Report 280

Z

Regional Survey of Buried Glacial Drift, Saprolite, and Precambrian Bedrock in Lake of the Woods County, Minnesota

Minnesota Department of Natural Resources Division of Minerals William C. Brice, Director

Report 280

Regional Survey of Buried Glacial Drift, Saprolite, and Precambrian Bedrock in Lake of the Woods County, Minnesota

By: D. P. Martin ¹, D. A. Dahl ¹, D. F. Cartwright ¹, and G. N. Meyer ²

A Minerals Diversification Project

¹ Minnesota Department of Natural Resources

² Minnesota Geological Survey

1991

Publication Notification

Equal opportunity to participate in and benefit from programs of the Minnesota Department of Natural Resources is available to all individuals regardless of race, color, national origin, sex, age or disability. Discrimination inquiries should be sent to MN-DNR, 500 Lafayette Road, St. Paul, MN 55155-4049 or the Equal Opportunity Office, Department of the Interior, Washington, D.C. 20240.

This report is available at selected libraries in Minnesota. It may be purchased at the Hibbing Office, DNR Minerals Division. For further information contact Minerals Resource Geologist at (218) 262-6767.

Neither the State of Minnesota nor the Department of Natural Resources, nor any of their employees, nor any of their contractors, subcontractors, nor their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe on privately owned rights.

Reference to a Company or Product name does not imply approval or recommendation of the product by the State of Minnesota or the Department of Natural Resources to the exclusion of others that may meet specifications.

Glossary

Attribute: Any physical or chemical property of a sample; especially refers to the quantitative measurements of sample fractions that are listed in the database.

Base of Quaternary Section: The contact, observed in drill core, between Quaternary glacial deposits and older materials. The older materials were commonly sound bedrock or saprolite, but in one case (OB-503) was Cretaceous marine marginal sands.

Dispersal Scale: "Dispersal can occur at a variety of scales ranging from continental (hundreds of kilometres), to regional (hundreds to tens of kilometres), to local (less than ten kilometres), to small-scale (final stages of mineral exploration in the hundreds to tens of metres) (Shilts 1984a)... Other examples of major glacial dispersal patterns include those documented by (Coker & DiLabio, 1988, p. 337)

Dispersal Train: Debris excavated from a source unit by glacial movement is dispersed in a down-ice direction to produce a ribbon- or fan-shaped dispersal feature. Detectable dispersal trains in till have chemical, mineralogical, or other properties that stand out in contrast to nearby background levels. Shilts (1976) has demonstrated that the material being dispersed quickly becomes diluted to background levels, following essentially a negative exponential decay curve. The concentration of the dispersing material is highest near its source, declining rapidly (exponentially) in a down-ice direction. Gradients along the lateral edges of dispersal trains are often sharp, falling to background values much more quickly than in the down-ice direction. Tails of dispersal trains are typically much larger and more dilute than heads. It is often the tails that are first recognized during till sampling programs. Coker and DiLabio (1988) report that dispersal trains of debris related to mineralization (ore boulders, ore-related minerals, trace elements, and magnetic or radioactive components) may enhance the size of mineral exploration targets by several orders of magnitude (Fig. 1).

Geochemical Province: Bolviken and others (1990) describe geochemical provinces as regions (square kilometers to thousands of square kilometers) of abnormal spatial distribution of elements or combinations of elements. The use of regional geochemical surveys to resolve the distribution of chemical elements in relation to mineral deposits has been used successfully during recent exploration in Finland and other areas. A typical Archean gold geochemical province might be 75 square kilometers or larger in size. All nine existing ore deposits in Fennoscandia were found to lie within geochemical provinces (op. cit.). Since geochemical provinces can be identified earlier in an exploration program than metallogenic (metal mineralization) provinces, their importance in the early phases of exploration is becoming more often recognized (see also Averill, 1988).

Keewatin: Keewatin provenance glacial drift is named for the Keewatin sector of the late-Wisconsinan ice sheet, centered near Manitoba, Canada.

Labradorean: Labradorean provenance glacial drift is named for the Labradorean sector of the late-Wisconsinan ice sheet, centered near Labrador, Canada.

Mining camp: A cluster of gold deposits in the Superior province bedrock terrane of the Canadian Shield. This is described by Colvine and Stewart (1984), "Gold mineralization is not uniformly distributed along these zones, but is focused in individual mining camps up to tens of kilometers long and normally less than ten kilometers wide." Such a cluster of gold deposits, along with associated uneconomic occurrences, are proposed to provide sources of gold to the tills. The terms mining-camp scale or township-sized are used synonymously here to describe an area on the order of 100 square kilometers.

Pathfinder: In geochemical exploration, a relatively mobile element that occurs in close association with an element or commodity being sought, but can be more easily found because it forms a broader halo or can be detected more readily by analytical methods. A pathfinder serves to lead investigators to a deposit of a desired substance.

Till Composition: "The composition of a till sample may be the composite of many overlapping dispersal trains. The blending of trains derived from different up-ice sources produces the mixed lithology that is a normal feature of till. Most of the individual dispersal trains are not identifiable, however, because they are too small or are composed of rocks or minerals that are not distinctive." (Coker & DiLabio, 1988, p. 337)

Executive Summary

The Archean greenstone belts of northern Minnesota are a geologic setting that could contain world-class gold camps of >500 tonnes gold. In the Baudette area of northern Minnesota, where glacial overburden is often more than 30 m (100 ft) thick and composed of two or more glacial drift sequences, no surface sample media have yet been demonstrated to be effective for gold exploration. Buried tills are present in the area and could provide a prime sampling medium for detecting metal-bearing geochemical provinces¹, provided that the regional stratigraphic framework and regionalscale chemical-mineralogical background levels of the tills are established. The program goal is to establish such a framework and background levels in order to search for a township-size gold geochemical province.

In this project, we have used rotasonic overburden core drilling to collect twenty profiles of Baudette area glacial drift, saprolite, and bedrock; and have constructed a buried landscape model to explain and correlate the stratigraphic units found in the cores. We have also analyzed the buried tills in order to establish the regional background levels of gold grain content, heavy mineral mineralogychemistry, silt-clay chemistry, pebble lithology, matrix texture, and assorted physical properties. The glacial stratigraphy expertise of the Minnesota Geological Survey staff, and the bedrock and heavy mineral expertise of the United States Geological Survey staff have been of invaluable assistance.

The drilling results show that the Baudette area contains two distinctive landscapes. In the eastern portion, beneath the blanket of exotic Koochiching drift, a pervasive till sheet (Rainy till) exists in contact with saprolite or bedrock in most localities. An older Labradorean till² was found beneath the Rainy till in two paleo-topographic lows. Deep saprolite profiles exist in shear zones, and thinner saprolite sections are preserved on the protected flanks off bedrock topographic highs. Paleo-drainage is to the northeast toward a paleotopographic low that contains an unlithified Cretaceous quartz-kaolin sedimentary deposit. The western portion of the Baudette area is generally

more complex, containing older northwestern provenance (Keewatin) morainal sediments interbedded with the Labradorean drift. The till stratigraphy in the western portion is also complex, because the Labradorean tills begin to display some of the characteristics of the exotic Keewatin sediments they override. Paleo-drainage is to the west-northwest. Saprolite is less pervasive in the buried bedrock uplands in the western portion of the field area. Bedrock was recovered from eighteen of the twenty boreholes in the Baudette area. Metamorphosed mylonites, felsic-intermediate volcanics and intrusives, basalts and gabbros, graywackes, massive sulfide, and granitoids were recovered for use in U.S. Geological Survey CUSMAP mapping of the Roseau 1 x 2 degree map sheet.

Regional background levels for gold grains, pathfinder elements, and pathfinder mineral grains are very low compared to other areas of the state. Some of the regional background levels increase or decrease across the field area, reflecting addition of Keewatin sediments in the western portion of the Baudette area. Hg in the nonmagnetic heavy mineral fraction provides the highest contrast till provenance indicator, showing a ten-fold higher background level in Keewatin provenance sediments than in Labradorean provenance sediments. The source and mineralogy of the Hg in the Keewatin provenance sediments is not well understood. As, Ni, Sb, and Sr also show some provenance distinctions. K in the silt-clay fraction is partly able to discriminate Rainy till from older Labradorean tills. A plot of Hg versus K clearly resolves the three types of buried till, even to the point of being able to distinguish mixing of Keewatin sediments into overriding Labradorean tills in the western portion of the field area.

Low level enrichments of gold grains, galena, native copper, zinc spinel, scheelite, molybdenite, kyanite, and Au, Ag, Hg, Zn, W, Cu, Pb, Ba, Ce, Cs, Bi, Th, and Ni are present in the tills. Low level enrichments of gold grains, gold assays, and five pathfinder elements-minerals are observed in the Rainy till in the eastern portion of the field area, in the vicinity of the Baudette fault system (boreholes 502, 503, and 506) and nearby magnetic felsic intrusions. Other notes include low levels of gold and zinc spinel in the basal till sample of borehole 517, galena in the saprolite of boreholes 508 and 520, kyanite and bedrock massive sulfide in borehole 513, and a kaolin-quartz sand unit in borehole 503. The galena appears to have been

¹ See glossary.

² See glossary.

associated with vein settings. The kyanite may represent an unusual or extreme bedrock alteration. The barren massive sulfide in the bedrock of borehole 513 is predominantly pyrrhotite. The kaolin-quartz sand unit (Cretaceous age) leads to speculative hypotheses about where the winnowed kaolin might have been deposited (see Mineral Potential Section).

A sufficient understanding of the regional stratigraphic framework and regional chemicalmineralogical background levels now exists to efficiently test the Baudette area for gold miningcamp-scale geochemical provinces. Follow up work should use rotasonic coring to test selected townships of the Baudette area to a sampling density of 25 sq. km (four samples per township). Gold grains, heavy minerals, and heavy mineral assays for gold and other pathfinder elements will provide the best indicators of buried mining-campscale mineralization. The heavy minerals provide unique tracers that can probably be followed across incomplete glacial stratigraphic sections. Silt-clay chemistry, texture, pebbles, and physical properties can provide additional in-depth information to solve local stratigraphic problems that arise.

Recommendations

Recommendations are directed at users of the data or methods and at future Minerals Division programs (Tables 1a and 1b).

To potential users of the data or methods, there is considerable information available at the Hibbing office regarding the geochemical database, samples, and customized design options. The complete dataset is available in an ASCII format on $3 1/2^{\circ}$ or $5 1/4^{\circ}$ disks. Core samples, heavy mineral fractions, or assay subsamples are available for observation, education, or assay purposes. The authors are available to discuss the many possible design options and methodology to use till samples at your choice of cost/risk analysis and applied to your target area(s) and scale.

Regarding future programs, the two categories of general program direction and specific methods are discussed. Regarding direction, infill drilling to complete the project goal in the Effie area is recommended over the Lake of the Woods area, due to a perceived higher gold potential there. Since nine case examples of ore deposits occurring within geochemical provinces have been cited by

 \bigcirc

Bolviken and others (1991), the program goal for deep overburden regions in Minnesota should remain the search for such geochemical provinces (Fig. 2). Background values must be identified to define the contrast of a geochemical province, and appropriate sample density is also required. Thus, infill drilling is a necessity to fulfill the goal. The Effie infill drilling can be delimited by the new Koochibel MGS bedrock map showing the supracrustal rocks, appropriate ore deposit models and geological features, and the previous Effie area results (Martin and others, 1988).

Regarding specific methods, only the three most important are discussed. First, the drilling method should not grind up clasts to create a modified matrix composition and, hence, an artificial background value. Secondly, less expensive overburden core drilling methods should continue to Since development seems to be be tested. happening at levels from the individual driller to manufacturing suppliers on such drill methods and equipment, an organized focus group should be considered. Thirdly, advanced mineral and chemical analysis methods need to be tested, for example, on mid-density heavy minerals and for very fine-grained gold. The mid-density heavy mineral fractions are available as a by-product from the ODM Lab separation method, and perhaps contain cheap, useful tracers as ore minerals or pathfinders. The background value for gold in the fine fraction of till has not worked well for application to a geochemical province for two reasons--the nugget effect and an inadequate detection limit. Research in Finland (Kontas, 1991) permits a new hypothesis and subsequent methodology to resolve this problem. Gold grains are abraded by quartz grains during glacial erosion, transport, deposition, and sample screening resulting in a very large population of quartz grains having an "abraded or atomic" gold coating (op. cit.). Such gold is readily extractable by a partial leach (Heikki Niskanen, pers. communication) that excludes gold grains or nuggets. Such a method should be tested to identify a gold geochemical province.

Acknowledgements

Numerous individuals have contributed their talents during the course of this project. The management structure at DNR has contributed considerably by allowing the authors to approach the project with much flexibility and freedom. This has been of substantial help. Doug Rosneau, Alan Dzuck, Mike Ellett, Darold Riihiluoma, Mike Lubotina, and Pat Geiselman handled and archived a proverbial mountain of core samples and subcomponent splits. Pat Geiselman, in particular, contributed many energetic and diligent hours during the drilling, sampling, and shipping phases of the project. Earl Mailhot, Greg Walsh, Pat Geiselman, Darold Riihiluoma, and Joe Fink contributed their drafting services. Rick Ruhanen and Jacki Jiran competently addressed the thankless but essential task of keeping our computer resources up and running.

Jean Drotts and Al Klaysmat of the DNR, Tim Elliot of Bondar-Clegg, and Remy Humealt of Overburden Drilling Management managed to wade through the barrage of samples sent their way. Gene Miller and Karl Keihn provided opinions on land ownership, and Gene Karel, Agnes Bates, and Phil Pippo expedited much of the contract and administrative work. Diane Melchert, Coleen Keppel, Sue Saban, Helen Koslucher, and Dorothy Cencich contributed word-processing and data entry skills.

Steve Sutley, Paul Theobald, and Dick Tripp of the U.S. Geological Survey in Denver provided indispensable instruction and guidance on heavy mineral processing and identification. Terry Klein, also of the U.S. Geological Survey, in Reston, Virginia, provided valuable observations of the petrography of the bedrock core.

Ken Harris, Howard Mooers, and Val Chandler of the Minnesota Geological Survey, and Barry Frey, Tom Lawler, and J.D. Lehr of the DNR all contributed to discussions of the buried rocks in Lake of the Woods County. Finally, comments made by three reviewers improved the initial manuscript significantly.

Table of Contents

Executive Summary	ii iii
Acknowledgements	iii
Table of Contents	v
Introduction	1
	1
Significance of the Droblem	1
Project Scope and Progress	1
	T
Location, Geological Setting, and Exploration History	2
Project Design and Methods	4
Baudette Area Survey Results	5
Stratigraphy and Buried Landscape	6
Gold Grain Counts	11
Heavy Mineral Mineralogy	11
Heavy Mineral Chemistry	12
Silt-Clay Chemistry	12
Pebbles	13
Physical Properties	14
	14
Saprolite and Bedrock Results	14
Summary of Results	-15
Discussion	16
Geochemical Province	16
Saprolite. Glacial Stratigraphy. and Buried Landscape	16
Mineral Potential	19
Environmental Geology	20
Subsample Fractions and Physical Properties	21
Design	22
Conclusion	22
References	23
Figures	28
Tables	49
Maps	61
Appendices	A-1

÷

List of Figures

- Figure 1. Idealized glacial dispersal model.
- Figure 2. Sketch showing a profile with a geochemical province and three geochemical anomalies caused by ore deposits of which one (A) is outside the geochemical province and two (B and C) are inside. The horizontal distance is anywhere from the order of kilometers and upward. Most mineral deposits of economic interest are assumed to belong to types B and C (Bolviken and others, 1990).
- Figure 3. Schematic summary of the geologic history of the Baudette area.
- Figure 4. Sample fractions analyzed. The total composition was subdivided into matrix and clasts, for quantitative analysis.
- Figure 5. Time-distance diagram showing relative timing and extent of glacial events in the Baudette area.
- Figure 6. Landscape near Baudette, Minnesota, at the time of Rainy lobe ice advance. Sediment cover varies on a much smaller scale than depicted. This reconstruction is based on available drillhole data.
- Figure 7. Rainy lobe moraines in the Baudette area.
- Figure 8. Summary of regional stratigraphic composition and case examples of mixing. Mixing is inferred to occur at all scales, primarily by incorporation of available underlying materials.
- Figure 9. Generalized saprolite stratigraphy in the Baudette area.

Figure 10. Sample prep flow sheet for Baudette area samples.

Figure 11a. Plot of gold assays in the nmHMC fraction of till and nontill samples in the Baudette area.

Figure 11b. Plot of boron sassays in the -2um fraction of till and nontill samples in the Baudette area.

Figure 11c. Plot of mercury assays in the nmHMC fraction of till and nontill samples in the Baudette area.

Figure 11d. Plot of potassium assays in the -2um fraction of till and nontill samples in the Baudette area.

Figure 11e. Plot of copper assays in the -2um fraction of till and nontill samples in the Baudette area.

Figure 12a. Plot of mercury vs. potassium assays in Baudette area tills and saprolite.

Figure 12b. Plot of matrix soluble vs. arsenic assays in Baudette area tills and saprolite.

Figure 12c. Plot of matrix soluble vs. potassium assays in Baudette area tills and saprolite.

Figure 13. Regional variations in pebble content of tills in the Baudette area.

Figure 14a. Dispersal train model used for interpretation of two geochemical patterns--a recognizable, contrasting, single-lithology dominated composition (traceable head lithology) vs. anomalous pathfinder values. Scale of both axes varies.

Figure 14b. Legend.

vi

List of Tables

Table 1a.Options of methodology and	strategy applied to site-specific investigations.
-------------------------------------	---

- Table 1b.
 Recommendations for Minerals Division infill drilling.
- Table 2. Analytical measurements showing regional baseline changes in the Baudette area.
- Table 3.Data manipulation and interpretation flow chart.
- Table 4.
 Analytical measurements useful for resolving regional till stratigraphic questions.
- Table 5. An interpretation of glacial dispersal for the samples bearing significant pathfinders.
- Table 6.A list of till samples which exceed the regional-stratigraphic median by >3x for seven selected
elements.
- Table 7. A list of magnetic fraction till and saprolite samples that exceed the regional-stratigraphic median by \geq 3x median for elements listed.

 Table 8.
 Regional-stratigraphic till median values (ppm).

Table 9. Observed attributes usable as tracers to specific sources in the Baudette area.

Table 10. A snythesis of observations and conclusions regarding till composition and variability.

List of Maps

- Map 1. Location of the Baudette area in Lake of the Woods County, Minnesota.
- Map 2. Surficial features and general topography of the Baudette area.
- Map 3. Past and present overburden drilling projects in relation to regional glacial drift thickness.
- Map 4. Sources of subsurface geological information for the Baudette Area.
- Map 5a. Regional contour map of bedrock and surface elevations.
- Map 5b. Aeromagnetic shaded relief map of the Baudette area.
- Map 5c. Aeromagnetic interpreted pseudomap.
- Map 5d. Simple Bouguer gravity map of the Baudette area.

Map 6. Regional contour map of glacial drift and saprolite thickness.

- Map 7. Isopach maps of Koochiching lobe sediment.
- Map 8. Isopach maps of Rainy lobe sediment.
- Map 9. Isopach maps of Winnipeg lobe sediment.
- Map 10. Isopach maps of Old Rainy lobe sediment.

Map 11. Isopach maps of saprolite.

Map 12a. Bedrock geology map.

Map 12b. Bedrock geology map, description and location.

List of Appendices

Appendix 280-A.	Synopsis of	Baudette area	drill information.	Map scales are 1	:24,000.
A A	~ 1			1	,

Appendix 280-B. Descriptive logs of Baudette area drill core.

Appendix 280-C. Sampling and analytical methods.

I

- Appendix 280-D. Precision and accuracy of assay methods.
- Appendix 280-E. Variation maps for the Baudette area.
- Appendix 280-F. Master index for Baudette area samples.
- Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.
- Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.
- Appendix 280-I. Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.
- Appendix 280-J. Baudette area sample component weights and percents reported by contract laboratory.
- Appendix 280-K. Physical properties of Baudette area samples.
- Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.
- Appendix 280-M. Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

Appendix 280-O. X-ray diffraction results for 14 selected Baudette area till and saprolite samples.

Appendix 280-P. Baudette area gold data summary.

Background

This survey of part of Lake of the Woods County (the Baudette area) in northern Minnesota represents a westward expansion of the deepoverburden characterization (glacial till sampling) program begun by the Department of Natural Resources in 1985. The goals of the program are to detect regional-scale anomalies of gold and other metals in the glacial overburden, and to develop the stratigraphic framework for understanding those anomalies. The Baudette area, near Lake of the Woods on the Canadian border, is covered by deep glacial overburden (>100 feet), and is underlain by an attractive, but relatively unexplored, gold terrane made up of structurally-deformed, volcanicassociated rocks of the Wabigoon granitegreenstone belt. The deep overburden hides the bedrock and hinders mineral potential evaluation of state lands.

Problem Statement

The granite-greenstone terrane in the Baudette area is concealed by deep, unmapped overburden which masks the Precambrian bedrock and hinders assessment for areas of bedrock mineralization.

Significance of the Problem

The State of Minnesota is in global competition to attract the private assets used to explore for, identify, and develop mineral resources. Overburden is considered a hindrance to exploration and resource assessment by most exploration companies. The State, through legislative action, is making a commitment to help Minnesota's mineral economy diversify and compete on this worldwide basis. Overburden investigations are a part of this work. The legislature is encouraging regional-scale investigations to delineate the geologic framework and mineral potential of the state, and is sponsoring characterization studies of industrial mineral commodities, and encouraging cooperative and supporting research to enhance the value of Minnesota iron ore

products. The geologic framework investigations sponsored by the state are designed to detect mining-camp-scale³ areas for exploration investment and to delineate geologic features amenable to mineralization. The deep-overburden program provides a means for detecting areas within the state that contain regionally anomalous concentrations of gold or other metals.

While it is true that the overburden in Minnesota hides the granite-greenstone terrane and does hinder traditional drilling exploration programs, it can also provide an exploration media for detecting and tracing buried mineralized bedrock, if it is properly utilized. In many instances, the glacial overburden that hides the bedrock terrane also preserves mineralized rock fragments that have been excavated and redeposited by glacial activity. The excavated fragments, or "dispersal trains"⁴, can exist as property features (less than ten square kilometers), township features (up to a hundred square kilometers), regional features (up to hundreds or thousands of square kilometers), or even continental features (tens or hundreds of thousands of square kilometers). Dispersal trains are generally much larger than the bedrock source they are dispersed from, and can leave chemical, mineral, textural, electromagnetic, or radiometric signatures in the overburden. If elevated background levels associated with a miningcamp can be detected, then the overburden becomes an effective tool for reconnaissance evaluation of mineral potential.

The Department of Natural Resources pursues this work of sorting out favorable from unfavorable mineral lands because it is charged with managing "for the benefit and pleasure of present and future generations" the public acreage which includes extensive, potentially mineral-rich lands in the northern part of the state. Fifty-nine percent of the land surface in Lake of the Woods County is publicly owned, and the State holds in public trust 438,600 acres (1983 data). Governmental activities in Canada and Minnesota, and the new tectonic model for the origin of Canadian shield crust segments (Percival and Williams, 1989; Williams, 1990; Davis and others, 1989) indicate that the mineral potential of the Wabigoon belt in Lake of the Woods County might be worth a closer look.

Project Scope and Progress

The objectives of the Baudette area project are to establish the regional-scale stratigraphic framework and chemical-mineralogical background

³ See glossary.

⁴ See glossary.

levels of the glacial overburden in the twenty-one townships that encompasses most of the Wabigoon belt within Lake of the Woods County. The steps that must be taken to accomplish these objectives are:

- 1. <u>Obtain</u> representative samples of glacial overburden, saprolite, and solid bedrock from the subsurface of the Baudette area. (Objective completed November, 1989.)
- 2. <u>Describe, measure, and log</u> stratigraphic units within the glacial overburden and saprolite cores. (Objective completed January, 1990.)
- 3. <u>Establish</u> a regional-scale stratigraphy for the glacial overburden in the Baudette area, based on the cored materials. (Objective completed February, 1991.)
- 4. <u>Identify</u> chemical, mineralogical, textural, and physical properties of the glacial overburden, saprolite, and bedrock that may have use in resolving the framework stratigraphy and bedrock mineralization potential of the Baudette area. (Objective completed April, 1991.)
- 5. <u>Summarize</u> any anomalous values that have been detected to this point. (Objective completed April, 1991.)
- 6. <u>Disseminate</u> this information. (Objective completed June, 1991.)

Completion of the project should provide the information needed to conduct infill drilling.

Location, Geological Setting, and Exploration History

Location

The Baudette area encompasses 21 townships (2100 sq. km) west and south of Baudette in the southern half of Lake of the Woods County (Map 1). Highway 71, running south from Baudette, forms the eastern edge of the field area. Major drainages flow to the northeast, parallel to raisedbeach strandlines of former glacial Lake Agassiz or along the periphery of the buried Vermilion Moraine (otherwise known as Beltrami Island). These drainage systems join with the Rainy River at the northeastern edge of the field area. Roseau flowage, on the western edge of the field area, is an exception, and flows northwesterly to join the Red. River of the North.

Vegetative cover and land utilization reflect the permeability and topography of features reworked by glacial Lake Agassiz (Map 2). Lowlands are occupied by poorly-drained organic peatlands and black spruce forests. The sandy, narrow, laterally continuous raised-beaches contain upland conifers and deciduous varieties like aspen and birch. Better-drained surfaces in the northern part of the field area are utilized for large-scale agricultural activities. There are four peatlands of ecologic significance that occur within the Baudette field area. Drilling access in the summertime is limited by poor drainage and the sparse road network, which is confined mostly to the better-drained lands.

Geological Setting

A few gross aspects of subsurface geology are reflected in surficial landforms, but little is directly known of the composition and history of the sediments and bedrock buried beneath the most recent of the glacial deposits. A partial framework can be sketched based on data from the surrounding region. The Baudette area is thought to primarily contain Pleistocene drift and Precambrian (Archean) basement rocks. Marine and marine marginal strata of Mesozoic and Paleozoic age have been identified west and northwest of the field area but have not been detected in the Baudette area. Four glacial sequences have been identified in the region. Beneath the glacial drift are volcanics, sediments, and igneous intrusions that record at least one episode of regional metamorphism and shearing during the Precambrian. The unconformity between the Precambrian and Pleistocene units is known to have undergone significant weathering at one or more times since the early Proterozoic. Figure 3 summarizes the known events that may have helped to concentrate or redistribute gold and other metals in the Baudette area.

The Baudette area is underlain by a portion of the Wabigoon subprovince of the Superior province. The Quetico metasedimentary subprovince is present at the southern edge of the field area, on the south side of the Vermilion fault. Bedrock is not exposed anywhere in the Baudette area.

Day and Klein (1990) and Frey and Venzke (1991) describe the structural-stratigraphic fabric of the Baudette area as northeast-southwest. Major

2

fault systems include the Vermilion, Quetico, Baudette, Border, and Fourtown.

Where exposed in other areas, the Wabigoon belt is a typical granite-greenstone terrane made up of variably deformed and metamorphosed volcanic and sedimentary supracrustals intruded by mafic to felsic intrusions (Frey and Venzke, 1991). Mafic to felsic cycles of bimodal volcanism and associated volcanogenic massive sulfide deposits have been recognized in other portions of the Wabigoon belt (op. cit.). Metamorphism is generally upper greenschist to lower amphibolite facies (op. cit.).

The subsurface portion of the Baudette area is penetrated by thirty recorded water wells, by eleven scattered scientific drill holes, by twenty deep overburden boreholes (present project) and fortythree bedrock drill holes drilled in search of base metals along a laterally extensive conductor, for gold near zones of regional structural shear, and for gold perhaps associated with chemical sediments. Each of the trends follows aeromagnetic anomalies identified in the 1960's. Maps 3, 4 and 5a-d summarize available geologic information for the area.

Exploration History

More geological information has become available about the character of the Wabigoon greenstone belt underlying Lake of the Woods County in the past four years than in perhaps the previous twenty. The United States Geological Survey (USGS), the Minnesota Geological Survey (MGS), the Minnesota Department of Natural Resources (MnDNR), and the United States Soil Conservation Service (SCS) have all been active in the area recently, and just across the border the Ontario Geological Survey (OGS) has been conducting regional-scale geologic mapping and geochemical sampling programs. Eight exploration leases are currently held in Lake of the Woods County, four within the Baudette area. Figure 3 provides a synopsis of available geologic coverage.

Historical records indicate that Precambrian bedrock exposed along the Rainy River and the shores of Lake of the Woods received early reconnaissance attention for gold (Winchel, 1899) and for uranium (Grout, 1927). Significant quantities of neither were located. In the early 1950's, the area around and east of Baudette was reviewed for potential wildcat iron ore occurrences. Exploration drilling along aeromagnetic anomalies

reached as far as western Koochiching County (just east of the Baudette area), tracing an iron formation striking southwesterly out of Emo, Ontario, but no holes were spud in Lake of the Woods County. In the 1960's, aerogeophysical surveys were being used to detect base metal occurrences in Canada and the U.S., but it was 1969 before the first exploration drill hole was put down on a geophysical anomaly in the Baudette area. Between 1969 and 1986, three geophysical exploration plays served to generate a total of fortythree exploration drill holes that in places penetrated pyrrhotite, graphite, and iron formation, but identified no subeconomic or economic deposits of base or precious metals. Governmental work up through 1986 produced low resolution aeromagnetic, gravity, and interpretive bedrock maps (Meuschke and others, 1957; McGinnis and others, 1973; Sims and Ojakangas, 1973) and geologic maps of surfacesubsurface features in Lake of the Woods and Koochiching counties (Helgesen and others, 1975; Ojakangas and others, 1977; Eng, 1979; Eng, unpublished maps; Meyer, unpublished maps).

Recent activities (since 1986) in the Baudette area have been primarily by governmental agencies. The U.S. Geological Survey is completing a substantial reconnaissance project over a larger region that includes the Baudette area, under the Conterminous United States Mineral Resource Assessment Program (CUSMAP). Aeromagnetic surveying and scientific drilling form the basis for this work (Braken & Godson, 1988; Klein and Day, 1989; Bracken and others, 1991). The USGS has also completed a reconnaissance-level geochemical survey of B-horizon soils survey in parts of Lake of the Woods and Koochiching counties (Clark and others, 1990). The B-horizon soil survey detected patterns indicative of quartz/chlorite/carbonate shear zones were detected south of Baudette.

The Minnesota Geological Survey has completed a scientific drilling program (Mills and others, 1987) placing eleven bedrock control points in the Baudette area and giving some indication of overburden composition. The scientific drilling in Lake of the Woods County was conducted to support CUSMAP efforts by the USGS. Horton and Chandler (1988) have recently assembled an update for the gravity data of McGinnis and others (1973).

The Minnesota Department of Natural Resources is completing two projects, in addition to this survey, that are directed at better resolving the metallic mineral potential of the Precambrian bedrock in the Baudette area (Frey and Venzke, 1991; Lawler and Venzke, 1991). Results from two previous overburden characterization surveys are also available for comparing and evaluating Baudette area results. These reports cover the Effie and Orr-Littlefork areas located east and south of the Baudette area (Martin and others, 1988; Martin and others, 1989).

In other developments, the Ontario Geological Survey recently completed a mapping and sampling program of overburden overlying a portion of the Wabigoon belt just across the Rainy River to the north and east of the Baudette area (Bajc and others, 1990). Four private mineral exploration developments are in progress as a result of that work. Subsurface glacial drift investigations have also been completed in southeastern Manitoba (Teller and Fenton, 1980). Meanwhile, the United States Soil Conservation Service is currently working on soil survey maps for Lake of the Woods County. Unpublished maps are available from the Soil Conservation Service⁵. Finally, eight exploration leases are currently held in Lake of the Woods County, four within the Baudette field area.

Project Design and Methods

Nine factors influence the design and outcome of a deep-overburden survey: drilling pattern, borehole density, drilling method, constraints on the placement of drill sites, sampling strategy, subsampling strategy, analytical methods, strategy for data handling (Table 3), and interpretive approach.

Drilling patterns are generally designed as grid-based or feature-based arrangements. Gridbased patterns are used to provide unbiased, model unspecific information about subsurface geology. Grid patterns work well to eliminate bias, but tend to waste important organizational resources because most of the critical geology in an area occupies 10% or less of the field area. Feature-based drilling, on the other hand, can provide a wealth of information about specific geologic features. Feature-based patterns work well for elucidating the geology of features already detected or hypothesized, but they do a poor job of resolving geologic features that are undetected or unhypothesized in an area. Featurebased drilling patterns to a large extent eliminate the opportunity for chance discovery. Chance

discovery, or serendipity, is too often discounted during the design phase of projects, the end result being that project work serves merely to retrench existing ideas rather than shed light on very imperfectly resolved subsurface geology.

Since Baudette area overburden is largely unknown, and the underlying bedrock geology is very poorly constrained, a grid base is needed to ensure regional, relatively unbiased coverage, and to provide maximum opportunity for the chance discovery of geologic features not encompassed by current models or ideas. However, in order to best optimize the overall return of geologic information from each drill hole, some component of featurebased drilling also needs to be incorporated in the design so that a few of the geophysically detected, untested bedrock features present in the area can be evaluated.

The Baudette area drilling pattern is based on a grid of township-sized cells in which individual drill holes are constrained within cell boundaries, but are sited to test geophysically detected bedrock features. This ensures that the regional-scale overburden survey design is retained, and that a significant number of high quality bedrock control points can be placed to assist bedrock mapping projects being conducted in the area. Drill sites 501, 502, 505, 514, 515, 518, 519 and 520 were placed to test geophysical bedrock features outlined by CUSMAP efforts.

Borehole density in the Baudette area, like that of preceding deep-overburden survey projects in Minnesota, is designed as four boreholes per township (one borehole per 25 square kilometers), dense enough to detect and confirm the presence or absence of Archean gold geochemical province sized anomalies. The drilling density in the present project, which is reconnaissance work for the actual survey, is one borehole per 100 square kilometers, dense enough to establish the regional-scale stratigraphic framework and background levels in the area and dense enough to identify prospective till sheets, but not dense enough to determine the presence or absence of township-sized gold (or other metal) anomalies.

The rotasonic coring technique was selected for its ability to penetrate boulders and solid bedrock, to deliver large diameter undisturbed core of unlithified sediments, and to deliver uncontaminated samples of till, saprolite, and other overburden materials. These advantages increase the quality of the sampled materials and lend a

⁵ P.O. Box 217, Baudette, MN 56623

greater degree of confidence to the results.

Geological and non-geological criteria constrain the placement of borehole sites. Geological criteria were: drill sites should be located "down ice" from known and inferred zones of structural deformation or geologic contact so that "down ice" dispersals from these occurrences can be intersected, but drill sites should not be located where depth to sound bedrock exceeds 300 feet as indicated by available drill hole and geophysical data (300 feet is the practical depth limit for the rotasonic technique). If possible, sites should be located to support existing bedrock mapping projects. Drill sites should be located to maximize the likelyhood that till units will be encountered, avoiding, if possible, terminal moraines, eskers, and major fluvial/glacio-fluvial deposits. Non-geological constraints that influenced drill site placement were: first, a limit of one continuous core rotasonic drill hole per township with location restricted to land parcels containing state-owned surface and mineral rights. Drilling sites need summer access and, if possible, a minimum of trail/site preparation. Logging trail margins, log landings, and natural clearings were preferred drilling sites. For safety reasons, drill sites should not be placed within 100 feet of road right-of-ways, power lines, buried cables, and pipelines. Drilling sites should also be located outside the exclusion areas of designated peatlands. Finally, drill sites should be located in context of any applicable exploratory boring regulations and with approvals of local wildlife managers.

Detailed descriptions of the cored materials were used to select intervals of till and saprolite for analysis. Since the rotasonic technique yields large diameter core (3.7 inches), a high-precision sampling strategy can be employed. Ten kilogram samples can be collected from intervals as short as five feet, still leaving enough core intact for future stratigraphic reference. Ten foot samples are ideal. Appendix 280-C lists details of the procedures used to sample Baudette area core. The sub-sampling strategy for Baudette area core samples was to start with the analysis of the most direct indicators of gold mineralization (gold grain counts and gold assays) and work progressively toward more indirect mineralization indicators as time permitted. Subsampled fractions include gold grains, heavy mineral concentrates (mineralogy of the nonmagnetic sub-fraction and chemistry of magnetic and non-magnetic sub-fractions), silt-clay matrix (chemistry), pebbles (lithology), matrix texture (sand, silt, and clay), then physical properties

Û

(magnetic susceptibility, bulk density, pH, etc.) (Fig. 4).

The measurements on Baudette area cores help to elucidate either the regional background levels of mineralization pathfinders or the provenance attributes of glacial stratigraphic units. Appendix 280-C lists the chemical, mineral, textural, and physical properties made on the core samples.

The strategy for evaluating the approximately two-hundred chemical, mineralogical and other properties in the data set (Table 3) is to plot all of the attributes showing precision better than 15%, and display the data by location and depth, keyed to preliminary stratigraphic assignments. The data are evaluated for regional-baseline changes either within stratigraphic units or independent of stratigraphic units, and are checked for data spikes (anomalies). The surviving attributes are then used to re-evaluate stratigraphic assignments and make preliminary statements about regional glacial stratigraphy and background levels of measured attributes.

Baudette Area Survey Results

Project work took place during the period July 1, 1989 to June 30, 1991. Appropriations totaled \$196,000, including \$134,000 for drill coring and sample collection, \$32,000 for sample preparation and analysis, and \$30,000 for field crew expense, data analysis, report preparation, technique development, and information dissemination. Drilling sites were selected and checked in the summer of 1989. Coring work commenced in the fall of 1989 and was completed before first snowfall. Detailed logging and sampling of core was completed by spring of 1990, and data collectioncompilation-analysis were wrapped up by spring of 1991. The data synthesis and report writing portions of the project were completed by early summer, 1991.

Twenty of the twenty-one sites selected for continuous coring were drilled during the fall of 1989. The remaining, lowest priority drill site, which sits atop the Quetico metasedimentary Subprovince (drill site 504), was eliminated from the drilling schedule after total budgeted drilling footage was reached at the twentieth drill site. Drilled depths ranged from 61 feet to 329 feet. Each of the drill holes penetrated the entire glacial overburden package, which ranged from 54 to 299 feet thick. Seventeen drill holes penetrated far enough to recover solid bedrock. Overall, core recovery was

Drilling operations intersected glacial till, layers of sand and gravel, silt-clay lacustrine sediments, saprolite, and solid bedrock. Bedrock lithologies recovered include metamorphosed Precambrian volcanic, sedimentary, and intrusive units. Silt-clay beds were frequently encountered between till units in the eastern portion of the field area, but sand and gravel were the dominant intertill units in the western portion of the field area. Paleozoic strata (dolomite-limestone-chert bedrock) were not intersected in any of the 20 boreholes, but an unpredicted Cretaceous sedimentary unit was penetrated in a paleo-topographic low in the northeastern corner of the field area. Saprolite was encountered in 14 boreholes. Eleven of the saprolite profiles were more than ten feet thick.

4,247 feet of continuous core were drilled, broken to four-foot lengths, boxed, numbered, and loaded for transport, logging, and sampling as a result of the drilling operations. At the drill core library facilities in Hibbing, Mn, cores were measured, described, sampled, and archived for future reference. Appendix 280-A summarizes drill site locations, elevations, drift thickness, saprolite thickness, number of feet of solid bedrock drilled, total depth drilled, and overall recovery percentage. Appendix 280-A also summarizes the number of till, non-till, and solid bedrock samples taken from each drill core. Descriptions of core (and other measured parameters discussed later) are collected in Appendix 280-B.

Stratigraphy and Buried Landscape

In overview, there are four different glacial units named here, with the name only implying relative age and continental-scale provenance. Map 6 summarizes the distribution of glacial drift and weathered bedrock encountered in the Baudette area, and Map 5a shows the elevation of sound bedrock and basal Quaternary contacts. Summary maps of the four glacial stratigraphic packages are shown in Maps 7 through 10. Starting from the youngest, the late-Wisconsinan surface or Koochiching lobe deposits overlie the Rainy lobe deposits. Beneath them are the pre-late Wisconsinan (older) deposits of the Winnipeg lobe and the Old Rainy lobe. The pair of Koochiching lobe and Rainy lobe ice advances were both associated with the late Wisconsinan Laurentide ice sheet. The older tills have many similarities to this pair of younger tills; hence, the inference of

repetitions of such pairing for the older till strata. However, no means of correlating such older till pairs was found. Note the preservation of six older tills identified by descriptive logging (Fig. 5). The six older tills are not present in any single borehole, but evidence from outside the area supports such multiple older events. In this regional survey, the older till samples of Keewatin provenance are hereafter classified as Winnipeg lobe tills--not Upper, Middle, or Lower Winnipeg--since so few samples of each exist. The same is true for Old Rainy lobe till samples.

A description of each unit and observations on variability are presented in the following sections. The variability is affected by the pre-glacial landscape and the spatial distribution of each subsequent glacial unit.

At least three factors of the pre-glacial landscape; the topography, saprolite thickness and composition, and bedrock lithology are major controls on subsequent till compositions. These factors make up the buried landscape, which can be reconstructed at a regional scale, primarily from the elevation data of preserved pre-glacial materials (Fig. 9 and Map 5a and 7-11). Summarizing the pre-glacial topography, the sound bedrock surface has a regional slope down of >100 feet from the central portion towards Baudette in the northeast. Diagonally crossing this and apparently following a major bedrock structure is a regional bedrock high that appears to be the major control upon glacial drift processes. The regional surface topography does not directly mimic the bedrock topography here. Moving up the stratigraphic column, saprolite appears to be regionally preserved off the bedrock topographic highs (>100 ft. drift) and where protected from the subsequent erosive Labradorean ice advances. Continuing up the column, the total glacial drift thickness is similar east to west, but the stratigraphy is not (Fig. 5). The late-Wisconsin events dominate the column in the eastern portion, whereas, both late-Wisconsin and older events are preserved in the western portion. This has a significant effect upon the till matrix compositions, discussed later. The other two factors regarding saprolite and bedrock are also described in later sections and presented on maps (Maps 6 & 5a).

Koochiching Lobe Deposits

Both inside and outside the Baudette area, where Koochiching drift makes up the surficial deposits in all or part of Koochiching, Lake of the Woods, Beltrami and Itasca counties, it displays some common characteristics. The clasts and matrix are rich in Paleozoic limestone, dolostone, chert, and Cretaceous Pierre shale, clearly of a southeastern Manitoba-northwestern North Dakota provenance. The matrix becomes progressively more silty and clayey to the east, as the till overrode its own proglacial lake sediment. Glacial striae and clast fabric orientations measured at nearby Pinewood, Ontario, yield a flow direction of nearly due east.

The surficial deposits of glacial drift in the Baudette area are all made up of Koochiching lobe drift (Map 3, Surficial Geology) and Fig. 5; see also Martin and others, 1988). These deposits are described in terms of distribution, flow path direction, physical character, internal stratigraphic features, and variation in till composition across the region. The Koochiching tills have been described elsewhere as poor sample media for geochemical prospecting (Martin and others, 1988). Because of that and since these deposits are vertically farthest removed from bedrock, very few Koochiching till samples were analyzed.

The Koochiching tills were found in 19 of 20 boreholes, and the till thickness ranged from 11 to 102 feet. The deposits contain up to three separate till beds. The eastern portion of the area has consistently thicker Koochiching deposits, 76 to 166 ft.

The Koochiching lobe deposits have a complex internal stratigraphy. Evidence for three distinct phases of the Koochiching lobe are present across the northern portion of the study area. The first two phases correlate with two Koochiching tills separated by lake sediment noted to the east (Martin and others, 1988) and southeast (Martin and others, 1989). The upper till across northern Lake of the Woods County was laid down by the last readvance of the Koochiching lobe which apparently did not extend much further east. All three phases of the lobe were fronted by a large glacial lake during both advance and retreat across the county. Sediment deposited in the lake here is generally coarser than to the east where clay dominates the lacustrine sections. Likewise, subglacial Koochiching till where composed largely of reworked lake sediment in the Lake of the Woods area is rich in silt and fine sand, as opposed to the very clayey tills found to the east in Koochiching County.

Incorporation of underlying till and lake

sediment accounts for the large textural variation of the Koochiching tills, particularly the till of the first phase, which plucked up both lake clay and sandy till of the Rainy lobe. Extensive incorporation of Rainy lobe sediment by the first advance of the Koochiching lobe is thought to account for the general lack of Cretaceous shale indicator clasts and the lower carbonate content of the lower Koochiching till, which was also noted in the Effie area (Martin and others, 1989, p. 22). Common to abundant shale clasts in till of the second Koochiching advance indicate a significant change in flow direction from the first; while reduced shale and more abundant carbonate in the uppermost till indicate a shift back to a more north-of-west source for the final advance of the Koochiching lobe. The upper Koochiching till probably correlates with the Falconer Formation of northwestern Minnesota (Harris and others, 1974), and the Whitemouth Lake Formation of southeastern Manitoba (Teller and Fenton, 1980). The lower two tills of the Koochiching lobe probably correlate with the upper and lower Red Lake Falls Formation (Minnesota) and the Roseau Formation (Manitoba), and the Rainy lobe till correlates with the Marcoux (Minnesota) and the Senkiw and Whiteshell formations (Manitoba). The first and third Koochiching lobe advances across Lake of the Woods County probably flowed about sixty to seventy degrees east of south (with reference to the bedrock of southeastern Manitoba; McRitchie, 1980); whereas, the second advance flowed almost due east. The increasing percentage of quartz and pisoliths in the very coarse sand fraction from the upper to lower Koochiching tills indicates progressively more local rock (Precambrian versus Paleozoic) down section, which in turn indicates progressively more incorporation of Rainy lobe sediment. In fact, the bulk of Precambrian clasts within Koochiching till in the study area was probably derived from Rainy lobe sediment. Thus, although usually not the till immediately above bedrock, the lower Koochiching till, particularly in areas of thin Rainy till over bedrock, should still be considered for prospecting purposes.

Rainy lobe Deposits

Rainy lobe deposits are very different from those of the Koochiching lobe in terms of distribution, flow path direction, physical character, variation in till composition across the region, and bedded sediment features. The Rainy lobe tills have been described elsewhere as good sample media for geochemical prospecting (Martin and others, 1988), and also appear to be in the eastern portion of the Baudette area.

Rainy drift was found in 18 of the 20 boreholes, but its till is commonly thin, 3 to 42 feet thick, averaging 17 ft. (Map 8 isopach). Thick sequences of Rainy drift are associated with the inferred, buried Vermilion moraine that crosses this region (Fig. 7), and associated proglacial lake deposits. The lack of Rainy till in OB-512 and 516 appears to be related to the regional bedrock high.

Glacial striae north and east of the study area (Bajc and Gray, 1987; Fig. 7) indicate a south-southwesterly (roughly 210° near Pinewood, Ontario, op. cit.) flow path for the late Wisconsinan Rainy lobe. Variations in striae direction from almost due south to seventy degrees west of south may be due to local variations in the sub-ice topography, or possibly they represent different phases in the ice advance. The flow path of the Rainy lobe may have been nearly due south as the ice stood at the Vermilion moraine, for example, across central Lake of the Woods County (Fig. 7); whereas earlier, the flowpath would have been more southwesterly across the southern part of the county. Not only does the underlying bedrock topography control the path of flow, it also helps to determine transport distance of entrained debris (Clark, 1987). In general, subglacial transport carries sediment toward topographic lows, and transport distances through valleys or bedrock lows are longer than across intervening highs. Flowpaths of earlier advances of the Rainy lobe can be expected to have been similarly altered by the bedrock high in central Lake of the Woods County.

The physical character of the Rainy lobe drift is dominated by an abundant assemblage of Precambrian rock clasts incorporated during the lobes advance across the Canadian Shield. Rainy lobe till is gray to greenish gray in its typically unoxidized state. The matrix is usually a sandy loam with very low carbonate content and low total matrix solubility (Appendix J). The matrix heavy minerals commonly contain pyrite. The magnetic susceptibility seems generally higher for Rainy tills than others, probably reflecting the higher content of unweathered magnetic pebbles. The true or proto-till character is difficult to assign, due to variability discussed below.

The variation in Rainy till composition displays regional, local?>, and property-scale trends due to

at least the two factors of underlying material character (see Figs. 8 & 6) and bedrock topography. The regional trend is best displayed by increased carbonate content in the western portion, where the Rainy lobe advanced over Winnipeg lobe deposits. The local scale variation is best displayed by the increased sound Precambrian bedrock content over a local bedrock high (OB-509) or conversely increased saprolite content over a local bedrock low (OB-506). The property-scale variation is the most common type, often occurring at the bottom of the till, nearest underlying material, as in OB-501. The most significant variation is the regional change that affects both the Rainy till clasts and matrix composition.

The Rainy lobe bedded sediment contains two widespread features--a marker zone of brown clay and thick sequences related to the Vermilion moraine. A marker zone of brown to reddishbrown clay laminae, noted in previous drilling across southern Koochiching County and into St. Louis County (Martin and others, 1988, 1989), was encountered in holes OB-501, OB-502, OB-505, and OB-506 in the eastern part of the study area. Reddish-brown clay incorporated in basal Koochiching lobe till in hole OB-509 was derived from this marker bed. These occurrences further extend the known boundaries of the proglacial lake that fronted the Rainy lobe during its standstill at the Vermilion moraine (Fig. 7). The reddish clay originated either from a large glacial lake dammed by the Superior lobe south of the Mesabi Range, or from meltwater issuing from ice at the Highland moraine in Lake County (Hobbs and Goebel, 1982). Interbedded calcareous sediments indicate greater proximity to the Koochiching lobe in the Lake of the Woods end of the lake. Thick sequences of bedded sediment present in holes OB-508, OB-515, OB-518, and OB-519 were laid down as the Rainy lobe retreated to the position of the Vermilion moraine. The Rainy till bed within lake sediment in hole OB-508 represents a local readvance of the Rainy, and it may correlate with a similar sequence found in southwestern Koochiching County (Martin and others, 1989, p. 22).

The surface expression--and possibly the deposits--of the Vermilion moraine was obliterated by the Koochiching lobe and its proglacial lakes across Lake of the Woods and northwestern Koochiching counties. However, the position of the moraine across this area can be approximated (Fig. 7) by reference to the trend of the moraine in St. Louis County and the trend of strings of Rainy lobe kames at the surface across northern Koochiching

(Horton and others, 1989) and eastern Roseau counties, southwestern Ontario (Bajc and Gray, 1987), and southeastern Manitoba (Nielsen and others, 1981). The north thirty degrees west trend of the moraine appears to continue from the point of burial west of Orr to central Lake of the Woods County, where it is thought to bend to the west, and then in Roseau County back to the north. The bend in Lake of the Woods County is believed analogous to that noted in the Effie moraine (Martin and others, 1989, p. 23), which was caused by a bedrock high in the Deer Lake area. A similar bedrock high (Map 5a) is present in Lake of the Woods County. During retreat of the Rainy lobe, the ice over the bedrock high would have been thinner and thus melted back faster. Алу readvances would also be obstructed by the bedrock high. The Effic moraine may coalesce with the Vermilion in western Lake of the Woods County, forming the western end of the lake bounded by the two moraines.

To summarize, the Rainy lobe tills appear to have a major component of sound Precambrian bedrock, which is modified by regional \pm local \pm property - scale components. In general, the chemistry data strongly supports this observation (Fig. 8).

Winnipeg Lobe Deposits

Winnipeg lobe deposits are similar to the Koochiching in terms of continental provenance, but are older. The Winnipeg lobe will also be described in terms of distribution, internal stratigraphy, flow path direction, physical character, variation in composition for comparison to the other units. These tills vary in usefulness for prospecting from a completely exotic composition (518-05) to a useful, property-scale composition (518-08).

Outside the Baudette area, buried Winnipeg lobe deposits were identified from cores in southern Koochiching and northern Itasca counties (Martin and others, 1989). A clayey, carbonate-poor till of Keewatin provenance has been recognized in northwestern Wisconsin (Johnson, 1986), far down ice but along a reasonable flow path from Lake of the Woods (see carbonate-poor till below).

The internal stratigraphy of the Winnipeg lobe deposits is complex. Glacial sediment from three separate advances of the Winnipeg lobe are recognized in the Baudette area (Fig. 5). Till of the upper and lower advances, unlike the middle advance or Winnipeg till studied elsewhere in Minnesota (Martin and others, 1989; Meyer, 1986), has only moderate amounts of carbonate. The high clay content of Winnipeg lobe till is believed due to the incorporation of Cretaceous marine and nonmarine (reworked saprolite) sediment as the ice moved across southeastern Manitoba. Charcoal from a sandy silt bed between the upper and middle Winnipeg tills yielded a radiocarbon date of greater than 40,400 years B.P. No direct proof was available to indicate a pre-late Wisconsinan age for the upper Winnipeg till; it was simply noted to be stratigraphically below sediment from the last Rainy lobe advance.

Till-clast lithology must be used to estimate the flow paths for Winnipeg hole advances, because related landforms and glacial striae have been buried or obliterated. The first and third carbonate-poor Winnipeg advances probably had a flow path twenty to thirty degrees east of south, whereas the second and carbonate-rich advance probably flowed about due southeast.

The physical character of these deposits is dominated by the abundant limestone and dolostone. Winnipeg lobe till is typically gray to dark gray in contrast to the greenish-gray color of Rainy lobe till. The lower Winnipeg till in the study area is oxidized grayish brown in all five holes in which it was encountered; this serves as a useful marker bed in the subsurface. The matrix is usually a silt loam, with much more clay than the Rainy or Old Rainy, and with very high matrix solubility (Appendix J). The matrix heavy mineral weight is significantly lower than the Rainy or Old Rainy. Limonite pisoliths are common in the heavy mineral fraction of these tills and uncommon in the others. Paleozoic pebbles dominate the clasts. There are clear trends in the matrix chemistry for this stratigraphic unit, such as for Hg, K, Cu, B, & As (see Results Chemistry).

There are definite variations in Winnipeg deposits, inferred to be from mixing of underlying materials (Fig. 8). This is particularly true for the oxidized, lower till. In four of the five holes, this till lies directly over saprolite or bedrock, clasts of which were clearly incorporated by Winnipeg lobe ice. Visual evidence was verified by pebble and sand counts (Table 4 & App. M). Similar dilution occurs in the middle till in a few cases where it is very low in the Quaternary section.

In summary, the Winnipeg lobe deposits are very different from the Rainy or Old Rainy tills. They are useful as a prospecting media only where they occur at the base of the Quaternary section, but even then retain an identifiable Winnipeg fingerprint.

Old Rainy Lobe Deposits

The Old Rainy lobe deposits will also be presented in terms of distribution. The Old Rainy lobe deposits distribution is unusual in terms of its elevation and thickness across six boreholes where it is preserved (see Map 10). Regarding elevation, it occurs in two boreholes in the eastern portion, only in topographic lows where the top is below 990 feet elevation. In contrast, in two boreholes in the western portion, it creates a topographic high where the top is 1145 feet elevation (OB-520). Moreover, it is thicker in the western portion, up to 193 feet thick in OB-520. In all of these cases, it is the stratigraphically lowest till in the Quaternary section. Note that in OB-521, sediment from two Old Rainy advances is separated by Winnipeg lobe deposits.

The physical character of the Old Rainy tills is dominated by relatively more saprolite, an abundance of Precambrian rock clasts, and variable Paleozoic carbonate content. Even where rich in carbonates, it is distinguished from Winnipeg lobe till by its sandy texture, greenish color, and low clay mineral content (Table 5, Table 4, App. K & App. J). In OB-507, where Rainy lobe till rests on Old Rainy till, the Older till is oxidized pale brown in color. Without the oxidized zone, the contrast of greater compactness, somewhat higher clay content, and higher matrix carbonate distinguishes the Older till. Many distinctions in element composition, such as K, Ti, Na, B, and Hg also are recognized. The Old Rainy tills also contain a higher siderite weight in the matrix heavy mineral fraction.

The continental-scale flow paths of Old Rainy lobe advances cannot be defined yet by direct indicators, so must be inferred on the basis of till composition. Based upon gross composition, the continental flow paths of the Old Rainy are similar to Rainy lobe advances. One difference is the higher matrix carbonate content and it suggests two hypotheses. One is incorporation of older Keewatin tills, the other is a Hudson Bay lowland carbonate source for the Old Rainy tills (see Dredge and Cowan, 1989).

To compare the Old Rainy deposits to those outside the Baudette area is difficult, since the subsurface record is fragmentary. Correlation between holes within this area is not clear-cut, and correlation with the two advances recognized in the Effie area to the southeast (Martin and others, 1989) is not attempted. Old Rainy till sampled in the Effie area averaged more silt, less sand, and a little less clay than Old Rainy till sampled in Lake of the Woods County (App. J). Assuming much of the silt content in Rainy till is rock flour from glacial abrasion of crystalline rocks, till from the Lake of the Woods area may be derived from a rock source slightly more saprolitic than fresh, as compared to Old Rainy till in the Effie area.

In summary with regard to prospecting, the Old Rainy lobe till compositions suggest that local and property-scale incorporation of underlying saprolite and bedrock commonly occurs. Moreover, the generally depleted values of many elements in saprolite offers good geochemical contrast.

Saprolite Deposits

Saprolite deposits are very different from glacial drift deposits in terms of distribution, physical character and variation. Because of its wide distribution in the Baudette area and the pathfinder element accumulations, it has good potential as a prospecting media (DaCosta and others, 1991).

Fourteen holes in the Baudette area contained saprolite, with the thickest section of 124 ft in drill hole 508, and the thinnest section in drill hole 512 containing 2 ft. A few holes contained 1-2 ft. sections of reworked saprolite and a thicker section of Cretaceous sand in drill hole 503 at the saprolite/drift interface. Kaolinitic saprolite was encountered in six drill holes: 501, 503, 506, 507, 508, and 520. Most drill holes contained varying thicknesses of chloritic saprolite except for drill hole 519 which contained only grus. Drill holes 505 and 511 contained grus directly above bedrock.

A hypothetical weathering profile is made up of lateritic duracrust, reworked saprolite, kaolinitic saprolite, and chloritic saprolite (Smith, 1987; Parham, 1970) (see Fig. 9). In the Baudette area, the lateritic duracrust was not encountered in our boreholes. Reworked saprolite typically occurs in the first few feet of the saprolite, it is characterized by disturbed structures and the presence of foreign rounded pebbles and sand. In drill hole 503, there is a 58 foot section of Cretaceous sand (reworked saprolite). This sand is 99% angular quartz grains that range from fine to coarse grained. This unit is also reported by the OGS across the border in Ontario (Bajc, 1989). Kaolinitic saprolite is characterized by light greenish gray to white color, high kaolinite content and has a low bulk density. Chloritic saprolite is characterized by a darker greenish gray color, high chlorite content and a higher bulk density than kaolinitic saprolite. Grus is less weathered and more dense than saprolite; it is characterized by grainy texture caused by the breakdown of bonds between individual mineral grains (Appendices 280-B&K). All saprolite samples measured have high pH values (Appendix 280-K).

Bedrock type has some control over saprolite variation. It appears that the ferromagnesian mineral content of the protolith controls the kaolinite:smectite ratio, with more kaolin over feldspar rich protoliths (Appendix 280-0).

Gold Grain Counts

The median gold grain count for Baudette area tills is zero gold grains per 10 kg sample. Five boreholes in the eastern portion of the field area show elevated gold grain values in the Rainy till. In three of these boreholes the gold grain counts are anomalous compared to the regional median value (Table 5). The gold grain values fall off to background levels beyond drill hole 502 (see map in Appendix 280-E). With the regional-scale drilling density used in the current project, the data are inadequate to isolate a unique township source, but they are adequate to determine a regional trend for the gold grain dispersal, pointing to a regional source area in the vicinity of the newly recognized Baudette fault system, or in the vicinity of the magnetic felsic intrusions (magnetite tonalites? based on pebbles) located near the Baudette fault system. Till in drill holes 517 and 520 also display weak gold grain anomalies. Saprolite in the Baudette area does not display elevated gold grain counts for any of the samples analyzed.

The gold grain counts for all of the Baudette area samples are listed by sample number in Appendix 280-F, and are listed with gold assay information in Appendix 280-P.

Heavy Mineral Mineralogy

Heavy minerals provide a second means of detecting and tracing glacial dispersal of gold and

other metals. Fifty-seven of the 103 Baudette area till samples were selected for intensive mineralogical examination. The samples selected exhibited anomalous or unusual assay results that suggest the presence of distinctive heavy mineral varieties. All of the 103 heavy mineral samples were eventually checked for siderite and limonite pisolith content in order to test the stratigraphic utility of those minerals.

Before making the mineralogy examinations, the nonmagnetic fraction of the Heavy Mineral Concentrates (nmHMC) obtained from the processing laboratory (the 1/4 split not sent for assay) was further refined at the heavy mineral facilities of the U.S. Geological Survey in Denver, Colorado. The further processing yielded nmHMC-C3 (very nonmagnetic) and nmHMC-C2 (paramagnetic) sub-fractions. The intensive grain mineralogy work was done on the C3 sub-fraction. Siderite and limonite pisolith contents were visually estimated in the C2 sub-fraction (Fig. 10).

Gold, galena, molybdenite, native copper, scheelite, corundum, kyanite, and gahnite (zinc spinel) appear to be distinctive mineral varieties in the C3 fraction of Baudette area tills. The limonite pisoliths appear to be prevalent in Keewatin provenance deposits (Winnipeg tills). The siderite content is not stratigraphically controlled, but appears to correlate with saprolite incorporation into the tills.

Some of the more interesting pathfinder mineral varieties identified during examination include blue-gray scaly and/or hexagonal flakes of molybdenite (boreholes 512 and 505), native copper (seven boreholes in the eastern half of the field area, and in one large clear quartz cobble in borehole 503), and chalcopyrite (boreholes 502 and 520). Scheelite is present in many of the boreholes, with zero to five grains noted per borehole. Light blue corundum was noted in boreholes 507, 509, 517, and 521. Specimens of the corundum are being evaluated to test for possible gem quality. Gahnite, the zinc spinel, was identified in the basal (Old Rainy) till sample in borehole 517. The gahnite occurrence is coincident with the weak gold grain and scheelite anomaly also present in the basal till in 517 (Todd, 1991). SEM-EDS analysis of individual grains by Hanna Research Labs confirmed the identities of galena, chalcopyrite, corundum, arsenopyrite, and gahnite.

Heavy mineral examination results are summarized by sample number in Appendix 280-L.

Remarks from the initial heavy mineral examinations at the processing laboratory are listed in Appendix 280-P.

Heavy Mineral Chemistry

Assay results for the nonmagnetic (nmHMC) and magnetic (magHMC) fractions of heavy mineral concentrates (>3.3 specific gravity) exhibit four types of variation: some display invariant (unresolvable?) regional baselines, some exhibit sloping regional baselines, some display distinct stratigraphic signatures superposed on either invariant or sloping regional baselines, and some assayed elements show distinct enrichments or anomalous values in particular samples. Figs. 11 and 12 illustrate how these types of variation appear on graphic plots. By way of example, mercury (Fig. 11c) exhibits a sloping regional baseline that is independent of stratigraphy, displays a diagnostic stratigraphic signature, and shows some anomalous values.

Eleven nmHMC assayed elements show regional baseline changes that are independent of stratigraphy. Eight of these elements show regional increase to the west-northwest. They are: Ag, As, Cr, Hg, Lu^{*}, Zr, Fe, and Mn. The other three elements show a regional decrease to the westnorthwest. They are: Sr, Ca, and P. The regional baseline for one magHMC element, Pb, decreases to the west-northwest.

Mercury is the most diagnostic stratigraphic tracer in the nmHMC dataset. It displays up to a ten-fold higher concentration in the northwestern provenance Winnipeg tills than in the northwestern provenance Rainy and Old Rainy tills. The contrast is sufficient to resolve till contamination of the Rainy and Old Rainy tills where they have overridden Winnipeg sediments. As, Ni, Sb^{*}, and Sr also exhibit some stratigraphic distinction, but with less resolution. Regional baselines and stratigraphic variations found in the heavy mineral assay results are summarized in Table 2.

Samples that show distinct enrichment or anomalous values are scattered throughout the analytical results. Rainy till, Old Rainy till, and saprolite display coincident subregional-scale enrichments and anomalies. Rainy till in boreholes 503 and 514 shows coincident enrichment. Borehole 503 shows enrichment or anomaly in Au^{*}, Ba, and Sr, and high Hg in the Cretaceous sediment. Borehole 514 shows enrichment or anomaly in Bi, Cu, Hg, Rb^{*}, and Th compared to regional background levels. The elevated Cu assays in the Rainy Till correlate well with native copper observations in the heavy minerals, but the elevated Cu values in borehole 521 do not match any observed native copper grains. Borehole 502 shows elevated Ag and Pb values in the magHMC fraction. Borehole 509 shows a W anomaly (244 ppm) in the nmHMC of Rainy till. The saprolite overlying the massive sulfide in borehole 513 shows enriched values for Co, Cu, Mn, Ni, Ti and Zn^{*}. Siderite content (up to 95%) in the samples probably dilutes the actual concentrations of many of the nmHMC assay results, making them only enriched, rather than anomalous.

Gold assays match predicted gold assay values that were based on the observed gold grains. Only four samples are discrepant: 501, 503, 515, and 520 Rainy or Old Rainy tills. Saprolite in 507 and 508 shows higher gold assay than the gold grain counts predicted. These samples likely contain gold in a very fine-grained form.

The most pronounced enrichment of multiple elements occurs in the basal fifty feet of Old Rainy sand/till in borehole 520 and in the underlying saprolite in 520. The till and saprolite each show multiple enrichments, some up to 20x above regional till baselines, but the elements enriched differ. The nmHMC mineralogy shows fairly abundant (30 grains) galena in the saprolite in 520. Distinctly elevated trace element values in the saprolite include Ag[•], Ba, Bi, Ce, Cu, Eu[•], Ga[•], La, Pb, Sm, Tb, and Y. Elevated element levels in the till and sand of 520 include: Ce, Cr, Cs, Ga, Hf, La, Rb, Sn, Ta, Tb, Th, U, and Yb. Only Ga, La, and Tb are enriched or anomalous in both the till and the saprolite.

Tables 6 & 7 summarizes the distribution of detected enrichments or anomalies in the heavy mineral assays. Appendix 280-G and Appendix 280-H list samples and assay results for the nonmagnetic and magnetic heavy mineral concentrate fractions. Regional median values, calculated for each stratigraphic unit and further divided by eastern portion versus western portion, are shown in Table 8.

Silt-Clay Chemistry

The silt and clay fractions of drift samples can

^{*} Precision for this element exceeds 20%.

also be used to detect and trace glacial dispersal of gold and other metals, particularly the less-resistant mineral species, metals adsorbed onto clays during oxidation or weathering activity, and very finegrained fragments of mineralized rock. The silt-clay assay results for Baudette area samples display many of the same patterns exhibited by the nmHMC and magHMC.

Twelve elements in the silt-clay fraction show regional baseline variation. As, Sb^{*}, Zr^{*}, and Ca increase in amount in the western portion of the field area. Cr, Cu, V, Al, Fe, K, Na, and P decrease in abundance in the western portion of the field area. Six of the twelve elements are rockforming major elements. Aluminum, potassium, and sodium show regional baseline changes in the silt-clay assays that are not reflected in the heavy mineral assay data. K and Ti display some stratigraphic variation, discriminating between Rainy and Old Rainy tills, probably reflecting a larger saprolite content incorporated into the Old Rainy till.

Several silt-clay fraction samples show enriched or anomalous values. Many of the silt-clay enriched values are coincident with nmHMC enriched values. The Labradorean tills in borehole 507, both the Rainy and the Old Rainy, are enriched in Ag. High Au values in the silt-clay fraction are confined entirely to the Rainy till, with Au data spikes showing up in boreholes 503, 506, 509, 514, and 515. Saprolite in borehole 520 contains elevated assay values for many of the same elements that were enriched in the nmHMC fraction: Ag, As, Be, Ce, Co, Ga, La, Nb, Pb, Sb, W, and Y. Some of the elevated values are enriched more than 10x over the regional background. Saprolite sections in boreholes 505 and 506 are also enriched in a number of elements, including Sr, Sc, Rb, Ni, Ga, Au, Y, and Zn. The enrichment in Zn in the siltclay fraction is much less prominent than in the nmHMC fraction.

Table 2 summarizes the characteristics assayed in the silt-clay fraction and displays the regional baseline changes or stratigraphic differences found. Table 6 lists silt-clay fraction assay results that have anomalous values compared to regional baselines. Silt-clay fraction assay results are listed in Appendix 280-G, along with the nmHMC assay results. Regional median values, listed by stratigraphic unit and further divided into eastern portion versus western portion are shown in Table 8.

Pebbles

The lithologies of pebble clasts in tills give some opportunity to trace regional bedrock lithologies and provide some correlation of elevated chemical baseline levels to regional bedrock sources. In the 9.4 cm diameter rotasonic core, the larger pebble clasts are difficult to evaluate because they undergo mechanical abrasion and fracturing during the coring operation and are more likely to display sampling errors due to till heterogeneity. Smaller clasts provide more consistent indications of regional trends. The largest pebble class in the rotasonic core to yield reliable results is the 1/4 -3/8" (0.64 - 0.95 cm) size class. Appendix 280-M shows how limestone-dolomite-chert, coarse grained granitoid, and supracrustal pebble clasts are distributed by size in the 103 Baudette area till samples.

Limestone-dolomite-chert is present in the western portion of the field area, and displays a regional baseline pattern of increasing carbonatechert toward the northwestern edge of the field area (Fig. 13). The carbonate-chert appears to be exotic since no drilling in the Baudette area has penetrated carbonate-chert strata. In the eastern portion of the field area, little or no carbonate-chert is present in the tills. In the western portion of the field area all of the tills contain some carbonate-chert. The regional increase in limestone-dolomite-chert in the western tills (up to 45% in Rainy/Old Rainy tills) reflects both the transport of carbonate-chert into the Baudette area (in the case of the Winnipeg tills), and the incorporation of Winnipeg provenance glacial sediments into the overriding Rainy and Old Rainy tills (Dahl and Cartwright, 1990). Granitoid content in the pebble samples mimics the carbonate-chert pattern, but is difficult to resolve because of dilution effects caused by granitoid content in the Labradorean tills.

Pebble counts of the 1/4 - 3/8" supracrustal pebbles (Appendix 280-N) show that graywacke displays regional variation similar to the carbonatechert and granitoid of the Winnipeg tills, increasing in abundance to the northwest. Amphibolitic pebbles in the Rainy till decrease to the west. Sub -regional elevated values include mafic plutonic and magnetic pebbles (50%) in the basal till sample of borehole 515, felsic-intermediate hypabyssal pebbles in the basal till sample of borehole 513, sulfide the basal till sample of borehole 511, fine-grained

Precision for this element exceeds 20%.

grains in metasediments in the Old Rainy till in boreholes 517 and 520. The supracrustal pebbles do not show distinct associations with underlying bedrock.

Magnetic tonalite clasts noted in boreholes 502, 505, 506, and 508 correlate well with the gold grain dispersal trend and the magnetic susceptibility of Rainy till. That clast type may be useful as a subregional lithologic tracer.

Physical Properties

Bulk density increases downhole in most of the saprolite and bedrock profiles. Bulk density readings for 9 of the 13 boreholes measured show an increase in density down the hole. Six selected till samples range from 1.5 to 2.3 g/cm3. Forty saprolite samples range from 1.5 to 2.3 g/cm3, and six bedrock and weathered bedrock samples range from 2.0 to 2.8 g/cm3. Appendix 280-K lists results for individual samples.

Forty-eight saprolite samples from 14 boreholes were measured for pH. All of the boreholes had high pH readings. pH measurements ranged from 5.7 to 9.8. Results for individual samples are listed in Appendix 280-K.

Mean magnetic susceptibility of sampled intervals shows an area of Rainy till with elevated magnetic susceptibility levels. These elevated levels are five to ten times higher than the magnetic susceptibilities of Rainy till in other parts of the field area. The elevated Rainy till values are found in boreholes 502, 505, 506, and 508.

Till compactness, in the recovered rotasonic core, does not appear to be diagnostic of stratigraphic types. Most of the till samples are moderately compact to compact. A few of the Old Rainy and Winnipeg tills are very compact.

Maxtrix Texture

On average, Winnipeg tills are less sandy than Old Rainy and Rainy tills. Old Rainy is slightly more silty than Rainy till in selected boreholes. The difference is not diagnostic for Winnipeg, Rainy, and Old Rainy tills because the ranges overlap significantly. Borehole 517 shows the best resolution of stratigraphy, separating Keewatin provenance from Labradorean provenance units.

Bedrock and Saprolite Results

Bedrock profiles recovered during coring operations were described petrologically and petrographically by T. Klein of the U.S. Geological Survey in Reston, Virginia (Klein, 1991). Fifteen bedrock samples selected from 14 boreholes were analyzed for major elements, and ten saprolite and bedrock samples were analyzed for trace elements. Frey and Venzske, 1991 describe in detail the analytical results for a great many more bedrock samples. These results can be compared to the analysis results listed in Appendix 280-I. Descriptions of the bedrock profiles are listed by borehole in Appendix 280-B. These analyses provide some basis for evaluating the regional influence of major rock types (see for instance the semi-massive sulfide and overlying saprolite in borehole 513; mylonites in boreholes 503, 506, 517, 521); graywacke in boreholes 512; gabbro in borehole 509; basalt in borehole 514; and syenite in borehole 502).

Seven boreholes contain bedrock analyses worthy of review. The highest bedrock gold assay, 30 ppb, occurs in association with Bi, 11 ppm, in a barren semi-massive sulfide (17.9% S) in OB-513. Borehole OB-503, a mylonite near the Baudette fault, contains the highest B, 222 ppm, and Hg, 18 ppb, and calcite metasomatism. Borehole 517, a mafic mylonite, contains 11.5% MgO, 239 ppm Ni, and 567 ppm Cr and could have been a komatiitic basalt protolith. Borehole 521, a mylonite with locally present mafic volcanic breccia clasts, appears to be enriched in K₂O, 5.55%, and depleted in NA₂O, 0.43%. Borehole 501, a weathered quartz monzonite contains the highest Zn, 989 ppm. Borehole 519, a hornblende tonalite, contains the highest Cu, 447 ppm. Three of the above observations are corroborated by other drill core from this area (see Frey and Venzke, 1991): 1) an apparent Au with Bi association; 2) the presence of komatiites is confirmed in the western portion of the area; and 3) elevated Cu and Zn values in tonalite-monzonite intrusives.

Significant new data on saprolite composition has been obtained for the Baudette area. In addition to the ten saprolite samples analyzed on a bulk sample basis, 15 other saprolite intervals were analyzed using the same geochemical fractions as for the till samples. A summary of those results follows.

In the Baudette area, the common minerals found in the saprolite include: quartz, kaolinite,

muscovite, siderite, and varying amounts of illite and smectite. Saprolite mineralogy is generally characterized by quartz, kaolinite, muscovite, and chlorite (Davy and El-Ansary, 1986). Oriented clay XRD results show relative amounts of kaolinite, chlorite, illite, and smectite from six selected Baudette area saprolite samples (Appendix 280-O).

Saprolite samples contain a surprising range of weight, 8 g/10kg to 410 g/10kg, of heavy minerals. Native copper, galena, zircon, corundum, siderite, rutile, ilmenite, garnet, and quartz seem to be fairly resistant to weathering processes. They remain in considerable numbers in saprolite heavy mineral samples. Siderite, which is ubiquitous in the saprolite, contributes very high weights to some heavy mineral concentrates. Pyrite, scheelite, epidote, pyroxene, and amphibole are moderately resistant, and chalcopyrite and sphene are fairly nonresistant to weathering processes.

Five drill holes contain pathfinder minerals in the saprolite including: galena, gold, corundum, native copper, and scheelite. Drill holes 508 and 520 contain considerable amounts of galena. Thirty grains were counted in drill hole 520 and ten grains were counted in drill hole 508. Galena grains are in cube and cube-like forms and range from <.1 mm to 1 mm. Drill holes 503 and 507 each contain one gold grain in the saprolite. Corundum is identified (SEM/EDS) in the saprolite in drill hole 501. Four grains of corundum are also found in the saprolite in drill hole 507. One grain of native copper is found in the saprolite in drill hole 508, and scheelite is identified in the saprolite in drill holes 501 and 503.

Magnetite is destroyed during the weathering process that forms saprolite. Both the low magnetic susceptibility readings (see App. B) and low weight recovery of magnetic fraction (see App. J) verify this. However, before complete destruction of a magnetic grain occurs, the outer rim of hydrous iron oxides accumulates available Cu, Pb, Zn, Co, MgO, V, MgO, V, Mn, Cr, or TiO2. Thus, the weathering process has an effect on concentration and depletion of elements even in the magnetic fraction.

Saprolite samples contain elevated MgO (3x median), Co (9x median), Cr (3x median), Cu (17x median), Pb (3x median), and Zn (6x median) in this fraction (see Table 7). Note the high Cu in drill hole 520 and the high Zn in drill hole 507. The saprolite samples contain a very small weight of magnetic fraction material, but that fraction can scavenge available metals cations.

Nonmagnetic heavy mineral concentrate and silt/clay analysis for saprolite samples are listed in Appendix 280-G and show significant enrichment in certain elements. Elements which are enriched by \geq 3x median in the nmHMC fraction of the saprolite over bedrock include: Ba, Ce, Co, Cu, K, Mn, Ni, Pb, Ti, V, W, Y, and Zn. Elements enriched by \geq 3x median in the -2 um fraction of the saprolite include: Ag, Ce, Co, Mn, Nb, Pb, V, Y, and Zn.

In summary, this new saprolite composition data combined with the saprolite stratigraphy results (see Stratigraphy and Buried Landscape) will permit more confident evaluation of this ample media in future geochemical prospecting.

Summary of Results

In sum, many patterns are evident in the observations regarding the stratigraphic units and regional variation (Table 10). Superimposed upon these patterns are the proposed anomalous values that could relate to mineralization.

Within the stratigraphic units, four factors related to till composition are observed. The factors include: 1) the presence of tills deposited by subglacial vs. supraglacial processes; 2) the presence of head vs. tail of dispersal trains; 3) the incorporation of underlying material into till; and 4) the characteristic content of certain elements (Hg, K, B, As, Ca, Na, or P) in each stratigraphic unit. Regarding regional variation, basically a regional slope east to west, three factors are noted. They include high exotic carbonate clast content and high matrix carbonate content in the west, and variation in 11 elements in the matrix clay fraction. Of those 11 elements, only Ca is higher in the west.

Numerous anomalous geochemical (3x median) values have been pointed out within the separate sample fractions of tills. They are listed in Table 9 and on map in App. E. Briefly summarizing prior to interpretation:

- 1) low, but anomalous, levels of gold with pathfinders are found in OB-503, 506, 509, 514, and 517;
- potential pathfinders are found in OB-505 (molybdenite, Zn, Ni), 512 (molybdenite), and 513 (kyanite);
- low, but anomalous, levels of gold without pathfinders are found in OB-502, 515, 518, 519, 520, and 521; and
- 4) anomalous native copper grain counts are

reported for OB-508, 514, and 511.

Moreover, a few pathfinder mineral occurrences were found in place in saprolite or bedrock:

- 5) low level Au and Bi occur in OB-513; and
- 6) potential pathfinders occur in OB-501 (Zn), 503 (scheelite, Hg, & B), 508 (galena and native copper), and 520 (galena and Cu).

Discussion

Geochemical Province

The model most significant to this project involves a geochemical province⁶. The geochemical province concept is fundamental to the design of this survey. The total dispersal could create a geochemical province in the overburden if the country rock contains abnormal abundances of gold along one large source zone or many small dispersed zones. It is appropriate here to note the conclusions of Bolviken and others (1990) (Fig. 2). "At this stage, three empirical facts appear to be established:

- Geochemical provinces can be disclosed not only through analysis of certain grain-size fractions of overburden material, but also through analysis of water (Bolviken and others, 1990b), heavy mineral fractions and organic samples.
- 2) Both ore and non-ore elements produce geochemical provinces that possibly are associated with ore mineralization.
- 3) The determination of total contents of elements is not always the best procedure for outlining an interesting geochemical province. Acid-extractable elements are often more indicative."

It is suggested here that a gold geochemical province of roughly 75 square kilometers has been identified about 40 kilometers east of Baudette by an Ontario Geological Survey glacial drift geochemistry project (Bajc, 1988). Two additional gold geochemical provinces appear in Thorleifson and Kristjansson, 1988, in the Beardmore-Geraldton, Ontario, area. These above three interpretations are based upon gold grain counts and assays from tills. Two gold(?) geochemical provinces of 89 km² and 77 km² have recently been reported in northeastern Minnesota (Alminas and others, 1991). These gold enrichments are reported from A-horizon soils developed on glacial deposits. All of these occurrences are in Archean Superior Province bedrock terrane, similar to Baudette area bedrock. Examples of other probable geochemical provinces across the Canadian shield, as defined by gold grain counts in till, are presented by Averill (1988).

Using these gold geochemical provinces as a model for similar Archean terranes in Minnesota, a minimum sample pattern for recognition of a gold geochemical province can be established. A gold province is likely to be 75 km² in area or larger, and associated with a major structure, hydrothermal system, or stratigraphy. This size province could be identified by a borehole density of 1 per 25 km². Coincident pathfinder anomalies in multiple forms, in elements, sample fractions, samples, or stratigraphic units would increase the significance of the occurrence. Furthermore, anomalies in either a dispersal train head (threshold of 10x median or 10 gold grains) or a tail (threshold of 3x median or 3 gold grains here) should be considered. A successful identification of a gold province is unlikely at a drilling density of greater than 25 km^2 , that is, prior to the infill drilling.

Saprolite, Glacial Stratigraphy, and Buried Landscape

Before this survey, little was known about the saprolite in the Baudette area. Descriptive logging, heavy mineral mineralogy, clay mineralogy, and chemistry are providing a better understanding.

Fig. 9 shows the generalized stratigraphy within the saprolite in the Baudette area. Reworked saprolite, kaolinitic saprolite, chloritic saprolite, and grus are present, though not in every drill hole. In most profiles, the upper portion of the saprolite section has been removed probably by glacial erosion. In other cases, the entire saprolite profile has been removed.

The Cretaceous sand (reworked saprolite) found in drill hole 503 is unlike other sediments found in the Baudette area. This 54 foot section of unlithified, angular quartz sand and kaolin has not been reported in Minnesota before. It may be an important aquifer near Baudette. The same kind of unit is reported by the Ontario Geological Survey in a borehole sited about five kilometers to the northeast of Baudette. Palynology results on their samples give a Cretaceous age (Zippi and Bajc,

⁶ See glossary

1990).

Grus is present in three drill holes in the Baudette area, 505, 511, and 519. Grus is slightly weathered granitic rock. Only the bonds between individual mineral grains in a granite have broken down, thus leaving a disintegrated rock (see App. 280-B).

Resistant and secondary economic minerals are present in the saprolite. Galena, gold, corundum, and native copper are all found in the saprolite in the Baudette area (see App. 280-L). These can be useful tracers to bedrock mineralization. Botryodal siderite in saprolite is also useful. This same siderite is found in the tills above the saprolite, providing a measure of the amount of incorporation of saprolite into till (see App. 280-J).

Bedrock type seems to control clay mineral content in the overlying saprolite. Granitoids produce saprolite with high kaolinite content. Ferromagnesian-rich bedrock units produce saprolite with high chlorite content (see App. 280-O & B).

The magnetic and nonmagnetic HMC fractions of the saprolite are enriched in certain elements. Assemblages of these enriched elements may permit the tracing of till sources and may be useful for prospecting directly in the saprolite.

Identification of stratigraphic units from core samples is best done by an experienced glacial geologist using key matrix chemistry data. The most important stratigraphic assignment of Keewatin vs. Labradorean provenance can be confidently defined using matrix chemistry data. Even with such data, the stratigraphy in OB-521, which provides the only evidence for the 5th and 6th older till units here, is ambiguous due to conflicting data in one or two samples. Mixing has been demonstrated, at both the regional- and small-scale, to alter the typical stratigraphic composition of tills. Such mixing may be the cause of the problem in OB-521. A less important distinction, that of younger vs. Older Labradorean tills, can also usually be resolved by matrix chemistry.

Critical review of this new body of information on stratigraphy should be encouraged. Additional or alternative inexpensive stratigraphic identification tools (see Table 10) should be sought. The descriptive logs supported by the matrix chemistry

and pebble counts yield strong characterizations, however, the interpretation of the causative glacial processes needs additional work.

On a more detailed note, there are perhaps three Winnipeg lobe ice advances represented within the stratigraphy here⁷. Limonite pisolites are present in most, but not all, Winnipeg till samples. Unusual element variation, such as in OB-517 for Ce, Zn, and Zr (see App. G), are observed within the Winnipeg tills. Such fingerprints may be useful enough to correlate internal Winnipeg till units and the link between the pisoliths and composition might be better resolved.

Accurate knowledge of glacial stratigraphy improves the ability to trace bedrock sources within a geochemical province, and also improves the effectiveness of geophysical conductivity surveys. A brief digression from our regional survey discussion is appropriate here. Most important to prospecting is the ability to find a buried geochemical anomaly and to be able to trace it. This requires a pathfinder, a unique tracer, an estimate of flow path direction and transport distance. Property-scale flow paths can be readily measured in the future under two conditions: 1) first a tracer element, mineral, or pebble is identified and 2) closelyspaced drilling. Examples from outside this area suggest that property-scale flow paths will vary significantly across the region. Pertinent examples of transport distance should be sought from the Labradorean till data of Bajc (1988) from 40 kilometers to the east. Since we cannot reliably predict a specific flow path direction at a site, or the presence of the best till overlying bedrock, we present tools and methods to use the available samples to the maximum extent possible. Some geophysical surveys are degraded by the presence of conductive clays. The bedded sediments, including clays, described in the logs (App. B) and summarized in Maps 7-11, should be considered for this problem, as well as the clays present in the saprolite.

Based upon the till geochemical patterns described in the summary of results, a working hypothesis for "unmixing" the till compositions was developed. The hypothesis, presented in Table 11, is that each stratigraphic unit has a fundamental composition, that can be modified by one or more

⁷ A designation of upper, middle, or lower is listed for every Winnipeg till sample, as interpreted by Gary Meyer, and is available from the DNR project file.

factors. When modified, the composition may be significantly different. The three first-order modifying factors are basal ice mechanics and velocity, buried topography, and underlying The presence of exotic carbonate, materials. Winnipeg lobe deposits, as the underlying materials in the western portion of the Baudette area is suggested to cause the dramatic regional variation of 11 elements in the Labradorean tills. Such a hypothesis ties together the observations from the individual datasets, and explains the x-y plots by stratigraphic units. Such x-y plots have a cluster or central tendency with outliers when modified by the above factors (Figs. 12a-c).

In summary, it is suggested that glacial till composition on a regional scale has been defined by many attributes, resulting in a Western vs. Eastern portion. The buried landscape and underlying materials were major controls. The dilution effect caused by the incorporation of exotic carbonate materials of Keewatin provenance is proposed to create the observed dramatic regional variation. In a broader perspective, the interpretation of the anomalous values in this dataset would be improved by better recognition of two factors. One is the recognition of the head vs. tail of a dispersal train. The second is the mixing caused by different dispersal scales⁸. The effect of both factors is to change the appropriate background value to apply an anomaly threshold value.

The reconstruction of the Baudette area buried landscape is appropriate to understanding the total geochemical dispersal here. That total dispersal is proposed to be the sum of glacial processes plus laterite processes. The observed regional till variations of Western vs. Eastern portion, and smaller scale variations, are attributed to the influence of the buried landscape. These topics are briefly summarized and a proposed landscape description is presented.

First, the laterite concentration of supergene enrichment is inferred to create short transport, tens to a thousand meters (DaCosta and others, 1991). Different profiles develop under various elevation and slope conditions (Smith, 1987). Preservation of the saprolite is probably a complex function of protection from erosive Labradorean ice advances. In summary, the possible supergene enrichment due to laterite processes is attractive in terms of both a higher grader ore, such as at Ladysmith, Wisconsin, and a larger target.

Secondly, glacial dispersal is regionally affected by the bedrock topography in the central part of the area, judging by the distribution of Winnipeg tills (Western portion) and the Rainy lobe post-glacial lake sediments (southeastern portion). The result is a major landscape boundary, as evidenced by till compositions. Thus, the two major compositional controls on till are the substrate and the buried topography in the up-ice direction, which in combination are referred to simply as the buried landscape.

Regarding glacial dispersal on smaller scales, it is inferred to be hundreds to thousands of meters in the head and kilometers in the tail of specific dispersal trains in this area. That conclusion is based upon the many different single-lithology dominated, or head of dispersal trains observed at the base of our boreholes spaced six miles apart. The third dimension, height above the Quaternary base, offers for a regional survey useful samples of mixed lithologies, or tails of dispersal trains, probably with transport of a mile or more. For example, seven of the samples on the summary pathfinder map are not the bottom till samples, vs. three that are. Two additional cases, which do not contain pathfinders, should be noted here. In sample 515-01, the very high siderite content (App. F) suggests that much saprolite has been incorporate into this till which is 70 ft. above the base of the Quaternary. They serve to point with caution to the use of pebble counts as a means to characterize a till sample in an area with saprolite. That is, the saprolite may dominate the matrix composition, yet not be reflected in the pebble counts.

Regarding the multiple glacial advances, each could erode and incorporate more of an ore-bearing source and/or the previous dispersal train deposits. In the latter case, the younger till deposits could have an unusual mixed lithology composition and a dispersed, diluted anomaly. The multiple glacial dispersal increases the chances of success for this regional survey by broadening and homogenizing the geochemical province.

The buried landscape can be described using data from various sources, such as previous drilling data, structures inferred from aeromagnetic data, and nearby terranes not deeply buried (e.g. Echo Lake Quadrangle, St. Louis County). The results are presented in a regional scale (Fig. 6, schematic, and Map 5a, elevation map), and a local scale can

be hypothesized. The bedrock surface may be described as gently-sloped, low relief tablelands, cut sharply by high relief, angular valleys controlled by bedrock structural or lithological features. In T157N-R34W, near the Vermilion fault system, occurs the greatest known (200 ft.) bedrock relief in the Baudette area, in contrast to the 100 ft. of relief associated with the local-scale topographic highs. The paleo drainage was probably controlled by bedrock features. The saprolite is much thicker in the valleys, due to both deeper weathering and better preservation. The buried landscape probably has the most readily observed impact upon property-scale dispersal.

Concluding on a practical level, the regional buried landscape also affects drilling depth, hence cost, and sample type (preferred tills--Labradorean rather than Keewatin) for the bottom of the Quaternary section and till composition.

The interpretation of this data remains a subjective and evolving process. The goal of this section has been to highlight significant observed factors and provide a springboard for further progress. This dataset is of a three-dimensional nature, and steps need to be attempted to handle and present the data in 3D. The ability to generate specific computerized maps, such as for stratigraphic unit distribution and geochemical values as proportional dot sizes, would be an improvement.

Mineral Potential

The design criteria for identifying a geochemical gold province (see Geochemical Province) suggest infill drilling is required to define one. However, it is possible at this time to review the observed pathfinders (map in Appen. E), especially the combinations, and within the new regional bedrock setting, discuss speculative resources here, plausible geochemical provinces, and also small-scale features.

The combination of pathfinders in boreholes 502, 503, 506, and 507, combined with the inferred bedrock setting, suggest that a gold province be sought here. The Baudette fault deforms the lithologies in 503 and 506 (Maps 12a & 12b). The magnetic pebbles in till overlying the syenite in 502, 60 ft. of glacial deposits with high magnetic susceptibility and the shape of the aeromagnetic feature, suggest an intrusive tonalite body. Such an intrusive may fit the description of an oxidized felsic magma (Hattori, 1987) for a source of gold-bearing

fluids. The magnetite has an unusual Pb + Ag content, perhaps analogous to the Ag-bearing magnetite found at Kirkland Lake, Ontario (Lee, 1963). In OB-503, the combination of the small individual values of gold grains, fine fraction gold assay, scheelite, Ba, Hg, Mo, and Se raises the Borehole OB-506 contains the best rating. combined gold values of all holes, with five gold grains and an anomalous fine-grained gold assay (see columnar log, sample 506-01) only 5 feet above a saprolite that had an anomalous fine-grained gold assay and high copper. The bedrock in OB-506 also has quartz + calcite veins, but the whole rock assay was only 10 ppb gold. The saprolite in OB-507 contains gold in the nmHMC and a till sample has anomalous (4) gold grains. This site is located on a proposed fault, which intersects the Baudette fault (see Spector in Lawler and Venzke, 1991). In conclusion, none of these four sites offers a direct target, but in combination they offer an appropriate setting for gold. Moreover, previous work by the U.S.G.S. (Clarke, 1990) points to anomalous soils geochemistry in this vicinity.

A geochemical copper province should be considered in future evaluations. The observed native copper grains (App. O) do not seem to be in a pattern, but they are suggested to be secondary weathering products and create a nugget problem. Other data (Frey and Venzke, 1991) from bedrock cores here support the suggestion of elevated copper values in this area.

The multi-element pathfinders in borehole OB-514 and a location near the Quetico fault are evidence for gold potential there. The coincident anomalies of fine fraction Au with Hg and Cu and depleted B in 514-02 are attractive, since this sample is interpreted as the tail of a dispersal train. That conclusion, supporting a source to the NE in the granitoids, is based upon the high granitoid pebble content, relatively high Th value, lack of saprolite component indicators in this till, and a large difference in composition from underlying basaltic saprolite.

Galena was found in the heavy minerals from saprolite in OB-520 and OB-508. In OB-520, it occurs with elevated copper, silver, cerium, europium, gallium, lanthanum, and depleted arsenic, thorium, and titanium in our deepest borehole at 310-320 ft. The elevated values in till are not the same elements as found in the underlying saprolite. No sound bedrock was reached in this hole, so the protolith is uncertain. In OB-508, the galena was found in the heavy minerals from saprolite and associated with native copper, anomalous silver, minor gold, bismuth, and manganese and depleted thorium, titanium, and uranium. A very thick saprolite, 128 ft., overlies a metagraywacke here. The site is near a splay of the Vermilion fault, and centimeter scale mylonitized shear bands are observed in the bedrock. Neither of these two occurrences seem related to chemical sediments. The possibility of galena forming from a secondary process is possible, yet the other anomalous elements support these as real occurrences. Lead and silver are reported from two occurrences in the Kenora district (Blackburn and others, 1989) and should be reviewed.

Kyanite is noted in significant amounts (App. L) from Rainy till in OB-513, which contains a barren, semi-massive sulfide. Only a trace of kyanite was noted from the saprolite in this hole. Perhaps an unusual alteration-metamorphism has occurred nearby, basically in the middle of the supracrustal belt. This mineral should provide a good tracer for backtracking.

Gahnite, a zinc spinel, is noted in the lowest till overlying a brecciated mafic mylonite in OB-571, near the Border fault. There were also four gold grains, two scheelite grains, and distinctive, very large, 1-2 mm, pyrite grains in this heavy mineral sample. Gahnite probably represents a metamorphosed form of sphalerite (Todd, 1991). Note the bedrock core here has the composition indicative of a komatilitic basalt.

In OB-505, the highest zinc values from this survey occur in an iron-rich saprolite associated with anomalous copper, lead, and nickel. The underlying bedrock here is a biotite quartz monzonite and inferred to be very near the contact with supracrustal rocks. Two molybdenite grains were found in a till 95 ft. above the saprolite and are interpreted to be from a difference source.

Corundum has been identified in saprolite in borehole from OB-501 and OB-507. It will be further evaluated regarding gem quality.

The occurrence of native copper grains in tills, and especially saprolite in this region, needs further consideration as a copper geochemical province.

Kaolin is a speculative resource in the vicinity of OB-503, where 50' of Cretaceous kaolin-bearing quartz sands are preserved in a major topographic low overlying thick saprolite. The nearby granitoid source rocks may have contributed kaolin sediments to a secondary deposit in this setting.

This database includes some physical property information that may be helpful for geophysical surveys in the region. Conductive overburden may result from the clay-rich glacial sediments listed in logs such as OB-501, OB-505, OB-511 (see Maps 7 through 11) or from a thick saprolite blanket such as OB-508. The magnetic susceptibility of all core-glacial, saprolite, and bedrock--was measured. Finally, rather crude bulk density measurements of many samples were taken (Appendix K).

In summary, the powerful tool of mineralogy has helped locate pathfinders and unique tracers in this saprolite-blanketed area. The preserved saprolite offers attractive supergene-enrichment targets. The best sub-area for gold potential appears to be in the northeast near the Baudette fault system.

Environmental Geology

There are potentially broad applications of this database to environmental geology. The two subjects perhaps most relevant are the types of deposits and the matrix composition of the overburden.

The various types of buried glacial deposits and pre-glacial deposits affect groundwater availability and flow. Significant aquifers may exist in glacial sands and gravels, such as the 200 ft. thickness in OB-521, or the pre-glacial sand, such as in OB-503. The buried regional bedrock topography probably affects the groundwater flow paths (see Map 5a and Maps 6-11). The saprolite itself probably has a low permeability.

The overburden matrix composition affects groundwater quality. The Koochiching and Winnipeg tills contain high amounts of carbonate in the matrix. The Winnipeg tills contain higher mercury and arsenic contents, which appear to be leachable during oxidation, such as inferred interglacial weathering (see OB-512 or -513).The Rainy lobe tills in OB-502 contain high phosphorus, with 2% P in the clay fraction. The saprolite may contain high iron and a high pH. More specific information on 23 elements can be found in the appendices.

Planning for specific activities that exploit the groundwater or mineral resources, involve waste disposal facilities, or deep excavations, should find the regional information here to be invaluable.

Subsample Fractions and Physical Properties

The methodologies, new applications, and implications of each subsample fraction are briefly discussed.

Characterization of the heavy mineral fraction provides the most effective way to identify the specific bedrock source of a dispersal train, and a new system is applied here to ease the mineral identification task. The mineral characterization of color, size, abrasion, morphology, composition, zoning, and other features, when combined with associated minerals, can define with very high confidence a specific bedrock source.

The new system is to combine a standard till heavy mineral concentration process to obtain gold grain counts with a modification of the U.S.G.S. heavy mineral separation method (see App. C). The result is that most of the important pathfinder minerals end up in one fraction where easily identified from the only four common accessory minerals present. Any reasonable heavy mineral concentration process, from simple panning to the Knelson concentrator, could be considered on the front end. This new system is not cheap, but it is very effective.

A specific technique within the new system, during the visual estimation of the percentage of common accessory minerals, is recommended here. The technique, used by Steve Sutley at the U.S.G.S., takes into account the total volume of each mineral phase by scanning the total sample. The problems of different grain sizes and of uneven distribution of minerals are better addressed by this technique than by counting 100 grains.

For this report, the nonmagnetic, +3.3 S.G. fraction was examined in detail. There are two specific other fractions that are available, and since they contain minerals like garnet, tourmaline, and apatite, those fractions could be useful to a specific investigation.

Silt/clay chemistry can help to resolve the contribution of weathered bedrock into till and can qualitatively help to resolve older Labradorean tills from younger Labradorean tills. Moreover, a summary report from Finland (Lehmuspelto, 1987) clearly states that the majority of dispersal trains defined there by the fine-fraction chemistry of till are only a few hundred meters long. Thus, if anomalies are found in the fine fraction, then the bedrock source may be very nearby.

Regarding the heavy mineral concentrates, since gold can occur in many mineral species, it is prudent to assay the nmHMC in addition to performing native gold grain counts. Further, during interpretation and ranking of the nmHMC anomalies, the total mass of an element should be calculated, since very high siderite contents may dilute the reported assay value.

Magnetic fraction analysis was performed to provide additional pathfinder information to mineralization (e.g. sulfidation; see also Overstreet and Gordon, 1985)) and to pursue unique tracers to identify dispersal trains within tills. The observed geochemical anomalies and unique compositions have the potential to show up when there is nothing evident in the other fractions. Costs are similar to other types of analysis, however, magnetic separation could be done cheaply without doing complete heavy mineral separation.

Pebble counts of $+1/4^{"} - 3/8^{"}$ pebbles from core samples can be done quickly if a binocular microscope is available for use and a good quality light source is available to illuminate wetted pebbles. Larger clasts may be peculiarly interesting, but do not generate usable between sample comparisons on stone lithology distributions. Clasts smaller than $1/4^{"}$ are more difficult to handle and display much less textural and fabric information than $+1/4^{"}$ clasts. If non-resistant lithologies are being counted, then inspection of unprocessed core may provide the best technique, since processing tends to disaggregate non-resistant clasts.

objective of the bulk The density measurements is to evaluate an economical way to characterize the degree of weathering of the saprolite. Although taking density readings from bedrock drill core is fairly accurate, density readings from materials like saprolite and till can be misleading. These materials can become compacted by the drill, increasing their density because of the exotic carbonates in the till and the siderite in the saprolite. Bulk density is still a more effective way to measure the degree of weathering than L.O.I., a simple chemical alteration index, matrix solubility, or pH. Although there are slight differences in pH, zones in the saprolite cannot be differentiated with pH alone.

Design

The design of this phase of the project has permitted significant progress toward attainment of the project goals and objectives. For example, new characterizations of the glacial drift stratigraphy, saprolite distribution, bedrock lithologies for mapping, and the buried landscape were only possible by the widely-spaced pattern of the 20 boreholes. Moreover, it has been demonstrated that glacial drift compositions, hence background values, should be viewed in the context of regional, local, and small-scale perspective. In summary, all the above characterizations affect the geochemistry and needed to be addressed by the design. One important limitation is that detailed, small-scale till transport distance evaluation, which is important to any follow-up work, was not possible. Brief recommendations on infill drilling, some of which reflect design, are presented in Table 1b.

Conclusion

A tool kit of specific methods, strategies, applications, case examples, and new hypotheses have been presented in this regional survey. Further, a stratigraphic and geochemical framework has been presented, providing an opportunity for improvements through future investigations. A large database, founded upon the quantification of many physical and chemical parameters, has been compiled that should enable more efficient future exploration here within a regional context.

Few exploration techniques of geophysics, geochemistry, and lithochemistry are useful in this deep overburden terrane. The character of the overburden directly affects two--geophysics and geochemistry--and indirectly affects the cost of all of them. The view that the overburden is a material that should be used productively in exploration has been expressed here. And the strategy has been to find tools (attributes) to obtain the most information from whatever case of stratigraphy is found at a given site. Significant progress toward that end has been made.

Finalization of the goal of evaluation for a gold geochemical province must await future infill drilling. In contrast, the opportunity to make a positive contribution through the citing of nine boreholes to the new U.S.G.S. bedrock map (Day and Klein, 1991) has been a gratifying, cooperative effort. Simultaneous work covering bedrock mapping, geophysical interpretation, and bedrock core logging and lithochemistry (see Previous Work) should be reviewed in conjunction with this report. For example, the bedrock in OB-520 is very deformed, but since no offset pattern is observed in the aeromagnetic map, the bedrock structure there remains ambiguous. In addition, komatilitic rocks were recently identified in available cores (Frey and Venzke, 1991) in this western belt, so perhaps the lower iron content is masking the magnetics and/or conductors. In conclusion, the time is appropriate to take a fresh look at this Baudette area.

A deep overburden drill program such as this is unlike typical geochemical surveys, since the drill samples are very costly. Thus, a broad spectrum of evaluation was done to the samples, and the results of this report include a comprehensive compilation of information for this area that is intended to foster many phases of future exploration.

References

- Aluminas, H. V., McHugh, J. B., and Perry, E. C., Jr., 1991, Geochemical evidence for near-surface preciousand base- metal disseminated and vein deposits in the west-central Vermilion district, northeastern Minnesota. In: E. E. Good, J. F. Slack, and R. K. Kotra (Editors), 1991 Program and Abstracts of the Seventh Annual V. E. McKelvey Forum on Mineral and Energy Resources, Reno, Nevada, U.S.G.S. Circular 1062.
- Averill, S. A., 1988, Regional variations in the gold content of till in Canada. In: D. R. MacDonald and K. A. Mills (Editors), Prospecting in Areas of Glaciated Terrain 1988. Canadian Institute of Mining and Metallurgy, p. 271-284.
- Bajc, A. F., 1988, Gold grains in rotasonic drill core and surface samples (1987-1988). Ontario Geological Survey, Map P. 3140, scale 1:100,000.
- Bajc, A. F. and Gray, P. A., 1987, Quaternary geology of the Rainy River area, District of Rainy River; Ontario Geological Survey, Preliminary Map P. 3065, scale 1:50,000.
- Bajc, A. F., White, T. N. and Gray, P. A., 1990, Quaternary geology, Northwest Bay area. Ontario Geological Survey, Preliminary Map P. 3138, scale 1:50,000.
- Beck, Warren and Murphy, V. R., 1982, Rb-Sr and Sm-Nd studies of Proterozoic mafic dikes in northeastern Minnesota [abs.]: Proceedings, 28th Institute on Lake Superior Geology, International Falls, Mn, p. 5.
- Blackburn, C. E., Hailstone, M. R., Delisle, P. C., and Storey, C. C., 1989, Annual report for the Kenora resident geologist's district, reprinted in Ontario Geological Survey Miscellaneous Paper 147, 40 pp.
- Bolviken, B., Kullerud, G., and Loucks, R. R., 1990, Geochemical and metallogenic provinces: A discussion initiated by results from geochemical mapping across north Fennoscandia. Journal of Geochemical Exploration, vol. 39, no. 1/2, p. 49-90.
- Bracken, R. E. and Godson, R. H., 1988, Aeromagnetic map of the northwestern part of the Hibbing 1[•] x 2[•] quadrangle, Minnesota. U. S. Geological Survey, Open-File Report 88-8, scale 1:62,500.
- Bracken, R. E., Horton, R. J., Rohret, D. H., Krizman, R. W., Thompson, C. R., Sneddon, R. A., Pierce, H. A. and Mitchell, C. M., 1991, Aeromagnetic map of the Roseau 1^o x 2^o quadrangle, Minnesota and Ontario, United States Geological Survey, Open File Report 89-452.

- Chandler, V. W. and Southwick, D., 1989, Shaded-relief aeromagnetic map of Minnesota. Minnesota Geological Survey and The Legislative Commission on Minnesota Resources, scale 1:2,534,400.
- Clark, P. U., 1987, Subglacial sediment dispersal and till composition. Journal of Geology, vol. 95, no. 4, p. 587-541.
- Clarke, J. R., Day, W. C., and Klein, T. L., 1990, Geochemical and geological evidence for potential lode-gold deposits near Baudette, Lake of the Woods and Koochiching counties, Minnesota: U. S. Geological Survey, Executive Announcement.
- Coker, W. B., Bird, D., Snow, R. J., Downes, M. J., and DiLabio, R. N. W., 1984, Quaternary stratigraphy and geochemistry at the Owl Creek gold mine, Timmins, Ontario. In: Till Tomorrow '84, The Canadian Institute of Mining and Metallurgy Ontario Geological Survey, Paper 12.

- Coker, W. B. and DiLabio, R. N. W., 1988, Geochemical exploration in glaciated terrain: geochemical responses. In: Exploration '87 Proceedings, p. 336-383.
- Colvine, A. C. and Stewart, J. W., 1984, Precambrian shield gold exploration trends detailed. Mining Engineering, p. 1642-1645.
- Corfu, F. and Stott, G. M., 1986, U-Pb ages for late magmatism and regional deformation in the Shebandowan Belt, Superior Province, Canada. Canadian Journal of Earth Sciences, vol. 23, no. 8, p. 1075-1082.
- Corfu, F. and Wood, J., 1986, U-Pb Zircon ages in supracrustal and plutonic rocks, North Spirit Lake area, northwestern Ontario. Canadian Journal of Earth Sciences, vol. 23, no. 7, p. 967-977.
- DaCosta, M. L., Fonseca, L. R., and Costa, J. V., 1991, Pattern curves for gold contents distribution in lateritic profiles: application for geochemical exploration in tropical environments. International Geochemical Exploration Symposium Abstracts, Reno, Nevada, 70 pp.
- Dahl, D. A. and Cartwright, D. F., 1990, Carbonate in till units of Lake of the Woods County, Minnesota. In: Institute on Lake Superior Geology Proceedings, vol. 36, part 1, p. 16.
- Davey, R. and El-Ansary, M., 1986, Geochemical patterns in the laterite profile at the Boddington Gold Deposit, Western Australia, Journal of Geochemical Exploration, 26, p. 119-144.
- Davis, D. W., Blackburn, C. E., and Krogh, T. E., 1982, Zircon U-Pb ages from the Wabigoon-Manitou Lakes region, Wabigoon Subprovince, northwest Ontario, Canadian Journal of Earth Sciences, vol. 19, p. 254-266.
- Davis, D. W. and Edwards, G. R., 1986, Crustal evolution of Archean rocks in the Kakagi Lake area, Wabigoon subprovince, Ontario, as interpreted from high-precision U-Pb geochronology. Canadian Journal of Earth Sciences, vol. 23, p. 182-192.
- Davis, D. W., Poulsen, K. H., and Kamo, S. L., 1989, New insights into Archean crustal development from geochronology in the Rainy Lake area, Superior Province, Canada. Journal of Geology, vol. 97, p. 379-398.
- Day, W. C., Klein, T. L., and Schulz, K. J., 1991, Bedrock geologic map of the Roseau 1[•] by 2[•] quadrangle, Minnesota and Ontario, Canada: open-file map series, U. S. Geological Survey, Denver, Colorado.
- Dredge, L. A. and Cowan, W. R., 1989, Quaternary geology of the southwestern Canadian Shield. In: Fulton, R. J. (Editor), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, p. 214-235.
- Eng, M. T., 1979, An Evaluation of the surficial geology and bog patterns of the Red Lake bog, Beltrami and Lake of the Woods counties. Minnesota Department of Natural Resources, Minerals Division, scale 1:126,720.
- Frey, B. A., Venzke, E. A., and Walker, J. S., 1991, 1990-1991 Archean drill core description and assay, Lake of the Woods County, Minnesota. Report 278, Minnesota Department of Natural Resources, Division of Minerals.
- Grout, F. F., 1927, Field note book number 150: Minnesota Geological Survey, 47 pp.
- Harris, K. L., Moran, S. R., and Clayton, L., 1974, Late Quaternary stratigraphic nomenclature, Red River Valley, North Dakota and Minnesota. North Dakota Geological Survey, Miscellaneous Series, no. 52, 47 pp.
- Hattori, K., 1987, Magnetic felsic intrusions associated with Canadian Archean gold deposits. Geology, vol. 15, no. 12, p. 1107-1111.
- Helgesen, J. O., Lindholm, G. F., and Ericson, D. W., 1975, Water resources of the Lake of the Woods watershed, north central Minnesota. U. S. Geological Survey, Hydrologic Investigations Atlas, HA-544, scale 1:500,000, 2 sheets.
- Hobbs, H. C. and Goebel, J. E., 1982, Geologic map of Minnesota, Quaternary geology. Minnesota Geological Survey, State Map Series, S-1, scale 1:500,000.
- Horton, R. J. and Chandler, V. W., 1988, Complete Bouguer gravity anomaly map of the Roseau 10 x 20 quadrangle, Minnesota and Ontario: U. S. Geological Survey Open-File Report 88-531.
- Horton, R. J., Meyer, G. N., and Bajc, A. J., 1989, Reconnaissance Quaternary geology map of the International Falls 1^o x 2^o quadrangle. U. S. Geological Survey, Open-File Report 89-654, scale 1:250,000.
- Johnson, M. D., 1986, Pleistocene geology of Barron County, Wisconsin. Wisconsin Geological and Natural History Survey, Information Circular, no. 55, 42 pp.
- Klein, T. L., 1991, Lithologic descriptions of bedrock core from the Roseau 1[•] x 2[•] quadrangle, northern Minnesota, United States Geological Survey, Open-file Report 91-35, 11 pp.
- Klein, T. L., and Day, W. C., 1989, Tabular summary of lithologic logs and geologic characteristics from diamond drill holes in the western International Falls and the Roseau 1^{*} by 2^{*} quadrangles, northern Minnesota: Open-File Report 89-346, United States Geological Survey, Reston, Virginia.
- Kokkola, M. and Pehkonen, E., 1976, Kangaskyla: gold in till. Journal of Geochemical Exploration, vol. 5, no. 3, p. 209-211.
- Kontas, E., 1991, Gold contamination of the fine fraction of till during sampling and sample preparation. Journal of Geochemical Exploration, vol. 39, p. 289-294.
- Lawler, T. L. and Venzke, E. A., 1991, Aeromagnetic interpretation pseudo-geologic maps, with evaluation, in Lake of the Woods and Lake counties, Minnesota. Report 290, Minnesota Department of Natural Resources, Division of Minerals.
- Lee, H. A., 1963, Glacial fans in till from the Kirkland Lake Fault: a method of gold exploration. Ottawa: Geological Survey of Canada, 36 pp.
- Lehmuspelto, P., 1987, Some case histories of the till transport distances recognized in geochemical studies in northern Finland. Geological Survey of Finland, Special Paper 3, p. 163-168.
- Martin, D. P., Meyer, G., Cartwright, D. F., Lawler, T. L., Pastika, T., Jirsa, M. A., Boerboom, T. J. and Streitz, A. R., 1989, Regional geochemical survey of glacial drift drill samples over Archean granite-greenstone terrane in the Effie area, northern Minnesota. Report 263, Minnesota Department of Natural Resources, Division of Minerals.
- Martin, D. P., Meyer, G., Lawler, T. L., Chandler, V. W., and Malmquist, K. L., 1988, Regional survey of buried glacial drift geochemistry over Archean terrane in northern Minnesota. Legislative Commission on Minnesota Resources Project, Report 252, Minnesota Department of Natural Resources, Division of Minerals.
- Mathes, S. A., Farrell, R. F., and Mackie, A. J., 1983, A microwave system for the acid dissolution of metal and mineral samples. Bureau of Mines Technical Progress Report, Report 120, 9 pp.

ः

McGinnis, L., Durfee, G., and Ikola, R. J., 1973, Simple Bouguer gravity map of Minnesota Roseau sheet: Minnesota Geological Survey, Miscellaneous Map Series, Map M-12, 1:250,000.

- McRitchie, W. D., 1980, Mineral map of Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Map, No. 80-1, scale 1:1,000,000.
- Meuschke, J. L., Books, K. G., Henderson, J. R. Jr. and Schwartz, G. M., 1957, Aeromagnetic and geologic map of northern Lake of the Woods and northeastern Roseau counties, Minnesota, United States Geological Survey, Geophysical Investigations Map GP 128, scale 1:63,360.
- Meuschke, J. L., Books, K. G., Henderson, J. R. Jr. and Schwartz, G. M., 1957, Aeromagnetic and geologic map of northern Beltrami and southern Lake of the Woods counties, Minnesota, United States Geological Survey, Geophysical Investigations Map GP 129, scale 1:63,360.
- Meyer, G. N., 1986, Subsurface till stratigraphy of the Todd County area, central Minnesota. MGS, RI 34, 40 pp.
- Mills, S. J., Southwick, D. L., and Meyer, G. N., 1987, Scientific core drilling in north-central Minnesota: Summary of 1986 lithologic and geochemical results. Minnesota Geological Survey, Information Circular 24, University of Minnesota, p. 19-40.
- Mutschler, F. E. and Radtke, A. S., 1991, Word-class gold deposits--the model success story--where is the next olympic dam? International Geochemical Exploration Symposium, Reno, Nevada, Abstracts, 70 pp.
- Nielsen, E., Ringrose, S. M., Matile, G. L. D., Groom, H. D., Mihychuk, M. A., and Conley, G. G., 1981, Surficial geological map of Manitoba. Manitoba Department of Energy and Mines, Mineral Resources Division, Map 81-1, scale 1:1,000,000.
- Ojakangas, R. W., Meineke, D. G. and Listerud, W. H., 1977, Geology, sulfide mineralization and geochemistry of the Birchdale - Indus area, Koochiching County, Minnesota. Minnesota Geological Survey, Report of Investigation 17, 78 pp.
- Overstreet, W. C. and Gordon, W. D., 1985, Review of the use of magnetic concentrates in geochemical exploration. Technical record, USGS-TR-05-4, p. 1-38.
- Parham, W. E., 1970, Clay mineralogy and geology of Minnesota kaolin clays. Minnesota Geological Survey, Spec. Pap. Ser., SP-10, 142 pp.
- Pavich, M. J., Leo, G. W., Obermeier, S. F., and Estabrook, J. R., 1989, Investigations of the characteristics, origin, and residence time of the upland residual mantle of the Piedmont of Fairfax County, Virginia, U. S. Geological Survey Professional Paper 1352, 58 pp.
- Percival, J. A. and Williams, H. R., 1989, Late Archean Quetico accretionary complex, Superior Province, Canada. Geology, vol. 17, p. 23-35.
- Roberts, R. G., 1988, Ore deposit models. Geological Association of Canada, 1988 vol., 194 pp.
- Schiffelbein, P., 1987, Calculation of confidence limits for geologic measurements. In: Use and Abuse of Statistical Methods in the Earth Sciences. International Association for Mathematical Geology Studies in Mathematical Geology, p. 21-32.
- Shilts, W. W., 1976, Mineral exploration and till. In: R. F. Legget (Editor) Glacial Till. Royal Society of Canada, Special Publication 12, p. 205-224.
- Sims, P. K. and Ojakangas, R. W., 1973, Precambrian geology of the Roseau sheet, Minnesota, Minnesota Geological Survey, Open-File Map, scale 1:250,000.

- Size, W. B., 1987, Use of representative samples and sampling plans in describing geologic variability and trends.
 In: Use and Abuse of Statistical Methods in the Earth Sciences. International Association for Mathematical Geology Studies in Mathematical Geology, p. 3-20.
- Smith, R. E., 1987, Some conceptual models for geochemistry in areas of preglacial deep weathering. Geochemical Exploration, p. 337-352.
- Szabo, N. L., Govett, G. J. S., and Lajtai, E. Z., 1975, Dispersion trends of elements and indicator pebbles in glacial till around Mt. Pleasant, New Brunswick, Canada, Canadian Journal of Earth Sciences, vol. 12, p. 1534-1556.
- Teller, J. T. and Fenton, M. M., 1980, Late Wisconsinan glacial stratigraphy and history of southeastern Manitoba. Canadian Journal of Earth Sciences, vol. 17, p. 19-35.
- Thorleifson, L. H. and Kristjansson, F. J., 1988, Visible gold content and lithology of till from overburden drillholes, Beardmore-Geraldton area, district of Thunder Bay, northern Ontario. Geological Survey of Canada, Open File Report 1756, 21 pp.
- Todd, R. G., 1991, Characteristics of a stratabound gold/base metal deposit in an amphibolite terrane. Geological Association of Canada/Mineralogical Association of Canada, Abstracts.
- Williams, H. R., 1990, Subprovince accretion tectonics in the south-central Superior Province. Canadian Journal of Earth Sciences, vol. 27, p. 570-581.
- Winchel, N. H., 1899, The geology of Lake of the Woods County: Geology of Minnesota, 1896-1898: The Geological and Natural History Survey of Minnesota, vol. 4, p. 155.
- Zippi, P. A. and Bajc, A. F., 1990, Recognition of a Cretaceous outlier in northwestern Ontario. Canadian Journal of Earth Science, vol. 27, p. 306-311.

Ċ

Figure 1. Idealized glacial dispersal model [modified from (Miller 1984) in (Coker and Dilabio, 1988)].

ឌ

Figure 2. Sketch showing a profile with a geochemical province and three geochemical anomalies caused by ore deposits of which one (A) is outside the geochemical province and two (B and C) are inside. The horizontal distance is any where from the order of kilometers and upward. Most mineral deposits of economic interest are assumed to belong to types B and C (Bolviken and others, 1990).

Figure 3. Schematic summary of the geologic history.

5. Incursion and withdrawl of marine processes and facies (advance out of the Williston basis (Ordovician)

6. Incursion and withdrawl of marine and marine-marginal processes and facies (advance out of the Williston basin) (Jurassic)

X

7. Incursion and withdrawl of marine and marine-marginal processes and facies (advance from the west into re-entrants in the Mesozoic topography (Cretaccous)

12.

Glacial advance and retreat (Kunchiching) (Picistocanc)

> Emplecement of regional matic 4. dile swarm (carly Proterozoic)

> > 2

10. Glacial advance and retreat (Winnipeg) (Phristocene)

8.

Glacial advance and retreat (Wunnipeg) (Pleistocene)

9

11. Glacial advance and retreat (Ramy) (Pleistoccue)

×

Glacial advance and retreat over the heavily weathered Cretacous surface (Okl Rainy) (Pleistocene) Kitter.

Buikt up of vokanic piles in a shallow marine acting (Archcan)

Keginnal-scale right-bieral J. shearing (Vermikon fault #yk) (ap:?)

100

Regional folding-faulting-metamorphism-metasticationcontact anciamorphism, and other accretion-suturing responses to absorb the compressional energy of collision and crustal abortening (bac Archeum)

- I. Matrix
 - 1. Chemistry
 - a. -2 um fraction
 - (clay sized, 23 pathfinder elements)
 - b. -63 um fraction (Au + Ag)
 - c. -1700 um fraction, heavy minerals (+3.3 s.g.)
 - 1. Nonmagnetic (gold + 23 pathfinder elements)
 - 2. Magnetic (10 pathfinder elements)
 - d. Matrix solubility
 - (Ca, Mg, Fe, total wt% soluble)
 - 2. Mineralogy
 - a. -1700 um fraction nonmagnetic heavy minerals (+3.3 s.g.)
 - b. 14 selected samples: clay identification

II. Clasts

- 1. Pebble counts by lithology and size
- III. Bulk Sample
 - 1. Magnetic susceptibility (all 4325 feet)
 - 2. Oxidation state (all 4325 feet)
 - 3. Color (all 4325 feet)
 - 4. pH (48 selected samples)
 - 5. Bulk density (52 selected samples)

Figure 4. Sample fractions analyzed. The total composition was subdivided into two major parts, matrix vs. clasts, for quantitative analysis. The attributes measured are outlined here.

Figure 5. Time-distance diagram showing relative timing and extent of glacial events in the Baudette Area.

Provenance of glacial drift units.

<u>Name</u>

Koochiching lobe deposits Rainy lobe deposits Winnipeg lobe deposits Old Rainy lobe deposits

Continental Provenance Keewatin

.

Labradorean

Keewatin

Labradorean

Figure 6. Landscape near Baudette, Minnesota, at the time of Rainy lobe ice advance. Sediment cover varies on a much smaller scale than depicted. This reconstruction is based on all available drillhole data.

See Stranger

မ္မ

anna () Naistean (

2

Contraction of the second seco

\$

Figure 8. Proposed model summarizing the regional stratigraphic composition and case examples of mixing that change the composition. Mixing is inferred to occur at all scales, based upon the examples, primarily by incorporation of available underlying materials.

Saprolite on PE granite/ greenstone terrane

Examples of processes that cause mixing: Borcholes Case 1: RT overrides SAP - more SAP in RT 501 Case 2: RT overrides WT - more carb. in RT 517-521 Case 3: RT overrides OT - intermed. SAP + carb. in RT 507 Case 4: RT overrides outcrop - more sound PC in RT 509 Case 5: WT overrides SAP - more SAP in WT 511 Case 6: WT overrides OT - less carb. in WT 517 Case 7: WT overrides outcrop - more sound PE in WT 513 512? Case 8: OT overrides WT - more carb. in OT 521? Case 9: OT overrides outcrop - more sound PE in OT 515 Case 10: OT overrides SAP - more SAP in OT 505

Marine carbonate & shale lithotypes

Figure 9. Generalized stratigraphy within saprolite in the Baudette Area.

A. Baudette Area - Minnesota - units found in Rotasonic core (modified from Smith, 1987).

B. Northern Minnesota - Generalized - from the literature (Parham, 1970, as cited in Smith, 1987).

Č.

()

Figure 11a. Plot of gold assays in the nmHMC fraction of till and nontill samples in the Baudette Area.

Figure 11b. Plot of boron sassays in the -2um fraction of till and nontill samples in the Baudette Area.

Figure 11c. Plot of mercury assays in the nmHMC fraction of till and nontill samples in the Baudette Area.

Figure 11d. Plot of potassium assays in the -2um fraction of till and nontill samples in the Baudette Area.

Figure 11e. Plot of copper assays in the -2um fraction of till and nontill samples in the Baudette Area.

Mercury vs Potassium in Baudette Area Tills and Saprolite

 \bigcirc

Figure 12a. Plot of mercury vs. potassium assays in Baudette Area tills and saprolite.

Matrix Soluble vs Arsenic in Baudette Area Tills and Saprolite

Figure 12b. Plot of matrix soluble vs. arsenic assays in Baudette Area tills and saprolite.

Matrix Soluble vs Potassium in Baudette Area Tills and Saprolite

Figure 12c. Plot of matrix soluble vs. potassium assays in Baudette Area tills and saprolite.

Figure 13. Regional variations in pebble content of tills in the Baudette Area.

Figure 14a. Dispersal train model used for interpretation of two geochemical patterns--a recognizable, contrasting, single-lithology dominated composition (traceable head lithology) vs. anomalous pathfinder values. Scale of both axes varies.

far .

k

US W.

for for

Sec. 10

Legend

- A = Lithotype A, such as Mg(%) from a granite bedrock source, present in the head of dispersal train dominated by this source rock composition. Major element contrast to regional background is usually much less than some minor elements contrast.
- B = Lithotype B, such as Mg(%) from an ultramafic bedrock source present in the head of dispersal train dominated by this source rock composition.
- C1= Lithotype C, such as Au (ppb) from a gold ore zone. Contrast in the head is usually very high, so a true anomaly is proposed 10x median.

Conclusion: Since till regional backgrounds are very low, contrast in head is a function of lithotype composition and mineralogy of subsample fraction analyzed (clay size fraction vs. heavy minerals).

Dilution is the dominant process affecting till composition and it occurs at a log normal rate of decay. The tail is that volume where the lithotype is still recognizable within the regional mixture, usually by accessory minerals.

- C2= Lithotype C, such as gold (ppb) from a gold ore zone, even diluted, still recognizable from the background, such as 3x regional-stratigraphic median value. Contrast varies greatly by element here.
- C3= Lithotype C, represented by resistant, sparse, gold grains (analogous to surface boulder train where only one is required to continue). In cases where background is near zero, such as for gold or Zn-spinel, the unique minerals become effective tracers.

Table 1a. Options of methodology and strategy applied to site-specific investigations.

1. Drilling method options

Drilling Method	Estimated <u>1989 costs</u>	Remarks
Reverse circulation	\$15/ft .	Till is pulverized and disaggregated, lower quality.
Rotasonic	\$21-\$31/ft.	Core for stratigraphic logs and sample selection, higher quality.

- 2. Site selection options: geophysical, geochemical, and geological targets.
- 3. * Sample selection options: 5 ft. to 10 ft. composite of any Labradorean till within 70 ft. of base of Quaternary or Keewatin till within 30 ft. Sample saprolite above and below the Kaolin-rich (or otherwise most-leached section). Sample bedrock.
- 4. Sample fraction and processing options.
 - a. Bulk sample for heavy mineral concentrate, and process via Knelson concentrator, or shaking table plus heavy liquid, or similar reproducible method. Save magnetic fraction.
 - b. Fine fraction options are -63um for gold transported a short distance (silt/clay) or -2um (clay) for pathfinders.
- 5. Sample analysis options
 - a. INAA on split of nmHMC for gold and pathfinder elements. Analyze Hg.
 - b. Numerous analysis packages available for fine fraction. Use only 1 gram for gold subsample.
 - * = Suggested approach for gold that should be the most effective, at a reasonable risk level. The use of drill equipment that grinds up pebbles during drilling will change the matrix composition, probably toward a Rainy till end member. That will make stratigraphic logging more difficult, in many ways. Do not core the Koochiching tills, which requires on-the-rig observations of stratigraphy. Search for unusual compositions or patterns in the HMC first, and only. Follow up with fine fraction and magnetic fraction analysis on subsequent interesting results of mineralogy. Focus sampling upon single-component lithology units for nearby sources.

Projected cost of 100 ft. borehole with 3 till samples, 1 saprolite, and 1 bedrock sample at preferred method:

	Number of	Cost per	
Procedure	<u>Samples</u>	Sample	Total Cost
Rotasonic drilling	-	-	\$2500.00
HMC via Knelson concentration	4	\$15.00	\$60.00
Analysis, chemical	5	\$30.00	\$150.00
Frantz nmHMC separation	4	\$10.00	\$40.00
Analysis, mineralogy (4 hours labor)	-	•	\$80.00
mercang Bord Gram count (done in nonco)			\$2830.00

Table 1b. Recommendations for Minerals Division infill drilling.

- 1. Drill Pattern
 - a) One borehole per 25 km^2 across the supracrustal belt.
 - b) Use the new pseudo-geologic maps to site down-ice from appropriate features.

2. Drill Method

- a) Rotasonic coring. Other drill methods grind up clasts, creating an artificial matrix. Correct background values, which are a major objective, and confident stratigraphic logging cannot be attained with such an artificial matrix.
- b) Drill through the Koochiching lobe deposits without coring, at an estimated cost savings of 30%(?). Koochiching deposits made up 50% of our 20 boreholes, in terms of footage.
- c) Wintertime drilling will likely be required to obtain access to selected features.
- 3. Sample Selection
 - a) From the sub-Koochiching core samples, select analytical samples from the lowest 70 ft. of glacial deposits, primarily emphasizing tills. No observed pathfinders, significant saprolite incorporation, or heads of dispersal trains were noted above 70 feet from the Quaternary base.
 - b) Select appropriate saprolite samples.
- 4. Analytical Fractions and Methods

The heavy mineral fraction subsample offers the most information, and comparable gold grain counts should be done. A less costly concentration method, using the Knelson concentrator, should be evaluated. Options exist to limit the fine fraction analysis, but it offers convincing evidence in regard to the veracity of stratigraphic logging. Criteria for selecting such samples on a follow-up basis could be established. Further, a total matrix (-1 mm?) fraction should be evaluated in cases where the head of a dispersal train carries pathfinders.

The analytical methods should be modified based on three criteria:

- 1) delete elements of no demonstrated value;
- 2) add elements shown in the Nordkallot project to be applicable to geochemical province recognition (Bolviken and others, 1991); and
- 3) obtain lower detection limits on a few elements of real demonstrated value.

Table 2. Analytical measurements showing regional baseline changes in the Baudette area.

6

Measured	Regional	
attribute	variation	Remarks
An mHMC	increases NW	Affects Baipy till
	increases NW	Affects Labradorean tille
	increases NW	Affects all tills
E mulhic	increases NW	Affects Briny till
He make	increases NW	Affacts all tills
	increases NW	
	increases NW	Affects an uns
	increases NW	Affects all tills
	decreases NW	
	decreases NW	
	decreases NW	
Sr BURMC	decreases NW	
PD magrime	Increases NW	
As -2um	increases NW	
Ca -20m	increases NW	
50 -2um	increases NW	
2F -20m	increases NW	
Al -2um	decreases NW	Affects all tills
Cr -20m	decreases NW	Affects Labradorcan tills
Cu -2um	decreases NW	
Fe -2um	decreases NW	
K +2um	decreases NW	
Na -20m	decreases NW	
P -2um	decreases NW	Affects all this
v -2um	decreases NW	Affects Labradorcan tills
CL P-M 1/4"	increases NW	Affects all tills
% P-M 1/4"	increases NW	Affects all tills
% P-M 4mcsh	increases NW	Affects all tills
ct P-M 4mesh	increases NW	Affects all tills
% Sol in matrix	increases NW	Affects Labradorean tills
% Ca in matrix	increases NW	Affects Labradorean tills
% Mg in matrix	increases NW	Affects Labradorean tills

This measurement exceeds 20% precision.

Table 3. Data manipulation and interpretation flow chart.

- 1. From logging, assign each till to a stratigraphic unit.
- 2. Calculate precision for each element or parameter. If >15%, do not use for stratigraphic correlation or regional background changes.
- 3. For each element or parameter, calculate basic statistics by stratigraphic unit.
- 4. Establish distinct end member populations for key parameters for each stratigraphic unit. Use x-y graphs. Look at case examples of mixing (Fig. 8).
- 5. Review descriptive log stratigraphic correlation based on analytical data. We made revisions on 6% of till samples.
- 6. Search for regional background variation, one parameter at a time.
- 7. Review all data for one sample, creating a total picture of all fractions recombined. Contrast all samples in a borehole this way. Interpret mixing case for each stratigraphic unit (Fig. 8), considering changes in dispersal scale moving up the borehole. Result: interpret proportions of saprolite vs. sound bedrock vs. exotic materials by sample.
- 8. Select ore and pathfinder element anomalies, such as 3x median value, plus pathfinder mineral information for review. Interpret the nature of the anomaly. Review associated data for lesser trends.

9. Interpret the dispersal scale of the anomaly. Try to find at least three parameters of the sample to determine first if underlying (property scale) dispersal is evident. Is there a tracer mineral present (Table 4) or unusual alteration of pebbles or unusual element concentration? Second, estimate the local and regional dispersal component. Use tools such as distance above Quaternary base, regional topography and isopachs, pebble counts, matrix solubility, siderite content, and review anomalous sample on regional stratigraphic x-y plots. That is, look for divergence from the population cluster and infer type of mixing.

 Table 4. Analytical measurements useful for resolving regional till stratigraphic questions.

Mcasured		
Attribute	Resolves	Remarks
As nmHMC	WT vs RT, OT	high in unox. WT
B -2um	WT vs RT, OT	high in unox. WT
Ca -2um	WT vs RT, OT	low in WT
Hg nmHMC	WT vs RT, OT	high in unox. WT
K -2um	RT vs OT	lower in OT
Na -2um	WT vs RT, OT	lower in WT
P -2um	WT vs RT, OT	lower in WT
Ti -2um	RT vs OT	lower in OT
Limonite	WT vs RT, OT	higher in WT
FI 1/4"	WT vs RT, OT	lower in WT
FI 4mcsh	WT vs RT, OT	lower in WT
% Clay	WT vs RT, OT	higher in WT
% Sand	WT vs RT, OT	lower in WT
% Ca matrix	WT vs RT, OT	higher in unox. WT

This measurement exceeds 20% precision.

parts.

Ì

Ó

Ö

Table 5. An interpretation of the type of glacial dispersal for the samples bearing significant pathfinders.

		Height (ft.) abovc Quaternary			
Pathfinders	Sample	Base	Uscful Parameters	Dispersal Train Interpretation	
Pb & Ag in magnetic fraction Au: 4 grains	502-01	51	B vs. Na(F) plot; high P content; Ba vs. Ti(F) plot; till mag. susceptibility v. high; high sphene content	high component of one unusual lithology of sound bedrock; head, <3 miles transport	
Ац, Нд, Си	514-02	41	70% granite pebbles, B vs. Na(F) plot; Ba vs. Ti(F) plot; siderite content; Cu vs. Cu; h. HMC wt.	mixed component till; tail, from granitoids	
Au: 5 gold grains & anom. finc fraction gold assay	506-01	8	siderite content high; plot B vs. Na(F); Ba vs. Ti(F) plot; plot Ti vs. V(F) pyrite/zircon ratio; plot Ni(H) vs. Mg(F)	high component of saprolite of unusual composition in till; head, very short transport	
Au: 1 large grain; 1 scheelite; 1 arsenopyrite	503-02	30	very low siderite content; Ba vs. Ti(F) plots in unique field; high K content; elevated Sr, Th, & U	more of a sound bedrock component; tail, distance?	
Au: anom. fine fraction & some in nmHMC; Hg	503-04	10	very high matrix soluble assay; high magnetic frac. wt.; 91% of sample is matrix	bead, short transport?	
Au: 2 grains & anom. finc fraction; 2 Cu grains; 2 scheelite grains	509-01	5	median siderite content vs. no saprolite in borehole; Ba vs. Ti plots in unique field; relatively low Ni, Cr, Mg for gabbro; high magnetic frac. wt.; mafic (plutonic?) pebbles common	uncertain	
Cu, Ni, Zo; 1 grsin Au; Fc	505-03	3	high siderite content; incorp. of Cu, Ni, Zn from underlying saprolite; high Fe; unusual Ce & Ga content; plot Ba vs. Ti(F); 90% of sample is matrix; high matrix sol. Fe	much incorporation of saprolite similar to that in borehole; head, very short transport	
Kyanite 10% of HMC subsample; Au: 1 grain	513-01	20	mixture of pebble types; 22% P-M pebbles; matrix sol. vs. As(H); B vs. Na(F); elevated Cr(H), Ce(H), Ni(H), Cu(H); zircon	mixing with underlying WT; kyanite-bearing till is not one lithology; tail	
Molydenite: 4 grains; Scheelite: 2 grains	512-01	14	pebbles high SC content, low PM for WT; 9% graywacke in SC; Mo increases down borehole; mag HMC assays; As(H); B vs. Na(F); Ti vs. V(F); K vs. Hg	WT mixing with local sound bedrock on high; tail, transport from SW of Vermilion fault?	
2 gahnite; 2 scheelites; Au: 4 grains	517-18	9	1-2 mm pyrite grains distinctive; As hmc elevated	this till sample rests upon bedrock; no dominant lithology observed; tail ? short distance	

(F) = fine fraction

Ê

(H) = nmHMC

¥

*a*i

Table 6.A list of till samples which exceed the regional-stratigraphic median by >3x for the seven selected
elements of Au, As, Cu, Pb, Zn, Ni, Hg.

Element/Fraction	Sample	Value	Appropriate Median x 3	Unit/Region
Au, nmHMC	502-01	4	3	
(grains/10 kg	506-01	5	3	
	517-018	4	3	
	520-03	4	3	
Au, -63 um assay (ppb)	503-04	23	6	RT-E
	506-01	34	6	RT-E
	509-01	15	6	RT-E
	514-02	14	3	RT-W
	515-03	10	6	RT-W
	517-15	5	3	OT-W
	517-16	6	3	OT-W
	518-02	6	3	RT-W
	519-06	4	3	WT-W
	521-02	5	3	RT-W
Cu, nmHMC (ppm)	508-02	3 69	266	RT-E
(see also Native	508-03	461	266	RT-E
Copper App. F & L)	511-02	386	210	RT-W
	505-02	220	210	OT-E
	505-03	700	210	OT-E
	514-01	260	210	RT-W
	514-02	271	210	RT-W
Cu, nmHMC (ppm)	521-05	263	225	OT-W
/	517-06	400	381	WT-W
Zn, nmHMC (ppm)	505-03	272	264	OT-E
Ni, nmHMC (ppm)	505-03	665	168	OT-E
Hg, nmHMC (ppb)	514-02	249	189	RT-W

Pb, nmHMC none Pb, -2 um none As, nmHMC none As, -2 um none Cu, -2 um none Zn, -2 um none Ni, -2 um none

 $\left(\cdot \right)$

Û

Table 7. A list of <u>magnetic fraction</u> till and saprolite samples that exceed the regional-stratigraphic median by \geq 3x the median for elements listed.

Element	Sample	Value	Appropriate Median x3	Unit/Region
MgO	501-003	3.7	3.75	SAP-E
TiO2	503-006 515-001 515-008	27.4 22.9 26.4	22.5 22.5 22.5	ASAP-E RT-W OT-W
Ag	502-001 502-002	8 8	6.6 6.6	RT-E RT-E
Со	501-002	1772	579	SAP-E
Cr	501-001 507-004 507-012 512-002 512-003 513-003 513-004	2660 2500 2616 3080 2580 3140 3120	2160 2160 2160 2160 2160 2160 2160 2160	RT-E OT-E SAP-E WT-W WT-W WT-W WT-W
Cu	507-012 514-006 520-016	178 241 1006	174 174 174	SAP-E SAP-W SAP-W
Ni	512-002 518-006	538 596	492 492	WT-W WT-W
РЪ	507-012	182	141	SAP-E
Zn	507-012	2938	1275	SAP-E

Table 8. Regional-stratigraphic till median values (ppm).

Êð

60

Ô

	1	1	State of the second second			1
	Datas Till	Daires Till	W.C			
		Kanoy I ul	winnipeg 111			Const Pre
	Mooian Last	Moulan West	MCOIAN WCSI	Median East	Median West	Saprolite
Element- Fraction	(n=20)	(n=21)	(n=29)	(n=7)	(n=24)	Median (n=14)
Ag - nmHMC	1.9	2.5	3.0	2.7	2.2	3.1
Ag2um	0.90	0.80	0.70	0.80	0.95	0.50
As - nmHMC	24	30	62 /	23	39	6.5
As2um	1	1.5	2.5	1.5	2	0.312
Au - nmHMC	0.088	. 0.047	0.028	0.038	0.065	0.013
Au2um	0.002	0.001	0.001	0.001	0.001	0.002
B	37.5	30	62	52	37	58
Ba - nmHMC	62.5	62.5	62.5	120	62.5	96.25
Ba2um	155.5	126	118	97	123	52
Ca - nmHMC	17500	16400	14800	17200	14500	15950
Ca2um	21950	55500	41300	10100	68150	1100
Cr - nmHMC	395.00	510.00	410.00	210.00	520.000	31.250
Cr2um	122	75	50	95	84	21
Cu - nmHMC	88.5	70	127	70	74.5	<u>,</u> 190.5
Cu2um	60	38	37	62	47.5	42.5
Fe - nmHMC	220000	240000	310000	300000	270000	300000
Fe tot2um	41450	32500	27300	36700	36550	42400
Hg	0.023	0.063	0.157	0.051	0.079	0.025
K - am HMC	312.5	312.5	312.5	312.5	312.5	\$06.25
K2um	5650	5000	5000	2900	4100	1850
Li - nmHMC	4	3	4	4	3	5
Li2um	34	33	33	29	29	14
Mg - nmHMC	6150	7200	7500	10900	7600	12700
Mg2um	15600	16700	15500	8600	15400	4800
Mn - nmHMC	2700	3500	4 100	4100	4750	8250
<u>Mn2um</u>	605	636	600	418	712.5	86.5
Mo - nmHMC	1.25	1.25	1.25	1.25	1.25	1.25
Mo2um	0.625	3.000	4.000	1.000	4.500	0.625
Ni - nmHMC	42.5	36	84	56	47.5	52.5
Ni2um	65.5	48	46	63	53	49
P - nmHMC	1170	1280	1300	1060	1065	1115
P2um	7445	7790	4430	7670	6195	5985
Pb - nmHMC	34	39	59	35	39	47.5
Pb2um	13	11	12	15	12	19
Sc - nmHMC	68.0	72.2	44.0	48.0	68.05	40.5
Sc2um	9.0	7.0	6.0	9.0	8.0	11.5
Th	127.0	176.0	158.5	46.0	161.5	20.0
Ti - nmHMC	8360	7320	4840	4210	5760	1090
Ti2um	1290	1090	790	780	985	312.5
U	15.0	18.0	17,0	6.1	15.0	3.95
V - nmHMC	160.0	136.0	142.0	195.0	144.5	129.5
V2um	79.0	59.0	52.0	71.0	62.5	86.0
W - nmHMC	5.000	3.125	3.125	7.000	3.125	3.125
W2um	6.25	6.25	6.25	6.25	6.25	6.25
Za - amHMC	66.5	72	121	88	77.5	181.5
Zn2um	93	81	75	82	79.5	89
Zr - nmHMC	6150	6700	7400	2800	6150	312.5
Zr2um	4	3	S	4	4	2.5
% Matrix sol.	13	19	31	16	24	9
% Matrix sol. Ca	- 1	4	7	2	5	0
nmHMC wt. (g)	11.3	11.9	8.4	11.8	10.3	9.4

*

57

Table 9.Observed attributes or available tools that are probably usable tracers to specific sources in
the Baudette Area since the regional background in till is so low.

I. Matrix

- A. Mineralogy
 - 1. scheelite
 - 2. gahnite
 - 4. corundum
 - 5. limonite pisolith
 - 6. native copper
 - 7. galena
 - 8. native gold
 - 9. molybdenite
 - 10. kyanite
- B. Chemistry
 - 1. Au
 - 2. Hg
 - 3. Ba
 - 4. Zn
 - 5. Ag & Pb bearing magnetite
 - 6. Pb
 - 7. Ni
 - 8. W

II. Clasts

- 1. komatiites?
- 2. tourmalinites
- 3. magnetic tonalites
- 4. magnetic coarse grained mafic intrusives

III. Whole Core

1. high magnetic susceptibility of till unit

IV. Additional plausible tracers not identified in this survey.

- 1. tourmaline
- 2. apatite
- 3. monazite
- 4. diamond
- 5. ilmenite
- 6. diopside

<u>Remarks</u>

1. Siderite content is an excellent guide to the saprolite incorporation in till.

2. The list of <u>potential</u> mineral tracers to ore deposits for this area is very long, especially if microprobe final analysis is used (e.g. olivine, diopside, ilmenite and garnet for diamond-bearing kimberlites).

Table 10. A synthesis of the observations and conclusions regarding till composition and variability.

A. Summary of results.

- 1. Stratigraphic units with:
 - a. various till types, subglacial vs. supraglacial;
 - b. heads and tails of dispersal trains;
 - c. incorporation of underlying material (mixing cases); and
 - d. characteristic content of certain elements--Hg, K, As, B, Ca, Na, P, Cu.
- 2. Regional variation, E vs. W, in:
 - a. exotic carbonate clast content;
 - b. exotic carbonate matrix content; and
 - c. ten elements in matrix clay fraction express the variation.
- B. A working hypothesis to explain the observations.
 - 1. Each stratigraphic package contains a basic composition, created by continental + regional provenance and flow path (e.g. Rainy lobe deposits contain a crystalline granite-greenstone composition).
 - 2. That composition, or central tendency of population on an X-Y plot, is modified by glacial processes.
 - a. Erosion + Entrainment + Transport + Deposition; probably dominated by:
 - 1) basal ice mechanics and flow velocity;
 - 2) the buried landscape topography, especially the topographic relief at the local- and property-scales; and
 - 3) the underlying materials; three types are available for incorporation to create the nine mixing models observed in Figure 8.
 - b. Result is expressed by two general groups of deposits:
 - 1) supraglacial tills; and
 - 2) subglacial tills whose deposition and composition are affected by the buried landscape.
 - 3. The result of regional variation of twelve elements in the matrix clay fraction is ascribed to incorporation of the Winnipeg lobe deposits.
 - a. Dilution of the matrix by carbonate-rich matrix.
 - b. The variation fits the distribution pattern of the Winnipeg lobe deposits.
 - 4.
- After deposition, subsequent inter-glacial weathering causes observed oxidation. Hydromorphic dispersion may occur, but has not been identified.

1-90 ...

Map 1. Location of the Baudette Area in Lake of the Woods County, Minnesota.

60

10

Legend

Baudette Area project boundaryCounty boundary

Legend

Map 3. Past and present overburden drilling projects in relation to regional glacial drift thickness (modified from Figure 2, MGS Information Circular 30, 1989, Ed. by G.B. Morey).

Legend

- Rotasonic overburden drill hole
- MGS scientific drill hole-bedrock test with stratigraphic log of overburden
- Industry exploration bedrock drill hole
- ★ Bedrock outcrop
- 1989, Aeromagnetic interpretation Baudette area, Spector, A., 1:62,500
- 1991, Aeromagnetic interpretation Baudette area extension, Spector, A., 1:62,500

Map 4. Sources of subsurface geological information for the Baudette Area. CUSMAP aeromagnetics, Bouger gravity, and CUSMAP reconnaissance cover the entire area.

Legend

- Surface elevation; contour 50 ft. interval
- Sound bedrock elevation; contour 100 ft. interval
- 1100 Relative bedrock high (1)
 - Rotasonic overburden drill hole
 - MGS scientific drill hole-bedrock test with stratigraphic log of overburden
 - Industry exploration bedrock drill hole
 - × Bedrock outcrop

(1) defined as >100 ft. above local bedrock surface; elevation of high is given; interpretation based upon evaluation of all borehole data.

Map 5a. A regional contour map of both bedrock and surface elevation. Local-scale features, inferred to be relative bedrock highs, are shown by gray tone.

i a in

Legend-Pseudomap R33W Strip

, G

Granitic rocks

Metavolcanics

mvb

Basic metavolcanics

Iron formation

- ms Metasedimentary rocks
- Interpreted fault
- Road
- Drill hole
- Drill data available to Dr. Spector

Legend

- Rotasonic overburden drill hole
- MGS scientific drill hole-bedrock test with stratigraphic log of overburden
- Industry exploration bedrock drill hole
 Bedrock outcrop

Map 5c. Aeromagnetic interpreted pseudomap (Spector in Lawler and Venske, 1991).

.

Legend

- 100 ft. contour drift thickness
- 200 ft. contour drift thickness
- Areas where preserved saprolite is greater than 10 ft. thick (1)
- -- Inferred area
- Rotasonic overburden drill hole
- Solution MGS scientific drill hole-bedrock test with stratigraphic log of overburden
- Industry exploration bedrock drill hole
- × bedrock outcrop

(1) interpreted from all available data and assumption of saprolite preservation in bedrock topographic lows

Map 6. A regional contour map of both glacial drift and saprolite thickness.

3.0810/3/10+

Map 7. Isopachs of Koochiching lobe sediment from 20 boreholes of this project.

1.162.0765

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE KOOCHICHING LOBE SEDIMENT

REGIONAL TRENDS OF KOOCHICHING LOBE SEDIMENT THICKNESS

2 († 1) **)** (†

Map 8. Isopachs of Rainy lobe sediment from 20 boreholes of this project.

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE RAINY LOBE SEDIMENT

REGIONAL TRENDS OF RAINY LOBE SEDIMENT THICKNESS

24'

811

10'e

48

- 10

10

21

43

87A

21'

e glacial lobe not the t mapped REGIONAL TRENDS OF RAINY NON-TILL THICKNESS

0

ź.

Map 9. Isopachs of Winnipeg lobe sediment from 20 boreholes of this project.

141194934

11

2.851

Map 10. Isopachs of Old Rainy lobe sediment from 20 boreholes of this project.

REGIONAL TRENDS OF ELEVATION AT THE BASE OF THE OLD RAINY LOBE SEDIMENT

12

REGIONAL TRENDS OF OLD RAINY LOBE SEDIMENT THICKNESS

15:02:197

REGIONAL TRENDS OF ELEVATION AT THE TOP OF THE SAPROLITE OR GRUS

OF REWORKED SAPROLITE AND CRETACEOUS SAND (DRILL HOLE \$03)

REGIONAL TRENDS OF TOTAL SAPROLITE THICKNESS (INCLUDING GRUS, REWORKED SAPROLITE, AND CRETACEOUS SAND-DRILL HOLE \$03)

З

Map 12a. Bedrock geology map (modified from 1:250,000 scale Roseau 2° sheet by Day, and others, 1991).

74

MAP UNIT DESCRIPTION

Map 12b. Bedrock geology map description and location.

APPENDICES

ø

Û

Appendix 280-A.	Synopsis of Baudette area drill information. Map scales are 1:24,000.
Appendix 280-B.	Descriptive logs of Baudette area drill core.
Appendix 280-C.	Sampling and analytical methods.
Appendix 280-D.	Precision and accuracy of assay methods.
Appendix 280-E.	Variation maps for the Baudette area.
Appendix 280-F.	Master index for Baudette area samples.
Appendix 280-G.	Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.
Appendix 280-H.	Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.
Appendix 280-I.	Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.
Appendix 280-J.	Baudette area sample component weights and percents reported by contract laboratory.
Appendix 280-K.	Physical properties of Baudette area samples.
Appendix 280-L.	Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.
Appendix 280-M.	Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.
Appendix 280-N.	Baudette area pebble counts +1/4" - 3/8" pebbles.
Appendix 280-O.	X-ray diffraction results for 14 selected Baudette area till and saprolite samples.
Appendix 280-P.	Baudette area gold data summary.

Appendix 280-A. Synopsis of Baudette area drill site information.

1 (Ch

Тур	=township	
Rng	=range	
Sec	=section	
min.	=minute	
dia.	=diameter	
Inclin.	=inclination	
Surf.	=surface	
elev.	=elevation	
Quat.	=Quaternary	
Pct.	=percent	
No.	=number	
<	=less than	
>	=greater than	
n/a	=not applicable	

.

Appendix 280-A. Synopsis of Baudelle area drill site information. Map scales
--

								UTM	UTM							
Drill						Quadrangle	Regional	East	North			Drilling	Drilling	Core		Inclin.
Site	Twp	Rng	Sec	40acre	County	7.5 min.	survey	coordinate	coordinate	Latitude	Longitude	method	company	dia,	Azimut	angle
301	158N 3	31 W	17	NE of NW	Lake of Woods	Baudette SW	Baudette	377 200	5374 280	48 30 39	94 39 46	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
502	159N 3	31 W	20	SE of SE	Lake of Woods	Baudette SW	Baudette	378 360	5381 120	48 34 21	94 38 57	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
503	160N 3	31 W	14 :	SW of SE	Lake of Woods	Baudette	Baudette	382 830	5392 060	48 40 18	94 35 32	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
504	157N 3	32W	1	SE of SE	Lake of Woods	Chase Brook	Baudette	374 600	5366 380	n/a	n/a	n/a	n/a	n/a	n/a	n/a
505	158N 3	32W	22	SW of NW	Lake of Woods	Oaks Corner NE	Baudette	370 320	5372 150	48 29 26	94 45 14	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
506	159N 3	32W	22	NW of NW	Lake of Woods	Graceton SE	Baudette	370 420	5382 350	48 34 55	94 45 22	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
507	160N 3	32W	5	SE of SE	Lake of Woods	Graceton	Baudette	368 920	5395 550	48 42 03	94 46 56	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
508	157N 3	33W	15	NW of NW	Lake of Woods	Oaks Corner	Baudette	360 880	5364 940	48 25 22	94 52 53	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
509	158N 3	33W	23	SE of SW	Lake of Woods	Oaks Corner NE	Baudette	363 870	5371 560	48 29 02	94 51 21	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
510	159N 3	33W	36	NW of SW	Lake of Woods	Graceton SE	Baudette	364 340	5378 400	48 32 38	94 50 20	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
511	160N 3	33W	8	SW of SW	Lake of Woods	Graceton NW	Baudette	358 310	5394 010	48 41 04	94 55 31	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
512	157N 3	34W	24	NE of SE	Lake of Woods	Oaks Corner	Baudette	355 630	5362 550	48 24 01	94 57 02	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
513	158N 3	34W	23	SE of SE	Lake of Woods	Oaks Corner	Baudette	354 160	5371 590	48 28 55	94 58 27	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
514	159N 3	34W	15	SE of SW	Lake of Woods	Winter Road Lake	Baudette	351 720	5383 260	48 35 10	95 00 42	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
515	160N 3	34 W	32	NE of SE	Lake of Woods	Winter Road Lake	Baudette	349 650	5388 480	48 37 56	95 02 24	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
516	157N 3	35W	36	NE of SE	Lake of Woods	Shilling Dam	Baudette	345 920	5359 340	48 22 14	95 04 55	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
517	158N 3	35W	30	NW of NE	Lake of Woods	Shilling Dam NW	Baudette	337 790	5371 930	48 28 51	95 11 48	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
518	159N 3	35W	22	SW of NE	Lake of Woods	Winter Road Lake	Baudette	342 810	5382 690	48 34 44	95 07 55	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
519	160N 3	35W	16	SE of NW	Lake of Woods	Winter Road Lake	Baudette	340 692	5393 260	48 40 23	95 09 40	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
520	159N 3	36W	29	SW of NW	Lake of Woods	Mulligan Lake	Baudette	329 010	5381 190	48 32 48	95 19 08	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90
521	160N 3	36W	30	SE of SW	Lake of Woods	Mulligan Lake NE	Baudette	328 020	5390 060	48 38 28	95 20 04	rotasonic	J.R. Drilling, Ltd	3.7 inch	0	-90

Appendix 280-A (continued).

2

		Base	Sound	Quat.	Reworked		Sound				No. of	No. of	No. of	
Drill	Surf.	Quat.	bedrock	thick	saprolite	Saprolite	bedrock	Total	Cored	Pct.	till	other drift	non-drift	Total
Site	elev.	elev.	elev.	ness	thickness	thickness	thickness	depth	interval	recovery	samples	samples	samples	samples
301	1156	1021	<942	135	0	>79	0	214	0-214	76	1	0	3	4
502	1137	958	958	179	0	0	8	187	0-187	96	3	2	1	6
503	1116	963	857	153	58	48	8	267	0-267	96	5	0	4	9
504	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
505	1167	933	906	234	0	27	6	267	0-267	96	3	0	2	5
506	1174	998	943	176	3	52	15	246	0-246	96	2	0	3	5
507	1157	918	<910	239	0	>8	0	247	0-247	98	7	4	2	13
508	1191	1039	911	152	i	127	5	285	0-285	90	3	0	6	9
509	1175	1083	1083	92	0	0	8	100	0-100	100	1	0	1	2
510	1226	1119	1119	107	Ó	Ō	5	112	0-112	90	2	0	1	3
511	1196	1053	1026	143	Ó	27	15	185	0-185	85	5	0	1	6
512	1185	1080	1078	105	Ó	2	10	117	0-117	100	3	Ó	1	4
513	1200	1107	1093	93	2	12 *	8	115	0-115	93	4	0	2	6
514	1305	1089	1048	216	ō	41	5	262	0-262	87	3	2	2	7
515	1251	1039	1039	212	0	0	n.	223	0-223	94	8	ō	1	9
516	1211	1157	11.57	54	õ	ŏ	7	61	0-061	95	2	i	i	4
517	1255	1035	1035	220	Ō	ō	9	229	0-229	90	18	Ō	i	19
518	1280	1030	1023	250	2	5	16	273	0-273	91	7	1	ī	9
510	1233	1071	1048	162	ō	23	23	208	0-208	95	6	ō	ī	7
520	1249	950	<920	299	ĩ	>29	ō	329	0-329	91	14	ĩ	2	17
521	1235	948	938	287	i	9	23	320	0-320	90	6	5	4	15

A-2

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

化制造的制度

 $(\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{V$

4

Appendix 280 A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000.

12234407

C C C C C C C C C

- **1973** -

Appendix 280-A. Synopsis of Baudette area drill site information. Map scales are 1:24,000. Drill Site 519 Twp 160N Rng 35W Sec 16 SE Drill Site 521 Twp 160N Rng 36W Sec 30 SE

Column ab	breviations,	data l	key, and	other	notation
-----------	--------------	--------	----------	-------	----------

Descriptive Log Abbreviations						
apar	=apparently					
calc	=calcareous					

carb	=carbonate
cgr	=coarse-grained
cob	=cobbles
ft	=fect
fgr	=finc-grained
gnl	=granules
gvl	=gravel
grn	=green
incl	=including
lam	=laminae
lith	=lithology
mgr	=medium-grained
mod	=moderately
noncalc	=non-calcareous
occ	=occassional
ox	=oxidized
pebs	=pebbles
sed	=sediment
sev	=several
sh	=shale
sl	=slightly
sm	=small
unox	=unoxidized
v	=very

w/ =with

Stratigraphic Picks

ĸ	=Koochiching
R	=Rainy
W	=Wnnipeg
0	=Old Rainy
S	=Saprolite
B	=Bedrock

Other Notes

Glacial Drift descriptive logs by G. Meyer (MGS) Saprolite descriptive logs by D. Cartwright (MnDNR) Bedrock descriptive logs by T. Klein (USGS)

For clast lithologies, PM =Paleozoic-Mesozoic FI =felsic-intermediate intrusives SC =supracrustals

Numbers next to samples in graphic plots are height in fect above the basal Quaternary contact

The data from drill hole 517 have been plotted as type samples for the other drill holes

Gold (Au) assay data is in parts per billion (ppb).

B-1

Explanation of data contained on descriptive logs.

B-2

Legend

JUILI HO	TE OB-DOT			
Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples in Drill Hole 501	\$ 0 50	К	(0-3) SILTY CLAY; OXIDIZED; leached; top foot fgr sand; peb line at base over silty till. (3-2) who come
10	Crystalline Bedrock	•		<pre>(7-9) SILTY CLAY TILL; OXIDIZED; mod calc, carb pebs; v silty sand at top interbeds & grades to till. (9-13 1/2) SILTY VERY FINE SAND; OXIDIZED; inclined upper contact; fgr peb lines in last foot.</pre>
		•		(13 1/2-17) GRAVELLY SAND; OXIDIZED; unox at 14 1/2 ft; abrupt upper contact; mostly fgr sand 14 1/2-15 1/2 ft, mostly fgr gvl from 15 1/2 ft; abundant carb; abrupt lower contact.
20	u m p - 25	•		(17-28) SILT LOAN TILL; UNOXIDIZED; firm; calc, carb pebs common, occ sh pebs; silt bed at 18 ft; coarsening upward gvl bed 19 1/2-21 ft; fine sandy loam till 21-22 1/2 ft, silt bed
	A 2 -5 Approlite	•		w/gvl at base 22 1/2-23 ft.
30	والــــــــــــــــــــــــــــــــــــ	•		(28-47) LOAM TILL; UNOXIDIZED; as above, but messive; sm to m pebs fairly common, sm cob at 31 1/2 ft; darker gray w/depth; last foot more silty & obscurely
10		•		laminated.
	Clay TH Samples In DrNJ Hole 501	•		·
-50		•		(47-54) FINE SANDY LOAN TILL; UNOXIDIZED; as above, massive; mostly only sm pebs, carb dominant; sev medium pebs near base.
60		•		(54-72) CLAY TILL; UNOXIDIZED; massive, softer than above, abrupt upper contact; mod calc, calc by 58 ft; less pebs than above, carb pebs common, but fewer than above, most large pebs Precembrian; compact by 58 ft; sm cob at 58 ft; gradational lower contact.
	Sand C S S S S S S S S S S S S S S S S S S			
70	in Drift Hole	•		(72-76 1/2) SILT LOAM-SILTY CLAY TILL; UNOXIDIZED; as above, but variable texture; mostly silty clay till by 74 ft; many clay & silt inclusions below 74 1/2 ft; abrupt lower contact. (76 1/2-80) SILTY CLAY, CLAY & CLAYEY SILT; UNOXIDIZED; laminated, firm; mod calc (clay) to v calc (silt).
80		•	F	(80-91) SILTY CLAY; UNOXIDIZED; sl calc-noncalc; reddish brown lam to 82 1/2 ft, could be oxidation phenomena as encompassing clay is greenish gray; poorly sorted fgr sandy silt bed et 81 1/2 ft; fgr sand scattered throughout silty clay, no pebs; vaguely laminated w/clay & clayey silt below 82 1/2 ft; more silt w/denth, grades to silt from 89 ft.
90		·		
100		•		(91-97) SILT; UNOXIDIZED; greenish gray sl calc; fgr mica flakes; reddish brown silty clay laminated below 92 1/2 ft; mostly greenish silty clay below 95 1/2 ft, over clayey silt at 96 ft; fairly abrupt lower contact. (97-99 1/2) SILTY GRAVELLY SAND; UNOXIDIZED; pebbly v cgr sand grading upward to mgr sand, mod sorted; interbedded w/clayey silt; rare carb.
		•		<pre>(99 1/2-102) CLATEY SILT; UNOXIDIZED; greenish gray; sl calc; mod. sortad; sev v large pebs near top, cob at base. (102-106 1/2) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted, rard cob. (106 1/2-112 1/2) FINE-MEDIUM SAND; UNOXIDIZED; silty zone weblic bad peop ten verse to men send on price at back</pre>

Ch^{ar}th Same

A.

Drill	Hole	OB-502	
	Î		

an 20 Research artisk Grand Stade

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
1	Till and Seprolite Sepples	1	Party and the second second second	
	In Drill Hole 503 Crystalline Redrock	0 50 •		(0-4) SILT LOAM TILL; OXIDIZED; firm; calc; top foot peaty, silty, clay loam; not many pebs; mottled in lower 2 ft. (4-14 1/2) LOAM TILL; OXIDIZED; as above but more pebs; carb common.
_10	41 51 A1 51 A1	•		
		•		(14 1/2-34 1/2) LOAM TILL; UNOXIDIZED; as above; most pebs sm;
20	u 	•		
		•		
30	Saprolite 	•		
:		•		
	∩ 87-517 □ WT-517 ox. V WT-517 ◊ 07-517	•		(34 1/2-37) CLAY LOAM TILL; UNOXIDIZED; couple thin beds of silty cgr sand in upper 1/2 ft; silt & clay lam below 36 ft. (37-61 1/2) CLAY: UNOXIDIZED; color firm, monthly citle in upper
40				1 1/2 ft; occ sm pebs, clustered; silt bed at 41 ft; abrupt lower contact.
	In Drill Hole 502	•		(41 1/2-47) LOAM TILL; UNOXIDIZED; soft; calc; common carb; clay poor; sm cob, large pebs towards top; thin silty sand beds throughout; lower foot silty fgr-mgr sand, sm pebs at base.
50		•		(47-79) LOAM TILL; UNOXIDIZED; massive; firm; calc; clay poor to about 52 ft.; common carb, fairly common sh; occ large pebs but not v pebbly; clay loam till below 73 ft, silty clay till below 73 ft.
		•		
60		•		
	sans 314 44 51 Sin	•		
70	THI Samples in Drift Hole 502	•		
		•		
80		•		(79-95 1/2) LOAM TILL;UNOXIDIZED; almost loose consistency.
		•		then quite firm by 82 ft; matrix high in silt & fgr sand, not many pebs; lighter gray than above till, also no sh noted; compact by 91 ft.
90	P1 PM	•		
		•		
100		•		(95 1/2-98) CLAY TILL; UNOXIDIZED; massive; calc; only scattered pebs; abrupt upper & lower contacts but clay & silt lam near base. (98-105) SILT: UNOXIDIZED: calc; mod calc, inneguiably accord
				clay lam; acattered sand grains, sm pebs; mostly clay & silty clay below 101 ft, w/silt lam; thin greenish bed at 103 ft, mostly silty clay below w/fair amount of fine sand; thin clay
		•	K R	bed at 104 ft, lam below. (105-120) SILT & CLAY; UNOXIDIZED; sl calc-noncalc; more greenish, better laminated than above, v few sand grains, no

......

in the second second

영상 같이 있는 것이 있는 것 같은 것입니다. 이렇게 이야한 이야한 것이 가지 않는 것이 아파 이가 있는 것이 있 같은 것이 같은 것

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
10	Till and Seprolite Samples in Drill Hole 503 Crystalline Jagdrock Jay 30 30 	0 5 0	K	<pre>(0-3) GRAVELLY SAND; OXIDIZED; reddish brown; sand mod sorted, silty & fgr; last foot poorly sorted fgr gvl. (3-9) SILTY FINE SAND; OXIDIZED; mod sorted; some coarser grains.</pre>
		•		(9-13 1/2) VERY FINE SAND; UNOXIDIZED; sm pebs, little organics below 11 ft; v fgr sandy silt below 12 ft. (13 1/2-17) CLAY & SILTY CLAY; UNOXIDIZED; vaguely laminated; abrupt lower contact.
20		•		(17-30) LOAN TILL; UNOXIDIZED; soft; common sm carb pebs; clayey w/clay lam in upper foot or so; firm & more pebbly below 27 ft; last foot mostly silt.
30	-63 -16 6 sprol 1	•		
40		•		(30-73) VERY FINE SANDY SILT & SILTY SAND; UNOXIDIZED; v well sorted; 30-32 ft v fgr sandy silt w/silt lam near base; 32-38 ft silty v fgr sand; 38-46 ft silt-v fgr sandy silt; 46-52 ft silty v fgr sand; 52-62 ft v fgr sandy silt; 62-63 1/2 ft clay loam till mixed w/silt; 63 1/2-65 ft silt w/pebby cley lam towards base; 65-73 ft v fgr sandy silt, clay loam till layer at 68 1/2 ft; carb pebs in last foot, gradational lower
50	THE Samples in Drift Hole 503	•		
60		•		
	160 3 4 4 30 20 500 500 500 500 500 500 500 500 500 500			
70	TH Samples in Drift Hote 503	•		(73-76 1/2) SILTY CLAY LOAM TILL; UNOXIDIZED; grades to silt w/thin clay loam till lam 75-76 1/2 ft; abrupt lower contact.
80		•		(76 1/2 -80) CLAY LOAN TILL; UNOXIDIZED; compact; silt bed at 77 1/2 ft, silt lam below 78 1/2 ft, gradational lower contact. (80-82 1/2) SILT - VERY FINE SANDY SILT; UNOXIDIZED; clay loam
		•		(82 1/2-89) CLAY LOAN TILL; UNOXIDIZED; firm; silt lam in upper foot or so; sm carb & sh pebs common; fine loamy texture by 85 ft; cob at 88 ft.
90	PI	•		<pre>(89-92) SILT; UNOXIDIZED; scattered sand grains; peb cluster at 90 ft, few below; grades to till below. (92-110) LOAM TILL; UNOXIDIZED; mostly only sm pebs; clay bed of 0.5 ft colleget.</pre>
100		•		by 104 ft, also clay texture w/few pebs.
		•		

Drill Hole OB-503

•

41977) 2017 1962

(1997) North

i sin Santa

enterine ist

02 ā 03 0 118 4 150 (153 1/2-156) GRAVELLY SAND; UNOXIDIZED; silty, cgr, poorly sorted w/common large pebs, sm cob at 154 ft; carb pebs rare; silt clast at base, abrupt lower contact. (156-163 1/2) COARSE SAND; UNOXIDIZED; v well sorted; cgr -v cgr w/few gnl by 158 ft; sm clast of gray, mod calc sandy till at 159 1/2 ft; last 2 ft not as well sorted, mostly mgr, w/some gnl at 162 ft; abrupt lower contact. 0 12 8 04 160 R ----Ō (163 1/2-178 1/2) SILTY VERY FINE SAND; UNOXIDIZED; greenish gray; abundant dark mics flakes; v fgr-fgr below 164 1/2 ft, silty in spots; mostly silty below 172 ft; no core 177-178 1/2 ft. 170 05 0 106 1 (178 1/2-180) NO CORE. 180 0 (180-187) BEDROCK; pink to tan, medium-coarse grained biotite-bearing syenite. The biotite is ragged, mostly altered to chlorite, and forms a variably present, moderately well developed foliation at 45° to core axis. The original coarse-grained feldspars have recrystallized to anhedral patches comprised of very fine-grained, sausseritized feldspars separated by intergranular micas. B + ÷ + + ŧ + 06 1 + + + + ÷ + ÷ + 190 Thin section description: sample at 181 feet. Mineralogy: microcline (44%), plagioclase (48%), biotite (4%), epidote (4%), eccessory minerals (gsrnet, opaque). Texture: hypidiomorphic-granular, with 0.5 to 0.8 mm diameter, generally equigranular, feldspars. Light brown, slightly pleochroic biotite is present in glomeroporphyritic megacrysts 0.9 mm in diameter. 200 Lithology: syenite. 210 TD = 187' 220 230 240 250

arriya Charis

Depth (ft)	Stratigraphic Attributog	Magnetic Suscept-	Strati- graphic	
	Till and Seprolite Samples		COLUMN K	(0-8) FINE SAND: OVIDIZED: and control for a state
		•		part; thin silty cgr sand bed w/sm carb pebs at base; abrupt lower contact.
	Berrock	•		(8-11 1/2) CLAY & SILTY CLAY: UNOXID12FD: mod calc: generally
	3 M V V Exotion	•		rare & v thin calc silt lam; few sm pebs & silt lam 10-11 ft.
	K	•		<pre>(11 1/2-18) CLAY TILL; UNOXIDIZED; messive, firm; mod calc-calc; few sm pebs; gradational upper contact; silty clay till below 14 ft; more pebs, some large by 16 ft; last foot</pre>
		•		silty clay w/interbeds of clay, soft, mod calc, v rare clasts.
20	0001	•		(20-22) HEDION SAND; UNUKIDIZED; gvl at base grading up to silty v fgr sand. (20-22) LOAM TILL; UNOXIDIZED; mod calc; high in v fgr sand &
		•		silt, pebbly; abrupt contacts. (22-25 1/2) SILTY VERY FINE SAND; UNOXIDIZED; well sorted, few
	8 aprolite	•		at bes. (25 1/2-68 1/2) LOAM TILL; UNOXIDIZED; firm; calc; carb common,
30	Hg nelHC	•		sh uncommon; fgr sand inclusion at 27 1/2 ft, well sorted fgr sand bed 28-28 1/2 ft; more silty 44-48 ft w/silt inclusion at 46 ft; more compact w/depth; carb cob at 45 ft;
		•		
	A RT-317 ALC U HT-317 OX. V HT-517	•		
40		•		
	The Samples In Dritt Hole	•		
	505	•		
50		•		
	\land	•		
		•		
60		•		
	sc	•		(68 1/2-75 1/2) CLAY LOAM TILL; UNOXIDIZED; compact; calc;
70	THI Samples in Orifi Hole SSS	•		lignite peb at 71 ft; more silty below 73 ft; laminated silty clay & clay, calc, w/few clasts, below 74 ft;
		•		
		•		(75 1/2-87) LOAM TILL; UNOXIDIZED; soft; calc; common carb & sh
80	500 ⁴³	•		about 80 ft; mostly sm pebs; cob at 86 1/2 ft.
		•		
90	ті <u></u> рм	•		(87-89) BOULDER. (89-99 1/2) CLAY LOAM TILL: UNOXIDIZED: compact: common cash &
		•		sh; minor silt & fgr sand inclusions; silty in upper couple ft, more clayey in places; darker & more massive w/no inclusions balaw 05 ft
		•		UGIUN 73 TT.
100		•		
		•		(99 1/2-105 1/2) GRAVELLY SAND; UNOXIDIZED; silty, poorly sorted; common to abundant carb pebs, sm carb cob at 100 ft:
		•		till bed at 101 ft, sandy to clayey till from 101 1/2-102 1/2 ft, mostly till w/mgr sand interbeds 104-105 1/2 ft. (105 1/2-124 1/2) CLAY TILL HUNYINIZED, source start start
		•		loam texture above 108 ft, large carb cob at 107 ft; silt inclusions 108-112 ft; mostly silty clay w/scattered pebs; not
110		•		quite as clayey below about 122 ft,
		•		
		•		
120		••		
, ,		•		(124 1/2-129) SILTY CLAY & CLAY; UNOXIDIZED; Laminated; mod
		•		calc-calc; v well sorted, no sand grains; greenish gray, dark gray & gray; greenish silt bed towards base.
130				(129-135 1/2) SILT & CLAY; UNOXIDIZED; laminated; sl-mod calc; greenish gray silt & light brownish gray clay, w/reddish brown
		•	κ	clay beds at 129 1/2 ft; below 129 1/2 ft massive gray silty clay W/sand grains, red bed at 130 ft; below 130 ft laminated silt, calc silty clay & few reddish brown lame few sand grains
		•	R	below 130 1/2 ft; sev red beds at 132 1/2 ft; well developed rhythmitea at 134 ft.
140		L		(132 1/2"137 1/2) FINE SANDY SILT; UNOXIDIZED; greenish gray; massive, not as well sorted as above; no pebs; mod calc,

Drill Hole OB-505

Sec.

2.00 B.

18.44.40

<u>260</u> 270	•	S	replacement of the wallrock is apparent in the verifis. Calcite samples where it has not been removed by weathering. Thin section description: samples at 250 and 256 feet. Mineralogy: plagioclase (40%), blue-green biotite (40%), quartz (10%), epidote (5%), fine-grained white mica (3%), apatite (trace.), calcite (in vain).
280 290			Texture: Porphyroclasts of plagioclase and quartz ara commonly 0.05 to 0.08 mm long (with up to 5:1 flattening in quartz). Broken plagioclase is rotated from 1/3 to 1/2 and quartz contains many biotite inclusions. Biotite is commonly intergranular with some growth in pressure shadows adjacent to plagioclase. Well developed cataclastic foliation. Calcite, in a late vein, incorporates previously-deformed host rock. Lithology: mylonite (protolith may have been a quartz-bearing plutonic rock).

Drill Hole OB-506

realization and the contract of the second second

elliness.

Sugar Break to Sugar She Sala and a she

110	•		loam till below 127 ft, more clayey w/depth.
	•	 And A state and a state of a st	
	•		
120			-
	•		
	•		
470	•		
	•		
	•		
	•		
140	•		

1975) (1975) (1975) 210 (x.) 1.1.1.1 1.1.1.1 1.1.1

(137 1/2-140) SILT; UNOXIDIZED; greenish gray w/gray silty clay • lam; scattered fine sand grains, sm pebs at 140 ft; sl- mod 01 213 . 1 1 calc. (140-145) SILT LOAM TILL; UNOXIDIZED; greenish gray; soft;

a standar

Â

sl-mod calc; only sm pebs; gray silty clay layers at 143 1/2 ft, large pebs below; large peb & sm cob at base; abrupt lower 150 contact (145-150 1/2) LOANY SAND TILL; UNOXIDIZED; greenish gray; firm; sl calc; silty pebbly sand from 145 1/2-146 1/2 ft; large pebs fairly common; dark greenish gray cgr silt & gray silty clay 149-149 1/2 ft; gray v silty cgr sand, poorly sorted 149 1/2-150 1/2 ft. 1/2-150 1/2 Tt. (150 1/2-169 1/2) SILT; UNOXIDIZED; dark greenish gray cgr silt & gray silt; mod calc; laminated; abundant dark mica flakes in cgr silt; no gray silt below 156 ft; v fgr sand lam at 161 ft; laminated graenish gray silt & grayish brown clay zone at 162 160 1/2 ft; brownish colors at joints; no pebs; 168-169 ft silt . w/clay lam at top. 170 (169 1/2-172) VERY FINE-FINE SAND; UNOXIDIZED; v silty & interbedded w/fgr sandy silt. (172-177) COARSE SILT; UNOXIDIZED; dark graenish gray; occ brownish clay lam; v fgr sandy silt lam at 174 1/2 ft. (177-224 1/2) SILTY VERY FINE & FINE SAND & SANDY SILT; 180 UNOXIDIZED; sl calc; dark greenish gray, high mafic content; fgr-mgr sand lam at 181 ft; mostly v fgr sandy silt 188-194 ft; rare carb; silty cgr sand bed at 195 ft; 205-206 ft silty v 194 ft; cgr-v cgr sand bed at 195 ft; 205-206 ft silty v fgr-fgr sand grades down to cgr sand; cgr silt 210-211 ft, brownish clay lam in silt bed below; mostly cgr silt 213 1/2 ft-215 ft; 215-217 ft silty v fgr-mgr sand, mod sorted, w/v fgr sandy silt beds. . 190 • • . • 200 • . . 210 . • 220 (224 1/2-234) LOAM TILL; UNOXIDIZED; greenish gray; loosa; sl calc; 225-228 ft many rounded to subangular cobs & large pebs, v large cob at base; no pebs or cobs 228-232 ft, more a v poorly sorted sandy silt; 232-234 ft v poorly sorted sandy clay w/few pebs incl 2 large pebs at top, also large saprolite inclusion different from saprolite below; peb lines at base in 02 з 19 2 _____ reworked saprolite. 230 03 200 1 1 . ইইত্ (234-237) SAPROLITE; CHLORITIC; greenish gray, soft. Slight S fine-grained equigranular rock texture. Coarse texture from 237-238 ft. Oxidized zones occur along fractures at 236 ft. 04 0 16 1 Completely weathered to clay minerals except for sparse 240 angular quartz and pink feldspars ranging up to 2 mm, and abundant flakes of muscovite. Slightly calcareous. (237-240) SAPROLITE; CHLORITIC; dark greenish gray. Similar to (237-240) SAPROLITE; CHLORITIC; dark greenish gray. Similar to above only texture is less pronounced. 2 cm rounded pebble at 240 ft (in place?). Slightly calcareous. (240-243) SAPROLITE; CHLORITIC; similar to 234-237 ft. (243-261) GRUS; dark greenish gray, fine grained. Core has a grainy-clumpy texture. Contains more quartz, some feldspars and abundant small muscovite flakes. Similar to above (234-237 ft) only less weathered. Slightly calcareous to moderately calcareous. 250 calcareous.

(261-267) BEDROCK; light gray, equigranular, biotite quartz

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
10	7111 and Saprolite Samples in Drill Hole 507 Crystalline Bedrock	0 5 0	K	<pre>(0-3 1/2) VERY FINE-FINE SAND; OXIDIZED; well sorted, few coarser grains. (3 1/2-6) CLAY & SILT; OXIDIZED; leached to 5 1/2 ft; well developed lam; mostly silt w/few sand grains below 5 ft. (6-32) VERY FINE SAND; OXIDIZED; v well sorted, silty & coarse grains in places; bed of silty clay w/sand grains at 9 ft, v</pre>
20	$ \begin{array}{c} $	•		Tgr-rgr sand below; large carb peb at 10 1/2 ft, fgr sand w/few sm pebs below to 11 ft; unox below 11 ft; clayey till over clay bed at 11 ft over bed of v fgr sandy silt w/silt lam; clayey till lam at 12 ft; 13-14 ft clayey till w/carb & sh pebs, silt beds at 13 1/2 ft; laminated silt bed at 15 ft over v well sorted fgr sand w/beds of v fgr sand; at 21 ft silty v fgr sand grading to silt at 22 ft, calc, w/clay lam, some sand; v fgr sand below 23 ft, clayey till bed at 25 ft; thinly laminated
	85 53	•		silt beds at 27 1/2, 28 1/2 ft; fgr sand below 29 1/2 ft.
40	Δ RT RT 	•		(32-85) LOAM TILL; UNOXIDIZED; firm; calc; abundant carb, v rare sh; abrupt upper contact; darker gray & compact below 36 ft; mostly sm & medium pebs, little more large pebs w/depth; gradational lower contact, clayey in last couple ft, interbedded w/clay at base.
50	Till Samples in Dritt Hole 507	•		
60		•		
70	Sind 53 + 53 + 53 + 55 + 55 + 55 + 55 + 55	• • • • • • • • • • • • • • • • • • •		gan a mannangagi angan kang panilan sebelah generatan kenyangkenan kenyanaken Ribert (kenya B
80	28/40 45 53 4 28/40 45 53 4	•		
90		•		(85-92) SILT & CLAY; UNOXIDIZED; clay to silty clay interbedded w/clayey till in upper foot, silt laminated w/clay below; few sm pebs; interbedded w/till below 90 ft.
100		•		(92-101 1/2) CLAY LOAN TILL; UNOXIDIZED; mud flow deposits; soft, pebbly silt 92 1/2-93 1/2 ft; mostly pebbly silt below 94 1/2 ft, laminated w/clay at about 97 1/2 ft; mostly clayey till below 98 1/2 ft, silt bed at 99 ft.
110		•		(101 1/2-134) CLAY LOAM TILL; UNOXIDIZED; firm; massive; common carb & sh; mostly only am pebs; more silty w/depth; grades to laminated silt & clay at 119 ft, back to clayey till by 119 1/2 ft; sandy zone at 131 ft; dark gray in last 1/2 ft.
120		•		
130		•		
140		•		(134-136) SILT & CLAY; UNOXIDIZED; laminated; sm pebs in upper part, sandy bed at base. (136-140 1/2) LOAM TILL; UNOXIDIZED; firm; calc; sm cob near top; interbedded w/sand below 138 1/2 ft, v fgr sand 139 1/2-140 ft.

Drill Hole OB-507

,

			Heran terret	
		•		(142-144 1/2) CLAY; UNOXIDIZED; calc; interbedded w/clay till to about 143 ft, mostly silty clay & clay w/fairly common sm
		•		pebs below. (144 1/2-155) SILTY CLAY LOAM TILL: UNOXIDIZED: y soft: calc:
		•		more silty & firm below 151 1/2 ft, also more pebs; silt & clay inclusions below 156 ft from underlying lake and
150		•		the second of the train should yring take seu.
	1	•		
		•		(155-161) SILT & CLAY; UNOXIDIZED; laminated greenish gray silt
		•		A dark gray clay, lam vary from sl calc-calc; well developed rhythmites in places, best least calc; few y thin brown clay
160		•		lam towards top; mostly calc silt below 157 ft; sm pebs fairly common: clay lam below 160 ft, clay flow till at base
				(161-165) CLAYEY GRAVELS INOVIDIZED, and calls bimdel continue
		•		more silty clay than gvl in upper foot; common carb; mostly
		•	Real and a second s	(165-176) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; sl
170 01	5 101 34	•		calc; rare carb; less sandy below 168 ft; 169-170 ft loamy textured & softer; more compact below 172 1/2 ft, si-mod calc
		•		<pre>w/few sm carb pebs; common lsrge pebs; incorporated saprolite below 174 ft.</pre>
.02	3 232 8	•		
			B	(176-179) SAPBOLITE: REMORKED: mottled dark graphich grav
		•	S S S S S S S S S S S S S S S S S S S	Contains numerous exotic carbonate and other rounded pebbles up
180				unweathered sections of rock. Calcareous.
		•		(179-180) SAPROLITE; CHLORITIC; dark greenish gray weathered rock.
		•		(180-183) SAPROLITE; CHLORITIC; dark greenish gray. The preserved rock texture is medium-grained and herizostally
03	0 3 18	•		foliated. Thin oxidized zones at 182 ft (drilling or glacial artifact?). Contains up to 1 cm rock fragment and in the set
190		•		angular quartz and feldspars. Calcareous.
				Dark to moderate reddish brown streaks and stains. Less
				with dark reddish brown and moderate olive brown. Contains
04	0 19 5			rragments of up to 1 mm angular pink granitic fragments. Calcareous.
200		•		(191-208) SAPROLITE; KAOLINITIC; grayish green. Rock texture is much more pronounced than above or maybe just a finer
		•		texture. Contains 0.5 mm grains of quartz and feldspar. Weathered feldspars appear as sparse white spars. Alignment of
		•		chlorite 5° from vertical calcite veins at 202 ft, 204 ft, and 207 ft parallel to attain the second
		•		to calcareous.
		•		green. Similar to above. Contains thin layers of chlorite-
210		•		rich material horizontally cross cutting the foliation of the majority of the saprolite. Slightly calcareous.
		•		
		•		
				(215-231) SAPROLITE; CHLORITIC; [Note: Wet coring done. Usually fines are washed out.] 13 ft core lost. Dark greenish gray.
220				Core looks like fine to medium-grained sand but was probably similar to above.
				(231-246) BEDROCK; most of the cored interval is gray-green, fine-grained and strongly foliated with an undulating S.
				foliation parallel to CA with poorly defined by fine-grained biotite layers. Abundant quarty and quarty-folders value
				generally show 5:1 flattening. Between 237 and 240 feet
230				vein which is perpendicular to the CA. In the same interval,
			State	and quartz-feldspar veins which show well developed boudinage.
				A crosscutting, gray quartz vein, containing trace amounts of fine-grained disseminated pyrite and chalcopyrite, fills the
		•		central part of the quartz-feldspar vein or surrounds the early quartz-feldspar veins. The late, gray quartz portion of vein
			I . • . • . • . • . •	is completely pulled apart at one location with the in-filling host rock showing the same foliation as the adjacent wall
240 05	10		· · · · · · · ·	rocks. Between 240 and 245 brittle deformation caused by a closely spaced fracture cleavers at 45° to Ca affects
				fine-grained, gray calcite veinlets which are parallel to CA.
				foliated and brecciated mafic rock with 3 mm diameter stumpy
			* * * * *	deformed and variably replaced by sericite, calcite, and minor
250				
				inin section description: samples at 240 and 241 feet.
				Mineralogy: porphyroclastic hornblende (30%), chlorite (20%), calcite (20%), enidote (15%)
				quartz (10%), plagioclase (2%), opaques
260				oxides) (2%).
				Texture: Intensely deformed hornblende (dark
		i i		green, porphyroclasts with rotation up to 1/2 commonly have chlorite and quartz pressure
			1	snadows. Chlorite and elongation of the hornblende porphyroclasts defines the
]	foliation. Fine-grained plagioclase porphyroclasts are broken. Epidate is present
2/0				as prismatic euhedral crystals or as irregular, anhedral patches. A 3 em uide
				vein?? is composed of anhedral recrystallized, with fingenrained internervian calaba
				replacing the host rock near the vein. A thin
				prominent shear plane.
280		·		Subcommains within the thin section show rotation along the vein boundaries.
				Lithology: protomylonite with cuarty and
				calcite veins (protolith gabbro). (Subophitic gabbro is poorly preserved locally in the
				sample at 240 feet).
290				Vh = 2///
				TD = 7461

.

 \mathcal{M}_{2}

. Sert

 $|^{\{7O\}}\rangle$

Sec.

Drill Hole OB-508

Constanting of the second s

 γ_{ℓ}

(140 1/2-148) SILT; UNOXIDIZED; calc; some v fgr sandy silt above 142 ft; massive w/occ dropstones; 147-148 ft greenish gray silt, gray silty clay & dark gray clay, well laminated, sl-mod calc, abrupt upper contact. (148-155) SANDY LOAM TILL; UNOXIDIZED; firm to loose; sl-mod 0.23 150 ⊇Ř calc; rare carb; cob & large peb at top, cob at 152 1/2 ft. 01 0 79 1 • (155-164) CLAY LOAM TILL; UNOXIDIZED; firm; calc; uncommon carb; not many pebs; crudely stratified in places w/silt; only ٠ . mod calc, more sandy in places; greenish gray below 156 ft; much interbedded silt below 162 ft; believe till mixed . 02 160 0 14 1 w/saprolite &/or lake sed. • (164-168 1/2) SILT; UNOXIDIZED; v pebbly below 165 ft; mod calc sandy loam till 166-167 ft; v pebbly towards base, 03 122 4 3 0 • (168 1/2-178 1/2) SANDY LOAN TILL; OXIDIZED; pale brown; firm; sl calc; 168 1/2-170 boulder; disturbed core below 175 ft, probably boulder or cobs 177-178 1/2 ft. 170 1.4.4 • 04 1 38 1 ٠ . • (178 1/2-183) NO CORE. 180 (183-189) SANDY LOAM TILL; OXIDIZED; as above; uncommon carb; gray sl calc silt bed at 188 ft, till light brown below. 05 1 115 1 190 (189-192) BOULDER. (192-197) MEDIUM-COARSE SAND; UNOXIDIZED; mod sorted, occ pebs; rare carb; cgr-v cgr below 194.ft; cob at or near base. (197-204) LOAMY SAND TILL; UNOXIDIZED; sl calc; mostly pebbly sand in upper foot; 200-201 ft silty pebbly cgr sand, mod sorted, could be sluff; 202-203 ft compact, sl calc-calc silt . 200 06 22 1 2 to v silty till w/sm carb pebs; 203-204 ft boulder. (204-207) GRAVELLY SAND; silty, cobbly, cgr; mod-poorly sorted; rare carb; grades to till below. 07 0 98 4 (207-215) LOAMY SAND TILL; UNOXIDIZED; loose; sl calc; firm sandy loam till below 211 ft, mod calc; rare carb; below 212 ft 210 compact & mod calc-calc. 80 1 35 1 (215-218) VERY FINE SAND; UNOXIDIZED; v silty; coarsens • downwards. (218-227) MEDIUM-VERY COARSE SAND; UNOXIDIZED; silty mgr sand . coarsening downwards to silty cgr sand below 220 1/2 ft; pebbly & silty layers; well sorted y cgr sand below 221 1/2 ft; cobs • 220 below 225 1/2 ft, w/large cob at base. 09 0 10 1 (227-234) SANDY LOAM TILL; UNOXIDIZED; compact; mod calc; cobs from 228 1/2-230 ft; large pcbs fairly common; uncommon carb; sandy clay loam till in lower part. . 230 10 1 55 1 (234-237) SILT & CLAY; UNOXIDIZED; greenish gray silt, dark gray clay; interbedded; mod calc; abrupt upper contact; clay light brown below 236 ft, also noncalc to v sl calc; 11 0 55 3 gradational lower contact. (237-239) GRAVELLY SAND; mgr sand, silty, mod sorted; some 0 240 large pebs. 12 1 617 2 (239-243) SAPROLITE; KAOLINITIC; grayish olive-green. Preserved rock texture of white specs (1-2 mm) in darker clay minerals with banding from 240-243 ft. Bands are horizontal, 13 3 much lighter in color (very light gray), range in thickness from 0.2-3 cm. completely weathered to clay minerals. Moderately calcareous, but slightly calcareous in the lighter 250 colored bands. (243-247) SAPROLITE; CHLORITIC; grayish olive. Similar to above but strong yellow tint. The large light gray bands stop at 243, where thin white horizontal to subhorizontal streaks

260	occur. Iron oxide staining along some streaks and as small 1 mm blebs sporadically. 3 cm strip of dark brown organic material at the bottom of the bag (contamination?). Moderately calcareous.
270	(239-247) SAPROLITE; derived from aplite dikes which intrude a black, biotite- and plagioclase-rich, porphyritic mafic plutonic rock. Aplite is white, fine-grained, with 1 to 2 mm quartz, plagioclase and muscovite phenocrysts. Mafic pluton is medium-grained and porphyritic with 3 to 4 mm parallel plagioclase laths, in a biotite-rich matrix, which are locally parallel in structural subdomains. From 243 to 246 feet a
280	medium green-gray, clay-rich saprolite is highly deformed showing a strong foliation and brecciation with small-scale S- folds of tectonic breccia clasts (0.5-2 cm long, > 5:1 flattening). Many clasts are flattened and show pressure shadows. The mofic and felsic layers in this interval alternate frequently with contacts parallel to the prominent foliation. Mafic layers are warped into discontinuous, low- amplitude, open folds and are tectonically thinned by ductile-
	style deformation. Aplite layers show brittle deformation. A few percent calcite is disseminated throughout.
290	TD = 247'

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Saprolite Samples	0 [®] 50	K	(0-5) SILTY VERY FINE SAND: OVIDIZED, M USIL second
	in Drill Kole 509	•		() OLLI VERI TIRE SARD, GAIDIZED; Y Wall Softed.
	Cryatalline Bedrock	•		(5-13) VERY FINE SANDY SILT; OXIDIZED; poorly sorted w/pebbly cgr sand interbeds in upper foot, cob at 6 ft, y well sorted
10		•		below; silt bed at 9 ft; coarse sand grains below 11 1/2 ft, also unox; silt lam at 12 1/2 ft; mod sorted, silty mgr-cgr
		•		sand w/sm pebs in last 1/2 ft.
	x	•		(13-20 1/2) LOAMY SAND-SANDY CLAY TILL; UNOXIDIZED; crudely stratified; common carb & sh; mostly sm pebs; bed of pebbly
		•		mgr-cgr sand at 1/2 ft over mgr-cgr sand, well sorted w/few sm pebs to 18 1/2 ft; till rich in fgr sand & sitt & loose below 18 1/2 ft; till rich in fgr sand & sitt & loose
20		•		(20 1/2-23) SUTY FINE SAMD: UNOVIDIZED: mod control w/course
		•		firm loam till layers to 22 ft, well sorted v fgr sand below.
		•		(23-43) LOAM TILL; UNOXIDI2ED; firm; texture on silty side of loam; silty fgr sand bed at 26 ft, grades to silty fgr-mar
70	8.100 0.100 0.100 0.20 0.30	•		pebbly sand w/till layers from 27-28 ft; common sm pebs; 36 1/2-40 1/2 ft v fgr sand-rich till, abrupt lower contact
	Hg naHHC → A RT	•		<pre>w/large pebs at base; 40 1/2-43 ft pebbly clayey silt, firm, calc, v poorly sorted, reworked lake sed.</pre>
	WT DX. WT, WT OT WT Math, Book	•		
	Λ RT-517 □ WT-517 ox. ∇ WT-517	•		
40	© 07-517	•		
	Х́	•		
	Tili Bampiea in Drill Hole 509	•		(43-83) LOAM TILL; UNOXIDIZED; firm; calc; matrix high in silt & fgr sand; common carb, rare sh; mostly only sm pebs; clay
	$\langle - \rangle$	•		loam till below 70 ft; large inclusion at 74 1/2 ft of clayey silt, silty clay & clay, greenish gray & gray w/reddish brown
50		•		mottles, mod calc-calc; //-85 ft mixed gray clay loam till & greenish gray sandy loam till.
	$\overline{}$	•		
		•		
	$ \land $	•		
	sand e st			
		•		
70		•		· · · · · · · · · · · · · · · · · · ·
		•		
		•		
		•		
80				
		•	K	(83-92) SANDY LOAM TILL: UNOXIDIZED: greenish grav: firm- el
		•	R	calc; large pebs fairly common; uncommon carb.
01	2 83 15	•		
90			Received and the R	
			• • • • • • • • • • • • • • • • • • •	(92-100) BEDROCK; medium to dark gray, coarse-grained gabbro,
02	2		• • • • • • • •	0.1 to 0.2 mm plagioclase and ferromagnesian minerals with a diabasic texture. Plagioclase is pick to tan color
100				Ferromagnesian minerals up to 60% usually enclose disseminated subhedral pyrite (1%). Nagnetite disseminated in the
				ferromagnesian minerals. Some primary? biotite is present. No penetrative fabric is observed.
				Thin section description: sample at 100 feet.
	SC			Minorations. Burning of the state

1.1.1

Mineralogy: Pyroxene and fibrous amphibole (51%), plagioclase (36%), biotite (9%), iron oxide and pyrite (4%), sphene (trace).

Texture: Subophitic, with large subhedral uralite-altered pyroxene porphyroclasts partly enclosing plagioclase (An 60) laths. Large subhedral brown blotite grains usually occupy intergranular areas whereas green blotite is altering from the fibrous amphibole. Plagioclase crystals are intergrown with amphibole where they are in contact. No penetrative fabric is present. The textures suggest an autometamorphic origin for the amphibole and some of the green blotite. Brown blotite may be a magnatic mineral.

Lithology: Gabbro (plagioclase-pyroxene cumulate).

TD = 100*

Ħ

					T	19-2 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	
							(140-153) SANDY LOAN TILL: UNOYID1750: greenish grey: firm
02	1	72	3		•		compact balow 1/3 fts mod calcs cob peer top but not real
•-	•		-				compact betow 145 TC; and catc; cob heat top but not reat
							rocky; more large pebs 146-150 ft; rare carb, common dark
	~				•		Precambrian pebs; some evidence of mixing w/saprolite below 150
					_		ft; 152-153 ft reworked saprolite w/large peb at base.
	2	975	1				
150 03		215	•				
						and a second second second second second	
	9					H H	(152-153) SAPROLITE: REWORKED: greenish grav and dark greenish
_	1			•		S S S S	gray, mottled. No apparent preserved texture, just a mottle of
					•		light and dark green clay minerals Cobble at 152 ft
		_			-		Contains many subcounded publies that range up to 3 cm
04	0	245	1		•		Clightly selessory
							Slightly calcareous.
160					•		(153-160) SAPROLITE; KAULINITIC; pate blue-green, massive.
100	-				e		Where exposed to air it turns olive. Uniformly weathered, no
							mottles. Siderite nodules up to 1 mm and also some very small
					•		angular quartz grains. Highly calcareous zone at 155 ft. 🛛 📗
05	_	2	_				Quartz grains range up to 3 mm at 155 ft. Slightly calcareous.
05		5			•		(160-161) SAPROLITE; KAOLINITIC; light greenish gray, massive.
							Slightly oxidized in places. Line of subrounded pebbles and a
					1		thin layer of sand at 160-1/2 ft. Pebbles range up to 2 cm.
	7				•		Contains angular quartz grains and siderite nodules up to 1 cm.
170	1						Slightly calcareous to noncalcareous.
	7						(161-175) SAPROLITE: KAOLINITIC: similar to 156-160 ft. with
	1						slightly larger siderite nodules. Large 2 cm angular quartz
	1				1		fragments at 162 ft. Becomes almost fissile at 164-167 ft. 3
	1				•		mm quartz fragments in a continuous line at 173 ft. (quartz
	1						vein?). Slightly calcareous.
	1 .						(175-178) SAPROLITE: CHLORITIC: similar to shove only slightly
	1				•		darker. Some areas are dark granish gray Varianatad at 175.
180	1				-		176 ft 2 mm sidesite nortules Augusts sable at 175 4 C
	-1				├ ── ● ────		provide a superite nooules. Wartz cobole at 1/5 ft. 5 mm
	1				1		100k inagments. Stigntly Calcareous.
l	1				•		(170-102) SAPRULIE; UNLUKIILC; pale Dive-green to greenish
I							gray, sort. Lotor turns to greenish gray when exposed to air.
1					1		No apparent texture, just a soft mottling of colors. Many 1-2
	1				•		mm sigerite nodules with a few angular quartz grains. Powdery
	1						Trom 103-184 ft. Slightly calcareous.
100	1				•		(107-107) SAPROLITE; CHLORITIC; similar to 175-178 ft.
190	4						(187-232) SAPROLITE; CHLORITIC; similar to 178-185 ft.
							Siderite nodules slightly larger and variegation slightly
					•		stronger. Lost 192-212 ft. Large metagraywacke fragments at
							212-214 ft. Abundant angular quartz fragments up to 2 cm with
	1				1		siderite nodules associated with the grains (relict? quartz
					1		veins?). Core harder, dryer, and variegation becomes coarser
	1						at 226 ft., slightly less weathered. Slightly calcareous to
							calcareous.
200							
	-1						4
	1						
210							
210							4
	1						
-							
							1
					•		
1 A. A.					•		
			· .		•		
aac 06		3	_* . _		•		
220 06		3	-		•		
220 06	-	3			•		
220 06	-	3			•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish
220 06		3	-		•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish
₂₂₀ 06	-	3	-		•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding
220 06		3	-		•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite
<u>220</u> 06	-	3	-		• • • •		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft.
<u>220</u> 06	-	3 11	2		• • • • •		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous.
220 06 07 230	0	3 11	2		•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock
220 06 07 230	0	3 11	2		• • • • • • • • • • • • • • • • • • • •		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240
220 06 07 230	0	3 11	2		•		(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft.
220 06 07 230	0	3 11	2				(232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft.
220 06 07 230	0	3 11	2		•		 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar
220 06 07 230	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains.
220 06 07 230	0	3	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite
220 06 07 230	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft.
220 06 07 230	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous.
220 06 07 230 240	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous.
220 06 07 230 240	0	3	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft.
220 06 07 230 240	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules. and occasional mica-rich zones
220 06 07 230 240	0	3	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft. with mica-
220 06 07 230 240	0	3	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones or layers.
220 06 07 230 240	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous around cuartz years. Slightly
220 06 07 230 240	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous.
220 06 07 230 240	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK: weathered metagraywarke.
220 06 07 230 240 250	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green. medium: to coarse-grained
220 06 07 230 240 250	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with micarich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green, medium- to coarse-grained graywacke with subangular to subrowwacke didenars in a green
220 06 07 230 240 250	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green, medium- to coarse-grained graywacke with subangular to subrounded feldspars in a green biotice matrix. Some and and the subangular to subrounded feldspars in a green biotice matrix.
220 06 07 230 240 250	0	3	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green, medium- to coarse-grained graywacke with subangular to subrounded feldspars in a green biotitic matrix. Sp defined by contact with fine-grained well sorted laminated sittstom is locally preseliad with some sorted laminated sitestom is locally massive well with some sorted laminated sitestom is locally massive some sorted laminated sitestom is locally massive some some sorted laminated sitestom is locally massive.
220 06 07 230 240 250	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green, medium to coarse-grained graywacke with subangular to subrounded feldspars in a green biotitic matrix. S₀ defined by contact with fine-grained well sorted laminated siltstone is locally parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁. At 282 feat mulenitic chase both one concent at a parallel with S₁.
220 06 07 230 240 250	0	3 11	2				 (232-240) SAPROLITE; CHLORITIC; grayish blue-green to grayish green, blockly, weathered metagraywacke in a matrix of grayish green saprolite. Blocks range up to 10 cm. Relict bedding structure may be present. 1-2 mm quartz fragments and siderite nodules. Powdery with less rock fragments from 237-240 ft. Slightly calcareous. (240-245) SAPROLITE; CHLORITIC; similar to above, rock fragments absent. Abundant mica flakes in 6-inch zone at 240 ft. (245-253) SAPROLITE; CHLORITIC; pale blue-green, soft. Similar to 178-185 ft. Massive but has horizontal alignment of grains. Lumpy appearance from the abundant quartz grains and siderite nodules. Massive pale blue-green clay from 248-251 ft. Slightly calcareous. (253-276) SAPROLITE; CHLORITIC; grayish green variegated, soft. Quartz grains, siderite nodules, and occasional mica-rich zones or layers. Calcareous in areas from 266-268 ft., with mica-rich zones and angular quartz fragments. 4 cm quartz vein at 271 ft. Highly calcareous. (276-280) WEATHERED BEDROCK; weathered metagraywacke. (280-285) BEDROCK; gray-green, medium- to coarse-grained graywacke with subangular to subrounded feldspars in a green biotitic matrix. Sn defined by contact with fine-grained well sorted laminated siltstone is locally parallel with S. At 282 feet mylonitic shear bands are present at a scale of 3 to 8 cm.

		Magnetic	Strati-	
Denth	Stratigraphic	Suscent-	graphic	
(ft)	Attributes	ibility	Column	Description
(10)	ALLIBULES	IDITICY	COLUMN	Description
	Till and Saprolite Samples	Q 50	K	(0-7) FINE SAND; OXIDIZED; well sorted, some coarser grains:
		•		abrupt lower contact.
	Crystalline v2	•		
	Bedrock	•		(7-10 1/2) LOAM TILL: OVIDIZED: common carb pater v silev 8-8
		•		1/2 ft; 10-10 1/2 ft silty mar sand over silty v for sand; v
10		•		abrupt lower contact.
	ta A21 V V V Exotics			(10 1/2-39) LOAM TILL; UNOXIDIZED; compact; common carb pebs;
	13A30 V V	•		contects: mostly am name, uncommon shy openies into site below
<i>.</i>		•		concects, mostly and peos; uncommon sh; grades into sitt below.
			and alt an	
		•		
20		•		
20	7000	•		`
			1111111111	
		•		
	[Saprolite]	•		
	v	•		
30	ng namac			
	···· A ···· RT ···· M ··· V(OX,	_		
		•		
	- ⊕ - Westh, Rock - Λ RT-517	•]
	□ WT-517 ox. V WT-517	•		
	0 0T-517			
40	Clay			(39-44) SILT; UNOXIDIZED; calc; w/mostly thin till layers;
	\wedge			massive silt below 40 1/2 ft, v rare pebs.
	Tix Samples	•		
	in Drill Hote 511	•		(44-75) SILT LOAM TILL: UNOXIDIZED: firm, compact below 47 ft:
	∠ [™]			common cerb & sh; silty zone at 53 ft; apar some core loss
		•		52-57 ft, driller assumed was silt bed; coarse loamy texture
50		•		W/dark pebs 67-70 1/2 ft; gradational lower contact.
<u> </u>		••	Little Article and the	
]				
		•		
		•		
	$\land \land \land \land$	•		
60				
A .	3 and	•		
	SC	j (* ●		는 프로그램은 이상 전상에서 전자를 위한다. 전자에서 사람이 사람이 되었다. 유민이가 가지 않는 것이다.
ľ		•		
1	TIH Samples	•		
70	In Drift Hole			
1	1 / ""	•		7
ļ				
		•		
				(75-80) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted; little
	$ \land \land \land \land \land$			i silt at top; greenish gray w/depth; clay lam at 79 ft; v fgr sandv silt below 79 ft, grades into till below
80		•		weiney with motow is it, groups mito titt Detows
				(80-84 1/2) SILTY CLAY LOAM TILL; UNOXIDIZED; compact; calc;
		•		mixed w/greenish gray silt to 81 1/2 ft; not many pebs; 82-83
		•		<pre>i i/c it sitty v tyr send, grading to v tyr sendy sitt at base; till mixed w/silt towards base.</pre>
1	$ / \rangle / \tilde{\mathbb{v}}_0 \rangle \tilde{\mathbb{v}} / \rangle$			(84 1/2-89) VERY FINE SANDY SILT; UNOXIDIZED; massive; last
1	$ / \langle / \overline{\langle} \rangle \rangle$	•		foot silty v fgr sand.
	PH	•		(80-01) 611 T. (NOVID1765)
90	4			(up-pi) airi; nuovinien; Alecuisu Aleas.
)				(91-109) SILTY CLAY-CLAYEY SILT; UNOXIDIZED; calc; interbedded
				w/dark gray clay to 93 ft; massive silty clay to 94 ft; few
		•		pebs below 94 ft; clayey silt below 94 ft, vaguely laminated
1		•		below 102 ft, also silty v for sand law helow 104 1/2 ft+ dark
1		•		gray clay bed at 107 ft, great variety of interbeds.
100				
1	1			7
		•		
1]	•		
		•		
11		· ·		

• • •

all the

 $\mathcal{S}^{n < \sqrt{n}}$

1.4.5°

States.

and the state of the

And and a second second

.

C.

and and a second

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
10	Till and Saprolite Samples in Drill Hole 510 Crystalline hedrock 34 ⁸⁶ AJ V V V Rxotice	0 50 •	K	(0-5) SILTY FINE SAND; OXIDIZED; unox below 2 ft; v fgr sand bed at 2 ft, less silty below; 4-5 ft gvlly fgr sand w/large pebs, poorly sorted, abundant carb; abrupt basal contact. (5-20 1/2) LOAM TILL; UNOXIDIZED; firm; abundant carb, no sh noted; large pebs fairly common; compact below 14 ft, not as pebbly; fairly abrupt lower contact.
20	x - 40779. 00 2 0 00 11 11 11 11 11 11 11 11 11 11 11 11 1	•		(20 1/2-27) CLAY LOAM TILL; UNOXIDIZED; compact, as above; loamy texture 23-24 1/2 ft w/sm cob at base; sh peb at 25 ft.
30	Ilg nellMC - ▲ - RT - ₩ ox. ₩ ox.	•		(27-41) SANDY LOAM TILL; UNOXIDIZED; compact; rich in v fgr sand; v sandy below 30 ft, grading to v fgr sandy silt from 32-33 ft; pebs fairly common, carb common, occ sh noted; coarse loamy texture below 38 ft.
40	- Meath, Rock A RT-517 ox. V WT-517 ox. V WT-517 Clay Clay Thi Samples in Drill Hole Kin	•		(41-55) CLAY TILL; UNOXIDIZED; compact; abundant carb, uncommon sh; abrupt upper contact; loamy textured 50-50 1/2 ft, clay
50		•		loam till below.
60		•		(55-59) NO CORE; driller believes fgr sand. (59-66) CLAY LOAM TILL; UNOXIDIZED; as above; grades to calc silt at 65 ft, few gnl, sand grains in lower part.
70	Till Samples in Drill Hole \$10	•		(66-80) ND CORE; driller believes fgr sand.
80		•		(80-85) VERY FINE SANDY SILT; UNOXIDIZED; well sorted but fair amount of sm pebs; calc; couple inches silty v fgr sand at top; 82-84 ft interbedded w/sandy loam till; clay pick-up clasts at 83 ft; v fgr sand bed at 84 1/2 ft; gradational lower contact. (85-88 1/2) LOAM TILL; UNOXIDIZED; firm; calc; rich in silt & v fgr sand; v fgr sand bed near ton; pebs uncommon; last foot
90	рі <u>/ </u>	•	K	mostly v fgr sandy silt. (88 1/2-97) SILTY CLAY TILL; UNOXIDIZED; compact; calc; gradational upper contact; fine loamy texture below 92 ft; v compact clay loam till below 94 ft; below 96 ft greenish gray silt & clay mixed w/little clay loam till.
<u>100 01</u> 02	2 93 2 1 27 1	•	F	(9/-10/) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; sl-mod calc; large pebs fairly common; uncommon carb, mod calc in lower part; last few inches calc & loamy in texture, could be mixed w/ another till.
110 03	8	•		 (107-112) BEDROCK; very dark gray, coarse-grained gabbro, subophitic pyroxenes (now chlorite) with sausseritized plagioclase from 0.5 to 1 cm long. Several pyrite verilets (2-5 mm thick) and small amounts of disseminated pyrite are found in a metabasalt xenolith. One 4 wide magnetite-rich (0.1 mm diameter crystals) layer occurs at 107 feet. No penetrative fabric is observed.
120				Thin section description: samples at 108 and 109 feet. Mineralogy: plagioclase (67%), biotite (22%), augite (9%), iron and iron-titanium oxides (2%).
130	-			Texture: Hypidiomorphic-granular with subhedral plagioclase (0.5-1 mm) laths enclosing intergranular anhedral augite (0.1- 0.3 mm) now altered to fibrous amphibole whareas brown biotite occupies intergranular areas and may be a primary magmatic mineral. Plagioclase slightly altered to white mica. No penetrative fabric is observed.
140				Lithology: plagioclase-cumulate rock. TD = 1124

Drill Hole OB-512 Magnetic Strati-Depth Stratigraphic Susceptgraphic (Īt) Attributes ibility Column Description • 50 (0-3) CLAY LOAM TILL; OXIDIZED; firm; calc; few inches of silty Till and Saprolite Samples in Drill Hole 513 v fgr sand on top; common carb & sh; sandy & soft in last 1/2 • ft. (3-10 1/2) LOAM TILL; OXIDIZED; unox below 5 ft; compact; calc; MA Crystalline Bedrock • common carb & sh; abrupt lower contact. **a**3 . 10 **1**14 (10 1/2-31) LOAM TILL; UNOXIDIZED; compact; calc; coarser ۸ textured than above, also sh not as common; v compact below 20 ft; cobs at 24, 26 1/2, 27 ft; soft sandy zone at 28 ft; less pebbly below 27 ft; 30-31 ft silty fgr-mgr sand, pebbly in lower part, interbedded w/clayey silt to silty clay, grades V Exotics **Λ**1 40 . into till below. • 20 • • . Saprolite ٠ 30 lig nullinc A --- RT H --- WT ox. V--- WT OT ---- Heath, Rock (31-47 1/2) CLAY LOAN TILL; UNOXIDIZED; greenish gray; compact; . calc; carb common but not dominant; 34-35 ft clayey silt; sandy zone at 35 1/2 ft, more below 37 1/2 ft w/inclusions of silt & sand; pebs mostly sm; v thin silt lam below 43 ft, v fgr sandy RT-517 WT-517 OX. WT-517 OT-517 ∧ 11 0 0 silt inclusion at 47 ft; fairly abrupt lower contact. 40 Ciav Till Samples In Drill Hole 512 (47 1/2-51) VERY FINE SANDY SILT; UNOXIDIZED; v well sorted, • few dropstones. 50 (51-61) CLAY LOAM TILL; UNOXIDIZED; as above, compact, calc, mostly sm pebs; 58 1/2-59 1/2 ft interbedded fgr-mgr sand & clayey silt, pebbly in lower part, cob at base; 59 1/2-61 ft, greenish gray sandy loam till, compact, mod calc, common dark pebs, probably inclusion of another till; abrupt lower contact. 60 Δ 14 φ_{∇} (61-63) COARSE SAND; UNOXIDIZED; mod sorted, occ large pebs; ᢦᢦᢦ 3 (31-63) contact study on output and sorted, occ targe peos; common carb, but Precambrian dominant. (53-64, 1/2) GANDY LOAN TILL; UNOXIDIZED; compact; mod-calc-calc; dark pebs out number carb; sand lam 64-65 ft; calc below 65 ft; more clayey 65-66 ft; fair amount of large pebs; texture ranges to sandy clay loam; probably mixed w/Rainy lobe till; no sh noted; boulder 76 1/2-77 1/2 ft; wood chip at 83 ft more clayey little more carb balar • ₩¥ z -• Till Samples In Drill Hole 512 • ft, more clayey, little more carb below. 70 . _14₹ 80 ۵ • Δ (84 1/2-87) SANDY SILT; REDUCED; mottled; well sorted, Δ Κ . V virtually no pebs. , ∽⊽o` Ŵ • (87-90 1/2) CLAY TILL; REDUCED; ox grayish brown below 89 1/2 . tor=v i/2 tLAT IILL; REDUCED; ox grayish brown below 89 1/2
ft; v compact; calc; carb uncommon; vague v thin clay lam; sm
fgr sand inclusion at 89 1/2 ft; abrupt lower contact.
(90 1/2-104 1/2) CLAY LOAM TILL; OXIDIZED; light brownish gray;
compact; calc; carb uncommon; soft sandy silt bed at top;
mostly sm pebs; much local rock (schist) incorporated in till;
iiit i am & nabhu sand bade at 102 ft; alture and bade 90 01 0 38 1 near base; unox in lower few feet; v abrupt lower contact, no evidence of mixing w/saprolite. 02 0 58 1 100 (105-107) SAPROLITE; CHLORITIC; light greenish gray, soft, dry, micaceous. Fine to medium-grained relict texture. Quartz calcite zones throughout. Angular quartz grains, feldspar, muscovite and rock fragments to 5 mm. 1 cm quartz/calcite vein 03 0 27 1 S at 105 ft. Last few inches of core is greenish gray and + + + + B

. Aliestin

ม้อาจสมให้แห่ง อาจรูปประที่มีประสะบัติศาสรรรร การ และ The States States (States States)

10.43336

() () ()

- and a second a second

بر معلمیں مراجع کا میں مراجع کا مرا

D	r	i	1	1	H	ο	1	e	0	В	-	5	1	4	
	_		-												

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Septolite Samples		K	Description
	in Drill Hole 514	U SU		(0-4) GRAVELLY COARSE SAND; OXIDIZED; mod sorted; little peat on top.
	Crystalline	•		(4-11) FINE-MEDIUM GRAVEL; OXIDIZED; silty, mod sorted; common
		•		ours, nett sorted grity a car said ory 1/2 ft.
10		•		
				(11-25) GRAVELLY COARSE SAND: DXIDIZED: mod sorted: some large
	K 0_0	•		pebs; large pebbly bed at 15 ft; well sorted w/only few pebs
		•		
20		•		
20	2008	├ ●		
		•		
		•		
		•		(23-27) COARSE SAND; OXIDIZED. (27-29) MEDIUM SAND; OXIDIZED; well sorted.
30	lig naHMC	•		(29-35) FINE SAND: OXIDIZED: well sorted
	OT 			
	Λ RT-517 [] WT-517 σχ. V WT-517 σχ.	•		(35-44) SILTY VERY FINE-FINE SAND; OXIDIZED; mod sorted, some
	¢ 07-517	•		coarser grains & sm pebs; well sorted, not silty below 37 ft; v well sorted v fgr sand below 39 ft; unox below 41 ft; abscich
40	Clay	•		bed at base.
	Till Samples	•		
	in Drill Hole 514	•		(44-48) CLAY LOAN TILL; UNOXIDIZED; firm; calc; compact layer
		. •		46 1/2-47 1/2 ft; abundant carb, uncommon sh.
50		•		(48-63) LOAM TILL; UNOXIDIZED; compact; lith as above; lighter
		•		stay become state, person and on any abrupt tower contact.
	$ \land \land$	•		
	$ \downarrow \downarrow $			
60				
		. •		
	Sene Contraction and the contraction of the sene of th	12 • 89		(65-68) SILT LOAM TILL; UNOXIDIZED; firm; cale; v for sand beds in upper foot or so; only sm pebs.
	9-6	•		
70	Titi Samples in Dritt Hole	•		(68-84 1/2) LOAN TILL; UNOXIDIZED; compact; common carb,
		•		and the part that above, card coo at base.
	$ / \rangle / \rangle$			
		•		
		•		
80		•		
ļ.		•		
		•		(84 1/2-89) LOAN TILL; UNOXIDIZED; firm; calc, common carb;
	$ / \rangle / \langle u $	•		natrix rich in silt & fgr sand; mostly sm pebs; gradational lower contact.
90	PHZ	•		(89-110) LOAM TILL; UNOXIDIZED: firm-compact. Lith as above
				uncommon sh.
		•		
		•		
100		•		
		•		
		•		
l		•		

ЧĢ.,

177 - 194 1760 - (Reality

Sugar 1

9

(Highly

Same

and and a second se

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept-	Strati- graphic	Description
	ACCLIDUCED	TOTICA	K	Description
	Till and Saprolite Samples In Dill Hole 513 Crystalline Dedrock	0 <u>50</u>	ĸ	(0-8) SILTY VERY FINE SAND; OXIDIZED; well sorted; gnl lam at base; abrupt lower contact.
10		•		(8-12 1/2) CLAY LOAM TILL; UNOXIDIZED; firm; calc; common carb & sh; grades to v fgr-fgr sand w/few pebs at 11 1/2 ft.
	κ - 4 m - 3 - 4 m - 3 2 0 4 6 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	•		(12 1/2-27) LOAM TILL; UNOXIDIZED; firm; calc; sandy loam till above 14 ft, fining & compact below; abundant carb, some sh; more clayey w/depth to 19 ft; gvlly zone at 19 ft; v fgr sand lam at 21, 24 & 25 ft; dark gray clay loam till below 25 ft; abrupt lower contact.
_20	,man 9	•		
30	Saprolite s.m s.in s.in s.in s.in s.in s.in s.in s.in	•		(27-34) FINE SANDY LOAM TILL; UNOXIDIZED; loose; common carb.
	ΔRT $MT OX.$ $V =: WT$ $V =: VT$	•		(34-52 1/2) VERY FINE SAND; UNOXIDIZED; v well sorted; fgr in upper foot; grades to v fgr sandy silt below 41 ft; number of
40	V WT-517 0 0T-517 Clay			carb pebs from 43-44 ft, could be "flow till"; 44-45 ft v fgr sand, 45-46 ft greenish gray, mod calc silt; 46-47 ft fgr sand; 47-48 ft v fgr sand w/silt bed at base w/silty clay lam, mod calc; pebbly mgr sand below to 48 1/2 ft, abrupt lower contact; 48 1/250 preprint gray logg till contents and calculated
	Till Samples in Dill Hole 513	•		much carb; 50-51 ft well sorted mgr sand, few pebs, cob at base; 51-52 1/2 v fgr sandy silt w/few pebs; cob at base.
50		•		(52 1/2-58 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm: calc: carb fairly common: cob pear too: 57-58 1/2 ff
		•		grayish brown loam till, calc, compact, gradational upper contact, abrupt lower contact, probably inclusion of another till. (58 1/2-71 1/2) LOAM TILL; UNOXIDIZED; compact; calc; carb
60		•		fairly common; cobs at 60 1/2 & 65 ft; inclusion of greenish gray sandy loam till at 62 1/2 ft; sandy loam till w/uncommon carb in lower few ft; 70-71 1/2 ft v fgr sandy silt w/few pebs, mgr sand bed at 71 ft.
70		•	$ \begin{array}{c} (\dots, (n)) = \frac{1}{2} (\dots, (n)) + \frac{1}{2} (\dots, (n)) +$	
01	1 418 3	•	R	(71 1/2-75) SANDY LOAN TILL; UNOXIDIZED; compact; calc, carb fairly common, probably derived from till below; cob at 73 ft; last 1/2 ft or so mixed w/till below. (75-79 1/2) CLAY LOAN TILL; OXIDIZED; grayish brown; v compact;
80 02	0 17 1	•	A A A A A A A A A A A A A A A A A A A	v calc, abundant carb; unox, less compact below 76 ft; mostly sm pebs; grayish brown inclusion at 77 1/2 ft; clay bed at 79 ft; gradational lower contact. (79 1/2-93) CLAY LOAM TILL; OXIDIZED; grayish brown; v calc but less carb than above, more greenish pebs, probably contains
03	0 21 3	•		fair amount of local rock & saprolite; cob at 92 ft.
90 04	0 23 2	•		(93-95) SAPROLITE; REWORKED; large pebs of local rock, not same
05	0 156 3	• • •	S	as underlying bedrock; some indication that saprolite below could be reworked to bedrock. (93-95) SAPROLITE; REWORKED; olive-gray, blocky. Winnipeg till mixed with it 93-94 ft. Pyrite crystals up to 2 mm. Angular rock fragments up to 5 cm. Highly calcareous.
		•		(95-101) SAPROLITE; CHLORITIC; greenish gray, massive. No sulfides Rock fragments up to 4 cm at 96 ft. Pebble line at 101 ft. (contamination?). Highly calcareous. (101-107) NO CORE.
110 06	30		S S S S S S S S S S S S S S S S S S S	(107-115) BEDROCK; pyrrhotitic massive sulfide with minor amounts of pyrite. Intercepts of swirling, highly-deformed, banding alternate with intervals of wispy banding. A one foot interval (at 111) feet of a deformed pyrrhotite-commente double breecia with some light area, chlorite-rich fragmente double
	SC -5 TH Samples		* * * * * * * *	a seriate texture which developed before sulfide replacement of the groundmass. Subhedral to euhedral pyrite crystals are present in aggregates ranging from 0.3 to 1 cm in diameter. Pyrrhotite sometimes fills fractures in crosscutting, highly silicified, medium gray quartz-feldspar porphyry dikes. Blue,

;

•

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and faprolite families		K	Deper thereit
	In Drill Note 515	0 <u>50</u>	ň	 (0-2) FINE SAND; OXIDIZED; well sorted; some coarse sand grains. (2-9) VERY FINE SAND; OXIDIZED; v well sorted; coarse grains below 7 1/2 ft.
20	A 64 A 54 A 54 A 54 V V V Kxotics S S S S S S S	•		(9-12) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted, few gnl; top 1/2 ft pebbly cgr sand, cob near top; abundent carb. (12-21) VERY FINE-FINE SAND; UNOXIDIZED; v well sorted; fairly abrupt upper contact; v fgr sand in upper foot; much v coarse sand grains below 19 ft, bimodal sorting; abrupt lower contact.
	Nee 9 Seprolite 8.40 0.10 0.20 5.30	•		(21-23) GRANULE GRAVEL; UNOXIDIZED; well sorted; abundant carb. (23-29) COARSE-VERY COARSE SAND; UNOXIDIZED; well sorted; upper foot v fgr sand w/coarser grains; abrupt lower contact.
30	tig nmitHC			(29-31) FINE-MEDIUM SAND; UNOXIDIZED; well sorted.
	W WT ox. W WT ox. V WT Φ Weath. Rock	•		(31-35 1/2) COARSE-VERY COARSE SAND; UNOXIDIZED; well sorted; few sm pebs; more pebbly below 33 ft.
40	Cut v	•		(35 1/2-41) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted; fgr sand bed on top; few gnl in places.
	Till Somples in Chill Hole 515	•		(41-45) VERY FINE-FINE SAND; UNOXIDIZED; v well sorted; coarsens w/depth.
50		•		(45-48) HEDIUM SAND; UNOXIDIZED. (48-50) MEDIUM-COARSE SAND; UNOXIDIZED; well sorted; few pebs, especially towards base; fgr-mgr sand bed at base; abrupt lower context
_60	25 54 3) 64 33 15 CTV 3) 64 33 15 CTV 0 0 0	•		(50-80) LOAM TILL; UNOXIDIZED; compact; calc; uncommon carb, no sh noted; mostly sm pebs; sm cobs at 51, 52 ft; silt inclusions at 57 ft; 60-62 ft mostly reworked lake silt; silt inclusion, 2 sm cobs at 67 ft; v silty below 70 ft; sm cob at base.
70	Seno	нц <u>у с о </u>		n na senera a para series de la construcción de la construcción de la construcción de la construcción de la con La construcción de la construcción d La construcción de la construcción d
80	3 8 4	•		
		• • •		(ou-oy 1/2) LUMM-SILI LUMM TILL; UMOXIDIZED; greenish gray; V loose; apar interbedded silty till & silt; lith as above; mod calc balow 85 ft, apar mostly reworked lake sed; gray clayey till inclusion at base.
90		•	F	(89 1/2-92 1/2) VERY FINE SANDY SILT; UNOXIDIZED; greenish gray; v well sorted; mod calc. (92 1/2-101) VERY FINE-FINE SAND; UNOXIDIZED; greenish gray; v well sorted; rare coarser grains; mostly silty v fgr sand below 96 ft; v fgr sandy silt towards base; abrupt lower contact.
		•		(101-108 1/2) MEDIUM-COARSE SAND; UNOXIDIZED; v well sorted; rare carb.

Drill Hole OB-515

Versiters

A84.3.25

alatan 1989 - Milin Andrew and Andr Andrew and An

 $\mathcal{L}^{\mathcal{L}_{\mathcal{T}}^{(k)}}$

.

have been a set of the set of t

15 F.

<u>260 07</u> 1	+ +	· · · · · · · B	(257-262) BEDROCK; light gray-green, massive, very fine-grained mafic volcanic rock. Very distinctive disseminated 0.3 mm magnetite phenocrysts. Moderately well-developed, vertical S ₁ from alignment of chlorite.
			Thin section description: sample at 260 feet.
			<pre>Wineralogy: chlorite (0.03-0.07 mm), epidote (0.05-0.1 mm), plagioclase, quartz, magnetite (0.10.3 mm), pyrite (trace)</pre>
280			Texture: Very fine-grained non-pleochroic chlorite is lepidoblastic with anhedral masses of epidote (after plagioclase) disseminated throughout. Magnetite octahedra show quartz- filled pressure shadows. The original plagioclase is very poorly preserved.
			Lithology: metabasalt.
			TD = 262'
290			

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
10	Till and Saprolite Semples in Drill Hole 516 Crystalline Bedrock A A A V V V V Exotice 15K ^{K10} V V V Exotice	•0 50 •	K	<pre>(0-6) FINE-MEDIUM SAND; OXIDIZED; well sorted; few coarser grains, rare pebs. (6-28) VERY FINE-FINE SAND; UNOXIDIZED; mod sorted, some coarser grains; much loss out of core barrel; few carb gnl; large peb apar near bottom; beds of fine pebbly sand in last foot.</pre>
<u>20</u> <u>30</u>	V	•		(28-31) CLAY LOAM TILL; UNOXIDIZED; firm; common carb & sh; upper foot laminated clay, silty clay & clayey till.
<u>40 01</u> 02		•		(31-33) SILT; UNOXIDIZED; well sorted; calc; few pebs; clayey till lam near top, inclusion near base; cobs at base. (33-37) COBBLES; upper foot v silty, apar silt filled interstices of wave-washed cob gvl; 34-35 ft unox mgr sand, well sorted; boulder at 35 ft over cobs. (37-47) SANDY LOAH TILL; UNOXIDIZED; compact; calc, common carb; no sh noted; occ large pebs; sm cob at 42 ft.
50 03 60 04	1 23 1	•	<u> K</u>	(47-54) COBBLY GRAVEL; mod-poorly sorted; common carb; last 1/2 foot reworked saprolite, pebbly clay w/carb pebs. (54-61) BEDROCK; gray green, modium-grained, massive graywacke is moderately well-sorted with a gradual decrease in grain size downward with 1% disseminated pyrite. Pyrite is present in a 2 cm-thick quartz vein as stringers and disseminated (1%) in the host rock. S_0 50° to CA is cut by a nearly vertical, poorly developed S ₄ defined by the alignment of amphibale.
70	Clay Till Samples In Dritt Hole 518			Thin section description: sample at 60 feet. Hinaralogy: quartz (37%), plagioclase (33%), biotite (24%), garnet (5%), iron oxides (trace). Texture: Poorly sorted and massive with porphyroblastic garnet (0.5-0.7 mm) and red- brown biotite (0.1-1.2 mm). Penetrative fabric is poorly downloard by the solution
80				biotite. Lithology: meta-graywacke. TD = 614
90	Till Semplex in Drill Hole Sie A V Tr			

.

. White the star E.

he the bearing

N. Anial

120

		1		
		Magnetic	Strati-	
Depth	Stratigraphic	Suscept-	graphic	
(ft)	Attributes	ibility	Column	Description
1			A set to a state of the set of the	
	in Drill Hole 517	0 50		(0-9) LOAM TILL; OXIDIZED; compact by 4 ft; calc; carb common,
		•		noted sn; U-1 ft v silty fgr sand W/pebs, 1-1 1/2 ft cob; silty
	Crystalline Bedrook			
10	4000 17B	•		(9-23) SILT: UNOXIDIZED: well conted; fau card grains on makes
	170 112 125 Exotice			laminated w/v fgr sandy silt below 13 ft; pebbly from 17-19 ft.
	151 94 133	•		could be "flow till"; silty clay lam below 22 ft; lower contact
	K 32 100 799 9	•		somewhat gradationat.
		•		
	a 62 °	•		
_20				
	2800 -			х -
		•		(23-38) CLAY-CLAY LOAM TILL; UNOXIDIZED: firm-compact: calc.
		•		fairly common carb; apar has partings, could be flow till;
	Saprolite	•		softer & lighter gray below 28 ft, loam till below 29 ft; sandy
70	9,99 9,19 9,29 9,30 '	•		the sense becom be re, chin rgr same bed at 57 1/2 ft.
30	iig naithC	•		
		•		
	OT Neath Book	-		
	Δ RT-517			
	♥ W7-517 ♦ 07-517	•	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
40		•		(38-55) SANDY LOAM TILL; UNOXIDIZED; Loose-firm; calc; fairly
01	0 47 1	•		above 42 ft; cobs at 41, 51, 54 ft; fairly abrunt lower
01	0 47 1	•		contact.
		•		
		•		
		_		
50 02	1 268 2	•		
		•		
		•		
		•	247 - 247 - R	
		•	<u> A A A A A A A A A A A A A A A A A A A</u>	(55-74 1/2) CLAY LOAH TILL; UNOXIDIZED; compact; calc;
		•		Common-abundant carb; loam texture above 59 ft, v compact below 59 ft: somewhat less compact below 73 ft: em cob at base
60 03	0 100 1			the second se
		•		
		•		
70 04	1 538 1	•		
		••		
		•		
		•		(74 1/2-98) CLAY LOAM TILL: OXIDIZED: dark gravish brown.
		•		compact; v calc; carb common but not dominant; greenish gray
		_ _		COLOR TO 79 ft; silt 80-81 ft; 87-88 ft pebbly, loamy texture
80 ⁰⁵	U 26 1			The second s
		-		
	ĸ	•		
	0 107 -	•		
08	U, 127, 1	•		
- 90		•		
		•		
07	· 25 1			
		-		
100		•		(Y8-105) CLAYEY SILT; OXIDIZED; grayish brown, Laminated W/dark
		•		and other second as it, a the second sitt IL TOMEL TOOL OL SO.
		•		(103-121) LOAN TILL; UNOXIDIZED; olive gray; firm; v calc;
		•		below 107 ft; couple sm cobs at 116 1/2 ft: v compact balances
		•		ft; clay loam till, dark gray, & less compact below 117 ft;
08	1 178 1		1111111111	large carb peb at base, fairly abrupt contact.

n (126) Normalia

.

entrife Tagler e torsa General

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
	Till and Seprolite Samples in Drill Hole 518	0° 50	K	(0-6) GRAVELLY SAND; OXIDIZED: silty, poorly sorted: little
	Crystalline Bedrock 10 AU 119 V V U Exotice	•		peat on top; 3 1/2-5 ft well sorted, v fgr sand. (6-19) FINE-MEDIUM GRAVEL; OXIDIZED; silty, poorly sorted; top foot boulder; carb-rich.
20	K - 4000 2 U Noor	•		(19-25) GRAVELLY VERY COARSE SAND; OXIDIZED; mod sorted; some
	Baprolite 	•		(25-29) FINE-MEDIUM GRAVEL; OXIDIZED; occ large pebs.
30	Hg naHHC ▲ R7	•		(29-41) GRAVELLY VERY COARSE SAND; OXIDIZED; V gvily below 32
40		•		ft.
50	Till Samples in Drift hole 518	•		(41-44) SANDY SILT-MEDIUM SAND; OXIDIZED; 41-42 1/2 ft fgr-mgr sand, mod sorted, few gnl, sm pebs; 42 1/2-44 ft unox v fgr sandy silt grading to silty v fgr sand, v well sorted, calc. (44-46) FINE-COARSE SAND; UNOXIDIZED; mod sorted, few pebs. (46-51) GRAVELLY VERY COARSE SAND; UNOXIDIZED; well sorted; only sm pebs; large peb zone at 49 ft.
		•		(51-57) COARSE-VERY COARSE SAND; UNOXIDIZED; mgr-cgr below 54 ft; v fgr-fgr sand below 56 ft, gnl & pebs towards base.
60				(57-62) NO CORE; presume fgr sand.
in an	3and , 140 445 (119 511)			(62-66) SILT; UNOXIDIZED; v well sorted; calc; top foot silty fgr-mgr sand.
70	TH Samples in Drill Hole Sile	•		(66-73) MEDIUM-COARSE SAND; UNOXIDIZED; mod sorted, few gnl, sm pebs; couple silt beds or inclusions near top; fgr-mgr sand below 71 ft.
	3	•		(73-79 1/2) SILTY VERY FINE-FINE SAND; UNOXIDIZED; greenish gray; well sorted; more coarse grains w/depth.
80		•		(79 1/2-86) FINE-MEDIUM SAND; UNOXIDIZED; well sorted; v fgr sand beds at 80 & 83 ft; mgr-cgr sand below 84 ft.
90		•	<u>к</u>	(86-90 1/2) SANDY SILT-FINE SAND; UNOXIDIZED; greenish gray; calc; well sorted; top foot sandy silt; 87-89 ft fgr sand w/mgr bed near top, pebbly cgr sand bed at base, some carb; 89-90 1/2 ft v fgr sandy silt. (90 1/2-95) MEDIUM-VERY COARSE SAND: UNOVIDITED, and coated
		• • •	R	OCC sm peb; not much carb. (95-98 1/2) FINE SAND; UNOXIDIZED; mod sorted, some coarser grains; couple silt beds or inclusions at 97 ft, over bed of fgr-cgr sand.
100		•		(98 1/2-105) NEDIUM-COARSE SAND; UNOXIDIZED; well sorted; fair amount of v cgr sand below 103 ft; last 1/2 foot pebbly fgr sand, poorly sorted. (105-112 1/2) LOAN & SANDY LOAM TILL; UNOXIDIZED: firm-compact:

iennistria)

Acide As

Contraction of the second seco

Consections.

CONSTRUCTION OF

 $e^{\frac{1}{2}\left[e^{\frac{1}{2}}\right] }$

 $\gamma_{\rm equip}(z)$

 $\mathcal{P}^{(2)}_{\mathcal{D}_{i}}$

and a second

The second se

11. 1 M

and the second second

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description			
	Till and Seprolite Samples in Orill Hole 519	•0 50	К	(0-7) VERY FINE SAND; OXIDIZED; wall sorted; little peat on top; pebbly below 4 ft, not as well sorted; abrupt lower contact.			
10	Au V V V V V	•		(7-12) LOAM TILL; OXIDIZED; grayish brown; firm; calc, abundant carb; silt inclusion at 10 & 12 ft.			
		•		(12-15 1/2) SILTY VERY FINE SAND; OXIDIZED; mod sorted, w/coarsa grains; pocket of pebbly fgr sand at 13 1/2 ft; pebbly v fgr sandy silt below 14 ft. (15 1/2-27) LOAM TILL; OXIDIZED; dark grayish brown; compact;			
_20	u ° ⁷ 71 ↓20	•		abundant carb; 15 1/2-16 1/2 ft 'flow' till, 16 1/2-17 ft silty fgr-mgr gvl, poorly sorted; v fgr sandy silt inclusion at 22 ft; large cob at 27 ft.			
	Seprolite	•		(27-15, 1/2) to MM TILLS INVESTIGATION motoring sigh in M for each t			
30	8.60 0.10 0.20 0.20 0.50 0.50 0.50 0.50 0.50 0.5	•		silt; interbedded w/silty v fgr sand; massiva below 35 ft; common cerb, fairly common sh.			
		•					
40	Clay Till Samplee In Critic Hole	•					
	519	•		(45 1/2-51) VERY FINE SANDY SILT; UNOXIDIZED; silt bed on top; few pebs; clay lam at 47 ft, more pebs below.			
50		•		(51-54) LOAM TILL; UNOXIDIZED; approaches sandy loam texture, rich in v fgr sand & silt as above till. (54-60 1/2) LOAM TILL; UNOXIDIZED; firm; calc; carb fairly common, no sh noted; matrix high in silt & v fgr sand; silty bed at 60 1/2 ft.			
60	- 71 52 3 8 V 71 52 77 V3 V3 V 61 4405 20	•		(60 1/2-64 1/2) SILT; UNOXIDIZED; v well sorted; massive.			
70	Sond Control of the second sec		K	(64 1/2-70) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted; iaminated silt bed at 68 1/2 ft, well sorted v fgr-fgr sand below, w/some coarser grains.			
-70		•	R	(70-76) FINE-VERY COARSE SAND; UNOXIDIZED; poorly sorted, w/pebs up to large; uncommon carb.			
80		•		(76-79) SILTY VERY FINE SAND; UNOXIDIZED; v well sorted. (79-81) GRAVELLY COARSE-VERY COARSE SAND; UNOXIDIZED; well			
		•		80rted. (81-89 1/2) SANDY LOAM TILL; UNOXIDIZED; firm; mod calc; calc below 85 ft W/common carb; cob at 83 1/2, 87 ft; v silty gvl 87 1/2-88 1/2 ft.			
90		м •		(89 1/2-93 1/2) GRAVELLY VERY COARSE SAND; UNOXIDIZED; silty, poorly sorted; common carb, more than in gvl above till; 92-93 1/2 ft sandy loam till, firm-compact, calc, common carb, less			
01	0 49 1	•		sendy than above till. (93 1/2-99) GRAVELLY MEDIUM-COARSE SAND; UNOXIDIZED; silty, poorly sorted; finer grained towards base.			
<u>100</u> 02	2 46 1	•		(99-111) LOAM TILL; UNOXIDIZED; compact; calc; common carb; V large pebs fairly common.			

Drill Hole OB-519

erna a**n sail s**aithe an

A LANG

Carlos Carlos

Contraction of the second

۰. رونه ۲ 19 mg

ે. અંગ્રેસ્ટ્રે Ì

9453*M*

and the second sec

mound

dissection and

ويتركب والمتحافظ والمحافظ والم

Magnetic Strati-Suscept-Stratigraphic Depth graphic ibility (ft) Attributes Column Description Ķ 68-16 0 (0-3 1/2) FINE SAND; OXIDIZED; mod sorted; sm cob near top; 50 (0-3 1/2) Fine SAND; OxIDIZED; mod sorted; sm cob hear top; last foot poorly sorted w/large pebs; carb-rich. (3 1/2-20) LOAH TILL; OXIDIZED; unox below 11 ft; firm; calc; abundant carb, fairly common sh; 6-6 1/2 ft silt; lens of sandy till at 19 1/2 ft. Till Samples In Drill Hole \$20 . . 10 148 1661 1756 74% 7364,12 . 1 264 <u>256</u> √201⊽ 45 274 18,8 20 Δ (20-45 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; /_₹, 35 mod calc-calc; carb fairly common but crystalline dominant; v sandy below 26 ft w/few pebs, mostly sm; fgr and 34-35 ft; grades back to sandy loam till by 40 ft; cob at 43 ft; grades to loam till by 44 ft, v calc w/much carb. 01 0 86 1 30 02 3 23 1 40 03 21 4 1 <u>1997 R</u> (45 1/2-54 1/2) FINE SAND; UNOXIDIZED; mod sorted; 45 1/2-47 ft W silty mgr-cgr gvl, v poorly sorted, w/common carb pebs. 50 Till and Saprolite Samples in Drill Hole 520 (54 1/2-64) MEDIUM-COARSE GRAVEL; UNOXIDIZED; silty, v poorly Crystalline Bedrock sorted; common carb. A274 . 201 ♥_♥ 60 ۸ 40 Exotics 2644 166 177 156 0 0 35 0 (64-69) GRAVELLY COARSE SAND; UNOXIDIZED; poorly sorted; gvl 136 67-68 ft. 188 2 4 (69-71 1/2) FINE SAND; UNOXIDIZED; well sorted. 70 (71 1/2-82 1/2) GRAVELLY COARSE SAND; UNOXIDIZED; poorly sorted; below 76 ft silty, v gvlly & v poorly sorted w/large pebs; cob at 78 1/2 ft. Saprolite 0.30 80 RT WT ox. WT OT Neath. Rock -----¥--(82 1/2-85) MEDIUM SAND; UNOXIDIZED; mod sorted; v fgr sand at top; mgr-cgr below 84 ft. **∆**□**∨** ◊ RT-517 WT-517 OX. WT-517 OT-517 (85-90 1/2) GRAVELLY COARSE SAND; silty, poorly sorted; most pebs fgr-mgr. 90 (90 1/2-94) COARSE-VERY COARSE SAND; UNOXIDIZED; mod sorted. (94-96) FINE-COARSE GRAVEL; UNOXIDIZED; ailty, v poorly sorted; carb cob at base. (96-100 1/2) CLAY LOAM TILL; UNOXIDIZED; greenish gray; firm; calc; similar to lower 1 1/2 ft of above till; common carb; 17.1 **...** 04 0 31 1 sandy zones; gvlly below 100 ft incl cob. (100 1/2-103) SILTY VERY FINE SAND; UNOXIDIZED; poorly sorted 100 w/sm pebs; grades to v fgr sandy silt. W (103-106) FINE-MEDIUM SAND; UNOXIDIZED; gvlly cgr sand bed at 0

Sec. 1

 $e^{2\pi i k^2 T_{\rm e}}$

4631-

1

A States

 $\hat{\mathcal{R}}_{q_k q_L} \neq$

1919

. dist

 \sim

un single

6 acres

Case Store

18

. A Trans

) (Ö) –

surestation and a second s

C C

. And the last

1. 素物機構成のなどのなどの、自己的なななな構成的なののなどのでのです。こののの、これののでないですが、これのようななののはないの情報構成のの情報構成のなどのであったが、「ないの意味」のでは、これのないで、

Depth (ft)	Stratigraphic Attributes	Magnetic Suscept- ibility	Strati- graphic Column	Description
<u>10</u> 20	Till and Seprolite Semples in Drill Hole 531 Crystalline Bedrock 5 5 5 5 5 5 5 	0 50 • •	K	(0-37) VERY FINE SAND; OXIDIZED; well sorted; silty below 6 ft; pebbly at 7 ft; mod sorted w/coarser grains below 7 ft; unox w/fairly common gnl below 10 ft; carb common; v fgr-fgr below 12 ft; pebbly zone at 14 1/2 ft; mostly v fgr sand below 15 1/2 ft; fgr gvl layers at 18 £ 19 ft; fgr-cgr sand beds from 24-25 ft; pebbly mgr-cgr sand bed at 26 ft, w/abundant carb, v fgr-fgr sand below; better sorted below 28 ft; more coarsa grains below 36 ft.
30	2000 Saprolite S.to 	•		
40	Clay TH Samplee in Drill Hole 521	•		(37-40) NO CORE; sand. (40-52 1/2) VERY FINE GRAVEL; UNOXIDIZED; silty; poorly sorted; carb-rich, noted larga sh pebs; 40-41 ft silty fgr-egr sand, poorly sorted; 46-47 ft silty fgr-v cgr sand, poorly sorted; pebs fairly angular; v fgr sand bed at base.
60		•		<pre>(52 1/2-58) SILTY VERY FINE SAND & LOAM TILL; UNOXIDIZED; mod sorted, w/some coarser grains; 52 1/2-54 ft dark gray loam till, firm, calc, w/common carb; loam till beds also at 55 1/2 ft & 57 1/2-58 ft. (58-60) VERY FINE SANDY SILT; UNOXIDIZED; interbedded w/loam till, gradational to till below. (60-63) LOAM TILL; UNOXIDIZED; firm; calc; common carb; matrix rich in silt & fgr sand below 62 ft.</pre>
70	Sand Z	•		(63-67) NO CORE; probably sand. (67-74 1/2) SILTY VERY FINE SAND; UNOXIDIZED; well sorted; more coarse grains, not as well sorted below 71 ft; grades to sandy silt below 73 ft; pebbly below 74 ft; cob at besa but
01 80	1 25 1	•	KR	(74 1/2-80 1/2) SANDY LOAM TILL; UNOXIDIZED; greenish gray; firm; calc; fairly common carb; sand bed at 76 ft, v sandy till below w/sand beds; cob at 76 1/2 £ 79 ft; bed or inclusion of loam till at 79 1/2 ft; loam till w/carb pebs in last 1/2 ft.
90	SC 55 Till Samples In Drill Hole S21	•		<pre>(85 %) GRAVELLY COARSE PUERY COARSE SAND; UNOXIDIZED; Bilty; V poorly sorted, many large pebs; cob at 84, 84 1/2 ft. (85-87) GRAVELLY COARSE-VERY COARSE SAND; UNOXIDIZED; better sorted than above; fair amount of carb. (87-91) COARSE-VERY COARSE SAND; UNOXIDIZED; well sorted, w/gnl; 88 1/2-91 ft mgr-cgr sand, well sorted, w/abrupt contacts.</pre>
100	2094/ V ∇	•		(91-100) VERY FINE-FINE SAND; UNOXIDIZED; v well sorted; mostly fgr sand below 95 ft; v fgr sand bed at base. (100-107) FINE-MEDIUM SAND; UNOXIDIZED; not cuite as well
		•		sorted as abova, w/mgr sand beds; mgr-cgr sand bed at 104 1/2 ft & from 106-107 ft.

Carlo Carlo

 $\mathcal{A}_{\mathcal{T}}$

1464

シモンで知道

1990) Sec

1 Berline

. 80

15 0 11 1

(295-299) COARSE SAND; UNOXIDIZED; mod sorted; peb layer at 295 1/2 ft; couple large pebs near base.

adamahar ar 12.00

- see and the set of the second s

CONTRACTOR CONTRACTOR

NOR

alestine in

ex letters

•

100300234

CONTRACTOR RECEIPTING TO A

fragments in a chlorite-epidote matrix containing deformed

an standard

Appendix 280-C. Sampling and analytical methods.

Field Logging and Core Recovery Procedures

Drill core taken by the rotasonic drilling method is recovered in lengths ten to thirty feet long. Cores are dry-drilled to minimize the opportunity for water-washing of the soft sediments and sand layers. Recovered core lengths are extruded from the core barrel into plastic sleeves and broken to four foot lengths. The core sections are then marked with top and bottom orientations and placed into four foot long wooden boxes for shipment and holding until they can be logged and sampled. Martin and others (1988, 1989) describe in detail the mechanics of procedures and equipment used to ensure quality control during rotasonic coring operations.

Descriptive Core Logging

Core recovered during drilling operations at the twenty drill sites was descriptively logged by Gary Meyer, glacial geologist with the Minnesota Geological Survey (MGS). Characteristics noted during logging include texture, Munsell color, reaction to 10% HCl, till compactness, pebble abundance and lithology, presence of organic material, nature of stratigraphic contacts, and sedimentary structures. Textural analysis and 1-2mm sand counts were later performed on 84 grab samples by technicians at the MGS. Results of the latter work are on file at MnDNR in Hibbing.

Thicknesses of stratigraphic units were determined using both the existing core and the notations made on field drilling logs. The field logs were useful for identifying missing core intervals and for determining thicknesses of easily deformed silt-clay layers. Thickness and elevation data for geologic units are listed in Appendix 280-A and Appendix 280-B and are probably accurate to within 1 or 2 feet. Appendix 280-B contains descriptions and profiles of the core recovered from the twenty drill holes.

Core Sampling

Till and saprolite are the primary sample media. Sands, gravels, and silt-clay were sampled only if the basal Quaternary unit was not till or if sampling coverage in the drill hole was sparse. Only two samples of Koochiching lobe till were sampled, in drill hole 516, where Koochiching drift is the only available sampling media. Bedrock core was sampled wherever it was encountered.

Guidelines for sampling were: 1) sample all till-bearing stratigraphic units starting at the base of the Quaternary section and working upwards to the base of the Koochiching lobe drift, 2) make all reasonable effort to ensure that sampled intervals do not cross stratigraphic or compositional boundaries in the core, 3) sample saprolite sections if they exceed ten feet in thickness, 4) when sampling, make sure to exclude the outer surfaces of core, which are potentially cross-contaminated by other stratigraphic units.

Sampling of Glacial Drift: Glacial drift intervals and several saprolite intervals treated as drift were sampled with aluminum splitting tools and plastic scoops to prevent metallic contamination of gold or other metals into the samples. Target weights for samples are: 10kg (8kg minimum) for heavy mineral concentrate processing, 1200g (1kg minimum) for silt/clay extraction, and 200g for matrix carbonate analysis. Most samples represent 5 to 10 feet (1.5-3m) of core.

The 10kg sample of core was sent to a contract laboratory (Overburden Drilling Management) for disaggregation and preparation of Heavy Mineral Concentrates (HMC). Subsamples produced by this procedure are: Heavy Mineral Concentrate (HMC), lights fraction <3.3sp.g. (ltHMC), magnetic HMC fraction >3.3sp.g. (magHMC), and nonmagnetic HMC fraction >3.3sp.g. (nmHMC). During HMC processing, the silt-clay component of the samples is discarded. The granule and pebble (+10mesh) fractions are retained. Nonmagnetic

heavy mineral concentrates (nmHMC) are divided after gold grain counting was completed, 3/4 for assay, 1/4 for mineralogy. The 3/4 split is then sent to the analytical laboratory (Bondar-Clegg) for further preparation (crushing to -200mesh).

The 1200g sample of the core interval is packaged and sent to a contract lab (Bondar-Clegg) for disaggregation, textural analysis, and silt-clay separation using the method outlined by the Geological Survey of Canada (Higgins, 1988).

The 200g samples are disaggregated, dried, and dry-sieved in-house to obtain a -63um sample for carbonate analysis.

Sampling of Saprolite and Bedrock: Bedrock, and saprolite samples treated as bedrock, were logged, described, and selected for analysis by Terry Klein, geologist with the U.S. Geological Survey in Reston, Virginia (Klein, 1991). Representative bedrock and saprolite intervals were sampled for petrographic, major element, and trace element analysis. Only a few of the saprolite intervals were analyzed for major element oxides. Core samples were crushed to -200 mesh at the contract laboratory (Bondar-Clegg). Thin section pucks were sent to a petrographic lab. Bedrock and saprolite sample intervals ranged from 1 to 10 feet in length. Bedrock and saprolite cores were also examined for scheelite using an ultra-violet lamp, and for gamma-ray emission by Geiger counting.

Analysis Methods

Physical Measurements: Measurements for physical properties were made semi-quantitatively for munsell color, oxidation state, till compactness, reactivity to 10% HCl, pH, and bulk density.

Munsell color was determined during logging, prior to sampling, by comparing the wetted interior surface of split core with the munsell color chart. Oxidation state was determined during logging by noting the degree of preservation of non-resistant mineral species and by noting oxidation color changes in the predominantly unoxidized drill cores. Till compactness was determined qualitatively during logging on a scale of one (soft) to five (very compact). pH was measured on slurried mixtures of distilled water and disaggregated core using the method described by Davey and El-Ansary (1986). Bulk density measurements were done inhouse using the method of Pavich (1989).

Pebble and Mineral Measurements: Mineralogic properties measured include pebble counts and mineral grain counts of non-magnetic Heavy Mineral Concentrate (nmHMC) fractions. Fourteen selected samples of till and saprolite were also subjected to clay matrix X-ray Diffraction (XRD) analysis.

Pebble counts were made on till samples using methods modified from Szabo and others (1975), Kokkola and Pehkonen (1976), and Coker and others (1984). Additional help in devising a practical classification and identification system for pebble counting was provided by Professor J. Welsh (Welsh, unpublished DNR open-file report). Pebbles recovered from the HMC processing were divided into three lithic super-categories, with five size classes from +1" to +4mesh for each category. The number of pebbles counted per sample ranged from 75 to over 2000. Large numbers of pebbles were counted to ensure that reasonable quantities of supracrustal (SC) category pebbles would be available for further sub-division. The supracrustal category pebbles were then divided into eight types of SC pebbles and additional miscellaneous categories. Pebble categories are: P-M (Paleozoic and Mesozoic pebbles of dolomite, limestone, marl, and buff-colored chert), F-I (coarse-grained felsic-to-intermediate plutonic pebbles of granite, granodiorite, and biotite granite-gneiss), and SC (everything else, subdivided as follows: SCm -Mafic plutonic pebbles, SCmv -Mafic volcanic pebbles, SCma -Mafic volcanicamphibolite pebbles, SCfv -Felsic volcanic pebbles, SCfh -Felsic-intermediate hpabyssal pebbles, SCgn -Gneissschist-dark coarse-grained felsics, SCsi -Siliceous including iron formation, SCgy -Graywacke, SCmg -Highly magnetic pebbles but not as a separate sub-category, SCsd -Sulfide or sulfide-bearing, SCms -Meta-sedimentary pebbles but not graywacke, SCmc -Miscellaneous, including graphite). Mineral counts of the 1/4 split nonmagnetic heavy mineral concentrate (nmHMC) in 57 selected drift and saprolite samples were made with a binocular stereoscope and a good light source. The nmHMC product provided a starting material which was then separated into nonmagnetic and paramagnetic fractions using a custom modified Frantz magnetic separator at the U.S. Geological Survey - Geochemical Branch, in Denver, Colorado. This step helped isolate accessory nonmagnetic minerals from the more abundant paramagnetic rock fragments (Fig. 10).

Mineral grain size, morphology, and color were noted during counting. Mineral types and methods used for estimating counts are: particulate gold (dry-panned), scheelite (under UV-light), pyrite-marcasite-zirconsphene-rutile-kyanite-native copper-and rock fragments (by grid estimate), and corundum-chalcopyritearsenopyrite-molybdenite-pyrite + quartz-epidote-gahnite-galena-and pyrrhotite (by trace grain identification). Mineral grains of unknown identity were isolated and sent for SEM-EDS analysis at Hanna Research Laboratories). Additionally, estimates of siderite percent and number of limonite pisoliths were made on the paramagnetic fraction, for stratigraphic correlation purposes (see Appendix 280-F).

Clay mineralogy determinations were made on fourteen glacial drift and saprolite samples using X-ray Diffraction techniques (oriented slides) via a contract laboratory (Hanna Research Laboratories).

Electromagnetic Measurements

Magnetic Susceptibility was measured on all rotasonic core before splitting, using a handheld magnetic susceptibility meter on unsplit core. Measurements were taken every two feet along the length of each core. Later pebble counts provided a count of magnetic supra-crustal pebbles in each sample having sufficient magnetic character to be attracted to a hand magnet.

Chemical Measurements

Chemical assays were made on the nonmagnetic heavy mineral concentrates (nmHMC), silt-clay (-63um) for Au and Ag, clay (-2um), and magnetic heavy mineral concentrates (magHMC) of glacial drift and selected saprolite samples. Whole rock and/or trace element measurements were made on selected bedrock and saprolite samples. In addition, matrix weak-acid solubility and percent calcium, magnesium, and iron in the soluble portion were measured. The matrix solubility measurements were made on the silt-clay fraction of dry-sieved samples using 4N HNO3.

Detection limits, sample digestion procedures, and analytical methods for nonmagnetic heavy mineral concentrates (mmHMC), clay (-2um), and magnetic heavy mineral concentrates (magHMC) are listed in tables C-1, C2, and C3.

Table C-1. Analytical methods and detection limits for the nmHMC fraction of Baudette area samples.

		Sample	Detection	Digestion	Measurement	
No.	Item	Element	wt (g)	limit	method	method
1	Ag	Silver	0.5	0.1 ppm	HCI-HNO3 (3:1)	AA
2	Al	Aluminum	0.1	200 ppm	HCI-HNO3 (3:1)	ICP
3	As	Arsenic	n/a	l ppm	none	INAA
4	Au	Gold	n/a	0.001 ppm	none	INAA
5	Ba	Barium	n/a	100 ppm	none	INAA
6	Be	Beryllium	0.1	0.5 ppm	HCI-HNO3 (3:1)	ICP
7	Bi	Bismuth	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
8	Br	Bromine	n/a	1 ppm	none	INAA
9	Ca	Calcium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
10	Cd	Cadmium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
11	Ce	Cerium	n/a	10 ppm	none	INAA
12	Co	Cobalt	n/a	10 ppm	none	INAA
13	Cr	Chromium	n/a	50 ppm	none	INAA
14	Cs	Cesium	n/a	1 ppm	none	INAA
15	Cu	Copper	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
16	Eu	Europium	n/a	2 ppm	none	INAA
17	Fc	Iron	n/a	500 ppm	none	INAA
18	Ga	Gallium	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
19	Hf	Hafnium	n/a	2 ppm	none	INAA
20	Hg	Mercury	0.5	0.005 ppm	HNO3-HCI-SNC12	CV-AA
21	Ir	Iridium	n/a	0.1 ppm	none	INAA
22	ĸ	Potassium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
23	La	Lanthanum	n/a	5 ppm	none	INAA
24	Li	Lithium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
25	Lu	Lutetium	n/a	0.5 ppm	none	INAA
26	Mg	Magnesium	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
27	Mn	Manganese	0.1	500 ppm	HC1-HNO3 (3:1)	ICP
28	Mo	Molybdenum	0.1	1 ppm	HC1-HNO3 (3:1)	ICP
29	Na	Sodium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
30	Nb	Niobium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
31	Ni	Nickel	0.1	lppm	HCI-HNO3 (3:1)	ICP
32	Р	Phosphorous	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
33	РЪ	Lead	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
34	Rb	Rubidium	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
35	SЪ	Antimony	n/a	0.2 ppm	none	INAA
36	Sc	Scandium	n/a	0.5 ppm	none	INAA
37	Se	Selenium	0.5	0.1 ppm	HCI-HNO3 (3:1)	HY-AA
38	Sm	Samarium	n/a	0.2 ppm	none	INAA
39	Sr	Strontium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
40	Ta	Tantalum	n/a	l ppm	none	INAA
41	ТЪ	Terbium	n/a	1 ppm	none	INAA
42	Te	Tellurium	n/a	20 ppm	none	INAA
43	Th	Thallium	 /a	0.5 ppm	none	INAA
44	Ti	Titanium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
45	Ū	Uranium	n/a	0.5 ppm	none	INAA
46	v	Vanadium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
47	Ŵ	Tungsten	n/a	2 ppm	none	INAA
48	Ÿ	Yittrium	0.1	1 ppm	HCI-HNO3 (3.1)	ICP
49	Yh	Vtterhium	n/2	5 nnm	none	
50	7n	Zinc	01		HCLHNO3 (3.1)	ICP
51	7.	Zirconium	D/2	500 ppm	none (3.1)	

C-4

Table C-2. Analytical methods and detection limits for clay fraction of Baudette area samples.

(

4.0

			Sample	Detection	Digestion	Measurement
No.	Item	Element	wt (g)	limit	method	method
1	Ag	Silver (-63um)	0.1	0.1 ppm	HCI-HNO3 (3:1)	ICP
2	Al	Aluminum	0.1	200 ppm	HCI-HNO3 (3:1)	ICP
3	As	Arsenic	0.5	0.5 ppm	HCI-HNO3 (3:1)	HY-AA
4	Au	Gold (-63um)	30	0.001 ppm	Aqua-Regia	FA-DC
5	В	Boron	1.0	10 ppm	NaOH Fusion	DCP
6	Ba	Barium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
7	Be	Beryllium	0.1	0.5 ppm	HCI-HNO3 (3:1)	ICP
8	Bi	Bismuth	0.1	2 ppm	HCI-HNO3 (3:1)	ICP
9	Ca	Calcium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
10	Cd	Cadmium	0.5	0.2 ppm	HCl-HNO3 (3:1)	AA
11	Ce	Cerium	0.1	5 ppm	HCI-HNO3 (3:1)	ICP
12	Co	Cobalt	0.1	l ppm	HCl-HNO3 (3:1)	ICP
13	Cr	Chromium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
14	Cu	Copper	0.1	1 ppm	HCl-HNO3 (3:1)	ICP
15	Fe	Iron	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
16	Ga	Gallium	0.1	2 ppm	HCl-HNO3 (3:1)	ICP
17	ĸ	Potassium	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
18	La	Lanthanum	0.1	1 ppm	HCl-HNO3 (3:1)	ICP
19	Li	Lithium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
20	Mg	Magnesium	0.1	500 ppm	HCI-HNO3 (3:1)	ICP
21	Mn	Manganese	0.5	l ppm	HCl-HNO3 (3:1)	AA
22	Mo	Molybdenum	0.1	l ppm	HCI-HNO3 (3:1)	ICP
23	Na	Sodium	0.1	500 ppm	HCl-HNO3 (3:1)	ICP
24	Nb	Niobium	0.1	l ppm	HCl-HNO3 (3:1)	ICP
25	Ni	Nickel	0.1	1 ppm	HCl-HNO3 (3:1)	ICP
26	Р	Phosphorous	0.1	50 ppm	HCI-HNO3 (3:1)	ICP
27	РЬ	Lead	0.1	2 ppm	HCl-HNO3 (3:1)	ICP
28	Rb	Rubidium	0.1	20 ppm	HCI-HNO3 (3:1)	ICP
29	SP	Antimony	0.5	0.2 ppm	HCI-HNO3 (3:1)	HY-AA
30	Sc	Scandium	0.1	l ppm	HC1-HNO3 (3:1)	ICP
31	Se	Selenium	n/a	l ppm	none	XRF
32	Sn	Tin	0.1	20 ppm	HCl-HNO3 (3:1)	ICP
33	Sr	Strontium	0.1	1 ppm	HCI-HNO3 (3:1)	ICP
34	Ta	Tantalum	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
35	Te	Tellurium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
36	Ti	Titanium	0.1	10 ppm	HCI-HNO3 (3:1)	ICP
37	v	Vanadium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
38	W	Tungsten	0.1	10 ppm	HC1-HNO3 (3:1)	ICP
39	Y	Yittrium	0.1	l ppm	HCI-HNO3 (3:1)	ICP
40	Zn	Zinc	0.1	l ppm	HC1-HNO3 (3:1)	ICP
41	<u> Zr </u>	Zirconium	0.1	<u>l ppm</u>	HC1-HNO3 (3:1)	ICP

G-5

Table C-3. Analytical methods and detection limits for the magHMC fraction of Baudette area samples.

			Sample	Detection	Digestion	Measurement
No	Item	Element	wt. (g)	limit	method	method
1	Fe2O3	Iron	0.5	200 ppm	HCI-HNO3-HF	AA
2	MgO	Magnesium	0.5	2 ppm	HCI-HNO3-HF	AA
3	TiO2	Titanium	0.5	20 ppm	HCI-HNO3-HF	AA
4	Ag	Silver	0.5	1 ppm	HCI-HNO3-HF	AA
5	Co	Cobalt	0.5	2 ppm	HCI-HNO3-HF	AA
6	Cr	Cromium	0.5	0.5 ppm	HCI-HNO3-HF	AA
7	Cu	Copper	0.5	1 ppm	HCI-HNO3-HF	AA
8	Mn	Manganese	0.5	0.5 ppm	HCI-HNO3-HF	AA
9	Ni	Nickel	0.5	1 ppm	HCI-HNO3-HF	AA
10	РЬ	Lead	0.5	2 ppm	HCI-HNO3-HF	AA
11	v	Vanadium	0.5	10 ppm	HCI-HNO3-HF	AA
12	Zn	Zinc	0.5	0.2 ppm	HCI-HNO3-HF	AA

Note: Detection limits calculated based on instrumental sensitivity, initial sample weight, and dilution. Dilution for metals and TiO2 is 100x. Dilution for MgO is 2,000x. Dilution for Fe2O3 is 10,000x.

Samples were digested using the microwave digestion method of Mathes and others (1983).

Appendix 280-D. Precision and accuracy of assay methods.

Precision and accuracy control for Baudette area samples is made using soil, bedrock, and metal ore standards, and within-project and between-project duplicate samples. Quartz blanks are also used to check for cross contamination of samples during preparation.

Precision

Percent Precision and 2 standard deviation (2 sd) confidence intervals have been calculated for the for the nmHMC assay results (Table D-1) and the -2um (clay) assay results (Table D-2) using the methods outlined by Shiffelbein (1987) and Wise (1987). Elements exhibiting an assay distribution more lognormal than arithmetic have been transformed to log10 values as suggested by Garrett (1969) before proceeding with the precision calculation. Assay results for control samples were also plotted graphically for visual evaluation of precision. Fig. D-1 is an example of such a plot.

The Percent Precision (% P) for each element is calculated by determining the variance of each control group and then using the average of those variances in the precision calculation. The equation as structured gives heavier weighting to variances of the paired sample duplicates in calculating precision.

Equation 1

n = no. of samples in group N = no. of groups $\overline{X_o} = mean assay value for the samples in group N$ $X_{r_i} = assay value for ith replicate in group$ $<math>\overline{X_{N\times R}} = mean value of all assayed samples in N groups$ t = the t-Distribution for N degrees of freedom

N is the number of control sample groups and n is the number of samples analyzed in each control group. For the clay fraction samples N=8, n=7 for SO-1, n=4 for GTS-1, and n=2 for each duplicate pair. For the nmHMC samples N=3, n=6 for PTC-1, n=4 for FER-4, and n=2 for each duplicate pair.

A 2 standard deviation (2 sd) confidence interval (equation 2) is used for stratigraphic interpretations and is calculated as two times the square root of the arithmetic variance derived in equation 1.

 $2 SD = 2 \times \sqrt{variance}$

Equation 2

Accuracy

Accuracy can be approximately determined when certified, recommended, or accepted values of control standard assays are available. Accuracy, where reported for Baudette Area assays, is calculated as a percent variation from certified, recommended, or accepted values, using the coefficient-of-variation calculation of Size (1987). Tables D-1 and D-2 list accuracies for elements where certified, recommended, or accepted standard values are available.

% variation = 100 ×
$$\frac{(X_o - \overline{X_a})^2}{X_o}$$

Equation 3

n = no. of assayed samples in group $X_{o} = recommended$ value $\overline{X_{a}} = mean of n$ assayed values

Control Samples

Precision and accuracy control for Baudette Area assay samples used the following scheme:

-2um (clay) Assay Control Samples:

<u>SO-1</u> -(CANMET SOIL-1) one control sample per twenty assay samples to measure analytical precision, 7 samples total. These control samples are exposed to digestion and analysis error. The SO-1 samples are suitable for both precision and accuracy calculations.

<u>GTS-1</u> -(CANMET GOLD TAILINGS SAMPLE) four samples of a gold tailings standard interspesed in the total sample population as a double check on analytical precision. The GTS-1 assay results reflect digestion and analysis error. The GTS-1 samples are suitable for both precision and accuracy calculations.

<u>Otz-1</u> -three sea-sand quartz blanks interspersed in the total population to test cross contamination during preparation. These samples will reflect preparation, digestion, and analysis error, but as blanks they are not suitable for precision and accuracy determinations. Results for the quartz blanks suggest that cross contamination during preparation is not significant factor in these samples.

<u>Sample Duplicates</u> -(within project duplicates) six duplicates (12 samples) were split after preparation. These samples have been exposed to digestion, and analysis errors, but since they were split after preparation, they do not reflect preparation errors. Each sample in the duplicate pair was analyzed adjacent to its partner in the analytical sequence. The clay fraction sample duplicates are suitable for precision calculations.

<u>Inter-Laboratory Duplicates</u> - (between project duplicates) two samples that were earlier analyzed during a previous glacial drift geochemistry project were used to check for variability between data compiled in earlier projects and data compiled in the present project. The samples are not suitable for precision or accuracy calculations, but can be used to compare datasets from different projects.

nmHMC Assay Control Samples:

<u>PTC-1</u> -(CANMET NOBLE METALS-BEARING SULPHIDE CONCENTRATE) six samples of a platinum-group-element ore standard. The assay results for PTC-1 reflect reference standard variability, digestion, and analysis error. The results are suitable for both precision and accuracy calculations.

<u>FER-4</u> -(CANMET IRON FORMATION) four samples, each spiked with a gold grain of known size. The FER-4 results are suitable for precision calculations.

<u>Sample Duplicates</u> -six pairs of till samples, each pair sampled along the identical core interval. These samples contain intra-sample preparation, digestion, and analysis errors, and are suitable for precision calculations. The duplicate paired samples were run in separate analytical batches so that between batch error could also be included in the precision determinations.

Table D-1. Precision and accuracy for assays of nmHMC in Baudette area samples.

Item	Element	% P	% P	2 sd	FER-4	FER-4	% vari.	PTC-1	PTC-1	% vari.
		(log)	(arith)	(arith)	(mcan)	œrt.	FER-4	(mean)	cert.	PTC-1
Ag	Silver	80	185	14	2.3	•	-	17	-	-
AĬ	Aluminum	17	11	0.1	0.5	0.9	39	0.3	-	-
As	Arsenic	14	55	16	4.8	3.6	32	11	-	-
Au	Gold	28	159	314	6.5	•	-	512	650	99
Ba	Barium	12	68	104	103	43	138	262	-	-
Bi	Bismuth	5	22	9.0	16	•	-	121	-	-
Br	Bromine	63	61	1.8	1.0	-	•	4.8	•	-
Ca	Calcium	164	18	0.2	1.4	1.6	12	0.2	· •	•
Cd	Cadmium	140	57	1.0	1.8	-	-	2.5		-
Cc	Cerium	6	49	120	10	-	•	-33	-	-
Co	Cobalt	3	6	44	10	2.0	400	2730	-	-
Cr	Chromium	4	20	147	50	9.0	456	1930	•	•
Cs	Cesium	255	71	1.0	1.0	0.8	25	2.2	-	•
Cu	Copper	11	2	97	15	13	17	>20,000	52000	•
Eu	Europium	35	37	0.9	2.0	-	-	2	-	-
Fe	Iron	3	9	2.5	27	22	24	23	27	1
Ga	Gallium	44	190	47	2.0	-	-	85	-	-
Hſ	Hafnium	24	117	53	2.0	•	-	3.2	-	-
Hg	Mercury	11	38	19	24	-	-	13	-	-
La	Lanthanum	10	44	47	8.0	8.0	0	5.0	-	-
Li	Lithium	18	22	0.9	5.8	7.0	18	4.0	-	-
Lu	Lutetium	132	33	.05	0.5	•	-	0.5	-	•
Mg	Magnesium	102	11	0.1	0.8	0.8	11	2.3	-	•
Mn	Manganese	10	23	0.1	0.1	0.1	15	0.1	-	•
Mo	Molybdenum	20	33	5.0	15.3	-	-	8.3	•	-
Na	Sodium	0	0	0.0	0.0	-	-	0.0	-	-
Nb	Niobium	9	23	3.3	10		-	17	•	-
Ni	Nickel	5	1	4.6	4.8	6.0	21	>20,000	94,000	-
Р	Phosphorous	8	18	0.0	0.1	0.1	55	0.1	•	-
РЬ	Lead	10	30	14	13	8.0	66	76	•	-
RЬ	Rubidium	30	118	18	16	-	-	13	•	-
SÞ	Antimony	115	34	0.4	1.6	3.0	46	0.2	-	-
Sc	Scandium	10	14	4.3	1.1	1.5	27	4.2	-	-
Se	Selenium	1100	11	0.6	0.1	-	-	18	-	-
Sm	Samarium	15	38	6.5	2.3	2.2	2	0.6	•	-
Sr	Strontium	6	21	8.2	61	62	2	5.7	•	-
Ta	Tantalum	34	41	1.7	1.0	-	-	1.0	-	-
ТЪ	Terbium	43	51	1.3	1.0	-	-	1.0	•	-
Te	Tellurium	14	52	15	20	-	-	47	•	-
Th	Thorium	16	45	29	0.8	-	-	1.5	-	-
Ti	Titanium	16	22	0.1	0.1	0.0	19	0.1	•	-
U	Uranium	24	53	4.1	0.6	-	-	3.8	-	-
v	Vanadium	11	20	16	6.3	11	43	11	-	•
w	Tungsten	51	187	14	2.3	-	-	8.7	-	-
Y	Yttrium	6	19	5.2	5.5	8.0	31	2.0	-	•
Yь	Ytterbium	20	34	2.8	5.0	0.5	900	5.0	-	-
Zn	Zinc	42	45	30	35	27	28	28	-	-
Zr	Zirconium	9	76	2170	528	18	2830	1270	-	-

Notes: % P =percent precision

*

2 sd =2x arithmetic standard deviation

mean =average value for control group

cert. =certified assay value of control standard

log =lognormal precision value

arith =arithmetic precision value

PTC-1 =Platinum group standard

FER-4 =Sulfide ore standard

Table D-2. Precision and accuracy for assays of clay fraction in Baudette area samples.

		· %P	% P	2 sd	GTS-1	GTS-1	% vari.	SO-1	SO-1	% vari.
Item	Element	(log)	(arith)	(arith)	(mean)	œrt.	GTS-1	(mean)	œrt.	SO-1
Āg	Silver	41	50	0.3	0.2	•	-	1.1	-	-
Al	Aluminum	8	8	0.2	1.5	6.4	77	4.4	9.4	53
As	Arsenic	45	20	1.9	47	-	-	1.1	-	-
Au	Gold	98	18	13	279	346	19	-	-	-
В	Boron	7	17	10	154	-	-	21	•	-
Ba	Barium	1	6	12	239	-	-	314	879	64
Bc	Beryllium	0	0	0.0	0.5	•	-	0.5	•	-
Bi	Bismuth	0	0	0.0	5.0	•	-	5.0	-	-
Ca	Calcium	10	8	0.2	3.5	3.9	11	0.9	1.8	51
Cd	Cadmium	0	0	0.0	0.2	-	-	0.2	-	•
Ce	Cerium	2 ·	7	5.7	48	•	-	117	•	-
Co	Cobalt	2	7	1.7	28	•	· •	27	32	16
Cr	Chromium	1	7	8.1	130	-	-	147	160	8
Cu	Copper	2	7	4.4	97	-	-	61	61	1
Fe	Iron	4	7	0.3	5.5	6.0	8	5.3	6.0	11
Ga	Gallium	5	17	1.6	2.0	-	-	18	•	-
ĸ	Potassium	16	8	0.0	0.2	3.1	92	1.0	2.7	61
La	Lanthanum	7	18	7.8	28	-	-	53	•	-
Li	Lithium	2	6	1.8	20	-	-	44	-	-
Mg	Magnesium	3	6	0.1	2.1		-	1.8	2.3	20
Mn	Manganese	10	29	209	1280	-	-	579	0.1	35
Mo	Molybdenum	31	27	2.0	33	-	-	2.7	-	•
Na	Sodium	12	16	0.1	0.0	1.4	96	0.2	2.0	91
Nb	Niobium	37	54	4.4	11		-	8.1	-	-
Ni	Nickel	2	9	6.4	87	-	-	79	94	16
Р	Phosphorous	14	31	0.1	0.1	-	-	0.1	0.1	1
Pb	Lead	8	22	4.1	35	-	-	20	21	5
Rь	Rubidium	16	54	41	50	· -	-	99	139	29
Sb	Antimony	23	56	0.2	1	-	-	0.2	-	-
Sc	Scandium	6	13	1.4	8.7	-	-	14	•	-
Se	Selenium	274	76	1.1	1.2	-	-	1.1	-	-
Sn	Tin	0	0	0.0	20	-	-	20	-	•
Sr	Strontium	2	. 11	13	400	-	-	76	328	77
Ta	Tantalum	320	224	7.5	7.7	•	-	2.3	-	-
Te	Tellurium	7	20	2.1	13.5	-	-	10	-	-
Ti	Titanium	2	6	0.0	0.0	•	-	0.4	0.5	30
v	Vanadium	2	6	5.4	66	-	-	115	139	18
W	Tungsten	0	0	0.0	10	-	-	10	-	-
Y	Yttrium	3	8	1.3	9.2	-	-	20	-	-
Zn	Zinc	2	7	8.1	150	-	-	127	146	13
Zr	Zirconium	22	41	5.3	22	•	-	21	-	

Notes: % P =percent precision

2 sd =2x arithmetic standard deviation

mean =average value for control group

cert. =certified assay value of control standard

log =lognormal precision value

arith =arithmetic precision value

GTS-1 =Gold ore standard

SO-1 =Soil standard

Fig. D-1. Assay results for seven samples of reference standard CANMET SO-1

Analyses Recommended ∆

Value
Abbreviations, data key, and other notation

<u>Symbols</u>

(

a constraints

Ó

- T = summary of till data in borehole
- S = summary of saprolite data in borehole
- B = bedrock lithology

Notes: data selection criteria are 4 or more gold grains, 10 ppb or more gold in the silt-clay fraction, and 3x median or more of pathfinder element or heavy mineral.

Appendix 280-E. Map 1. Summed gold grain counts for Baudette area drill core, plotted by location.

	R 36 W	R 35 W	R 34 W	R 33 W	R 32 W	R 31 W
	OB-521 T = corundum, Cu	OB-519	OB-515	OB-511	• OB-507	OB-503 T = gold assay, HMC # gold assay, fine fraction
T 160 N	S = -	т	T = gold assay, fine fraction S = -	T = native Cu (11)	S = gold grains, HMC, Zn (4) corundum	S = Hg in quartz sand
	 mafic volcanic ? phyllonite ? 	S = - B = hornblende tonalite	B = basalt	S = - B = biotite quartz monzonite	B = porphyritic mafic plutonic with aplite dikes	B = mylonite quartz-bearing plutonic protolith
	OB-520	OB-518	OB-514	OB-510	OB-506	OB-502
T 159 N	T = (4) gold grains, HMC S = (30) galena, Cu	T = -	T = gold assay, HMC * gold assay, fine fraction Hg, Cu *	Te	T = (5) gold grains, HMC * gold assay, fine fraction	T = (4) gold grains, HMC + Ag & Pb in magnetite + (3) chalconvaits
	B≖. ● 520	B = protomylonite intermediate volcaniclastic	S = - B = basalt 514	S = - 510 B = gabbro	 gold assay, fine fraction Cu HMC assay B = protomylonite gabbro 	s = . 502 B = syenite
	R 36 W	OB-517 T = (4) gold grains, HMC * gold assay, HMC * (2) Zn-spinel grains * (2) scheelite grains * Cu, corundum S = . B = mylonite mafic rock	OB-513 T = kyanite 10% S = - B = barren semimassive sulfides	OB-509 T = gold assay, finc fraction * W, corundum * (2) native Cu * (2) scheelite S = - B = gabbro	OB-505 T = (2) molybdcnite Zn, Ni, Cu * S = Zn, Fe, Pb B = quartz monzonite	OB-501 • T = - S = corundum B = quartz monzonite
PRO	T 157 N	OB-516	OB-512 T = (4) molybdenite $*(2) scheclite *S = -$	OB-508 T = Cu, native Cu (12) S = (10) galena, pative Cu		
		B = graywacke	B = graywacke	B = graywacke + mylonite		SCALE

Appendix 280-E. Map 2. Elevated values of gold, pathfinder elements, heavy minerals in Baudette area glacial drift and saprolite, in contrast to underlying bedrock composition intersected during drilling.

Circ

a

E.

A Sin

I - 90 sem

۰.

C.

Column abbreviations and data key

Stratigraphic units

КT	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
ws	=Winnipeg sand
OT	=Old Rainy till
OS	=Old Rainy sand
OG	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock
Other abbreviations	
na	=not applicable
ру	=pyrite
ODM	=Overburden Drilling Management Labs
kg	=kilogram
Surf.	=surfaœ
elev.	=elevation
(msl)	=mcan sca level
(ft.)	=feet
Qtz or qtz	=quartz
plut.	=plutonic
Bio.	=biotite
Plag.	=plagioclase
Gran	=Granite
Green	=Greenstone
Gray	=Graywacke
> 4	=greater than four limonite grains
1-4	=one to four limonite grains in sample

Notes:

1.15

 \bigcirc

14.00

Sample height data are sample height (in feet) above or below the basal Quaternary contact.

Appendix	280-1°. Mas	ster index	for Baudelle area	samples.										
*****		Gold				-		Surf.	Bed.	Quat.	Sample	Sample		Estimated
		grains	ODM	Siderite	Limonite	Sampled		elev.	elev.	base	height	depth	Underlying	NE un ice
Samala	1 Init	/10ka	Domoska		contant	internal	4	(mal)	(mal)	(mal)	(0)	(0)	bodrock	hedrook
Sol-001		/10kk	Kemarks			131-135	Fast	1156	Q42	1021		111	Otz Monzonite	Gran/Green
501-002	SAP	ŏ		20	Ŭ	135-145	Fast	1156	942	1021	-5	140		Gran/Green
501-003	SAP	ŏ				157-163	East	1156	942	1021	-25	160	Otz Monzonite	Gran/Green
501-004	BEDZ	na				163-166	East	1156	942	1021	-30	165	Otz Monzonite	Gran/Green
302-001	RT	4	0.1% py	1	0	123-133	East	1137	958	958	51	128	Svenite	Gran/Green
502-002	RT	2	0.5% py	i	0	133-143	East	1137	958	958	41	138	Syenite	Gran/Green
502-003	RT	0		1	0	143-153	East	1137	958	958	31	148	Svenite	Gran/Green
502-004	RS	0				153-163	East	1137	958	958	21	158	Syenite	Gran/Green
502-005	OL	0				167-177	East	1137	958	958	7	172	Syenite	Gran/Green
502-006	BED	na				179-187	East	1137	958	958	-4	183	Syenite	Gran/Green
503-001	RT	0		1	0	111-118	East	1116	857	963	39	115	Mylonite (qtz plut.)	Greenstone
503-002	RT	1		1	0	118-128	East	1116	857	963	30	123	Mylonite (qtz plut.)	Greenstone
503-003	RT	0		1	0	128-138	East	1116	857	963	20	133	Mylonite (qtz plut.)	Greenstone
503-004	RT	0		1	0	138-148	East	1116	857	963	10	143	Mylonite (qtz plut.)	Greenstone
503-005	RT	1		1	0	148-153	East	1116	857	963	3	151	Mylonite (qtz plut.)	Greenstone
503-006	ASAP	1				164-174	East	1116	857	963	-16	169	Mylonite (qtz plut.)	Greenstone
503-007	SAP	0			÷	211-221	East	1116	857	963	-63	216	Mylonite (qtz plut.)	Greenstone
503-008	BEDZ	na				240-247	East	1116	857	963	-91	244	Mylonite (qtz plut.)	Greenstone
503-009	BED	na			-	247-255	East	1116	857	963	-98	251	Mylonite (qtz plut.)	Greenstone
505-001	RT	1	<i>.</i> .	75	0	140-149	East	1167	906	933	90	145	Bio. qtz monzonite	Greenstone
505-002	or	3	0.1% py	75	0	224-228	East	1167	906	933	8	226	Bio. qtz monzonite	Greenstone
505-003		1	I Cu grain	/5	0	228-234	East	110/	906	933	5	231	Bio. qtz monzonite	Greenstone
505-004	SAP DED7	0				234-243	East	1167	900	933	-)	239	Bio. diz monzonite	Greenstone
505-005	BEDL DT		1 50/	70		201-207	East	1107	900	933	06-	160	Mulopite (sebbrois)	Greenstone
506-001	RI DT	2	1.3% py	70	0	171 176	East	1174	943	990	2	174	Mulonite (gabbroic)	Greenstone
506-002	SAD	- - 0	1.0% py	10	U	183,107	Fast	1174	043	998	-17	188	Mylonite (gabbroic)	Greenstone
506-005	SAP	ň				192-192	Fast	1174	943	998	-10	195	Mylonite (gabrioic)	Greenstone
506-005	BED	na				236-244	Fast	1174	943	998	-64	240	Mylonite (gabbroic)	Greenstone
507-001	RT					148-155	East	1157	910	918	88	152	Mafic Plutonic	Gran/Green
507-002	RT	õ		70	ŏ	155-162	East	1157	910	918	81	159	Mafic Plutonic	Gran/Green
507-003	RL	4	0.1% pv			162-168	East	1157	910	918	74	165	Mafic Plutonic	Gran/Green
507-004	OT	1	1 Cu grain	90	0	170-178	East	1157	910	918	65	174	Mafic Plutonic	Gran/Green
507-005	ΟΤ	1	-	90	0	183-189	East	1157	910	918	53	186	Mafic Plutonic	Gran/Green
507-006	OT	1		90	0	197-202	East	1157	910	918	40	200	Mafic Plutonic	Gran/Green
507-007	OS	0				202-207	East	1157	910	918	35	205	Mafic Plutonic	Gran/Green
507-008	OT	1		90	0	207-215	East	1157	910	918	28	211	Mafic Plutonic	Gran/Green
507-009	OS	0				217-227	East	1157	910	918	17	222	Mafic Plutonic	Gran/Green
507-010	от	1		90	0	227-234	East	1157	910	918	9	231	Mafic Plutonic	Gran/Green
507-011	OL	0				234-239	East	1157	910	918	3	237	Mafic Plutonic	Gran/Green
507-012	SAP	1				239-242	East	1157	910	918	-2	241	Mafic Plutonic	Gran/Green
<u>507-013</u>	BEDZ	na				242-247	East	1157	910	918	-6	245	Mafic Plutonic	Gran/Green
508-001	RT	0		50	0	119-124	East	1191	911	1039	31	122	Graywacke	Greenstone
508-002	RT	1	2 Cu grains	50	0	140-146	East	1191	911	1039	9	143	Graywacke	Greenstone
508-003	RT	2	10 Cu grains	50	0	146-152	East	1191	911	1039	3	149	Graywacke	Greenstone
508-004	SAP	0				153-160	East	1191	911	1039		157	Graywacke	Greenstone
508-005	SAPZ	na				160-168	East	1191	911	1039	-12	164	Graywacke	Greenstone
508-006	SAPZ	na				214-223	East	1191	911	1039	-07	219	Graywacke	Greenstone
508-007	SAP SAD7	U				225-252	East	1101	911	1039	-/0	228	Graywacke	Greensione
508-008	SAPL	na				200-2/0	East	1191	911	1039	-119	2/1	Graywacke	Greensione
508-009	DT	<u>na</u>	2 Cu annin-			200-200	East	1174	1082	1039	-131	203	Gabbro	Greenstone
509-001	RI BED	4	∡ Cu grains	40	v	003-092	Fart	1175	1083	1082	ر ۸.	60 04	Gabbro	Greenstone
300-002	PT		Cu grain	40	0	097.107	Fast		1110	1110			Plag, cumulate	Gran/Green
510-002	RT	1	1 Cu grain	40	ŏ	102-107	East	1226	1119	1119	3	105	Plag. cumulate	Gran/Green
	***	•			-						-			

Appendix 280-F. Master index for Baudette area sampl

e de partie de la constantin de la constantin de la constantin de la constantin de la constante de la constant

F-2

a start and

23

Appendix	280-F. Ma	ster index (for Baudette area	samples.										
		Gold						Surf.	Bed.	Quat.	Sample	Sample		Estimated
		grains	ODM	Siderite	Limonite	Sampled		elev.	elev.	base	height	depth	Underlying	NE up ice
Sample	Unit	/10kg	Remarks	%	content	interval	Area	(msl)	(msl)	(msl)	(Ո.)	(ft.)	bedrock	bedrock
510-003	BED	na			-	107-112	East	1226	1119	1119		110	Plag. cumulate	Gran/Green
511-001	RT	0	7 Cu grains	40	. 0	109-116	West	1196	1026	1053	31	113	Bio. qtz monzonite	Granite
511-002	KI DT	U	3 Cu grains	40	0	110-123	West	1190	1026	1053	24	120	Bio. qtz monzonite	Granite
511-003		U	I Cu grain	40	U	127-133	West	1190	1020	1053	13	130	Bio. qiz monzonite	Granite
511-004	WI	0		50	14	139-138	West	1190	1020	1053	8	130	Bio. qiz monzonite	Granite
511-005	CAD7			50	1-4	130-143	West	1190	1020	1053	2	141	Bio. qtz monzonite	Granite
512.001	WT	<u>na</u>		80	- 57	097.005	West	1190	1020	1000		- 145	Grauguscke	Granice
512-001	wr	ŏ		80	54	095-100	West	1185	1078	1080	8	91	Graywacke	Gray/Green
512-003	wr	ŏ		80	> 4	100-105	West	1185	1078	1080	ĩ	103	Graywacke	Grav/Green
512-004	BED	ná		••		107-117	West	1185	1078	1080	.7	112	Graywacke	Grav/Green
513-001	RT	1		1	0	071-075	West	1200	1093	1107	20	73	Po massive sulfide	Greenstone
513-002	wr	Ō		60	> 4	075-083	West	1200	1093	1107	14	79	Po massive sulfide	Greenstone
513-003	wr	0		60	> 4	083-088	West	1200	1093	1107	8	86	Po massive sulfide	Greenstone
513-004	wr	0		60	> 4	088-093	West	1200	1093	1107	3	91	Po massive sulfide	Greenstone
513-005	SAP	0				095-101	West	1200	1093	1107	-5	98	Po massive sulfide	Greenstone
513-006	BED	na				106-115	West	1200	1093	1107	-18	111	Po massive sulfide	Greenstone
514-001	RT	0		40	0	165-173	West	1305	1048	1089	47	169	Basalt	Granite
514-002	RT	1		40	0	173-178	West	1305	1048	1089	41	176	Basalt	Granite
514-003	RT	0		40	0	178-183	West	1305	1048	1089	36	181	Basalt	Granite
514-004	RG	0				188-198	West	1305	1048	1089	23	193	Basalt	Granite
514-005	OS	1				198-207	West	1305	1048	1089	14	203	Basalt	Granite
514-006	SAP	0				217-227	West	1305	1048	1089	-6	222	Basalt	Granite
514-007	BED	na				257-262	West	1305	1048	1089	-44	260	Basait	Granite
515-001	KI DT	0		90	U	143-155	west	1251	1039	1039	04	148	Basalt	Granite
515-002	KI VT	0		00 90	. J	153-103	West	1251	1039	1039	24	128	Basalt	Granite
515-005		Ň		50 50	1-4	176-182	Wast	1251	1039	1039	21	172	Basalt	Granite
515-005	or	ň		50	1-4	187,107	West	1251	1039	1039	25	187	Basait	Granite
515-005	ŏŤ	ů		50	1-4	197.202	West	1251	1039	1039	15	197	Basalt	Granite
515-007	ŎŤ	ĩ		50	1-4	202-207	West	1251	1039	1039		205	Basalt	Granite
515-008	OT	Ō		50	1-4	207-212	West	1251	1039	1039	3	210	Basalt	Granite
515-009	BED	na				212-223	West	1251	1039	1039	-6	218	Basalt	Granite
516-001	KT	0		25	0	037-042	West	1211	1157	1157	15	40	Graywacke	Graywacke
516-002	КТ	0		25	0	042-047	West	1211	1157	1157	10	45	Graywacke	Graywacke
516-003	KG	. 1				047 -0 54	West	1211	1157	1157	4	51	Graywacke	Graywacke
516-004	BED	na				056-061	West	1211	1157	1157	-5	59	Graywacke	Graywacke
517-001	RT	0		40	0	038-045	West	1255	1035	1035	179	42	Mylonite (mafic)	Greenstone
517-002	RT	1		40	0	045-055	West	1255	1035	1035	170	50	Mylonite (mafic)	Greenstone
517-003	WI	U .		10	> 4	000-004	west	1200	1035	1035	101	60	Mylonite (malic)	Greenstone
517-004	WI	1		. [1-4	004-074	west	1255	1035	1035	. 151	09	Mylonite (malic)	Greenstone
517-005	WI	0		· 1	> 4	0/4-082	West	1200	1035	1035	142	/8	Mularite (malic)	Greenstone
517-000	W1 WT	0		25	> 4	002-092	West	1255	1035	1035	133	87	Mylonite (malic)	Greenstone
517-007	wr			50	1-4	103-112	West	1255	1035	1035	113	108	Mylonite (malic)	Greenstone
517-000	wr	'n		50	1-4	113,123	West	1255	1035	1035	102	118	Mylonite (mafic)	Greenstone
517-010	wr	ň		50	1-4	123-129	West	1255	1035	1035	94	126	Mylonite (mafic)	Greenstone
517-011	OT	ŏ		50	1-4	136-146	West	1255	1035	1035	79	141	Mylonite (mafic)	Greenstone
517-012	ŎŤ	õ		50	1-4	146-153	West	1255	1035	1035	71	150	Mylonite (mafic)	Greenstone
517-013	OT	3	0.8% FeS2	50	1-4	153-163	West	1255	1035	1035	62	158	Mylonite (mafic)	Greenstone
517-014	OT	Ō		50	1-4	163-173	West	1255	1035	1035	52	168	Mylonite (mafic)	Greenstone
517-015	OT	0		50	1-4	173-183	West	1255	1035	1035	42	178	Mylonite (mafic)	Greenstone
517-016	0.L	0		50	1-4	183-193	West	1255	1035	1035	32	188	Mylonite (mafic)	Greenstone
517-017	OT	0		50	1-4	193-203	West	1255	1035	1035	22	198	Mylonite (mafic)	Greenstone
517-018	OT	4	1.0% FeS2	50	1-4	203-220	West	1255	1035	1035	9	212	Mylonite (matic)	Greenstone

5 Z 1 K 1 K

And the second s

1.146.1244.

1998 B

,

		Gold						Surf.	Bed.	Quat.	Sample	Sample		Estimated
		grains	ODM	Siderite	Limonite	Sampled		elev.	elev.	base	height	depth	Underlying	NE up ice
Sample	Unit	/10kg	Remarks	%	content	interval	Area	(msl)	(msl)	(msl)	(ft.)	(ft.)	bedrock	bedrock
517-019	BED	na				221-229	West	1255	1035	1035	-5	225	Mylonite (mafic)	Greenstone
518-001	RT	0		70	0	105-115	West	1280	1023	1030	140	110	Int. volcanic	Greenstone
518-002	RT	1		60	0	128-134	West	1280	1023	1030	119	131	Int. volcanic	Greenstone
518-003	ws	0				172-182	West	1280	1023	1030	73	177	Int. volcanic	Greenstone
518-004	WT	1		70	0	202-209	West	1280	1023	1030	45	206	Int. volcanic	Greenstone
518-005	WT	0		70	0	209-219	West	1280	1023	1030	36	214	Int. volcanic	Greenstone
518-006	WT	0		70	1-4	219-229	West	1280	1023	1030	26	224	Int. volcanic	Greenstone
518-007	WT	0		70	> 4	235-245	West	1280	1023	1030	10	240	Int. volcanic	Greenstone
18-008	WT.	1		70	> 4	245-250	West	1280	1023	1030	3	248	Int. volcanic	Greenstone
518-009	BEDZ	na				263-273	West	1280	1023	1030	-18	268	Int. volcanic	Greenstone
519-001	RT	0		60	0	085-097	West	1233	1048	1071	71	91	Hb. tonalite	Green/Gran
519-002	RT	2	0.8% FeS2	60	0	097-105	West	1233	1048	1071	61	101	Hb. tonalite	Green/Gran
519-003	wт	1		60	1-4	105-115	West	1233	1048	1071	52	110	Hb. tonalite	Green/Gran
19-004	WT	1		70	> 4	140-145	West	1233	1048	1071	20	143	Hb. tonalite	Green/Gran
519-005	WT	0		70	0	152-157	West	1233	1048	1071	8	155	Hb. tonalite	Green/Gran
519-006	WT	0		70	Ó	157-162	West	1233	1048	1071	3	160	Hb. tonalite	Green/Gran
519-007	BED	na				190-194	West	1233	1048	1071	-30	192	Hb. tonalite	Green/Gran
520-001	RT	0		1	0	020-030	West	1249	920	950	274	25	Saprolite undiff.	Greenstone
20-002	RT	3		i	- Ö	030-040	West	1249	920	950	264	35	Saprolite undiff.	Greenstone
20-003	RT	4		40	ŏ	040-047	West	1249	920	950	256	44	Saprolite undiff.	Greenstone
520-004	WT	0		25	1-4	094-102	West	1249	920	950	201	98	Saprolite undiff.	Greenstone
520-005	or	1		60	1-4	106-116	West	1249	920	950	188	111	Saprolite undiff.	Greenstone
520-006	OT	ō		60	1-4	116-128	West	1249	920	950	177	122	Saprolite undiff.	Greenstone
20-007	OT	Ō		60	1-4	128-138	West	1249	920	950	166	133	Saprolite undiff.	Greenstone
520-008	от	0		60	1-4	138-148	West	1249	920	950	156	143	Saprolite undiff.	Greenstone
520-009	ОТ	1		60	1-4	148-158	West	1249	920	950	146	153	Saprolite undiff.	Greenstone
520-010	от	Ō		60	1-4	158-168	West	1249	920	950	136	163	Saprolite undiff.	Greenstone
520-011	OT	ľ		60	1-4	168-178	West	1249	920	950	126	173	Saprolite undiff.	Greenstone
520-012	OT	0		1	0	250-259	West	1249	920	950	45	255	Saprolite undiff.	Greenstone
520-013	от	0		1	0	259-269	West	1249	920	950	35	264	Saprolite undiff.	Greenstone
520-014	от	Ō		i	Ō	278-286	West	1249	920	950	17	282	Saprolite undiff.	Greenstone
20-015	OS	Ó		-	_	289-299	West	1249	920	950	5	294	Saprolite undiff.	Greenstone
520-016	SAP	Ó				300-310	West	1249	920	950	-6	305	Saprolite undiff.	Greenstone
520-017	SAP	Ó				310-320	West	1249	920	950	-16	315	Saprolite undiff.	Greenstone
521-001	RT	1		1	0	075-081	West	1235	938	948	209	78	Sh. matic volcanic	Greenstone
521-002	RT	Ō		10	Ó	111-117	West	1235	938	948	173	114	Sh. mafic volcanic	Greenstone
521-003	WT	Ó		75	> 4	124-134	West	1235	938	948	158	129	Sh. mafic volcanic	Greenstone
521-004	от	i		75	0	192-201	West	1235	938	948	91	197	Sh. matic volcanic	Greenstone
521-005	ŴT	ò		ĩ	ŏ	201-211	West	1235	938	948	81	206	Sh. mafic volcanic	Greenstone
521-006	. WT	õ		75	ŏ	217-224	West	1235	938	948	67	221	Sh. mafic volcanic	Greenstone
521-007	00	ŏ			•	224-234	West	1235	938	948	58	229	Sh. mafic volcanic	Greenstone
521-008	õõ	õ				234-245	West	1235	938	948	48	240	Sh. mafic volcanic	Greenstone
521-009	õĞ	ŏ				247-257	West	1235	938	948	35	252	Sh. mafic volcanic	Greenstone
21.010	0S	ŏ				267.277	West	1235	038	948	15	272	Sh. malic volcanic	Greenstone
\$21.011	os	ŏ				277.287	West	1235	038	948		282	Sh malic volcanic	Greenstone
21.012	SAP	ň				287.207	West	1235	038	049	.5	202	Sh. mafic volcanic	Greenstone
51.013	BED	na				207-297	West	1235	038	049	_12	292	Sh. malic volcanic	Greenstone
51.014	BED	114				302.304	Wert	1235	028	049	-12	202	Sh. mafic volcanic	Greenstone
51 014	DED7	110				304.320	Weet	1225	028	049	- 16	212	Sh. mafic volcanic	Greenstone

Appendix 280-F. Master index for Baudette area samples.

a na a standard a standard

الم المستحقق والم المحمود سامر ال

a state

2

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and day fraction of till and non-till samples.

Column abbreviations and data key

Stratigraphic units

KT	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
OT	=Old Rainy till
OS	=Old Rainy sand
OG	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
Other abbreviations ODM -63um -2um nmHMC icp aa hyaa inaa fadc dcp cvaa	=Overburden Drilling Management Labs =silt + clay fraction =clay fraction =nonmagnetic heavy mineral concentrate =inductively coupled plasma =atomic absorption =hydride generation atomic absorption =instrumental neutron activation =fire assay direct current =direct coupled plasma =cold vapor atomic absorption

Notes:

Assay values reported here are listed to 3 significant figures.

Values less than or equal to the detection limits shown in Appendix 280-C (eg. <0.5), are reported here as five-eighths (0.625) of the listed detection limit for that element (eg. 0.3125).

Values originally reported as off scale (eg. >20,000) are listed here as the upper value (e.g. 20,000).

Sample 517-005 had insufficient nmHMC to use for INAA analysis, so null values are registered for those nmHMC INAA results.

		Ag	Ag	Al	Al	As	As	Au	Au	В	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
		-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
Sample	<u>Unit</u>	icn	28	icp	icp	hyaa	inaa	fadc	inaa/fadc	dcp	icp	inaa	icp	icp	icg	icp	inaa	icn
501-001	RI SAD	0.9	4./	14300	/400 6200	0.3	19	0.003	0.231	80 70	25	03	0.3	0.3	3.1	3	1.9	1200
501-002	SAP	0.5	43	23500	6300	0.3	6	0.001	0.010	58	41	180	0.3	0.3	3.1	14	1.9	900
502-001	RT	0.7	1.7	30200	14300	1.0	23	0.002	0.053	29	144	63	0.3	0.3	3.1		1.9	12300
502-002	RT	1.0	1.5	32800	12500	1.0	19	0.005	0.079	29	148	63	0.3	0.3	3.1	3	1.9	14500
502-003	RT	0.9	1.4	30600	15300	1.5	18	0.004	0.118	14	167	63	0.3	0.3	3.1	3	1.9	17700
502-004	RS	0.8	2.6	29400	5300	3.0	18	0.008	0.012	37	128	63	0.3	0.3	3.1	3	1.9	14100
502-005	OL	0.8	2.6	27100	9900	2.0	21	0.001	0.106	39	117	170	0.3	0.3	3.1	3	1.9	11100
503-001	RT	0.9	1.2	25500	13900	1.5	31	0.002	0.034	37	166	63	0.3	0.3	3.1	3	1.9	29700
503-002	RT	0,6	1.4	28600	15400	1.0	31	0.001	0.887	19	164	63	0.3	0.3	3.1	3	1.9	18100
503-003	KI PT	0,7	1.9	2/600	12900	1.0	20	0.002	0.064	04	150	63	0.3	0.3	3.1	3	1.9	15700
501.005	PT RI	0.7	1.3	26600	17000	1.0	17	0.023	0.240	28	137	250	0.3	0.3	3.1	3	1.9	12100
501-005	ASAP	0.0	0.8	8200	2200	0.3	10	0.001	0.116	74	430	63	0.3	0.3	3.1	3	1.9	600
503-007	SAP	0.3	31	9500	5600	0.3	1	0.002	0.003	88	15	63	0.3	0.3	31	20	1.9	700
505-001	RT	1.2	2.3	28600	5600	1.0	27	0.001	0.213	40	151	63	0.3	0.3	3.1	8	1.9	32800
505-002	OT	1.1	2.7	33600	6300	1.0	26	0,002	0.019	46	113	150	0.3	0.3	3.1	10	1.9	9000
505-003	от	0.9	3.1	34400	6400	1.0	31	0.001	0.200	31	121	63	0.3	0.3	3.1	11	1.9	6000
505-004	SAP	0.8	3.7	36300	5500	0.3	30	0.001	0.016	38	101	210	0.3	0.3	3.1	22	1.9	1700
506-001	RT	0.8	2.5	34500	6000	1.0	29	0.034	0.101	57	102	63	0.3	0.3	3.1	3	1.9	11200
506-002	RT	1.1	1.7	37700	6500	1.0	42	0.008	0.232	42	155	150	0.3	0.3	3.1	3	1.0	19900
506-003	SAP	0.3	3.1	33600	13400	0.3	11	0.018	0.003	58	98	410	0.3	0.3	3.1	18	1.9	5500
200-004	SAP DT	0.3	1.9	29200	10100	0.3		0.005	0.019	/0	123	2/0	0.3	0.3	<u> </u>		<u> </u>	1200
507-001		20	1.5	24000	7500	1.3	24 18	0.001	0.079	4/ 26	132	63	0.5	0.3	3.1	3	1.0	46100
507-002	RI	07	1 1	23200	5400	1.0	10	0.001	0.122	40	124	63	0.3	0.5	31	1	1.9	48300
507-004	OT	0.7	2.7	24700	5100	1.0	19	0.001	0.038	52	87	120	0.3	0.3	3.1	8	1.9	10100
507-005	ŎŤ	0.8	2.8	27600	4500	1.5	17	0.001	0.115	47	91	63	0.3	0.3	3.1	14	1.9	12100
507-006	OT	0.7	2.8	25600	4400	1.5	17	0.002	0.022	56	99	63	0.3	0,3	3.1	12	1.0	9000
507-007	OS	1.0	2.6	28700	4500	2.0	25	0.004	0.098	60	91	63	0.3	0.3	3.1	17	1.9	10300
507-008	ОТ	0.8	2.5	23800	5200	2.0	23	0.001	0.035	58	92	120	0.3	0.3	3.1	12	1.9	12700
507-009	OS	0.8	2.2	25100	4300	3.0	24	0.001	0.010	88	107	100	0.3	0.3	3.1	16	1.9	13800
507-010	OT	0.7	2.6	25900	5000	2.0	28	0.001	0.055	61	97	130	0.3	0,3	3.1	0	1.9	11700
507-011		2.4	2.0	20800	4300	2.0	19	0.003	0.055	24	118	03	0.3	0.3	- 5.1	8	1.9	12000
507-012	DT	11	17	29900	8600	2.0		0.002	0.017		180		0.3					41000
508-007	RT	0.7	2.2	29400	9300	1.0	30	0.003	0.072	46	165	63	0.3	0.3	3.1	3	2.0	26200
508-003	RT	2.1	2.5	31700	15000	1.8	39	0.001	0.275	38	177	63	0,3	0.3	3.1	3	1.9	24500
508-004	SAP	0,5	4.3	22800	8200	0,3	40	0.001	0.245	59	28	63	0.3	0.3	3.1	9	1.9	1000
508-007	SAP	0.3	2.7	23700	5100	0.3	1	0.002	0.011	48	30	63	0.3	0.3	3.1	22	1.9	700
509-001	RT	0.9	1.9	32900	10200	1.0	20	0.015	0.083	54	188	63	0.3	0.3	3.1	3	1.9	24000
510-001	RT	1.1	2.1	32300	11000	3.0	24	0.002	0.093	31	159	63	0.3	0.3	3.1	3	1.9	27900
510-002	<u> </u>	1.4	2.1	21800	9900	2.0	35	0.001	0.027	32	142	63	0.3	0.3	3.1	3	1.9	28000
511-001	KI DT	1.5	2/	18800	/000	2.0	22	0.001	0.127	44	122	03	0.3	0.3	5.1	3	1.9	20100
511-002	KI DT	0.3	20	20100	9400	1.0	14	0.001	0.009	42	131	63	0.3	0.3	3.1	3	1.9	\$0200
511-005	WT	0.0	22	17600	10500	1.0	63	0.001	0.122	51	116	63	0.3	0.3	31	3	1.9	10000
511-005	wr	0.5	3.5	23200	7300	1.0	58	0.001	0.024	41	133	63	0.3	0.3	3.1	3	2.0	37700
312-001	WT	0.9	3.0	23900	8400	2.5	79	0.001	0.038	99	115	63	0.3	0.3	3.1	3	1.9	39200
512-002	WT	0.8	3.8	25600	7200	3.0	112	0.001	0.058	122	121	63	0.3	0.3	3.1	7	1.9	41 300
512-003	wr	0.6	3.6	24700	6900	3.0	84	0.001	0.027	131	100	63	0.3	0.3	3.1	12	1.9	44000
513-001	RT	0.3	2.2	22500	11400	2.0	54	0.003	0.418	47	140	63	0.3	0.3	3.1	3	1.9	65500
513-002	WT	0.8	3.0	19900	5700	3.0	70	0.001	0.017	103	122	63	0.3	0.3	3.1	9	3.0	63300
513-003	WT	1.6	3.0	20900	5300	3.0	44	0.003	0.021	132	100	63	0.3	0.3	3.1	8	1.9	41600
71 1-1 834	wr		• 0	IVALU	4715	<u> </u>	4/	0.002	V.U.7.3	1 10	11/3	1 10			3.1	10	1.9	30000

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples,

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Carl Carl

£

		Ag	Ag	Al	Al	As	As	Au	Au	B	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
		-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
Sample	Unit	ico	88	icp	icn	hvaa	inaa	fadc	inaa/fadc	dcp	icp	inaa	ico	icp	icp	ico	inaa	ico
513-005	SAP	0.9	0.1	25600	8100	0.3	62	0.003	0.156	65	82	63	0.3	0.3	6.0	3	1.9	29100
514-001	RT	1.1	2.6	23000	13700	1.5	22	0.002	0.017	29	130	63	0.3	0.3	3.1	3	1.9	53100
514-002	RT	0.9	1.5	24800	12000	1.5	36	0.014	0.341	10	117	63	0.3	0.3	3.1	3	1.9	41600
514-003	KI PC	1.1	1.8	20300	10800	20	42	0.003	0.081	15	147	03	0.3	0.3	3.1	د در	1.9	38200
514-004	08	1.2	2.9	23000	10200	2.5	22	0.001	0.003	26	90 65	63	0.3	0.3	3.1	23	1.9	12200
514-006	SAP	0.8	27	47600	11000	0.3	2	0.011	0.019	15	33	63	0.7	0.3	9.0	25	1.9	3600
313-001	RT	0,9	2.9	29200	4800	1.0	21	0.002	0.026	19	143	110	0.3	0.3	3.1	9	1.9	42300
515-002	RT	0.9	2.7	30600	6300	1.0	40	0.001	0.053	17	124	63	0.3	0.3	3.1	6	1.9	41 300
515-003	RT	1.1	2.9	25400	6400	1.5	25	0.010	0.017	40	96	63	0.3	0.3	3,1	10	1.9	31 200
515-004	OT	0.8	2.2	26600	8100	1.3	21	0.002	0.054	29	124	63	0.3	0.3	3.1	3	1.9	60800
515-005	OT	0.8	2.5	27600	10000	1.0	21	0.001	0.066	29	139	63	0.3	0.3	3.1	3	2.0	54300
515-006	OT	0.9	2.3	26700	12300	1.0	25	0.001	0.066	38	150	63	0.3	0.3	3.1	3	2.0	59100
515-007		0,9	1.9	25900	14100	1.5	24	0,001	0.040	39	100	03	0.3	0.3	3.1	3	1.9	20600
515-000	- 21	01	20	21600	11900	20	10	0.001	0.397		125	63	0.3	0.3			1.5	03000
516-002	ĸT	0.3	2.2	24100	10100	2.0	46	0.001	0.054	39	125	180	0.3	0.3	3.1	ž	1.9	85700
516-003	KG	0.3	1.7	28300	10900	3.0	86	0.001	0.023	27	255	63	0.3	0.3	3.1	3	1.9	75100
517-001	RT	0.5	1.7	26000	9900	1.8	28	0.001	0.047	30	132	63	0.3	0.3	3.1	3	2.0	59700
517-002	RT	0.9	2.2	23900	10000	1.0	41	0.002	0.268	24	121	63	0.3	0.3	3.1	3	1.9	63000
517-003	WT	0.6	3.0	20300	10200	1.0	79	0.001	0.100	56	108	63	0.3	0.3	3.1	3	1.9	10000
517-004	WT	. 0.3	1.7	20400	13600	1.0	72	0.001	0.538	51	111	63	0.3	0.3	3.1	3	1.9	10000
517-005	WI	0.3	1.8	20200	16100	2.0	1	0.001	0.028	/1	128	63	0.3	0.3	3.1	2	10	10000
517-000	WT	0.3	3.4	20400	10500	1.5	67	0.001	0.127	50	127	63	0.3	0.3	3.1	3	1.9	10000
517-007	wT	0.3	28	20400	9300	1.0	47	0.001	0.025	55	127	63	0.3	0.3	31	1	1.9	78400
517-009	wr	0.3	3.0	20600	9200	2.0	65	0.002	0.182	67	135	63	0.3	0.3	3.1	3	1.9	82900
517-010	WT	0.6	2.7	21000	10600	3.0	54	0.002	0.038	61	128	63	0.3	0.3	3.1	3	1.9	74400
517-011	OT	0.9	2.6	22400	10100	2.5	36	0.002	0.016	32	109	63	0.3	0.3	3.1	3	1.9	67800
517-012	OT	0.8	2.5	22600	9700	3.0	54	0.002	0.042	33	97	63	0.3	0.3	3.1	3	1.9	73300
517-013	OT	0.7	2.5	22400	13200	2.0	50	0.001	0.166	33	111	63	0.3	0.3	3.1	3	2.0	74900
517-014	OT	1.0	21	21500	13200	2.0	39	0.003	0.052	· 34	100	03	0.3	0.3	3.1	2	2.0	0/400
517-015		1.1	20	24400	11400	2.0	42	0.005	0.021	39	123	63	0.3	0.3	3.1	3	1.9	75700
517-010	oT	1.6	2.7	23700	10700	2.0	73	0.003	0.185	40	124	63	0.3	0.3	3.1	3	1.9	76100
517-018	ŎŤ	0.7	1.9	26000	9700	2.5	54	0.001	0.609	37	120	63	0.3	0.3	3.1	3	2.0	68200
518-001	RT	0.7	2.4	22200	7600	1.5	47	0.003	0.037	44	121	63	0.3	0.3	3.1	3	1.9	76100
518-002	RT	0.8	2.5	24600	10800	1.0	44	0.006	0.055	47	124	63	0.3	0,3	3.1	3	1.9	69100
518-003	WS	1.5	2.8	27000	7700	2.0	32	0.022	0.052	41	115	63	0.3	0.3	3.1	3	1.9	30100
518-004	WT	0.3	3.1	14200	4600	3.0	74	0.001	0.237	62	126	63	0.3	0.3	3.1	14	1.9	10000
518-005	WT	0.3	3.0	19200	4300	4.0	79	0.001	0.025	73	131	03	0.3	0.3	3.1	13	3.0	84800
518-000	WI	0.9	3.2	21800	5700	3.0	74 60	0.001	0.015	126	110	180	0.3	0.3	21	13	20	50500
518-007	WT	11	3.0	30800	7400	3.0	62	0.001	0.091	104	107	63	0.3	0.3	3.1		1.9	43400
519-001	RT	0.3	2.5	17900	7900	2.0	22	0.001	0.049	25	109	63	0.3	0.3	3.1	3	1.9	85200
519-002	RT	0.6	27	18100	8500	2.0	27	0.001	0,046	41	118	130	0.3	0.3	3.1	7	1.9	84900
519-003	WT	0.7	3.6	21100	8300	2.0	48	0.002	0.014	36	123	63	0.3	0.3	3.1	3	1.9	93600
519-004	WT	1.2	3.4	20500	5300	5.0	50	0.002	0.048	84	92	63	0.3	0.3	3.1	3	2.0	38100
519-005	WT	1.4	3.0	34100	7700	4.0	48	0.004	0.032	41	118	63	0.3	0.3	3.1	3	1.9	22600
519-006	<u> </u>	1.3	3.8	28000	7700	3.0	47	0.003	0.025	46	<u> </u>	63	0.3	0.3	3.1	3	1.9	19100
520-001	RT	0.8	1.6	2/800	15000	3.0	- 30	0.001	0.080	24	181	63	0.5	0.3	3.l 2 1	2	1.9	5000
520-002	KI PT	1.0	1.1	27100	11000	2.0	30	0.001	0.023	22	111	60	0.3	0.3	11	2	1.9	88400
520-003	wr	0.7	27	23800	10400	2.0	58	0.001	0.031	51	118	63	0.3	0.3	3.1	3	1.9	89200
520-005	OT	1.0	2.7	24400	9400	2.0	32	0.001	0.195	24	108	160	0.3	0.3	3.1	5	1.9	68100

		Ag	Ag	Al	Al	As	As	Au	Au	B	Ba	Ba	Be	Be	Bi	Bi	Br	Ca
		-63um	nmhmc	-2um	nmhmc	-2um	nmhmc	-63um	nmhmc	-2um	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um
Sample	Unit	ico	aa	ico	icp	hvaa	inaa	fadc	inaa/fadc	dcp	icp	inaa	ico	icn	icp	icp	inaa	ico
520-006	OT	0.7	2.4	27200	11000	2.0	39	0.001	0.063	27	m	63	0.3	0.3	3.1	3	2.0	61800
520-007	ОТ	1.0	2.6	28100	8900	2.5	54	0.001	0.242	42	123	63	0.3	0.3	3.1	3	1.9	53300
520-008	ОТ	1.1	1.8	26800	9600	2.0	88	0.001	0.019	37	118	63	0.3	0.3	3.1	3	1.9	72900
520-009	ОТ	1.1	2.4	27000	12500	2.0	43	0.001	0.023	38	121	63	0.3	0.3	3.1	3	1.9	71 500
520-010	ОТ	1.2	2.2	23900	10100	3.0	40	0.002	0.175	42	138	63	0.3	0.3	3.1	3	1.9	68400
520-011	ОТ	1.3	2.7	24200	11100	3.0	38	0.002	0.478	43	124	63	0.3	0.3	3.1	3	1.9	74200
520-012	ОТ	0.3	2.1	21500	1 5900	2.5	35	0.001	0.028	47	149	63	0.3	0.3	3.1	3	1.9	10000
520-013	ОТ	1.2	2.2	25100	10700	2.0	21	0.001	0.104	51	157	63	0.3	0.3	3.1	3	1.9	76500
520-014	ОТ	0.3	1.8	21000	12800	1.0	30	0.001	0.064	40	144	63	0.3	0.3	3.1	3	1.9	10000
520-015	OS	1.8	2.8	21900	5900	9.0	34	0.001	0.011	25	124	180	0.3	0.3	3.1	9	1.9	25400
520-016	SAP	1.4	5.4	21 500	5000	1.0	32	0.003	0.011	27	45	130	0.3	0.3	3.1	18	1.9	800
520-017	SAP	3.6	6.4	20300	3200	1.0	1	0.002	0.018	30	62	320	0.5	0.3	3.1	13	1.9	900
521-001	RT	1.0	2.1	23700	11400	2.0	38	0.001	0.025	63	150	63	0.3	0.3	3.1	3	1.9	79100
521-002	RT	0.7	3.1	20500	12600	1.0	26	0.005	0.019	41	126	63	0.3	0.3	3.1	3	1.9	86300
521-003	WΓ	1.2	2.5	17400	8500	1.5	49	0.001	0.020	68	112	63	0.3	0.3	3,1	3	1.9	71800
521-004	ОТ	1.2	2.3	22200	11200	1.5	54	0.001	0.273	29	125	63	0.3	0.3	3.1	3	1.9	83100
521-005	WΓ	1.0	2.7	22400	15300	2.5	85	0.001	0.065	54	121	63	0.3	0.3	3.1	3	1.9	84500
521-006	WT	0.3	3.0	21300	6500	3.0	124	0.001	0.023	47	116	63	0.3	0.3	3.1	3	1.9	10000
521-007	OG	1.6	3.3	30200	5600	3.0	97	0.002	0.028	49	115	110	0.3	0.3	3.1	17	4.0	49800
521-008	OG	2.1	3.0	33100	5500	3.0	103	0.001	0.017	34	100	63	0.6	0.3	3.1	8	1.9	39700
521-009	OG	2.8	3.5	33700	5000	3.0	58	0.002	0.014	31	124	63	0.5	0.3	7.0	18	3.0	37000
521-010	OS	1.9	3.1	25100	4200	4.5	18	0.002	0.003	40	123	63	0.3	0.3	3.1	14	1.9	15300
521-011	OS	1.8	3.4	28100	5600	3.0	19	0.002	0.020	40	140	63	0.3	0.3	3.1	ii	1.0	11000
521-012	SAP	1.6	1.6	41600	23200	1.5	1	0.001	0.003	64	134	63	0.3	0.3	3.1	3	1.9	3900

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

Contraction

æ

ferrore.

(b) (b) (b)

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

		Ca	Cd	Cd	Ce	Ce	Co	Co	Cr	Cr	<u>C1</u>	Cu	Cu	Fu	Fe	Fe tot	Ga	Ga
		amhma	.200	ambmo	- 7000	amhma	- 70m	amhma	- 71100	nmhma	amhma		nmhma	nmhme		3	0a 20m	nmhma
61-	T T 14	ina	-2011	innin	-2011	in an	-2011	inning	-2011	in ee	land	-2011	inimuc	inimite	inimute.	•zum	-2011	inimuc.
501-001	RT RT	19300	 0.1	0.6	62	230	1CD 7	<u>1022</u>	<u>1CD</u> 45	310	<u>inaa</u> 2.0	<u>ICD</u> 21	<u>1CP</u> 50	<u>inaa</u> 5	220000	13300	<u>1CD</u>	<u> </u>
501-002	SAP	20800	0.1	3.0	28	71	17	58	21	82	0.6	10	73	1	310000	10300	6	i
<u>501-003</u>	SAP	19900	0.1	2.0	73	190	19	62	27	130	9.0	29	38	1	300000	30700	10	1
502-001	RT	24200	0.1	0.6	83	430	22	81	134	340	0.6	67	64	4	160000	41400	10	
502-002	RT	22400	0.1	0.6	83	580	22	80	126	410	0.6	57	49	3	180000	42100	11	8
502-003		20400	0.1	0.0	12	350	24	08	122	400	0.6	62	47	6	180000	42200	10	9
502-004	01	21000	0.1	3.0	75	240	20	60 60	134	220	0.0	67	04	I A	240000	49000	10	
503-001	RT	17700	0.1	0.6					123	400	0.0	71	74 80		200000	36800		<u> </u>
503-002	RT	19300	0.1	0.6	61	650	23	89	129	470	0.6	73	72	1	200000	41,500	8	8
503-003	RT	15800	0.1	0.6	56	770	21	85	109	440	0.6	57	76	ŝ	190000	39200	8	9
503-004	RŤ	14700	0.1	0.6	71	610	21	88	122	670	0.6	58	152	1	21 0000	37700	9	11
503-005	RŤ	19700	0.1	0.6	136	670	21	93	162	410	0.6	63	133	4	210000	33500	9	9
503-006	ASAP	3400	0.1	4.0	46	390	6	98	232	620	0.6	64	91	5	270000	4600	4	1
503-007	SAP	26000	0.4	2.0	8	49	- 13	38	53	130	0.6	31	31		300000	3500	6	<u> </u>
505-001		15100	0.1	1.0	9/	300	20	/	128	240	0.0	00	128	4	310000	40,500	0	l l
505-002	OT	17500	0.1	2.0	143	230	40	100	1/2	210	2.0	· /0	700	4	310000	60200	15	1
505-004	SAP	15000	0.1	3.0	255	560	33	110	139	31	3.0	39	242	10	300000	87900	17	i
506-001	RT	13600	0.1	2.0	81	250	31	92	103	390	0.6	58	117		330000	55600	- 	<u> </u>
506-002	RŤ	12600	0.1	0.6	90	260	32	120	94	300	0.6	52	79	1	340000	58100	9	1
506-003	SAP	14200	0.1	3.0	150	31	16	150	26	170	0.6	12	29	1	300000	32000	6	2
506-004	SAP	7700	0.1	2.0	153	63	25	120	59	130	0.6	71	732	5	290000	33400	8	<u> </u>
507-001	RI	1/100	0.1	0.6	57	560	17	62	92	490	0.6	39	49	4	200000	33000	1	7
507-002	RI DI	15200	0.1	0.0	52	400	10	0/ 60	88 94	380	0.0	50	4/	4	250000	30000	1	1
507-003		17300	0.1	0.0	51	120	74	68	- 85	190	0.0	53	56	2	250000	36700		
507-005	ŎŤ	17200	0.1	0.6	54	120	27	70	134	150	0.6	63	53	i	310000	47400	ģ	i
507-006	от	13400	0.1	2.0	74	200	24	54	90	200	0.6	52	44	1	300000	32400	10	i
507-007	OS	13900	0.1	2.0	82	180	29	96	105	240	0.6	66	68	2	340000	40400	11	1
507-008	от	13200	0.1	0.6	78	280	22	77	95	280	0.6	63	70	2	300000	31000	7	1
507-009	OS	13100	0.1	2.0	61	130	26	83	137	150	0.6	63	63	1	350000	38400	8	1
507-010	01	11100	0.1	0.6	/3	240	20	88	93	300	0.0	24	119		300000	28800	9	ļ
507-011	SAP	18900	0.1	0.0	69 68	130	12	120	143	180	0.0	20	120	1	320000	30100	10	1
308-001	RT	17000	0.1	2.0		490	20	85	- 94	360	0.6	- 51	201		240000	36900	<u>î</u> -	
508-002	RT	17500	0.1	0.6	79	510	26	89	122	450	0.6	68	369	i	230000	44000	6	ż
508-003	RT	22400	0.1	1.0	86	580	30	94	135	340	0.6	69	461	3	230000	48300	8	3
508-004	SAP	14400	0.1	2.0	157	250	40	110	154	31	0.6	96	669	1	290000	571 0 0	16	1
508-007	SAP	18000	0.1	0.6	180	360	23	38	218	110	0.6	55	105	1	310000	62400	20	1
509-001	RT	17500	0.1	0.6	90	480	27	89	114	320	0.6	73	255	5	240000	47300		3
510-001	KI DT	18100	0.1	0.0	03	490	20	12	106	340	0.0	80	98	4	220000	48400		4
311-002		16100	0.1			680	19	78	75	300	0.0	<u>30</u>			230000	30000		i -
511-002	RT	18000	0.1	0.6	53	630	19	73	89	410	0.6	50	386	3	240000	35500	i	2
511-003	RT	16200	0.1	0.6	43	640	90	76	68	410	0.6	38	135	3	230000	31400	i	4
511-004	WT	20300	0.1	0,6	3	850	12	42	51	630	0,6	34	162	1	250000	25800	i	i
511-005	WT	16600	0.1	0.6	63	530	15	60	45	360	0.6	37	329	1	290000	29400	2	<u> </u>
512-001	WT	18400	0.1	2.0	60	380	18	76	- 77	340	0.6	42	170	3	260000	31600	1	1
512-002	WT	14800	0.1	2.0	61	330	18	82	75	220	0.6	38	290	1	320000	30500	1	1
512-003	WT	14300		2.0	60	380	17	91	65	250	0.6		164	1	310000	28000		
513-001	KI WT	12000	0.1	U.0 0.4	28	/40	19	01 74	00 42	210	0.0	44	10	1	240000	33000	1	- 3
513-002	wr	15800	0.1	0.6	5/	320	10	66	60	290	0.0	30	. 122	2	320000	27000	1	1
513-004	WT	16400	0.1	2.0	55	350	18	91	64	240	0.6	40	165	2	330000	28100	i	i

Appendix 280-G. Bau	udette area assays.	Nonmagnetic heavy	mineral concentrate	and clay	fraction of ti	ll and non-till samples.
---------------------	---------------------	-------------------	---------------------	----------	----------------	--------------------------

125.4

		Ca	Cd	Cd	Ce	Ce	Со	Co	Cr	Cr	Cs	Cu	Cu	Eu	Fe	Fe tot	Ga	Ga
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	nmhmc	-2um	-2um	nmhmc
Sample	Unit_	icp	<u>aa</u>	icp 20	icp	inaa 🥁		inaa	icp	inaa 160	inaa	icp	icp	inaa	inaa	icp	icp	icp
313-003	DT	19400	0.1			880	14	78	70	510	0.0	- 40	271		2/0000	30000		à
514-002	RT	17800	0.1	0.6	58	860	17	72	73	560	0.6	35	260	5	220000	31700	i	5
514-003	RT	18400	0.1	0.6	61	610	19	67	88	470	0.6	45	44	š	220000	35800	2	3
514-004	RG	18500	0.1	2.0	48	130	28	74	89	120	0.6	58	98	ĩ	320000	47000	ī	ī
514-005	OS	17300	0.1	0.6	47	770	24	72	56	470	0.6	36	90	6	230000	37400	- u	4
514-006	SAP	15200	0.1	3.0	22	6	44	51	57	31	0.6	81	299	i	330000	10000	12	1
313-001	RT	18300	0.1	0.6	63	410	20	73	92	290	1.0	40	111	5	310000	36100	1	1
515-002	RT	15900	0.1	3.0	57	350	29	82	127	200	1.0	63	107	1	300000	48400	2	1
515-003	RT	17800	0.1	2.0	60	410	25	72	81	380	0.6	44	69	1	310000	35100	5	1
515-004	ΟΤ	15100	0.1	1.0	48	610	21	59	96	520	1.0	50	54	3	270000	38400	1	1
515-005	ΟΤ	15000	0.2	0.6	65	770	22	48	97	560	0.6	52	34	1	260000	40900	1	1
515-006	OT	16100	0.1	0.6	62	780	21	64	81	630	0.6	51	50	1.	260000	38700	1	1
515-007	OT	18100	0.1	0.6	61	600	20	50	91	470	0.6	51	74	2	240000	39300	1	1
515-008	TO	18500	0.1	0.6	47	520	23	54	80	350	0.6	61	141	6	230000	48400	3	
516-001	KT	21500	0.1	0.6	20	770	17	63	68	810	0.6	41	93	5	230000	29900	1	2
516-002	KT	18700	0.1	0.6	29	750	31	68	79	740	0.6	43	105	3	240000	33500	1	1
516-003	KG	16900	0.1	1.0	46	560	25	62	107	630	0.6	48	114	4	250000	39700		
517-001	RI	15400	0.1	0.6	40	740	10	65	/3	560	0.6	33	22	4	240000	32500	1	
517-002	KI	17200	0.1	0.0	38	990	15	10	/3	1200	0.0	16	27	4	230000	31100	Ļ	4
517-003	WI	19500	0.1	0.0	د د	1240	14	100	39	1200	0.0	32	110		200000	27300		5
517-004	WT	11100	0.1	0.0	2	710	12	04 30	0C 40	110	0.0	23	72	٠	10000	27300		,
517-005	WT	13500	0.1	2.0	2	900	12	100	49 40	720	0.6	20	400	1	310000	20300	÷	1
\$17.007	WT	15300	0.1	3.0	2	900	12	87	52	720	0.0	25	100		290000	24100	i	i
517-00R	wT	13000	0.1	2.0	า้า	740	15	83	63	580	0.6	37	99	ŝ	31,0000	26100	i	ī
517-009	ŴŤ	14800	0.1	0.6	28	990	14	77	61	720	0.6	38	109	4	310000	24600	i	i
517-010	WT	12300	0.2	3.0	35	710	15	84	65	470	0.6	38	96	i	330000	25000	i	i
517-011	OT	12800	0.1	2.0	34	630	19	73	78	500	0.6	36	82	7	290000	29600	1	1
517-012	OT	13000	0.1	2.0	24	560	20	61	97	550	1.0	41	67	4	300000	32300	1	1
517-013	OT	13900	0.1	2.0	24	790	18	72	84	550	0.6	39	84	3	280000	31700	1	1
517-014	OT	12700	0.1	2.0	28	540	18	69	81	490	0.6	37	58	1	290000	31600	1	1
517-015	ОТ	11100	0.1	1.0	32	610	19	76	77	550	0.6	45	124	1	280000	33800	1	1
517-016	OΓ	11900	0.1	1.0	40	550	20	77	76	520	0.6	44	63	6	270000	35200	1	1
517-017	OT	13400	0.1	0.6	37	640	19	77	74	630	0.6	43	76	1	260000	33800	1	1
<u>517-018</u>	OT	10500	0.1	0.6	42	510	21	84	84	540	0.6	47	86	4	280000	37200	1	l
518-001	RT	15600	0.1	0.6	39	550	18	59	69	380	0.6	35	53	5	240000	30900	1	1
518-002	RT	17600	0.1	2.0	42	800	19	11	81	630	0.6	44	77	5	280000	33500	ļ	1
518-003	WS	22400	0.1	2.0	π	620	23	05	102	570	U.6	47	103	1	250000	50200	5	1
318-004	WI WFT	13300	0.1	2.0	5	4/0	13	/8 74	43	330	0.0	32	9l 80	1	320000	24,200	L	ļ
518-005	WI	12/00	0.1	20	19	300	10	75	01	340	0.0	39	80		330000	20000	1	1
518-000	WI	14200	0.1	2.0	5/	4/0	19	ע/ יר	03 (7	410	U.O	- 4/	90 דכו	1	390000	29300		1
518-007	WT	15000	0.1	1.0		390	27	58	106	290	0.0	30	242	5	340000	20500		1
510-000	97 97	13900		2.0	10	530	16	<u> </u>	74	520	0.0	12		i	280000	20000	î	
\$10.002	DT	16200	0.1	2.0	12	610	15	67	58	510	0.0	32	378		280000	28300	i	÷
\$10,002	WT	15200	0.1	10	12	610	17	79	50	510	0.0	22		1 4	280000	31800	i	i
\$10_004	ŴT	15200	0.1	20	65	680	17	50	56	410	2.0	34	50	i	310000	23300	i	i
519-005	ŴŤ	14600	0.1	1.0	76	430	13	97	132	370	0.6	76	206	3	310000	53600	ġ	i
519-006	ŴŤ	13000	01	3.0	82	630	31	110	120	460	0.6	80	161	i	310000	51300	9	i
320-001	RT	16400	0.1	0.6	74	710	20	65	113	580	1.0	46	56	3	210000	38100	i	
520-002	RT	19000	0.1	0.6	69	590	21	62	106	450	0.6	42	47	4	190000	37400	i	6
520-003	RT	15900	0.2	0.6	25	490	17	63	80	460	0.6	38	70	1	230000	33400	1	1
520-004	WT	17500	0.1	0.6	31	670	19	68	70	560	0.6	38	94	1	250000	32800	1	1
520-005	ОТ	14700	0.1	2.0	38	330	24	69	171	400	0.6	58	96	1	310000	38600	1	1

\$

		Ca	Cd	Cd	Ce	Ce	Co	Co	Cr	Cr	Cs	Cu	Cu	Eu	Fe	Fe tot	Ga	Ga
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	nmhmc	-2um	-2um	nmhmc
Sample	Unit	ico	22	ico	icp	inaa	ico	inaa	icp	inaa	inaa	icp	icp	inaa	inaa	icp	ico	icp
520-006	OT	14600	0.1	2.0	36	430	21	71	114	420	0.6	49	- 88	2	280000	35100	1	1
520-007	ОТ	14600	0.1	2.0	51	510	22	86	90	520	0.6	54	95	3	280000	37400	1	· 1
520-008	ОТ	15100	0.1	0.6	36	520	- 23	63	91	460	0.6	51	76	4	270000	39300	1	1
520-009	ОТ	15000	0.1	1.0	37	610	24	75	97	510	0.6	54	75	1	260000	41 300	1	1
520-010	OT	14500	0.1	1.0	42	530	21	58	98	420	1.0	52	61	1	270000	37900	1	1
520-011	OT	13700	0.1	0.6	40	570	22	63	97	650	0.6	48	57	1	260000	38000	1	1
520-012	ОТ	18700	0.1	0.6	12	960	15	68	69	960	3.0	35	61	1	180000	31900	1	6
520-013	OT	13600	0.1	0.6	49	1000	19	55	70	1200	3.0	40	46	1	250000	35900	1	· 5
520-014	OT	14500	0.1	0.6	3	1080	16	38	69	1000	0.6	35	53	1	250000	31 300	1	5
520-015	OS	17000	0.1	4.0	149	230	40	77	227	120	1.0	105	69	2	330000	65300	8	1
520-016	SAP	16500	0.1	1.0	381	430	45	100	112	88	0.6	45	341	2	330000	51900	14	1
520-017	SAP	16500	0.1	3.0	1726	870	76	150	91	80	0.6	86	1899		310000	71400	22	1
521-001	RT	14400	0.1	2.0	31	820	17	68	64	590	0.6	37	64	4	240000	31000	1	4
521-002	RT	17900	0.1	0.6	27	1080	18	52	77	810	0.6	35	57	8	240000	30400	1	1
521-003	WT	13300	0.1	2.0	30	630	13	75	59	480	0.6	33	104	1	290000	22700	1	1
521-004	от	12900	0.1	2.0	25	480	116	64	82	490	0.6	39	189	4	300000	32500	1	1
521-005	WT	20200	0.2	2.0	28	920	16	78	55	750	0.6	38	263	1	260000	28400	1	l
521-006	WT	17200	0.2	2.0	9	510	15	100	59	430	0.6	34	213	5	300000	27900	1	l
521-007	OG	16800	0.1	1.0	61	190	34	130	110	110	0.6	108	385	1	350000	53500	1	1
521-008	OG	16000	0.1	2.0	68	250	51	120	154	220	1.0	149	531	1	330000	77500	4	1
521-009	OG	17300	0.1	0.6	65	200	45	100	181	98	1.0	147	276	l	340000	69300	7	1
521-010	OS	18500	0.1	2.0	109	260	42	82	150	170	0.6	66	61	1	330000	51800	13	1
521-011	OS	19300	0.1	2.0	. 113	340	38	71	132	140	0.6	67	70	2	300000	47800	14	1
521-012	SAP	8300	0.1	1.0	151	88	24	46	129	180	1.0	74	126	1	240000	47700	14	1

2000 N

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

(Pro) Gar

Note: All values are reported in parts per million (ppm).

<u></u>		Hſ	Hg	Ir	K	к	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Мо	Mo	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Sample	Unit	inaa 120	CVaa	inaa	icp	icp	icp	inaa 140		icp	inaa	icp	icp	8855		icn	icp 12	
501-002	SAP	38	0.015	0.06	313	313	, 5	140	10	2	2.4	1000	16900	15	3000	0.6	1.3	7200
501-003	SAP	63	0.024	0.06	2600	1400	109	300	28	19	3.7	3600	21100	89	6400	0.6	1.3	13900
502-001	RT	91	0.012	0.06	5300	313	45	180	26	3	2.1	14500	5000	603	2400	0.6	1.3	24100
502-002	RT	120	0.015	0.06	6000	313	47	240	30	4	2.7	16000	4800	560	2500	0.6	1.3	16000
502-003	RT	93	0.015	0.06	6200	313	41	220	35	4	2.6	15900	5400	607	2500	0.6	1.3	16800
502-004	RS	29	0.02/	0.06	5100	313	39	94	30	4	1./	12900	10800	576	2000	2.0	1.3	19500
503-001	RT		0.032	0.06	6700	313	40	250		i	2.8	15500	5800	675	2900	10	1.3	10000
503-002	RT	150	0.015	0.06	6700	313	38	280	34	4	3.6	16400	5100	663	2300	0.6	1.3	12300
503-003	RT	140	0.011	0.06	6000	313	35	340	35	4	3.3	15700	4100	603	1600	2.0	1.3	12800
503-004	RT	130	0.030	0.06	6200	313	42	260	35	3	3.7	14800	4800	598	1800	0.6	7.0	9000
503-005	RT	120	0.009	0.06	3900	313	34	290	30	5	3.1	11700	6000	451	2600	0.6	1.3	10500
503-006	ASAP	120	0.255	0.06	313	313	9	190	17	3	2.9	1000	3200	14	1900	0.6	5.0	4400
503-007	DT		0.004	0.06	5100	313		160	- 19		12	15300	20800	606	10800	0.0	1.3	0000
505-002	OT	96	0.036	0.06	4300	313	48	120	21	3	2.4	12300	10100	497	10900	3.0	1.3	10700
505-003	OT	82	0.042	0.06	5700	500	55	130	20	4	2.3	11200	11000	469	12300	2.0	1.3	8500
505-004	SAP	88	0.069	0.06	5300	1000	94	310	11	3	2.8	9500	14400	224	16400	3.0	1.3	8600
506-001	RT	49	0.051	0.06	4300	313	42	120	25	4	1.8	11700	10400	399	8000	2.0	1.3	19800
506-002	RT	59	0.054	0.06	5800	900	46	110	25	4	2.3	14400	9300	590	9500	3.0	1.3	15900
506-003	SAP	9	0.023	0.06	2/00	5400	52	23	10	9	0.3	7800	10800	114	17600	0.0	1.3	20800
507-001	RT	130	0.027	0.06	5100	313	39	240	36	4	3.5	15000	5500	784	2000	3.0	1.3	8300
507-002	RT	100	0.038	0.06	4700	313	39	180	32	3	2.5	15700	7000	604	2800	0.6	1.3	6800
507 -003	RL	64	0.045	0.06	4400	313	39	100	31	3	1.6	15600	10200	524	4000	0.6	1.3	5600
507-004	ΟΤ	45	0.042	0.06	2500	313	25	63	27	5	0.7	8700	13300	360	3600	0.6	1.3	13100
507-005	OT	31	0.051	0.06	2500	313	28	51	29	5	0.7	8600	14300	529	3900	3.0	1.3	11300
507-006	01	32	0.051	0.06	3400	313	. 30	84 91	30	2	0.9	8300	11100	30Z 401	3800	0.0	1.3	13600
507-007	OT	60	0.078	0.06	2900	313	36	120	34	4	1.6	7400	9300	418	5000	1.0	1.3	11100
507-009	OS	17	0.072	0.06	2800	313	29	54	39	4	1.1	8100	10800	502	7000	3.0	8.0	15800
507-010	OT	70	0.066	0.06	2900	313	33	120	39	4	1.8	7700	8100	417	4100	0.6	1.3	5000
507-011	OL	43	0.036	0.06	4000	313	41	75	36	3	1.4	11000	10500	552	5800	0.6	1.3	5700
507-012	SAP	52	0.027	0.06	2500	313	12	57	17	3	2.4	6000	7500	84	18700	0.6	1.3	7400
508-001	RT	130	0.023	0.06	5900	313	45	200	39	3	3.2	15000	/100	/40	2400	0,0	1.3	12000
508-002	RI PT	130	0.021	0.06	6000	313	45	220	30	5	20	16200	7900	668	5700	0.0	1.3	10500
508-004	SAP	62	0.023	0.06	700	313	136	140	6	3	4.0	2600	10300	53	13600	0.6	1.3	6200
508-007	SAP	ī	0.018	0.06	1000	313	9	6	6	2	0.3	3100	12800	63	24400	0.6	1.3	6100
509-001	RT	130	0.020	0.06	5600	313	47	210	35	4	3.4	17400	7300	103	5100	0.6	1.3	9900
510-001	RT	110	0.030	0.06	5700	313	39	210	38	4	3.2	16800	7000	667	3300	2.0	1.3	12100
510-002	RT	130	0.024	0.06	5600	313	45	270	34	4	3.5	14600	6100	838	2600	3.0	1.3	11900
511-001	KI DT	130	0.032	0.00	4800	313	41	290	28	3	3.3	15000	1700	604	4000	0.C	1.3	20600
511-002		130	0.030	0.00	5000	313	39	200	33	. 4	3.5	16200	6700	639	3000	0.6	1.3	20900
511-004	WT	201	0.078	0.06	3900	313	33	400	29	4	4.2	15800	8600	825	3700	0,6	1.3	9700
511-005	WT	100	0.102	0.06	7100	313	35	260	32	4	2.6	12700	10000	463	4400	4.0	1.3	13400
512-001	WT	94	0.120	0.06	5900	313	37	180	34	5	2.0	12400	9500	617	5100	0.6	1.3	9000
512-002	WT	79	0.162	0.06	7400	313	36	160	36	5	1.8	11700	10000	466	6100	2.0	1.3	10600
512-003		41	0.162	0.06	6/00	313	37	160	35	3	2.5	10900	10200	40Z	2100	0.0	0.0	
513-001	WT	100	0.0/2	0.00	4700	313	30	170	20		, 4.0 I 21	12200	9300	605	5100	0.0	1.3	6900
513-001	ŵr	74	0.301	0.06	5700	313	31	150	30	4	1.8	9800	10100	376	5200	0.6	1.3	7000
513-004	WT	87	0.204	0.06	5000	313	28	160	27	4	1.9	9400	9800	395	5300	0.6	1.3	8000

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

eduction.

G-8

		Hſ	Hg	Ir	К	К	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Мо	Мо	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Sample	Unit	inaa	CVAA	inaa	ico	icp	icn	inaa	ico	icn	inaa	icp	icp	aa	ico	ico	ico	icn
513-005	SAP	17	0.048	0.06	3000	313	27	18	30	6	1.0	14400	3100	594	3400	2.0	1.3	8000
514-001	KI PT	150	0.030	0.06	5200	313	41	400	3/	2	3.0	16/00	/100	0/8	3600	0.6	1.3	7300
514-002	RT	120	0.027	0.00	\$600	313	39 40	270	22		4.0	16700	7200	573	3300	20	1.3	11000
514-004	RG	11	0.072	0.06	3600	313	31	54	24	1	11	14000	12100	677	12200	10	1.5	12100
514-005	OS	160	0.029	0.06	2900	313	. 22	350	19	4	41	7400	6200	268	3300	0.6	1.5	26600
514-006	SAP	1	0.012	0.06	1000	313		6	24	15	0.3	16000	15300	333	21300	7.0	1.3	21 500
315-001	RT	140	0.069	0.06	5900	313	43	190	34	3	3.5	17000	10200	573	7000	6.0	1.3	14700
515-002	RT	59	0.061	0.06	5600	313	40	150	32	3	2.1	18000	8800	826	8500	5.0	1.3	14900
515-003	RT	120	0.069	0.06	3700	313	32	170	25	3	2.5	10400	9900	455	5600	5.0	1.3	14200
515-004	OT	120	0.048	0.06	4500	313	40	270	30	3	3.4	14300	8000	620	4700	6.0	1.3	9200
515-005	OT	120	0.036	0.06	4800	313	46	340	31	3	4.3	13700	7900	662	4800	5.0	1.3	10400
515-006	OT	120	0.054	0.06	4700	313	45	350	32	4	3.8	14600	8100	744	4500	5.0	1.3	8300
515-007	01	98	0.044	0.06	4700	313	44	2/0	31	4	3.7	13900	8700	754	5600	6.0	1.3	11200
515-008	- 27		0.047	0.00	4900	313	32	240	29		<u> </u>	14400	9000	723	0300	<u> </u>	1.3	13100
516-007	KT	100	0.003	0.00	4000	212	40	330	33	4	4.1	16700	7300	713	3800	2.0	1.3	8000
516-002	KG	00	0.000	0.00	8600	313	40	250	35	4	7.1	10500	6000	647	4100	3.0	1.3	14200
517-001	RT	150	0.048	0.00	5700	111		130			44	16900	6100	505	3200	20	1.3	12600
517-002	RT	230	0.053	0.06	5400	313	36	430	34	3	4.9	17300	6100	583	2500	20	1.3	12700
517-003	WT	372	0.153	0.06	5200	313	37	551	34	3	7.0	16900	6000	614	2000	4.0	1.3	6400
517-004	WT	281	0.129	0.06	5000	313	39	450	35	4	6.3	17000	4700	616	1900	3.0	1.3	5200
517-005	WT		0.060		5300	313	37	346	33	3		16000	4900	569	2300	3.0	15.0	4900
517-006	WT	238	0.228	0.06	4900	313	37	420	32	4	4.6	16600	6500	549	3500	3.0	1.3	4200
517-007	WT	271	0.213	0.06	5400	313	40	400	37	4	5.5	17000	6500	597	2900	5.0	1.3	5400
517-008	WT	170	0.141	0.06	5400	313	42	350	35	4	4.3	15600	7400	626	4200	4.0	1.3	6900
517-009	WT	214	0.125	0.06	5500	313	39	460	34	3	4.4	16000	8000	591	3700	5.0	1.3	5100
517-010		110	0.[33	0.06	2800	313	38	300	33	4	4.2	15000	7400	000	3900	5.0	1.3	400
517-011	OT	120	0.081	0.00	3600	212	34	290	29	3	3.4	15000	7000	570	4000	4,0	1.3	16000
517-012	oT	170	0.087	0.00	3500	- 313	11	370	27	۲ ۸	3.7 4 1	16000	7300	680	4200	4.0	1.3	15400
517-014	or	96	0.060	0.06	3500	313	32	240	26	4	33	15500	7300	657	5000	5.0	1.3	19500
517-015	ŎŤ	120	0.078	0.06	3800	313	38	280	29	. 3	3.6	16300	5800	851	3700	4.0	1.3	10100
517-016	OT	110	0.083	0.06	4100	313	39	250	30	3	3.6	16500	5800	830	4200	3.0	1.3	10600
517-017	от	160	0.096	0.06	3900	313	38	300	31	3	4,3	16200	6600	795	3700	4.0	1.3	9800
<u>517-018</u>	OT	120	0.102	0.06	4100	313	37	240	31	3	2.8	16600	5500	864	4400	3.0	1.3	8900
518-001	RT	140	0.063	0.06	4900	313	39	250	32	3	2.7	16500	7300	614	4300	2.0	1.3	8200
518-002	RT	200	0.096	0.06	5000	313	38	350	33	3	4.5	15000	8100	653	3900	4.0	1.3	6700
518-003	ws	262	0.096	0.06	4000	313	34	290	32	4	4.8	12400	10300	498	3600	6,0	1.3	11400
518-004	WI	100	0.345	0.06	3100	313	29	210	25	4	3.0	18/00	6300	023	4200	5.0	0.0	5900
518-005	W I WT	91	0.348	0.06	3900	212	33	210	32	. 4	21	14700	6200	600	4100	5.0	1.3	5300
518-000	WT	65	0.333	0.00	4000	212	39	180	37		3.0	11700	10200	390	3700	4.0	1 2	4700
518-007	wr	81	0.219	0.06	5400	313	20	160	42	5	1.8	16300	9300	474	3600	60	50	9000
519-001	RT	98	0.087	0.10	3600	313	29	240	26	3	1.2	16800	7400	537	6200	4.0	1.3	13700
519-002	RT	130	0.090	0.06	3700	313	30	280	27	.3	3.9	15800	7900	601	5200	3.0	1.3	12000
519-003	WT	130	0.129	0.06	4200	313	34	280	31	3	3.0	17500	7500	669	4700	4.0	1.3	9800
519-004	WT	150	0.135	0.06	3200	313	33	340	33	4	3.5	9200	8300	510	3300	5.0	1.3	5200
519-005	WТ	61	0.051	0.06	4900	313	33	200	29	3	2.3	11300	8300	616	7200	6.0	1.3	5300
519-006	WT	100	0.054	0.06	4900	313	34	310	27	3	2.6	10500	7400	538	6300	4.0	1.3	7600
520-001	RT	170	0.042	0.06	6200	313	47	320	31	4	4.2	19200	5100	710	2200	6.0	1.3	9700
520-002	RT	140	0.033	0.06	5300	313	43	260	35	3	4.1	18300	5000	713	2200	2.0	1.3	7900
520-003	KT W/T	110	0.096	0.06	4400	513	38	210	30	4	3.3	10000	0/00	/41	4500	3.0	1.3	8500
520-004	OT	62	0.204	0.00	3900	313	35	150	33 71	4	2.5	16100	10200	625	5900	 6.0	1.3	8600

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

1 Stran

2.4.46

And Andrew Constraints

.

C

		Hf	Hg	Ir	ĸ	ĸ	La	La	Li	Li	Lu	Mg	Mg	Mn	Mn	Mo	Мо	Na
		nmhmc	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um
Samole	Unit	inaa	cvaa	inaa	icn	ico	ico	inaa	ico	ico	inaa	ico	icn	88	icp	icn	ico	ico
520-006	OT	70	0.066	0.06	4300	-313	- 30	190	29	- 3	2.2	14100	9700	642	6000	-4.0	1.3	6800
520-007	ОТ	120	0.087	0.06	4500	313	31	230	31	4	3.6	13900	7900	702	5000	4.0	1.3	6900
520-008	ОТ	92	0.069	0.06	4300	313	29	230	29	3	3.6	16700	7600	746	4800	5.0	1.3	7300
520-009	ОТ	120	0.081	0.06	4300	313	29	270	29	4	3.3	16800	7400	895	5600	4.0	1.3	6900
520-010	ОТ	97	0.087	0.06	4100	313	31	240	29	3	2.6	15200	7800	851	5400	6.0	1.3	7400
520-011	ОТ	130	0.096	0.06	4300	313	31	290	29	3	3.0	16000	7400	681	4700	7.0	1.3	7500
520-012	ОТ	281	0.084	0.06	4000	313	33	430	29	4	4.1	15600	6200	565	2400	3.0	1.3	8400
520-013	ОТ	256	0.078	0.06	4100	313	36	450	30	3	5.0	13800	4700	624	1800	5.0	1.3	12200
520-014	ОТ	264	0.075	0.06	3600	313	33	500	28	4	6.0	15300	5200	904	2400	3.0	1.3	7800
520-015	OS	24	0.045	0.06	2700	500	46	99	17	4	1.6	10100	11500	626	9200	16.0	1.3	13200
520-016	SAP	12	0.036	0.06	1000	700	167	110	7	4	0.7	1800	12600	34	9200	3.0	1.3	6700
520-017	SAP	1	0.012	0.06	1200	1100	751	642	6	3	1.4	2000	15900	57	4400	5.0	1.3	7400
521-001	RT	180	0.066	0.06	4800	313	32	380	32	3	4.4	17600	5800	622	3100	4.0	1.3	10500
521-002	RT	221	0.063	0.06	4700	313	33	510	31	4	5.0	15400	7300	732	3300	4.0	1.3	6400
521-003	WT	130	0.105	0.06	4800	313	29	290	26	3	3.8	14300	7400	605	4100	3.0	1.3	7100
521-004	OT	71	0.099	0.06	3600	313	30	230	28	3	3.2	14600	7800	624	5300	4.0	1.3	8800
521-005	WT	261	0.258	0.06	4400	313	33	460	38	4	5.4	14800	6300	624	3300	3.0	1.3	4500
521-006	WΓ	140	0.258	0.06	4400	313	32	220	37	4	3.3	16300	7500	636	4900	4.0	7.0	7400
521-007	OG	10	0.099	0.06	4900	313	27	67	34	4	1.4	15400	9000	946	12500	6.0	1.3	10800
521-008	OG	8	0.078	0.06	4300	313	20	93	32	4	1.2	16300	9000	1119	11300	8.0	4.0	10200
521-009	OG	16	0.051	0.06	4300	313	20	82	32	4	1.6	17600	10700	1014	11900	11.0	5.0	10100
521-010	OS	30	0.033	0.06	3800	313	35	110	21	4	1.5	6600	14000	386	7400	9.0	1.3	17900
521-011	OS	71	0.045	0.06	5100	313	36	160	23	4	2.0	8800	13200	303	6400	7.0	1.3	22000
521-012	SAP	8	0.015	0.06	6200	900	60	49	39	8	9.0	18200	8800	120	7300	3.0	1.3	19100

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

â.

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

1000

		Na	Nb	Nb	Ni	Ni	Р	Р	Pb	Pb	Rb	Rb	Sb	Sb	Sc	Sc	Se	Se
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	amhmc	-2um	nmhmc	-2um	nmhmc
Sample	Unit	icp	icp	icp	ico	icp	icn	icp	ico	icp	icp	ico	hvaa	inaa	ico	inaa	xrf	hvaa
501-001	RT	313	0.6	12	25	63	14880	720	18	63	- 51	13	0.2	0.7	2	39	0.6	0.3
501-002	SAP	313	0.6	14	13	15	5990	670	32	38	13	34	0.2	0.1	1	17	0.6	0.1
501-003	SAP	313	0.6	16	39	65	12860	870	18	57	13	13	0.3	0.5	6	19	0.6	0.1
502-001	KI DT	313	2.0	14	0)	34	20290	720	12	30	40	13	0.3	0.5	9	62	0.6	0.6
502-002	RI PT	213	3.0	14	03 67	30	11830	870	13	32	13	13	0.2	0.4	9	0/	0.0	0,5
502-005		313	3.0	17	70	30	12130	840	14	28	2/	13	0.2	0.0	10	52	0.0	0.3
502-005	OL.	313	2.0	13	79	43	16120	1360	13	36	88	13	0.3	0.0	11	62	0.6	0.2
503-001	RT	313	4.0	14	66	54	6490	960	13	31	55	13	0.2	0.4		70	0.6	0.9
503-002	RT	313	3.0	14	68	40	8190	1340	14	32	55	13	0.2	0.5	8	80	0.6	0.8
503-003	RT	500	2.0	15	59	32	8770	1350	12	32	32	13	0.2	0.4	8	82	0.6	0.7
503-004	RT	313	3.0	7	67	56	5520	770	12	34	70	13	0.2	1.7	8	110	0.6	0.1
503-005	RT	600	2.0	15	52	45	7430	1020	14	44	28	13	0.2	0.4	10	81	0.6	0.7
503-006	ASAP	313	0.6	8	11	84	3010	570	12	37	13	13	0.2	2.7	3	92	0.6	0.3
503-007	SAP	313	0.6	16	19	81	4100	940	4	10	13	13	0.1	0.1	2		0.6	0.1
505-001	RT	313	5.0	13	84	48	5940	950	13	35	54	13	0.2	0.7	11	52	0.6	0.2
505-002		5 1 5	3.0	12	120	54	0310	2110	1/	54	28	13	0.2	0.9	20	40	1.0	0.2
505-003	OI CAD	515	2.0	13	103	003	4970	1640	10	50	13	13	0.2	1.0	10	44	1.0	0.3
303-004	DT	213		10	74		12050	1220		- 40	125	13	0.2	0.9	- 17	30		
505-007	PT	313	40	11	65	60	0270	1120	12	40	34	13	0.2	2.0	16	63	1.0	0.2
506-003	SAP	313	0.6	14	13	46	9970	3520	6	26	13	22	0.2	1.0	14	44	2.0	0.1
506-004	SAP	313	0.6	12	52	61	8730	1550	ğ	27	22	13	0.3	0.8	18	57	1.0	0.2
507-001	RT	313	4.0	15	49	36	5260	1100	16	29	108	13	0.2	0.8	7	82	0.6	0.2
507-002	RT	313	5.0	12	51	34	4400	1120	10	29	31	13	0.1	0.7	7	66	0.6	0.2
507-003	RL	313	5.0	11	52	44	3340	1100	11	27	55	13	0.2	0.8	7	54	0.6	0.2
507-004	OT	313	2.0	11	58	56	9240	1190	9	31	49	13	0.3	0.8	9	47	0.6	0.1
507-005	OT	313	2.0	12	63	56	7690	980	12	29	13	29	0.3	0.7	11	54	2.0	0.1
507-006	OT	313	1.0	11	56	53	8690	980	15	35	70	29	0.2	1.0	8	48	0.6	0,1
507-007	OS	313	2.0	13	62	74	9980	1190	14	35	13	13	0.2	1.1	10	49	0.6	0.2
507-008	01	313	20		0)	/0	10/0	1000	10	43	13	13	0.3	1.0	5		20	0.1
507-009		212	10	14	59	60	2840	040	13	43	13	13	0.3	1.2	0 9	40	10	0.1
507-010		313	1.0	10	50	57	3820	1140	13	43 70	13	13	0.2	0.8	0	40	1.0	0.1
507-012	SAP	313	0.6	1	26	54	3760	3020	. j	32	13	13	0.1	0.5	17	64	0.6	0.1
508-001	RT	313	5.0	12	60	38	3960	1840	13	34	157	13	0.2	0.9	9	63	0.6	0.2
508-002	RT	313	4.0	14	83	42	7460	1870	14	33	27	13	0.2	0.9	10	67	1.0	0.4
508-003	RT	313	4.0	15	91	55.	5920	1570	12	40	39	13	0.2	0.8	11	66	0.6	0.4
508-004	SAP	313	0.6	14	127	57	4760	1040	29	89	13	13	0.2	0.1	8	43	0.6	0.2
508-007	SAP	313	0.6	15	90	22	4350	780	34	166	13	61	0.1	0.3	12	34	0.6	0.1
509-001	RT	313	4.0	13	83	43	5420	1620	13	37	13	13	0.2	0.9	12	69	0.6	0.3
510-001	RT	313	4.0	13	68	42	6990	1400	15	40	43	13	0.2	0.9	11	70	0.6	0.3
510-002		313	4.0	13	24	43	9500	1400			13	13	0.2	0.8		/3	1.0	0.5
511-001	RI DT	313	5.0	15	00	33	15730	1140	10	42	13	13	0.2	0.7		65	1.0	0.1
511.002	DT	313	3.0	15	47		16160	1130	14	30	15	13	0.2	0.0	7	70	0.6	0.2
511-003	WT	500	7.0	16	10	40	7730	1550	12	48	107	13	0.3	13	Ś	62	0.0	0.3
511-005	ŵr	313	7.0	15	30	51	10320	1030	11	140	155	13	0.2	1.3	6	44	0.6	0.5
512-001	ŴŤ	313	8.0	14	51	92	6580	1720	13	59	127	48	0.2	1.5	8	41	1.0	1.2
512-002	WT	313	8.0	15	51	128	7560	1440	12	77	150	33	0.3	1.6	7	38	3.0	2.0
512-003	WT	313	8.0	14	48	111	4800	1300	14	71	106	13	0.2	1.3	7	39	0.6	1.2
513-001	RT	313	10.0	12	47	43	6420	1250	11	45	76	13	0.3	1.1	7	73	3.0	0.3
513-002	WT	313	10.0	14	46	97	51 30	1300	14	50	95	13	0.2	1.6	6	41	0.6	1.4
513-003	WT	313	8.0	14	- 53	84	4910	1630	12	52	111	13	0.2	1.5	2	34	2.0	3.2
513-004	wr	313	8,0	13	. 54	97	6080	1060	13	52°	35	13	0.3	2.0	7	37	0.6	2.7

100 m

1000

		Na	Nb	Nb	Ni	Ni	Р	Р	Pb	Pb	Rb	Rb	Sb	Sb	Sc	Sc	Se	Se
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc
Sample	Unit	ico	ico	ico	ico	icn	ісп	icn	ico	ico	icp	icn	hvaa	inaa	ico	inaa	xrf	hvaa
513-005	SAP	313	7.0	4	44	177	5410	830	8	68	59	13	0.1	6.2	16	46	0,6	20.0
514-001	RT	500	10.0	15	47	40	4760	1410	12	46	130	13	0.2	0.5	. 7	73	1.0	0.3
514-002	KI PT	313	9.0	13	48	34	0980	1410	12	48	61	28	0.2	0.5	8	/0	1.0	0.2
514-004	RG	313	9.0	15	56	33	8850	1380	13	22	03	13	0.2	0.5	10	73	4.0 0.6	0.3
514-005	OS	500	5.0	14	40	33	24710	1250	18	38	104	42	0.3	0.7	8	76	3.0	0.2
514-006	SAP	313	7.0	15	48	13	14900	1620	20	3	148	13	0.2	0.1	29	19	0.6	0.2
515-001	RT	313	9.0	12	53	37	10760	1470	1	29	99	13	0.2	0.9	8	44	0.6	0.2
515-002	RT	313	9.0	14	76	47	10570	1280	8	31	133	13	0.3	0.8	11	46	0.6	0.5
515-003	RT	313	8.0	12	50	48	11390	1530	9	39	128	13	0.3	1.0	8	49	1.0	0.3
515-004		313	10.0	11	35	30	6330	1280	8	35	137	13	0.3	0.8	8	0)	0.0	0.3
515-005	or	313	11.0	12	50	30	5550	1320	10	35	103	13	0.3	0.8	9	70	0.0	0.3
515-007	or	500	11.0	ii	50	31	7970	1450	10	30	110	13	0.0	0.9	о 8	63	0.0	0.3
515-008	ŎŤ	313	9.0	ii	51	31	8650	1560	12	32	146	13	0.3	0.8	ů	49	0.6	0.2
316-001	KT	313	16.0	13	47	53	6040	1520	10	41	54	13	0.2	1.0	6	68	0.6	0.2
516-002	KT	313	17.0	12	50	41	6830	1270	13	56	131	13	0.2	1.2	7	70	0.6	0.4
516-003	KG	313	17.0	14	70	76	10810	920	16	44	107	13	0.3	1.2	8	61	0.6	1.4
517-001	RT	313	14.0	15	45	33	8540	1190	· 11	33	69	13	0.2	0.7	7	79	0.6	0.2
517-002	KI WT	313	14.0	10	45	34 91	8970	1600	9	40	23	13	0.2	1.0		70	0.0	0.9
517-003 517-004	wr	313	10.0	19	30	64 64	4670	1180	10	73 50	53	13	0.3	1.5	6	74 84	1.0	0.5
517-005	ŵŤ	313	18.0	14	35	38	3350	960	13	60	121	13	0.2	0.1	6	26	20	0.1
517-006	WT	313	18.0	18	35	106	3230	1290	9	71	86	13	0.3	1.8	5	63	0.6	1.1
517-007	WT	313	18.0	18	38	96	3890	1290	10	76	109	13	0.2	1.8	6	66	0.6	0.7
517-008	WT	313	15.0	15	46	87	4390	1130	13	57	13	13	0.2	1.4	6	67	0.6	0.5
517-009	WT	313	15.0	15	46	102	3290	1350	12	84	133	13	0.3	. 1.7	6	66	0.6	0.7
517-010		313	15.0	1/	40	83	2940	1010	12	132	9/ 54	13	0.2	1.0	0	00 70	20	0.5
517-011		313	15.0	15	40	55	11630	1040	11	40	70	13	0.3	1.2	6	65	0.0	0.3
517-013	or	313	15.0	13	46	48	12040	1260		47	44	13	0.3	1.4	6	70	0.6	0.4
517-014	OT	313	15.0	14	45	43	15820	880	10	41	33	13	0.3	1.3	6	74	1.0	0.2
517-015	от	313	17.0	12	49	44	7230	1080	11	40	58	13	0.2	1.2	7	76	1.0	0.3
517-016	ОТ	313	1 6.0	14	54	48	7670	990	11	38	66	13	0,3	1.3	8	70	· 1.0	0.4
517-017	OT	313	17.0	14	51	47	7130	1090	15	38	75	13	0.4	1.2	7	70	1.0	0.5
517-018		313	16.0	12	<u>54</u>	<u> </u>	6020	860	14	36	52	13	0.3	1.6			0.6	0.5
518-002	RT RT	313	15.0	17	45	30 47	4040	1500	13	33 40	46	13	0.3	1.5	7	65	0.6	0.1
518-003	ws	500	12.0	15	62	70	7640	1890	12	47	35	13	0.4	1.4	. 8	58	3.0	0.2
518-004	WT	313	18.0	17	39	155	4390	1420	ii.	91	67	- 13	0.4	2.4	4	34	1.0	0.9
518-005	WT	313	16.0	15	49	129	3780	1220	15	74	13	13	0.4	2.9	5	32	1.0	1.2
518-006	WT	313	15.0	15	58	122	3960	1480	14	70	22	13	0.3	2.7	6	36	0.6	1.5
518-007	WT	313	13.0	16	42	76	3300	1550	10	54	. 79	13	0.3	2.3	6	36	0.6	2.5
518-008	TW	313	13.0	15	87	66	6490	1410	10	45	13	13	0.9	2.5	8	38	0.6	2.6
519-001	KI DT	313	17.0	15	40	31	10850	1020	10	30)/ 26	13	0.3	0.8	3	59	0.0	0.3
519-002	WT	313	17.0	11	40	50 74	6900	. 940	10	39 41	20 70	13	0.3	13	5	61	20	0.2
519-004	wr	313	11.0	16	42	75	3820	1520	15	46	13	13	0.4	2.0	5	42	0.6	0.4
519-005	WT	313	11.0	15	82	69	3410	1200	17	35	73	13	0.3	1.4	12	45	0,6	0.5
519-006	WT	313	10,0	15	80	86	5010	1280	15	43	57	13	0.3	1.7	12	48	0.6	0.6
520-001		212	17.0	20	57	31	6260	1040	16	31	96	13	0.4	0.8	8	79	1.0	0.4
	RT	212	17.0	20								· · · ·		- -	-			
520-002	RT RT	313	16.0	18	57	27	4750	920	12	31	47	13	0.3	0.6	8	76	2.0	0.2
520-002 520-003 520-004	RT RT RT	313 313 313	16.0 18.0	18 17 20	57 48	27 44 65	4750 6130 4750	920 1150 1320	12 11	31 42 50	47 37 51	13 13 13	0.3 0.3	0.6 0.9	8 7 6	76 66	2.0 0.6	0.2 0.3

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

cana. Ten

213

â

		Na	Nb	Nb	Ni	Ni	Р	Р	Pb	РЬ	Rb	Rb	Sb	Sb	Sc	Sc	Se	Se
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc
Sample	Unit	ico	ico	ico	icp .	icp	icp	icp	icp	icn	icp	ico	hvaa	inaa	ico	inaa	xrf	hvaa
520-006	ОТ	313	14.0	15	59	63	3890	1060	13		109	13	0.3	1.2	10	62	1.0	0.3
520-007	OT	313	15.0	13	60	67	4100	1190	14	41	82	13	0.3	1.5	10	60	0.6	0.6
520-008	OT	313	18.0	14	56	44	4420	1170	16	34	45	13	0.4	1.3	9	71	1.0	0.2
520-009	ΟΤ	313	18.0	15	63	56	4430	900	13	40	45	13	0.3	1.3	9	66	0.6	0.5
520-010	ΟΤ	313	17.0	13	60	-61	5000	1070	13	42	62	13	0.4	1.2	8	64	1.0	0.2
520-011	ΟΤ	313	18.0	15	54	51	5010	890	16	49	129	13	0.3	1.2	8	63	0.6	0.3
520-012	ΟΤ	313	19.0	19	43	36	6060	1190	- 11	57	13	13	0.4	1.4	7	69	0.6	0.1
520-013	OT	313	18.0	17	45	30	8550	990	17	54	13	39	0.2	1.4	8	86	1.0	0.1
520-014	ΟΤ	313	20.0	18	43	34	5000	1020	12	46	62	13	0.4	1.6	7	78	0.6	0.1
520-015	OS	313	15.0	15	103	54	11340	1020	22	26	22	21	1.3	0.9	10	36	0.6	0.5
520-016	SAP	313	12.0	15	50	51	5980	1120	10	146	71	13	0.3	1.1	10	30	2.0	0.3
520-017	SAP	313	42.0	18	88	33	7400	1350	63	971	13	13	1.0	0.5	11	16	0.6	0.1
521-001	RT	313	18.0	19	48	36	7790	990	12	42	34	13	0.4	0.8		76	0.6	0.4
521-002	RT	313	18.0	18	46	35	4420	1590	9	47	29	13	0.3	0.9	7	75	0.6	0.1
521-003	WT	313	16.0	14	42	68	4430	1200	10	53	30	13	0.4	1.3	6	63	3.0	0.5
521-004	ΟΤ	313	18.0	14	46	52	5450	890	10	33	52	13	0.4	1.2	7	67	0.6	0.3
521-005	WT	500	17.0	22	71	74	3350	1230	12	83	93	13	0.4	1.5	7	59	0.6	0,4
521-006	WT	313	19.0	17	47	95	5880	1320	9	62	64	13	0.3	2.1	7	37	0.6	1.2
521-007	OG	313	16.0	15	84	75	7650	1370	22	60	51	33	0.5	2.8	12	29	1.0	1.8
521-008	OG	313	16.0	14	116	65	6620	1420	22	119	75	13	0.6	2.7	14	29	0.6	1.2
521-009	OG	313	16.0	16	131	51	6690	1250	23	43	74	13	0.8	2.0	14	32	1.0	0,5
521-010	OS	313	10.0	16	84	35	14450	1230	27	26	46	43	0.6	0.6	11	36	0.6	0.1
521-011	OS	313	10.0	15	92	43	17280	1360	24	29	51	60	0.5	0.7	10	42	1.0	0.1
521-012	SAP	313	10.0	8	121	24	10730	1110	21	18	56	13	0.2	0.1	6	129	1.0	0.1

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

ANNER I

Note: All values are reported in parts per million (ppm).

		Sm	Sn	Sn	Sr	Sr	Ta	Ta	ТЪ	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc
Sample	<u>Unit</u>	inaa	icp	icp	icn	icp	icp	inaa	inaa	icp	inaa	inaa	icp	icp	inaa	icp	icp
501-001	KI SAD	35	12.5	12.5	10	91 20	0.0	9 6	2	0.3	12.5	0/ 10	313	080	6	20 22	130
501-002	SAP	ଡ଼	12.5	12.5	20	53	0.6	2	6	6.3	12.5	21	313	313	10	36	115
502-001	RT	44	12.5	12.5	62	153	0.6	8	- 5	6.3	12.5		670	10850	13	79	173
502-002	RT	50	12.5	12.5	70	117	0.6	10	5	6.3	12.5	154	910	9550	18	83	165
502-003	RT	44	12.5	12.5	66	125	0.6	10	5	6.3	12.5	155	940	10600	17	80	152
502-004	RS	19	12.5	12.5	62 40	52	0.6	4	3	0.3	12.5	52	890	3720	0	80	164
503-001	RT	45	12.5	12.5		<u> </u>	0.0	10		6.3	12.5	154	1490	8560	14	70	136
503-002	RT	51	12.5	12.5	66	115	0.6	ii	6	6.3	12.5	184	1800	9420	21	79	125
503-003	RT	55	12.5	12.5	62	82	0.6	14	7	6.3	12.5	232	1720	8230	22	75	117
503-004	RT	44	12.5	12.5	58	95	0.6	16	6	6.3	12.5	148	1710	13580	21	75	243
503-005	RT	49	12.5	12.5	192	115	0.6	12	6	6.3	12.5	187	950	10710	18	87	157
503-000	SAP	28	12.5	12.5	54	58 67	0.0	20	4	0.3	12.5	12/	313	11120	21	99	093 494
505-007	BAP RT	20	12.5	12.5		07 	0.0			6.3	12.5		1280		0		171
505-002	OT	19	12.5	12.5	40	54	0.6	4	3	6.3	12.5	41	1080	5820	6	104	230
505-003	OT	22	12.5	12.5	38	48	0.6	4	3	6.3	12.5	43	1080	5550	6	89	190
505-004	SAP	43	12.5	12.5	46	44	0.6	2	4	6.3	12.5	39	580	2470	10	- 77	146
506-001	RT	19	12.5	12.5	43	45	0.6	7	2	6.3	12.5	64	500	5940	1	106	233
506-002	RT	19	12.5	12.5	60 195	45	0.6	7	4	6.3	12.5	61	840	8490	0	113	192
506-003	SAP	19	12.5	12.5	34	30	0.6	5	9	6.3	12.5	3	313	6550	i	75	861
507-001	RT	42	12.5	12.5	64	92	0.6	ġ		6.3	12.5	143	1520	9070	16	63	116
507-002	RT	31	12.5	12.5	58	60	0.6	8	4	6.3	12.5	98	1260	6170	12	57	128
507-003	RL	18	12.5	12.5	60	51	0.6	6	2	6.3	12.5	60	1160	4360	1	60	165
507-004	OT	14	12.5	12.5	58	53	0.6	5	2	6.3	12.5	46	720	3710	0	71	195
507-005		11	12.5	12.5	08 50	49	0.0	ر ۲	1	63	12.5	50	800	3310	6	65	210
507-007	os	14	12.5	12.5	53	39	0.6	4	2	6.3	12.5	52	790	2800	š	74	176
507-008	OT	21	12.5	12.5	52	46	0.6	7	3	6.3	12.5	77	730	4210	9	57	174
507-009	OS	10	12.5	12.5	56	35	0.6	3	2	6.3	12.5	32	620	1880	3	63	162
507-010	OT	20	12.5	12.5	57	46	0.6	6	3	6.3	12.5	73	780	4540	10	63	185
507-011		14	12.5	12.5	24	43	0.0	4	2	0.3	12.5	39 23	313	4290	3	14 AA	01
508-001	RT		12.5	12.5		76	0.0		5	6.3	12.5	110	1430	7210	14	72	192
508-002	RT	39	12.5	12.5	55	86	0.6	8	. 4	6.3	12.5	116	1300	7070	14	79	205
508-003	RT	41	12.5	12.5	64	121	0.6	7	4	6.3	12.5	131	1060	9110	15	84	242
508-004	SAP	33	12.5	12.5	11	48	0.6	5	3	6.3	12.5	43	313	4450	6	110	126
508-007	SAP		12.5	12.5	12	21	0.6	10		0.3	12.5	12	1720	913	<u> </u>	102	88
510-001		37	12.5	12.5		87	0.0	10	<u>7</u>	61	12.5	123	1300	7890			103
510-002	RT	45	12.5	12.5	49	74	0.6	11	5	6.3	12.5	166	1480	7300	18	62	131
511-001	RT	46	12.5	12.5	47	59	0.6	Π	5	6.3	12.5	188	1040	5340	18	52	141
511-002	RT	44	12.5	12.5	51	70	0.6	. 11	6	6.3	12.5	163	580	7600	16	62	156
511-003	RT	45	12.5	12.5	55	69	0.6	12	5	6.3	12.5	175	600	7620	17	55	133
511-004	WT	54	12.5	. 12.5	73	66	0.6	14	6	6.3	12.5	245	800	6930	24	41	134
512-005	- WT		12.3	12.5		48 60	0.0	7		6.3	12.5	131	800	4550	15	50	173
512-002	wr	29	12.5	12.5	63	40	0.6	18	4	6.3	12.5	94	540	2510	12	57	163
512-003	WT	26	12.5	12.5	68	35	0.6	ii	3	6.3	12.5	103	313	2290	10	55	142
513-001	RT	50	12.5	12.5	53	56	0.6	13	6	6.3	12.5	220	860	6220	19	58	127
513-002	WT	27	12.5	12.5	63	44	0.6	6	4	6.3	12.5	114	000	2040	14	48	148
313-003	WI	23	12.5	12.5	60	47	0.0	2	4	6.3	12.5	100	313	2320	13	52	145

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

G-14

		Sm	Sn	Sn	Sr	Sr	Ta	Ta	ТЪ	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc
Sample	Unit	inaa	icn	icn	icn	icp	icp	inaa	inaa	ico	inaa	inaa	ico	icp	inaa	icp	icn
13-005	SAP	4	12.5	12.5	42	15	0.6	4	2	0.3	12.5	12	810	19860	<u> </u>	116	109
14-001	KI DT	58	12.5	12.5	22	83	0.0	14	1	0.3	12.5	209	1390	8970	24	20	145
14-002	RI DT	5C	12.5	12.5	54	83	0.0	14	0	0.3	12.5	208	140	8/30	12	51	14/
14-003		45	12.5	12.5	33	24	0.0	9	2	61	12.5	27	1440	1840		72	117
14-004		- 10 	12.5	12.5			0.0	12	7	61	12.5	207	212	10.50 9190	21	66	127
14-005	SAP	~ ~	12.5	12.5	40	72	0.0	.1	í	61	12.5	1	313	111	21	286	179
15-001	RT	32	12.5	12.5	61	45	0.6	6	4	6.3	12.5	83	1070	4240	12	65	131
15-002	RT	24	12.5	12.5	69	45	0.6	6	3	6.3	12.5	81	1170	3720		83	114
15-003	RT	28	12.5	12.5	40	47	0.6	7	4	6.3	12.5	99	660	4500	12	63	153
515-004	от	39	12.5	12.5	57	47	0.6	9	5	6.3	12.5	162	98 0	4740	15	61	129
515-005	ΟΤ	47	12.5	12.5	54	47	0.6	10	6	6.3	12.5	206	1040	4960	17	64	126
515-006	ΟΤ	48	12.5	12.5	55	57	0.6	14	5	6.3	12.5	210	1090	6110	18	63	134
515-007	от	40	12.5	12.5	52	69	0.6	10	4	6.3	12.5	153	970	6720	13	59	153
5 <u>15-008</u>	OT	42	12.5	12.5	39	55	0.6	1	5	6.3	12.5	136	920	6660	12	73	227
516-001	КT	55	12.5	12.5	65	77	0.6	14	7	6.3	12.5	196	1050	8460	24	54	133
516-002	KT	50	12.5	12.5	65	59	0.6	13	7	6.3	12.5	195	1130	7320	20	62	126
516-003	KG	39	12.5	12.5	60	52	0.6	10	4	6.3	12.5	158	1520	7810	14	80	125
517-001	RT	50	12.5	12.5	59	59	0.6	10	5	6.3	12.5	205	1270	6980	19	63	125
517-002	RT	04	12.5	12.5	28	60	0.0	15	/	0.3	12.5	284	1390	7360	28	59	124
517-003	WI	/y 1	12.5	12.5	81 e1	21	0.0	19	8	0.3	12.5	340	1070	8330	39	49	140
517-004	WI	/1	12.5	12.5	63 85	83	0.0	19	У	0.3	12.5	234	070	8410	30	51	141
517-005	WT	61	12.5	12.5	65 86	45	0.0	21	0	63	12.5	265	920	6660	31	46	140
17-007	wT	60	12.5	12.5	90	45	0.0	14	8	61	12.5	238	1010	7100	33	ŝõ	144
17-008	wr	51	12.5	12.5	78	40	0.6	14	6	61	12.5	215	1000	5680	22	56	143
517-009	wr	63	12.5	12.5	97	41	0.6	13	ž	6.3	12.5	270	750	5380	32	59	129
17-010	WT	40	12.5	12.5	96	40	0.6	12	4	6.3	12.5	175	790	5540	18	64	137
17-011	OT	41	12.5	12.5	57	47	0.6	9	5	6.3	12.5	186	960	5800	17	55	149
17-012	от	36	12.5	12.5	60	44	0.6	12	4	6.3	12.5	152	880	5260	14	54	143
17-013	от	51	12.5	12.5	61	48	0.6	11	6	6.3	12.5	236	1010	6650	20	55	147
17-014	ΟΤ	34	12.5	12.5	56	50	0.6	9	4	6.3	12.5	145	930	6430	13	54	146
517-015	от	41	12.5	12.5	. 75	41	0.6	10	6	6.3	12.5	183	1070	4870	16	61	123
517-016	OT	38	12.5	12.5	69	50	0.6	9	4	6.3	12.5	158	1020	6400	14	64	142
517-017	OT	44	12.5	12.5	73	41	0.6	12	0	6.3	12.5	186	1020	5720	19	01	131
517-018	01	38	12.5	12.5	80	42	0.6			0.3	12.5	105	1000	54/0	14	- 00	139
318-001	KI DT	4/	12.5	12.5	5C	49	0.0	14		0.3	12.5	1/0	1130	2500	19		141
018-002	KI WC	35	12.5	12.3	00	51	U.0	14		0.3	12.3	154	1040	730	44 74	02 71	121
10-003	W3 WT	40	12.3	12.3	41 71	22	0.0	11 6	0 ▲	62	12.5	124	510	2720	16	12	70
10-004	WT	25	12.3	12.5	71	20	0.0	6		61	12.5	104	610	2160	10	43	17
18 006	WT	21	12.5	12.5	77	34	0.0	7	š	63	12.5	120	700	2240	17	64	79
18-007	wr	26	12.5	12.5	84	47	0.6	. 4	3	6.3	12.5	114	520	2300	13	51	186
518-008	ŴŤ	25	12.5	12.5	82	66	0.6	Ś	3	6.3	12.5	118	570	2470	13	66	176
519-001	RT	37	12.5	12.5	57	- 44	0.6	10	4	6.3	12.5	137	1010	5690	13	48	136
519-002	RT	43	12.5	12.5	53	45	0.6	11	5	6.3	12.5	168	930	6300	16	48	144
519-003	WT	43	12.5	12.5	60	45	0,6	11	6	6.3	12.5	183	1220	5990	19	. 56	143
519-004	WT	47	12.5	12.5	61	47	0.6	9	6	6.3	12.5	212	313	3300	22	50	144
519-005	WT	30	12.5	12.5	43	44	0.6	7	4	6.3	12.5	111	900	4280	11	97	206
519-006	WT	43	12.5	12.5	42	42	0.6	9	5	6.3	12.5	172	690	4840		92	218
520-001	RT	53	12.5	12.5	60	80	0.6	12	6	6.3	12.5	184	1830	10280	22	74	153
520-002	RT	48	12.5	12.5		104	0.6	12	1	6.3	12.5	156	1710	10530	18	71	132
520-003	RT	38	12.5	12.5	58	58	0.6	10	5	6.3	12.5	128	1210	7320	15	58	133
520-004	WT	52	12.5	12.5	56	43	0.6	12	6	6.3	12.5	215	1170	7480	23	59	139
520-005	OT	23	12.5	12.5	. 53	38	0.6	6	. 3	6.3	12.5	86	930	5060	9	67	165

1990 A.

11 000 0

-801,94

and the second s

for a second

لان

for and the second seco

F		Sm	Sn	Sn	Sr	Sr	Ta	Ta	ТЪ	Te	Te	Th	Ti	Ti	U	v	v
		nmhmc	-2um	nmhmc	-2um	nmhmc	-2um	nmhmc									
Sample	Unit	inaa	icp	icp	ico	icp	icp	inaa	inaa	ico	inaa	inaa	icp	icp	inaa	ico	ico
520-006	OT	28	12.5	12.5	56	45	0.6	n	4	6.3	12.5	114	970	5220	10	64	163
520-007	OT	36	12.5	12.5	. 58	49	0.6	10	5	6.3	12.5	143	1000	5000	15	71	153
520-008	OT	35	12.5	12.5	65	46	0.6	- 9	. 5	6.3	12.5	137	1060	5020	13	69	123
520-009	от	41	12.5	12.5	65	57	0.6	. 8	5	6.3	12.5	161	1140	6740	15	74	150
520-010	OT	36	12.5	12.5	66	48	0.6	8	4	6,3	12.5	145	1000	5370	13	65	130
520-011	OT	44	12.5	12.5	62	51	0.6	11	7	6.3	12.5	189	890	6210	16	62	147
520-012	OT	73	12.5	21.0	67	80	0.6	20	9	6.3	12.5	314	990	11370	32	55	168
520-013	OT	69	12.5	12.5	63	53	0.6	21	8	6.3	12.5	277	900	8870	29	65	155
520-014	OT	70	12.5	12.5	72	55	0.6	30	10	6.3	12.5	320	830	9640	29	55	142
520-015	OS	17	12.5	12.5	43	36	0.6	3	2	6.3	12.5	57	800	2320	5	98	125
520-016	SAP	20	12.5	12.5	12	28	0.6	2	2	6.3	12.5	45	313	1200	5	158	179
520-017	SAP	114	12.5	12.5	30	29	0.6	1	9	6.3	12.5	43	313	313	7	112	
521-001	RT	59	12.5	12.5	51	57	0.6	14	6	6.3	12.5	250	1040	8890	24	59	139
521-002	RT	68	12.5	12.5	52	60	0.6	17	7	6.3	12.5	318	1090	7610	26	51	154
521-003	WT	43	12.5	12.5	58	41	0.6	9	5	6.3	12.5	187	730	5030	19	50	141
521-004	OT	34	12.5	12.5	59	40	0.6	11	4	6.3	12.5	148	890	5360	12	53	142
521-005	WT	60	12.5	12.5	72	82	0.6	14	7	6.3	12.5	259	980	10970	23	56	141
521-006	WT	32	12.5	12.5	73	45	0.6	9	4	6.3	12.5	132	1100	5550	16	51	97
521-007	0 G	12	12.5	12.5	58	35	0.6	5	2	6.3	12.5	34	1190	2000	4	92	88
521-008	0 G	15	12.5	48.0	55	34	0.6	5	1	6.3	12.5	53	1310	2150	4	121	91
521-009	OG	14	12.5	12.5	58	39	0.6	1	2	6.3	12.5	37	1530	1950	. 5	121	111
521-010	OS	17	12.5	12.5	43	36	0.6	3	2	6.3	12.5	64	560	1900	6	121	168
521-011	OS	25	12.5	12.5	43	41	0.6	4	4	6.3	12.5	91	560	2810	11	98	155
521-012	. SAP	9	12.5	12.5	56	13	0.6	1	6	6.3	12.5	23	313	810	4	68	48

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

Note: All values are reported in parts per million (ppm).

.

Ap	pendi	x 280-G.	Baudette area assays	. Nonmagneti	c heav	y mineral	concentrate a	and cla	y fraction	of till	and non-till	sample
_												

		w	W	Y	Y	Yb	Zn	Zn	Zr	Zr	nmHMC
		-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit	icn	inaa	ico	icn	inaa	icn	icn	icn	inaa	inaa
501-001	RT	6.3	3	28	53	10	60	178	1	6200	11.4
501-002	SAP	6.3	651	5	29	8	21	161	1	940	10.7
501-003	SAP	6.3	7	37	111	18	159	515	2	3300	8.2
502-001	RT	6.3	7	14	71	12	91	54	2	4600	10.5
502-002	RT	6.3	3	15	72	12	98	51	3	6500	13.1
502-003	RT	6.3	3	12	73	11	92	48	2	4500	13.5
502-004	RS	6.3	3	13	37	6	98	86	4	1300	13.3
502-005	OL	0.3		14	58	9	125		4	6500	12.3
503-001	KI DT	0.3	13	11	/1	13	90	04	0	4900	8.3
503-002	RI DT	0.3	5	10	69	15	89	20	4	/300	15.0
503-003	DT N	63	10	+1	63	10	00	103	4	7400	12.9
503-004	RT	63	10	20	86	14	70	71	°,	6900	81
503-005	ASAP	63		12	10	13	18	265	1	5400	10.9
503-007	SAP	63	3	1		13	17	110	i	313	11.5
505-001	RT	6.3	5	19	55	15	119	135	5	5700	11.1
505-002	OT	6.3	4	17	48	12	176	150	5	5000	13.1
505-003	OT	6.3	12	15	48	12	179	272	8	4400	11.8
505-004	SAP	6.3	29	16	71	11	273	1953	7	6600	7.6
506-001	RT	6.3	3	24	44	9	108	126	4	2600	10.2
506-002	RT	6.3	8	20	44	11	106	119	4	3200	13.2
506-003	SAP	6.3	14	15	28	3	34	87	1	313	12.6
566-004	SAP	6.3	3	107	256	37	102	171	2	313	5.3
507-001	RT	6.3	5	11	64	13	74	49	9	5400	14.2
507-002	RI	0.3	1	12	40	13	//	<u></u>	12	5300	11.0
507-003	KL OT	0.3	3	13	34	1	81 49	8/	9	3900	11.2
507-004		0.3	3	12	21	3	20	00	3	1300	12.4
507-005		63	2	13	23	3	87	80	1	1800	10.4
507-007	09	63		14	20	3	86	91	1	1800	80
507-008	ÕŤ	6.3	ž	15	36	8	90	91	4	3200	11.5
507-009	OS	6.3	34	13	27	5	79	87	3	313	15.5
507-010	OT	6.3	8	14	35	6	77	83	4	2800	12.2
507-011	OL	6.3	3	14	32	8	88	100	9	2900	7.4
507-012	SAP	6.3	3	4	36	11	57	458	2	3000	10.2
508-001	RT	6.3	3	14	55	16	94	79	6	7600	5.4
508-002	RT	6.3	39	14	57	17	105	63	4	6400	11.5
508-003	RT	6.3	3	14	77	16	111	88	3	6100	10.0
508-004	SAP	6.3	3	26	81	21	98	192	3	4300	1.1
508-007	SAP	6.3	14	4	10	3	82	199	3	313	9.0
509-001	RI	6.3	244	14	04	19	108		<u> </u>	/500	11.2
510-001	RT	0.3	3	13	59	12	90	69 69	5	6400	12.8
510-002		0.3	<u> </u>	12		10	1/4	<u></u>		5900	13.5
511-001	KI DT	0.3	10	12	58 69	11	140	11	3	5400	9.5
511-002		0.3	10	13	63	17	60	13	2	6300	10.9
\$11,004		6.3	3	12	74	12	60		4	10000	65
\$11.005	wr	67	3	10	52	12	116	103	1	5900	11
512-001		61	<u>_</u>	17		<u>if</u>	78	135	4	5900	12.1
512-002	wr	6.1	19	19	47	10	74	153	2	3900	8.6
512-003	WT	6.3	3	21	46	8	68	160	2	2900	11.3
313-001	RT	6.3	3	15	61	14	75	63	3	8500	15.6
513-002	WT	6.3	3	17	38	7	78	116	3	4400	10.7
513-003	WT	6.3	3	19		6	81	142	2	4300	9.5
513-004	WT	6.3	3	18	33	9	93	159	2	4300	12.3

G-17

		W	W	Y	Y	Yb	Zn	Zn	Zr	Zr	nmHMC
		-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit SAP		inaa	icp 12	icp	inaa	icp 132	icp 301	icp	inaa 113	inaa o o
14-001	RT	6.3	12	13		18	83	72	8	8200	8.7
14-002	RT	6.3	3	13	80	14	77	62	7	8600	12.2
514-003	RT	6.3	3	13	70	14	89	61	4	6000	14.3
614-004	RG	6.3	3	14	37	6	87	111	3	313	9.1
514-005	OS	6.3	3	13	73	17	86	58	3	6900	13.1
514-006	SAP	6.3	5	6	11	3	183	117	5	313	11.6
515-001	RT	6.3	3	14	50	13	86	109	2	6700	12.5
515-002	RT	6.3	3	13	44	6	95	84	2	2500	12.0
515-003	RT	6.3	3	15	52	13	81	97	2	6300	9.8
515-004	от	6.3	3	18	52	14	84	74	3	6800	13.4
515-005	от	6.3	3	20	61	16	90	73	6	6100	12.3
515-006	от	6.3	8	20	69	18	91	71	6	7100	10.5
515-007	от	6.3	3	20	66	15	94	74	4	4500	12.3
515-008	OT	6.3	3	15	58	1	104	79	4	5200	10.5
516-001	KT	6.3	15	15	77	18	17	115	3	11000	9.1
516-002	KT	6.3	3	16	66	16	82	81	4	9100	11.0
516-003	KG	6.3	26	14	61	17	84	73	3	5600	6.3
517-001	RT	6.3	3	13	66	18	80	56	2	7700	12.9
517-002	RI	6.3	3	13	70	20	74	51	3	12000	13.7
517-003	WT	0.3	10	14	80	26	60	88	2	19000	2.8
517-004	WI	0.3	3	15	93	23	08	8U 67	10	14000	4.3
517-005	WT	0.3	3	14	92	77	60	140	16	15000	4.0
17-000	WI	0.3	3	14	71	10	64	140	10	15000	4.5
17.009	WT	61	3	15	63	10	75	112		0800	3.7
17.000	WT	63	2	17	64	15	77	178	2	11000	0.0
17-010	WT	63	3	16	61	15	70	185	14	5100	0.1
517-011	ÖŤ	63	8	15	50	15	72	87	.,	6800	10.0
17-012	or	63	ŏ	14	54	15	69	80	2	4300	10.0
517-013	or	6.3	í	15	70	16	69	80	2	10000	8.9
517-014	ŎŤ	6.3	3	13	62	18	68	69	2	5400	9.9
517-015	OT	6.3	3	18	50	17	75	62	3	5900	12.8
517-016	OT	6.3	3	18	56	15	79	64	2	6200	12.8
517-017	OT	6.3	3	17	54	16	80	91	4	8900	10.8
517-018	OT	6.3	21	17	50	13	81	66	3	7500	12.1
518-001	RT	6.3	3	14	56	8	80	72	5	7300	11.3
518-002	RT	6.3	16	15	70	13	82	96	6	11000	3.9
518-003	WS	6.3	3	15	65	20	102	110	4	13000	10.5
518-004	WT	6.3	3	15	45	13	64	199	5	7400	7.1
518-005	WT	6.3	3	17	40	13	91	192	7	5100	5.3
518-006	WΤ	6.3	9	18	40	13	95	272	7	8900	5.7
518-007	WT	6.3	3	21	34	8	67	119	- 11	3600	9.3
518-008	WT	6.3	3	19	34	7	75	112		4400	9.0
519-001	RT	6.3	3	11	55	13	59	87	3	4800	11.1
519-002	RT	6.3	3	12	60	16	64	78	3	6300	11.4
19-003	WT	6.3	3	14	57	13	71	83	5	7600	11.7
519-004	WT	6.3	3	19	48	11	65	139	6	7600	10.0
519-005	WT	6.3	3	18	47	8	116	113	10	3200	10.7
519-006		6.3	11	19	54	12	120	105	4	6100	9.9
520-001	RT	6.3	8	15	84	19	89	45	6	6500	13.
520-002	RT	6.3	3	15	77	17	83	45	8	7400	11.9
520-003	RT	6.3	3	14	64	18	73	83	4	6200	7.
520-004	WT	6.3	14	14	69	11	80	89	5	8400	
70-005	OT	6.3	3	16	51	10	74	103	4	2800	10.

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

and a second second

e sete

···· ··· ···

G-18

		W	W	Y	Y	Yb	Zn	Zn	Zr	Zr	nmHMC
		-2um	nmhmc	-2um	nmhmc	nmhmc	-2um	nmhmc	-2um	nmhmc	(g)
Sample	Unit	ico	inaa	ico	icp	inaa	ico	icp	icn	inaa	inaa
320-006	от	11.0	3	16	58	12	72	98	8	5300	9.5
520-007	ОТ	6.3	3	17	53	11	90	86	6	5700	11.7
520-008	ОТ	6.3	3	18	50	14	87	88	б	5100	8.8
520-009	от	6.3	3	18	63	12	93	86	7	6200	9.1
520-010	ОТ	6.3	3	18	54	14	88	86	6	5000	10.8
520-011	ОТ	6.3	3	18	62	13	86	85	6	7400	7.6
520-012	ОТ	6.3	3	18	104	17	71	72	5	14000	3.3
520-013	ОТ	6.3	3	20	81	23	79	52	4	13000	4.6
520-014	ОТ	6.3	45	19	85	23	72	53	6	9700	2.6
520-015	OS	6.3	3	20	38	8	95	105	6	313	10.8
520-016	SAP	6.3	3	63	47	3	52	133	6	313	7.5
520-017	SAP	6.3	3	172	140	5	96	217	4	313	8.5
321-001	RT	6,3	3	13	11	16	83	64	7	9300	12.3
521-002	RT	6.3	14	15	80	16	77	78	9	13000	6.2
521-003	WT	6.3	16	14	55	14	69	121	11	7600	12.5
521-004	ОТ	13.0	9	17	59	14	73	76	6	4300	12.2
521-005	WT	6.3	3	17	88	22	84	97	15	9900	1.0
521-006	WT	6.3	3	17	46	12	81	150	4	8000	4.1
521-007	OG	6.3	3	18	41	7	135	102	3	313	10.1
521-008	OG	6.3	7	17	36	5	139	97	2	313	12.8
521-009	OG	6.3	3	16	42	9	122	109	3	1500	10.5
521-010	OS	6.3	3	26	41	6	123	118	3	1800	10.5
521-011	OS	6.3	3	23	49	12	120	116	2	3100	12.9
521-012	SAP	6.3	3	4	128	58	71	45	2	1600	12.0

Appendix 280-G. Baudette area assays. Nonmagnetic heavy mineral concentrate and clay fraction of till and non-till samples.

(19) Same

Note: All values are reported in parts per million (ppm).

1.14054-0

Â.

Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.

Column abbreviations and data key

Stratigraphic units

KT	=K oochiching till
RT	=Rainy till
WT	=Winnipeg till
TC	=Old Rainy till
ASAP	=reworked saprolite
SAP	=saprolite

Other abbreviationsmagHMCaaaawt%=weight percent

Notes:

ş. F

G

Assay values reported here are listed to 3 or 4 significant figures depending on the element analyzed.

Ag analysis detection limit is 2.0 ppm. Values less than 2 ppm (eg. 1.3) were assayed at less than detection limit, and the result is reported here as five-eighths (0.625) of the detection limit.

sentifie magified magified			Fe2O3	MgO	TiO2	Ag	Co	Cr	Cu	Mn	Ni	Pb	v	Zn
			magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC
S07-601 RT 85.8 6.6 4.3 6.0 1.38 2.800 22 1102 194 18 1600 428 S07-602 SAP 6.01 2.5 2.8 4.0 1127 1000 42 1266 114 88 400 777 S07-602 SAP 6.01 2.5 2.6 4.0 1160 2.0 2.15 144 88 400 777 S02-602 RT 8.5 0.5 4.5 6.0 114 1180 22 118 162 70 1660 492 S02-602 RT 8.5 0.5 4.5 6.0 114 1180 22 1118 162 70 1660 492 S02-602 RT 8.5 0.5 4.6 2.0 105 114 429 400 150 174 52 1660 442 S03-604 RT 8.5 0.6 6.5 6.0 150 170 28 1160 218 99 2030 422 430 <th>Sample</th> <th>Unit</th> <th>aa (wt%)</th> <th>aa (wt%)</th> <th>aa (wt%)</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>aa</th> <th>22</th>	Sample	Unit	aa (wt%)	aa (wt%)	aa (wt%)	aa	aa	aa	aa	aa	aa	aa	aa	22
501-602 SAP 80.1 2.5 2.8 4.0 172 1000 4.2 1256 174 98 900 772 303-002 R.T 8.5 1.7 1.1 4.0 166 400 22 1236 114 88 400 742 303-002 R.T 8.5 0.5 5.0 100 114 1180 126 114 1180 127 113 114 64 180 700 433 303-001 R.T 8.5 0.5 4.6 6.0 113 1180 150 164 64 160 38 100 180 130 1100 110 128 164 166	501-001	RT	85.8	0.6	4.3	6.0	128	2660	32	1102	194	78	1600	428
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	501-002	SAP	80.1	2.5	2.8	4.0	1772	1000	42	1296	174	98	800	372
902-001 RT 53.8 0.6 5.6 8.0 122 1200 1200 1205 185 9.4 1800 344 303-001 RT 85.7 0.5 5.6 6.0 114 1100 2.2 112 154 9.4 1800 431 303-001 RT 85.8 0.5 4.4 2.0 1130 1100 2.2 112 154 9.4 1600 377 503-003 RT 85.8 0.5 4.7 4.0 138 1140 2.5 1125 184 9.4 1600 384 503-004 RT 86.1 0.6 6.3 6.0 150 1700 58 1106 218 9.4 1800 444 504-001 RT 85.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	501-003	SAP	85.8	3.7	1.1	4.0	186	240	28	21.26	144	88	400	742
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	502-001	RT	85.8	0.6	5.6	8.0	152	1280	30	1206	188	94	1800	374
NH B14 B14 B16 L12 H18 L22 H18 L12 H18 L14 L12 H18 L14 L12 H18 L14 L12 L13 L14 L14 <thl14< th=""> <thl14< th=""> <thl14< th=""></thl14<></thl14<></thl14<>	502-002	RT	88.7	0.5	5.6	8.0	154	1320	26	1156	194	94	1800	408
NDB 200 RT 83,7 0.5 0.5 1.0 1.00 2.0 1.00 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 2.0 1.00 3.0	502-003		85.8	0.5	4.5	0.0	114	1180		1118	162		1600	432
$ \begin{array}{c} 501-003 \\ 501-004 \\ S01-005 \\ RT \\ R$	503-001	NI DT	00./	0.8	4.9	20	130	1180	30	1282	104	04	1600	4/8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	503-003	RT	85.8	0.5	4.0	40	130	1140		1126	188	92	1600	370
	503-004	RT	80.1	0.5	4.4	60	116	1220	20	1098	164	66	1600	446
501_005 ASAP 86.0 0.7 27.4 5.00 509 137 177 1108 277 119 183.0 450 505401 RT 85.8 0.6 6.1 6.0 142 1420 42 3460 138 32 1400 444 505401 SAP 85.8 1.8 5.3 1.3 118 2020 42 3460 138 32 1400 444 505401 SAP 85.8 1.8 5.3 1.3 128 440 54 4420 100 48 120 640 1930 182 34 1800 430 506401 SAP 85.8 0.6 5.7 2.0 118 1100 60 2394 184 36 6600 38 166 44 40 500 50 566 158 56 166 188 360 184 184 160 422 1600 460	503-005	RT	74.4	0.6	6.3	6.0	150	1700	58	1160	218	90	2000	472
505-501 RT 85.8 0.6 6.1 6.0 142 143 143 234 80 660 444 505-502 OT 85.8 1.2 5.5 1.3 138 1700 54 4406 138 32 1400 444 505-601 RT 85.8 1.8 5.3 1.3 138 1700 54 4406 154 442 100 448 356 1600 438 1200 638 556 57 1.3 114 1420 40 1930 182 34 1800 436 566 56 56 56 56 56 56 56 56 56 142 140 20 4460 54 40 3600 182 34 3600 182 34 5600 182 56 56 56 56 13 56 1100 24 1240 142 34 660 460 360 56 1100 56 1131 152 156 131 132 126 13	503-006	ASAP	86.0	0.7	27.4	6.0	509	1387	127	3108	227	139	1850	479
905-002 OT #8.7 0.8 4.9 1.3 118 2020 42 3460 138 32 1400 444 905-001 SAP #5.8 1.4 5.5 1.3 138 1700 54 4460 152 38 1600 444 905-001 RT #5.8 1.6 5.7 1.0 114 1420 440 54 440 54 4600 348 906-001 SAP #5.8 0.6 5.7 2.0 118 1100 60 294 184 36 1600 368 906-001 SAP #5.8 0.5 7.7 2.0 220 120 24 4220 53 33 3600 188 907-002 RT #5.8 0.5 7.8 2.0 220 260 64 2146 164 42 1600 460 507-005 0T #5.8 0.5 1.1 1.3 122 1600 36 1646 158 38 1600 420 450 450 <td>305-001</td> <td>RT</td> <td>85.8</td> <td>0.6</td> <td>6.1</td> <td>6.0</td> <td>142</td> <td>1420</td> <td>46</td> <td>2354</td> <td>248</td> <td>80</td> <td>1600</td> <td>484</td>	305-001	RT	85.8	0.6	6.1	6.0	142	1420	46	2354	248	80	1600	484
05000 OT 85.8 1.2 5.5 1.3 128 440 54 4402 100 444 120 636 505-601 RT 82.9 0.5 5.7 1.3 114 1420 40 1930 182 34 1800 430 506-602 RT 85.8 0.6 5.7 2.0 118 1100 60 2394 184 36 1600 388 506-602 SAP 85.8 0.2 7.2 2.0 322 140 20 4460 54 40 3600 182 507-601 RT 85.8 0.3 4.7 1.3 56 1100 24 1240 142 34 1600 440 507-601 RT 85.8 0.5 4.9 1.3 56 1100 24 1240 142 34 1600 440 460 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400	505-002	от	88.7	0.8	4.9	1.3	118	2020	42	3460	138	32	1400	404
505-600t SAP 65.8 1.3 5.3 1.3 1.28 440 54 4420 100 48 1200 658 506-602 RT 85.8 0.6 5.7 2.0 118 1100 60 2394 184 56 1660 368 506-603 SAP 85.8 0.9 7.4 2.0 220 140 2.0 4460 54 40 3560 182 507-601 RT 85.8 0.5 4.9 1.3 56 1100 2.4 4220 58 38 3600 182 507-604 OT 85.8 0.5 4.9 1.3 122 1240 124 186 42 1400 440 507-604 OT 82.9 0.5 10.6 1.3 118 1340 35 1900 148 486 48 1000 490 507-605 OT 82.9 0.5 10.6 1.3	505-003	OT	85.8	1.2	5.5	1.3	138	1700	54	4080	152	38	1600	444
S06-6001 RT 82.9 0.5 5.7 1.3 114 1420 40 1930 182 34 1800 430 S06-602 SAP 65.8 1.2 7.2 2.0 322 140 20 4460 54 40 3600 188 S06-602 SAP 65.8 0.9 7.8 2.0 280 120 24 4420 54 40 3600 182 S07-602 RT 65.8 0.5 4.9 1.3 96 1480 26 1318 164 42 1600 440 S07-605 OT 62.9 0.9 12.1 1.3 122 1600 36 1666 158 38 1600 470 S07-605 OT 82.9 0.9 12.1 1.3 132 1580 40 1735 175 42 1600 460 370 166 12.8 1800 343 130 24 132 164 182 151 201 164 164 1600 360 <td>505-004</td> <td>SAP</td> <td>85.8</td> <td>1.8</td> <td>5.3</td> <td>1.3</td> <td>128</td> <td>440</td> <td>54</td> <td>4420</td> <td>100</td> <td>48</td> <td>1200</td> <td>638</td>	505-004	SAP	85.8	1.8	5.3	1.3	128	440	54	4420	100	48	1200	638
506-602 RT 85.8 0.6 5.7 2.0 118 1100 60 2394 184 36 1600 368 506-603 SAP 85.8 0.9 7.8 2.0 220 120 24 4220 38 38 3600 182 507-601 RT 85.8 0.5 4.9 1.3 96 1160 24 4220 38 38 3600 182 507-602 RT 85.8 0.5 4.9 1.3 96 1180 26 1318 164 42 1600 440 507-602 OT 85.7 0.6 5.1 1.3 122 1990 38 1844 186 42 1600 460 470	506-001	RT	82.9	0.5	5.7	1.3	114	1420	40	1930	182	34	1800	430
Sh0-001 SAP 83.8 1.2 7.2 2.0 322 140 20 4460 34 40 5000 188 507-001 R1 85.8 0.5 4.7 1.3 96 1480 24 1240 142 34 1600 444 507-002 RT 85.8 0.5 4.7 1.3 96 1480 26 1318 164 4.2 1400 440 507-002 OT 85.8 0.8 7.5 2.0 122 1200 64 2144 186 4.2 1400 460 507-005 OT 82.9 0.9 1.21 1.3 118 1340 36 1900 148 48 1800 470 507-010 OT 82.8 0.5 1.3 132 122 2016 178 432 135 162 1400 38 1418 146 422 160 340 340 300 <td>506-002</td> <td>RT</td> <td>85.8</td> <td>0.6</td> <td>5.7</td> <td>2.0</td> <td>118</td> <td>1100</td> <td>60</td> <td>2394</td> <td>184</td> <td>36</td> <td>1600</td> <td>368</td>	506-002	RT	85.8	0.6	5.7	2.0	118	1100	60	2394	184	36	1600	368
300-00 SAP 63.8 0.9 7.8 2.0 280 120 24 4420 35 36 2000 184 507-001 RT 85.8 0.3 4.9 1.3 96 1100 24 1240 142 34 1600 494 507-002 RT 85.8 0.3 4.9 1.3 96 1480 25 1318 164 42 1600 468 507-005 OT 85.7 0.6 5.1 1.3 122 1500 36 1666 158 38 1600 400 507-005 OT 82.9 0.5 10.6 1.3 118 1340 36 1900 148 48 1800 430 507-010 OT 85.8 0.5 8.3 1.3 124 1200 34 1524 130 64 130 135 182 1516 238 507-012 SAP 75.9	506-003	SAP	85.8	1.2	7.2	20	322	140	20	4460	54	40	3600	881
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	200-004	SAP DT	8.68	0.9	1.8	2.0	280	120	24	4220	28	38	3000	404
off code off code s5.8 0.8 7.5 2.0 128 1500 64 2148 186 4.2 1400 468 507.005 OT 85.7 0.6 5.1 1.3 122 1600 36 1666 158 38 1600 400 507.005 OT 82.9 0.5 10.6 1.3 118 1340 35 1900 146 44 1800 430 507.006 OT 82.9 0.5 10.6 1.3 118 1340 36 1900 146 44 1800 430 507.012 SAP 7.5.9 1.3 13.0 2.4 152 2616 178 3423 315 162 1800 350 508.002 RT 85.8 0.5 8.3 1.3 136 1200 38 1418 146 44 2000 336 508.400 376 360 300 302 1462 170 42 1800 36 300 304 144 480 300	507-002	DT NI	6.5.8 85.8	0.5	4.7	1.3	90	1480	24	1318	164	47	1600	440
507-005 OT 88.7 0.6 5.1 1.3 122 1600 36 1666 158 38 1600 400 507-005 OT 82.9 0.5 10.6 1.3 118 1340 38 1544 182 46 1800 410 507-005 OT 82.9 0.5 10.6 1.3 118 1340 35 1900 148 48 1800 430 507-005 OT 85.8 0.5 12.8 1.3 132 1560 40 1726 176 422 1600 440 315 182 1516 238 508-002 RT 85.8 0.5 7.6 1.3 124 1200 34 136 62 1800 334 508-003 RT 85.8 0.5 7.6 1.3 126 1240 34 136 164 42 1800 348 510-001 RT 85.8 0.4 8.9 1.3 1006 1200 32 1442 170 42 1	507-004	OT	85.8	0.5	7.5	20	128	2500	64	2148	186	42	1400	468
507-006 OT 82.9 0.9 12.1 1.3 202 1980 38 1844 182 46 1800 472 507-008 OT 82.9 0.5 10.6 1.3 118 1340 36 1900 148 48 1800 430 507-008 OT 85.8 0.5 12.8 1.3 132 1580 40 172 315 42 1600 460 507-012 SAP 75.9 1.3 13.0 2.4 152 2616 178 3423 315 182 1516 238 508-002 RT 85.8 0.5 7.6 1.3 126 1240 34 1306 178 34 2000 326 508-004 SAP 84.2 0.7 10.4 1.9 139 1333 62 1624 316 46 2169 347 508-001 RT 858 0.7 7.4 1.3 208 2000 32 1462 170 42 1800 348 1800	507-005	ŎŤ	88.7	0.6	5.1	1.3	122	1600	36	1666	158	38	1600	400
507-008 OT 82.9 0.5 10.6 1.3 118 1340 36 1900 148 48 1800 450 507-010 OT 85.8 0.5 12.8 13.1 132 156 040 1726 176 42 166 248 507-010 RT 85.8 0.6 8.7 1.3 132 1260 34 1534 136 62 1800 336 508-001 RT 85.8 0.5 8.3 1.3 136 1260 34 1336 62 1800 336 508-004 SAP 64.2 0.7 1.4 1.3 126 1240 34 1306 178 34 2000 326 508-004 SAP 64.2 0.7 1.4 1.3 208 2000 32 1462 170 42 1800 348 1800 343 1300 134 54 1800 348 1600 36 1100 130 130 140 136 462 1700 4	507-006	OT	82.9	0.9	12.1	1.3	202	1980	38	1844	182	46	1800	472
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	507-008	от	82.9	0.5	10.6	1.3	118	1340	36	1900	148	48	1800	430
507-012 SAP 75.9 1.3 13.0 2.4 152 2616 178 3423 315 182 1516 2038 508-001 RT 85.8 0.5 8.3 1.3 136 1240 34 1534 136 62 1800 336 508-003 RT 85.8 0.5 7.6 1.3 1260 34 1306 178 34 2000 336 508-003 RT 85.8 0.5 7.6 1.3 1260 34 1306 178 34 2000 336 509-001 RT 85.8 0.7 7.4 1.3 208 2000 32 1462 170 42 1800 348 510-001 RT 85.8 0.4 8.9 1.3 106 1180 30 1300 154 54 1800 346 2000 448 510-002 RT 85.8 0.4 11.0 1.3 110 1120 26 1550 138 46 2000 448 511-002	507-010	OT	85.8	0.5	12.8	1.3	132	1580	40	1726	176	42	1600	460
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	507-012	SAP	75.9	1.3	13.0	2.4	152	2616	178	3423	315	182	1516	2938
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	508-001	RT	85.8	0.6	8.7	1.3	124	1200	34	1524	136	62	1800	354
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	508-002	RT	85.8	0.5	8.3		130	1260	38	1418	140	44	2000	330
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	508-003	KI CAD	85.8	0.5	7.0	1.3	120	1240	54	1500	216	34	2000	320
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500-004		85.8	0.7	74		208	2000	12	1462	170	47	1800	
S10-002 RT 85.8 0.4 8.9 1.3 106 1180 30 1300 154 54 1800 388 S11-001 RT 88.7 0.3 9.4 1.3 104 1180 30 1300 154 54 1800 388 S11-002 RT 85.8 0.4 11.0 1.3 110 1120 26 1550 138 46 2000 468 S11-003 RT 82.9 0.4 11.9 4.0 106 1100 20 1424 148 56 2000 464 S11-004 WT 85.8 0.4 2.9 4.0 92 1000 22 1056 144 34 1400 336 S11-005 WT 60.9 0.5 7.0 4.0 104 1140 40 1300 180 112 1400 392 512-001 WT 82.9 0.6 5.2 4.0 176 3080 52 1760 538 40 16600 416 S	510-001	RT	88.7	0.1	10.6		100	1200	30	1440	136	46	2000	404
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	510-002	RT	85.8	0.4	8.9	1.3	106	1180	30	1300	154	54	1800	388
S11-002 RT 85.8 0.4 11.0 1.3 110 1120 26 1550 138 46 2000 428 S11-003 RT 82.9 0.4 11.9 4.0 106 1100 20 1424 148 56 2000 464 S11-004 WT 85.8 0.4 2.9 4.0 92 1000 22 1056 144 484 54 2000 464 S11-005 WT 60.9 0.5 7.0 4.0 104 1140 40 1300 180 112 1400 392 S12-001 WT 91.5 0.5 5.9 2.0 138 2580 48 1600 420 420 120 352 44 1600 420 420 44 1600 420 44 1600 366 151-001 RT 91.5 0.3 4.3 2.0 112 1420 18 1140 164 34 1600 364 513-001 81-400 366 513-001 RT <	511-001	RT	88.7	0.3	9.4	1.3	104	1160	54	1436	136	40	2000	468
S11-003 RT 82.9 0.4 11.9 4.0 106 1100 20 1424 148 56 2000 464 S11-004 WT 85.8 0.4 2.9 4.0 92 1000 22 1056 144 34 1400 336 S11-005 WT 60.9 0.5 7.0 4.0 104 1140 40 1300 180 112 1400 392 S12-001 WT 91.5 0.5 5.9 4.0 116 1800 36 1618 278 38 1600 412 S12-002 WT 82.9 0.6 5.2 4.0 176 3080 52 1760 538 40 1660 420 S12-002 WT 85.8 0.5 5.9 2.0 138 2580 48 1800 352 44 1600 416 S13-002 WT 80.1 0.7 3.8 4.0 126 1620 30 2064 204 34 1600 364 513	511-002	RT	85.8	0.4	11.0	1.3	110	1120	26	1550	138	46	2000	428
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511-003	RT	82.9	0.4	11.9	4.0	106	1100	20	1424	148	56	2000	464
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511-004	WT	85.8	0.4	2.9	4.0	92	1000	22	1056	144	34	1400	336
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	511-005	WT	60.9	0.5	7.0	4.0	104	1140	40	1300	180	112	1400	392
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512-001	WI	91.5	0.5	5.9	4.0	110	1800		1018	2/8	38	1600	412
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512-002	WI	82.9	0.0	5.2	4.0	1/0	0806	52	1/00	258	40	1600	420
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	512-005		01.5	0.3	3.9	2.0	115	1420	40	1140	164		1600	
513-003 WT 85.8 0.9 3.7 1.3 114 3140 42 2742 190 36 1400 486 513-004 WT 82.9 0.8 5.4 2.0 112 3120 50 2122 202 38 1600 486 513-004 WT 82.9 0.8 5.4 2.0 112 3120 50 2122 202 38 1600 494 514-001 RT 85.8 0.3 3.7 1.3 98 760 118 1472 122 46 1600 420 514-002 RT 85.8 0.5 4.5 2.0 92 760 26 1604 114 44 1800 420 514-002 RT 85.8 0.5 4.5 2.0 92 760 26 1604 114 44 1800 420 514-003 RT 85.8 0.6 6.0 2.0 96 880 28 1800 124 44 1800 440 514	513-002	wr	80.1	0.7	1.5	4.0	126	1620	30	2064	200	38	1400	366
\$13-004 WT 82.9 0.8 5.4 2.0 112 3120 50 2122 202 38 1600 494 \$14-001 RT 85.8 0.3 3.7 1.3 98 760 118 1472 122 46 1600 420 \$14-002 RT 85.8 0.5 4.5 2.0 92 760 26 1604 114 44 1800 420 \$14-003 RT 85.8 0.6 6.0 2.0 92 760 26 1604 114 44 1800 420 \$14-003 RT 85.8 0.6 6.0 2.0 96 880 28 1800 124 44 1800 404 \$14-006 SAP 69.0 1.4 4.0 3.5 103 276 241 6000 154 545 2069 203 15-001 RT 68.6 0.6 22.9 2.0 134 1800 48 176 42 2400 494 515-002 RT 85.8 <td>513-003</td> <td>wr</td> <td>85.8</td> <td>0.9</td> <td>3.7</td> <td>1.3</td> <td>114</td> <td>3140</td> <td>42</td> <td>2742</td> <td>190</td> <td>36</td> <td>1400</td> <td>486</td>	513-003	wr	85.8	0.9	3.7	1.3	114	3140	42	2742	190	36	1400	486
S14-001 RT 85.8 0.3 3.7 1.3 98 760 118 1472 122 46 1600 420 S14-002 RT 85.8 0.5 4.5 2.0 92 760 26 1604 114 44 1800 420 S14-003 RT 85.8 0.6 6.0 2.0 96 880 28 1800 124 44 1800 404 S14-005 SAP 69.0 1.4 4.0 3.5 103 276 241 6000 155 45 2069 203 S15-001 RT 68.6 0.6 22.9 2.0 134 1800 48 176 42 2460 494 515-002 RT 85.8 0.9 10.8 2.0 118 880 70 1968 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128	513-004	WT	82.9	0.8	5.4	2.0	112	31 20	50	2122	202	38	1600	494
514-002 RT 85.8 0.5 4.5 2.0 92 760 26 1604 114 44 1800 420 514-003 RT 85.8 0.6 6.0 2.0 96 880 28 1800 124 44 1800 404 514-006 SAP 69.0 1.4 4.0 3.5 103 276 241 6000 155 45 2069 203 515-001 RT 68.6 0.6 22.9 2.0 134 1800 48 2948 176 42 2400 494 515-002 RT 85.8 0.9 10.8 2.0 118 880 70 1968 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384	514-001	RT	85.8	0.3	3.7	1.3	98	760	118	1472	122	46	1600	420
514-003 RT 85.8 0.6 6.0 2.0 96 880 28 1800 124 44 1800 404 514-006 SAP 69.0 1.4 4.0 3.5 103 276 241 6000 155 45 2069 203 515-001 RT 68.6 0.6 22.9 2.0 134 1800 48 2948 176 42 2400 494 515-002 RT 85.8 0.9 10.8 2.0 118 880 70 1968 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384	514-002	RT	85.8	0.5	4.5	2.0	92	760	26	1604	114	44	1800	420
514-006 SAP 69.0 1.4 4.0 3.5 103 276 241 6000 155 45 2069 203 515-001 RT 68.6 0.6 22.9 2.0 134 1800 48 2948 176 42 2400 494 515-002 RT 85.8 0.9 10.8 2.0 118 880 70 1968 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384	514-003	RT	85.8	0.6	6.0	2.0	96	880	28	1800	124	44	1800	404
515-001 RT 68.6 0.6 22.9 2.0 134 1800 48 2948 176 42 2400 494 515-002 RT 85.8 0.9 10.8 2.0 118 880 70 1968 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384	514-006	SAP	69.0	1.4	4.0	3.5	103	276	241	6000	155	45	2069	203
515-002 R1 63.6 0.9 10.8 2.0 118 680 70 1908 182 42 1400 378 515-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384 615-003 RT 88.7 0.5 12.2 2.0 128 1560 26 2280 138 40 1800 384	515-001	RT	68.6	0.6	22.9	2.0	134	1800	48	2948	176	42	2400	494
515-005 R1 00,7 0,3 12.2 2.0 120 1300 20 2200 136 40 1600 304	515-002	KI DT	53.5 90 7	0.9	10.8	20	118	1560	/0 76	1908	132	42	1900	3/8
	515-005	OT	50./ 89.7	0.5	11.4	40	120	1440	20	1407	150	40	1800	374

i de la com

Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.

and the first sector

. 74

H-2

		Fe2O3	MgO	TiO2	Ag	Co	Cr	Cu	Mn	Ni	РЬ	v	Zn
		magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC
Sample	Unit	aa (wt%)	aa (wt%)	aa (wt%)	aa	aa	83	aa	83	33	33	88	83
515-005	OT	88.7	0.5	10.6	1.3	114	1400	32	1752	150	30	1600	374
515-006	ОТ	88.7	0.5	11.2	2.0	120	1460	28	1698	172	32	1600	370
515-007	OT	85.8	0.6	14.1	2.0	126	1360	38	1916	184	38	2200	440
515-008	01	68.6	0.8	26.4	1.3	118	780	64	3020	142	34	3200	536
516-001	KI VT	91.3	0.4	1.8	20	98	1280	30	1174	140	24	1800	352
510-002		<u> </u>	0.5	6,0		114	1220		1028	128		1000	348
517-002	RT	91 5	0.5	5.5	20	08	1160	24	1420	136		1800	420
517-003	ŴŤ	88.7	0.4	7.7	20	106	1000	30	1112	146	48	1600	708
517-004	WT	88.7	0.3	6.9	20	108	1040	28	940	134	36	1800	306
517-005	WT	94.4	0.2	6.6	2.0	96	1000	20	902	140	36	1600	296
517-006	WT	94.4	0.3	5.8	1.3	100	980	26	952	146	38	1600	306
517-007	WT	91.5	0.3	5.4	1.3	92	960	26	874	130	36	1600	288
517-008	WT	91.5	0.3	8.4	2.0	98	1080	24	1132	128	30	1800	332
517-009	· WT ·	94.4	0.2	7.2	2.0	100	1160	22	1026	132	32	1800	324
517-010	WT	88.7	0.3	10.2	1.3	112	1080	24	1130	180	36	1800	346
517-011	от	85.8	0.3	12.6	1.3	116	1360	24	1314	144	38	1800	400
517-012	OT	82.9	0.4	13.1	1.3	168	1220	24	1374	150	46	2000	382
517-013	OT	88.7	0.3	11.5	1.3	120	1360	34	1118	156	32	1800	382
517-014		88./	0.4	12.5	2.0	. 112	1120	22	1304	130	34	1600	380
517-015		83.8 93.0	0.3	12.4	1.3	124	140	18	1200	148	44	1800	382
517-010		04.7	0.4	14.7	2.0	110	1440	24	1100	140		1600	404
517-018	OT	85.8	0.3	14.0	2.0	122	1360	20	1312	146	30	1800	404
518-001	ŘŤ	85.8	0.4	12.8	1.3	100	1180	20	1350	130	34	1800	430
518-002	RT	88.7	0.3	2.5	2.0	98	1160	20	1068	128	38	1200	356
518-004	WT	85.8	0.3	2.5	4.0	106	1600	22	956	252	48	1000	384
518-005	WT	83.4	0.4	11.8	1.5	135	1634	23	1141	322	- 44	1634	497
518-006	WT	88.7	0.4	12.4	1.3	168	1820	26	1136	596	52	1600	462
518-007	WT	85.8	0.5	14.7	2.0	156	1960	34	1392	332	46	1800	446
518-008	<u>WT</u>	82.9	0.4	12.0	2.0	142	1860	36	1124	278	44	1800	446
519-001	KI DT	88.7	0.4	11.4	2.0	112	920	20	1472	120	30	1600	340
519-002	WT	6J.6 01.5	0.4	0.4 4 7	1.0	104	1160	30	1046	120	32	1400	324
519-005	WT	91.5	0.3	14.0	1.3	70 118	1640	20	1228	196	30 24	2200	300
519-005	ŵŤ	74.4	0.5	17.0	13	160	1740	78	1536	174	32	2400	552
519-006	ŴŤ	82.9	0.4	15.4	2.0	164	1900	32	1480	176	38	2200	490
520-001	RT	85.8	0.3	11.7	1.3	116	1140	18	1062	146	28	2000	454
520-002	RT	85.8	0.6	11.5	1.3	110	1120	20	1442	140	30	2000	454
520-003	RT	85.8	0.5	11.5	2.0	110	1080	20	1536	136	26	2000	400
520-004	WT	91.5	0.3	8.6	1.3	106	880	24	1154	136	24	1800	332
520-005	OT	88.7	0.3	12.0	1.3	140	1300	26	1450	174	28	1800	420
520-006	от	88.7	0.4	14.3	1.3	122	1340	30	1488	158	36	2000	400
520-007	OT	85.8	0.4	12.7	2.0	124	1560	24	1360	192	38	1800	408
520-008	OT	85.8	0.4	14.8	1.3	134	1380	22	1400	190	34	1800	386
520-009	OT	88.7	0.5	14.9	2.0	140	1680	. 20	1482	178	48	1800	416
520-010	OT	82.9	0.5	13.6	2.0	150	1400	20	1530	190	38	1800	386
520-011		91.5	0.3	9.2		130	1400	18	1010	182	28	1800	886
520-012		63.6 04.4	0.3	7.0	1.3	100	300	12	£1000 £10	140	40	1900	200
520-013	OT OT	£8.7	0.2	7.5 R G	20	116	1060	26	1004	136	30	1600	312
520-016	SAP	74.4	0.6	19.6	20	200	1180	1006	2208	228	44	2400	614
321-001	RT	88.7	0.4	9.5	1.3	108	1060	22	1242	124	26	2000	388
521-002	RT	88.7	0.4	9.6	2.0	120	1320	18	1202	150	28	1800	316
521-003	WT	91.5	0.3	9.4	2.0	166	1200	26	1162	156	66	1800	342

Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.

C. C.

4

Cont.

AND NO.

		Fe2O3	MgO	TiO2	Ag	Со	Cr	Cu	Mn	Ni	РЬ	v	Zn
		magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC	magHMC
Sample	Unit	aa (wt%)	aa (wt%)	aa (wt%)	23	aa	aa	aa	88	aa	aa	88	aa
521-004	OT	91.5	0.3	9.2	2.0	142	1120	24	1250	146	32	1800	328
521-005	WT	94.4	0.3	7.3	2.0	132	1280	46	916	190	30	1600	326
521-006	WT	94.4	0.3	9.6	2.0	156	1420	32	1026	282	48	1800	434

Appendix 280-H. Baudette area assays. Magnetic heavy mineral concentrate samples from tills and saprolite.

Note: All values are reported in parts per million (ppm) unless otherwise indicated. All analyses by flame AA.

10

Appendix 280-I. Baudette area bedrock and saprolite samples analyzed as bedrock. Trace element and oxide assays.

Column abbreviations and data key

Stratigraphic units

(

BEDZ	=Bedrock, trace elements only
SAPZ	=Saprolite, trace elements only
BED	=Bedrock, trace elements and oxides
Other abbreviations	
icp	=inductively coupled plasma
88	=atomic absorption
hyaa	=hydride generation atomic absorption
inaa	=instrumental neutron activation
fadc	=fire assay direct current
dcp	=direct coupled plasma
cvaa	=cold vapor atomic absorption
xrf	≃x-ray fluoresence
Notes:	

Assay values reported here are listed to 3 significant figures.

Values less than or equal to the detection limits shown in Appendix 280-C (eg. <0.5), are reported here as five-eighths (0.625) of the listed detection limit for that element (eg. 0.3125).

Sample	Unit	Ag	Al	Au	B	Ba	Be	Bi	Br	Ca	Cd	Ce	Co	Cr	Cs	Cu	Eu	Fe
		88	icp	inaa	dcp	inaa	icp	іср	inaa	icp	icp	inaa	inaa	inaa	inaa	icp	inaa	inaa
501-004	BEDZ	0.1	28100	0.003	18	1200	0,3	5	1.9	2300	0.6	110	19	220	43.0	37	4	65000
503-008	BEDZ	0.1	24600	0.003	222	150	0.3	3	1.9	19700	0.6	31	27	190	1.0	39	1	55000
505-005	BEDZ	0.1	14700	0.003	32	1700	0,3	3	5.0	4900	0.6	76	15	210	, 1.0	18	1	36000
507-013	BEDZ	0.1	36600	0.003	34	150	0.3	3	1.9	8300	0.6	19	52	470	2.0	52	1	55000
508-005	SAPZ	0.1	14300	0.003	26	100	0.3	3	1.9	1400	0.6	79	25	280	2.0	69	1	38000
508-006	SAPZ	0.2	14400	0.003	40	210	0.3	3	1.9	1500	0.6	92	14	250	0.6	86	1	35000
508-008	SAPZ	0.1	11600	0.005	30	690	0.3	3	1.9	2600	0.6	44	6	160	0.6	62	1	19000
511-006	SAPZ	0.1	8200	0.003	13	340	0.3	3	1.9	2500	0.6	24	6	300	0.6	11	1	14000
518-009	BEDZ	0,1	28200	0.003	18	120	0.3	3	1.9	7900	0.6	36	25	210	0.6	99	1	45000
521-015	BEDZ	0.1	34400	0.007	29	210	0.3	3	1.9	12000	0.6	79	24	180	4.0	48	I	36000

Appendix 280-I. Baudette area bedrock and saprolite samples assayed as bedrock.

Note: All values are reported as parts per million (ppm) unless otherwise indicated.

Appendix 280-I (continued).

Sample	Unit	Ga	Hſ	Hg	Ir	К	La	Li	Lu	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
		icp	inaa	cvaa	inaa	icp	inaa	icp	inaa	icp	icp	icp	icp	icp	icp	icp	icp
501-004	BEDZ	15	1	0.009	0.06	6900	160	47	2.0	9500	313	1.3	900	4	112	313	17
503-008	BEDZ	8	3	0.018	0.06	3100	11	13	0.3	13300	600	1.3	2300	5	69	850	3
505-005	BEDZ	10	3	0.006	0.06	1900	32	5	0.3	5600	313	1.3	1800	2	40	1460	3
507-013	BEDZ	12	1	0.012	0.06	3300	12	14	0.6	13000	313	1.3	1000	4	133	720	9
508-005	SAPZ	9	3	0.010	0.06	1100	67	3	0.3	2400	1100	1.3	600	2	55	313	17
508-006	SAPZ	8	3	0.009	0.06	1100	34	4	0.3	2100	800	1.3	700	1	32	313	12
508-008	SAPZ	5	3	0.003	0.06	2200	13	4	0.3	3000	700	1.3	800	1	16	313	9
511-006	SAPZ	4	3	0.003	0.06	3200	1	10	0.3	3400	313	1.3	1400	1	1	313	3
518-009	BEDZ	10	3	0.015	0.06	1300	15	28	0.3	16500	313	1.3	1400	3	91	630	4
521-015	BEDZ	10	3	0.008	0.06	6200	33	21	0.3	16400	313	1.3	1700	4	37	920	13

Note: All values are reported as part per million (ppm) unless otherwise indicated.

Appendix 280-I (continued).

Sample	Unit	Sb	Sc	Se	Sm	Sn	Sr	Ta	16	Te	Th	Ti	U	V	W	Y	Yb	Zn	Zr inaa	nm (g)
		inaa	inaa	hyaa	inaa	icp	icp	inaa	inaa	inaa	inaa	icp	inaa	icp	inaa	icp	inaa	icp		inaa
501-004	BEDZ	0.1	16	0.1	24	12.5	42	1	4	12.5	5	1160	5	47	3	219	12	989	313	7.9
503-008	BEDZ	0.1	18	0.1	4	12.5	73	1	1	12.5	1	313	0	50	3	16	3	62	313	9.6
505-005	BEDZ	0.1	9	0.1	4	12.5	46	1	1	12.5	9	313	1	27	6	6	3	162	313	10.7
507-013	BEDZ	0.1	18	0.1	3	12.5	74	1	1	12.5	1	730	0	55	3	23	3	130	313	10.0
508-005	SAPZ	0.1	8	0.1	12	12.5	9	1	1	12.5	2	313	1	52	3	17	3	89	313	6.7
508-006	SAPZ	0.1	12	0.1	3	12.5	16	1	1	12.5	6	313	1	72	3	3	3	45	313	8.9
508-008	SAPZ	0.1	6	0.1	2	12.5	12	1	1	12.5	3	313	1	33	3	2	3	39	313	7.8
511-006	SAPZ	0.1	3	0.1	1	12.5	17	- 1	1	12.5	1	610	. 0	14	3	2	3	50	313	9.3
518-009	BEDZ	0.8	17	0.1	3	12.5	79	1	1	12.5	2	700	0	55	3	8	3	67	313	9.9
521-015	BEDZ	0.1	9	0.5	5	12.5	122	1	1	12.5	5	870	1	59	4	7	3	71	313	9.3

Note: All values are reported in parts per million (ppm) unless otherwise noted.

Sample	Unit	Ag	As	Au	В	Ba	Be	Bi	Ce	Со	Cr	Cu	Ga	Hg	La	Li	Мо	Nb
		icp	hyaa	fadc	dcp	icp	icp	icp	icp	icp	icp	icp	icp	cvaa	icp	icp	icp	icp
502-006	BED	0.3	0.3	0.001	15	45	0.3	3.1	70	6	82	10	3	0.003	35	2	0.6	2.0
503-009	BED	0.3	0.5	0.005	29	25	0.3	3.1	27	29	119	50	9	0.003	17	16	0.6	6.0
506-005	BED	0.3	0.3	0.010	17	79	0.3	3.1	7	38	204	136	4	0.003	11	14	0.6	7.0
508-009	BED	0.3	0.5	0.004	27	36	0.3	3.1	48	12	117	35	8	0.003	22	5	0.6	3.0
509-002	BED	0.3	2.0	0.002	41	162	0.3	3.1	20	23	143	85	7	0.003	13	12	0.6	5.0
510-003	BED	0.3	0.5	0.008	17	214	0.3	3.1	69	13	137	98	7	0.003	31	10	0.6	5.0
512-004	BED	0.3	4.0	0.003	44	284	0.3	3.1	63	25	320	63	14	0.003	32	54	0.6	3.0
513-006	BED	0.3	0.3	0.030	17	1	0.3	11.0	23	75	188	327		0.003	23	6	0.6	8.0
514-007	BED	0.3	0.3	0.001	16	11	0.3	3.1	17	44	68	93	16	0.003	15	14	0.6	5.0
515-009	BED	0.3	0.3	0.002	19	11	0.3	3.1	3	17	123	86	5	0.003	5	16	0.6	4.0
516-004	BED	0.3	0.5	0.001	35	509	0.3	3.1	51	24	241	53	14	0.033	28	31	0.6	3.0
517-019	BED	0.3	3.0	0.003	81	196	0.3	3.1	25	35	567	107		0.003	15	44	0.6	5.0
519-007	BED	0.3	0.7	0.008	31	225	0.3	3.1	98	22	228	447	7	0.003	44	21	0.6	4.0
521-013	BED	0.3	0,3	0.001	41	84	0.3	3.1	83	27	145	64	11	0.003	42	41	0.6	4.0

3.1

and the second s

jertin Konstantin Martin

0.003

34

43

0.6

3.0

198

Appendix 280-I. Baudette area bedrock samples, trace element and oxide assays.

0.3

0.001

0.3

23

373

0.3

(Sec.

Appendix 280-I (continued).

521-014 BED

æ

Sample	Unit	Ni	Pb	Rb	Sb	Sc	Se	Sn	Sr	Ta	Te	V	W	Y	Zn	Zr
		icp	icp	icp	hyaa	icp	xrf	icp	icp	icp	icp	icp	icp	icp	icp	icp
502-006	BED	8	4	35	0.1	1	0.6	12.5	126	0.6	6.3	42	6.3	8	107	20
503-009	BED	74	1	69	0.1	13	0.6	12.5	85	0.6	6.3	59	6.3	16	60	8
506-005	BED	72	1	13	0.1	10	0.6	12.5	32	0.6	6.3	128	6.3	8	74	4
508-009	BED	30	4	13	0.1	1	0.6	12.5	32	0.6	6.3	25	6.3	5	56	14
509-002	BED	77	1	13	0.1	- 4	0.6	12.5	205	0.6	6.3	108	6.3	5	28	6
510-003	BED	23	3	13	0.1	14	0.6	12.5	45	0.6	6.3	82	6.3	19	86	7
512-004	BED	83	7	13	0.1	12	0.6	12.5	12	0.6	6.3	115	6.3	9	98	14
513-006	BED	75	14	21	0.1	6	0.6	12.5	18	0.6	6.3	43	6.3	6	190	9
514-007	BED	28	5	34	0.2	20	0.6	12.5	42	0.6	6.3	274	6.3	13	124	11
515-009	BED	47	1	21	0.1	5	0.6	12.5	16	0.6	6.3	56	6.3	5	30	8
516-004	BED	76	6	60	0.1	13	0.6	12.5	20	0.6	6.3	112	6.3	9	84	12
517-019	BED	239	5	99	0.2	4	0.6	12.5	118	0.6	6.3	126	6.3	7	70	14
519-007	BED	74	4	140	0.1	5	0.6	12.5	49	0.6	6.3	104	6.3	8	49	10
521-013	BED	106	4	23	0.1	4	0.6	12.5	23	0.6	6.3	63	6.3	6	79	12
521-014	BED	28	6	143	0.1	10	0.6	12.5	208	0.6	6.3	100	6.3	6	127	14

60

172

13

75

14

Note: All values are reported in parts per million (ppm) unless otherwise indicated.

Appendix 280-1 (continued).																				
Sample	Unit	SiO2	TiO2	Al2O3	Fe2O3	МпО	MgO	CaO	Na2O	K20	P2O5	LOI	Total	F	Cr	Ta	Pd	Pt	Au	S
		pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	pct	si	xrf	icp	fadc	fadc	fadc	total
502-006	BED	62.0	0.28	19.00	3.43	0.03	0.31	2.41	7.24	3.23	0.35	1.55	99.83	128	94	1.9	0.001	0.003	0.001	0.001
503-009	BED	55.0	0.75	15.60	7.92	0.12	2.97	3.52	4.14	1.01	0.35	8.11	99.49	272	217	1.9	0.001	0.003	0.005	0.001
306-005	BED	54.4	0.85	14.80	10.50	0.26	4.06	8.55	2.11	0.43	0.20	3.97	100.13	255	117	1.9	0.017	0.015	0.010	0.070
508-009	BED	70.1	0.35	14.50	3.32	0.05	0.94	2.26	3.15	2.88	0.15	2.35	100.05	273	139	1.9	0.002	0.003	0.004	0.001
509-002	BED	48.9	0.82	15.90	10.20	0.17	7.57	11.20	2.73	0.74	0.50	1.43	100.16	465	91	1.9	0.001	0.003	0.002	0.213
510-003	BED	53.0	1.04	15.00	13.70	0.38	3.05	7.50	4.56	1.00	0.40	0.14	99.77	535	134	1.9	0.001	0.003	0.008	0.333
512-004	BED	62.6	0.63	17.00	7.01	0.10	2.85	2.29	4.38	2.14	0.20	1.66	100.86	670	450	1.9	0.003	0.003	0.003	0.115
513-006	BED	37.8	0.26	6.96	30.40	0.57	2.05	6.00	1.21	0.87	0.30	11.78	98.20	125	157	1.9	0.008	0.008	0.030	17.86
514-007	BED	50.8	1.78	12.80	18.80	0.28	5.07	5.86	0.92	0.07	0.50	3.98	100.86	217	119	1.9	0.001	0.003	0.001	0.108
313-009	BED	55.3	0.62	14.10	10.30	0.17	6.56	7.95	2.96	0.50	0.19	1.54	100.18	158	191	1.9	0.010	0.009	0.002	0.094
516-004	BED	63.0	0.57	14.50	6.75	0.10	3.09	5.67	2.75	2.53	0.24	1.32	100.51	468	316	1.9	0.003	0.003	0.001	0.340
517-019	BED	49.0	0.87	12.30	11.50	0.18	11.50	6.21	3.05	2.47	0.45	2.36	99.89	710	779	5.0	0.005	0.003	0.003	0.024
319-007	BED	58.9	0,56	14.30	6.96	0.10	4.93	6.41	3.83	2.58	0.45	1.32	100.34	757	175	1.9	0.016	0.006	0.008	0.024
521-013	BED	54.8	0.71	19.20	8.10	0.08	4.18	0.36	0.43	5.55	0.21	4.80	98.41	413	108	10.0	0.001	0.003	0.001	0.034
521-014	BED	58.1	0.76	17.10	6.69	0.08	4.14	1.13	1.58	4.92	0.24	5.48	100.21	714	230	1.9	0.002	0.003	0.001	0.023

Note: All values are reported in parts per million (ppm) unless otherwise indicated.

Appendix 280-J. Baudette area sample component weights and percents reported by contract laboratory.

Column abbreviations and data key

Stratigraphic units	
KT =	Koochiching till
KG =	Koochiching gravel
RT =	Rainy till
RS =	Rainy sand
RG =	Rainy gravel
RL =	Rainy lake sediment
WT =	Winnipeg till
WS =	Winnipeg sand
OT =	Old Rainy till
OS =	Old Rainy sand
OG =	Old Rainy gravel
OL =	Old Rainy lake sediment
ASAP =	reworked saprolite
SAP =	saprolite
Other abbreviations	
ODM =	Overburden Drilling Management Laboratories
kg =	kilogram
g =	gram
wt. =	weight
nmHMC =	nonmagnetic (+3.3 specific gravity) heavy
ltHMC =	light (-3.3 specific gravity) heavy mineral
magHMC =	magnetic heavy mineral concentrate
sol. =	soluble
wt% =	weight percent

Notes:

(19)

"Matrix as % of sample" column = (total sample wt. - +10mesh wt.) / (total sample wt.)

Weak acid soluble portion is that portion of the -63um fraction soluble in 10% HCl.

Weak acid soluble percents are measured on separate splits of core sampled identically to other assayed samples.

% sand-silt-clay by Bondar-Clegg on sample split used for silt/clay analysis.

<u></u>							Matrix							
		ODM wt.	+10mesh	kHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
Sample	Unit	(kg)	e/10ke	e/10kg	e/10ke	e/10kg	sample	% sand	% silt	% clay	%sol.	Ca wt%	Mg wt%	Fe wt%
501-001	RT	10.8	214	109	27	- 4	98	52	41	6	8	0.6	0.4	1.0
501-002	SAP	11.8	25	100	25	2	99 07) SU	38	12		0.2	0.1	0.4
502-001	RT		1974	436				73	29		10	1.0	0.4	1.0
502-002	RT	8.8	1424	525	42	13	86	76	21	3	, i	1.0	0.5	1.2
502-003	RT	10.0	1225	409	40	12	88	80	18	2	i n	1.1	0.6	1.2
502-004	RS	7.2	794	230	46	3	92	89	9	1	15	1.6	0.7	2.3
502-005	OL	7.9	0	414	75		100	89	10	1	18	1.6	0.8	3.2
503-001	RT	8.5	1235	210	22	8	88	66	29	5	12	1.6	0.8	1.3
503-002	KI DT	11.2	1300	194	33	13	06		25	2	2	1.0	0.5	1.2
503-003	RI PT	9.8	907	239	20	13	00 01	81	25	2	47	10.9	0.5	1.1
503-005	RT	8.0	1080	176	28	8	89	71	24	- 5	0	0.9	0.5	1.0
503-006	ASAP	10.0	433	250	73	ĩ	96	82	11	7	7	0.2	0,1	1.1
503-007	SAP	8.3	470	171	410	Ō	95	23	59	18	3	0.2	0.1	0.2
505-001	RT	9.2	1114	388	31	4	89	73	22	5	15	1.8	0.9	2.0
505-002	OT	8.0	1834	169	86	11	82	76	19	5	19	1.7	1.1	3.9
505-003	OT	9.3	980	363	53	7	90	83	13	4	24	3.2	1.4	3.6
505-004 505-001	DT	9.9	141	297		ŧ	79				10		0.8	
506-002	RT	9.7	4125	68	34	3	59	87	10	3	14	1.1	0.9	3.6
506-003	SAP	11.7	470	242	74	21	95	47	39	13	22	0.5	2.0	5.3
506-004	SAP	8.0	99	193	17		99	38	56	6	10	0.2	0.8	2.2
507-001	RT	11.5	875	160	31	11	91	75	21	5	19	3.6	1.4	1.4
507-002	RT	9.1	405	218	29	7	96	48	43	9	14	2.0	1.0	1.2
507-003	KL OT	8.0	358	221	48	4	90	44	40	10	12	4,/	1.7	1.7
507-004		9.0	1068	202	134	4	90 80	85	13	4	16	1.5	0.5	26
507-006	or	8.4	1671	246	116	3	83	79	17	4	iš	1.8	0.6	2.5
507-007	OS	10.9	2510	316	109	6	75	85	12	3	18	1.9	0.6	2.5
507-008	от	8.9	1313	173	98	7	87	76	19	5	14	1.4	0.6	2.0
507-009	OS	11.0	201	245	160	5	98	91	1	2	18	1.8	0.8	2.6
507-010	OT	9.8	920	185	68	4	92	68	22	10	25	1.4	0.7	2.9
507-011	OL	7.8	40	229	23		100		51 27	21		1.3	0.9	20
508-001	RT	7.5	501	201			- 95				16	1.8	0.0	1.4
508-002	RT	10.0	2305	155	38	14	11	73	23	4	16	2.0	1.0	2.2
508-003	RT	9.2	2267	139	37	14	78	72	23	6	16	1.9	1.0	2.0
508-004	SAP	8.4	196	160	8	1	98	41	49	10	9	0.2	0.2	2.4
508-007	SAP	9.5	237	213	22	0	98	38	53	9	8	0.1	0.2	2.2
509-001	RT	9.9	1543	206	37	12	<u> </u>	75	21	4	13	1.4	0.8	1.8
510-001	KI PT	8.9	1100	200	41	12	85 96	79	19	2	11	1.2	0.0	1.2
511-001		80		204	20		89	70	27		22	4.2	1.7	1.2
511-002	RT	11.2	881	238	30	10	91	73	23	4	22	4.1	1.7	1.3
511-003	RT	9.7	1416	130	30	10	86	79	18	3	17	3.2	1.3	1.1
511-004	wг	10.1	890	131	17	6	91	58	35	7	39	9.4	3.0	1.2
511-005	<u>WT</u>	8.7	1497	198	11	2	85	72	24	4	19	3.7	1.4	1.4
512-001	WI	10.1	493	141	27	3	99	42	47	11	25	5.5	1.5	1.8
512-002	WT	10.7	827 Aqa	1/8	19	1	92	299 42	52 A6	10	20	5.8 6.7	1.5	1.7
513-001	RT	11.3		185	20	6	90	83	15		27	6.4	1.0	1.3
513-002	WT	. 9.0	660	302	27	3	93	54	37	9	31	7.4	2.3	1.4
513-003	wг	8.4	368	205	44	3	96	66	28	6	27	6.5	1.6	1.7
513-004	WT	8.1	944	• 112	53	3	91	55	38	7	26	5.7	1.5	1.8

Appendix 280-J. Baudette area sample and subsample weights and percents reported by contract laboratory.

J-2
Sample UPI (k) HTMC method stande Value Value								Matrix					······································		
			ODM wt.	+10mesh	hHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
S1400 SAP 10.0 1346 216 23 0 67 41 49 10 16 2.3 10 2.3 10 2.3 10 2.3 10 2.3 10 2.3 10 11 2.3 10 11 2.3 10 11 11 2.3 11 13 2.3 11 2.3 11 2.3 11 13 13 2.3 13 13 2.3 13 13 2.3 13 13 2.3 13 13 2.3 13 13 2.3 13 13 2.3 13 2.3 13 2.2 13 13 13 13 13 13 13 13 13 13 14 13 13 13 13 13 14 13 13 13 13 13 13 13 13 13 13 13 14 13 13 14 14 16 13 13 13 13 13 13 13 13 13 13 13 <th>Sample</th> <th>Unit</th> <th>(kg)</th> <th>g/10kg</th> <th>e/10kg</th> <th>g/10kg</th> <th>e/10kg</th> <th>sample</th> <th>% sand</th> <th>% silt</th> <th>% clay</th> <th>%sol.</th> <th>Ca wt%</th> <th>Mg wi%</th> <th>Fe wt%</th>	Sample	Unit	(kg)	g/10kg	e/10kg	g/10kg	e/10kg	sample	% sand	% silt	% clay	%sol.	Ca wt%	Mg wi%	Fe wt%
514-00 RT 8.8 1161 226 20 10 88 68 22 4 13 2.0 1.0 1.1 514-000 RT 5.6 148 159 23 114 35 3 66 76 1 3 14 2.5 1.0 1.1 3 3 16 76 1 3 3 2.5 1.0 1.2 2.1 1.0 1.1 3 1.2 1.0 1.1 3 1.2 1.0 1.1 3 1.2 1.0 1.1 1.3 1.2 1.0 0.1 1.1 1.5 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	513-005	SAP	10.0	1346	216	23	0	87	41	49	10	16	2.3	1.0	2.5
314-604 KT 9.5 1448 19 85 79 11 3 15 2.1 10 1.1 514-004 KO 5.4 146 13 13 14 15 11 15 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11 15 11	514-001	RT	8.8	1161	296	20	10	89	68	28	4	13	2.0	1.0	1.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	514-002	RT DT	9.0	1408	159	24	13	85	79	18	3		2.3	1.0	1.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	514-005		9.0	1431	143	33	14	80	/0	<u>21</u>	3	14	2.4	1.1	1.2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	514-004		9.4	3667	755	35	11	63	90 76	21	2	10	3.0	1.3	29
	514-006	SAP	8.9	3002	104	94	0	70	54	39	7	33	0.6	2.2	10.7
515-002 RT 8.8 2700 181 47 9 73 73 72 22 4 15 2.3 1.0 22 515-003 RT 9.7 745 226 52 5 93 80 17 2 15 2.4 1.1 1.3 1.4 515-005 OT 8.8 167 2.5 5 91 67 2.7 6 2.3 5.2 1.6 1.9 515-007 OT 1.2 1.143 198 20 5 89 67 2.7 6 2.3 5.2 1.6 1.9 515-007 OT 9.5 2.143 1.47 47 10 79 76 2.0 5 6 0.1 0.2 2.4 516-007 RT 1.9 318 2.0 1.1 11 21 1.6 88 1.6 1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	515-001	RT	9.7	1022	275	63	4	90	76	21	3	12	1.9	0.9	1.1
515-003 RT 9.7 745 226 52 5 93 80 17 2 15 2.8 1.1 1.3 515-004 OT 8.8 924 267 33 5 91 71 24 5 19 36 1.3 1.4 1.7 15 515-005 OT 8.8 167 27 6 23 5.1 1.7 1.9 515-006 OT 8.2 8.8 167 25 6 23 5.1 1.7 1.9 515-006 OT 8.2 147 47 10 76 20 5 6 0.4 0.2 2.4 1.5 516-003 KT 1.9 24 101 1.0 20 1.2 87 75 21 4 19 4.1 1.4 1.2 517-002 RT 10.0 63 65 10 5 93 8 79 26 33 9 8 0.9 0.5 1.1 1.3 36 8	515-002	RT	8.8	2700	181	47	9	73	73	22	4	15	2.3	1.0	2.2
515004 OT 8.8 102 267 33 5 91 71 24 5 19 3.6 1.3 1.4 515005 OT 8.8 1107 25 5 91 67 22 5 20 4.0 1.4 1.7 1.9 515005 OT 1.2 1143 198 22 5 89 69 22 6 23 5.2 1.6 1.9 515007 0T 1.2 1143 198 20 5 89 69 22 6 0.1 0.2 2.4 1.5 1.5 1.5 1.4 1.1 1.7 6 88 62 31 6 6 0.1 0.2 2.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.1 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	515-003	RT	9.7	745	226	52	5	93	80	17	2	15	2.8	1.1	1.3
515-000 OT 9.8 1105 213 27 6 89 73 22 5 20 4.0 1.4 1.7 1.9 515-000 OT 11.2 1143 198 29 5 59 67 27 6 23 5.1 1.7 1.9 515-000 OT 9.1 1143 147 47 10 79 76 20 5 6 0.1 0.2 2.4 516-002 KT 11.9 1386 208 17 6 88 6 31 5 0.0 0.1 0.2 2.4 1.5 5 16.002 KG 9.1 0.0 1.1 1.5 5 1.6 0.0 1.7 3 30 6.9 2.6 1.8 1.1 1.4 1.2 1.5 5 1.6 1.1 1.4 1.2 1.5 5 1.6 1.6 1.6 1.4 1.2 1.5 1.4 1.7 1.4 1.4 1.2 1.6 1.8 1.9 1.4 1.1.4 <td>515-004</td> <td>от</td> <td>8.8</td> <td>924</td> <td>267</td> <td>33</td> <td>5</td> <td>91</td> <td>71</td> <td>24</td> <td>5</td> <td>19</td> <td>3.6</td> <td>1.3</td> <td>1.4</td>	515-004	от	8.8	924	267	33	5	91	71	24	5	19	3.6	1.3	1.4
315000 OI 8.0 8.08 107 25 3 91 67 27 0 23 3.1 1.1 <th1.1< th=""> 1.1 1.1</th1.1<>	515-005	OT	9.8	1105	213	27	6	89	73	22	5	20	4.0	1.4	1.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	515-006	01	8.0	828	16/	25	5	91	67	27	0	23	5.1	1.7	1.9
12/200 VI 23 10 11 12 12 10	515-007		11.2	2143	147	19	5	89	0 9 76	25	0	23	5.2	1.0	1.9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	515-008	- 21	9.5	1242		- 4/	6		62			25	9.1		
516.003 KG 91 5014 102 17 6 50 80 17 3 50 6.9 2.6 118 517.001 RT 112.0 1231 101 20 12 87 75 20 3 18 3.9 1.4 1.0 517.002 WT 10.6 1042 93 8 7 90 56 35 9 8 0.9 0.3 1.1 517.003 WT 10.6 1642 93 8 7 90 56 35 9 8 0.9 0.3 1.1 517.005 WT 9.4 441 190 3 2 96 34 51 15 36 8.5 2.3 1.6 517.006 WT 9.0 541 93 11 5 5 37 51 12 36 8.5 2.3 1.6 1.7 5 57.70 2.2 1.1 3 2.6 2.30 8 30 6.6 2.1 1.7 5<	516-007	KT	11.9	1386	208	17	6	87	64	33	5	30	0. 4 7.0	2.5	1.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	516-003	KG	9.1	5014	102	17	6	50	80	17	3	30	6.9	2.6	1.8
517-002 RT 12.0 121 10 12 87 75 21 4 19 4.1 1.4 1.2 517-003 WT 10.0 665 65 10 5 93 54 35 10 39 9.8 2.3 1.7 517-005 WT 9.4 441 190 3 2 96 34 51 15 36 9.9 0.2 1.5 517-005 WT 9.4 441 91 11 5 95 37 51 12 36 8.5 2.2 1.3 517-006 WT 9.0 541 93 11 5 95 37 51 12 36 8.5 2.2 1.5 517-006 WT 9.9 902 94 17 5 91 57 32 11 32 7.0 2.2 1.7 1.6 517-012 0T 9.4 14443 27 2.2 6 2.4 5.1 1.6 1.1 1.6 1.6	517-001	RT	10.7	955	256	27	10	90	77	20	3	18	3.9	1.4	1.0
517-003 WT 10.6 1042 93 8 7 90 56 35 9 8 0.9 0.5 1.1 517-004 WT 10.0 665 65 10 5 93 54 51 15 36 9.0 2.2 1.5 517-006 WT 10.8 660 108 12 5 93 32 55 13 34 7.8 2.2 1.3 517-006 WT 10.5 822 200 18 5 92 62 30 8 30 6.6 2.1 1.7 517-008 WT 10.5 822 220 18 5 92 62 30 8 30 6.6 2.1 1.7 517-010 WT 8.4 815 205 9 2 92 45 38 17 31 6.8 2.2 1.7 1.6 517-010 WT 8.4 815 205 5 89 72 22 6 24	517-002	RT	12.0	1251	101	20	12	87	75	21	4	19	4.1	1.4	1.2
517-004 WT 10.0 685 65 10 5 93 54 55 10 39 9.8 2.3 1.7 517-005 WT 10.8 660 108 12 5 93 32 55 13 34 7.8 2.2 1.3 517-005 WT 10.5 822 280 18 5 92 62 30 8 30 6.6 2.1 1.7 517-006 WT 10.5 822 280 18 5 92 62 30 8 30 6.6 2.1 1.7 517-006 WT 8.4 815 205 9 2 92 45 38 17 31 6.8 2.1 1.7 517-010 WT 8.4 815 205 9 2 92 45 38 11 32 7.0 2.2 1.7 5 56 73 2.1 6 24 5.1 1.6 1.6 1.6 1.6 1.6 1.6 1	517-003	WT	10.6	1042	93	8	7	90	56	35	9	8	0.9	0.5	1.1
517-005 WT 9.4 441 190 3 2 96 34 51 15 36 9.0 2.2 1.5 517-005 WT 10.8 660 108 12 5 93 32 55 13 34 7.8 2.2 1.5 517-006 WT 10.5 522 280 18 5 92 62 30 8 30 6.6 2.1 1.7 517-006 WT 8.4 815 205 9 2 92 45 38 17 31 6.8 2.1 1.7 517-010 WT 8.4 815 205 9 2 92 45 38 17 31 6.8 2.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.7 1.7 1.15 1.23 2.1 1.6 <td>517-004</td> <td>WT</td> <td>10.0</td> <td>685</td> <td>65</td> <td>10</td> <td>5</td> <td>93</td> <td>54</td> <td>35</td> <td>10</td> <td>39</td> <td>9.8</td> <td>2.3</td> <td>1.7</td>	517-004	WT	10.0	685	65	10	5	93	54	35	10	39	9.8	2.3	1.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	517-005	WT	9.4	441	190	3	2	96	34	51	15	36	9.0	2.2	1.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	517-006	WI	10.8	660	108	12	5	93	32	33	13	54	7.8	2.2	1.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-007	WI	9.0	241	790	19	3	93	51	30	12	30	6.6	2.3	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-008	WT	10.5	012	280	10	5	92	57	30	11	30	7.0	22	1.7
517-011 OT 9.6 1115 370 25 5 89 72 22 6 24 5.2 1.7 1.6 517-012 OT 9.4 1443 277 29 5 86 73 21 6 24 5.2 1.7 1.6 517-013 OT 10.7 1574 106 21 6 84 74 21 5 23 5.0 1.6 1.7 517-013 OT 10.2 1092 289 30 6 89 80 16 4 22 4.6 1.5 1.5 517-015 OT 12.3 1279 133 25 5 87 74 21 5 24 5.0 1.6 4.7 517-017 OT 8.6 1628 126 22 6 84 83 13 3 24 5.3 1.7 1.7 1.6 20 25 5 88 74 21 5 23 5.1 1.6 1.8 1.4	517-010	ŴŤ	8.4	815	205	9	2	92	45	38	17	31	6.8	21	1.7
517-012 OT 9.4 1443 277 29 5 86 73 21 6 24 5.1 1.6 1.6 517-013 OT 10.7 1574 106 21 6 84 74 21 5 23 5.0 1.6 1.7 517-014 OT 12.3 1279 133 25 5 87 74 21 5 24 5.0 1.6 4.7 517-016 OT 12.3 1279 133 25 5 87 74 21 5 24 5.0 1.6 4.7 517-017 OT 8.6 1628 126 22 6 84 83 13 3 24 5.3 1.7 1.7 517-017 OT 7.7 1157 426 25 5 88 74 21 5 23 5.1 1.7 1.7 518-002 RT 8.0 636 199 14 4 94 49 42 9 23	517-011	OT	9.6	1115	370	25	5	89	72	22	6	24	5.2	1.7	1.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-012	OT	9.4	1443	277	29	5	86	73	21	6	24	5.1	1.6	1.6
517-014 OT 10.2 1092 289 30 6 89 80 16 4 22 4.6 1.5 1.5 517-015 OT 12.3 1279 133 25 5 87 74 21 5 24 5.0 1.6 4.7 517-016 OT 9.0 1338 281 27 6 84 78 18 4 22 4.7 1.6 1.8 517-016 OT 7.7 1157 426 25 5 88 74 21 5 23 4.4 1.6	517-013	OT	10.7	1574	106	21	6	84	74	21	5	23	5.0	1.6	1.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-014	OT	10.2	1092	289	30	6	89	80	16	4	22	4.6	1.5	1.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-015	OT	12.3	1279	133	25	5	87	74	21	5	24	5.0	1.6	4.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-010	OT	9.0	1358	281	2/	0	84	/8	18	4	44	4.1	1.0	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	517-017	OT	6.0 77	1028	426	25	5	04 99	63 74	13	5	24	2.3 A A	1.6	20
S18-002 RT 8.0 636 199 14 4 94 49 42 9 23 4.9 1.6 1.6 S18-003 WS 9.4 4 222 26 3 100 39 57 4 118 3.8 1.4 1.1 S18-003 WS 9.4 1135 196 16 1 89 55 36 9 54 12.6 4.4 1.5 S18-005 WT 8.5 651 208 16 1 93 46 43 11 48 11.6 3.8 1.7 S18-005 WT 8.6 791 52 18 1 92 37 46 17 36 8.3 2.6 1.9 518-007 WT 8.7 547 225 41 2 94 52 35 13 26 6.0 1.5 2.6 519-001 RT 9.9 2614 262 26 6 76 80 17 4 28 7.2 1.8 <th< td=""><td>518-001</td><td>RT</td><td>12.1</td><td>639</td><td>320</td><td>20</td><td></td><td>94</td><td></td><td>36</td><td></td><td>23</td><td>51</td><td>1.0</td><td>1.3</td></th<>	518-001	RT	12.1	639	320	20		94		36		23	51	1.0	1.3
518-003 WS 9.4 4 222 26 3 100 39 57 4 18 3.8 1.4 1.1 518-004 WT 9.4 1135 196 16 1 89 55 36 9 54 12.6 4.4 1.5 518-005 WT 8.5 651 208 16 1 93 46 43 11 48 11.6 3.8 1.7 518-006 WT 8.6 791 52 18 1 92 37 46 17 36 8.3 2.6 1.9 518-006 WT 8.7 547 225 41 2 94 53 34 12 28 7.0 1.6 2.0 518-008 WT 9.9 644 94 46 2 94 52 35 13 26 6.0 1.5 2.6 519-001 RT 12.0 1538 172 21 7 85 83 14 3 32 <td< td=""><td>518-002</td><td>RT</td><td>8.0</td><td>636</td><td>199</td><td>14</td><td>4</td><td>94</td><td>49</td><td>42</td><td>9</td><td>23</td><td>4.9</td><td>1.6</td><td>1.6</td></td<>	518-002	RT	8.0	636	199	14	4	94	49	42	9	23	4.9	1.6	1.6
518-004 WT 9,4 1135 196 16 1 89 55 36 9 54 12.6 4,4 1.5 518-005 WT 8.5 651 208 16 1 93 46 43 11 48 11.6 3.8 1.7 518-006 WT 8.6 791 52 18 1 92 37 46 17 36 8.3 2.6 1.9 518-006 WT 8.7 547 225 41 2 94 53 34 12 28 7.0 1.6 20 518-008 WT 9.9 644 94 46 2 94 52 35 13 26 6.0 1.5 2.6 518-002 RT 12.0 1538 172 21 7 85 83 14 3 32 7.4 2.1 2.9 519-003 WT 10.0 1684 230 24 7 83 73 22 30 6.8 34	518-003	WS	9.4	4	222	26	3	100	39	57	4	18	3.8	1.4	1.1
S18-005 WT 8.5 651 208 16 1 93 46 43 11 48 11.6 3.8 1.7 518-005 WT 8.6 791 52 18 1 92 37 46 17 36 8.3 2.6 1.9 518-007 WT 8.7 547 225 41 2 94 53 34 12 28 7.0 1.6 2.0 518-008 WT 9.9 644 94 46 2 94 52 35 13 26 6.0 1.5 2.6 519-002 RT 12.0 1538 172 21 7 85 83 14 3 32 7.4 2.1 2.9 519-002 RT 10.0 1684 230 24 7 83 73 22 5 30 6.8 2.0 1.7 519-003 WT 10.0 1684 230 24 7 83 73 22 5 30 6.8 2.0	518-004	WT	9.4	1135	196	16	1	89	55	36	9	54	12.6	4,4	1.5
518-006 WT 8.6 791 52 18 1 92 37 46 17 36 8.3 2.6 1.9 518-007 WT 8.7 547 225 41 2 94 53 34 12 28 7.0 1.6 20 518-008 WT 9.9 644 94 46 2 94 52 35 13 26 6.0 1.5 2.6 519-002 RT 12.0 1538 172 21 7 85 83 14 3 32 7.4 2.1 2.9 519-002 RT 10.0 1684 230 24 7 83 73 22 5 30 6.8 2.0 1.7 519-003 WT 10.0 1684 230 24 7 83 73 22 5 30 6.8 2.0 1.7 519-004 WT 7.8 890 126 52 3 91 66 26 8 34 7.0 2.4 2.1 <td< td=""><td>518-005</td><td>WT</td><td>8.5</td><td>651</td><td>208</td><td>16</td><td>1</td><td>93</td><td>46</td><td>43</td><td>11</td><td>48</td><td>11.6</td><td>3.8</td><td>1.7</td></td<>	518-005	WT	8.5	651	208	16	1	93	46	43	11	48	11.6	3.8	1.7
518-007 WT 8.7 547 225 41 2 94 53 34 12 28 7.0 1.6 20 518-008 WT 9.9 644 94 46 2 94 52 35 13 26 6.0 1.5 26 519-001 RT 9.9 2614 262 26 6 76 80 17 4 28 7.2 1.8 1.6 20 519-002 RT 12.0 1538 172 21 7 85 83 14 3 32 7.4 2.1 29 519-002 WT 10.0 1684 230 24 7 83 73 22 5 30 6.8 2.0 1.7 519-004 WT 7.8 890 126 52 3 91 66 26 8 34 7.0 2.4 2.1 1.9 1.7 519-004 WT 10.2 969 278 46 5 90 55 34 11 19 2.2 0	518-006	WT	8.6	791	52	18	1	92	37	46	17	36	8.3	2.6	1.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	518-007	WT	8.7	547	225	41	2	94	53	34	12	28	7.0	1.6	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	518-008		9.9	044	94	40	1	94	32				0.0	1.3	2.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	519-001	KI DT	9.9	2014	202	20	0	/0	80	17	4	1 20	1.4	1.8	1.0
519-005 WT 7.8 890 126 52 3 91 66 26 8 30 6.0 2.0 1.1 519-005 WT 10.2 969 278 46 5 90 55 34 11 19 2.2 0.9 3.8 519-005 WT 8.3 1014 109 42 6 90 63 28 9 18 2.1 1.0 3.6 519-006 WT 8.3 1014 109 42 6 90 63 28 9 18 2.1 1.0 3.6 520-001 RT 10.9 956 345 23 11 90 76 21 3 16 3.0 1.3 1.3 520-002 RT 9.3 713 469 33 16 93 78 19 3 15 2.9 1.1 1.2 520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 <	519-002	WT	12.0	1684	230	21	, ,	81	71	22	د ۲	32	6.8	2.1	17
519-005 WT 10.2 969 278 46 5 90 55 34 11 19 2.2 0.9 3.8 519-006 WT 8.3 1014 109 42 6 90 63 28 9 18 2.1 1.0 3.6 520-001 RT 10.9 956 345 23 11 90 76 21 3 16 3.0 1.3 1.3 520-002 RT 9.3 713 469 33 16 93 78 19 3 15 2.9 1.1 1.2 520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 6.0 2.1 1.5 520-004 WT 8.1 1669 244 24 10 83 74 21 5 31 7.1 2.4 1.5 520-005 OT 10.0 1473 168 50 5 83 14 3 22 44	519-004	ŵŤ	7.8	890	126	52	3	91	66	26	8	34	7.0	2.4	2.1
\$19-006 WT 8.3 1014 109 42 6 90 63 28 9 18 2.1 1.0 3.6 \$20-001 RT 10.9 956 345 23 11 90 76 21 3 16 3.0 1.3 1.3 1.3 \$20-002 RT 9.3 713 469 33 16 93 78 19 3 15 2.9 1.1 1.2 520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 6.0 2.1 1.5 \$20-004 WT 8.1 1669 244 24 10 83 74 21 5 31 7.1 2.4 1.5 \$20-005 OT 100 1473 168 50 5 83 14 3 22 4 1.5 10	519-005	WT	10.2	969	278	46	5	90	55	34	- ii	19	2.2	0.9	3.8
520-001 RT 10.9 956 345 23 11 90 76 21 3 16 3.0 1.3 1.3 520-002 RT 9.3 713 469 33 16 93 78 19 3 15 2.9 1.1 1.2 520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 6.0 2.1 1.5 520-004 WT 8.1 1669 244 24 10 83 74 21 5 31 7.1 2.4 1.5 520-005 OT 100 1473 168 50 5 85 83 14 3 22 4 1.5 10	519-006	WT	8.3	1014	109	42	6	90	63	28	9	18	2.1	1.0	3.6
520-002 RT 9.3 71.3 469 33 16 93 78 19 3 15 2.9 1.1 1.2 520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 6.0 2.1 1.5 520-004 WT 8.1 1669 244 24 10 83 74 21 5 31 7.1 2.4 1.5 520-005 OT 10.0 1473 168 50 5 85 83 14 3 22 4 1.5 1.0	520-001	RT	10.9	956	345	23	11	90	76	21	3	16	3.0	1.3	1.3
520-003 RT 8.5 1369 356 21 9 87 70 25 4 27 6.0 2.1 1.5 520-004 WT 8.1 1669 244 24 10 83 74 21 5 31 7.1 2.4 1.5 520-005 OT 10.0 1473 168 50 5 85 83 14 3 22 4 1.5 10	520-002	RT	9.3	713	469	33	16	93	78	19	3	15	2.9	1.1	1.2
520-004 W1 8.1 1009 244 24 10 85 74 21 5 31 7.1 2.4 1.5 520-005 0T 10.0 1473 168 50 5 85 83 14 1 27 4.4 15 10	520-003	RT	8.5	1369	356	21		87	70	25	4	27	6.0	2.1	1.5
	520-004	OT	5.1	1009	169	- 24 	. 10	<u>د</u> ة 22	92	21	2	1 3L 22		2.4	1.3

and and a

Appendix 280-J. Baudette area sample and subsample weights and percents reported by contract laboratory.

enter Contraction Contraction 1343453.0

Constant of the second second

C.

á

J-3

							Matrix							
		ODM wt.	+10mesh	ltHMC	nmHMC	magHMC	as % of				Weak acid	Acid sol.	Acid sol.	Acid sol.
Sample	Unit	(kg)	g/10kg	g/10kg	g/10kg	g/10kg	sample	% sand	% silt	% clav	%sol.	Ca wt%	Mg wt%	Fe wt%
520-006	от	7.3	1132	360	- 37		- 89	68	25	7	22	4.5	1.5	1.8
520-007	ОТ	9.6	1128	106	29	5	89	64	27	9	23	4.8	1.6	1.9
520-008	ОТ	8.2	1260	223	21	4	87	61	31	8	27	5.0	1.8	1.3
520-009	ОТ	8.8	1219	373	23	23	88	64	29	7	27	5.0	l.8	1.7
520-010	ОТ	10.9	1223	310	24	4	88	65	28	6	27	5.1	1.8	1.5
520-011	ОТ	7.9	952	31.5	22	4	90	63	29	8	25	5.8	2.1	1.8
520-012	OT	9.2	1087	138	10	6	89	70	26	4	26	6.6	2.0	1.0
520-013	ОТ	9.6	1041	157	14	6	90	78	18	4	26	5.9	1.2	1.1
520-014	ОТ	9.2	1242	224	5	11	88	64	29	7	32	7.5	2.1	1.2
520-015	OS	7.9	434	336	121	6	96	93	6	ı	16	1.8	0.6	3.0
520-016	SAP	9.5	323	298	45	1	97	11	83	7	5	0.1	0.1	1.1
520-017	SAP	10.3	213	24	22	0	98	6	91	3	4	0.1	0.0	0.7
521-001	RT	12.0	1509	317	23	12	85	66	29	5	20	4.5	1.5	1.0
521-002	RT	9.7	814	114	17	6	92	66	28	6	31	6.0	1.8	1.1
521-003	WT	12.2	744	127	19	4	93	61	25	14	30	6.3	1.8	1.5
521-004	ОТ	10.1	1502	290	34	5	85	67	26	7	26	5.8	1.4	1.5
521-005	WT	9.6	758	130	6	2	92	41	39	20	44	10.3	2.6	1.5
521-006	WT	9.4	594	171	14	2	94	35	52	12	47	10.6	3.1	1.2
521-007	OG	9.8	6664	295	23	1	33	88	10	2	26	4.6	3.2	2.5
521-008	OG	9.6	5822	150	36	2	42	88	11	2	20	2.6	0.8	3.2
521-009	OG	9.6	51 28	199	31	1	49	88	11	2	18	2.4	0.8	3.1
521-010	O\$	8.7	675	352	137	1	93	90	9	ı	16	1.8	0.5	2.8
521-011	OS	8.9	766	82	145	0	92	86	12	2	17	1.7	0.7	3.0
521-012	SAP	8.5	1227	131	102	0	88	65	30	5	19	0.7	1.4	3.5

Appendix 280-J. Baudette area sample and subsample weights and percents reported by contract laboratory.

and the second

Column abbreviations and data key

Stratigraphic units

6

ini.

КT	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
OT	=Old Rainy till
OS	=Old Rainy sand
OG	=Old Rainy gravel
OL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock

Other abbreviations

susc. (cgs) Ox. ox	= (null), property not measured =magnetic susceptibility =centimeter/grams/second =oxidation =oxidized
un	=unoxidized
dens.	=density

\$

Appendix 280-K. Physical properties of Baudette area samples.

and setting and

			Mean		Till		
		Munsell	susc.	Ox.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	pH	dens.
501-001	RT	3 G 7/1	9	un	4		1.9
501-002	SAP	5 GY 6/1	1			8.4	1.8
501-003	SAP	5 GY 6/1	1			5.7	1.8
501-004	BEDZ	<u>5 G 7/1</u>	00			7.5	1.7
502-001	RT	5 GY 5/1	29	un	3		
502-002	RT	5 GY 5/1	46	un	3		
502-003	RT	5 GY 5/1	50	un	3		
502-004	RS	5 Y 6/1	50	un			
502-005	OL	5 GY 5/1	58	un			
502-006	BED		125				
503-001	RŤ	5 GY 5/1	19	un	3		
503-002	RT	5 GY 5/1	14	un	3		
503-003	RT	5 GY 5/1	16	un	3		
503-004	RT	5 GY 5/1	15	un	3		
503-005	RT	5 GY 5/1	10	un	3		
503-006	ASAP	5 Y 8/1	1				
503-007	SAP	5 G 8/1	1			8.7	1.8
503-008	BEDZ	5 G 7/1	1			9.4	2.0
503-009	BED	5 G 7/1	2				
305-001	RT	5 GY 5/1	13	un	2		
505-002	ОТ	5 G 5/1	15	un	1		
505-003	OT	5 G 5/I	12	un	1		
505-004	SAP	5 G 4/1	3			8.6	1.9
505-005	BEDZ		13			8.2	2.0
506-001	RT	5 GY 5/1	36	ับก	3		
506-002	RT	5 GY 5/1	36	un	4		21
506-003	SAP	5 GY 4/1	29			9.7	1.5
506-004	SAP	10GY 5/2	21			9.4	1.7
506-005	BED		88				2.8
507-001	RT	5 Y 5/1	6	un	2		
507-002	RT	5 Y S/1	6	un	3		
507-003	RL	5 GY 6/1	5	un	3		
507-004	OT	10YR 6/3	10	OX	3		
507-005	OT	5 YR 6/3	12	ox	3		
507-006	от	5 Y 5/1	9	un	3		
507-007	OS	5 Y 5/1	11	un			
507-008	от	5 Y 5/1	11	un	1		
507-009	OS	5 Y 5/1	20	un			
507-010	OT	5 Y 5/1	24	un	5		
507-011	OL	5 GY 6/3	23	un			
507-012	SAP	5 GY 3/2	18			8.9	-1.7
507-013	BEDZ		19			8.8	1.9
508-001	RT	5 GY 5/1	12	un	3		
508-002	RT	5 GY 5/1	24	un	3		
508-003	RT	5 GY 5/1	35	un	4		
508-004	SAP	5 G 6/1	8			8.3	1.7
508-005	SAPZ	5 G 6/1	6			8.8	1.8
508-006	SAPZ	5 BG 7/2	12				
508-007	SAP	5 G 6/1	12			9.2	1.9
508-008	SAPZ	5 G 5/2	17			8.9	1.9
508-009	BED		16				2.4
509-001	RT	5 GY 5/1	16	un	3		
509-002	BED		29.36				
510-001	RT	5 GY 5/1	23	un	3		
510-002	RT	5 GY 5/1	25	นก	3		

K-2

j.

Appendix 280-K. Physical properties of Baudette area samples.

1997年1月1日日本 1993年9月1日

فذ

			Mean		Till		
		Munsell	susc.	Ox.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	ъH	dens.
510-003	BED		271				
511-001	RT	5 GY 5/1	20	un	3		
511-002	RT	5 GY 5/1	18	un	3		
511-003	RT	10 Y 6/1	15	un	3		
511-004	WT	5 Y 5/1	12	un	4		1.9
511-005	WT	10GY 6/1	8	un	4		
511-006	SAPZ	5 G 6/1	2			9.0	<u></u>
512-001	WI	· 5 YR 5/2	3	OX	5		
512-002	W1	IUYR 6/2	1	OX	4		
512-003	WI	IUYK W2	0	OX	4	8.8	20
512-004		2 GV 6/1				8.3	
513-007	WT	5 V 5/2	4 K		4		
513-002	WT	10 VP 5/2	5	07	4		
513-004	wr	10YR 5/2	5	01	4		20
513-005	SAP	5 6 6/1	š	01	-	85	1.8
513-006	BED		339			0.2	2.8
514-001	RT	10 Y 6/1	13	บก	4		
514-002	RT	5 Y 5/2	16	un	4		
514-003	RT	10YR 5/2	10	un	4		
514-004	RG	10YR 5/2	7	un			
514-005	OS	7 Y 6/1	5	un			
514-006	SAP	10GY 3/2	4			7.9	1.9
514-007	BED		21 27				2.5
515-001	RT	5 GY 6/1	11	un	3		
515-002	RT	5 GY 6/1	11	un	3		
515-003	RT	5 GY 6/1	6	un	3	•	
515-004	OT	10 Y 5/1	6	un	4		
515-005	OT		/	un	4		2.1
515-000		5 G 5/1	/ 2	un	4		21
515-007	OT		. /	un	4		
515-008		5 6 5/1	9 63	un	4		
515-009	KT	5 8 3/1		110	4	· · · · · · · · · · · · · · · · · · ·	
516-002	KT KT	5 X 5/1	17	110	4		
516-003	ĸĢ	5 7 5/1	18	un	-		
516-004	BED		38				
517-001	RT	3 Y 4/1	20	un	1		
517-002	RT	5 Y 5/1	19	un	4		
517-003	WT	5 Y 5/1	16	un	5		
517-004	WT	5 Y 5/1	18	un	5		
517-005	WT	3 Y 4/2	18	ox	4		
517-006	WT	3 Y 4/2	. 22	un	4		
517-007	WT	3 Y 4/2	22	un	4		
517-008	WT	5 Y 4/2	18	un	4		
517-009	WT	3 Y 4/1	15	un	5		
517-010	WT	5 Y 4/1	12	un	5		
517-011	OT	5 Y 5/1	12	un	3		
517-012	OT	5 Y 5/1	15	un	3		
517-013	OT	5 Y 5/1	12	un	3		
517-014			10	un	3		
517-015		5 1 3/1	14	un un	3		
517-010		5 Y 5/1	0	110	3		
517-018	OT OT	5 Y 5/1	10		2		
					2		

5¹⁷ 96 199 199 199 199 199

Appendix 280-K. Physical properties of Baudette area samples.

- margariti

والاس من ا

			Mean		Till		
		Munsell	susc.	Ох.	compact-		Bulk
Sample	Unit	color	(cgs)	state	ness	рH	dens.
517-019	BED		313				
518-001	RT	3 GY 6/1	13	un	3		
518-002	RT	5 Y 5/1	9	un	4		
518-003	WS	6 GY 4/1	25	un			
518-004	WT	5 Y 3/2	23	un	4		
518-005	WT	5 Y 3/2	22	un	4		
518-006	WT	3 Y 3/I	21	un	5		
518-007	WT	10YR 4/2	21	OX	4		
518-008	WT	10YR 4/2	23	OX	4		
518-009	BEDZ	5 G 6/1	9				1.9
519-001	RT	10 Y 6/1	9	un	3		
519-002	RT	10 Y 6/1	7	un	4		
519-003	WT	10 Y 6/1	9	un	4		
519-004	WT	5 Y 3/2	9.	un	5		
519-005	WT	3 Y 3/2	10	un	4		
519-006	WT	10YR 3/3	7	un	4		
519-007	BED		1302				•
520-001	RT	3 GY 6/1	17	un	3		
520-002	RT	3 GY 6/1	18	un	3		
520-003	RT	3 GY 6/1	14	un	3		
520-004	WT	3 GY 5/1	18	un	3		
520-005	ΟΤ	3 GY 5/1	8	un	3		
520-006	ΟΤ	3 GY 5/1	7	un	4		
520-007	OT	3 GY 5/1	7	un	5		
520-008	OT	3 GY 5/1	8	un	5		
520-009	ΟΤ	3 GY 5/1	7	un	5		
520-010	OT	3 GY 5/1	7	นก่	5		
520-011	OT	3 GY 5/1	7	un	5		
520-012	ΟΤ	10 Y 5/1	9	un	4		
520-013	ΟΤ	7 Y 4/I	- 5	un	3		
520-014	OT	5 Y 5/1	7	un	5		2.0
520-015	OS	5 Y 5/1	4	un		8.0	1.6
520-016	SAP	5 GY 8/1	1			8.3	2.3
520-017	SAP	5 GY 8/1	0			8.3	2.0
521-001	RT	5 GY 6/1	24	un	3		
521-002	RT	5 Y 5/1	26	un	3		
521-003	WT	3 Y 4/1	. 7	un	4		
521-004	OT	10 Y 5/1	24	un	4		
521-005	WT	5 Y 3/I	19	un	4		
521-006	WT	5 Y 5/1	23	un	3		
521-007	OG	5. Y 5/L	29	un			
521-008	OG	5 Y 5/1	36	un			
521-009	OG	5 Y 5/1	29	un			
521-010	OS	5 Y 5/1	0	un			
521-011	OS	5 Y 5/1	0	un	3		
521-012	SAP	10 R 3/4	l			9.0	l.9
521-013	BED		0				
521-014	BED		0				
521-015	BEDZ		0				

K-4

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

Column abbreviations and data key

Stratigraphic units

 ~ 2

KT RT WT OT	=Koochiching till =Rainy till =Winnipeg till =Old Rainy till
ASAP SAP	=reworked saprolite =saprolite
Other abbreviations ct.	=count
Т	$=$ tra ∞ , $< 1\%$
morph.	≈morphology
W/	=(null) not present in sample
	-(nun) not present in sample
morphology	
ſr	=frosted rounded
8	=anhedral
S	=subhedral
C	=euhedral
size	
<u>s</u>	=small. < .1mm
	=medium, .1mm5mm
	=large, >.5mm - 1mm
vl	=very large, >1mm - 2mm
color	
c	=clear
P	=pink
l	=lavender
L .	=light brown
ro	=red-orange
Ь	=brown

		Scheelite grain	Pyrite	Pyrite morph.	Pyrite	Marcasite	Marcasite size	Zircon	Zircon	Zircon	Zircon color	Sphene (%)	Sphene	Sphene
Sample	Unit	ct.	(%)		size	(%)		(%)	morph.	size		• • • •	morph.	size
501-001	RT		60	a-s	s-l	Т	s-m	30	fr-e	8	c,p,l	5	a-5	8-m
501-002	SAP		50	a-e	s -1			35	fr-e	5	c,p,l,t	10	\$	8
501-003	SAP	1	50	a-e	s-1	Т	1	45	fr-e	5	c,l	т	5	8
502-002	RT	2	30	a-e	s-l	Т	m-l	30	fr-e	S-]	l,c,p,t	35	a-e	8-
503-002	RT	1	35	a-s	S-]			25	fr-e	8-1	c,p,l,t	20	a-5	8-
503-005	RT	1	70	8-5	s-l			5	a-e	5	c,ro,t,p	10	8-5	s-m
503-006	ASAP	1	30	a-s	s-1			45	fr-e	5	c,p,l	20	a-s	\$
503-007	SAP	3						99	a-s	5	c,l,p	т	a-s	\$
505-001	RT		60	a-e	s-l	Т	m-l	30	ſr-e	s-m	c,l,p,t	1	8-5	\$
505-002	RT	1	80	a-s	s- 1	Т	1	15	a-e	s -m	c,l,p,t,r	1	a-s	8
505-003	RT		70	a-s	s-l	Т	1	25	a-e	5	c.p.l.t	1	8-3	s -1
505-004	SAP		85	a-s	s-	Т	1	10	fr-e	8	c.l.p	т	8-S	1
506-002	RT	······································	90	a-s	8-	Т	<u> </u>	5	fr-e	5	p.c.l	T	8	8
506-004	SAP		25	a-s	s-1			70	8-5	8	c.p.l	т	a	5
507-002	RT	3	30	a-s	8-	Т		40	fr-e	\$	p.c.l.t	25	a-s	s-m
507-003	RL		75	8-e	s -1	т	i	20	fr-e	3	c.l.p	2	8-5	s-1
507-012	SAP		10	8-5	s -1	Ť	Ì	85	fr-e	· 5	C.D	Ť	a-s	5
508-003	RT		60	a-5	<u> </u>			30	a-s	5	p.c.l		a-s	5
508-004	SAP		65	a-e	s-l	т	1	30	a-e	5	c.p.l.t	2	a-s	
508-007	SAP		Т	8-5	s-1			99	c-a	s-m	c.l.t	Ť	C-5	5
509-001	RT	2	- 5	8-5	S-	T	1	65	līr-e	S	c.l.p	25	a-s	s -1
510-002	RT	3	35	a-5	s-1	T	s-m	50	fr-e	s	c.l.p.t	10	a-s	s-m
511-002	RT		50	a-s	s-l	Т	1	45	a-e	S	c.l.p.r	Т	a-s	S-1
511-004	wr	1	80	a-e	s-l	т	m-l	15	fr-e	8	c.p.t.l	5	8-5	s- 1
511-005	WT	i	90	a-e	s-1	Ť	s-1	5	a-e	1-m	p.c.l.t.r	Ť		
512-001	WT	2	90	8-C	s-1	T	<u> </u>	5	a-e	8	C.D	T	5	\$
512-002	WT	ī	95	a-e	s-1	т	ī	i	a-e	8	c.l.p	Ť	5	
512-003	WT	-	95	a-s	s-l	Т	s-1	i	8-5	5	c.p.t	Ť	8-5	5
513-001	RT		50	8-0	5-1	T	1	25	fr-e	8	p.l.t.c	5	8-5	
513-005	SAP		99	a-e	s-l	Т	i	т	fr-e	5	C.D	Ť		
514-001	RT	1	35	8-5	s-1	Ť	Î	25	a-e	5	c.p.l	35	8-5	s-m
514-006	SAP		20	8-5	s-l			75	8-C	5	C.D	Ť	a-5	1
515-008	OT	3	40	a-c	<u> </u>			50	fr-e	1	L.D.C	T	1	1
516-001	KT		70	a-¢	<u>s-</u>	T	<u> </u>	20	8-e		C.D.rO		5	
516-002	KT	i	60	a-c	s-1	т	s-l	35	8-C	5	c.p.l	i	5	5
517-002	RT	1	65	A-C	<u>s-</u>	T	1	30	8-C	VS	Lp.c.t	2	2-5	5
517-003	WT	•	90	3-0	s-1	Ť	8-	5	2-0		c.p.t	2		
517-004	WT		75	8-5	s-l	-		20	8-0	8	c.t	2	8-5	
517-006	WT		75	8-6	s-1	т	s-1	20	fr-e		D.C.I	ī	5	
517-010	WT		98	8-e	s-1	Ť	8-1	Ť	8-6		col	Ť		
517-011	OT	*	90	a-8	8-1	T T	n -1	5	3-0	s-1	D C I	i	3-6	
517-017	OT	2	60	8-6	s-1	Ť	1	35	fre	8-M	c n l	2	8-8	
517-018	OT	2	85	1.0 1.0	vl	•	•	10	fr-e	•	m n c l	ī	3-1	
518-004	ŴT	<u> </u>			 s-l		8-1	Ť	[r-s		Int			
518-005	WT	5	05	u-2 8-0	5-1 6.1	Ť	u-1 4-1	i	fr.e		c n l	Ť		:
518-005	wr	1	95	a-0 8-6		Ť	s-1	т	fr-e	5-m	c n h ro	÷	- 8-5	
510-004			- 60-	8-6		<u> </u>			9-6	\$-111	norl			
520-007	<u>or</u>			8-6	8-1	<u> </u>		- 20-	8-6	3-111	<u> </u>	Î		
\$20-007	or	2	60	u-C 8-A	971 8-1	Ť	mil	35	a-c fr.e	• •-m	c n ro i	i		:
520-011	OT OT	-	80	a-e	s-1	Ť		15	fr-e	8	p.c.l	i	3	

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

L-2

Sample	Unit	Scheelite grain ct.	Pyrite (%)	Pyrite morph.	Pyrite size	Marcasite (%)	Marcasite size	Zircon (%)	Zircon morph.	Zircon size	Zircon color	Sphene (%)	Sphene morph.	Sphene size
520-016	SAP	·····	75	8-5	s-l	Т	5-1	20	a-e	\$-m	c,p,l	Т	5	8
520-017	SAP		20	5	8			10	a-e	s- m	c,t	Т	8	8
521-004	WT	3	85	a-e	s-1	Т	I	10	fr-e	5	p,l,c,ro	5	8-8	8
521-005	OT		95	a-s	s-l	Т	5-1	2	fr-e	5	c,p,t	Т	s-e	s-m
521-006	WT		98	a-s	s-l	Т	s-1	1	fr-e	5	c,p,t	Т	5	5
521-011	от		60	a-s	s- l	Т	s-1	30	fr-e	s-m	c,p,l	Т	5	5
521-012	SAP		25	a-s	5- 1			70	fr-e	s-m	c,p	Т	5	5

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

1923.Cov

(em

All and a second second

.

4

L-3

KuiteKvinteKyaniteKyan			m				1.	. .	 .	Rock	
Sample Unit (%) morph. size color (%) Other 501-002 SAP s s s s-m clar T isonadum 501-002 SAP T s s dear T isonadum 501-002 SAP T s s dear T isonadum 501-002 NT T s s dear T isonadum 501-002 NT T s s dear T isonadum 505-002 RT T s s dear T isonadum 505-002 RT T s s dear T isonadum 505-002 RT T s s dear T isonadum dear T isonadum isonadum isonadum isonadum dear T isonadum isonadum isonadum isonadum isonadum <td< th=""><th></th><th></th><th>Rutile</th><th>Rutile</th><th>Rutile</th><th>Kyanite</th><th>Kyanite</th><th>Kyanite</th><th>Kyanite</th><th>Frag.</th><th></th></td<>			Rutile	Rutile	Rutile	Kyanite	Kyanite	Kyanite	Kyanite	Frag.	
501-601 RT T 8-4 8 T s s-m clear T I connadum 501-602 SAP T s 1 s 1 s T 501-602 SAP T s s T s s 1 s 501-602 RT T s s T s s 1 a 501-602 RT T s s T s s clear T 1 a 501-602 RT T s s t s clear T 2 molystemic 505-602 RT T s s t clear T 2 molystemic 505-602 RT T s s t clear T 2 molystemic 505-602 RT T s s t clear T 2 molystemic 505-602 RT T s s t clear T i i i i i i i i i i i i i i i i <td>Sample</td> <td>Unit</td> <td>(%)</td> <td>morph.</td> <td>size</td> <td>(%)</td> <td>morph.</td> <td>size</td> <td>color</td> <td>(%)</td> <td>Other</td>	Sample	Unit	(%)	morph.	size	(%)	morph.	size	color	(%)	Other
50-002 SAP T SAP 301-003 SAP T Image: SAP 303-002 RT T Image: SAP 303-002 RT T Image: SAP 303-005 RT T Image: SAP 303-006 RT T Image: SAP 303-007 RT T Image: SAP 303-000 RT T Image: SAP 303-000 RT T Image: SAP 303-001 RT T Image: SAP 303-002 RT T Image: SAP 303-003 RT T Image: SAP 303-004 RAP T Image: SAP 303-005 RT T Image: SAP 303-004 RT T Image: SAP 303-005 RT	301-001	RT	Т	a-5	\$	т	5	s-m	clear	Т	1 corundum
901-003 SAP T 02002 RT I s s I. dear T 3 chakopyrite 030402 RT T s s T s s I. dear T 030402 RT T s s T s s I. dear T 030400 RT T s s I. dear T I. dear T 030400 RT T s s I. dear T I. dear T 054002 RT T s s I. dear T I. dear T 054002 RT T s s T s clar T 054003 SAP T s s T s clar T 054004 SAP T s s T s clar T i. dear T 054004 SAP T s s T s clar T i. dear T i. dear 054004 SAP T s s clar T i. dear T i. dear 054001 SAP <td>501-002</td> <td>SAP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Т</td> <td></td>	501-002	SAP								Т	
303.002 RT T s s clear T 3 claar T 303.005 RT T a a T a a claar T 3 claar T a claar T claar T claar T claar T claar claar T claar Claar T claar T a claar Claar claar claar claar claar	501-003	SAP								Т	
303-002 RI T s s T s s T s s T s s T s s T s s T s s clear T s s s s clear T s </td <td>502-002</td> <td>RT</td> <td></td> <td></td> <td></td> <td>Т</td> <td>S</td> <td>S</td> <td>clear</td> <td>T</td> <td>3 chalcopyrite</td>	502-002	RT				Т	S	S	clear	T	3 chalcopyrite
903-005 RT T s s T s s clear T 903-005 SAP T s s clear T 903-007 SAP T s s clear T 903-007 SAP T s s clear T 903-001 RT T s s clear T 1 903-001 RT T s s clear T 1 903-001 RT T s s clear T 1 903-002 RT T s s clear T 1 903-003 RT T s s clear T 1 903-003 RT T s s clear T 1 907-003 RT T s s clear T 1 prite wiquatz 903-004 SAP T s s clear T t prite wiquatz 903-003 RT T s s clear T t prite wiquatz 903-004 SAP T s	503-002	RT	Т	5	8	T	S	s-m	clear	Т	1 arsenopyrite
903-005 ASAP T a s T s clear 305-000 RT T s s clear T 305-001 RT T s s clear T 305-002 RT T s s clear T 305-003 RLP T s s clear T 305-004 StP T s s clear T 305-005 RL T s s clear T 305-006 StP T s s clear T 305-007 RL T s s clear T 305-007 RL T s s clear T 307-012 SAP T s s clear T 307-012 SAP T s s clear T ipprie wiquartz 308-004 SAP T s s clear T ipprie wiquartz 308-004 SAP T s s clear T ipprie wiquartz 308-004 SAP T s s c	503-005	RT	Т	5	5	Т	5	5	clear	Т	
903-007 SAP T s clear T s s s clear T s s s s s s s s s clear T s s s s s s s s s	503-006	ASAP	Т	а	· S	Т	8	5	clear		
305-5001 RT T s s claar T 2 molybednite 905-002 RT T s s claar T 1 linosite on pyrite 905-002 RT T s s claar T 2 pyrite w/ quartz 905-002 RT T s s claar T 2 pyrite w/ quartz 906-002 RT T s s claar T 2 pyrite w/ quartz 907-003 RI T s s claar T i corundum, 1 small gold flake 907-003 RI T s s claar T i corundum, 1 small gold flake 907-003 RI T s s claar T i corundum, 1 small gold flake 907-003 RI T s s claar T i corundum, 1 small gold flake 907-003 RI T s s claar T i corundum, 1 small gold flake 907-012 SAP T s s claar T	503-007	SAP								Т	
905-002 RT T s s clear T liminic on pyrite 505-003 SAP T s s clear T 2 pyrite w/ quartz 505-004 SAP T s s clear T 2 pyrite w/ quartz 505-004 SAP T s s clear T 2 pyrite w/ quartz 506-004 SAP T s s clear T 1 condum, t small gold flate 507-002 RI T s s clear T torondum, t small gold flate 507-002 SAP T s s clear T torondum, terminant 508-003 SAP T s s clear T torondum, terminant 508-007 SAP T s s clear T torondum, terminant 508-007 SAP T s s clear T torondum, terminant 508-007 SAP T s s clear T torondum	505-001	RT				Т	S	S	clear	Т	2 molybdenite
505-003 RT T s s r s s r r s s clear T 2 pyrite wi quartz 505-004 SAP T s s T s s clear T 2 pyrite wi quartz 506-004 SAP T s s T s s clear T 507-002 RT T s s T s s clear T 507-003 RT T s s T s s clear T 507-002 RT T s s clear T corundum, tsmall gold flake 507-003 RT T s s clear I pyrite wiquartz 508-004 SAP T s s clear I pyrite wiquartz 508-004 SAP T s s clear I pyrite wiquartz 508-004 SAP T s s clear I pyrite wiquartz 508-004 SAP T s s clear T iopyrite wiquartz 512-003 WT T	505-002	RT				Т	S	5	clear	Т	•
505-004 SAP T s s clear T 2 pyrite wf quarkz 506-004 SAP T 506-004 SAP T s s T 507-002 RL T s s T T 507-003 RL T s s T T 507-003 SAP T s s T T 507-003 SAP T s s Clear T 507-003 RL T s s Clear T 508-004 SAP T s s Clear T 508-007 SAP T s s Clear T Downard Downard S S Clear T S S Clear T S S S S S S S S S S S	505-003	RT	Т	S	S	Т	5	s-m	clear	т	l limonite on pyrite
S05-002 RT T s T s clear T 505-004 SAP T s s-m clear T s s T 507-002 RT s s T s s-m clear T iorundum, ismail gold flake 507-003 RT s-e s clear T iorundum, ismail gold flake 507-003 RT s-e s clear 1 pyrite wiquartz idoular Cu 508-007 SAP T s s clear 1 pyrite wiquartz idoular Cu 508-007 SAP T s s clear 1 pyrite wiquartz idoular Cu 508-007 SAP T s s dear, blue T idoular, pyrite wiquartz 507-002 RT T s s dear, blue T idoybdenite 511-004 RT T s s clear T imprite wiquartz 512-003 WT T s s clear, blue T <td>505-004</td> <td>SAP</td> <td></td> <td></td> <td></td> <td>Т</td> <td>5</td> <td>5</td> <td>clear</td> <td>Т</td> <td>2 pyrite w/ quartz</td>	505-004	SAP				Т	5	5	clear	Т	2 pyrite w/ quartz
S06-004TS07-002RITsssmclearT1corundum, i mail gold flakeS07-003RITsssclearT1corundum, i mail gold flakeS07-003SAPTssclearT1pyrite wiquartzS08-004SAPTssclearT1pyrite wiquartzS08-004SAPTssclearT1pyrite wiquartzS08-004SAPTssclearT10patenaS08-004SAPTssclearT10patenaS08-004SAPTssclearT10patenaS08-007SAPTssclearT10patenaS08-008WTTssclearT10patenaS10-003WTTssclearT4molybdeniteS10-004WTTssclearT4molybdeniteS10-004WTTssclearT4molybdeniteS10-005WTTssclearT4molybdeniteS10-003WTTssclearTmolybdenitesS14-001R1TssclearTssclear <td>506-002</td> <td>RT</td> <td>Т</td> <td>8</td> <td>S</td> <td>Т</td> <td>S</td> <td>5</td> <td>clear</td> <td></td> <td></td>	506-002	RT	Т	8	S	Т	S	5	clear		
307-002 RT T s s-m clear T i conundum, i mail gold fake 307-003 RL T s s T s clear T i conundum, i mail gold fake 307-003 RT T s-e s clear T i conundum, i mail gold fake 307-003 RT T s-e s clear T i pyris wiquartz 508-007 SAP T s s clear T pyris wiquartz 508-007 SAP T s s clear T pyris wiquartz 509-001 RT T s-e s T topris wiquartz 509-001 RT T s-e s T topris wiquartz 511-002 RT T s-e s clear T pyris wiquartz 511-004 WT T s s clear T molybdenite 512-003 WT T s s clear T molybdenite 512-003 WT T s s clear T molybdenite 512-003 WT T s s	506-004	SAP								Т	
507-003 RL T s s clear T l conndum, 1 small gold fake 507-012 SAP T s-e s clear T pyrite wiquartz 508-004 SAP T s-e s clear T pyrite wiquartz 508-004 SAP T s s clear T pyrite wiquartz 508-004 SAP T s s clear T pyrite wiquartz 508-004 SAP T s s clear T io conndum, pyrite wiquartz 508-002 RT T s s clear T pyrite wiquartz 510-002 RT T s s clear T pyrite wiquartz 512-003 WT T s s clear T molybétnite 512-003 WT T s s clear T molybétnite 512-003 WT T s s clear T molybétnite 514-006	507-002	RT	*****			Т	S	\$-m	clear	Т	
507-012 SAP T s-e s T s-e s clear T prite wiquarts 508-0004 SAP T s s clear I prite wiquarts jgboular Cu i0 gatesa 508-007 SAP T s s clear I prite wiquarts 509-007 SAP T s s clear I but i0 gatesa 509-007 RT T s s clear I but in corundum, prite wiquarts 509-007 RT T s s clear I prite wiquarts in corundum, prite wiquarts 511-003 WT T s s clear I prite wiquarts in clear in clear prite wiquarts s in clear	507-003	RL	Т	5	S	Т	5	5	clear	т	l corundum, i small gold flake
S0F-003 R.T T s-e s clear T pyrite w/quartz S0F-004 SAP T s s clear I pyrite w/quartz Igolatar S0F-001 RT T s s clear I pyrite w/quartz Igolatar S0F-001 RT T s s clear I ito gatera S0F-001 RT T s s clear pyrite w/quartz ito gatera S0F-001 RT T s s clear pyrite w/quartz ito gatera S11-004 WT T s s clear pyrite w/quartz clear 1 anotybdenite S12-001 WT T s s clear I motybdenite S12-003 WT T s s clear I motybdenite S12-003 WT T s s clear T motybdenite S12-003 WT T s s clear	507-012	SAP	т	s-e	5					Ť	4 corundum
S08-004 SAP T s s clear I pyrite w(quartz, l globular Cu S08-007 RT r s 1 l ogalena T l ogalena	508-003	RT				Т	s-e	5	clear	Т	pyrite w/quartz
SOR-007 SAP T s T 10 galens 508-007 RT T s I corundum, pyrite w/quartz 510-002 RT T s s I corundum, pyrite w/quartz 511-004 WT T s s clear pyrite w/quartz 511-004 WT T s s clear pyrite w/quartz 511-004 WT T s s clear pyrite w/quartz 512-001 WT T s s clear, pillow T in molybdenite 512-003 WT T s s clear, pillow T in molybdenite 512-003 WT T s s clear many pyrite w/quartz 513-005 SAP T s s clear T pyrite w/quartz 514-006 SAP T s-s s s clear T pyrite w/quartz 516-002 KT T s s s clear T s s	508-004	SAP				Т	5	5	clear		l pyrite w/quartz, l globular Cu
S09-001 RT T 5-¢ s I corundum, pyrile w/quartz S10-002 RT T e s.m r s s r s s r s s r s s r s s s r s s s clear pyrite w/quartz s s s s clear T s s clear r s <td>508-007</td> <td>SAP</td> <td>Т</td> <td>5</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td>Ť</td> <td>10 galena</td>	508-007	SAP	Т	5	8					Ť	10 galena
S10-002 RT T s-c s S11-002 RT T c s-m s s clear, I blue T S11-004 WT T s s T s s clear, I blue T S11-005 WT T s s clear, I d molybdenite S12-200 WT T s s clear, I d molybdenite S12-2002 WT T s s clear, I d molybdenite S12-2003 WT T s s clear, I d molybdenite S12-2003 WT T s s clear, I d molybdenite S12-2003 WT T s s clear, I blue T S13-2005 SAP T s s clear T many pyrite w/quartz S14-006 SAP T s s clear T pyrite w/quartz globular Cu S15-208 OT T s s s clear	509-001	RT			·····						l corundum, pyrite w/quartz
S11-002 RT T s s clear, l blue T S11-004 WT T s s m clear pyrite w/quartz S12-002 WT T s s clear I 4 molybdenite S12-002 WT T s s clear, l blue T 1 molybdenite S12-002 WT T s s-m clear, l blue T 1 molybdenite S12-002 WT T s s-m clear, l blue T 1 molybdenite S12-003 WT T s s clear, blue T 1 molybdenite S12-003 WT T s s clear many pyrite w/quartz clear T s s clear T molybdenite Clear T s s clear T molybdenite Clear T molybdenite Clear T s s clear T molybdenite Clear T molybdenite Clear T s s	510-002	RT	Т	s-e	5			· · · · · · · · · · · · · · · · · · ·			
S11-004 S11-005 S11-005WTTsssclearpyrite w/quartzS11-005 S12-001WTTssclearT4 molybdeniteS12-001 S12-003WTTssclearI4 molybdeniteS12-001 S12-003WTTssclearI4 molybdeniteS12-003 S12-003WTTssclearIany pyrite w/quartzS13-005SAPTssclearTmany pyrite w/quartzS14-001 S14-006RTTs-ssclearTmany pyrite w/quartzS16-002 S17-002KTTsss-1clearTS16-002 S17-004TsssclearT-S17-002 S17-002TssclearT-S17-002 S17-003TssclearT-S17-004WTTsssclearTS17-005WTTssclearT-S17-010TsssclearTchalcopyrite?S17-011OTTsssclearT-S18-006WTTsssclearTS18-006WTTsssclearTS18-006WTTsssclear <t< td=""><td>511-002</td><td>RI</td><td>Т</td><td>e</td><td>s-m</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	511-002	RI	Т	e	s-m						
S11-005 WT T s s T s s-m clear pyrite w/quartz S12-001 WT T s s clear T 4 molybdenite S12-002 WT T s s clear T 4 molybdenite S12-003 WT T s s clear, blue T S12-003 WT T s s clear, blue T S12-003 WT T s s clear, blue T S12-003 WT T s s clear many pyrite w/quartz S12-003 SAP T s s clear T S14-006 SAP T s s clear T S16-002 KT T s s s clear T S16-002 KT T s s s clear T S16-002 KT T s s clear T s S16-002 KT T s s clear T s S16-002 KT T s s clear T </td <td>511-004</td> <td>WΓ</td> <td></td> <td></td> <td></td> <td>т</td> <td>5</td> <td>\$</td> <td>clear, I blue</td> <td>т</td> <td></td>	511-004	WΓ				т	5	\$	clear, I blue	т	
S12-001 WT T s s clear T 4 molybdenite S12-002 WT T s s clear, yellow T I molybdenite S12-003 WT T s s-m clear, yellow T I molybdenite S12-003 WT T s s-m clear, i blue T I molybdenite S13-005 SAP T s s clear, i blue T many pyrite w/quartz S14-001 RT T s-e s-m T a-s l clear T many pyrite w/quartz S14-006 SAP	511-005	wr	Т	8	\$	Ť	5	5-m	clear		pyrite w/quartz
512-002WTTssclear, yellowTIImolybdenite512-003WTTssclear, 3 blueTTssclear, 3 blueT513-001RTTss0ssclear, 3 blueTsss	512-001	WT				Т	5	5	clear	Т	4 molybdenite
Ts-mclear, 1 blueTS12-003WTTsclear, 1 blueTS13-005SAPTsclear, 1 blueTS13-005SAPTsclearTmany pyrite w/quartzS13-005SAPS16-001RTssssS16-001RTsssclearTsS16-001RTssclearTS16-001RTssclearTS16-001RTssclearTS16-002RTsclearTS16-002RTsclearTS16-002RTsclearTS16-002RTssclearTS16-001TS	512-002	wr				Т	8	5	clear, vellow	Т	1 molybdenite
S13-001 RT T s s 10 s s clear, 3 blue T S13-005 SAP T s s clear many pyrite w/quartz S14-001 RT T s-e s-m T s-s l clear T pyrite w/quartz S14-005 SAP T s-s s s clear T pyrite w/quartz, 3 globular Cu S14-005 SAP T s-s s s-1 clear, blue T S16-001 KT T s s T s s clear T S16-002 KT T s s clear T s s clear T S17-002 RT T s s clear T to corundum, 1 amall gold flake S17-004 WT T s s clear T to clear I s S17-010 WT T s s l clear I epidote attached to pyrite	512-003	wr				Т	5	s-m	clear, 1 blue	Т	• • • • • •
513-005 SAP T s s clear many pyrite w/quartz 514-005 RT T s-e s-m T a-s 1 clear T pyrite w/quartz, 3 globular Cu 514-005 SAP	513-001	RT	T	5	S	10	s	S	clear, 3 blue	Т	
S14-001 RT T s-e s-m T a-s 1 clear T pyrite W/quartz, 3 globular Cu S14-006 SAP T s s s s-l clear, blue T S15-001 KT T s s s-m clear, blue T S16-001 KT T s s s-m clear T S16-002 KT T s s clear T s S16-002 KT T s s clear T s s clear T S17-002 RT T s s clear T s s clear T S17-003 WT T s s T s s clear T s	513-005	SAP				Т	s	s	clear		many pyrite w/quartz
Si4-006 SAP S15-008 OT T s s S s l clear, blue T S16-001 KT T s s I s s-m clear T S16-002 KT T s s r s s-m clear T S16-002 KT T s s clear T s s clear T S17-002 RT T s s clear T s s clear T S17-003 WT T s s clear T s s clear T S17-004 WT T s s clear T chalcopyrite s s s s s s	514-001	RT	Т	\$-e	s-m	T	a-s		clear	T	pyrite w/quartz, 3 globular Cu
515-008 OT T s s S s s-1 clear, blue T 516-001 KT T s s s-m clear T 516-002 KT T s s s-m clear T 516-002 KT T s s clear T s 517-002 RT T s s clear T locar 517-003 WT T s s clear T s s clear T 517-003 WT T s s clear T s s clear T 517-004 WT T s s clear T clear s s s s clear S s s s s s s s s s	514-006	SAP									
S16-001 KT T s s T s s-m clear T S16-002 KT T s s clear T s s clear T S16-002 KT T s s clear T s s clear T S17-002 RT T s s clear T l corundum, 1 small gold flake S17-003 WT T s s clear T s s s s clear T chalcopyrite? s s s s s s clear T chalcopyrite? s s s s clear T s s s s s s s s	515-008	OT	Т	\$	s	5	5	5-]	clear, blue	T	
S16-002 KT T s s clear T S17-002 RT T s s clear T l corundum, l small gold flake S17-003 WT T s s clear T l corundum, l small gold flake S17-003 WT T s s clear T l corundum, l small gold flake S17-004 WT T s s clear T s S17-006 WT T s s clear T s S17-010 WT T s s clear T s s S17-010 WT T s s l s s clear T S17-010 WT T s s l s s-l clear T chalcopyrite? S17-017 OT T s s s s clear T chalcopyrite? S18-004 WT T s s s clear	516-001	KT	Т	5	5	Т	S	s-m	clear	т	······
S17-002 RT T s s clear T l corundum, l small gold flake S17-003 WT T S S clear S S clear S S clear S S S S S S S S Clear S	516-002	KT				Т	5	s	clear	т	
S17-003 WT T s s s s clear T S17-004 WT T s s T s s clear T S17-006 WT T s s T s s clear T S17-006 WT T s s clear T s S17-010 WT T s s clear I epidote attached to pyrite S17-010 WT T s s clear I epidote attached to pyrite S17-010 WT T s s s clear, I blue	517-002	RT				Т	S	8	clear	т	1 corundum, 1 small gold flake
S17-004 WT T s s s t s s clear T S17-006 WT T T S S clear I epidote attached to pyrite S17-010 WT T T S S clear I epidote attached to pyrite S17-010 WT T S S I S s clear S17-011 OT T S S I S s-I clear T S17-017 OT T S S I S S-I clear T chalcopyrite? S17-017 OT T S S I S S-I clear T chalcopyrite? S17-018 OT T S S clear T 2 gahnite S18-004 WT T S S clear T S S clear S18-005 WT T S S clear T S S clear T S18-006 WT T S S T S S-m clear T S19-004 <td>517-003</td> <td>WT</td> <td></td> <td></td> <td></td> <td>Ť</td> <td>5</td> <td>5</td> <td>clear</td> <td>Ť</td> <td>· · · · · · · · · · · · · · · · · · ·</td>	517-003	WT				Ť	5	5	clear	Ť	· · · · · · · · · · · · · · · · · · ·
S17-006 WT T s s s clear l epidote attached to pyrite 517-010 WT T s s clear 1 epidote attached to pyrite 517-010 WT T s s clear t l epidote attached to pyrite 517-011 OT T s s s-1 clear, 1 blue 517-017 OT I s s-1 clear T chalcopyrite? 517-018 OT T s s-vl clear, 2 blue T 2 gahnite 518-004 WT T s s clear T 5 gannite 518-005 WT T s s clear T s s clear T 518-006 WT T s s s clear T s s clear T s s s clear T s s s s clear T s s s s s s <td>517-004</td> <td>WT</td> <td>т</td> <td>5</td> <td>5</td> <td>T</td> <td>5</td> <td>5</td> <td>clear</td> <td>T</td> <td></td>	517-004	WT	т	5	5	T	5	5	clear	T	
Si7-010 WT T s s s clear 517-011 OT T s s 1 s s-1 clear, 1 blue 517-017 OT I s s-1 clear T chalcopyrite? 517-017 OT I s s-1 clear T chalcopyrite? 517-018 OT T s s-vl clear, 2 blue T 2 gahnite 518-004 WT T s s clear T 2 gahnite 518-005 WT T s s clear T 518-006 WT T s s clear T 519-004 WT T s s s clear T 519-004 WT T s s s clear T 520-007 OT I s s-m clear T 520-008 OT T s s-m clear T 520-011 OT I s s-m clear T	517-006	WT				т	S	5	clear		1 epidote attached to pyrite
S17-011 OT T s s l s s-l clear, l blue S17-017 OT I s s-l clear T chalcopyrite? S17-017 OT T s s-vl clear, 2 blue T 2 gahnite S17-018 OT T s s-vl clear, 2 blue T 2 gahnite S18-004 WT T s s clear T 2 gahnite S18-005 WT T s s clear T S18-006 WT T s s s clear T S18-006 WT T s s s clear T S19-004 WT T s s s clear T S20-007 OT I s s-m clear T pyrite w/ quartz S20-008 OT I s s-m clear	517-010	WT				Ť	5	5	clear		• • • • • • • • • • • • • • • • • • • •
S17-017 OT I s s-I clear T chalcopyrite? S17-018 OT T s s-vl clear, 2 blue T 2 gahnite S18-004 WT T s s clear T 2 gahnite S18-005 WT T s s clear T S18-005 WT T s s clear S18-006 WT T s s clear T S18-006 WT T s s clear T S18-006 WT T s s clear T S19-004 WT T s s s clear T S19-004 WT T s s s-m clear T S20-007 OT 1 s s-m clear T S20-008 OT T s s-m clear T pyrite w/ quartz S20-011 OT 1 s s-m clear T pyrite w/ quartz	517-011	OT	т	8	\$	- î	5	5-1	clear. 1 blue		
SiT-018 OT T s s-vi clear, 2 blue T 2 gahnite S18-004 WT T s s clear T s s clear S18-005 WT T s s s clear T S18-005 WT T s s clear T S18-006 WT T s s T s clear S18-006 WT T s s T s clear S19-004 WT T s s s clear, 1 blue pyrite w/ quartz, 2 shell frags. S20-007 OT 1 s s-m clear T S20-008 OT T s s-m clear T S20-011 OT 1 s s-m clear T	517-017	oT	•	-	•	i	5	s-1	clear	т	chalcopyrite?
Till Till Sill Till Sill Sill 518-005 WT Till Sill <	517-018	OT				T	5	s-vl	clear, 2 blue	Ť	2 gabnite
S18-005 WT T s s clear 518-006 WT T s s T s s clear 518-006 WT T s s T s s clear 519-004 WT T s s T s s clear T 520-007 OT 1 s s-m clear clear 520-008 OT T s s clear T 520-011 OT 1 s s-m clear	518-004	WT	·····			<u>T</u>		5	clear		
S18-006 WT T s s T s s clear T \$18-006 WT T s s T s s clear T \$18-006 WT T s s T s s-m clear T \$19-004 WT T s s T s s-m clear pyrite w/ quartz, 2 shell frags. \$20-007 OT 1 \$ s-m clear T pyrite w/ quartz, 2 shell frags. \$20-008 OT T \$ \$ s-m clear T \$20-011 OT 1 \$ \$-m clear T pyrite w/ quartz	518-005	WT				Ť			clear		
S19-004 WT T s s T s s-m clear, l blue pyrite w/ quartz, 2 shell frags. 520-007 OT 1 s s-m clear 520-008 OT T s s clear T pyrite w/ quartz, 2 shell frags. 520-008 OT 1 s s-m clear T pyrite w/ quartz, 2 shell frags. 520-011 OT 1 s s-m clear T pyrite w/ quartz, 2 shell frags.	518-006	ŴT	т		\$	Ť	5	5	clear	т	
S20-007 OT 1 s s-m clear 520-008 OT T s s-m clear 520-011 OT 1 s s-m clear	519-004	ŴT	<u> </u>		<u> </u>		<u></u>	s-m	clear. 1 blue	· ·	pyrite w/ quartz, 2 shell frags
520-008 OT T s s clear T pyrite w/ quartz 520-001 OT l s s-m clear T	\$20-007	- OT	<u> </u>			i	\$	8-m	clear		blance of descends a prost traßte
S20-01 OT 1 s s-m clear thue T	520-008	ŎŤ				т	5	5	clear	Ť	pyrite w/ quartz
	520-011	or				1 ·	5	s-m	clear. 1 blue	Ť	Liter w dance

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

and the second second

.....

and a second and

1.-4

	· · · · · · · · · · · · · · · · · · ·				·····					
Sample	Unit	Rutile (%)	Rutile morph.	Rutile size	Kyanite (%)	Kyanite morph.	Kyanite size	Kyanite color	Rock Frag. (%)	Other
520-016	SAP								Т	l large galena, pyrite w/ quartz
520-017	SAP								65	30 galena, trace chalcopyrite
521-004	WT				Т	5	5	clear	Т	1 corundum
521-005	ΟΤ				1	5	s-l	clear	Т	
521-006	WT	Т	e	5	Т	5	s-l	clear	Т	1 pyrrhotite
521-011	ΟΤ				Т	S	8	clear		
521-012	SAP				Т	5	s-m	clear	Т	

·****

10^{96,0}25

Appendix 280-L. Mineralogy of nonmagnetic heavy mineral concentrate fraction from till and saprolite samples in the Baudette area.

OF The State

141 33

4

Appendix 280-M. Baudette area pebble counts. Super-category counts per 10 kg sample by size fraction.

Column abbreviations and data key

Stratigraphic units

 $\langle \hat{c} \rangle$

Contraction of the second

() () ()

KT RT WT OT ASAP SAP	=Koochiching till =Rainy till =Winnipeg till =Old Rainy till =reworked saprolite =saprolite
<u>Clast types</u> PM FI SC	=Paleozoic-Mesozoic =felsic to intermediate plutonic =supracrustal
Size fractions +1 +3/4 +3/8 +1/4 4m	=1" and larger pebble fraction =3/4" to -1" pebble fraction =3/8" to -3/4" pebble fraction =1/4" to -3/8" pebble fraction =4mesh to -1/4" pebble fraction

Other abbreviations

ct		
peb		

=count =pebble

		PM	PM	PM	PM	PM	Total	FI	FI	FI	FI	FI	Total	SC	SC	SC	SC	SC		
		ct	ct	ct	ct	ct	PM	ct	ct	ct	ct	ct	FI	ct	ct	, ct	ct	ct	Total	Total
Sample	Unit	<u>+1</u>	+ 3/4	+ 3/8	+1/4	<u>+4m</u>	ct	+1	+3/4	+3/8	+1/4	+4m	ct	±1	+3/4	+ 3/8	+1/4	+4m	SC ct	peb ct
501-001		<u> </u>			<u> </u>	<u> </u>			10		19	272					105	10	70	100
502-001	RT	0	ì	n 4	, <u>1</u>	9	16	a	, 10 1 R	64	167	290	578		1 3	35	00	198	335	880
502-003	RT	ŏ	Ċ	0 2	2 5	8	15	1	10	35	112	252	410	ŏ	4	26	69	142	241	666
303-001	RT	1	(0 () 1	8	11	2	2	44	91	181	320	1	2	34	72	172	281	612
503-002	RT	0	(0 1	3	4	8] 1	. 5	45	131	267	449	1	1	45	72	207	326	783
503-003	RT	0	(0 3	1 3	5	11	1	5	53	130	203	392	0	3	35	99	153	· 290	693
503-004	RT	0	(0 0) 1	1	2	0) 6	43	90	210	349	0	2	! 19	54	134	210	561
203-005		0) 3	4			<u> </u>	30	20	189	283			30		119	211	500
505-001	OT	0		0 1	2 L 1 10	23	20 50		4	32	74	176	204	د ۲	13) <u>3</u> 3	20	133	234	524
505-002	oT	ŏ		0 2	2 5	11	18		5	37	51	142	230		0	9	39	105	154	409
306-001	RT	Ő		0 8	30	41	78	ō	8	47	76	214	344	l i	6	96	210	391	704	1127
506-002	RT	0	:	2 18	132	330	481	5	13	36	276	333	664	3	5	105	173	376	663	1808
507-001	RT	0	(0 4	3	15	22		1	36	92	186	316	0	3	17	58	112	190	527
507-002	RT	0	(0 3	7	22	32	0) 1	15	44	96	156	0	1	9	30	62	101	289
507-004	OT	0	1		29	16	28			27	83	168	278	2	. 0	20	82	163	268	573
507-005	OT	0) <u>32</u>	28	/0		14	90	143	200	421		2	90	149	208	403	9/9
507-000	oT	0		0 7) 11) 1	20	3/		7	48	135	251	410		1	1 36	100	190	330	801
507-010	or	ŏ	Ì	0 1	์ ที่	13	26	l i) 4	38	61	174	278	i i	· ī	35	67	159	262	565
508-001	RT	0	(0 2	2 1	5	8	i	0	10	31	56	98	1	2	15	30	63	110	216
508-002	RT	0	(0 4	F 10	21	35	1	. 7	67	11.8	230	423	8	10) 103	162	368	651	1109
508-003	RT	1		0 1	<u> </u>	22	36	1	5	59	133	245	442	1	13	79	75	335	509	987
509-001	RT	0		<u>)</u>	1	18	29		2	39	98	247	390	4	<u> </u>	> 54	70	1/0	308	121
510-001	KI PT	0		0 :		10	19		4	58 50	10	1/8	297		. 7	. 54	101	128	3/8	660
511-002		<u> </u>		í – – – – – – – – – – – – – – – – – – –	78				7	45	113	218				27	42	106	179	617
511-002	RT	ŏ		1 4	i 7	25	38	i	4	33	92	197	327	Ō	1	18	30	98	147	512
511-003	RT	0	(0 1	5 24	100	139	3	4	45	126	265	443	0) 2	2 21	84	131	237	820
511-004	WT	0	(0 1	5 78	165	258	0) 5	14	27	99	145	0) 2	2 11	34	68	115	518
511-005	WT	0		2 11	24	61		1	1	15	53	380	451	0	3	3 2	16	49	71	621
512-001	WT	0		0 :	5 13	39	56) 2	12	28	84	126			18	45	85	149	331
512-002	W1 WT	0		0 I	l 8	2/				34	24	109	280				50	116	100	420
512-003		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			42	112	162		3	18	57	145	224		3	21		139	217	1 00
513-002	ŴT	ŏ		2 1	3 66	109	184	i) Ő	10	29	80	119	l i	1	16	33	91	142	446
\$13-003	WT	0	(0	1 20	52	74) 0	7	20	62	89	0) () 10	44	101	155	318
513-004	WT	0	1	0 :	5 20	47	72) 1	10	14	47	72	2	2	<u>2</u> 21	42	121	189	332
514-001	RT	0		0 :	2 10	41	53		10	69	110	261	458	0) 1	17	53	102	174	685
514-002	RT	4	(0	3 20	24	51		5	65	159	321	554			20	66	134	222	827
514-003	- RT	0		1		38	<u> </u>			- 0/	153	2/9		0		49		110	238	/98
515-001	KI DT	0		0 4 7 13	4 IJ	112	170) J	33 07	230	436	440		16	14 5 60	43	377	613	1566
515-002	RT .	0		2 I. 0 ·	5 43	113 1 56	80		2 2	18	44	147	213	l i	. 10	2 8	32	80	124	418
515-004	OT	ŏ		0 14	4 42	67	123		ī	27	59	175	264	l i	1	24	41	139	206	592
515-005	ŌT	Ő		0 1	3 29	95	137) 1	35	17	164	283	Ó) 1	19	61	142	223	643
\$15-006	от	0) (0 1	8 40	81	139) 3	28	56	159	245	0) (D 11	34	103	148	531
515-007	от	0)	1 10	0 29	88	127		3	27	69	139	238	1 1	2	2 18	65	128	213	579
515-008	<u> </u>	0)	1 1	3 2	64	103		2 7	46	149	408	614	4		5 44	120	234	407	1124
516-001	KT	0		2 2		165	278		3	27	78	162	272			∔ 22 1 20	42	0/	137	087
510-002	-KI DT			<u> </u>	y 103	177	<u> </u>		$\frac{2}{2}$	<u>20</u>	113	207	<u> </u>		<u>, </u>	39	44	100		7/1
517-001	RT	0		2 IV 1 1	5 71	/0 /0	100		36	49	98	248	403		, i) 22	62	111	194	698
\$17.003	WT	1		- - - -	n 100	186	334	1	5 3	31	78	202	314	l) č	$1 - \frac{1}{23}$	28	71	122	1 770

- - . . .

Appendix 280-M. Baudette area pebble counts. Super-category counts per 10kg sample by size fraction.

. Traing and

 $< 1.5 \pm 10$

M-2

4

Appendix 280-M. Baudette area pebble counts. Super-category counts per 10kg sample by size fraction.

Alexandra Alexandra Alexandra

		PM	PM	PM	PM	PM	Total	FI	FI	FI	FI	FI	Total	SC	SC	SC	SC	SC		
		ct	ct	ct	ct	ct	PM	ct	ct	ct	ct	ct	FI	ct	ct	ct	ct	ct	Total	Total
_Samr	le. Unit	+1	+3/4	+ 3/8	+1/4	+4m	ct		+3/4	+3/8	+1/4	+4m	ct	+1	+3/4	+ 3/8	+1/4	+4m	SC ct	neb ct
517-00	WT			16	- 65	156	238	0	2	14	50	- 99	165	0	1	9	18	51	79	482
517-00	S WT	0	0	10	27	53	89	0	1	10	43	67	120	0	0	7	10	32	49	259
517-00	5 WT	0	. 3	9	44	79	135	0	4	22	81	44	151	0	0	10	19	26	56	342
517-00	WI WI	0	1	8	23	74	107	1	3	14	49	117	184	0	0	2	11	41	54	346
517-00	s wi	0	1	19	36	89	145	1	3	21	58	121	204	0	0	7	30	50	87	435
517-00	wr	0	1	16	61	118	196	1	4	26	69	85	185	0	1	7	28	72	108	489
517-010	WI OT	0	0	27	73	124	224	0	1	19	73	162	255	0	1	13	44	55	113	592
517-01		0		18	40	99	150	0	3	36	108	181	329	0	3	21	66	134	224	709
517-01		0		18		128	201	1	5	50	127	253	434	0	2	40	90	159	297	932
517-01		0		18	29	/3	121	3	2	34		202	314	2	2	33	79	151	287	721
517-014		, v	1	11	40	8/	144	1	1	20	100	140	2/0		4	26	81	100	2/9	693
\$17.01		1	1	10	20	120	126	4	4	28	76	200	351		U A	28	90	207	333	890
517-010		Å	1	19	20	00	170	2	7		/0	238	3/3		0	44	9/	182	329	838
517-01		0	1	· · ·	43	119	170	3		29	80 91	193	202	4	5	43	83	157	209	131
519.00					40	21						110	175			43		157	291	200
518-00		Ň	0	11	40	00	141		2	12	40	105	172	1	2	2	30	33	93 60	321
518.00	i WT	Ň	1	57	220	304	674	0		20	37	73	173		1	12	20	57	85	800
518-00	wr	ň	,	36	133	204	464	0	1	20	12	13	49	Ň		6	20	22	6J 41	650
518-00	s wr	ň	ň	35	120	174	270	0	3	6	14	23	40	ő	Ő	6	15	14	55	380
518-00	í wr	ŏ	Ň	8	40	84	132	Ő	2	13	22	61	98	ŏ	ő	6	23	67	95	325
518-00	wr	ŏ	ŏ	ĩ	23	56	80	Ő	ō		28	53	87	ŏ	3	30	80	159	281	447
519-00	RT	2	4	44	137	303	491	4	6	87	205	457	759	ŏ		30	96	158	285	1534
519-00	2 RT	Ö	2	29	90	223	343	2	4	56	87	216	364	Ó	3	22	54	113	192	899
519-00	WT	0	2	26	98	112	238	1	5	52	108	246	412	1	7	32	64	112	216	866
519-00	I WT	0	5	29	74	172	281	0	1	9	33	99	142	1	0	19	40	72	132	555
519-00	5 WT	0	0	2	21	39	62	- 1	2	25	45	136	209	1	5	26	78	143	254	525
519-00	s wr	0	0	2	19	41	63	0	0	18	58	159	235	0	2	51	70	158	281	578
520-00	I RT	0	0	4	16	34	53	3	6	30	94	202	335	0	0	18	39	84	142	530
520-00	2 KT	0	0	4	18	30	53	1	2	32	67	167	269	. 0	0	13	33	81	127	448
520-00	B RT	0	. 1	46	102	187	336	1	2	34	79	221	338	0	2	27	62	118	209	884
520-00	WT	0	0	58	132	232	422	0	7	74	157	230	468	0	4	41	65	117	227	1117
520-00	S OT	0	0	9	49	97	155	0	1	41	130	283	455		5	28	61	151	246	856
520-00	S OT	0	0	12	32	122	100	0	1	38	97	166	303		. 0	34	77	200	312	781
520-00		0	2	10	42	97	151		4	17	80	100	2/4	0	2	30	91	105	294	/19
520-00		0	0	13	43	105	101		4	2/	06	133	230		4	44	/0	148	2/3	000
520-00			0	11	34	101	107	1	3	19	30	141	171		1	34	89	1/5	300	240
520-010		0	2	14	43	101	163	1	2	20	12	143	283		3	40	01	100	263	149
\$20-01			2	70	70	192	285		1	20	57	164	245			16	40	71	134	652
\$20-01			2	29	94	160	203	1	1	22	76	164	243		0	21	39 20	70	140	696
520-01		0 0	4	24	27	166	200	0	1	20	70	122	209		0	43	29	90	725	722
320-01-				24		100	180		10	50	116	282	450		1	12	/0 /8		171	822
\$21.00		ő	2	11	30	122	174	- Á	10	20	47	127	216	1 0	2	10	11	70 60	114	505
\$21.00	a wr	М	2	17	57	01	166		2	25	64	161	210	۵ ۱	Í.	10	30	70	120	\$20
521-00		ň	Í.	26	61	110	107	ี่ กั	4	45	Q1	144	781	l ñ	5	, ∡1	84	162	202	1 772
521-00	s wr	ň	3	13	57	120	193	1	2	8	47		157	Ň	ň		35	72	110	460
521-00	s wr	ŏ	í	.,	30	118	156	İ	ĩ	.7	33	76	117	ŏ	1	19	68	107	196	469

199⁵ - 1997 1997 - 1997

1000

Note: PM =Paleozoic-Mesozoic, FI =Felsic to Intermediate plutonic, SC =Supracrustal.

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

Column abbreviations and data key

Stratigraphic units

1

a.....

()

кт	=Koochiching till
RT	=Rainy till
WT .	=Winnipeg till
TC	=Old Rainy till
ASAP	=reworked saprolite
SAP	=saprolite
	-

Clast type abbreviations Raw =total number of pebbles PM =Paleozoic-Mesozoic

PM FI Maf. Gnss SC Meta sed. Misc. +1/4 ct volc. hyp. amph. plut. Fplut. Sil. Sfd.	=Paleozoic-Mesozoic =felsic-intermediate plutonic =mafic =gneiss =supracrustal =metasediment =miscellaneous =1/4" to -3/8" pebble fraction =count =volcanic =hypabyssal =amphibolite =plutonic =coarse grained felsic plutonic =siliceous nonsedimentary =sulfide
Folut.	= coarse grained felsic plutonic
Sil.	=siliceous nonsedimentary
Sfd.	=sulfide
Mag.	=magnetic
peb	=pebble
qtz.	=quartz
gns	=grains

Notes:

Raw counts are total number of pebbles counted (not normalized to a 10 kg sample).

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

A

		Raw	Raw	% PM	% FI	% SC	% SC	% SC	% SC	% SC	% SC	% SC	% SC			· . · ·	% SC		
		+1/4	+1/4	ct	ct	ct	FI	FI	Maf	Maf	Maf	Gnee	Grav-	% SC	% SC	% SC	Meta	% SC	% SC
Samala	Linit	Dah at	5C at	+1/4	+1/4	±1/4	vole	hun	wole	amah	-1-14	Enhut	Unake	01	900C	Man	and	Mino	Demorke
301-001	RT	40	19	0	50	50	5	<u> </u>	0		16	53		0	<u> </u>	5 5	5	- 11	misc=siderite
502-001	RT	238	82	1	63	36	9	6	15	18	22	24	0	2	() 0	2	1	misc=siderite
502-002	RT	236	82	1	62	37	10	4	22	15	57	37	0	5	i 1	. 7	0	· ()
502-003	RT	186	69	3	60	37	3	4		13	6	46	1	1		3	3	3	3 misc=siderite
503-001	RT	139	60		>>	44	10	0	43	10) 3	25	2	5) 3	2)
503-002	KI DT	231	/0		04		14	5	17	17	10	20	0	3) 4	4		
503-003	DT	1.21	0/ 47	! ;		43	2	د ۲	25	10	14	3/		1		9	1		
503-005	RT	90	48		50	48	27	2	21	13	5 10	13	2	4		i 13	2) felsic vol. all same
305-001	RT	<u> </u>	42	l — ĩ	30	40	7		36	C	<u>, </u>	20	<u> </u>	ň	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	17	——		
505-002	от	130	67	6	43	51	i i	ŏ	36		19	24	ž	4		21	3		,)
505-003	OT	88	36	6	53	41	6	3	28		5 6	31		3	ė	5 8	ō	. 3	s misc=siderite, sfd=pebs
306-001	RT	250	157	10	24	66	6	4	22	10) 4	34	6	5	1	4	4		misc=siderite
506-002	RT	564	165	23	48	30	12	1	26	13	2	32	10	1	0) 1	2	0)
507-001	RT	176	67	2	60	38	1	0	21	13	7	42	9	0	6	5 3	0	0) sid=bearing gns
507-002	RT	73	27	8	55	37	11	0	26	19	0	33	11	0	0) 0	0	0)
507-004	OT	157	32	5	48	47	9	0	34	-	5 6	19	16	0) 0	13	, C	
207-002		254	104	10	44	40	22	4	17)) \	29	12	0		4	2		5
507.009		222	92	4	24	42	17		25		/ 11 5 7	21	16	5		/ <u>3</u>	1)) miss-usknown
507-008	OT	137	65		44	48	8	0	26	5	2 14	22	10	2) 13 I S	5		sidzotz grain
308-001	ŘŤ	54	20	2	50	48	0	0	10) 40	40	0) 30)
508-002	RT	290	177	3	41	56	3	ō	6	14	10	58	4	2	Ċ) <u>9</u>	3	Ċ)
508-003	RT	200	138	5	61	35	3	1	11	12	2 7	54	9	4	() 17	0)
509-001	RT	173	66	.4	56	40	2	2	11		8	76	0	0) () 11	0	()
510-001	RT	163	87	3	42	55	3	0	34		6	45	2	1	() 6	1		
510-002	RT	259	112	2	57	41	4	0	19		<u> </u>	48	6	2		4	0) sfd=bearing gns
511-001	RT	163	38	15	62	23	3	3	16	2	S 21	42	. 0	0		3	3) sid=peb
511-002	KI DT	145	33		54	23	3	9	20		/ 34) 0	14	3	د 0		50 11	3) I mira-ata arain anaran
511-005	WT	140	74		10	24	11	ů	14	14	5 0 1 15	25	· 21	0		/ I	11		i misc~qiz.gram gossan)
511-005	wT	81	14	26	57	17	7	ő	7		14	20	20	7	14	, J		i č) sfd=otz erain
312-001	WT	86	44	1 13	33	52	5	ŏ	14	č	<u>i</u> 4	48	<u> </u>	2		2	Ő		sfd=bearing.misc=grap
512-002	WT	123	32	7	67	26	0	9	13	() 13	56	3	0) () 0	6	Ċ)
512-003	WT	114	62	15	32	54	2	0	13	25) 3	37	10	0) (5 0	0		2 sfd=bearing,misc=sider
513-001	RT	173	- 58	28	37	35	7	3	14		3 12	31	28	0)	2 3	0)
513-002	WT	115	30	51	23	26	10	. 3	13	(). 3	37	30	0) () 0	3)
513-003	WT	71	- 24	24	24	52	8	0	8	4	4 13	42	21	0) 4	0		1
513-004	WT DT	61	30	26	18		10	20	10		$\frac{10}{10}$	40	1			<u> </u>	0) std=bearing gns
514-001	KI DT	100	44		03	31	9	. 7	10	:	6 II 7 14	22		3			0		J sta=bearing
514-002	DT	235	61	ŝ	65	20	2	, ,	14	1	/ 14 C 9	42) y) 1) N
515-001		184	41	1 s	68				- 13		2 22	37	0			<u>, , ,</u>			<u>,</u>
515-002	RT	371	123	10	54	35	4	. ī	28	1	5 4	33	i 11			2 7	2		
515-003	RT	93	30	20	46	33	0	Ō	20		5 7	40	27	3	i) 3	3		0
515-004	OT	125	36	30	42	29	11	Ō	11	(0 11	39	19	3) () 0	6	; ()
515-005	OT	163	57	17	46	37	2	2	19	4	4 11	19	37	2	2 () 4	4		2 misc=graphite
515-006	ΟΤ	104	35	31	43	26	3	0	20	:	39	46	i 14	3) :	36	0) (0 sfd=peb
515-007	от	182	68	18	42	40	7	4	29	(0 4	25	28	1	. (0 4	0) (0
515-008	OT	280	115	9	51	41	3	0	12		2 56	12	16	0) () 23	0) () all mag=mplu
516-001	KT	193	34	42	38	20	3	0	24	(D 18	21	32	3		12	0		
216-002		336		37	40			4	27		5 4	10	19			4			J Aldzaebi ata amin
517-001	KI DT	223	40 70	1 10	C 03	21		U 1	14		1 Y	/ 24 / An	, y	. 14		, <u>1</u>	1		ara-ben-diwikini J
517-002	WT	218	20		37	12	1 1	7	10	11) 7	· +0 / 20	, y ∖ 47	14		, 4) 1	0		, N

.

N-2

Appendix 280-N. Baudette area pebble counts, +1/4" - 3/8" pebbles.

à.

		Raw	Raw	% PM	% FI	% SC	% SC	% SC	% SC	% SC	% SC	% SC	% SC				% SC		
		+1/4	+1/4	ct	ct	ct	FI	FI	Maf	Maf	Maf	Gnes	Grav-	% SC	% SC	% SC	Meta	% SC	% SC
0 l -		D-1 -4	00									Patra	Giay-	/* 00	74 00	// GC	wicca	70 DC	70 UC
517-004	-WT		<u>SC ct</u> 18	+1/4	+1/4	<u>+1/4</u> 14 1	VOIC.	<u>nyp.</u>	<u></u> 0	ampn. 6	0		Wacke 44	50.	SIG		<u></u>	MUSC0	Remarks
517-005	WT	74		1 24	54	12		13	ů	Ő	Ö	25	63	ň	ŏ	ň	ŏ	ň	
517-006	WT	156	8	31	56	13	ŏ		ŏ	Ő	13	25	50	13	ő	ő	ŏ	ŏ	
517-007	WT	75	10	28	59	13	ō	ō	ŏ	ŏ	20	10	40	10	ŏ	ŏ	20	ŏ	
517-008	WT	131	37	29	47	24	5	ŏ	14	8	14	30	22	5	3	ŝ		ō	afd=bearing
517-009	WT	156	25	38	44	18	Ō	Ō	8	Ō	24	20	. 36	8	4	Ō	ō	ō	sfd=peb
517-010	WT	159	35	38	38	23	Ŏ	Ō	17	Ő	<u> </u>	34	34	Ō	Ó	ŏ	3	ŏ	
517-011	OT	205	62	19	51	31	5	2	15	0	10	27	29	5	2	Ő	6	Ō	
517-012	ΟΤ	256	87	20	46	33	3	6	21	7	8	22	26	i	3	7	2	Ó	sfd=peb+2bearing
517-013	ΟΤ	191	73	16	40	44	18	5	25	0	1	18	29	3	1	12	0	0	sfd=qtz.grain
517-014	ΟΤ	231	80	20	44	36	13	1	18	5	8	19	28	3	1	5	6	0	sfd=bearing
517-015	от	325	112	19	45	36	4	2	14	6	12	33	26	0	0	5	3	0	•
517-016	ОТ	180	75	14	38	48	13	1	19	3	4	32	21	0	3	4	4	0	sfd=qtz.grain,mudball
517-017	ОТ	182	76	20	41	39	5	0	21	14	16	14	26	0	1	1	1	0	sfd=bearing
517-018	OT	172	93	22	36	42	2	0	15	10	15	19	19	2	1	1	16	0	-
518-001	RT	104	- 35	18	47	35	3	3	17	- 9	14	26	23	6	0	3	0	0	
518-002	RT	80	12	40	44	16	0	17	17	0	42	17	8	0	0	8	0	0	
518-004	WT	261	19	79	13	7	0	0	0	0	0	53	32	0	5	0	11	0	
518-005	WŤ	130	7	87	8	5	0	0	57	0) 14	14	0	0	0	0	0	14	
518-006	WT	128	15	80	9	10	33	0	7	0	0	20	27	0	7	0	0	7	misc=siderite
518-007	WT	74	21	47	26	27	5	0	5	0	0	38	38	· 5	5	. 0	5	0	
<u>518-008</u>	<u>WT</u>	1 30	76	18	22	61	8	0	75	1	1	5	7	0	3	0	0	0	
519-001	RT	434	88	31	47	22	3	1	13	1	7	27	39	0	0	2	3	0	
519-002	RT	277	65	39	38	23	2	5	15	5	11	31	26	5	0	2	2	0	
519-003	WT	270	57	36	40	24	2	0	26	4	5	32	30	2	0	11	0	0	
519-004	WI	115	30	50	23	2/	3	0	3	0	9 3	20	30	0	3	0	37	0	
519-005	WI	14/	/8	1 14	31	24	14	5	2/	5	4	29	1/	I	1	0	l	0	sid=qiz.grain
319-000 300 001		122	38	10		48	y	<u> </u>			12	33				<u> </u>	<u>\</u>	¥	sid=peb
520-001	NI DT	103	41		60	20	5	2	20	27		49	11	2	2	, ,	2	0	afd-afdachist
520-002	DT N	207	50		20	26	6	ر د	14	10		20	10	0	د ۵	6	د ۲	Ň	sta-staschist
520-003	WT	207	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 17	31	18	۵ ۲	2	19	10	20	25	19	0	2	0	<u>^</u>	ň	efd-atz arain
520-005	OT	240	62	20	54	25	1	ź	21	10	10	21	74	2	2	5	ň	ň	sid=quz.grain
520-005	OT	150	66	1 15	47	37		ĩ	14	11	6	30	11	5	ñ	2	ŏ	ň	are-deservin
520-007	OT	210	85	1 10	40	41	8	2	16	6	i ğ	32	19	ō	š	8	ž	ŏ	afd=2peb.2bearing
520-008	OT	153	55	23	37	41	5		16	4	2	42	24	2	ō	4	2	ŏ	
520-009	OT	157	75	1 19	31	50	9	i	28	ġ	<u> </u>	23	17	ī	ŏ	i	ō	ŏ	,
520-010	OT	235	39	29	33	37	13	ō	13	3	8	21	33	5	Š	3	Ő	ō	afd=otx.grain+bearing
520-011	OT	107	38	32	33	36	3	3	13	8	Ō	34	24	Ō	Ō	3	16	ŏ	
520-012	OT	152	37	42	34	24	3	Ō	8	3	3	32	43	Ō	Ō	3	8	Ō	,
520-013	OT	183	27	45	40	15	4	Ō	7	Ō	Ō	33	52	Ō	Ŏ	Ō	4	õ	1
520-014	OT	197	70	17	46	37	1	Ó	16	7	16	20	30	Ó	3	4	7	Ó	sfd=atz.grain+bearing
521-001	RT	258	48	24	54	22	7	0	19	Ś	10	36	20	Ō	3	2	Ó	Ó	sfd=mvol+gabbroid
521-002	RT	125	33	30	44	26	3	Ō	23	Ō	16	3	45	3	6	ō	ō	Ō	sfd=peb+qtz.grain
521-003	WT	191	39	34	41	25	2	Ó	13	7	13	24	33	7	2	2	Ő	0	sfd=peb
521-004	от	239	84	26	38	36	7	12	22	Ó) 7	15	32	2	ō	ī	1	Ō	button bit
521-005	WT	134	35	41	34	25	3	6	23	Ő) 3	23	39	ō	3	3	ō	0	
521-006	WT	123	59	23	25	52	14	9	25	ĝ) 14	14	ñ	2	Ō	Ō	2	ŏ	(

Note: PM =Paleozoic-Mesozoic, FI =Felsic to Intermediate plutonic, SC =Supracrustal.

Appendix 280-O. X-ray diffraction results for 14 selected Baudette area till and saprolite samples.

Column abbreviations and data key

Stratigraphic units

Č.)

 RT = WT = DT = SAP =	Rainy till Winnipeg till Old Rainy till saprolite
 - 11A	sapronte

feet

Other abbreviations (ft) =

	Sample		· · · · · · · · · · · · · · · · · · ·			
	Interval					
Sample #	(ft)	Unit	Smectite	Illite	Chlorite	Kaolinite
506-003	180-183	SAP				K
506-004	190-208	SAP			K	
506-006	208-215	SAP				
507-012	239-243	SAP	1>	<		
520-017	300-329	SAP	TK			
518-002	128-134	RT	1 \			
521-002	111-117	RT	1 \			/
518-004	202-209	WT				
518-007	235-245	WT			$<$	
521-003	124-134	WT	1 /			
521-006	217-224	WT	1 /			
520-005	106-116	OT	1/			
520-012	250-259	OT	1	l		K
521-004	192-201	OT	1 \)

Appendix 280-O. X-ray diffraction clay mineralogy for selected Baudette area till and saprolite samples.

Note: For comparison, XRD peak heights of the clay minerals in each sample have been internally normalized (highest response =100%).

XRD patterns were run using identical instrument parameters. Results are semi-quantitative.

Appendix 280-P. Baudette area gold data summary.

Column abbreviations and data key

Stratigraphic units

кт	=Koochiching till
KG	=Koochiching gravel
RT	=Rainy till
RS	=Rainy sand
RG	=Rainy gravel
RL	=Rainy lake sediment
WT	=Winnipeg till
WS	=Winnipeg sand
OT	=Old Rainy till
OS	=Old Rainy sand
ÔĞ	=Old Rainy gravel
ÕL	=Old Rainy lake sediment
ASAP	=reworked saprolite
SAP	=saprolite
SAPZ	=saprolite (trace element analysis)
BEDZ	=bedrock (trace element analysis)
BED	=bedrock
Other abbreviations	
<u> </u>	=(null) no data or no analysis
ít.	=feet
nv	=pyrite
брм	=Overburden Drilling Management Labs
nmHMC	=nonmagnetic heavy mineral concentrate
um	=micron
Ox.	=oxidation
X.	=oxidized
un	=unoxidized
kg	=kilogram
ž	=gram
ug	=microgram
fadc	=fire assay direct current

Notes:

Gold values reported for bedrock pulps and saprolite pulps (BEDZ and SAPZ) are included in the column of data labeled "Au -63um fade". The BEDZ and SAPZ data are on whole rock pulps, not -63um fraction.

Appendix 280-P. Baudette area gold data summary.

			Sample	Gold		Au		Au	ODM est.	Au	
		Sampled	height	grains	ODM	nmHMC	nmHMC	nmHMC	Au assay	-63um	Ox.
Sample	Unit	interval	(fl.)	/10kg	Remarks	inaa/fadc	g/10kg	ug/10kg	nmHMC	fadc	state
501-001	RT	131-135	2	0		0.231	27	6	0.000	0.003	un
501-002	SAP	135-145	-5	0		0.010	23	0	0.000	0.001	un
501-003	SAP	157-163	-25	0		0.006	34	0	0.000	0.001	un
<u>501-004</u>	BEDZ	163-166	-30			0.003			0.000	0.002	un
502-001	RT	123-133	51	4	0.1% py	0.053	44	2	0.335	0.002	un
502-002	RT DT	133-143	41	2	0.5% py	0.079	42	3	0.014	0.005	un
502-003	R1 DC	143-153	31	0		0.118	40	5	0.000	0.004	un
302-004	KS Ol	153-103	21	0		0.012	40	1	0.000	0.008	un
502-005		10/-1//		U		0.106	75	8	0.000	0.001	un
202-000	BED	111 110	-4			0.024	11		0.000	0.001	un
503-001	RI PT	110 179	39	1		0.034	22	20	0.000	0.002	un
503-002	DT NI	128.128	20			0.007	33 76	29	0.091	0.001	un 110
503-003 602.004	DT NI	120-130	10	Ň		0.004	20	ŝ	0.000	0.002	un 115
503-004	DT NI	148-143	10	1		0.240	28	Š	0.000	0.023	
503-003	ASAP	164-174	16	;		0.176	71	8	0.090	0.002	100
503-000	SAP	211.221	-63	ò		0.003	410	ĩ	0.000	0.002	110
502-007	BED7	240-247	-05	v		0.003	410	•	0.000	0.002	110
502.000	BED	247-255	-98			0.005				0.005	100
505-001	RT	140-149	- 90	1		0.213	31	7	0.197	0.001	un
505-002	OT	224-228	8	i	0.1% pv	0.019	86	2	0.027	0.002	un
505-003	OT	228-234	3	ĩ	1 Cu grain	0.200	53	ũ	0.116	0.001	un
505-004	SAP	234-243	-5	ŏ		0.016	22	0	0.000	0.001	un
505-005	BEDZ	261-267	-30			0.003					un
506-001	RT	166-171	8	- 5	1.5% py	0.101	69	7	0.533	0.034	un
506-002	RT	171-176	3	3	1.0% py	0.232	34	8	0.305	0.008	un
506-003	SAP	183-192	-12	0		0.003	74	0	0.000	0.018	un
506-004	SAP	192-199	-19	0		0.019	17	0	0.000	0.005	un
506-005	BED	236-244	-64			·				0.010	un
507-001	RT	148-155	88	0		0.079	31	2	0.000	0.001	un
507-002	RT	155-162	81	0		0.014	29	0	0.000	0.001	un
507-003	RL.	162-168	74	4	0.1% py	0.122	48	6	0.215	0.003	un
507-004	от	170-178	65	1	1 Cu grain	0.038	134	5	0.070	0.001	OX
507-005	OT	183-189	53	1		0.115	131	15	0.041	0.001	0X
507-006	OT	197-202	40	1		0.022	116	3	0.024	0.002	un
507-007	OS	202-207	35	0		0.098	109	11	0.000	0.004	un
507-008	01	207-215	28	I A		0.035	98	3	0.024	0.001	un
507-009	US OT	217-227	17	U I		0.010	100	1	0.000	0.001	un
507-010		227-234	9	1		0.033	200	4	0.028	0.001	un
507-011		234-239	3	1		0.033	23 79	1	0.000	0.003	un
507 012	BED7	239-242	-2	1		0.017	70	40	0.101	0.002	
507-015 508-001		110-124				0.003	14	1	0.000	0.003	110
\$08_007	RT	140-146	0	1	2 Ch grains	0.000	38	2	0.038	0.003	110
508-002	RT	146-152	ĩ	2	10 Cu graine	0.275	37	10	0.087	0.001	110
508-004	SAP	152.160	-5	õ	To Ca Brains	0.245	8	2	0.000	0.001	un
508-005	SAPZ	160-168	-12	•		0.003	·	-	0.000		un
508-006	SAPZ	214-223	-67			0.003					un
508-007	SAP	223-232	-76	0		0.011	22	0	0.000	0.002	un
508-008	SAPZ	266-276	-119	-		0.005		-			un
508-009	BED	280-285	-131							0.004	un
509-001	RT	083-092	5	2	2 Cu grains	0.083	37	3	0.055	0.015	un
509-002	BED	092-100	-4		•					0.002	un
510-001	RT	097-102	8	2	1 Cu grain	0.093	41	4	0.214	0.002	un
510-002	RT	102-107	3	1	1 Cu grain	0.027	28	1	0.006	0.001	un

P-2

Appendix 280-P.	Baudette are	a gold data	summary.
-----------------	--------------	-------------	----------

			Sample	Gold		Au	······································	Au	ODM est.	Au	
		Sampled	height	grains	ODM	nmHMC	nmHMC	nmHMC	Au assay	-63um	Ox.
ample	Unit	interval	(ft.)	/10kg	Remarks	inaa/fadc	g/10kg	ug/10kg	nmHMC	fadc	state
10-003	BED	107-112	-3							0.008	un
11-001	RI	109-116	31	0	7 Cu grains	0.127	22	3	0.000	0.001	un
511-002 511-002	KI DT	110-123	24	0	3 Cu grains	0.009	30	0	0.000	0.001	un
511-003	KI WT	127-135	13	U O	i Cu grain	0.122	30	4	0.000	0.001	un
511-004	WI WT	133-138	8	U A		0.028	17	0	0.000	0.002	un
511-005	WI RAD7	142 147	2	U		0.024	11	U	0.000	0.001	un
511-000	WT	097.005		0		0.003	27	1	0.000	0.001	un
512-001	WT	005-095	14	ŏ		0.058	10	1	0.000	0.001	01
512-002	WT	100-105	3	ŏ		0.038	43	1	0.000	0.001	01
512-003	BED	107-117	-7	v		0.021	45	•	0.000	0.001	110
513-001	RT	071-075	20	·····		0.418		12	0 202	0.003	
513-002	WT	075-083	14	ō		0.017	27	õ	0.000	0.001	08
513-003	WT	083-088	8	Ō		0.021	44	ī	0.000	0.003	08
513-004	WT	088-093	3	ō		0.023	53	ī	0.000	0.002	ox
513-005	SAP	095-101	-5	Ō		0.156	23	4	0.000	0.003	un
513-006	BED	106-115	-18							0.030	un
514-001	RT	165-173	47	0		0.017	20	0	0.000	0.002	un
514-002	RT	173-178	41	1		0.341	24	8	0.661	0.014	un
514-003	RT	178-183	36	0		0.081	33	3	0.000	0.003	un
514-004	RG	188-198	23	0		0.003	55	0	0.000	0.001	un
514-005	OS	198-207	14	1		0.057	36	2	0.008	0.001	un
514-006	SAP	217-227	-6	0		0.019	94	2	0.000	0.011	un
514-007	BED	257-262	-44							0.001	un
515-001	RT	143-153	64	0		0.026	63	2	0.000	0.002	un
515-002	RT	153-163	54	0		0.053	47	2	0.000	0.001	un
15-003	RT	168-176	40	0		0.017	52	1	0.000	0.010	un
515-004	от	176-182	33	0		0.054	33	2	0.000	0.002	un
515-005	от	182-192	25	0		0.066	27	2	0.000	0.001	un
515-006	OT	192-202	15	0		0,066	25	2	0.000	0.001	un
515-007	ΟΤ	202-207	8	1		0.046	29	1	0.118	0.001	un
515-008	OT	207-212	3	0		0.597	47	28	0,000	0.001	un
515-009	BED	212-223	-0							0.002	un
516-001	KI	037-042	15	0		0.042	21	1	0.000	0.001	un
516-002	KI	042-047	10	0		0.054	17	1	0.000	0.001	un
516-003	KU DED	047-054	4	1		0.023	17	U	0.123	0.001	un
217 001	BED	100-000	-3			0.047		1	0.000	0.001	<u>un</u>
517-001 617.001	KI DT	056-043	170	1		0.04/	20	1	0.000	0.001	un
517 002	KI WT	042-033	161	1		0.200	 0	J 1	0.033	0.002	un
517-005	WI .	053-004	161	1		0.100	10	1 5	0.000	0.001	un
517-004	WT	074-092	142	1		0.038	2	ő	0.000	0.001	un 08
517-005	WT	082.002	122	ŏ		0.028	12	2	0.000	0.001	
517-007	WT	002-092	125	ň		0.025	11	ő	0.000	0.001	110
517.008	WT	102-078	113	1		0.178	18	ă	0.190	0.001	110
517_000	wr	112.122	102	6		0.182	17	3	0.000	0.007	110
517-010	wr	122.120	04	ň		0.038	0	õ	0.000	0.002	110
517-011	OT	136-146	79	ŏ		0.016	25	Ő.	0.000	0.002	110
517-012	or	146-153	7	ŏ		0.042	29	ĩ	0.000	0.002	บก
517-012	OT .	152163	62	à	0.8% FeS?	0.166	21	ż	0.059	0.001	Un
517-014	ŏŤ	163-173	52	õ		0.052	30	2	0.000	0.003	un
517-015	ŎŤ	173-183	42	ŏ		0.021	25	ī	0.000	0.005	un
517-016	OT	183-193	32	Ō		0.039	27	ĩ	0.000	0.006	un
517-017	OT	193-203	22	0		0.185	22	4	0.000	0.003	un
517-018	OT	201.220	0	4	1.0% FeS2	0.609	25	15	0.918	0.001	110

Annadia 200 B	Doudatta			4.4.	
Appendix 280-P.	Baudelle	arca	goia	data	summary.

ň

			Sample	Gold		Au		Au	ODM est.	Au	
		Sampled	height	grains	ODM	nmHMC	nmHMC	nmHMC	Au assay	-63um	Ox.
Sample	Unit	interval	(ft.)	/10kg	Remarks	inaa/fadc	g/10kg	ug/10kg	nmHMC	fadc	state
517-019	BED	221-229	-5							0.003	บก
518-001	RT	105-115	140	0		0.037	20	1	0.000	0.003	un
518-002	RT	128-134	119	1		0.055	14	1	0.007	0.006	un
518-003	WS	172-182	73	0		0.052	26	1	0.000	0.022	un
518-004	WI	202-209	45	1		0.237	16	4	0.319	0.001	un
518-005	WT	209-219	36	0		0.025	.16	0	0.000	0.001	un
518-006	WT	219-229	26	0		0.013	18	0	0.000	0.001	un
518-007	WI	235-245	10	0		0.016	41	1	0.000	0.002	OX
518-008	WI	245-250	3	I		0.091	46	4	0.033	0.001	OX
518-009	BEDZ	263-273	-18			0.003					un
519-001	RI	085-097	71	0		0.049	26	1	0.000	0.001	un
519-002	KI	097-105	01	2	0.8% FeS2	0.046	21	I	0.335	0.001	un
519-003	WI	105-115	52	1		0.014	24	0	0.321	0.002	un
519-004	WI .	140-145	20	1		0.048	52	2	0.016	0.002	un
519-005	WI	152-157	8	0		0.032	46	1	0.000	0.004	un
519-006	WI	157-162	3	0		0.025	42	1	0.000	0.003	un
219-001	BED	190-194	-30							0.008	un
320-001	RT	020-030	274	0		0.086	23	2	0.000	0.001	un
520-002	RT	030-040	264	3		0.023	33	1	0.088	0.001	un
520-003	RT	040-047	256	4		0.021	21	0	0.037	0.001	un
520-004	WT	094-102	201	0		0.031	24	1	0.000	0.001	un
520-005	от	106-116	188	1		0.195	50	10	0.251	0.001	un
520-006	от	116-128	177	0		0.063	37	2	0.000	0.001	un
520-007	от	128-138	166	0		0.242	29	7	0.000	0.001	un
520-008	от	138-148	156	0		0.019	21	0	0.000	0.001	un
520-009	от	148-158	146	1		0.023	23	1	0.000	0.001	un
520-010	OT	158-168	136	0		0.175	24	4	0.000	0.002	un
520-011	от	168-178	126	1		0.478	22	11	0.668	0.002	un
520-012	OT	250-259	45	0		0.028	10	0	0.000	0.001	un
520-013	OT	259-269	35	0		0.104	14	1	0.000	0.001	un
520-014	OT	278-286	17	0		0.064	5	0	0.000	0.001	un
520-015	os	289-299	5	0		0.011	121	1	0.000	0.001	un
520-010	SAP	300-310	-0	0		0.011	45	0	0.000	0.003	un
520-017 X31 XX1	SAP DT	310-320	-10	<u> </u>		0.018			0.000	0.002	un
521-001	KI DT	0/5-081	209	1		0.025	23	1	0.008	0.001	un
521-002		111-11/	169			0.019	17	0	0.000	0.005	un
521-003	WI OT	102 201	120	, i		0.020	19	Ŭ	0.000	0,001	un
521-004	WT	201 211	91	1		0.273	54	9	0.371	0.001	un
521-005	WT	201-211	61	0		0.003	14	0	0.000	0.001	un
521-000	0 0	21/-224	59	0		0.023	14	ů,	0.000	0.001	. un
521-007	00	224-234	30 49	Ň		0.028	23	1	0.000	0.002	un
521-000	200	2347243	70	- 0		0.017	20		0.000	0.001	un
521-009	00	241-231	33	0		0.014	31	0	0.000	0.002	un .
521-010	08	777-287	د	Ň		0.003	145	3	0.000	0.002	un
521-012	SAD	211-201	5	ŏ		0.020	102	, ,	0.000	0.002	
521-012	BED	201-271	.12	ν.		0.003	104	v	0.000	0.001	
521-013	BED	470-477	-12							0.001	un un
521-014	BED7	304-304	-25			0.007				0.001	un
521-015		JUT JUU				0.007					

and the last of the second states of the second
See. 1