

Corescan DCL Repository Results

Britt Bluemel, MSc | Principal Geochemist, Corescan Cari Deyell-Wurst, PhD | Senior Spectral Geologist, Corescan Lionel Fonteneau, MSc | Senior Spectral Geologist, Corescan

Focus Areas

Drill Hole: LWD-99-1

Biwabik Iron Formation

Biwabik Iron Formation

- This iron formation is actively surface mined. Corescan mapping of ore grades and deleterious minerals within different stratigraphic intervals of the ore zone may highlight Corescan-3 system as a production tool for Minnesota's taconite industry.
- In 2009, the NRRI developed a stratigraphic system that linked all of the mined ore zones and waste submembers of the Biwabik Iron Formation. Corescan analysis may correlate this stratigraphy with distinct mineralogy or geochemistry, which may lead to a better understanding of how this vital mineral resource formed.
- This work may better define the contact between the iron formation and overlying Virginia Formation, and potentially identify hyperspectral markers for the Sudbury Impact event that has been petrographically identified in a few of these drill cores.

DDH	From	То	Total Feet	Total Meters	Comment
LWD-99-1	347	1344	997	265	Scan includes 200ft of overlying Virginia Formation (VF).
LWD-99-2	580	1414	834	252	LWD-99-1 and -2 are < 1mile apart
MGS-2	1574	2270	696	209	Proposed reference section for BIF
MGS-5	474	1252	778	235	Complete transect of BIF
MGS-7	741	1428	687	207	Complete transect of BIF
MGS-8	1125	2044	919	510	Scan of complete core, including 196ft of overlying Virginia Formation
Total 4911 1497		1497			

Biwabik – Mineral Key

Biwabik Fm

Mineral Name	Colour	▲ First
Hematitic Quartz		THSC
Goethite		
Nontronite		
Montmorillonite		
Kaolinite		
Chert + Illite/White Mica*		
NH4-Illite/White Mica		
Illite/White Mica		
Carbonate (Fe-rich)		
Hydrous Silica/Quartz		
Jasper + Carbonate (Fe-rich)		
Jasper		
Chert + Carbonate (Fe-rich)		
Microplaty Hematite		
Martite		
Fe-Oxide Mixture		Display
Talc (Fe-rich)		Priority
Talc		
Minnesotaite		
Stilpnomelane		
Chlorite (Fe-rich)		
Chlorite		
Carbonate + Silicate		
Chert + Carbonate*		
Carbonate		
Magnetite Mixture		
Magnetite		
Chert Mixture		
Chert		
Chert + Slate		
Slate Mixture		Last
Slate		

Mineral Name	Colour	•
Slate		First
Slate Mixture		
Carbonate		
Carbonate (Fe-rich)		
Carbonate + Silicate		
Hydrous Silica/Quartz		
Illite/White Mica		
NH4-Illite/White Mica		
Chlorite (Fe-rich)		
Chlorite		
Chert Mixture		
Chert + Carbonate*		
Chert + Slate		
Chert		
<u>Hematitic</u> Quartz		
Goethite		Display
Nontronite		Priority
Montmorillonite		
Kaolinite		
Chert + Illite/White Mica*		
Jasper + Carbonate (Fe-rich)		
Jasper		
Chert + Carbonate (Fe-rich)		
Microplaty Hematite		
Martite		
Fe-Oxide Mixture		
Talc (Fe-rich)		
Talc		
Minnesotaite		1
Stilpnomelane		1
Magnetite Mixture		Last
Magnetite		1

Mineral Name	Colour
Quartz	
Hematitic Quartz	
Illite/White Mica	
NH4-Illite/White Mica	
Chert + Illite/White Mica	
Chlorite (Fe-rich)	
Chlorite	
Nontronite	
Montmorillonite	
Kaolinite	
Slate Mixture	
Slate	
Carbonate	
Carbonate (Fe-rich)	
Chert + Slate	
Chert + Carbonate	
Carbonate + Silicate	
Chert	
Chert Mixture	
Goethite	
Jasper + Carbonate (Fe-rich)	
Jasper	
Chert + Carbonate (Fe-rich)	
Microplaty Hematite	
Martite	
Fe-Oxide Mixture	
Talc (Fe-rich)	
Talc	
Minnesotaite	
Stilpnomelane	
Magnetite Mixture	
Magnetite	

* Only displayed in the class map

* Only displayed in the class map

Albedo and carbonate grain size

Carbonate speciation

corescan

Click here to view in Coreshed

White Mica composition

corescan

Click here to view in Coreshed

Illite Crystallinity Index

The position of the ~2200nm Al-OH feature is indicative of the composition (paragonite, muscovite or phengite), while the ratio of the depth of the ~2200nm feature to that of the ~1900 feature is used as a 'crystallinity index'

Click here to view in Coreshed

629.60'

Biwabik Results

corescan

- Martite-rich bands can be differentiated from the more magnetic-rich bands using the VIS range which could help the taconite production
 - Highlights the contact
 between the Biwabik Fm and
 overlying Virginia Fm...
 undocumented ammoniumbearing white mica is
 identified in the same
 location where Addison et
 al. (2005) identified an ~25
 to ~58cm thick ejecta layer
 associated with the 1850Ma
 Sudbury impact event.

Click here to view in Coreshed

Cuyuna Range Manganese-Iron Formation

Cuyuna Range Manganese-Iron Formation

- **Goal**: Scan archived drill core from the Emily District, which hosts a cobaltbearing manganese-rich iron formation and the one of the largest undeveloped manganese reserves in North America.
- **Scope**: Core from 5 locations in Crow Wing County.

• Rationale

- Emily District's iron formation is similar to the Mesabi Range, but with much higher manganese content. Corescan may shed light on origin and mechanism of manganese enrichment.
- Part of the Cuyuna Iron Range.
- Emily District saw extensive exploration in 1950's, but no mines.
- Active CMR manganese development project in West Ruth Lake Deposit.
- Emily District iron formation may also have cobalt reserves (strategic mineral).

	Erom	То	Total	Total	Commont
DDH	FIOII	10	Feet	Meters*	comment
18423	145	328	183	55	Low-Mn content (comparison core)
19700	240	E 40	200	61	West Ruth Lake Deposit; state minerals. Includes
18709	540	540	200	10	Mn-bearing silicate-carbonate iron formation.
10712	170	275	107	60	West Ruth Lake Deposit; state minerals. Mn ore
10/15	1/0	575	197	00	zone 208-250'.
10715	254	500	2/15	105	West Ruth Lake Deposit; state minerals. Multiple
10/15	254	299	545	105	ore zones (high Mn black ore, lean ore)
					East Ruth Lake Deposit, modern diamond drilling
19061	201	190	205	62	technique, nearly 100% recovery, no sludge
10901	204	409	205	03	analyses. Contains intervals of oxidized iron
					formation and Mn ore.
		Total	1130	344	Total does not include pending CMR core footage.

Cuyuna – Mineral Key

Mineral Name	Colour	•
Amphibole		First
Chlorite		
Carbonate		
Goethite		
White Mica (NH4-rich)		
Carbonate (Fe-rich)		
Smectite (Fe-rich)		
Nontronite		
Montmorillonite		
White Mica		Display
Hydrous Silica/Quartz		Priority
Kaolinite		
Chert		
Jasper		
Microplaty Hematite		
Hematite		
Magnetite		
Sediment		
Sediment Mn?		Last
Dark Sediment		I

*Only displayed in the class map

Click here to view in Coreshed

375.00'

Kaolinite Crystallinity

567.00'

corescon

Click here to view in Coreshed

Iron Oxide Composition

Click here to view in Coreshed

corescan

Iron Oxide Composition

corescan

• The ability to quantify hematite vs goethite is vital information in these deposits for grade control and geomet properties

Click here to view in Coreshed

Iron Oxide Composition

corescan

• The ability to quantify hematite vs goethite is vital information in these deposits for grade control and geomet properties

Click here to view in Coreshed

Cuyuna Results

- The core consists of Fe- and Mn-rich sedimentary layers with a range of VIS-SWIR active minerals including white micas (illite, muscovite), clays (kaolinite and several smectite varieties), and chlorite.
- Interbedded chert and jasper-rich layers are common.
- Carbonate (predominantly calcite, based on wavelength measurements; and Ferich carbonate) occur locally.
- Ammoniated white micas are concentrated in the argillite unit at the base of drill hole 18715.

Click here to view in Coreshed

Hargrove, C.J., Lanza, N., Bell, J.F.III, Wiens, R.C., Johnson, J.R., Morris, R.V., 2014. Visible and near-infrared spectra of manganese oxides:

Detecting high manganese phases in Curiosity Mastcam multispectral images. American Geophysical Union, Fall Meeting 2014.

Drill Hole: LM-13-04

Mineral

Class

Animikie Basin and Animikie SEDEX

Animikie Basin & Animikie SEDEX

- **Goal**: Scan archived LawMan drill cores from the Carlton and Aitkin Counties, in the southern margin of the Animikie Basin.
- Scope: Core from four locations at the boundary of the Tamarack mafic intrusive complex and a sulfidic iron formation.

• Rationale

- The LawMan drill core contains features (identified by the Minnesota Geological Survey in 2018) potentially related to the Sudbury Impact Event.
- These are relatively recent cores to the Mn Drill Core Library (DCL), so were selected to help improve regional understanding of geology and mineral potential of the Animikie Basin.

НОО	Erom	То	Total	Total	Commont
DDH	From	10	Feet	Meters	comment
LM-13-01	203	454	251	77	Qtz breccia with cpy/aspy at 262.5'
LM-13-02	395	465	70	21	Native Cu (?) logged at 203-213'
LM-13-03	346	506	160	49	Hematite-rich sediments
LM-13-04	146	475	329	100	Several logged zones of cherty BIF
		Total	810	247	

Animikie Basin & Animikie SEDEX – Mineral Key

148.20'	Mineral Class Map	Animikie Basin				Animikie SEDEX				00'	Mineral Class Map
		Mineral Name	Colour	RGB Code		Mineral Name	Colour	RGB Code			
		Sulphide	colour	255 255 20	A	Sulphide 1		255,0,255	First		
		White Mica (NH4-rich)		70, 70, 220	First	Sulphide 2		255, 255, 20	rust		
		Sulphate (Fe-rich)		163.41.122		Sulphide 3		255,151,151			
		Gypsum		213.87.171		White Mica (NH4-rich)		70, 70, 220			
		Kaolinite		148.138.84		Carbonate (Fe-rich)		108,105			
		Carbonate (Fe-rich)		0,108,105		Carbonate		255,255			De la familia de
~		Carbonate		0,255,255		Kaolinite		191,183,143			
		Chert + Carbonate (Fe-rich)		0,176,172		Montmorillonite		151,151,255			
87	U. C. V. E. M. B. B. B.	Epidote		188,255,55		Hydrous Silica/Quartz		83,141,213	I	1	
7		Montmorillonite		175,175,255		Goethite		255,153,0	Display	\times	Spitzerszeren and Mellin Science (1997) Second and Science (1997) Science (1997) Second and Science (1997)
ie:		Hydrous Silica/Quartz		0,176,240	Display	Hematite		204,102,0	Priority	ie.	- NGA- Caleron
위		Goethite		255,153,0	Priority	Chlorite + White Mica*		196,215,155		위	and an (22 and a contract of the second second
		Hematite		204,102,0		White Mica		58,102,156			na seconda de la compañía de la compañía de la compañía y seconda de la compañía de la compañía de la compañía Na compañía y seconda de la compañía de la compañía Na compañía de la comp
Dri		Chlorite + White Mica*		196,215,155		Chlorite		0,191,0		i.	And a second
		White Mica		58,102,156		Chert (high albedo)*		166,166,166			and the second sec
		Chlorite		0,192,0		Chert (low albedo)*		209,209,209			and a second s
		Chert		209,209,209		Sediment 1		128,0,0			anan film of Pills in an Antonia Administration of the International
		Sediment (Fe-rich)		112,104,64		Sediment 2		88, 0, 0			ar to all and the second
		Sediment 1		128,0,0		Sediment 3		151,071,0			
		Sediment 2		88,0,0	Last	Sediment 4		112, 104, 64	Last		and a second sec
		Aspectral		95,95,95	•	Aspectral		95,95,95	•		المنتخذ علامين بين المناطقاتين اليونين أمر القائدات الالمن مدر مدريونين
		* Only displayed in the class map				* Only displayed in the class i	тар				
		Click here to view in Co	<u>reshed</u>			Click here to view in Coreshed					

229.20'

corescon

200.00'

Animikie Basin Results

- The Animikie core is predominantly of banded intervals of ferruginous and cherty sediments.
- Ammonium-bearing (NH₄-rich) white micas are recognized locally in the Animikie drill core, but are not a major component
 - Distribution is irregular, and occurrences are noted in quartz-breccia zones, metasedimentary units, as well as Fe-rich banded sediments.
- Additional sampling could help clarify the relationship to Au occurrence and/or lithological domains
- White micas in general have a relatively narrow range of compositions (based on 2200nm wavelength positions) from Al-rich and Al-poor micas, but negligible Na- and/or Fe-components
- Chlorite compositions on average (based on 2250nm wavelength positions) are close to Fe endmember values.

Drill Hole: LM-13-01

Animikie SEDEX

- Goal: Scan archived drill cores with SEDEX potential.
- Scope: Core from two locations in the Kalavala Township, in Carlton County.
- Rationale
 - A company exploring for iron deposits intersected 'brown beds' of massive pyrrhotite, and one interval that graded 2% Zn.
 - The best SEDEX prospect currently recorded in Minnesota for copper and zinc mineralization.

ррц	From	From	From	From	From	То	Total	Total	Commont
DDH	FIOIII	10	Feet	Meters	comment				
K-1	36	200	164	50	Trace Zn, Au, Ag				
KL-4	119	500	381	116	Trace sphalerite logged at 435'				
		Total	545	166					

Animikie SEDEX Compositional Parameters White Mica Crystallinity

- One measure of white mica crystallinity (2200x) is the relative 'sharpness' (Depth/Area) of the 2200nm feature.
- Crystallinity values are relative; *increases can typically be* attributed to increasing temperature and/or dehydration of the muscovite/illite series.

corescan

Animikie SEDEX Results

- The Animikie SEDEX core consist of interbedded graphitic slate, quartz-phyllite and argillite zones.
- Moderate pyrite and trace other sulfides (sphalerite) are noted in original drill logs
- Even though trace sphalerite was noted in original drill logs, a clear sphalerite spectrum was not detected in this study. Variations in the spectral features of iron-rich carbonates suggest Zn-substitution may occur, but further work would be required to confirm.
- White micas in general have a relatively narrow range of compositions (based on 2200nm wavelength positions) from Al-rich and Al-poor micas, but negligible Na- and/or Fe components – consistent with data from the Animikie basin drill core (see above).

Duluth Complex Vanadium Project

Duluth Complex Vanadium

- **Goal**: Scan core from an oxide-rich ultramafic intrusion (OUI) to determine whether hyperspectral core imaging can characterize vanadium-bearing titaniferous magnetite
- Scope: Three drill cores from the Longnose OUI in St. Louis County.

• Rationale

- There are a series of small oxide-rich ultramafic intrusions along the western margin of the Duluth Complex that are titanium rich (ilmenite).
- A new hydrometallurgical process has been developed that removes magnesium and isolates highpurity titanium dioxide. At a commercial scale, this process could lead to development of these titanium resources.
- Some of the OUIs contain appreciable quantities of vanadium, in the form of vanadium-bearing titaniferous magnetite. Both titanium and vanadium are strategic minerals.
- The Longnose OUI is the best-characterized OUI, with a 2011 NI43-101 technical report that assessed analytical results from 15 new drill holes. DNR has all of the logs and geochemistry from this drilling campaign.
- A bulk sample from the Longnose OUI was also used in the pilot-scale development of the new hydrometallurgical process.
- LNG-001-2010 and LNG-003-2010 both have complex layered geology and sampled intervals with >30% titanium and vanadium content >1500ppm. Range of vanadium from non-detect to 1500ppm should support evaluation of Corescan's ability to pick up variations in vanadium content at a spot scale.

	ррн	From	То	Total	Total	Comment
	bbn	mon	10	Feet	Meters	comment
I	LNG-001-2010	54	794	740	226	Complex layered geology and sampled intervals with >30% Ti & V >1500ppm. Extends into Partridge River Intrusion
I	LNG-003-2010	0	306	306	93	Contains intervals of Cu-Ni content on par with "typical" Duluth Complex ore grades
I	LNG-011-2011	0	1053	1053	321	Complex layered geology and sampled intervals with >30% Ti & V >1500ppm. Extends into Partridge River Intrusion
			Total	2099	640	

Duluth Complex – Mineral Key

Duluth Complex Compositional Parameters

Pyroxene vs Olivine Speciation

Duluth Complex Compositional Parameters

Pyroxene vs Olivine Speciation

Duluth Complex Compositional Parameters

Magnetite vs Diopside

corescan

- Magnetite can be easily distinguished from diopside by tracking both the position and the shape of their crystal field absorption feature in the VNIR range around 1050nm
- Magnetite is the main mineral of the mineralized zones whereas diopside is the main constituent of the Oxide-bearing pyroxenolite zones

Duluth Complex Vanadium Results

	Diopside Mineral Log	Fine-grained Material Mineral Log	Magnetite Mineral Log	Assay: CaO (%)	Assay: V (ppm)	Lithology	
596.87'						0023	
-2010						oxes oxesores	
NG-001						OXPR/OXPX OXPX OXPX/SOX/OXPR	
II Hole: I						0372 503/0373 0373/503	
Dril		M				0372	
	3000 5000 662	0.000 55/00 85/2	2.000 50,00 73.80	8.000 5.000 10.00 13.85	0.000 755.0 1900 1915	AGT	597.50'
	<u>Click ł</u>	<u>nere to view in</u>	<u>n Coreshed</u>	Aug	ite troctolite	e (AGT)	
	6			Oxic	le bearing p	eridotite (OXPR)

Oxide bearing pyroxene (OXPX)

- Mineralization is hosted by Oxide-bearing Ultramafic Intrusions that intruded into layered series intrusions of the Duluth Complex
- Correlations between the geochemistry, lithology, and the hyperspectral mineralogy
 - the *aspectral* unit can be interpreted as feldspar (plagioclase)
 - bright fine-grained material classes represent an olivine/feldspar mixture. Corroborated by the Ca (pct) and Al2O3 (pct) logs and corresponds with the troctolite unit
 - fine-grained and dark fine-grained material seem to correlate with the OXPR zones
 - Diopside is the main pyroxene type in the OXPX zones
- Ol-bearing peridotites are heavily serpentinized
- High V grades seem to correspond with the highest magnetite zones

International Falls Greenstone Gold Belt

International Falls Greenstone Gold

Goal: Scan archived drill core from a gold-bearing Superior Province greenstone bedrock terrane near International Falls, just south of the Canadian border. **Scope**: Core from thirteen locations in Koochiching County, just east of International Falls

Rationale

core S C O

- Archean Superior Province greenstone terrane (Wabigoon Subprovince) that has many active and pastproducing mines on Canadian side of the border.
- New Gold Rainy River Mine located 50 miles northwest of this area.
- Core locations are within the same major structure feature as Little American Island,
- Minnesota's only historic gold mine (1890's).
- More recent drilling campaigns produced several cores with gold mineralization.
- MnDNR project work identified multiple gold mineral and geochemical associations, sometimes within same cores. Corescan may shed light on gold mineralization events, and provide information that supports new exploration campaigns on state-managed mineral rights in the region.

Core from thirteen locations in Koochiching County, just east of International Falls

	Erom	То	Total	Total	Commont
DDH			Feet	Meters	comment
TC35-1	80	462	382	116	4,020ppb Au over 4ft interval
TC36-1	3	403	400	122	multiple gold associations
RR-1	6	1602	1596	486	Original DNR hole that got modern exploration programs going.
ND-1	18	603	585	178	multiple gold associations
ND-2	29	653	624	190	multiple gold associations
ND-3	19	409	390	119	multiple gold associations
S-2	4	452	448	137	multiple gold associations
SS-1	11	588	577	176	2,765ppb Au over 5ft interval
SS-4	39	412	373	114	8,016ppb Au over 5ft interval
SS-7	34	722	688	209	Same Au-bearing intervals as SS-4
SS-8	31	502	471	144	2,501ppb Au over 8.8ft interval
SS-9	53	400	347	106	hornblende and tourmaline
		Total	6881	2097	

Greenstone Gold Background

- Alteration style varies with the type and degree of deformation and with metamorphic grade.
- Includes a characteristic suite of minerals, including a regional and local association with carbonates, as well as potassic phyllosilicates, alkali feldspars, chlorite, Fe-sulfides, and quartz.
- Involves a progressive dilution of original bulk chemistry:
 - Alteration is accomplished by stripping of CaO and Na₂O, relative enrichment of Al₂O₃, and addition of K₂O, CO₂, H₂O, S, Au, and other incompatible elements.

Common Gold Associations

- Hosted in quartz veins and/or disseminated in altered wall rock.
- Associated with B-W-Sb-Te-Mo-As bearing minerals.
- Observed to have white mica and "green mica" (contains Cr, V, Fe, or Ba) replace chlorite and talc as the dominant phyllosilicates with increasing gold-related alteration.
- Alteration related to gold mineralization reflects the introduction of K and CO₂ and the removal of Ca and Na.

Example International Falls Core Tray

Mineral Name	Colour	RGB Code	
Tourmaline		167,37,255	First
Garnet		255,151,151	
Green Mica		58,102,156	
Talc		0,255,0	
Epidote		188,255,55	
Prehnite		155,187,89	
Zeolite		255,237,105	
Biotite		128,0,0	
Amphibole		52,82,52	
Carbonate (Fe-rich)		185,255,255	
Carbonate		0,255,255	
Sepiolite		196,215,155	
Hydrous Silica/Quartz		250,250,250	Display
Montmorillonite		175,175,175	Priority
White Mica + Chlorite*		148,138,84	
White Mica + Aspectral*		188,207,230	
Gypsum		213,87,171	
White mica		83,141,213	
Chlorite		0,191,0	
Amphibole (Fe-rich)		45,95,45	
Orthopyroxene		112,104,64	
Clinopyroxene		168,128,0	
Aspectral		209,209,209	
Aspectral 2		166,166,166	Last
Aspectral (Fe-rich)		0,108,105	

Phyllosilicates (micas, chlorites, biotites)

Mineral Name	Colour	RGB Code	
Tourmaline		167,37,255	First
Garnet		255,151,151	
Green Mica		58,102,156	
Talc		0,255,0	
Epidote		188,255,55	
Prehnite		155,187,89	
Zeolite		255,237,105	
Biotite		128,0,0	
Amphibole		52,82,52	
Carbonate (Fe-rich)		185,255,255	
Carbonate		0,255,255	
Sepiolite		196,215,155	
Hydrous Silica/Quartz		250,250,250	Display
Montmorillonite		175,175,175	Priority
White Mica + Chlorite*		148,138,84	
White Mica + Aspectral*		188,207,230	
Gypsum		213,87,171	
White mica		83,141,213	
Chlorite		0,191,0	
Amphibole (Fe-rich)		45,95,45	
Orthopyroxene		112,104,64	
Clinopyroxene		168,128,0	
Aspectral		209,209,209	
Aspectral 2		166,166,166	Last
Aspectral (Fe-rich)		0,108,105	

TC36-1 @ 67'

Pyroxenes & Amphiboles

Mineral Name	Colour	RGB Code	
Tourmaline		167,37,255	First
Garnet		255,151,151	
Green Mica		58,102,156	
Talc		0,255,0	
Epidote		188,255,55	
Prehnite		155,187,89	
Zeolite		255,237,105	
Biotite		128,0,0	Carr-or
Amphibole		52,82,52	
Carbonate (Fe-rich)		185,255,255	
Carbonate		0,255,255	
Sepiolite		196,215,155	
Hydrous Silica/Quartz		250,250,250	Display
Montmorillonite		175,175,175	Priority
White Mica + Chlorite*		148,138,84	
White Mica + Aspectral*		188,207,230	
Gypsum		213,87,171	
White mica		83,141,213	
Chlorite		0,191,0	
Amphibole (Fe-rich)		45,95,45	
Orthopyroxene		112,104,64	
Clinopyroxene		168,128,0	
Aspectral		209,209,209	
Aspectral 2		166,166,166	Last
Aspectral (Fe-rich)		0,108,105	

Clinopyroxene from SS-9 @ 239'

Orthopyroxene from ND-3 @ 231'

*Only displayed in the class map

Carbonates

Mineral Name	Colour	RGB Code	•
Tourmaline		167,37,255	First
Garnet		255,151,151	
Green Mica		58,102,156	
Talc		0,255,0	
Epidote		188,255,55	
Prehnite		155,187,89	
Zeolite		255,237,105	
Biotite		128,0,0	
Amphibole		52,82,52	
Carbonate (Fe-rich)		185,255,255	
Carbonate		0,255,255	
Sepiolite		196,215,155	
Hydrous Silica/Quartz		250,250,250	Display
Montmorillonite		175,175,175	Priority
White Mica + Chlorite*		148,138,84	
White Mica + Aspectral*		188,207,230	
Gypsum		213,87,171	
White mica		83,141,213	
Chlorite		0,191,0	
Amphibole (Fe-rich)		45,95,45	
Orthopyroxene		112,104,64	
Clinopyroxene		168,128,0	
Aspectral		209,209,209	
Aspectral 2		166,166,166	Last
Aspectral (Fe-rich)		0,108,105	1

Calcium-aluminium silicates (epidotes, prehnite, garnet)

Tourmaline 167,37,255 First Garnet 255,151,151 First Green Mica 58,102,156 0,255,0 Talc 0,255,0 0,255,0 Epidote 188,255,55 188,255,55 Prehnite 155,187,89 2260lite 255,237,105 Biotite 128,0,0 185,255,255 228,252 Carbonate (Fe-rich) 185,255,255 0,255,255 5 Carbonate (Fe-rich) 185,255,255 0,255,255 5 Montmorillonite 175,175,175 196,215,155 196,215,155 Hydrous Silica/Quartz 250,250,250 198,207,230 Montmorillonite 175,175,175 148,138,84 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,20	Mineral Name	Colour	RGB Code	
Garnet 255,151,151 Green Mica 58,102,156 Talc 0,255,0 Epidote 188,255,55 Prehnite 155,187,89 Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate (Fe-rich) 185,255,255 Carbonate (Juartz 250,250,250 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White Mica + Aspectral 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 166,166,166 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Tourmaline		167,37,255	First
Green Mica 58,102,156 Talc 0,255,0 Epidote 188,255,55 Prehnite 155,187,89 Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral 12 166,166,166	Garnet		255,151,151	
Talc 0,255,0 Epidote 188,255,55 Prehnite 155,187,89 Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Green Mica		58,102,156	
Epidote 188,255,55 Prehnite 155,187,89 Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate (Fe-rich) 185,255,255 Carbonate Sepiolite 0,255,255 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,00 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Talc		0,255,0	
Prehnite 155,187,89 Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Epidote		188,255,55	
Zeolite 255,237,105 Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Prehnite		155,187,89	
Biotite 128,0,0 Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 0,108,105	Zeolite		255,237,105	
Amphibole 52,82,52 Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Biotite		128,0,0	
Carbonate (Fe-rich) 185,255,255 Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 12 166,166,166	Amphibole		52,82,52	
Carbonate 0,255,255 Sepiolite 196,215,155 Hydrous Silica/Quartz 250,250,250 Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 Montmorile 0,191,0 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Carbonate (Fe-rich)		185,255,255	
Sepiolite196,215,155Hydrous Silica/Quartz250,250,250Montmorillonite175,175,175White Mica + Chlorite*148,138,84White Mica + Aspectral*188,207,230Gypsum213,87,171White mica83,141,213Chlorite0,191,0Amphibole (Fe-rich)45,95,45Orthopyroxene112,104,64Clinopyroxene168,128,0Aspectral 2166,166,166Aspectral 20,108,105	Carbonate		0,255,255	
Hydrous Silica/Quartz 250,250,250 Display Montmorillonite 175,175,175 Priorite White Mica + Chlorite* 148,138,84 Priorite White Mica + Aspectral* 188,207,230 State Gypsum 213,87,171 State State White mica 83,141,213 Onumbrica State Chlorite 0,191,0 State State Orthopyroxene 112,104,64 State State Clinopyroxene 168,128,0 State Last Aspectral 2 166,166,166 Last	Sepiolite		196,215,155	
Montmorillonite 175,175,175 White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,455 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 2 166,166,166 Aspectral 2 166,166,166	Hydrous Silica/Quartz		250,250,250	Display
White Mica + Chlorite* 148,138,84 White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Montmorillonite		175,175,175	Priority
White Mica + Aspectral* 188,207,230 Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	White Mica + Chlorite*		148,138,84	
Gypsum 213,87,171 White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	White Mica + Aspectral*		188,207,230	
White mica 83,141,213 Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Gypsum		213,87,171	
Chlorite 0,191,0 Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	White mica		83,141,213	
Amphibole (Fe-rich) 45,95,45 Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Chlorite		0,191,0	
Orthopyroxene 112,104,64 Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Amphibole (Fe-rich)		45,95,45	
Clinopyroxene 168,128,0 Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Orthopyroxene		112,104,64	
Aspectral 209,209,209 Aspectral 2 166,166,166 Aspectral (Fe-rich) 0,108,105	Clinopyroxene		168,128,0	
Aspectral 2 166,166,166 Last Aspectral (Fe-rich) 0,108,105 1	Aspectral		209,209,209	
Aspectral (Fe-rich) 0,108,105	Aspectral 2		166,166,166	Last
	Aspectral (Fe-rich)		0,108,105	1

DDH: SS-4 @ 115'

Tourmalines

				Core Class I mi
Mineral Name	Colour	RGB Code	•	Photo Map Mtch
Tourmaline		167,37,255	First	
Garnet		255,151,151		
Green Mica		58,102,156		
Talc		0,255,0		
Epidote		188,255,55		A
Prehnite		155,187,89		
Zeolite		255,237,105		
Biotite		128,0,0		
Amphibole		52,82,52		o 🦰 🚺 🥻
Carbonate (Fe-rich)		185,255,255		S S
Carbonate		0,255,255		
Sepiolite		196,215,155		
Hydrous Silica/Quartz		250,250,250	Display	
Montmorillonite		175,175,175	Priority	
White Mica + Chlorite*		148,138,84		
White Mica + Aspectral*		188,207,230		
Gypsum		213,87,171		
White mica		83,141,213		
Chlorite		0,191,0		
Amphibole (Fe-rich)		45,95,45		
Orthopyroxene		112,104,64		
Clinopyroxene		168,128,0		
Aspectral		209,209,209		
Aspectral 2		166,166,166	Last	
Aspectral (Fe-rich)		0,108,105	I	

International Falls - Tourmaline

- Tourmalines are of particular interest, given their association with Au mineralization.
- Tourmalines at International Falls identified are dominated by schorl varieties (as determined by ~2350nm feature position; Bierwirth, 2008), although composition approaching dravite are also recognized.
 - Since the standard (2350nm) did not reveal significant variation in the tourmalines, several 'test' parameters were created, and the tourmaline chemistry was successfully tracked by measuring the 2200nm feature
- The 2350nm feature was also used to determine tourmaline crystallinity

International Falls Compositional Parameters

Tourmaline Spectral Characteristics

Tourmaline

6

corescan

Tourmaline		
Low	High	
match	match	

- The combination of absorption features at ~2210nm, ~2245nm, ~2305nm and ~2360nm are unique to tourmaline.
 - These features are due to X-O-H stretching vibrations, where X = AI, Mg, Fe or B.
- Broad features at ~1100nm if present are due to energy transitions in ferrous iron.

Tourmaline 2350nm wavelength variations

Tourmaline spectra are complex.

Less is known about the effects of chemical substitutions on SWIR features than most other porphyry-related alteration minerals.

However, variations in the 2350nm feature may be used to distinguish tourmaline species:

Tourmaline composition index 2350 nm position

(End-member tourmaline data courtesy of F. Bierwirth)

Dravite $NaMg_3Al_6Si_6O_{18}(BO_3)_3(OH)_3OH$ Elbaite $Na(Li_{1.5},Al_{1.5})Al_6Si_6O_{18}(BO_3)_3(OH)_3OH$ Schorl $NaFe^{2+}_3Al_6Si_6O_{18}(BO_3)_3(OH)_3OH$

Compositional endmembers courtesy of Bierwirth, P.N., 2008.

Reference: Deyell et al., in prep.

Tourmaline 2350nm wavelength variations

corescon

Dravite $NaMg_{3}Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}OH$ Schorl $NaFe^{2+}_{3}Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}OH$ Elbaite $Na(Li_{1.5},Al_{1.5})Al_{6}Si_{6}O_{18}(BO_{3})_{3}(OH)_{3}OH$ Atomic Radii

Reference: Deyell et al., in prep.

International Falls Compositional Parameters

Tourmaline 2200nm wavelength feature variations

corescan

Variations in the 2200nm feature position are attributed to variations in the Al content of tourmalines (negatively correlated with Mg and other Ysite cations) – similar to the white mica compositional variations (Duke, 1994)

To our knowledge, no systematic study of these variations in tourmalines has been published.

It is not known what range or 'end-members' of these values to expect – but it could be worth tracking to see if any systematic variations are present in the dataset.

International Falls Compositional Parameters Tourmaline 2350nm - Crystallinity

One other parameter we can explore is the relative 'sharpness' of the 2350nm feature (2350x).

In other mineral groups such as white micas, we can use the Depth/Area of a specific feature as an indication of crystallinity (e.g., higher values = 'sharper' features = higher crystallinity). In the case of white micas in particular, crystallinity can be roughly correlated with temperature.

This may not be true of tourmalines – their chemistry is much more variable – but tracking systematic variations may be useful.

International Falls Compositional Parameters

Orthopyroxene vs Clinopyroxene

TC35-1 @ 296.6m

corescon

Tourmaline spatial association with gold (downhole view)

International Falls Greenstone Gold – Summary

- The rocks of this gold-bearing granite greenstone terrane are very conducive to hyperspectral core imaging
 - Mineral groups identified: a range of phyllosilicates (micas, chlorites, biotites), clays, pyroxenes, amphiboles, sulphates, carbonates, calcium-aluminium silicates (epidotes, prehnite, garnet), and tourmalines.
 - Non-destructive technique so can still be readily utilized on archived quarter core
 - Mapped textures that might support a new mineralization model and ignite interest in the exploration community

Recommendation for future work

Confirmatory petrography/EMP analysis of scanned core, coupled with a systematic study of additional core from Focus Area, could reveal consistent trends in quartztourmaline-carbonate-sulfide veins and support additional mineral exploration/drilling working with this mineralization model.

