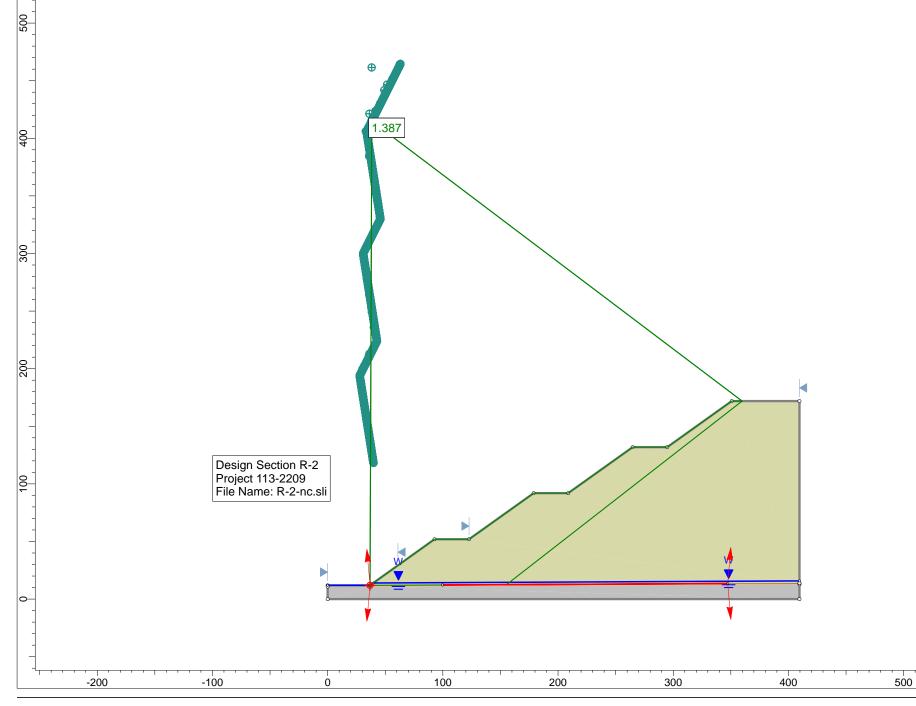



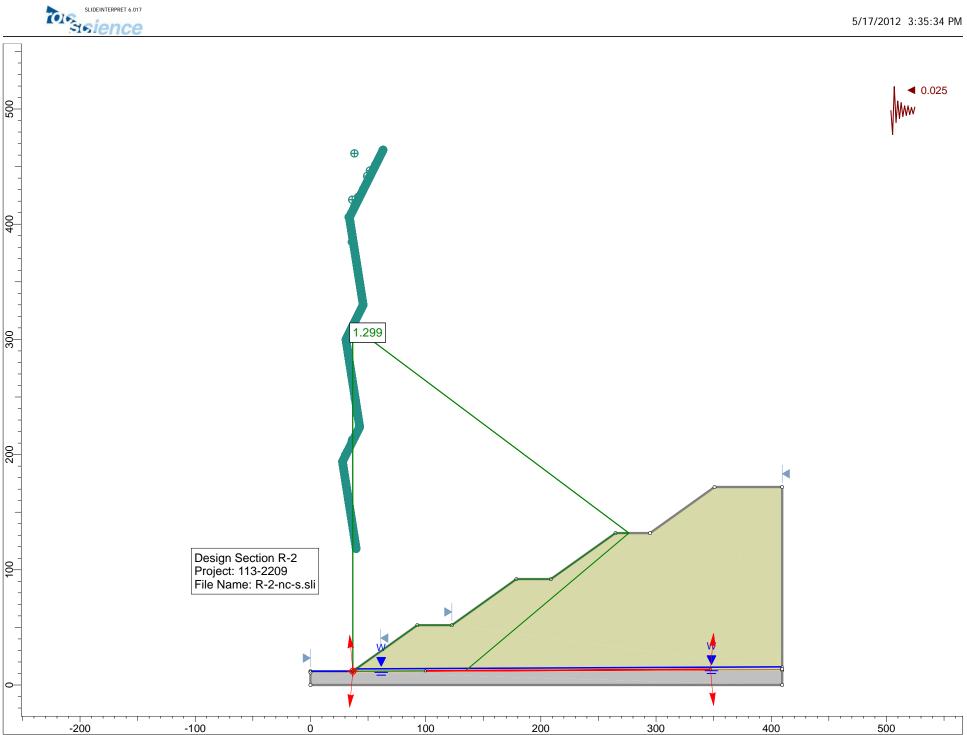


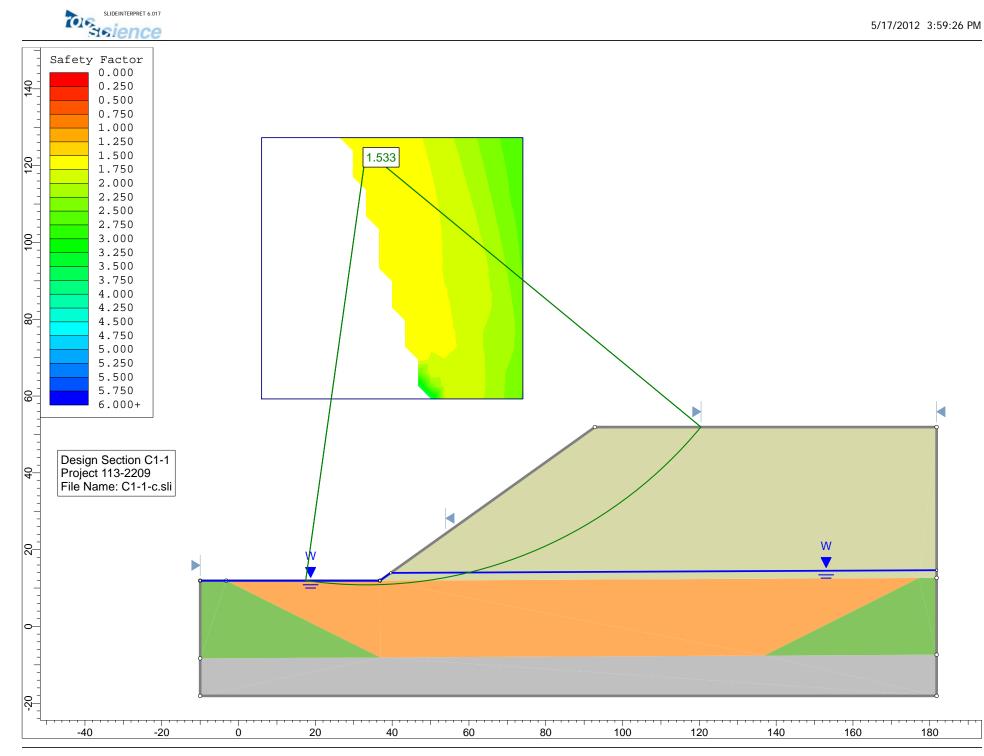


# ATTACHMENT 1 SLIDE ANALYSES

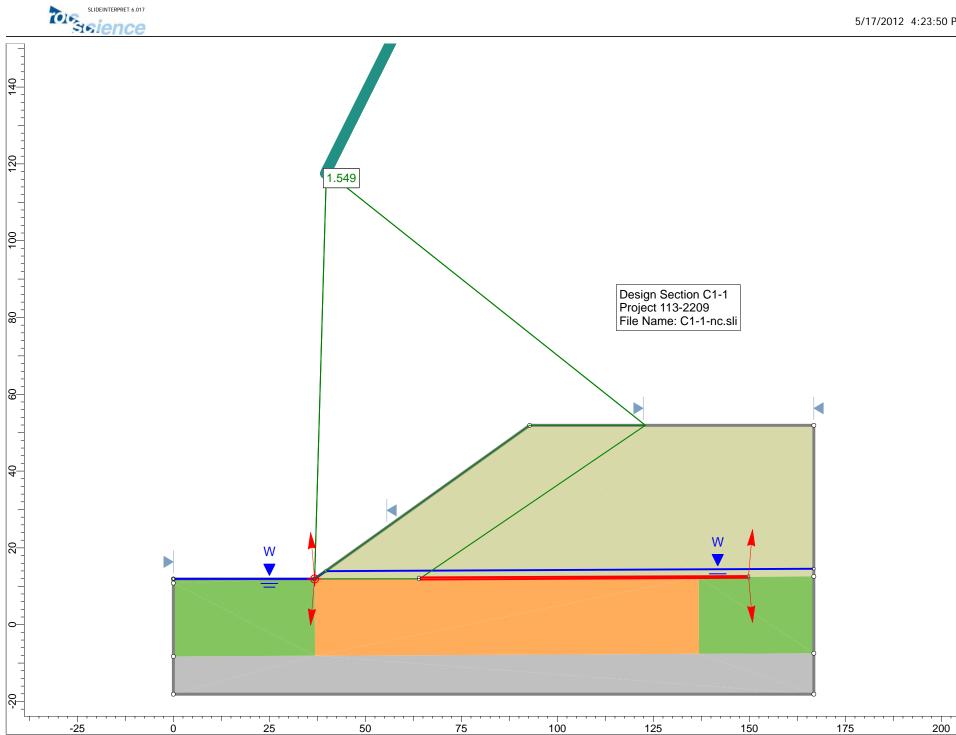


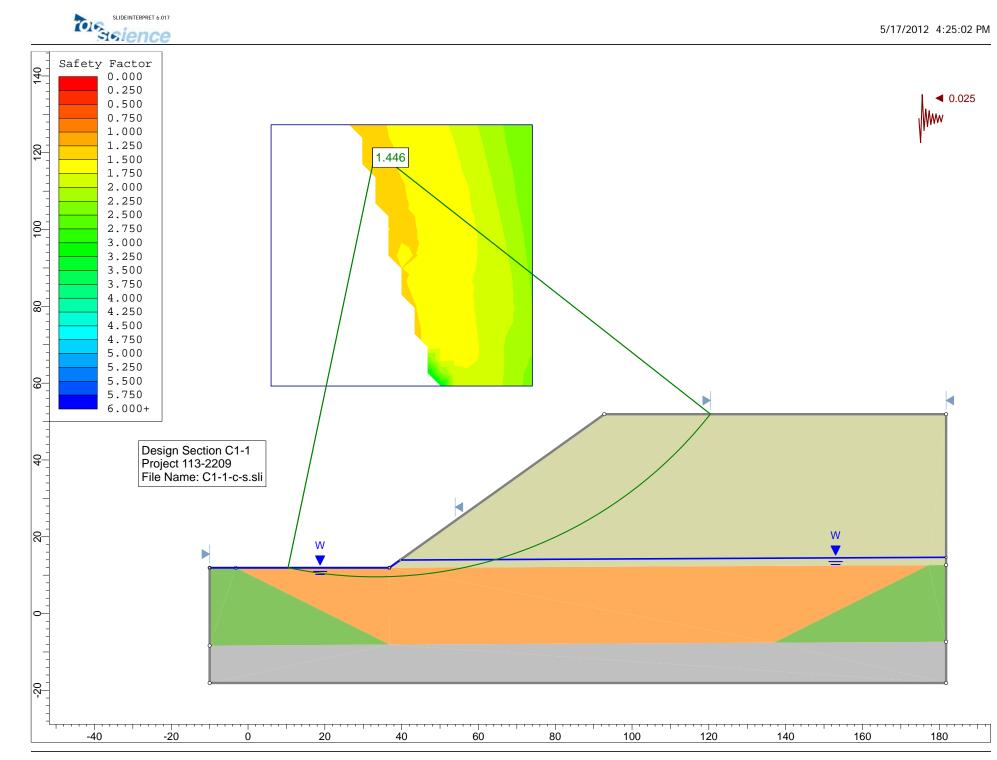


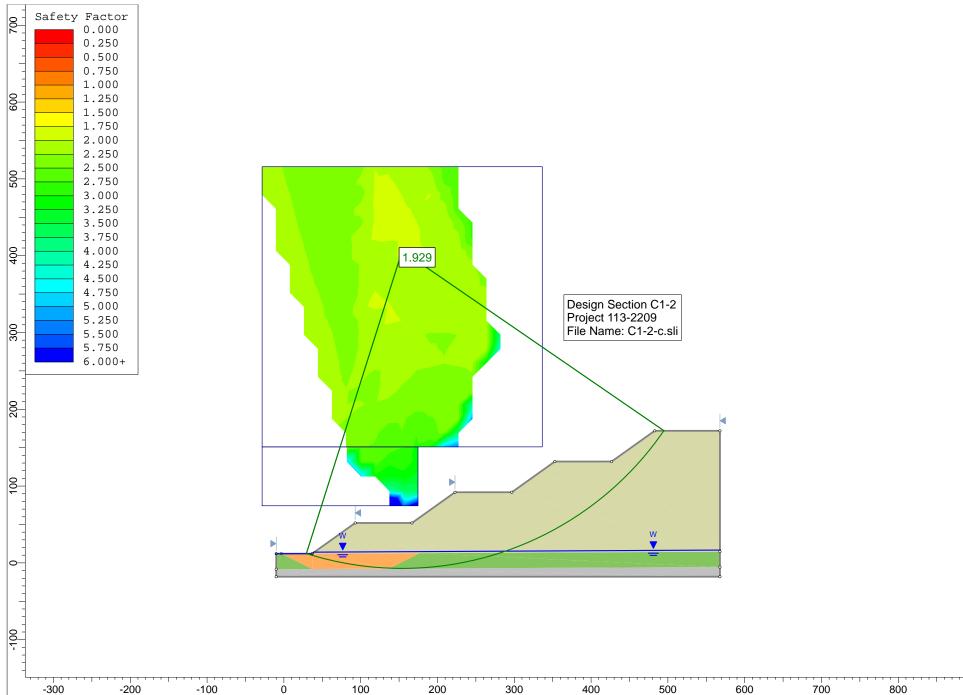



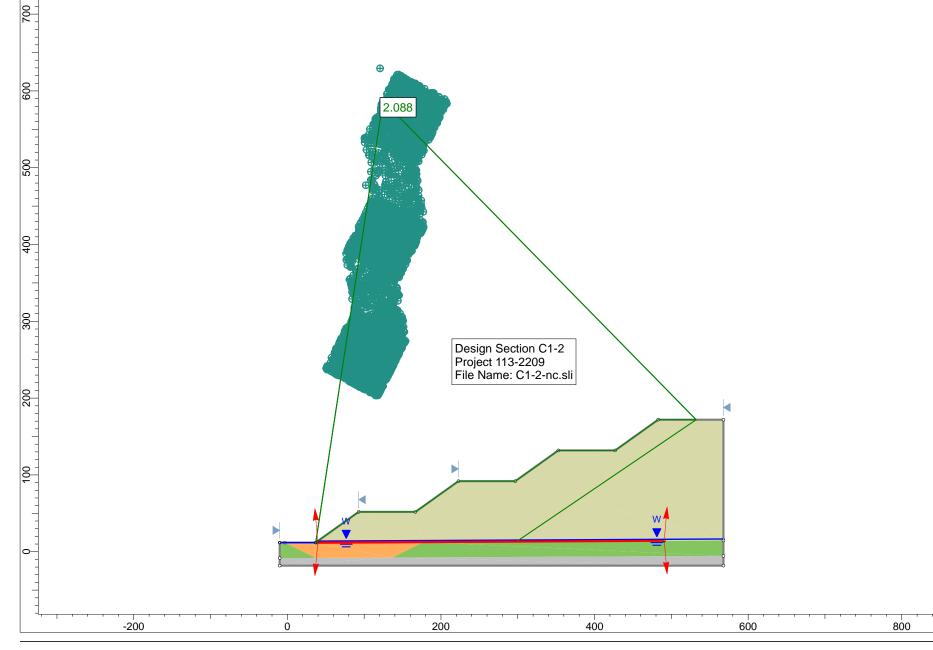



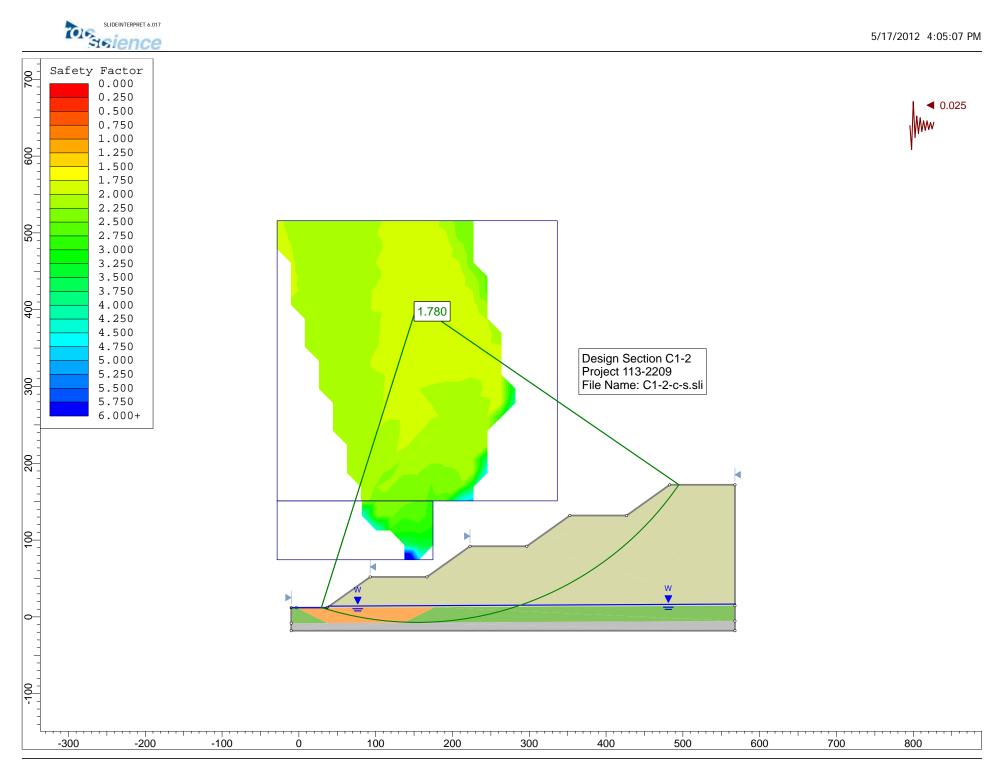



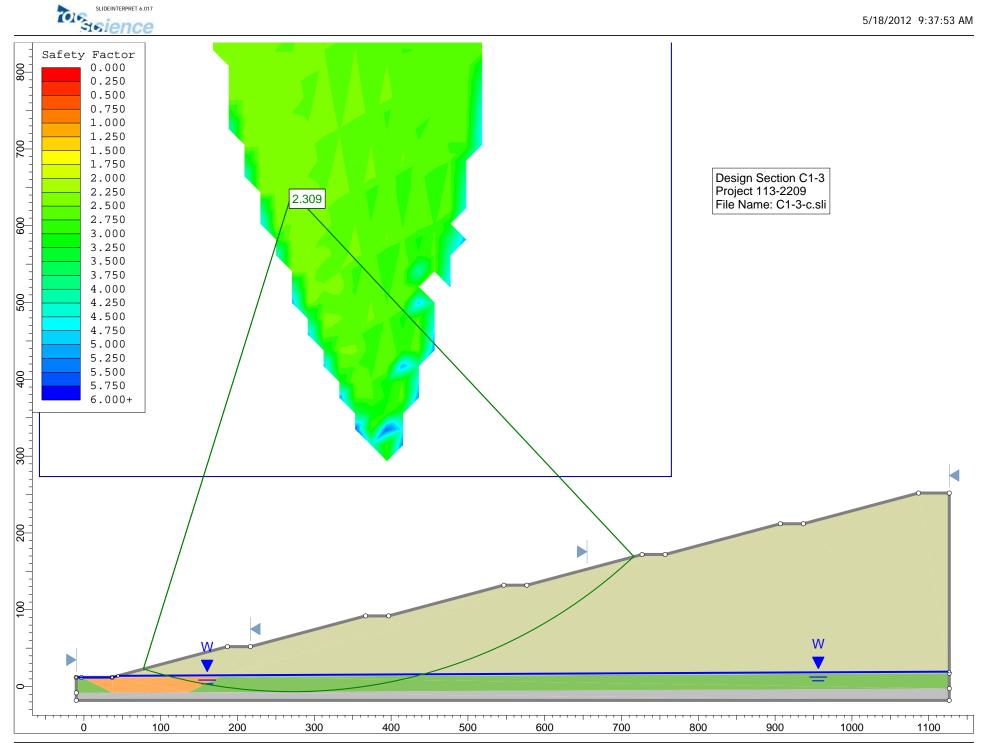


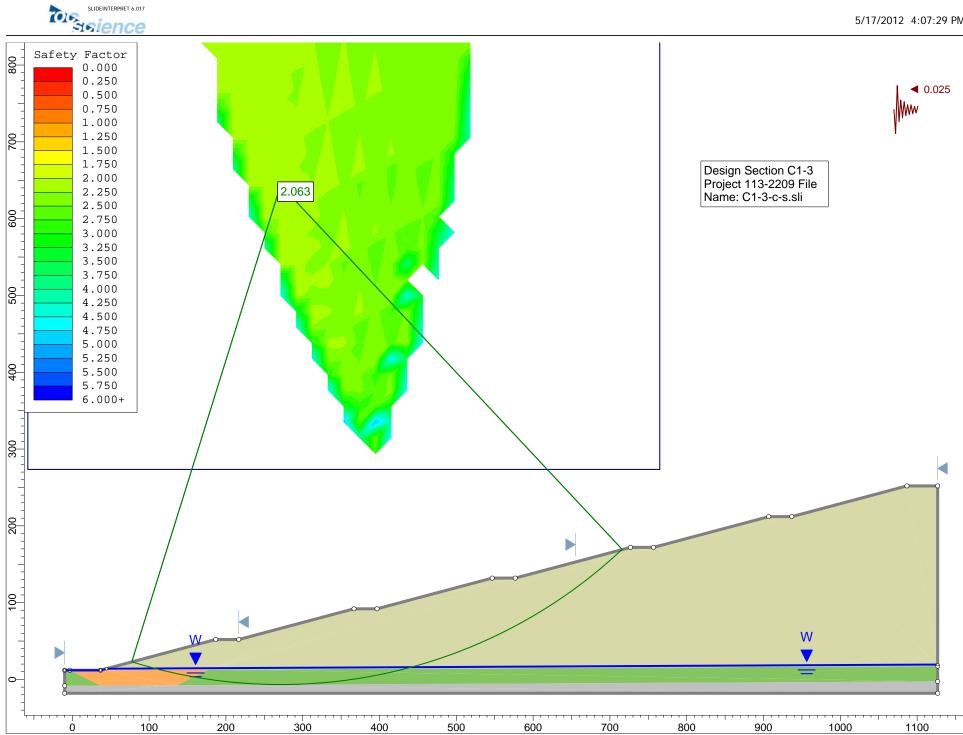



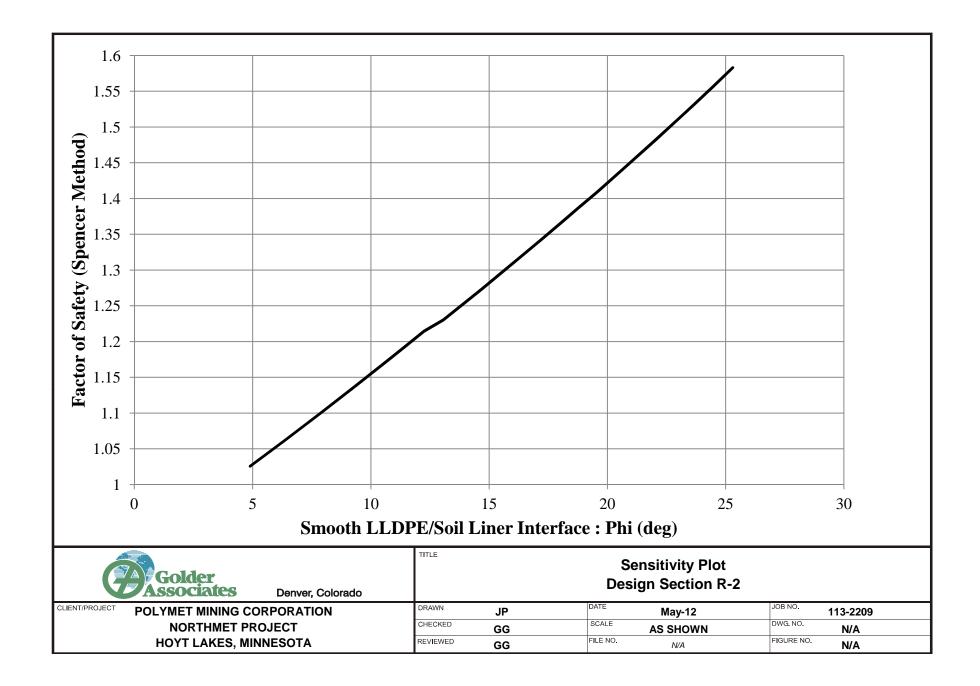


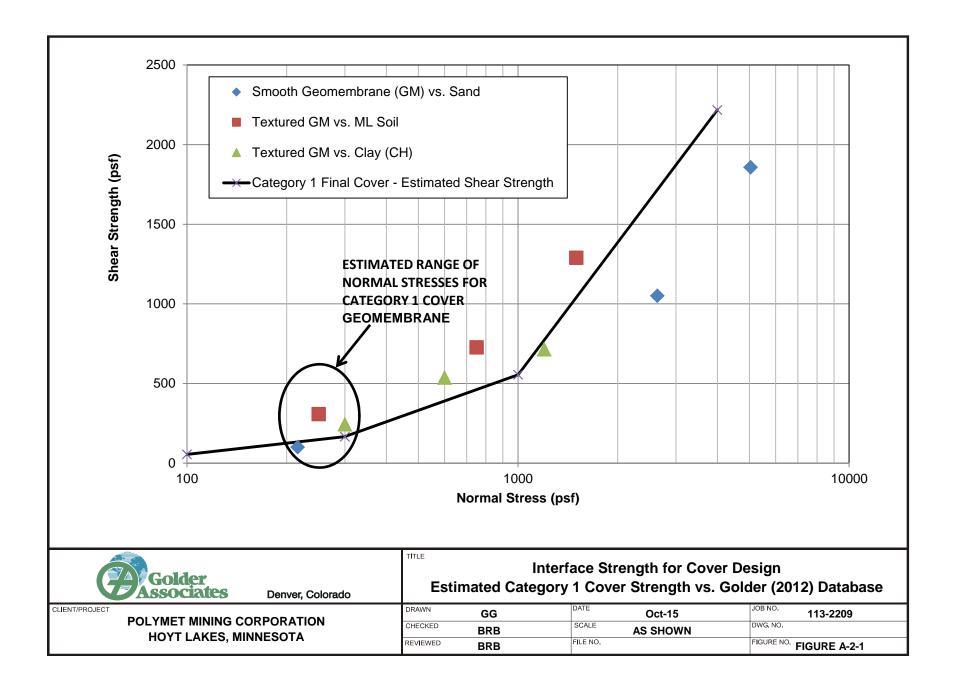












ATTACHMENT 2 SELECTED INTERFACE FRICTION VALUES (GOLDER 2012)



Attachment J

Foundation Settlement and Liner Strain Calculation



May 17, 2012

Gordan Gjerapic

Brent Bronson

Tom Radue and Christie Kearney

Date: To:

From:

cc:

# TECHNICAL MEMORANDUM

Project No.:113-2209Company:Barr Engineering CompanyEmail:ggjerapic@golder.com

RE: PRELIMINARY STOCKPILE FOUNDATION SETTLEMENT AND LINER STRAIN CALCULATIONS

# 1.0 INTRODUCTION

This document summarizes the approach and results of preliminary foundation settlement and liner strain calculations for the proposed waste rock stockpiles at the PolyMet NorthMet site located near Babbitt, Minnesota. A geotechnical investigation sufficient to support a final design has not yet been completed due to both logistical and regulatory constraints. In particular, no site disturbance required to obtain additional data can occur until the permit to mine is approved. As a result, the analyses included herein are based on assumed properties that will need confirmation based on the results of a Phase II geotechnical investigation.

# 2.0 INPUT PARAMETERS

It was assumed that the stockpile foundations will be developed based on the following general sequence:

- 1. Excavate to bedrock within lowland areas, assuming a maximum depth of overexcavation of 20 feet, stockpiling organic soils and till material separately for future use as reclamation soils and structural fill, respectively.
- 2. Fill areas required to meet the foundation grade requirements with the more granular till soils (structural fill)
- 3. Use Category 1 material, if approved by regulatory agencies, in controlled compacted lifts to develop the base grading of the stockpiles.
- 4. Construct the liner system dependent upon the reactivity category of the stockpile.

The minimum grade for foundation underdrains and the leachate collection overliner layer is limited to 0.5 percent. Consequently, the minimum construction liner grade for the stockpile settlement and liner strain calculations has been assumed to be 0.5 percent.

# 2.1 Material Properties

The available information on subsurface soils is insufficient to evaluate the variability of geotechnical conditions at the NorthMet site, especially within the lowland areas. Consequently, compression properties of highland materials (glacial tills) were estimated from laboratory data for a single test pit J:\11JOBS\113-2209\FROM\_GOLDER\FromGolder-05-17-2012\1132209 TM PrelimStockpileFoundCalcs 17MAY12.docx

Golder Associates Inc. 44 Union Boulevard, Suite 300 Lakewood, CO 80228 USA Tel: (303) 980-0540 Fax: (303) 985-2080 www.golder.com



Golder Associates: Operations in Africa, Asia, Australasia, Europe, North America and South America

sample (TP#5, Sample #1, 0.5 to 4 feet) collected during the Phase I geotechnical investigation performed by Golder (2006). The selected compression properties for glacial till material (Figure 1) were assumed to be representative of subsurface soil conditions in the case where no structural fill is required to construct stockpile foundations.

2

It was assumed that the structural fill materials will exhibit properties similar to medium dense to dense sand, with a constrained modulus of approximately 10,000 pounds per square inch (psi) at an effective stress of 100 psi. The gravimetric moisture content of subgrade materials (glacial till and structural fill) was assumed to be 14 percent.

The following compressibility model was used for settlement calculations:

$$e = A \left[ \sigma' + Z \right]^B, \tag{1}$$

where *e* stands for the void ratio,  $\sigma$  denotes the vertical effective stress, and *A*, *B*, and *Z* are material parameters shown in Table 1. The employed compressibility model inherently assumes that all unsuitable materials (e.g., peat, organic soils, clays, etc.) in lowland areas are excavated and replaced with structural fill.

| Material        | Units | Α      | В       | Z      |
|-----------------|-------|--------|---------|--------|
| Glacial till    | (kPa) | 1.0277 | -0.1113 | 66.73  |
|                 | (psf) | 1.4414 | -0.1113 | 1393.3 |
|                 | (psi) | 0.8289 | -0.1113 | 9.679  |
| Structural fill | (kPa) | 0.4471 | -0.0271 | 57.24  |
|                 | (psf) | 0.4854 | -0.0271 | 1195.1 |
|                 | (psi) | 0.4243 | -0.0271 | 8.3021 |

### Table 1 Estimated Material Parameters

Compression curves developed for glacial till and structural fill materials used in the settlement calculations are shown in Figures 1 and 2.

# 2.2 Geometry and Loading Conditions

The thicknesses of subgrade materials (glacial till or structural fill) were estimated as a difference between the proposed liner grades and the estimated bedrock elevations. Surface loading was calculated based on the stockpile configurations at Year 20, assuming a waste rock dry density of 1.7 tons per cubic yard (t/yd<sup>3</sup>) and a gravimetric moisture content of 8 percent.



## 2.3 Initial Conditions

The groundwater table was assumed to coincide with the bedrock surface during stockpile construction, i.e., it was assumed that the site is de-watered prior to fill placement. Pre-loading of subgrade materials was assumed to be equal to 10 psi due to construction equipment used for subgrade preparation.

### 3.0 CALCULATIONS

### 3.1 Foundation Settlements

Settlement calculations were based on determining the subgrade thickness prior to and after loading with the waste rock material. The height of the one-dimensional subgrade column (H) was calculated as follows:

$$H = H_{s} + \frac{e(0)[\sigma'(0) + Z] - e(H_{s})[\sigma'(H_{s}) + Z]}{(1+B)\gamma_{w}G_{s}(1+w)}$$
(2)

where *w* is the gravimetric moisture content,  $H_s$  is the height of solids, e(0) and  $\sigma'(0)$  denote the void ratio and the effective stress at the base of the soil column, and  $e(H_s)$  and  $\sigma'(H_s)$  are the void ratio and the effective stress at the surface. The effective stress applied to the surface was set to 10 psi for the soil column prior to placement of the waste rock in order to account for equipment loading during construction. The effective stress at the surface of the soil column after placement of waste rock with a defined thickness,  $H_{WR}$ , was calculated as follows:

$$\sigma'(H_s) = H_{WR} \gamma_{WR} , \qquad (3)$$

where  $Y_{WR}$  is the waste rock density (assumed as 136 pounds per cubic foot (pcf)). The effective stress at the base of the soil column was calculated as follows:

$$\sigma'(0) = \gamma_w G_s(1+w)H_s + \sigma'(H_s), \qquad (4)$$

where  $Y_w$  is the density of water and  $G_s$  denotes the specific gravity of subgrade soils (assumed to be equal to 2.8). For a one-dimensional soil column, the height of solids,  $H_s$ , was calculated from Equation 2 with the column height,  $H_s$  equal to the difference between the proposed liner grades and the corresponding estimated bedrock elevation.

### 3.2 Liner Strain

Foundation settlement calculations were determined using the grid spacing *L*. Using the maximum calculated settlement,  $\delta$ , the maximum liner strain was conservatively estimated as follows:



$$\varepsilon = \frac{\sqrt{L^2 + \delta^2} - L}{L} = \sqrt{1 + \frac{\delta^2}{L^2}} - 1 \approx \frac{1}{2} \frac{\delta^2}{L^2}$$
(5)

4

### 4.0 RESULTS

The minimum initial liner grade employed for stockpile foundation construction is 0.5 percent according to project design criteria. Figures 4.1, 5.1, and 6.1 display the initial liner grades for the Category 2/3 Stockpile, Category 4 Stockpile, and Lean Ore Surge Pile, respectively. Figures 4.2, 5.2, and 6.2 display the calculated final liner grades based on the assumption that all subgrade materials are uniform and can be described using the properties for glacial till listed in Table 1. The change in liner grades between initial and final liner grades (e.g., between liner grades in Figures 4.1 and 4.2) is due to stresses exerted by the waste rock placement through the end of year 20. Critical reductions in liner grades (final post-settlement liner grades shallower than 0.2 percent) were not found.

Figures 4.3, 5.3, and 6.3 display the calculated final liner grades assuming structural fill as the subgrade soil material (rather than glacial till), with no compressible soils at depth. Assuming that the structural fill behaves as a moderately stiff to dense sand with the compression properties displayed in Figure 2, liner grades are likely to remain within tolerable limits.

The maximum foundation settlements and liner strains are shown in Tables 2 through 4.

| Table 2 | Maximum Settlements and Strains for Category 2/3 Stockpile |
|---------|------------------------------------------------------------|
|---------|------------------------------------------------------------|

| Subgrade        | Maximum Settlement<br>(ft) | Maximum Strain<br>(%) |
|-----------------|----------------------------|-----------------------|
| Glacial till    | 1.24                       | 0.03                  |
| Structural fill | 0.25                       | <0.01                 |

| Table 3 | Maximum Settlements and Strains for Category 4 Stockpile |
|---------|----------------------------------------------------------|
|---------|----------------------------------------------------------|

| Subgrade        | Maximum Settlement<br>(ft) | Maximum Strain<br>(%) |
|-----------------|----------------------------|-----------------------|
| Glacial till    | 0.64                       | <0.01                 |
| Structural fill | 0.13                       | <0.01                 |

#### Table 4 Maximum Settlements and Strains for Lean Ore Surge Stockpile

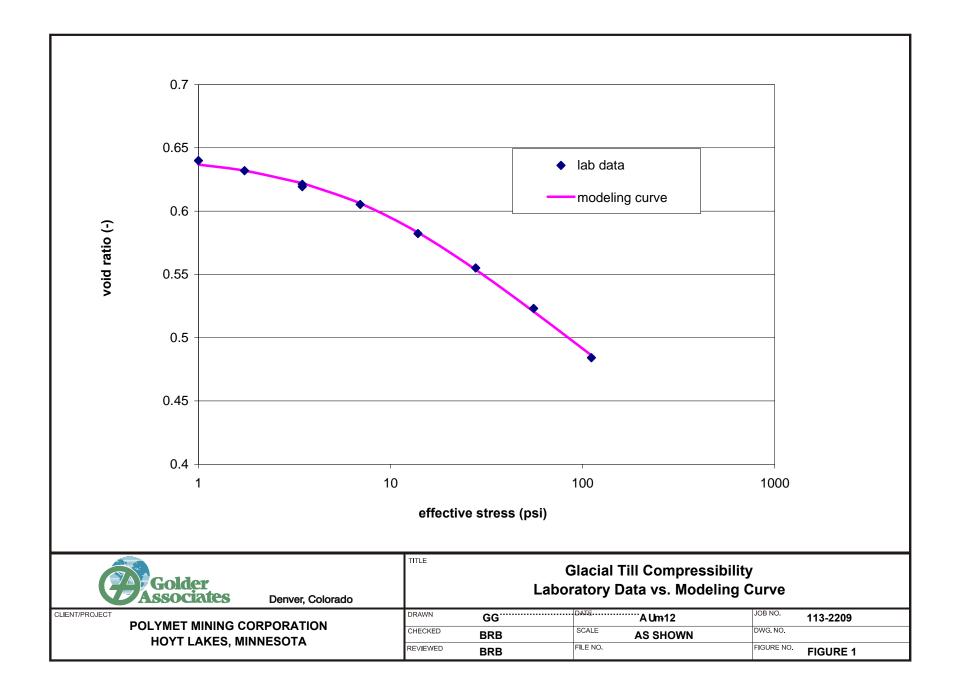
| Subgrade        | Maximum Settlement<br>(ft) | Maximum Strain<br>(%) |
|-----------------|----------------------------|-----------------------|
| Glacial till    | 0.36                       | <0.01                 |
| Structural fill | 0.07                       | <0.01                 |

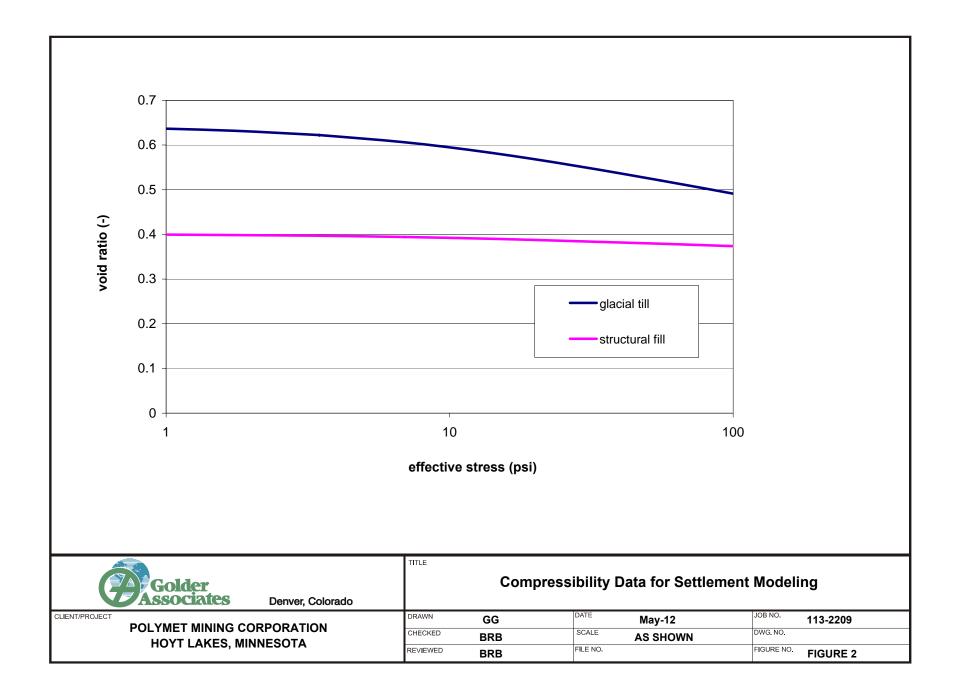
Large strains from foundation consolidation are not anticipated at the NorthMet stockpiles as the highland foundation soils are believed to be dominantly composed of relatively low-compressibility glacial moraine, colluvium, and weathered bedrock, which are not expected to experience large settlements. Engineered

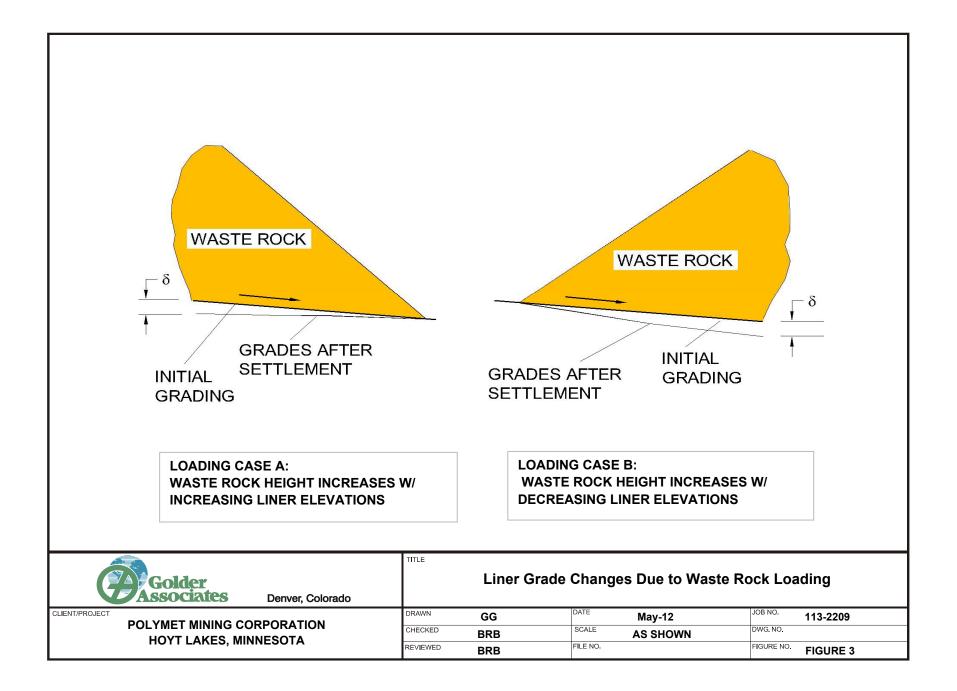


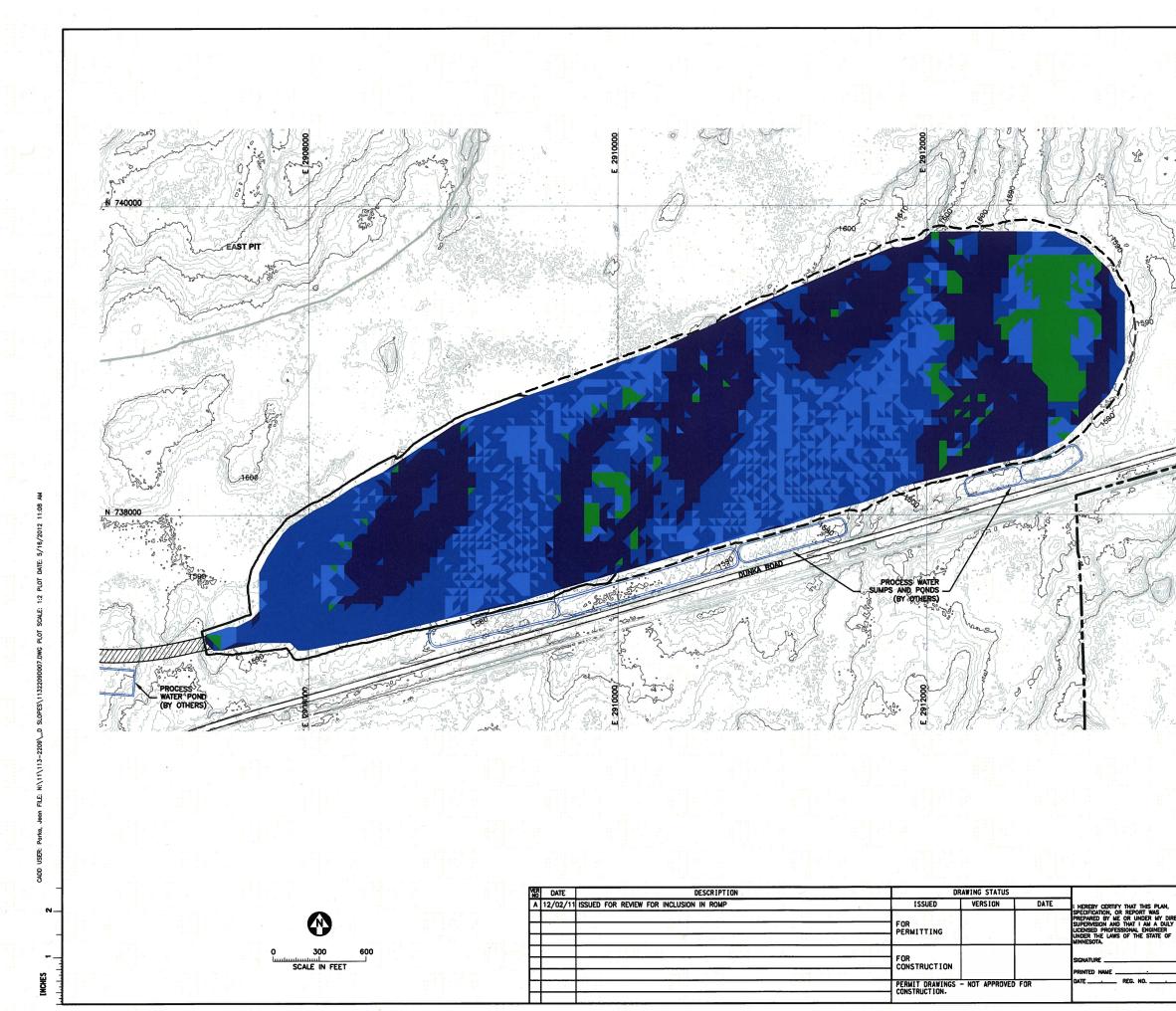
fills have also been designed to minimize the potential for settlement in lowland areas that have yet to be characterized. Note that the main reason that a linear low-density polyethylene (LLDPE) liner system was selected over a high-density polyethylene (HDPE) system is because of its greater flexibility and significantly more favorable biaxial stress-strain properties, which can accommodate unexpected foundation settlements. The documented allowable biaxial strain for LLDPE is in excess of 30 percent, while HDPE will only strain uniaxially to only 12 to 17 percent before yield failure occurs. Conservatively assuming a maximum strain for the LLDPE liner systems of 30 percent and the maximum predicted settlement strain from glacial till of 0.03 percent, the factor of safety against liner rupture resulting from settlement is approximately 1000.

5


# 5.0 CONCLUSIONS


Waste rock loading may increase or decrease the slope gradients as illustrated in Figure 3 (potentially even resulting in depressions or negative gradients depending upon the actual site conditions). For example, loading Case A in Figure 3 depicts liner grade reduction caused by decreasing waste rock height in the direction of decreasing liner elevations. Similarly, the loading Case B in Figure 3 depicts steepening of the liner grades caused by increasing waste rock height in the direction of decreasing liner elevation/increase may be exacerbated if the subgrade soil thickness increases in the same direction as the waste rock height.


Settlement calculations indicate that subgrade soils with the compression index below approximately 0.1 are likely to perform favorably under the assumed loading conditions.




FIGURES











N 740000

4

N 738000





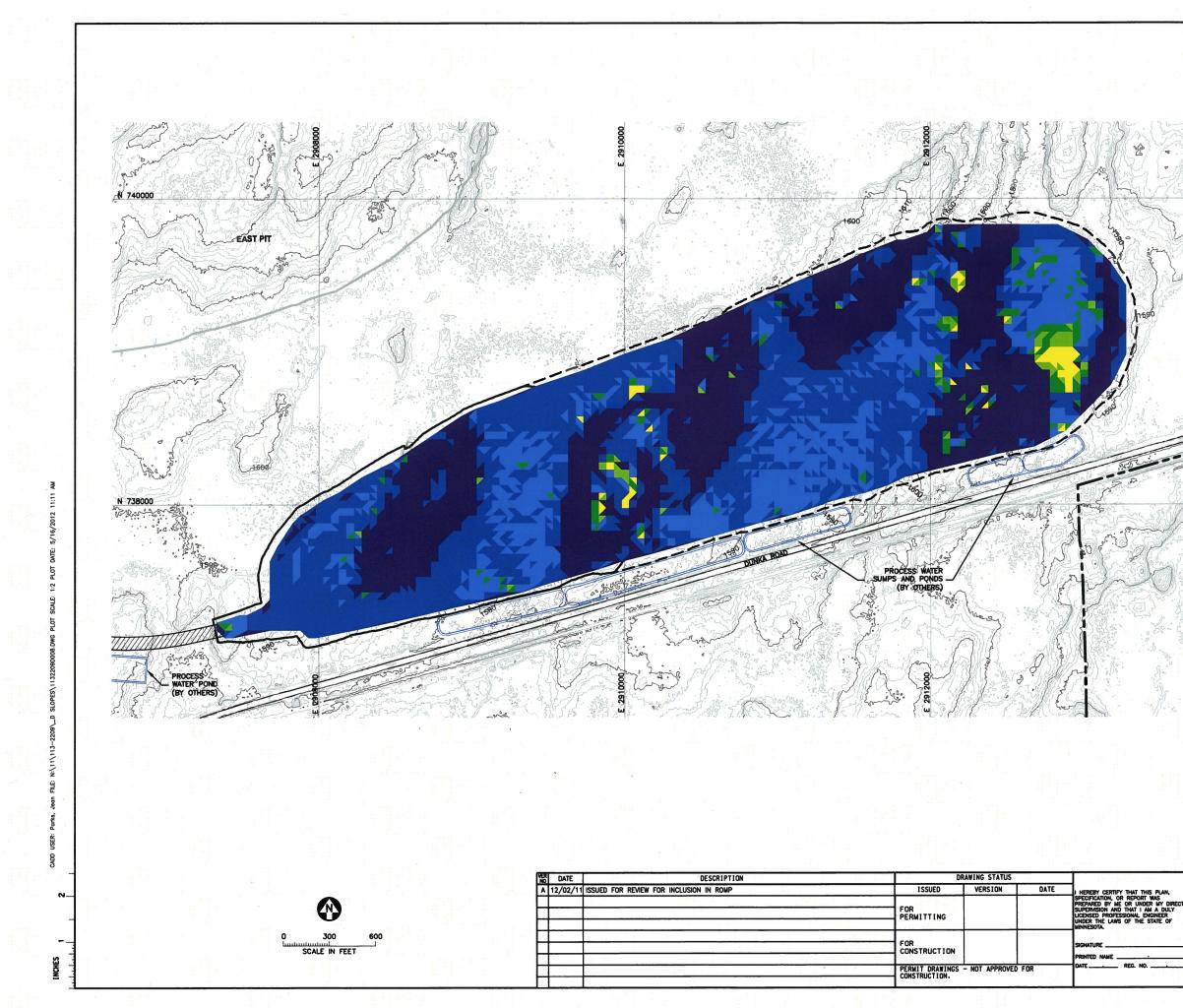
| 6/09 |            | at agric da |     |
|------|------------|-------------|-----|
|      |            | - 7         | - 2 |
| -    | . <u>–</u> | <br>        |     |

PROJECT BOUNDARY

YEAR 11 PIT BOUNDARIES (SEE NOTE 1) YEAR 1 WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

YEAR 11 AND ULTIMATE WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

HAUL ROADS


PROCESS WATER SUMP/POND (BY OTHERS)

| 1 | - |  |
|---|---|--|
|   |   |  |
|   |   |  |

OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011. 1.

2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER FROM JULY TO OCTOBER 2011.

| Nº 11 10 S Will                            |                                                                                   |
|--------------------------------------------|-----------------------------------------------------------------------------------|
|                                            | REFERENCES                                                                        |
|                                            | 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING,<br>AUGUST 2011.       |
|                                            | 2. COORDINATE SYSTEM REFERENCE IS NADB3 MINNESOTA STATE PLANE NORTH.              |
|                                            | 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).                  |
|                                            | PLANT DRAWING NUMBER:                                                             |
|                                            | CATEGORY 2/3 STOCKPILE<br>INITIAL LINER GRADES                                    |
| DRAWN:<br>JP                               | POLYMET MINING CORPORATION<br>NORTHMET PROJECT<br>HOYT LAKES, MINNESOTA           |
| CHECKED:<br>GOLDER PROJECT ND.<br>113-2209 | GOLDER ASSOCIATES INC.<br>44 UNION BOULEVARD, SUITE 300<br>LAKEWOOD, CO USA 80233 |
| SCALE:<br>AS SHOWN                         | Dwg. No. 4.1                                                                      |



LEGEND

74000

N 738000

LINER GRADES:



PROJECT BOUNDARY
YEAR 11 PIT BOUNDARIES (SEE NOTE 1)
YEAR 1 WASTE ROCK STOCKPILE LINER
OUTLINES (SEE NOTE 2)
YEAR 11 AND ULTIMATE WASTE ROCK
STOCKPILE LINER OUTLINES (SEE NOTE 2)

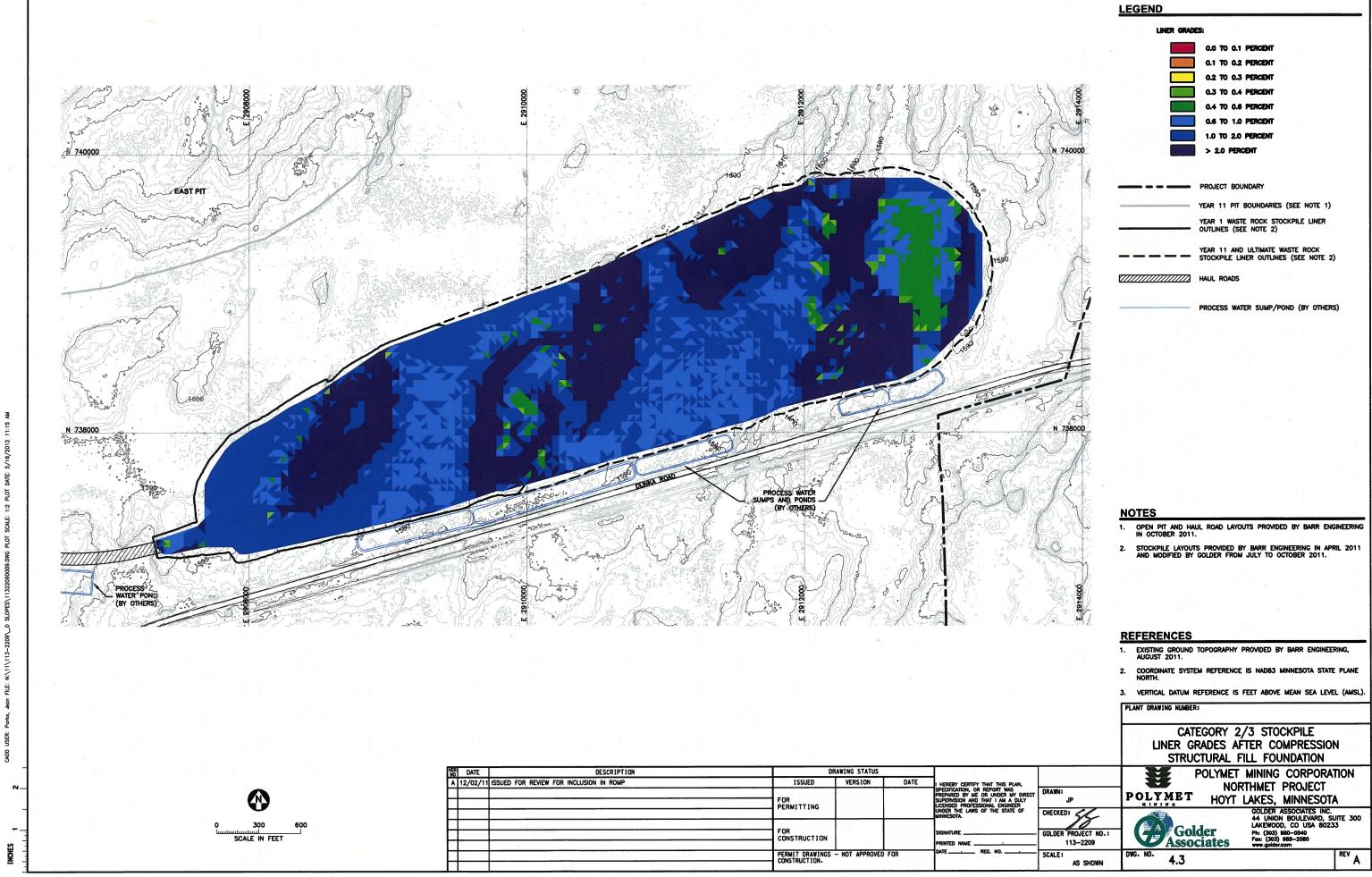
HAUL ROADS

PROCESS WATER SUMP/POND (BY OTHERS)

NOTES

REFERENCES

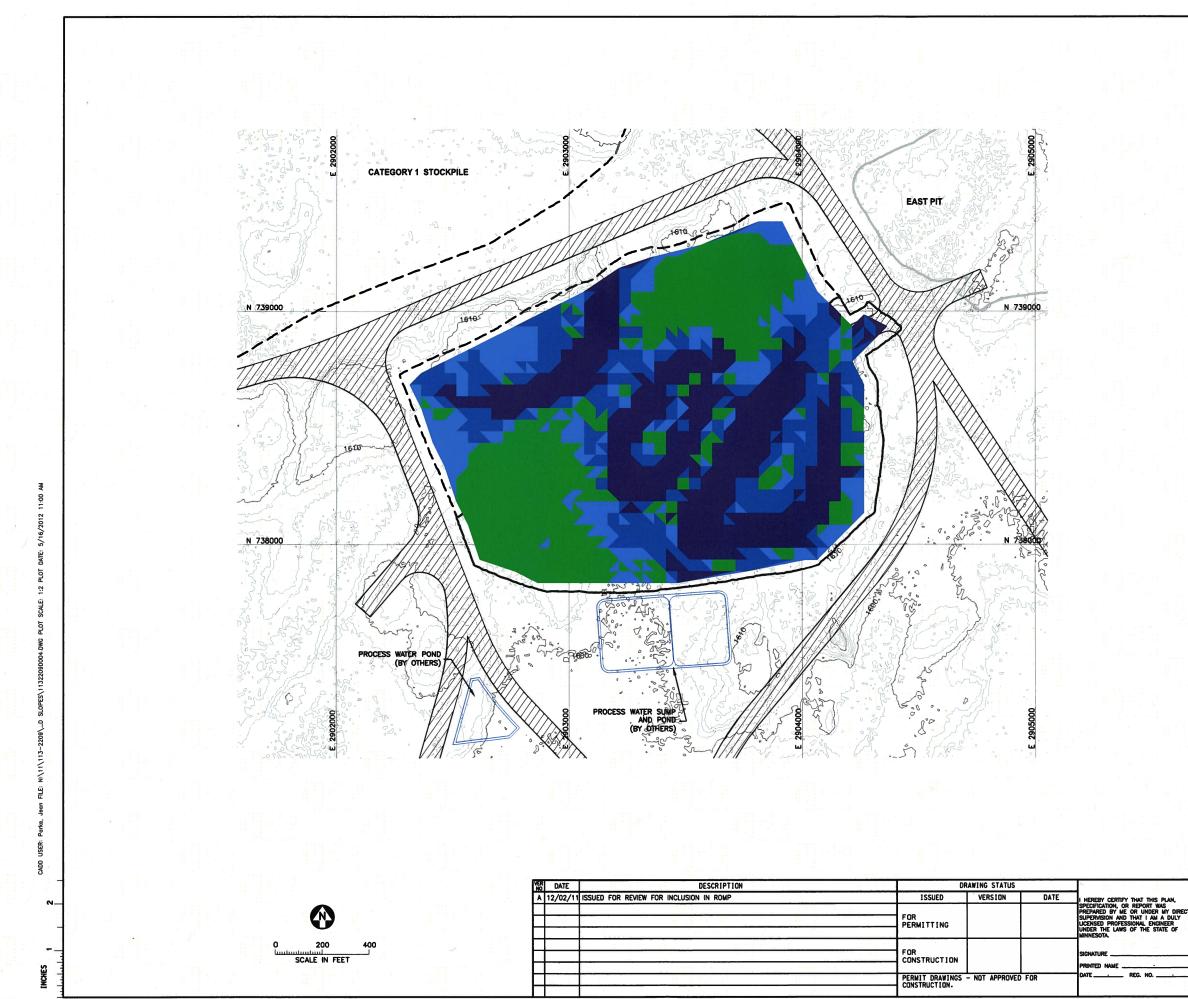
~~


1.

1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.

2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER FROM JULY TO OCTOBER 2011.

EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.


|                                 | <ol> <li>COORDINATE SYSTEM REFERENCE IS NADB3 MINNESOTA STATE PLAN<br/>NORTH.</li> </ol>                                          | ie<br>S |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|
|                                 | 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AM                                                                      | SL).    |
|                                 | PLANT DRAWING NUMBER:                                                                                                             |         |
|                                 | CATEGORY 2/3 STOCKPILE                                                                                                            | •       |
|                                 | LINER GRADES AFTER COMPRESSION                                                                                                    |         |
| And much and                    | GLACIAL TILL FOUNDATION                                                                                                           | 1Å      |
|                                 | POLYMET MINING CORPORATION                                                                                                        | l       |
| DRAWN:                          | NORTHMET PROJECT                                                                                                                  |         |
| JP                              | POLYMET HOYT LAKES, MINNESOTA                                                                                                     |         |
| CHECKED: 55                     | COLDER ASSOCIATES INC.<br>44 UNION BOULEVARD, SUITE 31<br>LAKEWOOD, CO USA BO233                                                  | 00      |
| GOLDER PROJECT ND.:<br>113-2209 | Golder<br>Associates HACEWOOD, CO USA 80233<br>Ph: (303) 980–0540<br>Fai: (303) 980–0540<br>Fai: (303) 980–2080<br>www.golder.com |         |
| SCALE:<br>AS SHOWN              | DWG. NO. 4.2                                                                                                                      | A       |







| YEAR 11 PIT BOUNDARIES (SEE NOTE 1                                       |  |
|--------------------------------------------------------------------------|--|
| <br>YEAR 1 WASTE ROCK STOCKPILE LINER<br>OUTLINES (SEE NOTE 2)           |  |
| YEAR 11 AND ULTIMATE WASTE ROCK<br>STOCKPILE LINER OUTLINES (SEE NOTE 2) |  |



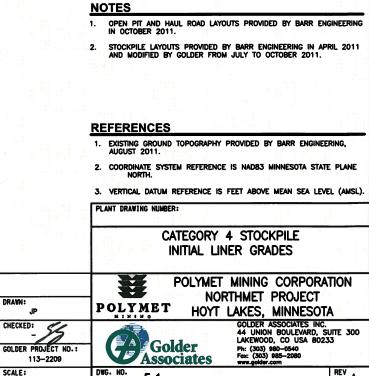
SCALE:

AS SHOWN

LINER GRADES:

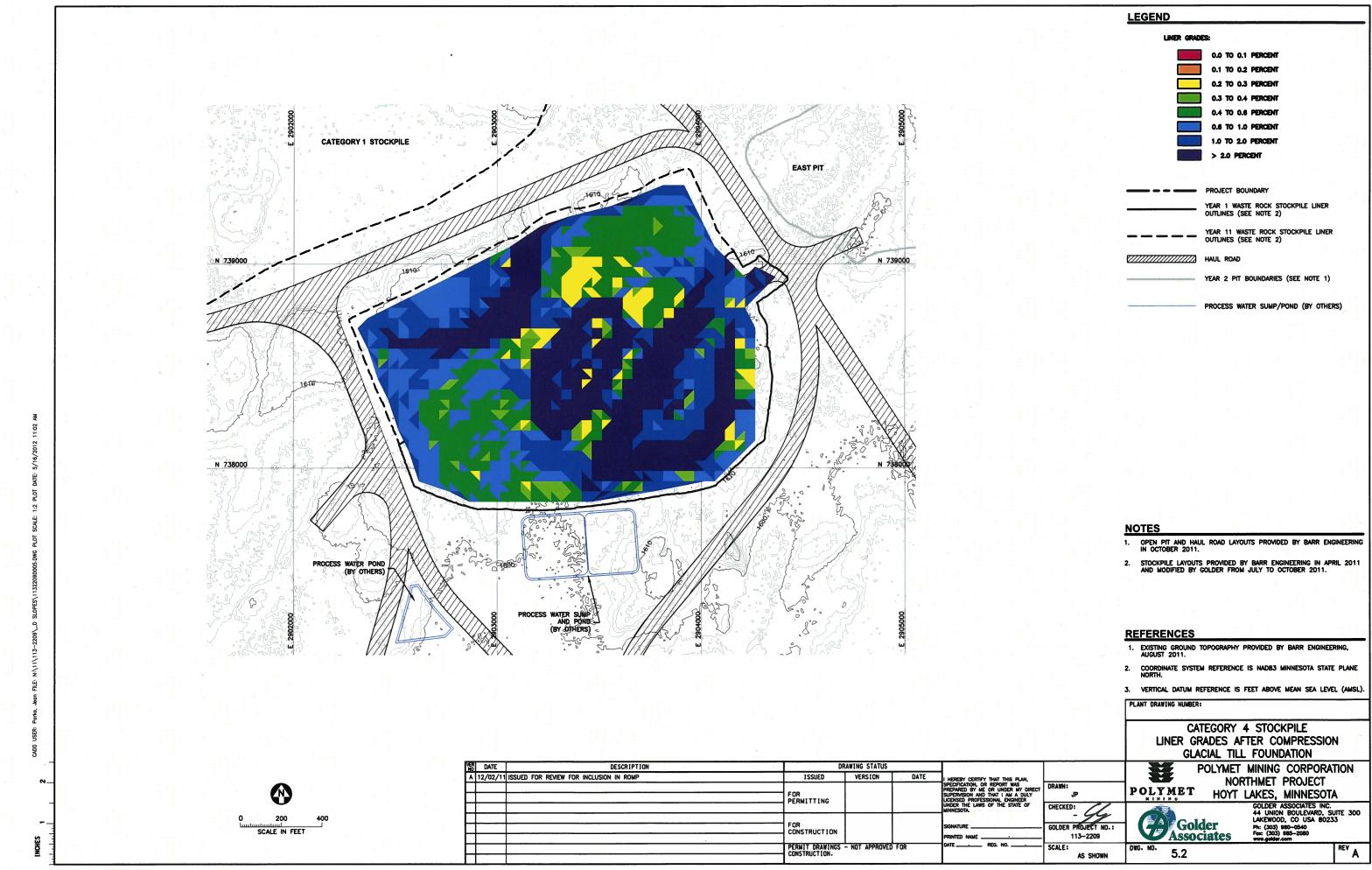


PROJECT BOUNDARY


YEAR 1 WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

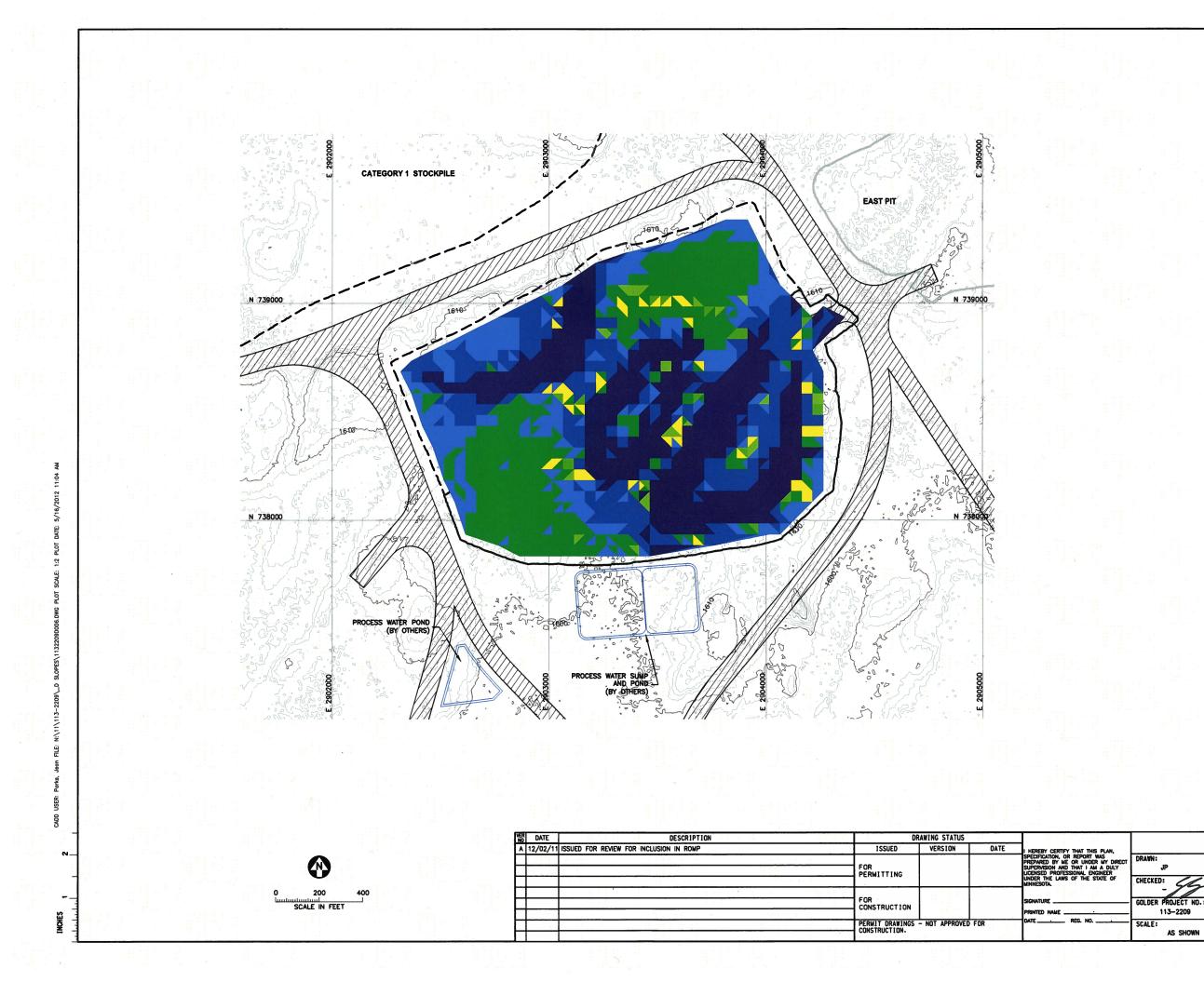
YEAR 11 WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

HAUL ROAD


YEAR 2 PIT BOUNDARIES (SEE NOTE 1)

PROCESS WATER SUMP/POND (BY OTHERS)




5.1

REVA



| LEGEND |
|--------|
|--------|





LINER GRADES:



PROJECT BOUNDARY

YEAR 1 WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

YEAR 11 WASTE ROCK STOCKPILE LINER OUTLINES (SEE NOTE 2)

HAUL ROAD

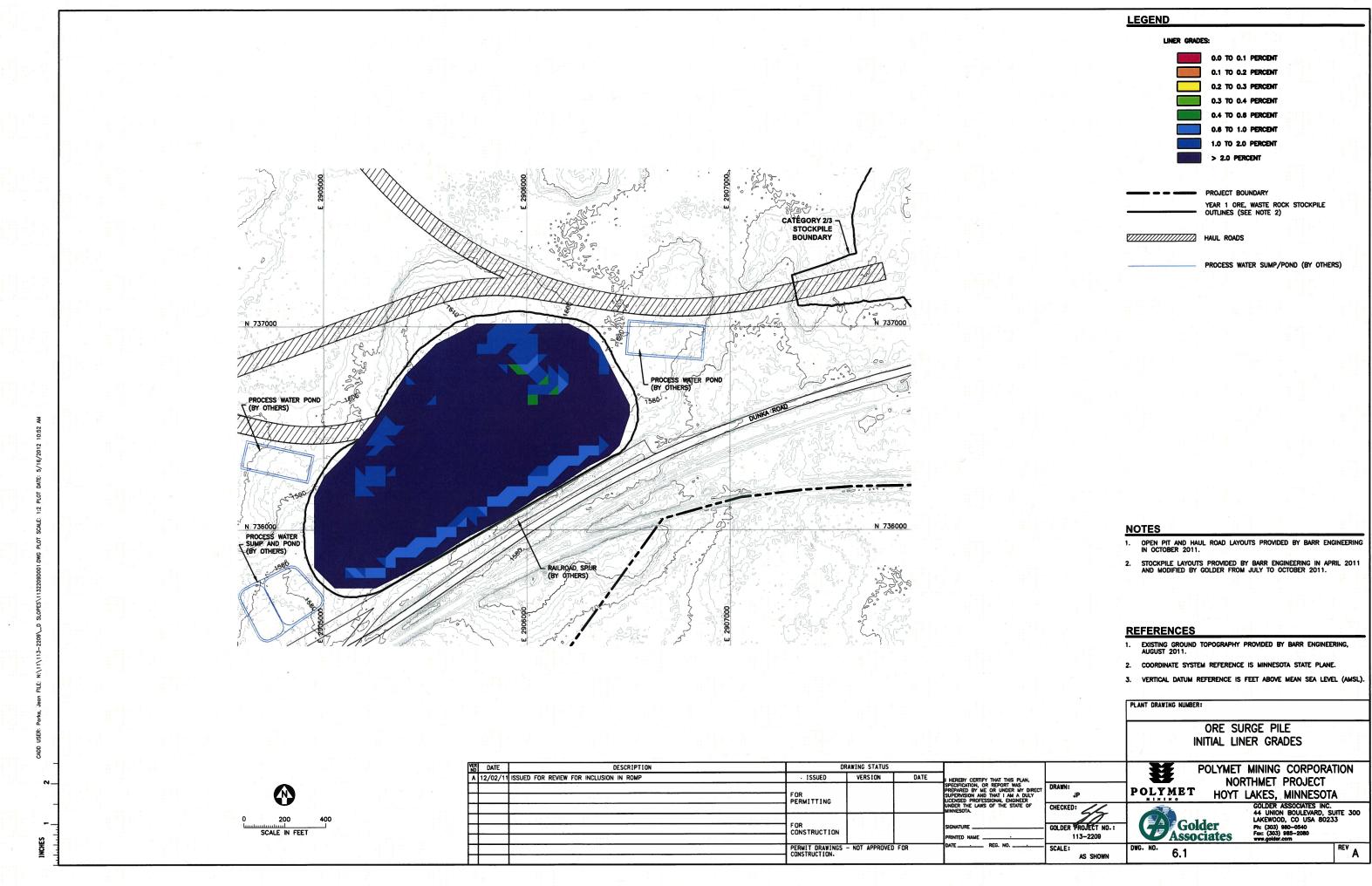
NOTES

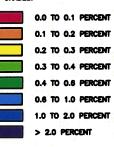
WG. NO.

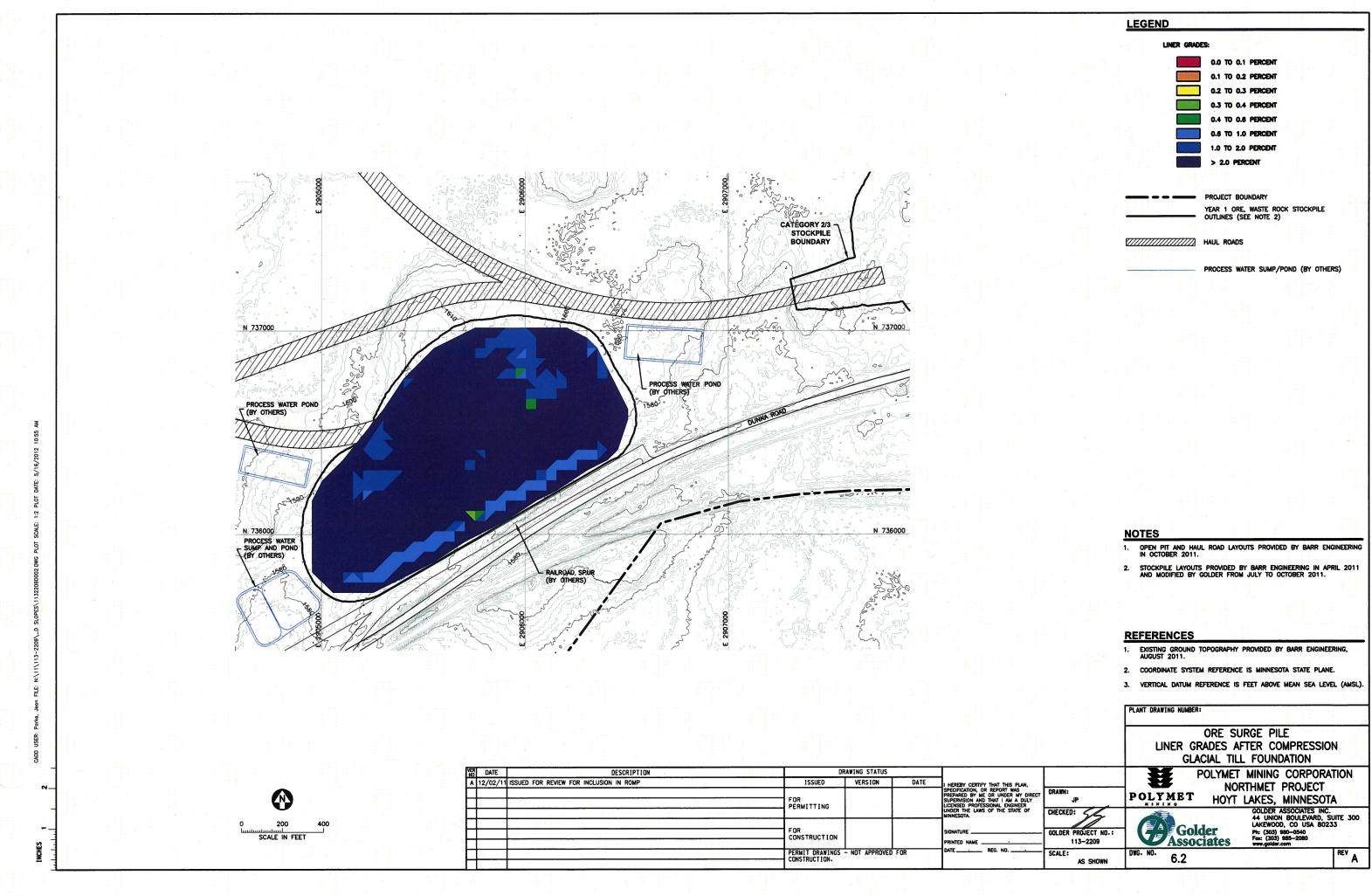
Golder

5.3

Associates


Ph: (303) 980-0540 Fax: (303) 985-2080 www.golder.com


REVA

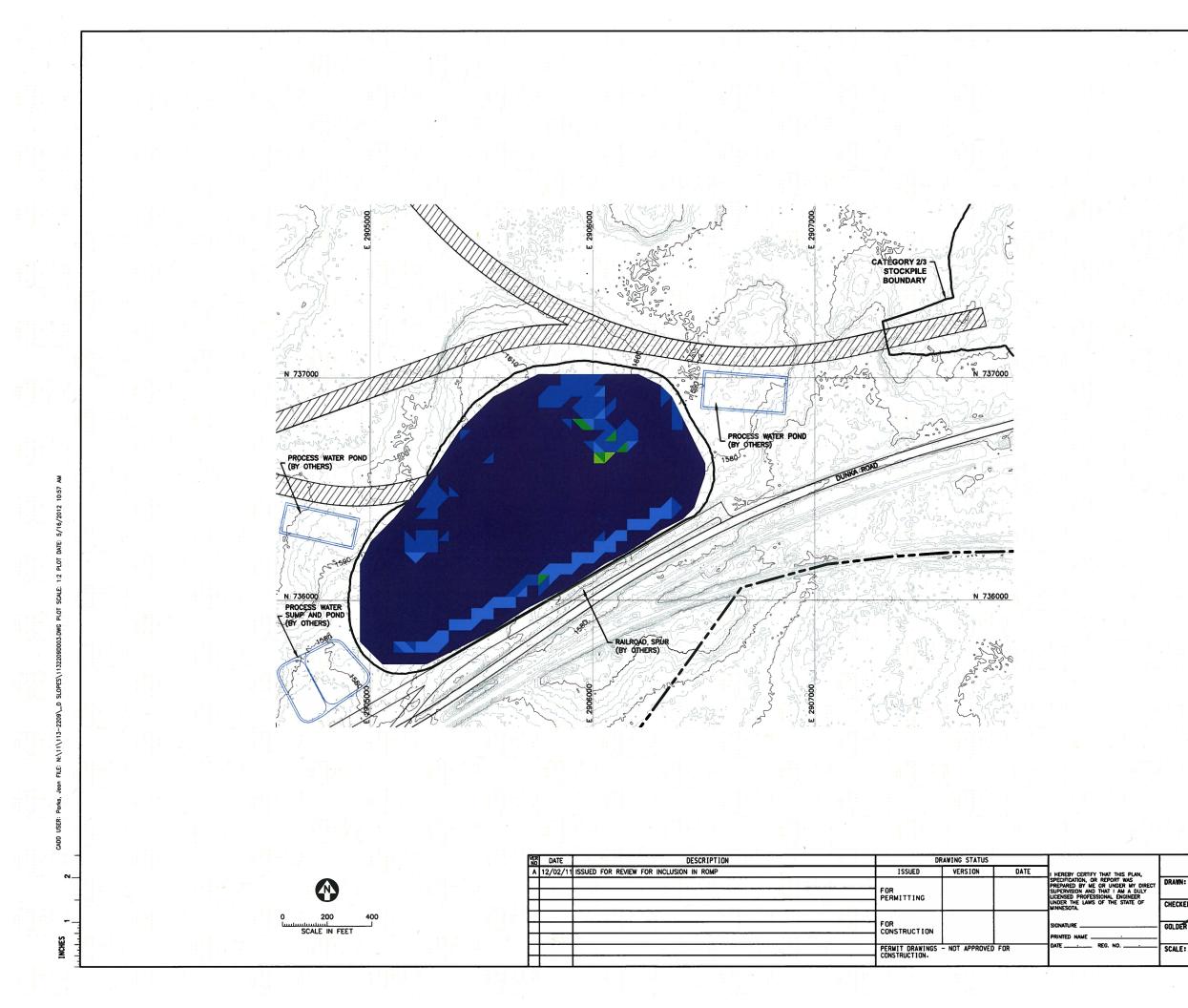

YEAR 2 PIT BOUNDARIES (SEE NOTE 1)

PROCESS WATER SUMP/POND (BY OTHERS)

# OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011. 1. 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER FROM JULY TO OCTOBER 2011. REFERENCES 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011. 2. COORDINATE SYSTEM REFERENCE IS NADB3 MINNESOTA STATE PLANE NORTH. 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL). PLANT DRAWING NUMBER: CATEGORY 4 STOCKPILE LINER GRADES AFTER COMPRESSION STRUCTURAL FILL FOUNDATION POLYMET MINING CORPORATION ÷. NORTHMET PROJECT POLYMET HOYT LAKES, MINNESOTA GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233








| LEGEND |
|--------|
|--------|





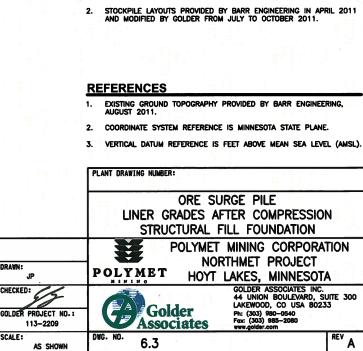

|                    | •   |
|--------------------|-----|
| 0.0 TO 0.1 PERCENT | 0.0 |
| 0.1 TO 0.2 PERCENT | 0.1 |
| 0.2 TO 0.3 PERCENT | 0.2 |
| 0.3 TO 0.4 PERCENT | 0.3 |
| 0.4 TO 0.6 PERCENT | 0.4 |
| 0.6 TO 1.0 PERCENT | 0.6 |
| 1.0 TO 2.0 PERCENT | 1.0 |
| > 2.0 PERCENT      | > 2 |
|                    |     |



LEGEND

LINER GRADES:




PROJECT BOUNDARY YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

HAUL ROADS

NOTES

1.

PROCESS WATER SUMP/POND (BY OTHERS)



OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011. Attachment K

Liner Survivability Evaluation

# APPENDIX K

# GEOMEMBRANE LINER SURVIVABILITY

Golder Associates Inc. (Golder) has prepared this appendix presenting results of liner load testing conducted for other high stress applications demonstrating the survivability of 80 mil linear low density polyethylene (LLDPE) geomembrane, as proposed for use as the primary liner for waste rock stockpiles containing Categories 2, 3, and 4 waste rock at PolyMet's NorthMet Project. Confirmatory laboratory testing will need to be conducted for the proposed liner system once actual construction materials (i.e., drainage gravel, soil liner, and subgrade soils) become available to facilitate the testing.

# BACKGROUND

The liner system designs for the NorthMet Project incorporate a risk-based approach depending on the reactivity category of the waste rock. Use of geomembrane liner, specifically 80 mil LLDPE, is proposed for use at the following facilities:

- Category 2/3 Waste Rock Stockpile: A compacted subgrade (i.e., soil liner 3) overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer. The upper one foot of the prepared subgrade shall have a maximum permeability of 1x10<sup>-5</sup> centimeters per second (cm/s).
- Category 4 Waste Rock Stockpile and Ore Surge Pile: A minimum of one foot of compacted soil liner 2 with a maximum permeability of 1x10<sup>-6</sup> cm/s overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer.

Per the project design criteria, the maximum depth over liner for Category 2, 3, and 4 waste rock is 200 feet. The average dry density of waste rock is 1.7 tons per cubic yard, which corresponds to a maximum stress applied at the liner by overlying waste rock of approximately 175 pounds per square inch (psi).

The geomembrane liner will be overlain by a drainage layer comprised of a minimum of 2 feet of minus one and one-quarter inch (-1  $\frac{1}{4}$  in) crushed rock or native gravelly materials. At this time, it is anticipated that the drainage layer will have a minimum permeability of  $1 \times 10^{-2}$  cm/s under the anticipated design loading conditions. Once drainage material meeting the project specifications becomes available for laboratory testing (anticipated during the Phase II investigation), confirmatory testing will need to include consolidation-permeability testing of the overliner materials.

# **OBJECTIVE**

i:\08\2209\0400\permitlvldes\_dft-11sep08\appk-linersurvivability\appk-linerloadtestintro.doc

The purpose of a liner load testing program is to evaluate the site-specific survivability of various liner systems under anticipated loading conditions. Further, the purpose of liner load testing is to demonstrate that the proposed liner system can maintain hydraulic containment even with waste rock depths that are greater than the designed ultimate height of the proposed facilities.

In the absence of actual liner load tests conducted for this project, Golder has prepared a compilation of liner load test results from other projects which utilize a similar liner system design as that

# GEOMEMBRANE LINER SURVIVABILITY

Golder Associates Inc. (Golder) has prepared this appendix presenting results of liner load testing conducted for other high stress applications demonstrating the survivability of 80 mil linear low density polyethylene (LLDPE) geomembrane, as proposed for use as the primary liner for waste rock stockpiles containing Categories 2, 3, and 4 waste rock at PolyMet's NorthMet Project. Confirmatory laboratory testing will need to be conducted for the proposed liner system once actual construction materials (i.e., drainage gravel, soil liner, and subgrade soils) become available to facilitate the testing.

## BACKGROUND

The liner system designs for the NorthMet Project incorporate a risk-based approach depending on the reactivity category of the waste rock. Use of geomembrane liner, specifically 80 mil LLDPE, is proposed for use at the following facilities:

- Category 2/3 Waste Rock Stockpile: A compacted subgrade (i.e., soil liner 3) overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer. The upper one foot of the prepared subgrade shall have a maximum permeability of 1x10<sup>-5</sup> centimeters per second (cm/s).
- Category 4 Waste Rock Stockpile and Ore Surge Pile: A minimum of one foot of compacted soil liner 2 with a maximum permeability of 1x10<sup>-6</sup> cm/s overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer.

Per the project design criteria, the maximum depth over liner for Category 2, 3, and 4 waste rock is 200 feet. The average dry density of waste rock is 1.7 tons per cubic yard, which corresponds to a maximum stress applied at the liner by overlying waste rock of approximately 175 pounds per square inch (psi).

The geomembrane liner will be overlain by a drainage layer comprised of a minimum of 2 feet of minus one and one-quarter inch (-1  $\frac{1}{4}$  in) crushed rock or native gravelly materials. At this time, it is anticipated that the drainage layer will have a minimum permeability of  $1 \times 10^{-2}$  cm/s under the anticipated design loading conditions. Once drainage material meeting the project specifications becomes available for laboratory testing (anticipated during the Phase II investigation), confirmatory testing will need to include consolidation-permeability testing of the overliner materials.

# **OBJECTIVE**

i:\08\2209\0400\permitlvldes\_dft-11sep08\appk-linersurvivability\appk-linerloadtestintro.doc

The purpose of a liner load testing program is to evaluate the site-specific survivability of various liner systems under anticipated loading conditions. Further, the purpose of liner load testing is to demonstrate that the proposed liner system can maintain hydraulic containment even with waste rock depths that are greater than the designed ultimate height of the proposed facilities.

In the absence of actual liner load tests conducted for this project, Golder has prepared a compilation of liner load test results from other projects which utilize a similar liner system design as that

|                | GEOMEMBRANE LINER SURVIVABILITY |          |
|----------------|---------------------------------|----------|
| September 2008 | 2                               | 083-2209 |

APPENDIX K

proposed for the NorthMet Project. In general, the stresses tested to were greater than those anticipated for the NorthMet Project.

# TEST RESULTS

Table K-1 provides a compilation of liner load test characteristics and results from several projects from Golder's database which utilized LLDPE geomembrane for high stress applications. The project names have been removed to provide anonymity.

Appendices K-1 through K-3 of this Appendix provide test summaries and photos from the liner load tests discussed in Table K-1. In general, the LLDPE geomembrane liners in the above tests exhibited minor indentations and scratches, but did not show any signs of failure or puncture under visual observation, nor were pinhole leaks detected during vacuum testing. Therefore, the use of 80 mil LLDPE geomembrane as proposed for the NorthMet Project is expected to perform well. It should be noted that the anticipated loading conditions for the NorthMet Project are generally less than those in the presented test work.

# FUTURE TEST WORK

As part of the Phase II geotechnical investigation program in support of design work for the NorthMet Project, specifically design of the liner system and overliner drainage network, the following confirmatory laboratory testing is required using the site specific materials specified for construction:

- Consolidation/permeability testing of overliner drainage materials to confirm permeability of the material under the design loading conditions, as well as the ability of the material to resist crushing under load;
- Liner load testing of the proposed liner systems with the specified overliner and underliner materials to confirm survivability of the proposed geomembrane liner under the anticipated design loading conditions; and
- Interface shear testing of the proposed liner systems to evaluate the strength characteristics of the liner system for use in stability evaluations.

In order to facilitate current design work for the NorthMet Project, necessary design parameters have been assumed for use in the analyses based on Golder's recent experience with design of similar facilities.

# APPENDIX K GEOMEMBRANE LINER SURVIVABILITY

September 2008

# 3

# **TABLE K-1**

# LINER LOAD TEST CONDITIONS AND RESULTS FROM HIGH STRESS APPLICATIONS

| Project   |                       | Liner System         |            | Load             | Test Results       |
|-----------|-----------------------|----------------------|------------|------------------|--------------------|
|           | Underliner            | Geomembrane<br>Liner | Overliner  | Applied<br>(psi) |                    |
| Project 1 | Clayey gravel         | Single-sided         | 2-inch     | 450              | PASS               |
| (4 tests) | with sand             | textured 80 mil      | minus      |                  | (Appendices K-1-   |
|           | (GC)                  | LLDPE                | overliner  |                  | 1)                 |
|           | Clayey sand           | Single-sided         | 2-inch     | 450              | PASS               |
|           | with gravel           | textured 80 mil      | minus      |                  | (Appendices K-1-2  |
|           | (SC)                  | LLDPE                | overliner  |                  | and K-1-3)         |
|           | Clayey gravel         | Single-sided         | 1-1/2-inch | 850              | PASS               |
|           | with sand             | textured 80 mil      | minus      |                  | (Appendix K-1-4)   |
|           | (GC)                  | LLDPE                | overliner  |                  |                    |
| Project 2 | Lean clay             | Smooth 80 mil        | 1-1/4-inch | 175              | PASS               |
| (3 tests) | (CL)                  | LLDPE                | minus      |                  | (Appendices K-2-1, |
|           |                       |                      | overliner  |                  | K- 2-2, and K-2-3) |
|           |                       |                      | (GP) (3    |                  |                    |
|           |                       |                      | different  |                  |                    |
| Project 3 | Clause graval         | Smooth 80 mil        | sources)   | 350              | PASS               |
| (5 tests) | Clayey gravel<br>(GC) | LLDPE                | minus      | 550              | (Appendix K-3)     |
| (5 tests) | (00)                  |                      | overliner  |                  | (Appendix K-3)     |
|           | Clayey gravel         | Smooth 60 mil        | 1-1/2-inch | 350              |                    |
|           | (GC)                  | LLDPE                | minus      | 550              |                    |
|           | (00)                  | LEDIE                | overliner  |                  |                    |
|           | 1-1/2-inch            | Smooth 80 mil        | 1-1/2-inch | 350              |                    |
|           | minus gravel          | LLDPE                | minus      | 550              |                    |
|           | iiiiias Brater        |                      | overliner  |                  |                    |
|           | Clayey gravel         | Smooth 80 mil        | 1-1/2-inch | 350              |                    |
|           | (GC)                  | LLDPE                | minus      |                  |                    |
|           |                       |                      | overliner  |                  |                    |
|           | 1-1/2-inch            | Smooth 100 mil       | 1-1/2-inch | 350              |                    |
|           | minus gravel          | LLDPE                | minus      |                  |                    |
|           | Ũ                     |                      | overliner  |                  |                    |

 $i:\label{eq:linear} i:\label{eq:linear} i:\l$ 

**APPENDIX K-1** 

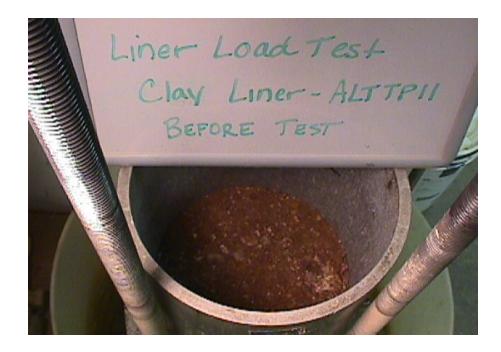
**PROJECT #1 LINER LOAD TESTING** 

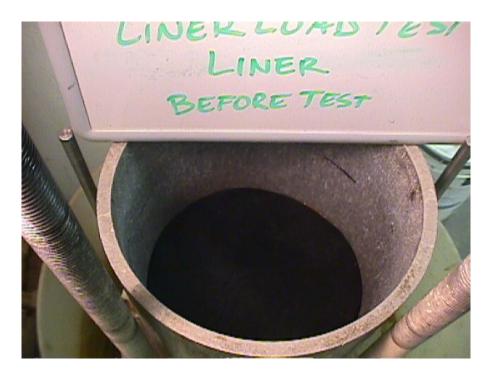
### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:            | PROJECT #1   |                            |                               |  |  |  |  |
|----------------------|--------------|----------------------------|-------------------------------|--|--|--|--|
| JOB NUMBER:          | NA           |                            | BORING NUMBER                 |  |  |  |  |
| DATE:                | 2/12/2003    |                            | SAMPLE NUMBER Liner Load Test |  |  |  |  |
|                      |              |                            | DEPTH (ft)                    |  |  |  |  |
| Underliner (Beddi    | ing) Source: |                            |                               |  |  |  |  |
| Underliner Classifi  | cation:      | Clayey gravel with sand GC | Atterberg Limits: 33, 15, 18  |  |  |  |  |
| Maximum Dry Der      | nsity (pcf): | 118.8                      | Optimum Moisture: 13.5        |  |  |  |  |
| Overliner Materia    | al Source:   | Site Supplied              |                               |  |  |  |  |
| Overliner Classifica | ation:       | -2" gravel                 | Atterberg Limits:             |  |  |  |  |
| Dry Density (pcf):   |              | 90.3                       |                               |  |  |  |  |
| Geosynthetic         |              |                            |                               |  |  |  |  |
| Manufacturer/Sup     | oplier:      | Site supplied              |                               |  |  |  |  |

| Liner Type     | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total<br>sample height<br>(in) | Test I<br>Visual | Results<br>Vacuum |
|----------------|----------------------------------|----------------------------|----------------------------|---------------|-----------------------|------------------------------------------|------------------|-------------------|
| LLDPE Single-  |                                  |                            |                            |               |                       |                                          |                  |                   |
| sided textured | 81.00                            | 24                         | 95                         | 10.25         | 450                   | 1.262                                    | pass             | pass              |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |

General Test Notes:


Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of bedding soil, then covered with 6.3 inches of overliner material. Approximately 10 rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 450 psi to the sample at 50 psi increments. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG. Liner observations: No severe damage. No punctures. One deep dimple noted. Numerous small dimples and scratches.


Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture. 3% bentonite was added to the clay underliner.

Overliner was poured into cell in 4 lifts. It was not compacted between lifts.

| Date:   | 2/12/03 |
|---------|---------|
| Tech:   | NG      |
| Review: | MB      |

# **Liner Load Testing Photo Log**















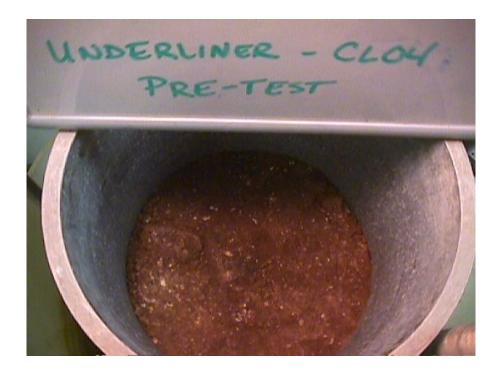

### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:           | PROJECT #    | <i>‡</i> 1                   |                               |
|---------------------|--------------|------------------------------|-------------------------------|
| JOB NUMBER:         | NA           |                              | BORING NUMBER                 |
| DATE:               | 12/31/2002   |                              | SAMPLE NUMBER Liner Load Test |
|                     |              |                              | DEPTH (ft)                    |
| Underliner (Bedd    | ing) Source: |                              |                               |
| Underliner Classifi | ication:     | Clayey sand with gravel (SC) | Atterberg Limits: 41, 15, 26  |
| Maximum Dry Der     | nsity (pcf): | 115.3 (rock corrected)       | Optimum Moisture: 12.9        |
| Overliner Materia   | al Source:   | Site supplied                |                               |
| Overliner Classific | ation:       | -2.0" gravel                 | Atterberg Limits:             |
| Dry Density (pcf):  |              | 90.0                         |                               |
| Geosynthetic        |              |                              |                               |
| Manufacturer/Su     | pplier:      | Site supplied                |                               |

| Liner Type     | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied<br>(psi) | Change in<br>total sample<br>height (in) | Test H<br>Visual | Results<br>Vacuum |
|----------------|----------------------------------|----------------------------|----------------------------|---------------|--------------------------|------------------------------------------|------------------|-------------------|
| LLDPE Single-  |                                  |                            |                            |               |                          |                                          |                  |                   |
| sided textured | 81.3                             | 24                         | 95                         | 9.9           | 450                      | 1.540                                    | PASS             | PASS              |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |
|                |                                  |                            |                            |               |                          |                                          |                  |                   |

General Test Notes:

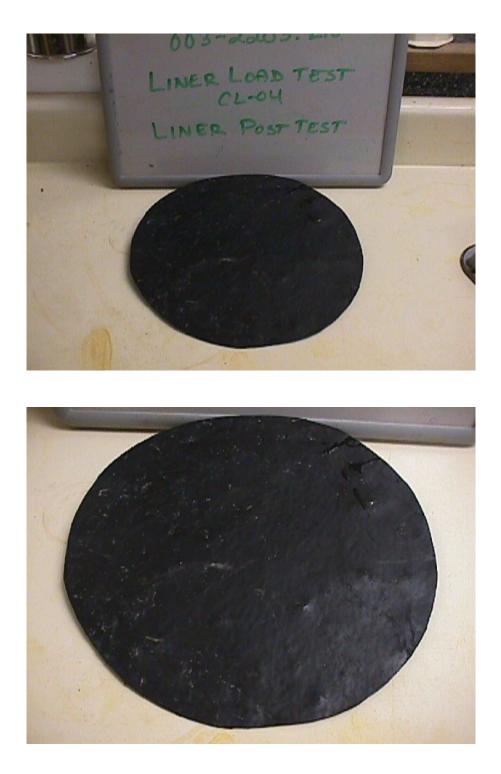
Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of bedding soil, then covered with approximately 6.5 inches of overliner material. Approximately 10 rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 450 psi to the sample. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG.

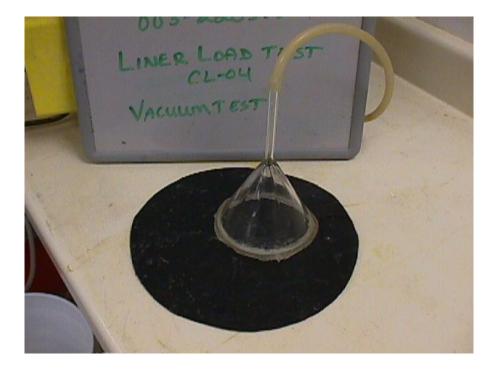

Liner observations: No severe damage. No punctures. One deep dimple noted. Numerous small dimples and scratches.

Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture. Overliner was poured into cell in 4 lifts. It was not compacted between lifts.

 Date:
 12/31/02

 Tech:
 NG


# **Liner Load Testing Photo Log**











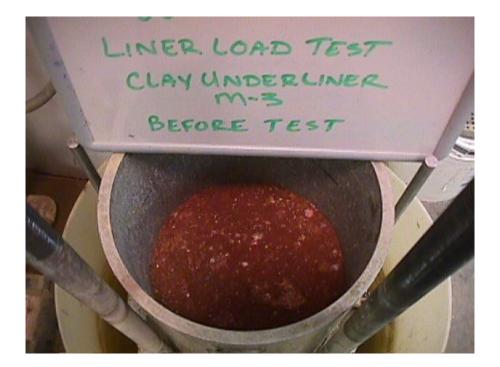



### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:          | PROJECT       | #1                         |                               |  |
|--------------------|---------------|----------------------------|-------------------------------|--|
| JOB NUMBER:        |               |                            | BORING NUMBER                 |  |
| DATE:              | 2/23/2003     |                            | SAMPLE NUMBER Liner Load Test |  |
|                    |               |                            | DEPTH (ft)                    |  |
| Underliner (Bed    | ding) Source: |                            |                               |  |
| Underliner Classi  | fication:     | Clayey sand with gravel SC | Atterberg Limits: 31,14,17    |  |
| Maximum Dry De     | ensity (pcf): | 122.2                      | Optimum Moisture: 11.5        |  |
| Overliner Mater    | ial Source:   | Site Supplied              |                               |  |
| Overliner Classifi | cation:       | -2" gravel                 | Atterberg Limits:             |  |
| Dry Density (pcf): | :             | 87.5                       |                               |  |
| Geosynthetic       |               |                            |                               |  |
| Manufacturer/Su    | upplier:      | Site supplied              |                               |  |

| Liner Type     | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total<br>sample height<br>(in) | Test H<br>Visual | Results<br>Vacuum |
|----------------|----------------------------------|----------------------------|----------------------------|---------------|-----------------------|------------------------------------------|------------------|-------------------|
| LLDPE Single-  | (1113)                           |                            |                            |               |                       | (11)                                     | v isuur          | , acaam           |
| sided textured | 80.83                            | 48                         | 95                         | 9.92          | 450                   | 1.378                                    | pass             | pass              |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |
| <u> </u>       |                                  |                            |                            |               |                       |                                          |                  |                   |
|                |                                  |                            |                            |               |                       |                                          |                  |                   |

General Test Notes:


Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of bedding soil, then covered with 5.0 inches of overliner material. Approximately 10 rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 450 psi to the sample at 50 psi increments. The load was maintained for 48 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG. Liner observations: No severe damage. No punctures. Two deep dimples noted. Numerous small dimples and scratches.

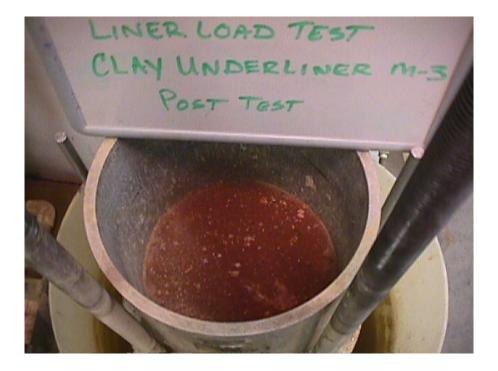
Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture. 3% bentonite was added to the clay underliner.

Overliner was poured into cell in 4 lifts. It was not compacted between lifts.

| Date:   | 2/23/03 |
|---------|---------|
| Tech:   | NG      |
| Review: | MB      |

# **Liner Load Testing Photo Log**










Golder Associates Page 2 of 4





### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:           | PROJECT       | #1            |                                       |  |  |  |  |
|---------------------|---------------|---------------|---------------------------------------|--|--|--|--|
| JOB NUMBER:         |               |               | BORING NUMBER                         |  |  |  |  |
| DATE: <u>4/12/2</u> | 4/12/2004     |               | SAMPLE NUMBER 80 mil SST LLDPE Liner  |  |  |  |  |
|                     |               |               | DEPTH (ft)                            |  |  |  |  |
| Underliner (Bed     | ding) Source: | Site supplied |                                       |  |  |  |  |
| Underliner Classi   | fication:     | GC            | Atterberg Limits: LL=39, PL=20, PI=19 |  |  |  |  |
| Maximum Dry De      | ensity (pcf): | 114.6         | Optimum Moisture: 13.1                |  |  |  |  |
| Overliner Mater     | ial Source:   | Site supplied |                                       |  |  |  |  |
| Overliner Classifi  | cation:       |               | Atterberg Limits:                     |  |  |  |  |
| Dry Density (pcf)   | :             | 77.4          |                                       |  |  |  |  |
| Geosynthetic        |               |               |                                       |  |  |  |  |
| Manufacturer/Su     | upplier:      | Site supplied |                                       |  |  |  |  |

| Liner Type      | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total<br>sample height<br>(in) | Test I<br>Visual | Results<br>Vacuum |
|-----------------|----------------------------------|----------------------------|----------------------------|---------------|-----------------------|------------------------------------------|------------------|-------------------|
| 80 mil          | (11115)                          |                            |                            |               |                       | (111)                                    | 10000            | , actually        |
| Smooth/Textured | 83.50                            | 53                         | 96.6                       | 12.0          | 850                   | 3.410                                    | Pass             | Pass              |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |
|                 |                                  |                            |                            |               |                       |                                          |                  |                   |

General Test Notes:

Test was conducted using a 12" diameter cell. The liner was placed on top of 4.0 inches of soil liner material, then covered with approximately 9.4 inches of overliner material. Approximately 10-1 rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 850 psi to the sample over a period of 53 hours. The load was maintained for 28 hours. A dial gage was used to monitor deformation of the sample. At the conclusion of the test the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG.

Liner observations: No severe damage. No punctures. Numerous small dimples and scratches.

Clay liner was remolded to 96.6% of maximum dry density and 1.1% of optimum moisture. Overliner was placed into cell in 4 lifts. It was not compacted between lifts.

| Date:   | 4/13/04 |
|---------|---------|
| Tech:   | JR      |
| Review: | MB      |

**APPENDIX K-2** 

**PROJECT #2 LINER LOAD TESTING** 

### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:           | PROJECT      | #2         |                                       |
|---------------------|--------------|------------|---------------------------------------|
| JOB NUMBER:         |              |            |                                       |
| DATE:               | 4/25/2006    |            |                                       |
|                     |              |            |                                       |
| Underliner (Bedd    | ing) Source: | Soil Liner |                                       |
| Underliner Classifi | ication:     | CL         | Atterberg Limits: LL-33, PL-23, PI-10 |
| Maximum Dry Der     | nsity (pcf): | 97.9       | Optimum Moisture: 23.7                |
| Overliner Materia   | al Source:   | Ore        |                                       |
| Overliner Classific | eation:      | GP         | Atterberg Limits:                     |
| Dry Density (pcf):  |              | 103.2      |                                       |
| Geosynthetic        |              |            |                                       |
| Manufacturer/Su     | pplier:      | GSE        |                                       |

| Liner Type | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total<br>sample height | Test F<br>Visual | Results<br>Vacuum |
|------------|----------------------------------|----------------------------|----------------------------|---------------|-----------------------|----------------------------------|------------------|-------------------|
|            | (IIIIS)                          |                            |                            |               |                       | (in)                             | visuai           | vacuum            |
| LLDPE S/S  | 80.93                            | 24                         | 95                         | 23.3          | 175                   | 0.833                            | PASS             | PASS              |
|            |                                  |                            |                            |               |                       |                                  |                  |                   |
|            |                                  |                            |                            |               |                       |                                  |                  |                   |
|            |                                  |                            |                            |               |                       |                                  |                  |                   |
|            |                                  |                            |                            |               |                       |                                  |                  |                   |

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 4.0 inches of underliner soil, then covered with approximately 6.9 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 3 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 17.3 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 95.7% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

| Date:   | 4/26/06 |
|---------|---------|
| Tech:   | RT      |
| Review: | MB      |

# Liner Load Testing Photo Log

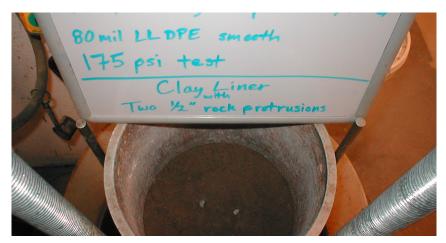



Figure 1 – Clay liner with rock protrusions, pre-test.

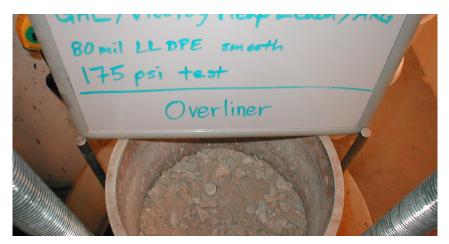



Figure 2 - Ore, post-test.

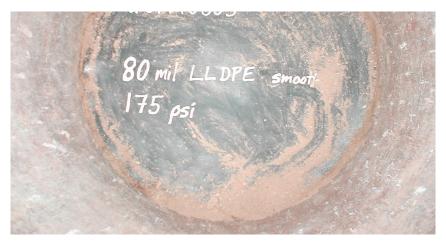



Figure 3 – 2.0 mm LLDPE, post-test.

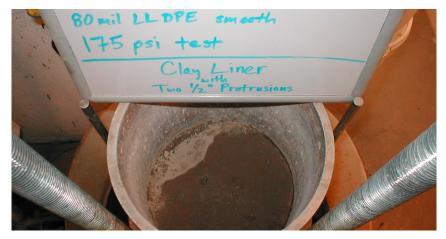



Figure 4 – Clay liner, post-test.



Figure 5 – 2.0 mm LLDPE, visual inspection.

#### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:                                                | PROJECT       | \$2        |                                       |
|----------------------------------------------------------|---------------|------------|---------------------------------------|
| JOB NUMBER:                                              |               |            |                                       |
| DATE:                                                    | 7/5/2006      |            |                                       |
| Underliner (Bed                                          | ding) Source. | Soil Liner |                                       |
|                                                          |               | CL         | Atterberg Limits: LL-33, PL-23, PI-10 |
| Underliner Classification:<br>Maximum Dry Density (pcf): |               | 97.9       | Optimum Moisture: 23.7                |
| Overliner Mater                                          | ial Source:   | Bolsa #1   |                                       |
| Overliner Classifi                                       | cation:       | GP         | Atterberg Limits:                     |
| Dry Density (pcf):                                       |               | 98.2       |                                       |
| Geosynthetic                                             |               |            |                                       |
| Manufacturer/Su                                          | upplier:      | GSE        |                                       |

| Liner Type | Ave. Liner<br>Thickness<br>(mls) | Duration of<br>Test (hrs.) | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total<br>sample height<br>(in) | Test F<br>Visual | Results<br>Vacuum |
|------------|----------------------------------|----------------------------|----------------------------|---------------|-----------------------|------------------------------------------|------------------|-------------------|
|            | (IIIIS)                          |                            |                            |               |                       | (111)                                    | Visuai           | vacuum            |
| LLDPE S/S  | 77.83                            | 24                         | 95                         | 24.2          | 175                   | 0.701                                    | PASS             | PASS              |
|            |                                  |                            |                            |               |                       |                                          |                  |                   |
|            |                                  |                            |                            |               |                       |                                          |                  |                   |
|            |                                  |                            |                            |               |                       |                                          |                  |                   |
|            |                                  |                            |                            |               |                       |                                          |                  |                   |

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 3.5 inches of underliner soil, then covered with approximately 6.0 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 20 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 17.6 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 94.7% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

| Date:   | 7/7/06 |  |  |  |  |
|---------|--------|--|--|--|--|
| Tech:   | MS     |  |  |  |  |
| Review: | MB     |  |  |  |  |

#### **Liner Load Testing Photo Log**



Figure 1 – Clay liner with rock protrusions, pre-test.



Figure 2 – 2.0 mm LLDPE geomembrane, pre-test.



Figure 3 – Overliner (Bolsa #1), pre-test.

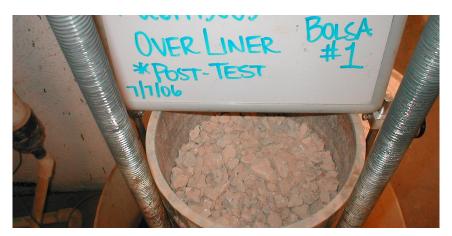



Figure 4 – Overliner (Bolsa #1), post-test.



Figure 5 – 2.0 mm LLDPE, post-test.



Figure 6 – Clay liner, post-test.



Figure 7 – 2.0 mm LLDPE, visual inspection.

TEST #3

#### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

| JOB NAME:                  | PROJECT       | \$2        |                                       |
|----------------------------|---------------|------------|---------------------------------------|
| JOB NUMBER:                |               |            |                                       |
| DATE:                      | 7/10/2006     |            |                                       |
|                            |               |            |                                       |
| Underliner (Bedd           | ling) Source: | Soil Liner |                                       |
| Underliner Classification: |               | CL         | Atterberg Limits: LL-33, PL-23, PI-10 |
| Maximum Dry Density (pcf): |               | 97.9       | Optimum Moisture: 23.7                |
| Overliner Materi           | ial Source:   | Bolsa #2   |                                       |
| Overliner Classific        | cation:       | GP         | Atterberg Limits:                     |
| Dry Density (pcf):         |               | 94.0       |                                       |
| Geosynthetic               |               |            |                                       |
| Manufacturer/Su            | ipplier:      | GSE        |                                       |

| Liner Type | Ave. Liner<br>Thickness | Duration of | Underliner<br>Compaction % | Moisture<br>% | Load<br>Applied (psi) | Change in total sample height | <b>Test Results</b> |        |
|------------|-------------------------|-------------|----------------------------|---------------|-----------------------|-------------------------------|---------------------|--------|
|            | (mls)                   | Test (hrs.) |                            |               |                       | (in)                          | Visual              | Vacuum |
| LLDPE S/S  | 80.17                   | 24          | 95                         | 23.7          | 175                   | 0.566                         | PASS                | PASS   |
|            |                         |             |                            |               |                       |                               |                     |        |
|            |                         |             |                            |               |                       |                               |                     |        |
|            |                         |             |                            |               |                       |                               |                     |        |
|            |                         |             |                            |               |                       |                               |                     |        |

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 3.5 inches of underliner soil, then covered with approximately 6.2 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 15 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 18.3 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 95.1% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

| Date:   | 7/12/06 |  |  |  |  |
|---------|---------|--|--|--|--|
| Tech:   | MS      |  |  |  |  |
| Review: | MB      |  |  |  |  |

#### **Liner Load Testing Photo Log**



Figure 1 – Clay liner with rock protrusions, pre-test.



Figure 2 – 2.0 mm LLDPE geomembrane, pre-test.



Figure 3 – Overliner (Bolsa #2), pre-test.

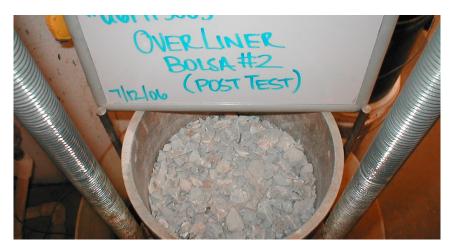



Figure 4 – Overliner (Bolsa #2), post-test.

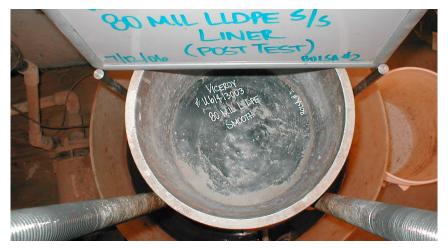



Figure 5 – 2.0 mm LLDPE, post-test.

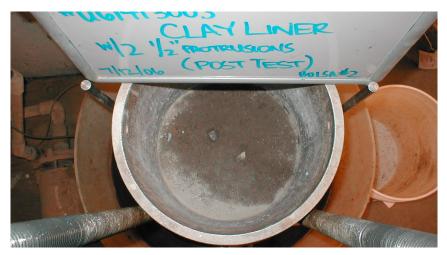



Figure 6 – Clay liner, post-test.



Figure 7 – 2.0 mm LLDPE, visual inspection.

**APPENDIX K-3** 

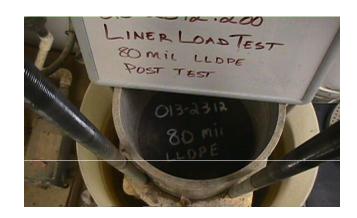
**PROJECT #3 LINER LOAD TESTING** 

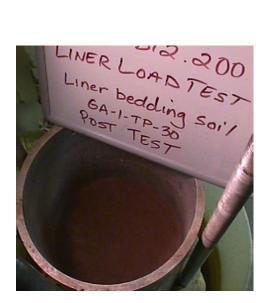
#### PROJECT #3

#### LINER LOAD TESTING

|                                                                                                                                                                                                                           |                    |       | Starting Sample<br>Height (in) | CHANGE IN HEIGHT<br>(in) |        |       | Final Sample<br>Height (in) |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|--------------------------------|--------------------------|--------|-------|-----------------------------|--------|
| Test #1                                                                                                                                                                                                                   |                    |       |                                | <b>9</b> ()              | 50 psi | • •   | 350 psi                     |        |
| 4.0 inches Liner Bedding Soil - GA1-TP-30<br>80-mil LLDPE geomembrane                                                                                                                                                     | 8.9                | 123.0 | PASS                           | 10.785                   | 0.173  | 0.492 | 0.789                       | 9.996  |
| 6.5 inches (14997.0g) Drain Cover Fill $-1^{1/2}$ "                                                                                                                                                                       | 0.1                |       |                                |                          |        |       |                             |        |
| <b>Test #2</b><br>4.0 inches of Liner Bedding Soil - GA-1-TP-33<br>60-mil LLDPE geomembrane<br>4.0 inches (7863.8 g) Drain Cover Fill -1 1/2"<br>80-mil LLDPE geomembrane<br>3.5 inches (7182g) Drain Cover Fill -1 1/2"  | 10.6<br>0.1<br>0.1 | 120.3 | PASS<br>PASS                   | 11.396                   | 0.385  | 0.716 | 1.120                       | 10.278 |
| <b>Test #3</b><br>4 inches of Liner Bedding Soil - GA-1-TP-33<br>80-mil LLDPE geomembrane<br>4.5 inches (9535.3 g) Drain Cover Fill -1 1/2"<br>100-mil LLDPE geomembrane<br>3.0 inches (6367.1g) Drain Cover Fill -1 1/2" | 10.8<br>0.1<br>0.1 | 120.2 | PASS<br>PASS                   | 11.595                   | 0.229  | 0.549 | 0.939                       | 10.656 |

K-3-1


TEST #1


# Liner Load Test #1 Load Testing



#### Liner Load Test #1 Post-Test







## Liner Load Test #1 Vacuum Testing



K-3-2

TEST #2

## Liner Load Test #2 Sample Set-Up





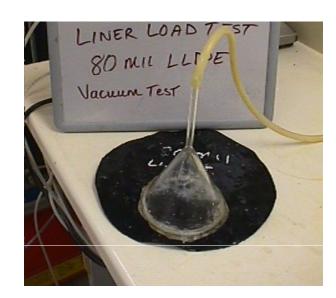




# Liner Load Test #2 Load Testing



#### Liner Load Test #2 Post-Test










## Liner Load Test #2 Vacuum Testing





K-3-3

TEST #3

## Liner Load Test #3 Sample Set-Up





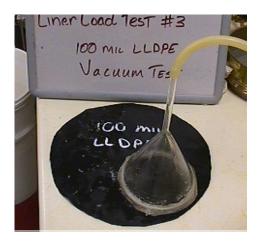




# Liner Load Test #3 Load Testing



### Liner Load Test #3 Post-Test










## Liner Load Test #3 Vacuum Testing





