

Corescan Drill Core Library Repository Project

Britt Bluemel, MSc | Principal Geochemist, Corescan

Procedure & Timeline

- 1. Lab arrival
- 2. Scanning
 - 1. QC & prep
- 3. Data Processing & Interpretation
- 4. Project Deliverables Summary

Lab Arrival

Scanning Procedure - Prep

1. Prep

- 2. Calibrate
- 3. Scan
- 4. QC
- 5. Repeat

Figure 2a Core requiring washing

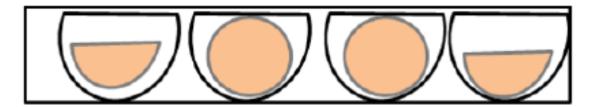


Figure 2b Core requiring brushing

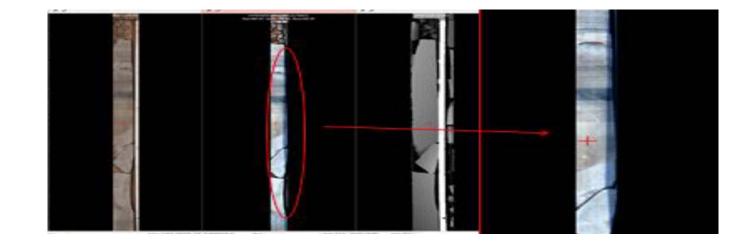
Figure 3 – Mixed core tray

Scanning Procedure - Calibrate

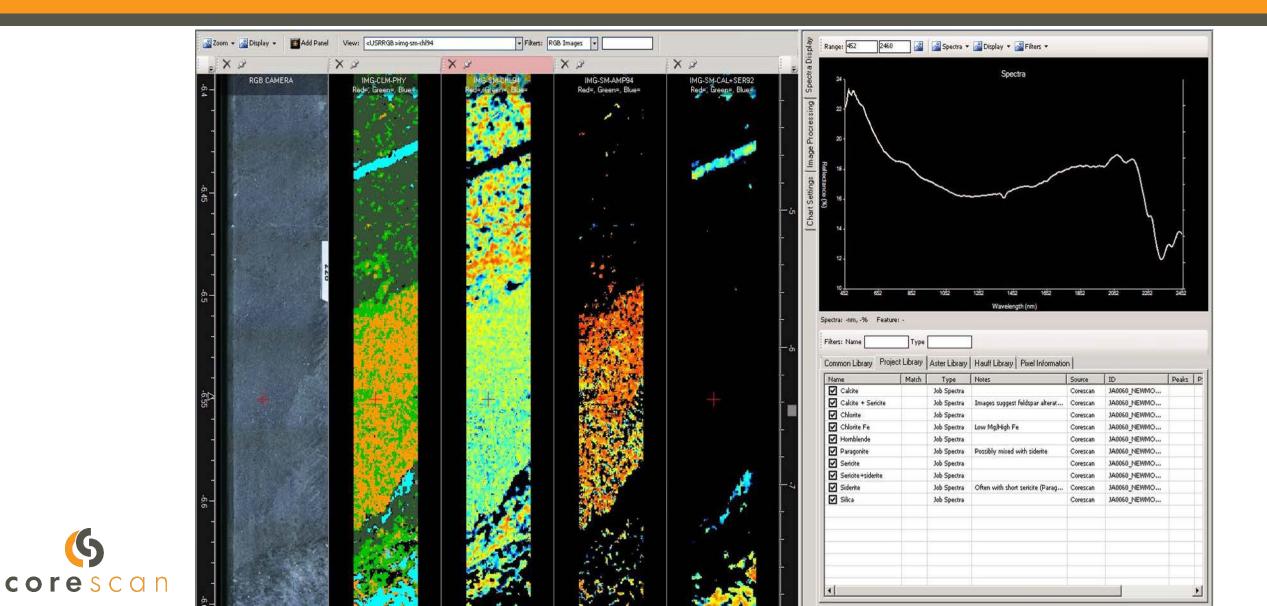
1. Prep

2. Calibrate

- 3. Scan
- 4. QC
- 5. Repeat



- The calibration of a spectrometer is necessary to correct for systematic error.
- As the electronic components heat up with continuous use, wavelength positions measured by the spectrometer tend to "drift".
- Calibration is done by comparing scanned wavelengths of a standard sample (NIST samples) to its published spectrum.
- The distinctive absorption features and identification of minerals and their composition are only as good as the calibration.
- Calibration should be done as often as possible without compromising the speed of data collection...." garbage in garbage out" sums up the importance of good calibration.


Scanning Procedure – Scan & QC

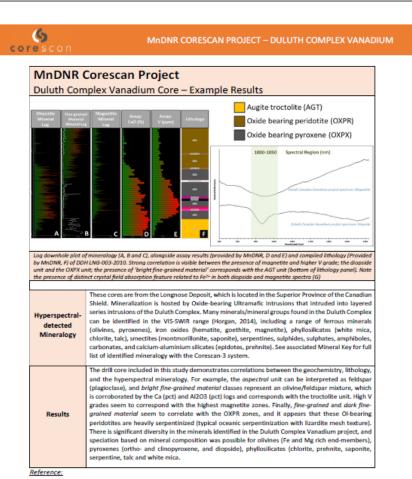
- 1. Prep
- 2. Calibrate
- 3. Scan
- 4. QC
- 5. Repeat

Data Processing and Interpretation

6

DELIVERABLES

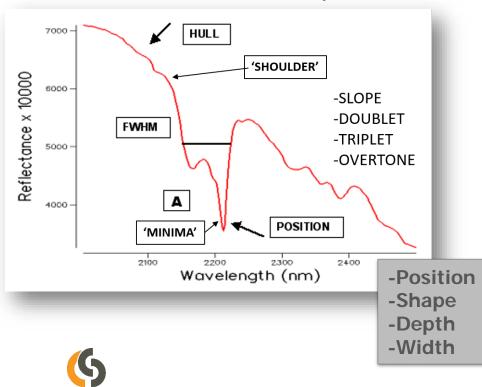
- Product & Project Summary Report
- Focus Area Summaries
- Mineral Keys
 - 1. Match Images
 - 2. Mineral keys
- Mineral Logs
- Public Coreshed Global unveiling!



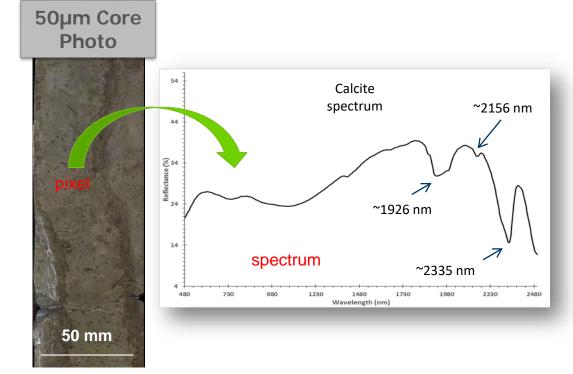
Project Summary Report

- 20+ page document detailing...
 - the Corescan instrumentation (spectral and spatial resolution) of cameras (x4) and laser profiler
 - Geotechnical data
 - Hyperspectral data & Processed products
 - RGB imagery
 - Mineral imagery/maps

Focus Area Summary Reports

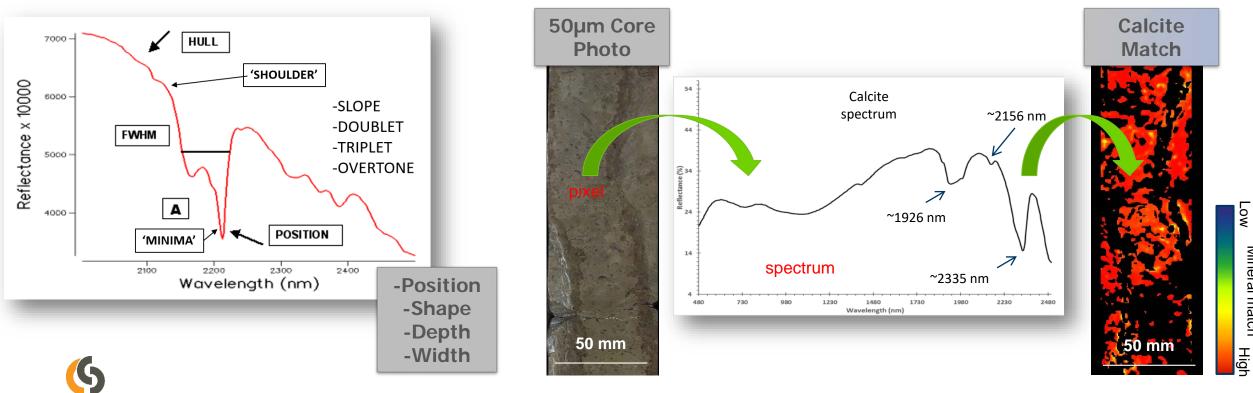


Horgan, B. H., Cloutis, E. A., Mann, P., & Bell III, J. F., 2014. Near-infrared spectra of ferrous mineral mixtures and methods for their identification in planetary surface spectra. Icarus, 234, 132-154.


WWW.CORESCAN.COM.A

Mineral Keys Step #1: Match images

- Spectral signatures are mineral "fingerprints"
- Each spectrum from pixel making up the hyperspectral image is compared to the mineral library


corescan

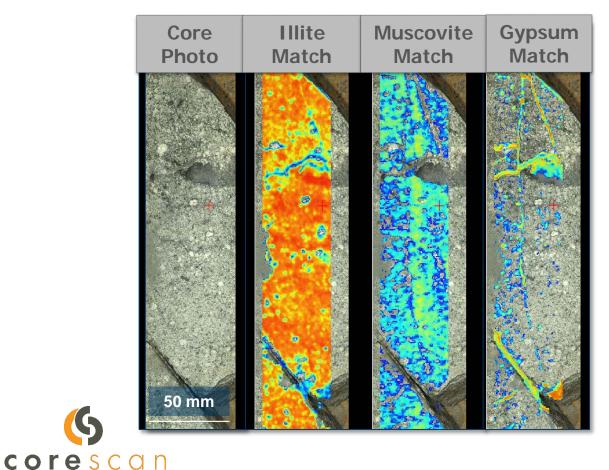
Mineral Keys Step #1: Match images

- How well each spectrum matches the library mineral is then assigned to each pixel (as a match value)
- Pixels coloured by match values create a "match map"

corescan

Mineral Keys Step #1: Match images

Mineral match

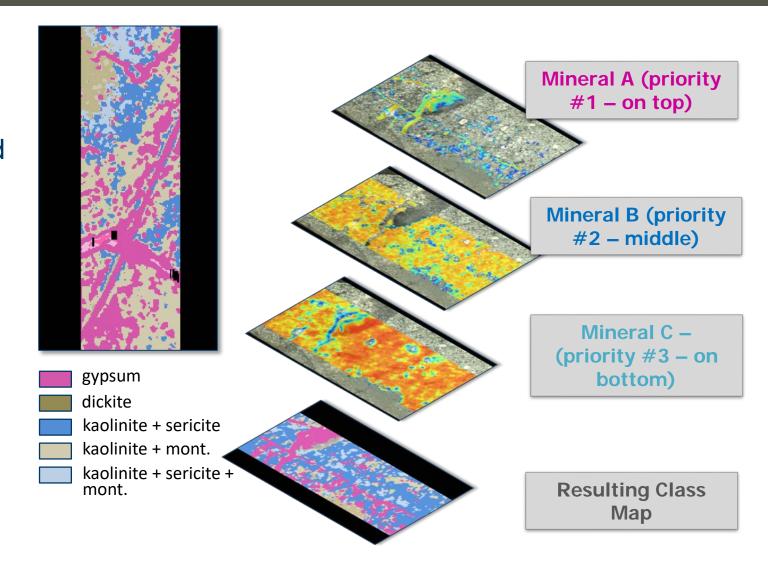

Low match (92%)


High match

(100%)

Create match images and verify quality of match

• Thresholds selected by quantitative comparison to known spectral behaviour as well as qualitative mapping processes



Mineral Keys Step #2: Class Maps

Create mineral class map

- Considers minerals matched at each pixel and allocates colour based on mineral with the highest priority (defined by spectral geologist)
- Priority selected to enhance texture/mineral relationships

International Falls Mineral Key & Match Thresholds

Mineral Name	Colour	RGB Code	•
Tourmaline		167,37,255	First
Garnet		255,151,151	
Green Mica		58,102,156	
Talc		0,255,0	
Epidote		188,255,55	
Prehnite		155,187,89	
Zeolite		255,237,105	
Biotite		128,0,0	
Amphibole		52,82,52	
Carbonate (Fe-rich)		185,255,255	
Carbonate		0,255,255	
Sepiolite		196,215,155	
Hydrous Silica/Quartz		250,250,250	Display
Montmorillonite		175,175,175	Priority
White Mica + Chlorite*		148,138,84	
White Mica + Aspectral*		188,207,230	
Gypsum		213,87,171	
White mica		83,141,213	
Chlorite		0,191,0	
Amphibole (Fe-rich)		45,95,45	
Orthopyroxene		112,104,64	
Clinopyroxene		168,128,0	
Aspectral		209,209,209	1
Aspectral 2		166,166,166	Last
Aspectral (Fe-rich)		0,108,105	

Image	Measurement*	Lower Threshold	Upper Threshold			
Amphibole 2310nm wavelength	L2310	2310nm	2334nm			
Biotite 2250nm wavelength	L2250	2245nm	2252nm			
Carbonate (all) 2340nm wavelength	L2340	2315nm	2345nm			
Chlorite 2250nm wavelength	L2250	2249nm	2262nm			
Epidote 1550nm wavelength	L1550	1548nm	1558nm			
Tourmaline 2200nm wavelength	L2200	2200nm	2205nm			
Tourmaline 2350nm crystallinity	(D2350 ²)/A2350	0.0001	0.001			
Tourmaline 2350nm wavelength	L2350	2350nm	2365nm			
Tourmaline Fe-slope	R1850/R1350	0.75	1.25			
White Mica (all) 220nm crystallinity	(D2200 ²)/A2200	0.001	0.008			
White Mica (all) 2200nm wavelength	L2200	2195nm	2215nm			

*L = wavelength (in nm) at feature minimum, R = reflectance, A = area, D = depth at feature minimum

*Only displayed in the class map

Cuyuna Range Manganese Mineral Key & Match Thresholds

Mineral Name	Colour	RGB Code	
Amphibole		52,82,52	First
Chlorite		0,192,0	
Carbonate		0,255,255	
Goethite		255,153,0	
White Mica (NH4-rich)		70,70,220	
Carbonate (Fe-rich)		0,108,105	
Smectite (Fe-rich)		95,100,200	
Nontronite		105,105,255	
Montmorillonite		175,175,255	
White Mica		58,102,156	Display
Hydrous Silica/Quartz		0,176,240	Priority
Kaolinite		148,138,84	
Chert		209,209,209	
Jasper		255,0,0	
Microplaty Hematite		168,128,0	
Hematite		204,102,0	
Magnetite		95,95,95	
Sediment		128,0,0	
Sediment Mn?		168,0,0	Last
Dark Sediment		88,0,0	1

Measurement*	Lower Threshold	Upper Threshold				
L2340	2330nm	2338nm				
L2250	2245nm	2255nm				
L900	860nm	920nm				
R2184/R2164	0.94	1.01				
(D2200 ²)/A2200	0	0.003				
L2200	2200nm	2215nm				
	L2340 L2250 L900 R2184/R2164 (D2200 ²)/A2200	L2340 2330nm L2250 2245nm L900 860nm R2184/R2164 0.94 (D2200 ²)/A2200 0				

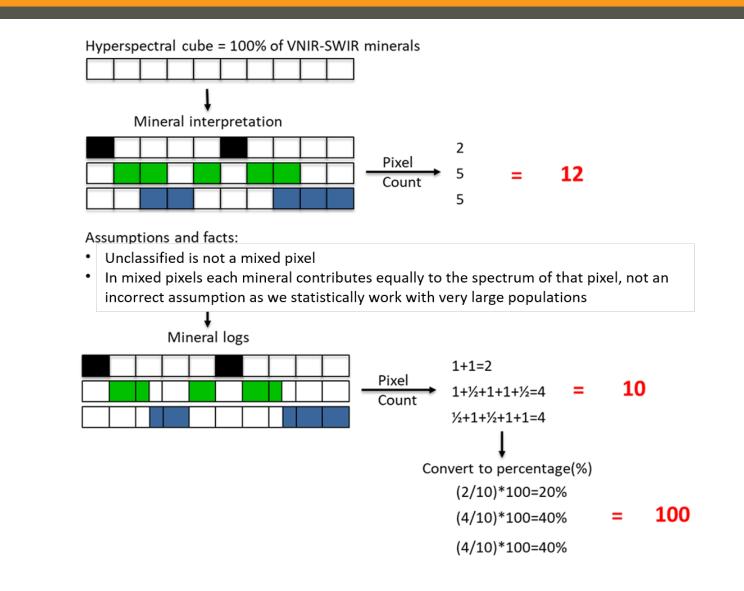
*L = wavelength (in nm) at feature minimum, R = reflectance, A = area, D = depth at feature minimum

*Only displayed in the class map

Duluth Complex Vanadium Mineral Key & Match Thresholds

Mineral Name	RGB Code	Colour	
Sulphide 1	255,0,255		
Sulphide 2	167,37,255		First
Iddingsite*	151,71,0		
Goethite	255,153,0		1 I
Hematite	204,102,0		1 I
Natrolite	190,160,200		
Saponite	70,70,220		1
Smectite (Mg-rich)	105,105,255		
Montmorillonite	175,175,255		
White Mica + Chlorite*	188,207,230		
White Mica	58,102,156		
Epidote	196,215,155		
Chlorite	155,187,89		
Calcite	0,255,255		
Prehnite	83,141,213		
Amphibole	50,50,80		
Talc (Fe-rich)	255,151,151		
Talc	255,200,200		Displ
Phlogopite	237,185,220		Prior
Antigorite	44,109,0		
Serpentine 2	45,95,45		
Serpentine 1	52,82,52		
Serpentinised Olivine	200,220,115		
Serpentinised Pyroxene	0,108,105		
Magnetite	95,95,95		
Orthopyroxene	191,183,143		
Clinopyroxene	0,219,214		
Diopside	0,176,172		
Olivine (Fe-rich)	255,255,20		
Olivine (MgFe-rich)	223,255,159		
Olivine (Mg-rich)	188,255,55		
Aspectral	209,209,209		1
Bright Fine-grained Material	255,0,0		1.
Fine-grained Material	128,0,0		Last
Dark Fine-grained Material	88,0,0		1

Display Priority


Image	Measurement*	Lower Threshold	Upper Threshold
Pyroxene – Olivine 1000nm wavelength	L1000nm	900	1100

*L = wavelength (in nm) at feature minimum, R = reflectance, A = area, D = depth at feature minimum

*only displayed in the class map

Mineral Logs

corescan

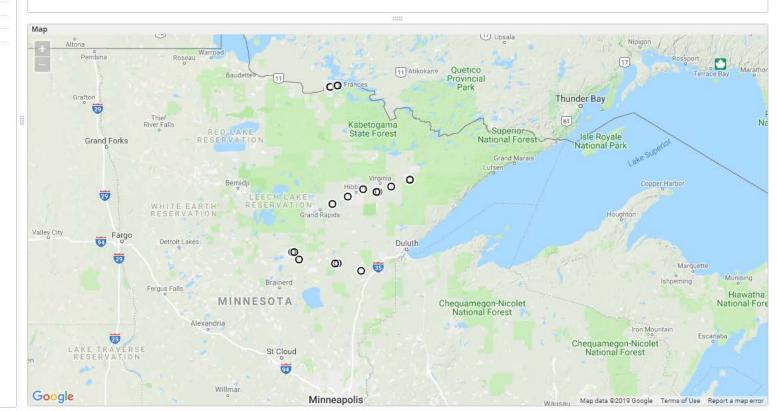
It's just counting

Quantitative Spectroscopy

Hundreds of thousands	Alunit	е	Asp.	Atacan	nite	Chl		Gyps	um	Mont	REE		Sericite		FeOx	
mineralogical datapoints exported into .csv files at	from_depth_to_depth 40 50 51 52 53 55 54 55	Alunite 50 0.12260 51 0.12260 53 0.12736 53 0.1071 54 0.2007 55 0.404/5 56 0.404/5 56 0.1540	Aspectral 0.0008 0.00001	Assemble a price 1	Carbonese 0.00305 0.00365 0.00055 0.00055 0.00064 0.00064 0.00066	Chiprine D.00007 D.00007 D.00002 D.00022 D.00022 D.00022 D.00022	Onyzocolia	Gypsum 0.00903 0.00944 0.00244 0.00244 0.002547 0.002547 0.002547	Exclinits 0.0008 0.00888 0.00888 0.00888 0.00888 0.00888 0.008888 0.00888 0.00888 0.00888 0.00888 0.008888 0.0088	D DOUDE	Philogopital 11	0.00001 0.00001	Serietor Tour 0.74100 0 0.75070 0 0.75070 0 0.86124 0 0.86124 0 0.37716 0	2003 22034 2203 22083 22083 22083	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
desired intervals	20 57 58 99 00 61 62 62 63	57 0.16473 56 0.20765 57 0.24856 50 0.6641 51 0.13053 52 0.16539 53 0.26636 54 0.26639 55 0.26639 56 0.26	0.00073 0.0073 0.0073 0.0074 0.0040 0.0040	0.0002 0.0013 0.0004	0.00449 0.00236 0.00145 0.00035 0.00035 0.00035 0.00035 0.00035	0.0000	0.0009	0.00500 0.00745 0.1460 0.00221 0.00221 0.00221 0.00221 0.013 0.0221 0.013	0 05465 0.0064 0 01085 0 05468 0 09468 0 094722 0 09472 0 09472 0 09472 0 09472	0 00000 0 000333 0 00057 0 00744 0 0044 0 0044		0.00000 0.00001 0.000012 0.00009 0.00009	0 00151 0 31252 0 5255 0 5575 0 55755 0 55572 0 75555 0 55572 0 75555 0 75557 0 75577 0 75577 0 75577 0 75577 0 75577 0 75577 0 75577 0 75577 0 75577 0 755770 0 75577 0 755770 0 7557700 0 7557700 0 7557700 0 755700 0 755700 0 75570000000000	2205.0 2200.5 2200.5 2200.4 2200.4 2200.4	33 342 0.97 72 0.342 342 73 0.342 342 75 0.325 342 77 0.335 342 72 0.325 342	
Easy import into	05 05 67 02 00 70	65 0.24425 67 0.45455 68 0.32425 68 0.32455 68 0.32155 70 0.22625 71 0.56152	0.2005 0.66154 0.41321 0.17887 0.07904	0 0000	0.00055 0.00054 0.00054 0.00055 0.00055 0.0025 0.0025	5.50007 I		0.00575 0.00575 0.00576 0.00574 0.00574 0.00517 0.00576	0.02179 0.00588 0.00545 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.00585 0.0058 0.005 0	0.0000		0.00000 0.00000 0.00001 0.00001 0.00001 0.000028	0.9375 0.9375 0.93831 0.93831 0.9384 0.9384 0.0384	from_depth	to_depth	Alunite 0.01577
third-party software for	71 72 73 74 75 75 75 75	77 0.1809 73 0.16812 74 0.11277 75 0.51381 76 0.1821 77 0.1718 78 0.08888	0.55474 0.55315 0.66544 0.55147 0.55447 0.55447 0.54575 0.25317		0.00154 0.00055 0.00055 0.00059 0.00059	0.00004		0.00011 0.00046 0.00440 0.00040 0.000440 0.000440 0.000440	0 10040 0 10060 0 01249 0 19939 0 1979 0 1979 0 19709	0.00000 0 0.00065 0		0.00046 0.00046 0.00005 0.00004 0.00004 0.00004 0.00004 0.00004	0 44761 0 20122 0 51222 0 57621 0 41566 0 20059 0 47765	1	4	0.13014 0.04432 0.03273
statistical and 3D analysis	78 78 80 81 81 82 82	73 0.11597 80 0.20549 81 0.12723 82 0.14016 85 0.12546 88 0.22672	0.12852 0.41854 0.18519 0.18218 0.18218 0.18214		0.00012	0.00000 B		0.00654 0.01569 0.00042 0.00042 0.01568 0.01568	0.27841 0.94141 0.27136 0.40975 0.70255 0.20255	0.00009 I		0.00008 0.00016 0.00012 0.00144 0.00525 0.00058	0.65604 0.11984 0.57745 0.45005 0.21455 0.224455 0.224455	4	6 7	0.51159 0.05023 0.48407
llood to build	81 85 86 87 82 90 70	65 0.04639 86 0.07125 87 0.02236 88 0.02543 89 0.02543 90 0.07481 91 0.10751	0.15493 0.22578 0.04412 0.34775 0.34502	0.00034	0.00012 0.00204 0.05411 0.1030 0.00001 0.00001	0.00003 II 0.00006 II		0.01324 0.05905 0.05745 0.05745 0.05594 0.05594	0.44511 0.41262 0.01274 0.01274 0.01233 0.02262 0.0128	0.0000 0 0.0000 0		0.00028	0.43661 0.30625 0.36725 0.4672 0.4672 0.30042 0.87877	8	9 10	0.81321 0.49861 0.01411
Used to build improved, consistent		42 0.1007 63 0.0250 54 0.0255 55 0.0522 56 0.10622 56 0.10041	0.68158 0.68377 0.45555 0.43577 10.6858 8.4257 0.25715	0.0000.	0.0097	0.00002 0.00002 0.00002 0.00003		0.01922 0.01922 0.005/25 0.005/25 0.005/25	0 04058 0 05265 0 15475 0 07585 0 17182 0 15202 0 15262	6.0000 B		0.00011 0.00012 0.00022 0.00022 0.00023 0.00023 0.00023 0.00023	0 8/084 0 9/03 0 8/02 0 81341 0 7/215 0 7/215 0 8/220 0 8/24 0 7/215 0 8/2000	10 11 12 13	12 13	0.02042 0.48591 0.28562 0.54401
geological models an optimise process and	2 78 999 100 101 101 101 101 101 101 101	59 0.15285 100 0.10647 101 0.10647 102 0.0555 108 0.0557 108 0.0557 108 0.0557 108 0.0557 108 0.0557 105 0.0135 106 0.0757	0.25772 0.25970 0.15970 0.14902 0.14902 0.14902 0.14902 0.14902 0.2590 0.25972	0.0000	0.00075	0.00000 0.000000 0.000000 0.000000 0.000000		0.00214	0.55336 0.04630 0.00759 0.20400 0.51545 0.59459	0.0002		0.00051 0.00053 0.00053 0.00052 0.00052 0.00052 0.00052	0 59825 0 64488 0 65261 0 53649 0 72437 0 47443 0 43624	13 14 15 33	15 16	0.46999 0.05643 0.27713
metallurgy	91/ 908 309	108 0.05476 109 0.01643 130 0.01875	0.16377 0.43438 0.44159 0.15481 0.26204 0.25273		0.00544	0.04545		0.00042	0.60705 0.5555 0.50641 0.5660 0.55265 0.55472	8.8002		0.00051 0.00018 0.00055 0.00057 0.00058 0.00058	0.34007 0.54534 0.515 0.42281 0.5265 0.52754	33 34 35 36	35 36	0.38744 0.03413 0.00282
	113 1 114 1 115 1 116	111 0.07052 112 0.0568 113 0.07521 114 0.0647 115 0.04485 116 0.04485 117 0.02284 117 0.02284	0.2298 0.2200 0.3290 0.3290 0.3478 0.3678 0.3679 0.3679		0.00046 0.00046 0.00046 0.00046 0.00046 0.00046	0.00015		0.0000	0 9/258 0 73977 0 55029 0 50175 0 5058 0 5058 0 5799 0 35000	0.00000		0.00243	0 0/1 / 2 0 2/3/2 0 4/5/1 0 4/5/1 0 4/5/1 0 4/5/1 0 3/3/4 0 3/3/4 0 0 3/3/4 0 3/3/4	30	38	0.03604
core scan	318 1	129 0.03408 1 120 121 120	0.55465		0.00088	0.00001 0.00/me		0.00115	0.9655		0.00042	0.00008	0.51255	(1018 27/14 P 27/14 P 22/05 J	47 1.129	

Coreshed

Admin Mode


🔇 coreshed

Dashboard Drill Hole View Core Tray View

0
p
Region
Minnesota
Showing 6 of 487 project

Details	
Project: MDNR - Animikie	
Project: MDNR - Animikie S	EDEX
Project: MDNR - Biwabik In	on Formation
Project: MDNR - Cuyuna Ra	ange Manganese
Project: MDNR - Duluth Co	mplex Vanadium
Project: MDNR - Internation	nal Falls Greenstone Belt Gold
Project id	MDNR Core Library
Project name	MDNR - International Falls Greenstone Belt Gold
Project description	
Customer id	MDNR
Location	USA
Region	Minnesota
Deposit type	Orogenic Gold
Record last updated	2/24/2019, 19:25:20

Inventory		
Show all		
A Drill Holes		
Drill holes	4996	
Total length	839,919m (840km)	
Total length Products		
Products	547696	
Storage space used Archive Storage	29.2TB	
Archive Storage		

Drill Hole

P

👗 Britt Bluemel Log Out

Coreshed

🄇 coreshed				Admin Mode 🌲 Britt Bluemel Log Out
Dashboard Drill Hole View Core Tray View Category: Core Imagery Add panel 			Layout: S	tacked by section Drill Hole: LWD-99-1
Core photography	Mineral class map - Biwabik Fm	Albedo 448-740nm	Carbonate (Fe-rich) ▼ ▼	Carbonate (all) 2340nm relative grain size
867 863 865 855				
886 883 879'				
894' 80'				

0.3572, 19.0008 (dist: 0.0327m) Drill hole: LWD-99-1 Tray: 0077 Depth: 850.8' to 852.6' ID: 0077_01

Chert + Carbonate (Fe-rich)

Final Product

Thank you!

Britt Bluemel, MSc | Principal Geochemist, Corescan

britt.bluemel@corescan.com.au

