

SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

TWIN METALS MINNESOTA PROJECT

Environmental Review Support Document

Prepared for Twin Metals Minnesota LLC Prepared by Foth Infrastructure & Environment, LLC

Document No. TMM-ES-025-0099 Revision 0A 12-18-2019

Environmental Review Support Document

REVISION RECORD

Revis	sion	Date	Description	EDMS Download Date	Project Configuration Version
0A	•	12-18-2019	Issued for Agency Review	N/A	1.0

REVISION NARRATIVE

DISCLAIMER

This document is a working document. This document may change over time because of new information, or further analysis or deliberation.

Environmental Review Support Document

Twin Metals Minnesota Project: An Introduction

Twin Metals Minnesota (TMM) is proud to formally propose its world-class, 21st century underground copper, nickel, cobalt and platinum group metals mining project in northeast Minnesota for environmental review.

The submission of TMM's Mine Plan of Operations (MPO) to the U.S. Bureau of Land Management (BLM), and the Scoping Environmental Assessment Worksheet (SEAW) data submittal to the Minnesota Department of Natural Resources (MDNR), is the culmination of a decade of engineering, environmental and engagement work including the evaluation of dozens of Project configurations and technologies that maximize environmental protection. If permitted, TMM's Project will be the state's first underground mining operation – an approach that minimizes surface disruption, noise and dust -- since the closure of Ely's Pioneer Mine in 1967.

For more than 135 years, Minnesota has been a leader in both mining development and regulation to ensure strong environmental and labor standards. TMM is dedicated to building, operating, and closing a mine that employs industry best practices and meets or exceeds all state and federal environmental standards.

Submission of the MPO and SEAW starts a multi-year environmental review process that will thoroughly evaluate this proposal. The review process will include additional baseline data collection, impact analysis, and multiple opportunities for public input. TMM looks forward to this process and the engagement with government and the public which will result in the best outcomes for Minnesota.

The TMM Project site is located between the cities of Ely and Babbitt, an area long-sustained by mining and other industries, including farming, logging, quarries, and recreation. The area in and around Ely alone was once home to 11 operating mines. The site is in an area of the Superior National Forest designated for mining and logging within the U.S. Forest Service Superior National Forest Plan. The Project is outside of the Boundary Waters Canoe Area Wilderness and both the federal and state mining exclusion zones meant to provide a buffer from development.

The TMM Project offers an extraordinary opportunity for long-term, environmentally sound economic growth and job creation in a region of northeastern Minnesota that never fully recovered from iron mine and processing plant closures a generation ago. The construction phase of the project will require several million labor hours under a project labor agreement already negotiated with the Iron Range Building and Construction Trades Council. Once the mine is operational, it will bring 700 new full-time, skilled positions and 1,400 spinoff jobs to the region. Investment in the Project to date is over \$450 million and is expected to amount to approximately \$1.7 billion through construction of the mine. The Project would provide additional economic benefit by generating revenue for state and federal governments from taxes and mineral royalties.

Environmental Review Support Document

The growing demand for copper, nickel, cobalt and platinum group metals in technologies from cell phones to clean energy production has made these minerals critical to advancing the quality of life of populations around the globe. The Duluth Mineral Complex beneath this part of northeastern Minnesota is one of the largest

undeveloped deposits of these minerals in the world, with more than 7 billion tons of ore containing copper, nickel and other precious metals. Failure to access the minerals of the Duluth Complex will create pressures to mine these metals in other locations that have much less rigorous environmental and labor standards.

TMM and its predecessor company engaged in mineral resource characterization of the Maturi deposit, in the northern area of the Duluth Complex, from 2006 to 2014. This effort has produced detailed characterization of mineral resources. To date, TMM's core storage facility houses approximately 1.5 million feet of core samples from the Maturi deposit; about a half million additional feet of core samples have been sent to state storage facilities. Following mineral resource characterization, several years of process flowsheet engineering work led to conceptual and initial prefeasibility studies.

The outcome of these studies minimized potential impacts in the areas of water, wetlands, noise, dust, light and visual pollution. Specific examples include:

- Project optimization reduced the surface footprint by over four times;
- Ore processing would remove most of the sulfide minerals; therefore, tailings would not produce acid rock drainage (ARD);
- Up to 50% of tailings would be diverted from surface storage and instead be utilized as backfill in the underground mine;
- Tailings stored on surface would be dewatered and compressed which is called dry stacking;
- Adopting dry stacking as the tailings management method reduced the surface impact by approximately 35% and wetlands impact by approximately 65% compared to a previous conventional slurry tailings storage configuration;
- The dry stack facility would not have dams retaining tailings slurry, would be lined and covered, would eliminate a long pipeline to transport tailings to another location, and would be revegetated concurrently as the Project progresses reducing visual impacts;
- The Project would not discharge process water and is designed not to require discharge of contact water. Water used in the mineral concentration process would be reused on site;
- No waste rock would be stored on the surface, eliminating a potential source of ARD;
- Ore crushing would be underground, limiting surface impact, dust and noise;

Environmental Review Support Document

- No mining would occur under Birch Lake reservoir; and
- After mine closure, most of mine infrastructure would be removed and the surface area revegetated.

Project at a glance:

- Construction of the mine would occur over two to three years;
- The mine would process 20,000 tons of ore per day;
- Mining operations would occur between 400 and 4,500 feet below the surface;
- The tailings management site would be approximately one mile south of the underground mine and encompass the dry stack tailings facility;
- The plant site includes access to the underground mine and the concentrator used to recover target minerals from ore;
- The mine would be accessed via declines at the plant site with workers and supplies transported by truck;
- Flow of groundwater in bedrock is exceptionally low;
- Water for operations would be reused on site and be sourced from stormwater, groundwater inflow into the mine, and from Birch Lake reservoir;
- Power would be supplied via a transmission corridor from an off-site electrical substation;
- Site employees would be bused to site from Ely and Babbitt, minimizing traffic;
- The Project would operate under National Mining Association CORESafety Program standards, a systematic approach to developing a safety culture.

As the World Bank noted earlier this year in its Climate Change report, the world is rapidly transitioning to low-carbon technologies to combat climate change and will require large quantities of minerals to succeed. The report notes that a single three-megawatt wind turbine requires 4.7 tons of copper. Lithium-ion batteries used in everything from electric vehicles to power grids rely heavily on cobalt, one of the key minerals identified in the Maturi deposit. Catalytic converters, which reduce carbon monoxide emissions from internal combustion engines, use another: platinum group metals such as palladium. Nickel is a key component of corrosion-resistant alloys such as stainless steel and copper-nickel tubing in desalinization plants. The report projects that the transition to green energy will require as much copper in the next 25 years as has been produced in the past 5,000 years.

This Project offers the opportunity to provide the minerals essential to the green economy responsibly, with the rigorous environmental and labor standards that are uniquely present here in America – specifically in Minnesota. TMM's commitment is to operate sustainably and preserve and protect our precious natural world as we support the new, green economy.

Environmental Review Support Document

Closer to home, hundreds of union jobs, over a thousand spinoff jobs, as well as tax payments and royalties will improve the quality of life in Minnesota and specifically in communities that are struggling economically. TMM's Project raises the bar for how to best extract necessary minerals for society. With this Project, Minnesota can be a model for modern, sustainable and environmentally and socially responsible mining.

Environmental Review Support Document

TABLE OF CONTENTS

1.0	INTR	INTRODUCTION1		
2.0	APPF	APPROACH1		
3.0	BACKGROUND			4
	3.1 PROJECT TITLE			4
	3.2	PROP	DSER	4
	3.3	RGU		4
	3.4	REAS	ON FOR SEAW PREPARATION	4
	3.5	PROJE	ECT LOCATION	5
	3.6	PROJE	ECT DESCRIPTION	6
		3.6.1	Project Summary	6
		3.6.2	Complete Description	6
		3.6.3	Project Magnitude	
		3.6.4	Project Purpose	46
		3.6.5	Future Stages	46
		3.6.6	Earlier Project Stage	46
	3.7	COVE	R TYPES	47
	3.8	PERMI	TS AND APPROVALS	47
4.0	LAND) USE		47
	4.1	BASEL	INE CONDITIONS	47
		4.1.1	Existing Land Use	47
		4.1.2	Planned Land Use	
		4.1.3	Current Zoning and Management Codes	55
	4.2	PROJE	ECT IMPACTS	61
		4.2.1	Planned Land Use	61
		4.2.2	Zoning and Management Codes	63
	4.3	FUTUF	RE SCOPE	65
5.0	GEOI	LOGY, S	OILS, AND TOPOGRAPHY / LAND FORMS	65
	5.1	BASEL	INE CONDITIONS	65
		5.1.1	Geology	65
Docu	ment No.	TMM-ES-		Page i

		TMM-ES-0		Page ii
8.0	-		RE SCOPE L AND AQUATIC RESOURCES	
	7.3		Contamination / Hazardous Materials / Wastes Impacts Summary	
		7.2.3 7.2.4	Generation and Management of Hazardous Waste	
		7.2.2	Management of Hazardous Material	
		7.2.1	Generation and Management of Solid Wastes	
	7.2			
	7.1	_		-
7.0			TION / HAZARDOUS MATERIALS / WASTES	
7 ^	001	6.3.3		
		6.3.2	Groundwater Supplemental Scope	
		6.3.1	Surface Water Supplemental Scope	
	6.3			
	• -	6.2.3	Wetlands	
		6.2.2	Groundwater	
		6.2.1	Surface Water	
	6.2		ECT IMPACTS	
		6.1.3	Wetlands	
		6.1.2	Groundwater	82
		6.1.1	Surface Water	74
	6.1	BASEL	INE CONDITIONS	74
6.0	WAT	ER RESC	OURCES	74
	5.3	FUTUR	RE SCOPE	73
		5.2.4	Geology, Soils, and Topography / Landform Impacts Summary	73
		5.2.3	Soils and Topography Environmental Protection Measures	
		5.2.2	Volume and Acreage of Soil Excavation and Grading	
	0.2	5.2.1	Subsidence and Crown Pillar Stability	
	5.2			
		5.1.3	Rock and Mineral Geochemical Characterization	
		5.1.2	Soils and Topography / Landforms	67

	8.1	BASEL	INE CONDITIONS	123
		8.1.1	Baseline Data Sources and Evaluation Methods	123
		8.1.2	Terrestrial Resources	125
		8.1.3	Aquatic Resources	131
	8.2	PROJE	CT IMPACTS	135
		8.2.1	Terrestrial Resources	135
		8.2.2	Aquatic Resources	143
	8.3	FUTUR	E SCOPE	144
		8.3.1	Terrestrial Resources	144
		8.3.2	Aquatic Resources	148
9.0	HISTO	RIC PRO	OPERTIES AND CULTURAL RESOURCES	148
	9.1	BASEL	INE CONDITIONS	148
		9.1.1	Archaeological Sites	149
		9.1.2	Historic Properties	149
		9.1.3	Cultural Resources	149
	9.2	PROJE	CT IMPACTS	150
		9.2.1	Archaeological Sites	150
		9.2.2	Historic Properties	150
		9.2.3	Cultural Resources	150
		9.2.4	Historic Properties and Cultural Resources Impacts Summary	151
	9.3	FUTUR	E SCOPE	151
		9.3.1	Cultural Resources	151
		9.3.2	Historic Properties and Archaeological Resources	152
10.0	VISUA	L		153
	10.1	BASEL	INE CONDITIONS	153
		10.1.1	Viewshed	153
	10.2	PROJE	CT IMPACTS	154
		10.2.1	Visual Simulation	154
		10.2.2	Viewshed Analysis	155
		10.2.3	Light Visibility	156

		10.2.4	Visual Impacts Summary157
	10.3	FUTUR	E SCOPE
11.0	AIR		
	11.1	BASEL	INE CONDITIONS158
		11.1.1	Air Quality158
		11.1.2	Air Quality Standards159
		11.1.3	Ambient Air Quality Attainment Status159
	11.2	PROJE	СТ ІМРАСТЅ
		11.2.1	Stationary Source Emissions160
		11.2.2	Class II Air Dispersion Modeling and Prevention of Significant Deterioration Review
		11.2.3	Class I Areas
		11.2.4	Vehicle Emissions164
		11.2.5	Dust and Odors165
		11.2.6	Human Health and Sensitive Receptors
		11.2.7	Air Impacts Summary166
	11.3	FUTUR	E SCOPE
		11.3.1	Emission Calculations166
		11.3.2	Greenhouse Gas Emissions
		11.3.3	Class II Air Dispersion Modeling167
		11.3.4	Class I Air Quality Analysis167
		11.3.5	Cross-Media Impacts and Cumulative Impacts167
12.0	NOISE	≣	
	12.1	BASEL	INE CONDITIONS168
		12.1.1	Baseline Ambient Noise168
		12.1.2	Nearby Sensitive Receptors169
		12.1.3	State Noise Standards169
	12.2	PROJE	СТ ІМРАСТЅ169
		12.2.1	Source, Characteristics, Duration, Quantities, and Intensity169
		12.2.2	Quality of Life171

		12.2.3	Noise Impacts Summary171	
	12.3	FUTUR	E SCOPE	
13.0	TRAN	SPORTATION172		
	13.1	BASEL	INE CONDITIONS172	
		13.1.1	Traffic Conditions	
		13.1.2	Traffic Forecast172	
		13.1.3	Regional Transportation System173	
	13.2	PROJE	CT IMPACTS	
		13.2.1	Impacts to Traffic Conditions173	
		13.2.2	Estimated Maximum Peak Hour Traffic174	
		13.2.3	Impacts to Regional Transportation Systems174	
		13.2.4	Additional Infrastructure Development and Availability of Transit174	
		13.2.5	Transportation Impacts Summary174	
	13.3	FUTUR	E SCOPE	
14.0	CUMU	JLATIVE	POTENTIAL EFFECTS175	
	14.1	CONTE	XT AND SETTING	
	14.2	PROJE	CT-SPECIFIC POTENTIAL EFFECTS	
	14.3	POTEN	TIALLY AFFECTED RESOURCES177	
	14.4	REASO	NABLY FORESEEABLE FUTURE ACTIONS	
	14.5	SUMMA	ARY OF CUMULATIVE POTENTIAL EFFECTS177	
15.0	OTHE	R POTE	NTIAL ENVIRONMENTAL EFFECTS178	
	15.1	RECRE	ATIONERROR! BOOKMARK NOT DEFINED.	
	15.2	SOCIO	ECONOMICS178	
	15.3	VIBRA	TION	
	15.4	WILDE	RNESSERROR! BOOKMARK NOT DEFINED.	
16.0	RESP	ONSIBLI	E GOVERNMENTAL UNIT CERTIFICATION	
17.0	REFERENCES180			

Environmental Review Support Document

TABLES

Located in Tables section at end of document:

Table 3-1 Tax Parcel Numbers / Ownership

Table 3-2 Project Magnitude Surface Disturbance

Table 3-3 Primary Mining Equipment

Table 3-4 Surface Mobile Equipment at Plant Site

Table 3-5 Surface Mobile Equipment at Tailings Management Site

Table 3-6 Building Square Footages

Table 3-7 Land Cover

Table 3-8 Permits and Approvals

Table 5-1 Natural Resources Conservation Service Map Unit Descriptions

Table 5-2 Ecological Land Type Map Unit Descriptions

Table 6-1 Project Component Watersheds

Table 6-2 Public Water Basins near Project

Table 6-3 Public Watercourses near Project

Table 6-4 Surface Water Monitoring Locations

Table 6-5 Stream Flow Summary

Table 6-6 Base Flow Estimates from PART Analysis

Table 6-7 Average Surface Water Concentrations Measured in 2017 and 2018

 Table 6-8 Core Hydrogeophysical Studies (2008-2019)

Table 6-9 Summary of Hydrogeologic Units

Table 6-10 Summary of Monitor Wells and Piezometers

Table 6-11 Summary of Monitor Well Hydraulic Conductivity Testing

Table 6-12 Summary of Groundwater Quality Sample Acquisition

 Table 6-13 Average Groundwater Concentrations from Wells Measured in 2018

Table 6-14 Minnesota National Wetland Inventory Simplified Plant Community Classification Baseline

Table 6-15 Minnesota National Wetland Inventory U. S. Fish and Wildlife Service Circular 39 System Baseline

Table 6-16 Minnesota National Wetland Inventory Simplified Plant Community Classification Impacts

Table 6-17 Minnesota National Wetland Inventory U. S. Fish and Wildlife Service Circular 39 System Impacts

Table 7-1 Estimated Fuel Storage and Consumption

Table 7-2 Process Reagents

Table 8-1 Search Criteria for Potential Sensitive Species

Table 8-2 U. S. Geological Survey GAP / LANDFIRE Data Baseline

Table 8-3 National Land Cover Data Baseline

Table 8-4 Minnesota Department of Natural Resources Minnesota Biological Survey Data Baseline

Table 8-5 Previously Disturbed Land / Candidate Minnesota Biological Survey Data from Minnesota Department of Natural Resources

Table 8-6 Terrestrial Vegetative Sensitive Species

Table 8-7 Terrestrial Wildlife Sensitive Species

Environmental Review Support Document

Table 8-8 Aquatic Sensitive Species Table 8-9 U. S. Geological Survey GAP / LANDFIRE Data Impacts Table 8-10 National Land Cover Data Impacts Table 8-11 Minnesota Department of Natural Resources Minnesota Biological Survey Data Impacts Table 9-1 Previous Intensive Archaeological Surveys within the Project Area Table 11-1 Background Criteria Pollutant Concentrations Table 11-2 Preliminary Project Emission Sources Table 11-3 Preliminary Estimations for Greenhouse Gas Emissions Table 11-4 Modeled Emissions Compared to National Ambient Air Quality Standards Table 11-5 Modeled Emissions Compared to Prevention of Significant Deterioration Table 12-1 Baseline Ambient Noise Levels Table 12-2 State of Minnesota Hourly Noise Limits per Minnesota Rule part 7030.0040 (dBA) Table 13-1 Existing and Forecast Annual Average Daily Traffic with and without Project Trips Table 13-2 Anticipated Daily Vehicle Trips Table 13-3 Level of Service Thresholds Table 14-1 Cumulative Potential Effects Summary FIGURES

Located in Figures section at end of document:

Figure 1-1 Project Location

Figure 2-1 General Project Layout

Figure 3-1 Mining Process

Figure 3-2 Project Construction Schedule

Figure 3-3 Simplified Project Water Schematic

Figure 3-4 Ventilation Raise Layouts

Figure 3-5 Underground Mine Area Design

Figure 3-6 Mining Method Schematic

Figure 3-7 Mine Design Typical Drift Sections

Figure 3-8 Maturi 25-Year Mine Design

Figure 3-9 Plant Site Construction Phase

Figure 3-10 Plant Site Layout

Figure 3-11 Coarse Ore Stockpile Section View

Figure 3-12 Overall Process Flow Diagram

Figure 3-13 Tailings Management Site Layout

Figure 3-14 Dry Stack Facility Construction Stages

Figure 3-15 Access Road Typical Sections

Figure 3-16 Water Intake Facility and Access Road Plan and General Arrangement

Figure 3-17 Water Intake Facility Plan, Profile, Sections, and Details

Figure 3-18 Base Drain Details

Figure 3-19 Typical Cross-Section of Exterior Slope

Figure 3-20 Typical Ditch Sections

Figure 4-1 BWCAW, Minerals Management Corridor and MDNR State Forest Management Units

Environmental Review Support Document

Figure 4-2 1854 Ceded Territory Figure 4-3 Zoning and Land Use Map Figure 4-4 Private Lands Zoning Figure 4-5 Federal Land Use Figure 5-1 Geology of the Duluth Complex Figure 5-2 Maturi Deposit Stratigraphy Figure 5-3 Regional Bedrock Geology Figure 5-4 Bedrock Cross Section A-A' Underground Mine Area Figure 5-5 Bedrock Cross Section B-B' Underground Mine Area Figure 5-6 Bedrock Cross Section C-C' Underground Mine Area Figure 5-7 Bedrock Cross Section D-D' Underground Mine Area Figure 5-8 U. S. Department of Agriculture NRCS Soils Data Figure 5-9 U. S. Forest Service ELT Soils Data Figure 5-10 Unconsolidated Material Thickness Figure 6-1 U. S. Geological Survey Hydrological Unit Code Watersheds Figure 6-2 Minnesota Department of Natural Resources Watersheds Figure 6-3 Minnesota Department of Natural Resources Public Waters Inventory Figure 6-4 Project Watersheds Figure 6-5 Birch Lake Reservoir Watershed Surface Drainage Figure 6-6 Surface Water Hydrology and Water Quality Monitoring Locations Figure 6-7 Current Surface Water Hydrology and Water Quality Monitoring Locations Figure 6-8 Conceptual Hydrologic Model – HGUS Figure 6-9 Hydrogeophysical Testing Corehole Locations Figure 6-10 Example Hydrophysical Log Figure 6-11 Monitor Well Network Figure 6-12 Hydraulic Conductivity Distribution Figure 6-13 Projected Groundwater Inflow to Mine Depth Versus Percent of Mine Workings Figure 6-14 Potentiometric Surface Q2 Monitor Wells QUM HGU June 2019 Figure 6-15 Potentiometric Surface B1 Monitor Wells Shallow Bedrock HGU June 2019 Figure 6-16 Potentiometric Surface B2 Monitor Wells Shallow Bedrock HGU June 2019 Figure 6-17 Wellhead Protection Area Figure 6-18 Minnesota Well Index Map Figure 6-19 National Wetlands Inventory Simplified Plant Community Classification Figure 6-20 National Wetlands Inventory Circular 39 Classification Figure 8-1 Ecological Classification System Subsections Figure 8-2 U. S. Geological Survey National Gap Analysis Program Project Land Cover Figure 8-3 U. S. Geological Survey National Land Cover Database Land Cover Figure 8-4 Minnesota Biological Survey Data Figure 8-5 Vegetative and Terrestrial Wildlife NHIS Data Figure 8-6 Minnesota Pollution Control Agency Stream Sampling Stations Figure 8-7 Wild Rice Surveys Figure 10-1 Visualization Simulation Figure 10-2 Viewshed Analysis Locations Figure 10-3 Dry Stack Facility-C3 Viewshed and Cross Section Figure 12-1 U.S. Forest Service Ambient Noise Measurement Locations Figure 12-2 Sensitive Receptors – Noise

Environmental Review Support Document

Figure 13-1 Key Transportation Corridors

Figure 14-1 Project Cumulative Effects Watershed and Ecological Classification System Subsection

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

<	less than
>	greater than
0	degree
%	percent
AADT	annual average daily traffic
amsl	above mean sea level
ARD	acid rock drainage
ARDC	Arrowhead Regional Development Commission
Barr	Barr Engineering Co.
bgs	below ground surface
BMP	Best Management Practice
BMZ	basal mineralized zone
BWCAW	Boundary Waters Canoe Area Wilderness
CAA	Clean Air Act
cm	centimeter
cm/sec	centimeters per second
СО	carbon monoxide
CR	county road
dBA	A-weighted decibels
e.g.	Latin phrase exempli gratia meaning "for example"
EAW	environmental assessment worksheet
ECS	Ecological Classification System
EIS	Environmental Impact Statement
ELT	Ecological Land Type
EOR	Emmons & Oliver Resources, Inc.
EPM	environmental protection measure
EQB	Environmental Quality Board
ERA	Environmentally relevant areas
etc.	abbreviation for the Latin phrase et cetera meaning "and other similar things" or "and so forth"
FAM	Forest Agricultural Management District
Foth	Foth Infrastructure & Environment, LLC
FR	Forest and Recreation

ft gal GAP GHG GIS GPS GRB	feet gallon Gap Analysis Project greenhouse gas geographic information system global positioning system Giant's Range Batholith
GWMAP	Ground Water Monitoring and Assessment Program hectares
ha HAP	hazardous air pollutants
HDPE	high density polyethylene
HGU	hydrogeologic units
HUC	Hydrological Unit Code
i.e.	Latin phrase <i>id est</i> meaning "That is (to say)"
IBI	Index of Biotic Integrity
INCO	International Nickel Company, Ltd
IND	Industrial
IPaC	Information for Planning and Consultation
ISO	International Organization for Standardization
Km	kilometers
LHD	load-haul-dump machines
LiDAR	light detection and ranging
LLDPE	linear low-density polyethylene
LLR	longitudinal longhole retreat
LMF	Laurentian Mixed Forest
LOS	level of service
m	meter
m ³	cubic meter
MBS	Minnesota Biological Survey
MDA	Minnesota Department of Agriculture
MDH	Minnesota Department of Health
MDNR	Minnesota Department of Natural Resources
mg/L	milligrams per liter
mil	thousandth of an inch
Minn. R.	Minnesota Administrative Rules
ML	metal leaching
mm	millimeter
MM	Mineral Mining District
MnDOT	Minnesota Department of Transportation
MPCA	Minnesota Pollution Control Agency
Document No. TMM	LES-025-0099

	miles per hour
mph	miles per hour
MPO	Mine Plan of Operations
MWI	Minnesota Well Index
NAAQS	National Ambient Air Quality Standards
NAC	noise area classifications
NFR	National Forest Road
NHIS	Natural Heritage Information System
NLCD	National Land Cover Database
NO ₂	nitrogen dioxide
NPC	Native Plant Community
NRCS	Natural Resources Conservation Service
NRHP	National Register of Historic Places
NSU	Northern Superior Uplands
NWI	National Wetlands Inventory
OHV	off-highway vehicle
OSA	Office of the State Archaeologist
POI	points of interest
PR	potential cultural resources
Project	Twin Metals Minnesota Project
PSD	prevention of significant deterioration
PVC	polyvinyl chloride
Q	quarter
QUM	quaternary unconsolidated materials
RCRA	Resource Conservation and Recovery Act
RES	Residential
RFSS	Regional Forester Sensitive Species
RGU	responsible governmental unit
RR	Residential Recreation
SAG	semi-autogenous grind
SEAW	Scoping Environmental Assessment Worksheet
SEH	Short Elliott Hendrickson Inc.
SGCN	Species in Greatest Conservation Need
SHPO	State Historic Preservation Office
SKA	South Kawishiwi Association
SKI	South Kawishiwi Intrusion
SNF	Superior National Forest
SO ₂	sulfur dioxide
SWPPP	Storm Water Pollution Prevention Plan
TDS	total dissolved solids
TH	Trunk Highway

TMDL	total maximum daily load
ТММ	Twin Metals Minnesota LLC
tpd	tons per day
tpy	tons per year
TSS	total suspended solids
µg/L	microgram per liter
µg/m ³	microgram per cubic meter
µS/cm	microSiemens per centimeter
U.S.	United States
USACE	U.S. Army Corps of Engineers
USEPA	U.S. Environmental Protection Agency
USFS	U.S. Forest Service
USFWS	U.S. Fish and Wildlife Service
USGS	U.S. Geological Survey
WCA	Minnesota Wetland Conservation Act
yd ³	cubic yards

Environmental Review Support Document

GLOSSARY

This glossary is intended to help the reader understand how Twin Metals Minnesota is using terms within this document. These are not intended to be legal definitions, nor are they intended to encompass or resolve the comprehensive and differing definitions and interpretations that can be found in federal, state, and local law and rule.

1854 Treaty Authority: An inter-tribal natural resource management agency that manages the off-reservation hunting, fishing, and gathering rights of the Grand Portage and Bois Forte Bands of the Lake Superior Chippewa in the territory ceded under the Treaty of 1854.

access road: The primary road critical to TMM operations used to transport concentrate to market, transport reagents and consumables, and provide access to employees; the access road would be from the north of the plant site off Trunk Highway 1.

access road corridor: The standardized name for the corridor from Trunk Highway 1 to the plant site; this corridor would contain the access road for the project.

archaeological site: The physical remains of any area of human activity, generally greater than 50 years of age, for which a boundary can be established. Examples of such resources could include domestic / habitation sites, industrial sites, earthworks, mounds, quarries, canals, roads, etc. Under the general definition, a broad range of site types would qualify as archaeological sites without the identification of any artifacts.

acid rock drainage: A low pH, metal-laden, sulfate-rich drainage that occurs during land disturbance where sulfur or metal sulfides are exposed to atmospheric conditions. It forms under natural conditions from the oxidation of sulfide minerals and where the acidity exceeds the alkalinity. Non-mining exposures, such as along highway road cuts, may produce similar drainage. Also known as **acid mine drainage (AMD)** when it originates from mining areas.

air dispersion model: A computer program that incorporates a series of mathematical equations used to predict downwind concentrations in the ambient air resulting from emissions. Inputs to such a model include the emission rate; characteristics of the emission release (e.g., stack height, exhaust temperature, flow rate); and atmospheric dispersion parameters (e.g., wind speed, wind direction, air temperature, atmospheric stability, height of the mixed layer).

ambient air quality: The quality of the portion of the atmosphere, external to buildings, to which the public has general access.

aquatic biota: Collective term describing the organisms living in or depending on the aquatic environment.

aquifer: A subsurface saturated formation of sufficient permeability to transmit groundwater and yield usable quantities of water to wells and springs.

attainment area: A geographic area considered to have air quality as good as or better than the National Ambient Air Quality Standards as defined in the Clean Air Act.

average: A measure of the statistical mean of the data set.

Environmental Review Support Document

backfill plant: At the backfill plant, tailings filter cake would be repulped and blended with binder to create an engineered tailings backfill.

bedrock: The rock of the earth's crust that is below the soil and largely un-weathered.

berm: A mound or wall of earth.

best available control technology: An emissions limitation based on the maximum degree of control that can be achieved. It is a case-by-case decision that considers energy, environmental, and economic impacts. This can be add-on control equipment or modification of existing production processes or methods. It includes fuel cleaning or treatment and innovative fuel combustion techniques. This may be a design, equipment, work practice, or operational standard if imposition of an emissions standard is infeasible.

best management practice: The schedule of activities, prohibition of practices, maintenance procedures, and other management practices to avoid or minimize pollution or habitat destruction to the environment. Best management practices can also include treatment requirements, operating procedures and practices to control runoff, spillage, or leaks; sludge or waste disposal; or drainage from raw material storage.

Boundary Waters Canoe Area Wilderness: This wilderness is a unique area located in the northern third of the Superior National Forest in northeastern Minnesota. It is approximately 1.3 million acres in size, extends nearly 150 miles along the International Boundary adjacent to Canada's Quetico Provincial Park, and is bordered on the west by Voyageurs National Park. The Boundary Waters Canoe Area Wilderness contains over 1,200 miles of canoe routes, 11 hiking trails, and approximately 2,000 designated campsites.

Class I Area: Under the Clean Air Act, this is an area in which visibility is protected more stringently than under the National Ambient Air Quality Standards, with only a small increase in pollution permitted. Such areas typically include national parks, wilderness areas, monuments, and other areas of special national and cultural significance.

Class II Area: Under the Clean Air Act, this designation applies to all clean air regions *not* designated Class I areas, with moderate pollution increases allowed.

Clean Air Act: This Act defines the U.S. Environmental Protection Agency's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer. The last major change in the law, the Clean Air Act Amendments of 1990, was enacted by Congress in 1990. This Act was incorporated into the United States Code as Title 42, Chapter 85.

Clean Water Act: This act is the primary federal law in the United States governing water pollution. The act establishes the goals of eliminating releases of high amounts of toxic substances into water, eliminating water pollution, and ensuring that surface waters meet standards necessary for human sports and recreation. This act does not directly address groundwater contamination. Groundwater protection provisions are included in the Safe Drinking Water Act, Resource Conservation and Recovery Act, and the Superfund Act.

closure: The process of terminating and completing final steps in reclaiming any specific portion of a mining operation. Closure begins when, as prescribed in the Permit to Mine, there would be no renewed use or activity by the permittee.

Environmental Review Support Document

comminution circuit: Process circuit to reduce the particle size of ore.

comprehensive land use plan: A document adopted by local elected officials that establishes policies and guidance for land use, municipal growth, public services, and infrastructure. Comprehensive plans can provide the rationale and legislative basis for local zoning and subdivision ordinances.

concentrate dewatering: Process circuit consisting of thickening and filtration to produce a concentrate filter cake that is ready for shipment.

concentrate storage and loadout: Temporary concentrate storage area at the concentrator before that would include a loadout area to load trucks with concentrate for shipment.

concentrator: A subset of the process related to recovery of the target metals. The concentrator would include grinding, gravity flotation, concentrate dewatering, concentrate storage and loadout, and reagent makeup. The concentrator would be located at the plant site.

concentrator services building: The building that would contain surface maintenance, warehouse, change rooms for concentrator and tailings dewatering plant operators, and offices.

construction stormwater: Direct precipitation or stormwater that has contacted surfaces disturbed during construction.

consultation (for cultural resources): The process of seeking, discussing, and considering the views of other participants, and, where feasible, seeking agreement with them regarding matters arising in the Section 106 process. The Secretary's "Standards and Guidelines for federal Agency Preservation Programs pursuant to the National Historic Preservation Act" provide further guidance on consultation.

contact water: Water, in the form of direct precipitation or stormwater, that would potentially come in contact with ore or tailings, but has not been used in the process or combined with process water.

contact water ditch: A ditch around the dry stack facility that collects runoff of the dry stack facility and directs it to the tailings management site contact water ponds. Additionally, the overliner drain and under-liner drain are both directed to this ditch for conveyance to the contact water pond.

contamination: The intrusion of undesirable (i.e., unwanted physical, chemical, biological, or radiological) elements, or matter that has a negative effect on air, water, or land.

criteria air pollutant: Seven common air pollutants for which the US Environmental Protection Agency has set primary (may harm human health) or secondary (may affect the environment and/or cause property damage) national air quality standards. These pollutants are: particulate matter less than or equal to 10 microns in size, particulate matter less than or equal to 2.5 microns in size, sulfur dioxide, nitrogen dioxide, carbon monoxide, ozone, and lead.

Environmental Review Support Document

cultural resources: Archaeological, traditional, and built environment resources, including but not necessarily limited to buildings, structures, objects, districts, and sites.

cumulative effect: The effects on the environment that would result from the incremental effect of a proposed action when added to other past, present, and reasonably foreseeable future actions, regardless of who undertakes such actions. Cumulative effects can result from individually minor but collectively significant actions taking place over a period of time.

dam: A structure that impounds water.

dBA: A-weighted decibel.

decibel: A unit expressing the relative intensity of sounds on a logarithmic scale from zero (for the average least perceptible sound) to approximately 130 (for the average level at which sound is perceived as painful to humans).

decline conveyor: The conveyor that would transport ore from the underground crushing stations up the decline to the transfer tower on the surface.

development rock: Sulfide barren rock mined from the hanging wall that would be used for construction aggregate. Development rock would be mined during the construction of the declines and ventilation raises, and periodically throughout the Project.

dike: A structure that directs the flow of water.

draindown: Precipitation that would infiltrate through the tailings.

dry stack facility: A dry stack facility is the most sustainable method used to store filtered tailings cake produced from the processing after the 4% of the ore that is copper, nickel, cobalt, platinum, palladium, gold and silver is recovered. Since the tailings would be filtered and the majority of water is removed, a dry stack facility does not require a dam or berm. The dry stack facility would be a lined facility where the tailings filter cake (silty sandy material) is placed and compacted in lifts. The dry stack facility is constructed in three stages (stage 1, stage 2, and stage 3), generally from west to east.

ecological land type: A hierarchical level of the National Hierarchical Framework of Ecological Units and Ecological Classification System that is determined based on differences in vegetation, soils, climate, geology, and/or hydrology.

eligible (for historic properties): Historic properties formally determined as such in accordance with the regulations of the Secretary of the Interior and all other properties that meet the National Register criteria.

endangered species: A species that is in danger of extinction throughout all or a significant part of its range. This is a U.S. Fish and Wildlife Service formal listing under the Endangered Species Act.

Endangered Species Act: This act was enacted in 1973 (16 United States Code Section 1531 et seq.) and was designed to protect critically imperiled species from extinction as a

Environmental Review Support Document

"consequence of economic growth and development un-tempered by adequate concern and conservation." This act is administered by the U. S. Fish and Wildlife Service and the National Oceanic and Atmospheric Administration.

engineered tailings backfill: Tailings which would be combined with a binder and pumped underground as a thickened slurry for placement in mined out stopes. The binder would increase the structural integrity, minimize movement of water, and enhance the chemical stabilization of the engineered tailings backfill.

environmental justice: The fair treatment and involvement of all people, regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies. "Fair treatment" means that no group, including racial, ethnic, and socioeconomic groups, will bear a disproportionate share of the negative environmental consequences resulting from the execution of federal, state, local, and tribal programs and policies. Executive Order 12898 directs federal agencies to incorporate achieving environmental justice into their missions by identifying and addressing disproportionately high and adverse effects of agency programs, policies, and activities on minority and low-income populations.

environmental protection measures: Measures TMM would take to avoid, minimize, and/or mitigate potential effects.

evapotranspiration: The amount of water removed from an area of land by the combination of direct evaporation and plant transpiration.

filter cake storage and loadout building: The filter cake storage and loadout building would be located adjacent to the filter building. It would temporarily stores tailings filter cake until it is loaded onto trucks and transported to the dry stack facility for placement.

filter plant: The facility that would produce tailings filter cake for placement on the dry stack facility or for use in backfill.

flotation circuit: Process circuit to recover the target metals into two flotation concentrates, a copper concentrate and a nickel concentrate. The waste product from this process is tailings.

footwall: The mass of rock underlying a mineral deposit or the bedrock located beneath a fault plane.

fragmentation: A decrease in the area of contiguous habitat available to wildlife.

fugitive dust: Airborne particulate matter. This can include emissions from haul roads, wind erosion, exposed surfaces, and other activities that remove and redistribute soil.

gangue mineral: Commercially worthless minerals that are closely mixed with valuable minerals in an ore deposit.

GAP land cover: A hierarchically organized vegetation cover map developed as part of the U.S. Geological Survey's Gap Analysis Program. Units of analysis are Minnesota Ecological Classification System subsections.

Environmental Review Support Document

Giants Range Batholith: A 2.68-billion-year-old granitoid batholith composed of silica-poor rocks ranging from diorite to quartz monzonite in composition.

glacial drift: Generic and inclusive term for any material that has been transported by glacial ice.

glacial till: Glacial deposits that are unsorted and unstratified.

gravity concentration circuit: Process circuit within the comminution circuit used to recover dense minerals and produce the gravity concentrate.

greenhouse gas: Gases that trap heat in the atmosphere. Some greenhouse gases, such as carbon dioxide, occur naturally and are emitted to the atmosphere through natural processes and human activities. The principal greenhouse gases that enter the atmosphere because of human activities are carbon dioxide, methane, nitrous oxide, and fluorinated gases.

groundwater: The water located beneath the ground surface in soil or rock pore spaces or fractures.

groundwater cutoff wall: The seepage cutoff trench with grout curtain as necessary depending on bedrock conditions surrounding the dry stack facility.

haul road: A specific subset of service road that would surround the dry stack facility and be used by haul trucks to transport tailings filter cake onto the dry stack facility.

hazardous air pollutant: Air pollutants that are not covered by ambient air quality standards, but that may present a threat of adverse human health or environmental effects. These pollutants are listed on the federal list of 189 hazardous air pollutants in 40 Code of Federal Regulations 61.01.

hazardous material: Any item or agent (biological, chemical, physical) that has the potential to cause harm to humans, animals, or the environment, either by itself or through interaction with other factors. The term includes hazardous substances, hazardous waste, marine pollutants, and elevated-temperature materials—materials designated as hazardous under the provisions of 49 CFR 172.101. Hazardous material categories include: explosives, gases, flammable liquids, flammable solids, spontaneous combustibles/dangerous when wet, oxidizers and organic peroxides, poisons and infectious substances, and corrosives.

hazardous waste: A category of waste regulated under the Resource Conservation and Recovery Act. Such waste includes solid waste listed in the Resource Conservation and Recovery Act that exhibits at least one of four characteristics (as described in 40 Code of Federal Regulations 261.20 through 261. 24): ignitability, corrosivity, reactivity, or toxicity; or that is listed by the U.S. Environmental Protection Agency in 40 Code of Federal Regulations 261.33.

hydrology: The study of water characteristics, especially the movement of water; or the study of water (including aspects of geology, oceanography, and meteorology).

hydraulic conductivity: A measure of the ease with which a medium transmits water, such as water moving through pore spaces or fractures in soil or rock.

Environmental Review Support Document

impaired water: As defined under Section 303(d) of the Clean Water Act, waters that are too polluted or degraded to meet the water quality standards set by states, territories, or authorized tribes.

in situ: This refers to actions happening "in place" or "in position" where they would naturally occur.

invasive species: Organisms that cause, or are likely to cause, harm to the economy, environment, or human health due to their tendency to out-compete other species.

Laurentian Divide: A geological formation that runs along the crest of low, rocky hills and divides the Red River and Rainy River basins from the Minnesota River and Lake Superior basins. The Laurentian Divide is part of the Northern Divide, a continental divide that separates drainages to the Hudson Bay and Arctic Ocean from all other drainages in North America. Streams on the north slope of the divide flow through Canada to Hudson Bay. On the south side of the divide, streams flow south to either Lake Superior and the Atlantic Ocean, or the Mississippi River and the Gulf of Mexico.

L₁₀: Sound levels not to be exceeded 10 percent of the time.

 L_{50} : Sound levels not to be exceeded 50 percent of the time.

laydown area: Area used for material and equipment storage during the construction phase of a project.

leachate: A product solution obtained by leaching, in which a substance is dissolved by the action of a percolating liquid.

Light Detection and Ranging: An optical remote sensing technology that can measure the distance to, or other properties of a target by illuminating the target with light, often using pulses from a laser. Light Detection and Ranging is often used to create surface elevation models and contour datasets.

mine inflow: Groundwater that flows into the mine.

mine services building: The building that would contain the truck shop, mine dry, and warehouse.

Minnesota Environmental Policy Act: The purposes of Minnesota Law 1973, Chapter 412, are: (a) to declare a state policy that will encourage productive and enjoyable harmony between human beings and their environment; (b) to promote efforts that will prevent or eliminate damage to the environment and biosphere and stimulate the health and welfare of human beings; and (c) to enrich the understanding of the ecological systems and natural resources important to the state and to the nation.

Minnesota Routine Assessment Method: A method used to evaluate wetland functions. It is a practical assessment tool that is used to help local authorities make sound wetland management decisions using descriptive rather than numeric ratings.

modeling: Predicting the probability of an outcome given a set amount of input data.

Environmental Review Support Document

National Ambient Air Quality Standards: The Clean Air Act requires the U.S. Environmental Protection Agency to set these standards (40 Code of Federal Regulations Part 50) for pollutants considered harmful to public health and the environment. The Clean Air Act identifies two types of these standards. *Primary standards* provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children, and the elderly. *Secondary standards* provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.

National Environmental Policy Act: This act (42 United States Code 4321 et seq.) was signed into law on January 1, 1970. The act establishes national environmental policy and goals for the protection, maintenance, and enhancement of the environment and it provides a process for implementing these goals within federal agencies. The National Environmental Policy Act requires federal agencies to integrate environmental values into their decision-making processes by considering the environmental impacts of their proposed actions and reasonable alternatives to those actions.

National Historic Preservation Act: This act (Public Law 89-665; 16 United States Code 470 et seq.) is legislation intended to preserve historical and archaeological sites in the United States of America. The act created the National Register of Historic Places, the list of National Historic Landmarks, and the State Historic Preservation Offices. It was signed into law on October 15, 1966. The act requires federal agencies to evaluate the impact of all federally funded or permitted projects on historic properties (i.e., buildings, archaeological sites, etc.) through a process known as Section 106 review.

National Register of Historic Places: The official list of the Nation's historic places worthy of preservation. Authorized by the National Historic Preservation Act of 1966, the National Park Service's National Register of Historic Places is part of a national program to coordinate and support public and private efforts to identify, evaluate, and protect America's historic and archeological resources.

National Wetland Inventory: The U.S. Fish and Wildlife Service (Service) is the principal federal agency that provides information to the public on the extent and status of the Nation's wetlands. The Service has developed a series of topical maps to show wetlands and deep water habitats. This geospatial information is used by federal, state, and local agencies, academic institutions, and private industry for management, research, policy development, education, and planning activities related to wetlands.

noise: Sound that interferes with speech and hearing and that is undesirable.

noise-sensitive receptors: Locations or areas where dwelling units or other fixed, developed sites of frequent human use occur.

non-contact water: water that would not contact ore or tailings, including water from adjacent watersheds that would be diverted around the facility.

non-contact water ditch: A ditch that would be constructed within the non-contact water diversion area to divert non-contact water around project features at the plant site and tailings management site.

Environmental Review Support Document

non-contact water diversion area: A system of ditches and dikes that would be used to direct non-contact water away from the plant site and tailings management site.

non-contact water pond: A location where non-contact water would pond in the non-contact water diversion area after a diversion dike was installed to prevent surface water from flowing into the plant site or the tailings management site.

off-site electrical substation: The electrical substation west of Dunka pit.

ore: Rock that contains the targeted metals which would be processed by TMM through the concentrator to recover targeted metals into three concentrates; ore is found in the basal mineralized zone of the Maturi deposit.

overburden: Waste material and/or rock covering a mineral deposit, or unconsolidated material covering bedrock.

overflow ore stockpile: The overflow ore stockpile would be located on the temporary rock storage facility and would serve to feed the concentrator during shutdowns of the underground mine and would exist intermittently during operations.

over-liner drain: A drain internal to the dry stack facility that would be installed above the liner that drains to the contact water ditch.

particulate matter: Fine liquid or solid particles (such as dust, smoke, mist, fumes, or smog) found in air or emissions.

permeability: A measure of the ability of a material (such as soil or rock) to transmit fluids.

pH: A measure of relative acidity or alkalinity of a solution, expressed on a scale from 0 to 14, with the neutral point being 7. Acidic solutions have pH values lower than 7; basic (alkaline) solutions have pH values higher than 7.

piezometer: A device that measures the pressure or level of groundwater at a specific point.

plant site: The portion of the Project area that would encompass the following Project features: north contact water pond, central contact water pond, south contact water pond, process water pond, concentrator, temporary rock storage facility, pre-operational ore stockpile, overflow ore stockpile, concentrator services building, mine services building, and the plant site electrical substation.

plant site electrical substation: The electrical substation at the plant site.

PM_{2.5}: Fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller.

PM₁₀: Inhalable particles, with diameters that are generally 10 micrometers and smaller.

pre-operational ore stockpile: During construction of the mine, before the concentrator is commissioned, ore would be temporarily stockpiled on the temporary rock storage facility. This stockpile on the temporary rock storage facility is the pre-operational ore stockpile.

Environmental Review Support Document

prevention of significant deterioration: Applies to new major sources or major modifications at existing sources for pollutants where the area the source is located is in attainment or unclassifiable with the National Ambient Air Quality Standards. It requires the use of Best Available Control Technology, air quality analysis, additional impacts analysis, and public involvement to protect public health and welfare; preserve, protect, and enhance the air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value; ensure that economic growth would occur in a manner consistent with the preservation of existing clean air resources; and assure that any decision to permit increased air pollution is made only after careful evaluation of all the consequences of such a decision and after adequate procedural opportunities for informed public participation in the decision making process.

process: The process terminology is used to discuss the process as a whole and is inclusive of the concentrator and tailings dewatering plant.

process water: Water that would be used in the process to grind the ore and recover the targeted metals.

process water pond: Centrally located pond west of the concentrator that would be used to store process water.

Project: The Twin Metals Minnesota Project. The Project would consist of the underground mine, the plant site, the tailings management site, the non-contact water diversion area, the access road, the water intake corridor, and the transmission corridor.

Project area: An area that includes the proposed footprints of Project features and sufficient adjacent area to capture the surface environment potentially affected by Project ground disturbance.

proposed action: Proposal to authorize and implement an action that addresses a purpose and need.

proposed project: A proposed action, the results of which would cause physical manipulation of the environment, directly or indirectly.

reagent makeup: Process circuit dedicated to preparing reagents for use in the process.

reclamation: Activities that successfully accomplish the requirements of Minnesota Rules, parts 6132.2000 to 6132.3200. Actions intended to return the land surface to an equivalent undisturbed condition. Restoration of mined land to original contour, use, or condition. Steps or operations integral to mining that prepare the land for post-mining use are called reclamation. When the objective of reclamation is to return the land to pre-mining conditions and uses, it is sometimes called restoration.

Resource Conservation and Recovery Act: This gives the U.S. Environmental Protection Agency the authority to control hazardous waste from "cradle-to-grave." This includes the generation, transportation, treatment, storage, and disposal of hazardous waste. This also sets

Environmental Review Support Document

forth a framework for the management of non-hazardous solid wastes. The 1986 amendments to the Resource Conservation and Recovery Act enabled the Environmental Protection Agency to address environmental problems that could result from underground storage tanks storing petroleum and other hazardous substances. These amendments also address storage and disposal of solid and hazardous wastes.

riparian: Area pertaining to the bank of a river, stream, pond, or small lake.

Recreation Opportunity Spectrum: The framework expressing the desired range of recreational activities that will be encouraged and permitted on national forest lands.

seepage: Water that may flow through a liner, independent of pathway.

sediment pond: A pond used for settling suspended solids.

sludge: A semi-solid residue containing a mixture of solid waste material and water from air or water treatment processes.

slurry: A watery mixture or suspension of fine solids (not thick enough to be considered sludge).

State Historic Preservation Office: The office and official appointed or designated pursuant to section 101(b)(1) of the National Historic Preservation Act to administer the State Historic Preservation Program or a representative designated to act for the State Historic Preservation Officer.

stormwater: According to Minnesota Rules, chapter 7090, stormwater is defined as stormwater runoff, snow melt runoff, and surface runoff and drainage.

study area: An area of evaluation specific to a particular resource, different from a Project area.

suitable growth medium: A combination of topsoil, peat, and mineral soil.

tailings: Waste byproducts of mineral beneficiating processes other than heap and dump leaching, consisting of rock particles, which have usually undergone crushing and grinding, from which the profitable mineralization has been separated.

tailings dewatering plant: Would include the process facilities associated with the tailings thickener, filter plant, filter cake storage and storage loadout building, and backfill plant.

tailings filter cake: The tailings product resulting after pressure filtration; the tailings filter cake would have a majority of water removed by the pressure filter.

tailings management site: The tailings dewatering plant, the dry stack facility and related materials management infrastructure.

tailings thickener: The equipment that would be used to initially dewater tailings before being fed to the tailings dewatering plant to produce a tailings filter cake.

Environmental Review Support Document

temporary rock storage facility: A lined facility at the plant site that would convey precipitation to the central contact water pond. The temporary rock storage facility is the physical infrastructure on which the pre-operational ore stockpile and the overflow ore stockpile would be located.

threatened species: A species that is likely to become an endangered species within the foreseeable future in all or a significant part of its range.

till: A glacial drift consisting of an unsorted mixture of clay, sand, gravel, and boulders.

ton: A unit of measurement equivalent to 2,000 pounds.

transmission corridor: The transmission corridor would be a corridor beginning at the off-site electrical substation located west of the Dunka River, extending northeast and terminating at the plant site electrical substation. The transmission corridor would include a two-track, unpaved maintenance road and the power transmission line.

unconsolidated deposit: Sediment not cemented together; may consist of sand, silt, clay, and organic material.

under-liner drain: A drain underneath the dry stack facility liner that would drain to the contact water ditch.

underground mine: This includes the underground workings as well as ventilation raise sites, ventilation raise site access roads, underground mobile equipment, and underground mine infrastructure.

underground mine area: The surface projection of the underground workings and underground Maturi deposit.

underground mine water: Water collected by the dewatering system including mine inflow (groundwater that flows into the underground mine), process water associated with the engineered tailings backfill; and mine supply water.

underground workings: This includes all underground excavations (i.e., ramps, haulage areas, drifts, stopes, and ventilation raises) beginning at the point the decline or raise goes below ground surface.

U.S. Forest Service Regional Forester Sensitive Species: A list developed by the Regional Forester that identifies sensitive species. Sensitive species are defined as "plant and animal species identified by the Regional Forester for which population viability is a concern as evidenced by: (a) significant current or predicted downward trends in population numbers or density, and/or (b) significant current or predicted downward trends in habitat capability that would reduce a species' existing distribution." Sensitive species are usually designated for an entire region, but independent "Forest Sensitive" lists are maintained by some individual National Forests.

Environmental Review Support Document

U.S. Geological Survey gaging station: Facilities used by hydrologists to automatically monitor streams, wells, lakes, canals, reservoirs, and or other water bodies. Instruments at these stations collect information such as water height, discharge, water chemistry, and water temperature.

ventilation access road: An existing drill road would be upgraded in order to access ventilation raise site 1 and 2. Ventilation raise site 3 would be accessed via the existing USFS road, National Forest Road 1900. A portion of National Forest Road 1900 would also be used to access the upgraded drill road.

ventilation raise site 1, 2, and 3: The ventilation raise sites serve as air intake and exhaust locations for the underground mine and are labelled from west to east.

waste rock: Rock mined during operations below the targeted cut-off grade that would be managed underground and placed in mined out stopes for permanent storage.

water intake corridor: The standardized name for the corridor from the water intake facility on Birch Lake reservoir to the plant site; this corridor would contain the pipeline for the makeup water, buried electric, and a single lane access road.

water intake facility: The make-up water pumphouse for withdrawal from Birch Lake reservoir.

watershed: A geographic area from which water is drained by a river and its tributaries to a common outlet. A ridge or drainage divide separates a watershed from adjacent watersheds.

water table: The upper limit of the saturated zone (the portion of the ground wholly saturated with water); or the upper surface of a zone of saturation above which the majority of pore spaces and fractures are less than 100 percent saturated with water most of the time (i.e., the unsaturated zone) and below which the opposite is true (i.e., the saturated zone).

wetlands: Areas that are inundated or saturated by surface water or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence or vegetation typically adapted for life in saturated soil conditions. These generally include swamps, marshes, bogs, and similar areas.

Wetland Conservation Act: This act was passed into law in 1991 (and amended in 1993, 1994, 1996, and 2000), with the purpose of achieving no net loss in the quantity, quality, and biological diversity of Minnesota's existing wetlands; increasing the quantity, quality, and biological diversity of Minnesota's wetlands by restoring or enhancing diminished or drained wetlands; avoiding direct or indirect impacts from activities that destroy or diminish the quantity, quality, and biological diversity of wetlands; and replacing wetland values where avoidance of activities is not feasible and prudent.

wetland delineation: The act of establishing the boundary between wetlands and uplands (or non-wetlands) using soils, hydrology, and vegetation as indicators.

wild rice: A tall aquatic annual grass of North America, bearing edible grain that typically grows in shallow lakes or slow-moving rivers and streams.

Environmental Review Support Document

zoning ordinance: Locally adopted regulations that divide a town, city, village, or county into separate districts (e.g., residential, commercial, or industrial), define the permitted and prohibited land uses in those districts, and set forth specific development requirements (such as minimum lot size, height restrictions, etc.

Environmental Review Support Document

1 1.0 INTRODUCTION

- The Twin Metals Minnesota LLC (TMM) Project (Project) is focused on designing,
 permitting, constructing, and operating an underground copper, nickel, cobalt,
 platinum, palladium, gold, and silver mining project. Located approximately nine
 miles (14 kilometers [km]) southeast of Ely, Minnesota, and 11 miles (18 km)
 northeast of Babbitt, Minnesota (Figure 1-1), the Project targets valuable and
 strategic state, federal, and private minerals within the Maturi deposit, which is a part
 of the Duluth Complex geologic formation.
- 9 All potential Project infrastructure locations presented herein are considered 10 preliminary and are undergoing further design and engineering evaluations which 11 would dictate final design and locations. Further information about TMM and the 12 Project is located at http://www.twin-metals.com/.
- 13The purpose of this document is to provide necessary information for the
environmental review and permitting process.

15 **2.0 APPROACH**

- 16TMM has prepared this document as an initial data submittal to facilitate the state17environmental review process and to help refine the scope of the future18Environmental Impact Statement (EIS) and to identify potentially significant19environmental impacts.
- 20 As a metallic mineral mine, the Project will require completion of an EIS, with the 21 Minnesota Department of Natural Resources (MDNR) as the responsible 22 governmental unit (RGU) for conducting the environmental review (Minnesota 23 Statutes, section 116D.04 and Minn. R., chapter 4410). For projects that require an 24 EIS, an environmental assessment worksheet (EAW) is used as a tool for 25 determining the scope of the EIS. This tool is referred to as a scoping EAW (SEAW), 26 as it is paired with a scoping decision document that outlines what alternatives, 27 impacts, issues, and mitigation measures will be assessed in the EIS, and at what 28 level of detail.
- 29 This initial data submittal provides state agencies and the public a detailed Project 30 description based on current design and engineering evaluations, a summary of 31 baseline environmental conditions, an assessment of potential effects from the 32 Project, and a description of future work necessary to support an EIS. The goal for 33 this document is to inform discussions with state agencies leading to concurrence on 34 the potential for significant environmental effects, outstanding data needs, and the 35 recommended scope of the EIS. Upon agency concurrence, TMM intends to prepare a revised data submittal sufficient for the MDNR to create an SEAW. TMM as the 36 37 proposer, acknowledges that the decisions about the content and format for the final 38 published SEAW remain the sole responsibility of the lead state agency.

39 40	This SEAW data submittal follows the EAW format prescribed by the Minnesota Environmental Quality Board (EQB), and includes the following sections:
41	Project Description
42	Cover Types
43	Permits and Approvals
44	Land Use
45	
43 46	
47	Contamination / Hazardous Materials / Wastes
48	Terrestrial and Aquatic Resources
49	Historic Properties and Cultural Resources
50	Visual
51	• Air
52	Noise
53	Transportation
54	Cumulative Potential Effects
55	 Other Potential Environmental Effects
56	RGU Certification
57	In each section addressing resources (Sections 4.0 to 15.0), this document
58	describes baseline conditions and potential Project impacts, as required by the EAW
59	form. This document also goes beyond the EAW form requirements, and for each
60	resource type, addresses future scope of work. The subsections on future scope
61	assess whether additional data or analysis is needed, and if it is, describe the
62	recommended scope of work.
63	This SEAW data submittal uses publicly available information sources for the
64	analysis. Where appropriate, data acquired by TMM is summarized to supplement
65	the assessment. Additional work and data collection is ongoing and reflected in the
66	sections on future scope.
67	Sections on baseline conditions describe the current environment within the Project
68	area. The Project area includes the underground mine, plant site, tailings
69	management site, non-contact water diversion area, access road, water intake
70	corridor, and transmission corridor, as shown on Figure 2-1. These sites and areas
71	represent discrete geographical portions of the Project named for the most prominent
72	facility in that area, but each area or site contains a variety of facilities that may be
73	subject to different federal and state regulatory programs. The Project area
74	encompasses the proposed footprints Project features and sufficient adjacent area to
75	capture the surface environment potentially affected by Project ground disturbance.
76	Sections on Project impacts describe potential effects of Project construction,
77	operation, reclamation, and closure, as well as measures TMM would take to avoid,
78	minimize, and/or mitigate potential effects (environmental protection measures
79	[EPM]).
	Document No. TMM-ES-025-0099 Page 2 Revision 0A

Environmental Review Support Document

80 The analysis of Project impacts concludes with an assessment of whether the 81 available information is 1) adequate to make a reasoned decision about the potential for, and significance of, the Project environmental impacts; 2) is insufficient but could 82 be reasonably obtained; or 3) is insufficient but unlikely able to be reasonably 83 84 obtained. 85 For the resources for which available information is adequate to make a reasoned decision about the potential for, and significance of, the Project environmental 86 impacts, the section concludes with an evaluation of the potential significance of the 87 impacts. The factors used to evaluate whether a potential effect would be considered 88 significant are specified by Minn. R., part 4410.1700, subparts 6 and 7 as: 89 90 • The type (temporary or permanent), extent and reversibility of the potential effect; 91 92 Does the potential effect contribute to a cumulative potential effect • 93 (identify what and how); Is the potential effect subject to regulatory oversight and mitigation 94 (identify the regulatory control); and 95 The extent to which environmental effects can be anticipated and 96 • 97 controlled as a result of other available environmental studies. 98 For the resources for which available information is insufficient but could be 99 reasonably obtained, the section concludes with a preliminary evaluation of the 100 potential significance of the impacts. 101 Sections on the future scope of work identify specific studies or data collection that 102 would be conducted to obtain additional data identified as lacking but able to be 103 reasonably obtained. The assessment of potential cumulative effects are not included within the future scope of work sections. They are included in Section 14.0. 104 The future scope sections identify the following: 105 106 Specific questions that need to be answered by the additional study; • Which permits (if any) the scope of work would inform; 107 The approach for the study; 108 • 109 The study boundary under consideration; and 110 The specific deliverables. • Upon conclusion of the proposed future scopes of work, information collected will be 111 combined with information presented in this document to assess potential impacts to 112 113 the identified resources. The sufficiency of the data will be assessed, and the 114 significance of the potential impacts will be evaluated using the factors specified by Minn. R., part 4410.1700, subparts 6 and 7 (listed above). Note all references to 115 116 federal and state statutes and regulations reference those in effect as of the date of 117 filing.

Environmental Review Support Document

- 118 Overall, this document provides agencies with an assessment of the potential Project 119 environmental effects and their significance, an evaluation of information adequacy, 120 an EIS scoping recommendation, and future scopes of work for the EIS.
- 121 **3.0 BACKGROUND**
- 122 3.1 Project Title
- 123 Twin Metals Minnesota Project

124	3.2	Proposer
-----	-----	----------

125	•	Twin Metals Minnesota LLC
126	•	Contact person:
127	•	Title:
128	•	Address:
129		
130		
131		
132	•	Phone:
133	•	Fax:
134	•	Email:

135 **3.3 RGU**

136 137 138 139 140		 Minnesota Department of Natural Resources Contact person: Title: Address: 	
141		Phone:	
142		• Fax:	
143		Email:	
144	3.4	Reason for SEAW Preparation	
145		Required:	Discretionary:
146		X EIS Scoping	Citizen petition
147		Mandatory EAW	RGU discretion
148			Proposer initiated
149		EAW or EIS is mandatory, give EQB rule category subpart number(s) and name(s):	
150		Minn. R., part 4410.4400 Subpart 8b. Subpart Name: Me	etallic mineral mining and
151		processing metallic minerals.	-

152	3.5	Project Location
153 154 155 156 157 158 159 160 161 162 163		 County: Lake and St. Louis City / Township: Stony River Township and Babbitt PLS Location (¼, ¼, Section, Township, Range): Township 60N, Range 11W, Section 6 Township 60N, Range 12W, Section 1, 3 Township 61N, Range 11W, Sections 3, 4, 5, 6, 8, 9, 10, 15, 16, 17, 20, 29, 31, 32 Township 61N, Range 12W, Sections 25, 26, 34, 35, 36 Township 62N, Range 11W, Sections 32, 33, 34, 35 Watershed (81 major watershed scale): Rainy River – Headwaters (72) Tax Parcel Number: See Table 3-1
164		Plant site and underground mine area:
165 166 167 168 169 170 171 172		 County: Lake City / Township: Stony River Township Plant site - Township 61N, Range 11W, Sections 8, 9, 10 Underground mine area- Township 61N, Range 11W, Sections 3, 4, 5, 6 Township 62N, Range 11W, Sections 32, 33, 34, 35 Watershed: Rainy River – Headwaters (72) Centroid of plant site and underground mine area Coordinates (UTM Zone 15) X: 594530 Y: 5294615
173		Tailings management site:
174 175 176 177 178 179		 County: Lake City / Township: Stony River Township Township 61N, Range 11W, Sections 15, 16 Watershed: Rainy River – Headwaters (72) Centroid of tailings management site (UTM Zone 15) X: 59440 Y: 5291475
180		Transmission corridor:
181 182 183 184 185 186 187 188		 County: Lake and St. Louis City / Township: Stony River Township and Babbitt Township 60N, Range 11W, Section 6 Township 60N, Range 12W, Section 1, 3 Township 61N, Range 11W, Sections 17, 20, 29, 31, 32 Township 61N, Range 12W, Sections 25, 26, 34, 35, 36 Watershed: Rainy River – Headwaters (72) Centroid of transmission corridor (UTM Zone 15) X: 590820 Y: 5285695

Environmental Review Support Document

189 **3.6 Project Description**

190 **3.6.1 Project Summary**

191The Project would be an underground mine and concentrator for copper, nickel,192cobalt, platinum, palladium, gold, and silver ore from the Maturi deposit of the Duluth193Complex. The Project would be located southeast of Ely and northeast of Babbitt.

194 3.6.2 Complete Description

- 195The Project would be located at the northeastern end of Minnesota's Iron Range,196southeast of Ely, and northeast of Babbitt, as shown on Figure 1-1.
- 197The Project would recover copper, nickel, cobalt, platinum, palladium, gold, and198silver, from the Maturi deposit. The Project would consist of an underground mine, a199plant site, a tailings management site, and a non-contact water diversion area along200with an access road, water intake corridor, and transmission corridor as shown on201Figure 2-1. The surface disturbance of each of these Project features are202summarized in Table 3-2. TMM would pursue the appropriate land approvals203necessary to facilitate the Project.
- 204 The mine would be accessed by portals and declines with mining occurring 205 underground. The surface projection of the underground workings and Maturi 206 deposit, referred to as the underground mine area, would have minimal surface 207 disturbance limited to three ventilation raise sites and an associated ventilation 208 access road. Mined ore would be crushed underground, then conveyed to the 209 surface and processed in a comminution and flotation circuit at the plant site. The 210 process would produce three products, copper concentrate, nickel concentrate, and 211 gravity concentrate. The concentrates would be thickened and filtered before being transported off site to various customers. Tailings from the concentrator would be 212 213 dewatered and either permanently stored underground as engineered tailings backfill 214 or transported to the dry stack facility at the tailings management site for permanent 215 storage. A simplified schematic of the mining process is shown on Figure 3-1.

216 Operating Life of Mine, Amount, Sequence, and Schedule

- 217TMM estimates total production of approximately 180 million tons (163 million218tonnes) of ore over 25 years, at an average rate of approximately 7.3 million tons219(6.6 million tonnes) per year after Project ramp-up. Annually, the Project would220produce on average 174,000 tons (157,000 tonnes) of copper concentrate, 84,000221tons (76,000 tonnes) of nickel concentrate, and 550 tons (500 tonnes) of gravity222concentrate.
- 223 The Project would have four phases.

224	• The construction phase would occur during a 30-month period from Q3
225	Year -3 to Q4 Year -1. This phase would include final engineering,
226	procurement, and construction of surface facilities and underground
227	infrastructure. The timeline for construction is shown on Figure 3-2;
228	 The operation phase would begin with the commissioning of the
229	concentrator and last for 25 years. This phase would include extracting
230	and processing the ore, as well as activities such as water and waste
231	management. Concurrent reclamation would occur during the operations
232	phase and portions of the mine would be closed during this time (e.g.,
233	backfilled stopes);
234	 The reclamation and closure phase would occur after the operation
235	phase. Final reclamation and closure would include monitoring and
236	rehabilitation of areas with ground disturbance related to the Project and
237	creation of the post-Project landscape; and
238	 The post-closure maintenance and monitoring phase would follow the
239	reclamation and closure phase. This phase would include activities to
240	confirm that reclamation has been sustained and that post-closure
240	performance criteria have been achieved.
241	penormance chiena nave been achieved.
242	Overview of Rock Management
243	TMM would manage mined rock based on three rock categories:
244	• Ore: rock mined from the basal mineralized zone (BMZ) that contains the
245	targeted metals – copper, nickel, cobalt, platinum, pallidum, gold, and
246	silver – which would be recovered through the concentrator to three
247	concentrates;
248	 Development rock: sulfide barren rock mined from the hanging wall that
249	would be used for construction aggregate. Development rock would be
250	mined during the construction of the declines and ventilation raises, and
251	periodically throughout the project. Development rock would be used as
252	construction aggregate to meet fill requirements; and
253	 Waste rock: rock mined during operations below the targeted cut-off
254	grade that would be managed underground and placed in mined out
255	stopes for permanent storage.
200	stopes for permanent storage.
256	The material characterization program would further define the rock types and their
257	suitable uses. Development rock would be tested to confirm its geochemical
258	suitability for use as fill based on guidelines to be developed in the material
259	characterization program. Section 5.1.3 discusses the current status of TMM's
260	material characterization program summarizing key findings and Section 5.3
261	presents a future work scope for the continued development and execution of the
262	material characterization program.
263	During the construction phase, as the mine declines and ventilation raises approach
264	the BMZ, mined rock would be monitored and tested to determine the cut-off point

- 265 where sulfide mineralization begins. When sulfide mineralization begins, this would 266 represent the "end" of the development rock. During the construction phase rock with 267 sulfide mineralization would be handled as ore. Ore mined during the construction 268 phase would be temporarily stockpiled on surface in the pre-operational ore stockpile 269 at the temporary rock storage facility. The temporary rock storage facility is a lined 270 facility designed and has ditching to direct flow of stormwater to the central contact water pond where it is collected and stored until use in the processing circuit. The 271 272 pre-operational ore stockpile would be processed when the concentrator begins 273 operating. No rock would be categorized as waste rock during the construction 274 phase, because there would be a lower ore cut-off grade during the construction 275 phase than during the operation phase.
- 276During the operation phase, ore would be crushed underground and transported by277conveyor to the coarse ore stockpile. Rock mined during operations that is below the278cut-off grade, would be treated as waste rock. This waste rock would be managed279underground by placing the waste rock in mined out stopes prior to backfilling with280engineered tailings backfill.
- 281At no point in time throughout the construction or operation phases would waste rock282be transported to the surface; rock transported to surface would either be classified283as ore (and processed through the concentrator) or development rock (and used as284construction aggregate).
- 285 Through the design of the Project and the rock management strategy, the potential 286 for acid rock drainage (ARD) from the two most common ARD sources associated 287 with mines of this type (ARD from waste rock stockpiles and ARD from tailings) has 288 been avoided. First, the Project would not have permanent waste rock stockpiles on 289 surface, due to the underground mining and processing strategy of ore, thus avoiding 290 the potential for ARD from permanent waste rock stockpiles on surface. Second, the 291 Project would recover most sulfides from the ore, producing tailings with sulfur less than 0.2% S. This value of sulfur in tailings is significant because testwork on Duluth 292 293 Complex tailings, including tailings from the Project's pilot plant on Maturi ore, has 294 demonstrated that sulfur content at this to be non-acid generating (testwork results 295 summarized in Section 5.1.3).
- 296 Overview of Water Management and Water Balance
- 297 TMM would manage water to avoid and minimize environmental impacts subject to 298 appropriate federal and state agency oversight. TMM anticipates that the specific 299 permitting requirements will be developed as additional data collection, modeling, 300 and analysis is completed during the environmental review and permitting process. 301 Accordingly, the details of its water management approach may evolve in response 302 to agency review or additional technical review. Overall, water would be routed from 303 the underground mine to the plant site, from the plant site to the tailings management 304 site, then from the tailings management site back to the plant site. Birch Lake 305 reservoir would supply make-up water for processing, as needed.

306	Key principles of the Project water management approach are as follows:
307 308 309 310 311 312 313	 The Project would not discharge any process water in accordance with 40 CFR Part 440 and is designed not to require a discharge of contact water; Extensive water reuse would minimize the amount of make-up water needed from Birch Lake reservoir; and Stormwater and surface water from outside the site would be diverted, following natural drainage patterns to the extent possible, so it does not mix with water on the site.
314	Water would be managed in four categories:
315 316 317 318 319 320 321 322 323 324	 Process water – water that would be used in the process to grind the ore and recover the targeted metals; Contact water – water, in the form of direct precipitation or stormwater, that would potentially come in contact with ore or tailings, but has not been used in the process or combined with process water; Non-contact water – water that would not come in contact with ore or tailings; includes water from adjacent watersheds that would be diverted around the facility; and Construction stormwater: direct precipitation or stormwater that has contacted surfaces disturbed during construction.
325 326	TMM is continuing to evaluate appropriate management of other forms of industrial stormwater.
327 328	The water use strategy would set the following priority order for process water sources:
329 330 331 332	 Reuse of process water; Use of mine inflow; Use of contact water; and Make-up water from Birch Lake reservoir.
333 334	A simplified schematic of the Project water management strategy is shown in Figure 3-3.
335 336 337	Water balance analysis indicates that the Project would be a net-consumer of water. Even with extensive water reuse, the Project would require make-up water to process the ore. The Project would have the following consumptive uses:
338 339 340 341 342	 Residual water would remain in the filtered tailings placed on the dry stack facility; Water would be consumed in the engineered tailings backfill; Residual water would remain in the filtered concentrates that are shipped to market; and

Environmental Review Support Document

343	• Evaporation would occur from multiple sources across the Project.
344	The Project would capture water from the following sources and use it to meet
345	process water demand:
346	 Mine inflow - the groundwater that would flow into the underground
347	workings; and
348	Precipitation – direct precipitation and stormwater that would be collected
349	as contact water.
350	Water from mine inflow and precipitation would be variable and water that could not
351	be used immediately in the process would be stored in ponds across the site to meet
352	future water demand.
353	The Project's combined consumptive use would be greater than the combined water
354	sources of mine inflow and precipitation. Therefore, to meet processing water
355	demand the Project would intermittently withdraw make-up water from Birch Lake
356	reservoir. Water from Birch Lake reservoir would be withdrawn on an as-needed
357	basis when the process water demand could not be met by available mine inflow and
358	contact water in storage. The average withdrawal from Birch Lake reservoir would be
359	expected to fall within the range of 75 to 130 million gallons (gal) of water a year. To
360	achieve the required withdrawal, the instantaneous rate of pumping would be
361	approximately 800 gallons per minute and would be stopped when other sources of
362	water meet water demands. To put the withdrawal into context, 800 gallons per
363	minute is equivalent to approximately 30 garden hoses.
364	Details on water management and the water balance are provided in the section
365	Water Management Plan.
366	Underground Mine
367	The underground mine would consist of all underground workings and infrastructure
368	necessary to excavate ore from the Maturi deposit over the 25-year operating phase
369	including the ventilation raises that surface at the three ventilation raise sites. The
370	underground mine would be accessed by two side-by-side declines (sloped tunnels
371	to the ore deposit). The declines would start on the surface at the plant site at two
372	locations referred to as mine portals (entrances to the underground mine). Each
373	decline would be 20 feet (ft) wide by 20 ft in height (6 meters [m] by 6 m).
374	The surface projection of the extent of the underground workings and Maturi deposit
375	is shown on Figure 2-1 and referred to as the underground mine area.

376 Underground Mine Construction Phase

In the underground mine, the construction phase would include the development of
tunnels and installation of mine infrastructure. Tunnels, also known as drifts, would
be excavated to access the ore, create initial production areas, establish ventilation,

- 380and provide access to backfill. Infrastructure would be installed in the underground381mine including the material handling, ventilation, and dewatering systems.
- 382The construction of the portals would start in Year -3. The portal would be drilled,383blasted, loose rock would be removed, and the surface walls would be bolted to384ensure safe access.
- 385 After the portals were completed, twin declines (sloped tunnels side-by-side) would be constructed to access the orebody. The declines would be excavated with a fleet 386 387 of mobile equipment. The twin declines would provide for separate mine 388 development and construction areas; fresh air; access for labor and materials; 389 minimization of congestion; and an independent and exclusive decline for the main conveyor during the production phase. The length of the decline from the portal to 390 391 the initial haulage level tie-in would be approximately 1.6 miles (2.5 km), to a depth 392 of approximately 1,000 ft (300 m) below the surface.
- 393The declines would be referred to by their use: conveyor decline and access decline.394The conveyor decline would be the western decline and would contain the main395conveyor that transfers ore from the mine to surface. This decline would eventually396extend further down the deposit as mine development progresses. Construction of397the conveyor decline and the access decline would begin simultaneously.
- 398The access decline, east of the conveyor decline, would be used as the transport399decline and would accommodate primary access and egress of miners, equipment,400and materials to operate the underground mine. Traffic would be two-way, with401crosscuts to serve as access to the conveyor decline for egress.
- 402To support the underground workings, vertical mine passageways for ventilation403would be excavated (ventilation raises). The ventilation raises would surface at three404ventilation raise sites. The ventilation raises would vary in size from 17 ft to 20 ft (5.3405m to 6 m) and would be sized to meet the mine ventilation system requirements. To406serve as a third exit from the underground workings, an Alimak elevator (or a407comparable product) would be installed in one of the intake ventilation raises.
- 408 The ventilation raises would be constructed by raise bore technique. The raise bore 409 technique utilizes a raise bore drill that drills a pilot hole from surface. The pilot hole 410 would intersect the targeted drift underground and then a reamer would be attached 411 to the drill shaft. The reamer would be sized to the final diameter of the ventilation 412 raise. The drill would then pull the reamer from the underground drift to surface. The drilled rock would be removed from the bottom of the ventilation raise and handled 413 by underground equipment. When the ventilation raise is drilled during the 414 415 construction phase, the rock would be handled as development rock and thus transported to surface for use as construction aggregate. 416
- 417 Surface disturbance would be limited to the surface infrastructure associated with the 418 three ventilation raise sites, as shown on Figure 3-4. Access to the ventilation raise

- sites would use existing U.S. Forest Service (USFS) roads, as well as existing drill
 roads, which would be upgraded as necessary.
- The construction of the underground mine would be completed within 30 months.
 Construction activities would be conducted in accordance with the Minnesota
 Construction Stormwater General Permit, following best management practices
 (BMPs) in an agency approved Storm Water Pollution Prevention Plan (SWPPP).
- 425 Underground Mine Layout and Operational Activities
- 426The following sections describe the mining method, the underground production427cycle, backfilling, and underground support systems. Underground mine water428management infrastructure is described in the section Water Management Plan.
- 429 <u>Mining Method</u>
- The Project would mine the Maturi deposit using a longitudinal longhole retreat (LLR)
 mining method within five major mining productions zones as shown in Figure 3-5.
 Underground mining using the LLR mining method would target only those portions
 of the deposit considered ore, result in less excavation, and eliminate the need for
 aboveground waste rock stockpiles as only ore would be transported to the surface.
- 435 The LLR mining method would be classified as a stoping method; stoping is the 436 process of extracting ore from an underground mine and leaving behind an open 437 space called a stope. In the LLR mining method, stopes are mined longitudinally 438 along the direction of the ore formation in a backwards fashion and separated by pillars that allow production from other mining units. Stopes would be accessed from 439 different levels (drifts) and the diamond-shaped stope arrangements, conceptually 440 441 shown on Figure 3-6 would allow for flexibility to have the stopes open for extended periods of time, up to multiple years, without backfill. This would reduce production 442 443 risks, provide flexibility in managing the dry stack facility, and decouple backfilling from the mining cycle resulting in a more efficient and reliable operation. 444
- 445 <u>Underground Production Cycle</u>
- 446 The mining cycle is the process used to extract ore and includes the following five 447 production steps: drilling, blasting, excavating, transporting, and crushing. First, 448 stopes would be drilled from two different drifts creating the diamond shape. The drill 449 holes would next be loaded with an explosive charge and primed. The blasting 450 system would use remote detonation which would allow blasts to be initiated far from 451 the blasting site. After blasting, load-haul-dump machines (LHDs) and trucks would load and transport the ore from the stope to an ore pass. A cross section of a typical 452 453 conveyor drift and a typical transport drift is shown on Figure 3-7. The ore passes 454 would direct the ore to a haulage level where LHDs or trucks would transport the ore 455 to one of the underground semi-portable crushers. The crushed ore would be 456 conveyed to the surface via the main conveyor housed in the conveyor decline.

- 457 Primary mining equipment necessary to achieve the mining cycle is shown as 458 Table 3-3.
- 459 Underground Backfilling
- One of the benefits of the LLR mining method would be the ability to use waste rock 460 461 and tailings as backfill, reducing the environmental footprint of the Project. Backfill 462 would also limit rock falling / rock blasts and improve the long-term stability of the mine by providing confinement to the pillars between the stopes. Waste rock 463 464 generated during underground mine development would remain underground and be 465 backfilled into open stopes prior to the placement of engineered tailings backfill. The 466 production of the engineered tailings backfill is described further in the section Tailings Management Site Layout and Operational Activities. Thickened tailings 467 would be mixed with a binder for placement as engineered tailings backfill. During 468 469 Project operation 33 million tons (30 million tonnes) of waste rock would be left 470 underground and backfilled into empty stopes and 71 million tons (64 million tonnes) of engineered tailings backfill would be delivered underground for storage. 471
- 472 <u>Underground Support Systems</u>
- 473 To support the mining cycle, several other systems would be necessary, including 474 ventilation and electrical.
- 475The regulations of ventilation systems within underground mines in the United States476are set by MSHA. The minimum airflow requirement for a diesel-operating mine is477relative to its fleet size, with airflow calculated to provide sufficient air for diesel478particulate matter dilution.
- 479 The ventilation system is designed to operate as a "push-pull" system whereby ventilation raise site 2 would function as the intake raise and ventilation raise site 1 480 481 and ventilation raise site 3 would function as the exhaust raises. Air would exhaust 482 through the twin declines. Underground booster fans would be installed, as required, 483 at the top of the fresh air transfer raises to support ventilation in the deeper part of 484 the mine. Dedicated ventilation drifts and internal raises would be established to 485 transfer fresh and exhaust air from the production levels to the ventilation raises. An 486 image of the 25-year mine ventilation plan is shown on Figure 3-8. Due to the 487 climate, some heating of the underground workings would be required from 488 November through April. To heat the mine, the Project would use propane gas fired 489 air heaters located on surface at the intake ventilation raises; propane storage would be included at the ventilation raise site. 490
- 491 Electrical power for the underground mine would come from the plant site electrical 492 substation. Electrical feeders for the mine would be routed down the declines to the 493 main underground electrical room. Feeders from the electrical room would distribute 494 power to the major areas of the mine using tap boxes. Tap boxes would be used as 495 connect points for mine load centers that would then feed the pumps, ventilation 496 fans, production equipment, and development loads.

497	Underground Mine Reclamation, Closure, and Post-closure Maintenance
498 499 500 501 502	During reclamation, TMM would demolish surface ventilation structures. Foundations that are above-grade or buried 0 to 2 ft (0 to 0.6 m) below grade would be broken and buried in place. Below grade, non-vent shaft spaces would be filled with appropriate fill. Non-hazardous demolition debris would be removed and disposed of as deemed appropriate and in accordance with regulatory requirements.
503 504 505 506 507 508	Closure would include removal of underground mine equipment and infrastructure that are mobile and have potential alternate off-site uses or salvage value, and removal of items that have potential to impact future groundwater quality. Underground equipment and infrastructure which have no potential to impact future groundwater quality could be left underground if they have limited reuse or salvage value or could not be economically removed and recovered.
509 510 511	To perform reclamation activities, the portals would remain open in order to deliver power and other utilities needed to complete the planned underground mine backfilling and remove underground equipment and infrastructure.
512 513 514 515	After removal of equipment and infrastructure from the underground workings, underground workings that had not been backfilled would be allowed to passively fill with groundwater as groundwater levels progressively rise to pre-Project conditions after mine operations cease.
516 517 518 519 520 521	Access to underground workings would be closed off to the public throughout closure. Once closure activities in the underground workings have been completed, fill would be placed within the upper segment of the declines and at the portal as a barrier to block mine re-entry. The barrier would be covered with a granular cover layer, above which rooting soil would be placed to support revegetation of the portal area.
522 523	Post-closure maintenance would consist of vegetation monitoring and monitoring the ventilation raise sites to confirm closure integrity and lack of subsidence.
524	Plant Site
525 526 527	The plant site would receive the ore from the underground mine, process the ore to recover the target metals, and pump tailings to the tailings management site. It would also contain the portals which provide access to the underground mine.
528	Plant Site Construction Phase
529 530	Construction of the plant site would occur during the 30-month construction phase of the Project, from Q3 Year -3 to Q4 Year -1. The construction phase would include:
531 532	Clearing the site;Managing rock from construction of the underground mine;
	Document No. TMM-ES-025-0099 Page 14 Revision 0A

533 534 535	 Constructing the concentrator and other infrastructure; and Constructing the water management infrastructure (described in the section <i>Water Management Plan</i>)
536 537 538 539	The configuration of the plant site during construction is shown on Figure 3-9. An existing USFS one-lane gravel road would provide immediate access to the site, and during the construction phase an access road to the plant site would be built as described in the section <i>Access Road</i> .
540	Plant Site Clearing
541 542 543 544 545 546 547	In preparation for construction activities, the surface area at the plant site would be cleared, grubbed, graded, and filled as necessary. Material suitable as a growth medium such as topsoil and peat, would be stripped and stored in the reclamation material stockpiles for use during reclamation. Saleable lumber would be harvested and sold by a licensed third-party contractor. The remaining plant matter would be chipped and used to cover the reclamation material stockpiles to prevent wind and water erosion.
548	Rock Management During Construction
549 550 551	During construction of the underground mine, rock would be excavated, transported to the surface, and sorted into two categories: ore or development rock. Rock category definitions are presented in the section <i>Overview of Rock Management</i> .
552 553 554 555 556 557 558 559 560 561	The development rock would be used as construction aggregate after adequate testing to prove its geochemical suitability. The development rock transported to the surface would require processing to meet the construction aggregate specifications. The processing would occur on surface and include crushing and screening for classification of the aggregate. There would be requirements for construction aggregate across the plant site, tailings management site, non-contact water diversion area, and corridors to support construction. The requirement for construction aggregate occurs early in the construction phase, therefore development rock stockpiles would be limited to what is necessary for operation of the crushing and screening to produce construction aggregate.
562 563 564 565 566 567	During the construction phase, ore would be transported and temporarily stockpiled at the pre-operational ore stockpile on the temporary rock storage facility; ore would include any potentially acid generating rock. The temporary rock storage facility would be a lined facility with water management features (ditching and berms to control run-on and run-off) to capture stormwater; design features of the temporary rock storage facility are further discussed in the section <i>Ore Storage Facilities</i> .
568 569 570	The volume of the pre-operational ore stockpile volume would peak at the end of the construction phase. Once the concentrator is commissioned, ore from the pre-operational ore stockpile would be crushed at a temporary surface crushing facility

Environmental Review Support Document

- 571 and fed into the coarse ore stockpile for processing through the concentrator. The 572 pre-operational ore stockpile would be processed within the first two years of 572 concentrator.
- 573 operating the concentrator.
- 574After the pre-operational ore stockpile has been consumed, ore would be575intermittently stockpiled on the temporary rock storage facility; this intermittent576stockpile is referred to as the overflow ore stockpile; further discussed in the section577Ore Storage Facilities. During the Project construction phase, no waste rock (as578defined in the section Overview of Rock Management) is generated. During the579Project operation phase, waste rock would remain underground and be backfilled580into empty stopes.
- 581 <u>Concentrator and Infrastructure Construction</u>
- 582On-site construction of the concentrator and infrastructure would begin in Q3583Year -3. TMM would target pouring foundations and erecting buildings in the summer584and fall months. This would allow structural and mechanical installation to progress585during the winter months. The concentrator would be commissioned in second half of586Year -1 and would ramp-up production during the first year of operations.
- 587Other surface infrastructure necessary to support the Project, including service588buildings, warehousing, water ponds, fencing, security and parking, would be589completed during the construction phase. Construction laydown areas would be590designated within the plant site or tailings management site as appropriate.
- 591 Plant Site Layout and Operational Activities
- 592 The surface layout of the plant site as shown on Figure 3-10 would consist of:
 - Portals (described in the section Underground Mine),
 - Ore storage facilities
- 595 Concentrator

593

594

596

597

598

- Plant site infrastructure
- Plant site water management infrastructure (described in the section *Water Management Plan*)
- 599Surface mobile equipment that would support the concentrator and general surface600operations is identified in Table 3-4. Note, the surface mobile equipment does not601include mobile equipment for services that TMM plans to contract such as employee602bussing and snow removal.
- 603 <u>Ore Storage Facilities</u>
- 604There would be two ore storage facilities on the surface: the coarse ore stockpile and605the temporary rock storage facility.

Environmental Review Support Document

606 Coarse Ore Stockpile

607The concentrator would be fed ore from the coarse ore stockpile where it would be608reclaimed by the coarse ore reclaim conveyor (also known as the semi-autogenous609grind (SAG) mill feed conveyor). The coarse ore stockpile would primarily be fed by610mine ore from the decline conveyor but would also be supplemented with ore from611the pre-operational stockpile during the first two years of operation and intermittently612supplemented with ore from the overflow ore stockpile during operational years three613through 25.

- 614The coarse ore stockpile would have a concrete working floor with a reclaim area615underneath the working floor, and a covered geodesic dome structure. The coarse616ore stockpile would be approximately 94 ft and would have a capacity to store up to 3617days of crushed ore. A typical cross-section of the coarse ore stockpile is shown on618Figure 3-11. Covering the coarse ore stockpile would reduce dust emissions, prevent619infiltration of precipitation into the ore, and reduce the risk of ore freezing during620winter operations.
- 621 Material from the coarse ore stockpile would be fed into the concentrator via the SAG 622 mill feed conveyor; the conveyor would be equipped with a weather cover. Ore 623 stored in the coarse ore stockpile would already be crushed (crushing would occur 624 underground) and would be fed directly to the SAG mill within the comminution circuit 625 without any additional size reduction required. The coarse ore stockpile's geodesic 626 dome has been specially designed to reduce the visibility of the dome by locating the 627 dome beneath the coarse ore stockpile feed conveyor.
- 628 Temporary Rock Storage Facility
- 629Throughout the life of the Project, two stockpiles would be managed on the630temporary rock storage facility: the pre-operational ore stockpile and the overflow ore631stockpile. The temporary rock storage facility would be a lined facility with water632management features that would capture precipitation on the footprint of the facility633and direct it to the central contact water pond. From the central contact water pond,634the water would be pumped to the process water pond. The water management635features are further discussed in the section Contact Water Management.
- 636 Pre-operational Ore Stockpile
- 637 Ore extracted during mine development would be temporarily stockpiled in the pre-638 operational ore stockpile. Once the concentrator is commissioned, ore from the pre-639 operational ore stockpile would be re-handled, crushed at a surface temporary 640 crushing facility, and conveyed to the coarse ore stockpile for processing through the 641 concentrator. The pre-operational ore stockpile would be temporary and at its largest 642 size (1.2 million short tons) at the end of the mine construction period. The preoperational ore stockpile would be consumed through the process within the first two 643 644 years of operations.

Environmental Review Support Document

645 **Overflow Ore Stockpile** 646 After processing the pre-operational ore stockpile on the temporary rock storage facility, a portion of the temporary rock storage facility would be used to manage the 647 overflow ore stockpile. The overflow ore stockpile would operate with a capacity up 648 649 to 2.5 days of crushed ore and would be used intermittently throughout the mine operation. The overflow ore stockpile would serve to feed the concentrator during 650 shutdowns of the underground mine; shutdowns would occur from both planned and 651 652 unplanned maintenance. 653 During operations when the coarse ore stockpile is temporarily full, crushed ore 654 would be conveyed to the overflow ore stockpile. When there is space available in the coarse ore stockpile, ore in the overflow ore stockpile would be reclaimed and 655 conveyed to the coarse ore stockpile. The overflow ore stockpile would exist 656 657 intermittently, based on the maintenance schedule of both the underground mine and the concentrator. 658 659 Concentrator 660 The concentrator includes the comminution circuit, gravity concentration circuit, the 661 flotation circuit, concentrate dewatering and storage, and the reagent make-up area. 662 The concentrator would produce three saleable concentrate products (the separated 663 metals) and tailings (the remaining ground rock after targeted metals are recovered). 664 The concentrator includes a series of processes in the comminution circuit, the gravity concentration circuit and the flotation circuit, that would produce the three 665 final products, the copper concentrate, the nickel concentrate, and the gravity 666 667 concentrate. 668 The copper concentrate is the first flotation product and would recover copper, gold, silver, platinum, and palladium while minimizing the amount of nickel and cobalt 669 recovered. The nickel concentrate is the second flotation product and would recover 670 nickel, cobalt, the remaining copper, platinum, palladium, gold, silver, and the 671 672 remaining sulfides. The gravity concentrate would target the recovery of platinum, 673 palladium, and gold. 674 Tailings would be transported by pipeline from the concentrator to the tailings 675 dewatering plant at the tailings management site. A processing flowsheet is shown on Figure 3-12. 676 **Comminution Circuit** 677 678 In the comminution circuit, ore that had first been crushed underground would be further ground down to a size which enables the separation of the targeted minerals 679 680 from gangue minerals. The comminution circuit would be fed by a conveyor from the coarse ore stockpile. The grinding occurs in two stages, a coarse grind in the SAG 681

- 682 mill, followed by closed circuit grinding in the ball mill to achieve the target particle 683 size for flotation.
- 684 The SAG mill would use grinding balls to aid the grinding of the ore. The discharge from the SAG mill would be screened and oversized ore would be reintroduced to the 685 SAG mill until it passes the target size. Ore that passes the target size would be sent 686 687 to the ball mill for further grinding. After the ball mill, the ore would feed the ball mill 688 cyclone which would separate the ore into two streams: the overflow and the underflow. The overflow (finer grained material that has met the target size) from the 689 690 ball mill cyclone would be sent to the flotation circuit. Underflow (coarser grained 691 material that has not met the target size) from the ball mill cyclone would be 692 recirculated to the ball mill feed. One third of the stream recirculated to the ball mill 693 would be split to feed the gravity concentration circuit; the gravity concentrate tails would be added back to the ball mill recirculating stream. 694
- 695 Gravity Concentration Circuit
- 696The gravity concentration circuit would be used to recover platinum, palladium, and697gold from the ball mill cyclone feed. The gravity concentrate units would be fed by a698split stream of the ball mill recirculating load and the gravity tails returned to the699same spot after processing through the gravity concentration unit. Gravity700concentration uses the differences in the density of the gold, platinum, and palladium701minerals to separate the ore from the gangue minerals. After gravity concentration,702the gravity concentrate would be dewatered and bagged in preparation for shipment.
- 703 Flotation Circuit
- 704 After the ore has gone through the comminution circuit and hit the target size it would 705 be conveyed to the flotation and regrind circuit. Flotation is the process for selectively separating hydrophobic materials (repelled by water) from hydrophilic materials 706 (attracted by water). This process would separate the valuable minerals from the 707 708 gangue. In the flotation and regrind circuit the ore would first be fed into a copper 709 rougher bank with different reagents used to separate the ore into a copper-rich 710 concentrate (copper rougher concentrate) and a copper-poor tails (copper rougher 711 tails). The copper rougher concentrate would be pumped to the copper regrind mill 712 and the copper rougher tailings would be sent to the nickel rougher bank.
- 713The copper regrind mill would grind the ore further and would feed the copper714cleaner circuit. The copper cleaner circuit would further reject gangue while715recovering copper minerals to create the final copper concentrate. This final copper716concentrate would be pumped to the copper concentrate thickener.
- Copper rougher tailings would feed the nickel rougher bank of cells which would
 work much like the copper rougher bank of cells. Reagents would be added to the
 nickel rougher feed tank and the ore would be split into nickel-rich concentrate
 (nickel rougher concentrate) and a nickel-poor tails (nickel rougher tails). The nickel

- rougher concentrate would feed the nickel concentrate regrind mill and the nickel
 rougher tailings would be sent to the tailings dewatering plant.
- 723The nickel regrind mill would grind the material further and would feed the nickel724cleaner circuit which would produce the final nickel concentrate. The nickel final725concentrate would feed the nickel concentrate thickener.
- 726 Concentrate Dewatering and Storage
- 727The final concentrates would be dewatered by dedicated concentrate thickeners and728filter presses. The dewatering process would remove water from the concentrates to729a suitable moisture content that they can be placed in sealed containers for transport730by truck to the Port of Duluth where the concentrate can be transferred for additional731transport by rail or ship.
- 732 Reagents Make-up Area
- 733Multiple reagents would be used in the flotation, thickening, and backfilling circuits.734Reagents would be mixed and stored before use in a building connected to the735flotation area of the concentrator. Lime would be stored in a silo outside of the736reagent make-up area building and would be integrated with the detention slaker.
- 737 Plant Site Infrastructure
- The plant site infrastructure would include the mine services building, the
 concentrator services building, the plant site electrical substation, the explosives
 magazine, the tailings supply line, and ancillary supporting infrastructure. Plant site
 surface infrastructure would also include the process water pond and contact water
 ponds that are discussed in the section *Water Management Plan*.
- The mine services building would include offices, meeting space, truck shop, mine
 dry, weld shop, wash bay, and warehouse. The mine services building would be
 centrally located and would be shared by technical services, supervision, and hourly
 labor for the Project.
- Fuel, diesel, and gasoline for the plant site would be stored near the mine services
 building within the fuel storage area. Additionally, a gasoline tank would allow fueling
 of surface equipment and / or light vehicles. Engine oil and lubricants would be
 provided in oil cubes and stored in dedicated areas near the mine services building.
 A waste storage area adjacent to the mine service building would be used to stage
 waste prior to pick up by a contractor for off-site disposal.
- The concentrator services building would include training and meeting rooms,
 offices, concentrator dry, maintenance workshop, machine shop, and warehouse.
 The concentrator services building would be located near the concentrator and would
 provide a workshop to perform routine and non-routine maintenance on process
 equipment, as well as store critical and non-critical spares on site. An additional

Environmental Review Support Document

758 reagent storage area would be included northwest of the concentrator services 759 building. 760 The plant site electrical substation would distribute power via underground raceways. 761 cable trays, and overhead power lines. Electrical equipment, motors, control panels, field devices, relays control system components, and cabling systems would be 762 763 approved for the conditions in which the equipment would be installed. 764 Site emergency power would be provided through standby power generators rated 765 for the maximum power required in the event of a utility power failure; the standby 766 power generators would be sized to provide approximately 2.5 MW but would be 767 updated as deemed necessary to reliably provide site emergency power. Emergency power loads would be controlled by a control system, which would automatically start 768 and stop loads to keep process pumps operating to prevent spills and overflows, 769 770 keep tanks properly agitated, and run the equipment, such as fans for safe 771 ventilation. 772 Telecommunications service would be required to support the Project. The delivery of telecommunications is still being studied. Potential options for connecting to 773 774 existing telecommunications network include, providing service through a cable 775 routed with the transmission corridor, providing service through a cable routed with 776 the access road corridor, or satellite service options. 777 Explosives would be stored in the explosives magazine, located in the northwestern 778 corner of the site, prior to transport underground. Storage and transport of explosive 779 materials would be done in accordance with regulations of the Mine Safety and 780 Health Administration, the Bureau of Alcohol, Tobacco, Firearms and Explosives, 781 and the Minnesota State Fire Marshall. 782 The tailings supply line, through which tailings would be transported from the 783 concentrator to the tailings dewatering plant at the tailings management site, would 784 be routed alongside the internal site road connecting the plant site and the tailings management site along with power, water supply, and water return lines. 785 786 Suitable growth medium, consisting of topsoil, mineral soil, and peat stripped during 787 construction would be stockpiled for reclamation in two reclamation material 788 stockpiles at the plant site. Stripping at the plant site is estimated to produce 789 111,000 cubic yards (yd³) (85,000 cubic meters [m³]) of material. 790 Plant Site Reclamation, Closure, and Post-closure Maintenance 791 Reclamation of structures and supporting infrastructure would generally include 792 salvage (when practicable / feasible), demolition, disposal, and restoration. All 793 buildings associated with the Project would be demolished unless a post-mining 794 onsite use is identified and approved by the appropriate regulatory and land 795 management agencies that would benefit from the infrastructure. Some of the 796 building materials would be salvageable and would be removed from the site.

Environmental Review Support Document

797 Building foundation walls and equipment foundations that are above-grade or buried 0 to 2 ft (0 to 0.6 m) below grade would be broken and buried in place. Below grade 798 799 spaces would be filled. Building areas would be graded to promote proper runoff and 800 drainage. Additional soil cover would be imported as needed to provide sufficient soil cover thickness over remaining buried infrastructure. The sites would be covered 801 802 with growth media and revegetated to establish a land use similar to adjacent undisturbed lands. 803 804 The post-closure surface of the plant site would be graded to drain toward adjacent 805 wetland complexes and would generally re-establish pre-Project flow directions and discharge locations. Reclamation design would aim to create conditions where runoff 806 807 rates and volumes estimated for stormwater reaching downstream surface water 808 receptors are similar to pre-mining site conditions. 809 After grading, topsoil from stockpiles would be spread across the plant site to create 810 a growth medium for revegetation. The reclamation material stockpile locations 811 would be regraded to match post-closure contours. 812 Reclamation of the plant site would include use of water management infrastructure 813 to control erosion and stormwater quality, quantity, and rates. Once the planned plant site post-closure surface topography is established, reclamation cover 814 815 materials that would serve as a growth medium for revegetation would be placed. 816 Post-closure maintenance would consist of vegetation monitoring and monitoring to 817 confirm performance of stormwater and erosion control. 818 **Tailings Management Site** 819 The tailings management site would have three main components, as shown on Figure 3-13: 820 821 The tailings dewatering plant, which would produce both the engineered 822 tailings backfill for the underground workings and a tailings filter cake for 823 the dry stack facility; 824 The dry stack facility which would provide permanent above ground storage for the tailings filter cake; and 825 826 The reclamation material stockpile which would stockpile suitable growth 827 mediums stripped from the dry stack facility footprint until use in 828 concurrent reclamation. 829 **Tailings Management Site Construction Phase** 830 The construction phase at the tailings management site would include: 831 Clearing; 832 Construction of the tailings dewatering plant; •

833 834 835	 Construction of the dry stack facility; and Construction of water management infrastructure (described in the section <i>Water Management Plan</i>).
836	Tailings Management Site Clearing
837 838	Clearing at the tailings management site would use the same methods described in the section <i>Plant Site Clearing</i> .
839	Tailings Dewatering Plant Construction
840 841 842	Construction of the tailings dewatering plant would use the same methods and managed under the same schedule described in the section <i>Concentrator and Infrastructure Construction</i> .
843	Dry Stack Facility Construction
844 845 846 847 848 849 850 851 852 853	The dry stack facility would be developed in three stages from west to east and development would occur start during the construction phase and continue through the 25 years of the operation phase. Each stage begins by constructing the dry stack facility infrastructure followed by placement of the tailings. Placement of the tailings on the dry stack facility would occur during operations and would involve trucking tailings filter cake for placement on the dry stack facility where it would be dozed into place and compacted with mobile equipment. The following discussion relates to the construction of the dry stack facility infrastructure which would include: liner system (under-liner drains, geomembrane liner, and over-liner drains), contact water ditch, groundwater cutoff wall, haul road, and associated contact water ponds.
854 855 856 857 858 859	Construction of the dry stack facility infrastructure would start on the west side of the tailings management site and progress east, with each stage covering approximately one third of the total area, as shown in Figure 3-14. This staged approach would minimize the footprint of the dry stack facility for as long as practical to delay impacts. Construction of dry stack facility stage 1 infrastructure would begin in Q3 Year -3 and be completed at the end of the construction phase at Q3 Year -1.
860 861 862 863 864 865	For each phase of dry stack facility infrastructure construction, vegetation would be cleared and grubbed, standing water would be drained, and the subgrade would be prepared by removing sharp rocks and other debris and then proof-rolling the foundation subgrade soils. If there are areas where bedrock is exposed, bedrock would be covered with a minimum 6 inch (15 millimeter [mm]) thick bedding layer of compacted local borrow material.
866 867 868 869 870	After preparing the subgrade in each phase of dry stack facility construction, a liner system would be installed, as described in the section <i>Water Management Plan</i> . Surrounding the lined area of the drystack, the contact water ditch, groundwater cutoff wall, and haul road would be installed around each dry stack facility stage, as described in the section <i>Water Management Plan</i> . Additionally, the tailings

871 872	management site contact water ponds and interim contact water ponds would be installed as described in the section <i>Water Management Plan.</i>
873	Tailings Management Site Layout and Operational Activities
874	The final surface layout of the tailings management site, as shown on Figure 3-17
875	would consist of:
876	Tailings dewatering plant
877	Dry stack facility
878	Reclamation material stockpile
879	 Components of the Project's water management infrastructure (described
880	in the section Water Management Plan)
881	Tailings Dewatering Plant Layout and Operational Activities
882	The tailings dewatering plant would be compact and located directly south of the
883	plant site. The tailings dewatering plant would dewater the tailings from the
884	concentrator to produce the tailings filter cake to be stored in the lined dry stack
885	facility and the engineered tailings backfill to be pumped back into the underground
886	workings. The tailings filter cake produced by the filter plant would be a dry (13 to 16
887	% moisture) silty, sandy material which would be hauled by dump truck to the dry
888	stack facility and piled for permanent storage. The engineered tailings backfill would
889	be created by mixing thickened tailings, tailings filter cake, and a binder to achieve
890	the desired engineered tailings backfill consistency to be pumped underground and
891	placed in mined out stopes. The binder would increase the structural integrity,
892	minimize movement of water, and enhance the chemical stabilization of the
893	engineered tailings backfill. Backfilling is discussed further in the section
894	Underground Mine Layout and Operational Activities.
895	The tailings dewatering plant would consist of
896	Tailings thickener;
897	 Filter plant – which would produce filter cake;
898	Filter cake storage and loadout building; and
899	 Backfill plant – which would produce engineered tailings backfill.
900	The tailings thickener would receive tailings from the nickel rougher, pumped through
901	the tailings supply line from the concentrator. The tailings supply line would follow a
902	road connecting the plant site and the tailings management site routed along with
903	power, water supply, and water return lines. At the tailings thickener a flocculant
904	reagent would be added to aid in the settling and dewatering of the tailings. Directly
905	to the northeast of the tailings thickener is the emergency pond which would be used
906	to empty the tailings thickener during an operational shutdown in the event that it
907	cannot be pre-emptied.

- 908The thickened tailings would be routed to the filter plant or the backfill plant. The909Project would be capable of producing 100% tailings filter cake for the dry stack910facility, 100% engineered tailings backfill, or different portions of each. The911proportion of thickened tailings sent to the filter plant and to the backfill plant would912vary depending on the operational needs of the Project.
- 913The filter plant would consist of filter feed tanks, process water holding tanks,914pressure filter presses, and ancillary equipment including air compressors, pumps,915and tanks. The filter units would receive thickened tailings slurry from the tailings916thickener via feed tanks and produce a filter cake in the target range of 84% to 87%917solids. The filter cake would be transported via short-run conveyors to either the918backfill plant or the filter cake storage and loadout building.
- 919The filter cake storage and loadout building would receive filter cake from the filter920plant via a conveyor and house a stockpile with up to 1.5 days of tailings storage921capacity as a filter cake. The stockpile would be enclosed in a heated building to922prevent freezing. Front-end loaders would transfer the stockpiled tailings filter cake923into haul trucks for transport to the dry stack facility. A haul road would connect the924filter cake storage and loadout building and the dry stack facility.
- 925 The backfill plant would consist of mixing tanks, binder preparation, and the main 926 pumps for delivering engineered tailings backfill to the underground workings. The 927 backfill plant would blend thickened tailings slurry from the tailings thickener and tailings filter cake from the filter plant. It would also prepare the binder, using process 928 929 water. The combined stream would be mixed with the binder to achieve a desired 930 consistency and then pumped to the underground workings via the engineered 931 tailings backfill pipeline. Backfilling in the underground workings is described in the 932 section Underground Backfilling.
- 933 Dry Stack Facility Layout and Operational Activities
- 934The lined dry stack facility would be used to permanently store approximately 60% of935the tailings with a total storage capacity of 106 million tons (96 million tonnes) and an936operational life of 25 years. The dry stack facility would average 130 ft tall with a937crest elevation of 1,621 ft above mean sea level (amsl) at full development. The938maximum elevation of the dry stack facility would be similar to the elevation of hills in939the Project vicinity. The footprint of the dry stack facility at full development would be940approximately 429 acres (174 ha [hectares]).
- 941The exterior side slopes of the dry stack facility would have 16 ft (5 m) wide benches942at 46 ft (14 m) vertical intervals. The exterior slopes would have an overall slope of9434H:1V. The filtered tailings would be compacted and placed at grades and contours944that would promote drainage, prevent ponding, and remain stable in post-closure.
- 945 The dry stack facility would be a lined facility (over-liner drain, geomembrane liner, 946 and under-liner drain) and include a groundwater cutoff wall around the entire dry

- 947stack facility footprint. Additional discussion on water management at the dry stack948facility is provided in the section Contact Water Management.
- 949 Dry stacking of tailings filter cake coupled with placement of engineered tailings 950 backfill underground increases the flexibility of the overall tailings management system. Generally, tailings filter cake would be placed in the dry stack facility in the 951 952 spring, summer, and fall. Tailings would be compacted prior to freezing, therefore 953 during the winter, tailings would primarily be deposited underground as engineered 954 tailings backfill. Placement at the dry stack facility during wet periods or during cold 955 periods (below 5 degrees Fahrenheit) would be avoided as much as practicable. 956 Placement of tailings filter cake at temperatures below 5 degrees Fahrenheit 957 increases the likelihood of re-handling and re-compaction and thus preference would 958 be to avoid placement at that time.
- 959During dry stack facility operation, tailings filter cake would be hauled from the filter960cake storage and loadout to the dry stack facility on a dedicated perimeter haul road961then on to temporary haul roads and ramps on the dry stack facility. Haul trucks962would dump the tailings filter cake to bulldozers that would push and shape the963material. Compactors would compact the material, and water trucks would be used964to control fugitive dust. A list of mobile equipment necessary to support the dry stack965facility is listed in Table 3-5.
- 966The dry stack facility would be concurrently reclaimed during the operation phase, as967described in the section Tailings Management Site Reclamation, Closure, and Post-968closure Maintenance.
- 969 The dry stack facility would be constructed in stages with Stage 2 and 3 constructed 970 during the operation phase. Stage 1 would be completed during the initial Project construction phase, discussed in the section Dry Stack Facility Construction, and 971 972 would accommodate Year 1 to 6 of dry stack facility operation. Stage 2 construction 973 would start in Year 5 of Project operation and last approximately 24 months. The 974 construction would follow the same designs and plan as Stage 1. Stage 2 would 975 accommodate Year 7 to 15 of dry stack facility operation. Stage 3 construction would 976 follow the same designs, plans, and timeline as Stage 2, and stage 3 would 977 accommodate the remainder of dry stack facility operation.
- 978 Two-dimensional stability analysis was conducted using a typical cross-section of the 979 dry stack facility structure and foundation design. The analyses considered a number 980 of scenarios including: construction (with elevated pore pressures), long term static, 981 post liquefaction and pseudo-static seismic loading. The stability analyses were used 982 to inform the design of the dry stack facility embankment geometry and foundation 983 treatments and to confirm that the dry stack facility design meets required factors of 984 safety for stability during operations and closure. The design of the 4H:1V exterior 985 slopes and well-compacted tailings in the structural zone would provide long term 986 stability around the perimeter of the dry stack facility. The design of the 6H:1V interior (temporary) slopes would provide a stable working surface for the dry stack 987

Environmental Review Support Document

- 988 facility within the non-structural interior. If any weak, compressible, or loose soils
 989 would be identified the foundation of the dry stack facility, these undesirable soils
 990 would be excavated and hauled to the RMS for use in closure.
- 991 <u>Tailings Management Site Reclamation Material Stockpile</u>
- 992 Suitable growth medium, consisting of topsoil, minerals soil, and peat would be 993 stripped during subgrade preparation and stored separately in the reclamation material stockpile area. Based on estimates of the unconsolidated deposit down to 994 995 bedrock, 1,380,000 yd³ (1,055,000 m³) of material would be stripped and stockpiled 996 over the three stages of dry stack facility construction. The dry stack facility would be reclaimed concurrently with the reclamation material stockpile reaching maximum 997 size at year 16 and 871,000 yd³ of material stored. The reclamation material 998 999 stockpile would have a 50 ft maximum height above original topography and have a 1000 3H:1V slope.

1001Tailings Management Site Reclamation, Closure, and Post-closure1002Maintenance

- 1003Buildings at the tailings management site would be reclaimed following the same1004procedures outlined in the section *Plant Site Reclamation, Closure, and Post-closure*1005*Maintenance*, specifically salvage (when practicable / feasible), demolition, disposal,1006and restoration.
- 1007The dry stack facility would be concurrently reclaimed throughout the Project1008operation phase. As portions of the slope and crest of the dry stack facility are1009constructed, the completed surfaces would be concurrently reclaimed with a cover.1010Concurrent reclamation, and post-closure management of the dry stack facility are1011described in the section Water Management Plan.
- 1012 Post-closure maintenance at the tailings management site would consist of:
- Vegetation monitoring;

1014

1015

1016

1017

1018

- Confirmation of stormwater management and erosion control performance;
- Dry stack facility seepage water management (if any);
 - Surface water and groundwater quality monitoring; and
- Dry stack facility piezometer and inclinometer monitoring.
- 1019 Non-contact Water Diversion Area

1020The non-contact water diversion area would be a series of diversion dikes and1021ditches to divert water from adjacent watersheds around the plant site and tailings1022management site. The non-contact water diversion area is described in the section1023Water Management Plan.

Environmental Review Support Document

1024 Access Road

1025 The access road would extend from Highway 1 to the northern edge of the plant site. 1026 This alignment was selected to minimize wetland impacts and avoid identified 1027 cultural resources. The road would be a two-lane gravel road with a maximum speed 1028 of 30 miles per hour (mph) and 14 ft- (4.3 m) wide lanes designed for a tractor-trailer rig. The access road construction limits would be approximately 200 ft (61 m) wide, 1029 1030 depending on corridor grading limits. Ditches would control stormwater with culverts 1031 sized to accommodate a 100-year, 24-hour storm event. Access would be controlled 1032 by a staffed entry on the northern edge of the plant site. Typical access road sections 1033 are provided on Figure 3-15.

- 1034The access road would be constructed during the construction phase and would be1035prioritized so access during construction can transition from the USFS road to the1036access road as soon as practical. Access road construction would be conducted in1037accordance with the Minnesota Construction Stormwater General Permit and follow1038the BMPs in an agency approved SWPPP.
- 1039Through reclamation and closure, the access road would be left in place and1040maintained. Maintenance and / or reclamation of the access road after closure would1041be based on future land use and access needs.

1042 Water Intake Corridor

- 1043 The water intake corridor would contain the infrastructure needed to transport water 1044 from Birch Lake reservoir to the plant site, including a pipeline, power line, and 1045 maintenance road. It would extend from the northwestern corner of the plant site to Birch Lake reservoir approximately 3,000 ft (914 m) to the west, as shown on 1046 Figure 3-16. The water intake corridor construction limits would be approximately 1047 100 ft (30.5 m) wide, depending on corridor grading limits. A water intake pump 1048 1049 house would be located 100 ft (30.5 m) from the ordinary high water mark of Birch 1050 Lake reservoir. From the intake pump house a water intake pipeline (approximately 1051 18 inches in diameter) would be installed underground and a screened low-flow 1052 intake would extend out 550 ft (170 m) away from the shore of Birch Lake reservoir. 1053 The intake pipe would enter the water a minimum of 3 ft (1 m) below the water level, 1054 lay on the bottom of the lake, and draw water from a depth of 15 ft (4.5 m) as shown 1055 on Figure 3-17. The end of the water intake pipeline within Birch Lake reservoir 1056 would be screened and have a low-flow intake (0.5 feet per second or less). A vegetative screen surrounding the pumphouse would minimize visibility of the water 1057 1058 intake corridor from Birch Lake reservoir.
- 1059Water intake corridor construction would take place during the construction phase.1060Construction would be conducted in accordance with the Minnesota Construction1061Stormwater General Permit and follow the BMPs in an agency approved SWPPP.
- 1062 During reclamation, saleable equipment or salvageable materials at the water intake 1063 facility would be removed and transported off site. Remaining equipment and

Environmental Review Support Document

1064infrastructure would be removed and transported to an approved landfill for disposal1065unless it is determined that abandoning infrastructure in place has a lower1066environmental impact (e.g., cap the intake pipeline and abandon in place to avoid1067temporary impacts to Birch Lake reservoir associated with removal activities). The1068pipeline and power line connecting the water intake facility to the plant site would1069also be removed, and if not saleable or salvageable, would be transported to an1070approved landfill for disposal.

1071 Transmission Corridor

- 1072 To supply electrical power to the Project, a transmission corridor would be constructed from the plant site to the south, turning west and terminating at the west 1073 side of the Dunka Pit at an off-site electrical substation, as shown on Figure 2-1. The 1074 1075 transmission corridor would be approximately 10 mi (16 km) long and construction limits would be approximately 150 ft (46 m) wide, depending on corridor grading 1076 1077 limits. Transmission corridor maintenance width would be 150 ft or less. Transmission line structures would be placed in such a way as to avoid wetlands and 1078 1079 sensitive habitats.
- 1080 The transmission corridor would include a two-track, unpaved maintenance road and the power transmission line, which would originate from an off-site electrical 1081 substation and terminate at the plant site electrical substation. At the off-site 1082 1083 electrical substation, the Project transmission line would connect to an existing 1084 transmission line, and a regional power provider would supply the Project with 1085 sufficient power. The transmission line would feed the plant site electrical substation. described in the section Plant Site Infrastructure. Grid power would be delivered at 1086 the start of Year -1. 1087
- 1088The transmission corridor would be constructed from Q4 Year -2 to Q4 Year -1, with1089the primary construction window expected to be from March through October,1090excluding river and wetland crossings, where winter is preferred to utilize frozen1091ground and dormant wildlife and vegetation. Construction is expected on two work1092fronts: one starting at the plant site; and one starting at the off-site electrical1093substation.
- 1094At closure, overhead electric transmission lines providing power to the plant site and1095tailings management site would be disconnected from Project infrastructure but left in1096place. Future use of overhead electric transmission lines would be based on future1097input from the utility provider. Once it is confirmed that all power supply to the Project1098has been disconnected, no further action would be performed.

1099 Water Management Plan

1100TMM would manage water to avoid and reduce potential environmental impacts from1101the Project. Water management systems would be designed to prioritize water reuse1102to reduce Project demand for fresh water. The Project would not discharge any

- 1103 process water in accordance with 40 CFR Part 440 and is designed not to require a 1104 discharge of contact water. 1105 Water would be managed according to its water guality, as four types of water: 1106 Process water- water that would be used in the process to grind the ore and recover the targeted metals. This would include engineered tailings 1107 1108 backfill bleed water that mixes with mine inflow and is pumped from the 1109 underground workings, water used for processing at the concentrator, 1110 and water removed from the tailings at the tailings dewatering plant. 1111 Process water would be recycled to the lined process water pond and 1112 reused as process water; 1113 Contact water - direct precipitation or stormwater that would potentially • 1114 come in contact with ore or tailings but has not been used in the process 1115 or combined with process water. Contact water would be routed to lined 1116 ponds, then used as process water; 1117 Non-contact water- direct precipitation, stormwater, or surface water that would not come in contact with ore or tailings; includes water diverted 1118 1119 around the facility in the non-contact water diversion area. This would 1120 include stormwater from undisturbed portions or reclaimed portions of the 1121 Project area. The general approach in managing non-contact water is: 1) 1122 to prevent external non-contact water from mixing with and therefore 1123 becoming contact water: 2) to minimize scour and erosion potential: and 3) to minimize total suspended solids (TSS) and other constituents prior 1124 1125 to discharge to surface water; and 1126 Construction stormwater: direct precipitation or stormwater that has contacted surfaces disturbed during construction. 1127 1128 Stormwater, in this document, means stormwater runoff, snow melt runoff, surface runoff, or drainage (consistent with Minn. R. part 7090.0080 subp.12). 1129 1130 This Water Management Plan summarizes management of process water, contact water, and non-contact water during the operation phase, as well as management of 1131 1132 construction stormwater. 1133 **Process Water Management** 1134 Process water would be managed in the underground mine, at the plant site, and at 1135 the tailings management site. Process water would be reused as process water to 1136 meet concentrator demand; thus, process water is managed in a closed loop with no 1137 discharge. 1138 This section describes the flows of process water across the Project, then details the process water management infrastructure at the underground mine, plant site, and 1139
- 1140 tailings management site.

1141	Description of Process Water Flows
1142 1143	The process water management strategy would be to obtain water for processing according to the following priority list:
1144	1. Reuse of process water;
1145	2. Use of mine inflow (classified as process water because it would mix with
1146	process water in the underground mine dewatering system);
1147	3. Use of direct precipitation and stormwater that is captured as contact
1148	water; and
1149	4. Make-up water from Birch Lake reservoir.
1150	As a part of the water management strategy, make-up water from Birch Lake
1151	reservoir, and contact water from the contact water ponds would have priority uses
1152	throughout the underground workings, plant site, and tailings management site,
1153	which would be fulfilled before the water would be routed to the process water pond.
1154	These priority water uses include, but are not limited to:
1155	 Tailings filter cloth wash;
1156	 Reagent make-up;
1157	Pump gland water; and
1158	Mine supply water.
1159	Priority uses would draw water directly from the flow from Birch Lake reservoir or
1160	from a contact water pond when available, before that water was routed to the
1161	process water pond. Flows to priority uses are not detailed in the section Process
1162	Water Management and the section Contact Water Management. These sections
1163	simplify some aspects of process water management by saying that all make-up
1164	water from Birch Lake reservoir and all contact water from the contact water ponds
1165	would be routed to the process water pond, and that all process water demands,
1166	including priority uses, would be fulfilled from the process water pond. This
1167	simplification is accurate in terms of the water balance and the ultimate water
1168	destination.
1169	Process water sources would be:
1170	Return water from the concentrator as a result of thickening and filtering
1171	the concentrates;
1172	 Return water from the tailings dewatering plant as a result of thickening
1173	and filtering the tailings;
1174	 Underground mine water;
1175	 Direct precipitation on the process water pond;
1176	 Contact water from the plant site;
1177	 Contact water from the tailings management site; and
1178	Make-up water from Birch Lake reservoir.

1179	Process water losses would be:
1180 1181 1182 1183 1184 1185 1186	 Water consumed in the engineered tailings backfill; Residual water in the filtered tailings placed on the dry stack facility; Residual water in the concentrate products; Evaporation from the concentrator; Evaporation from the underground mine (ventilation losses) Evaporation from the process water ponds and contact water ponds; and Evaporation from the dry stack facility
1187 1188	The following sections describe process water management at the underground mine, plant site, and tailings management site.
1189	Underground Mine Process Water Management
1190 1191 1192 1193 1194	The underground workings would have one mine dewatering system and the water would be classified as process water. While individual sources of underground mine water could initially be classified as contact water, mixing with process water would occur underground, thus all underground mine water would be classified as process water.
1195 1196	Underground mine water would report to dewatering sumps, including water from the following sources:
1197 1198 1199	 Mine inflow (groundwater that flows into the underground workings); Process water associated with the engineered tailings backfill; and Mine supply water.
1200 1201 1202 1203 1204	Process water associated with the engineered tailings backfill would come from two sources. First, after the engineered tailings backfill has settled and solidified, excess process water (engineered tailings backfill bleed water) would report to sumps. Second, engineered tailings backfill lines would be flushed with process water and this would report to the sumps.
1205 1206 1207	Mine supply water would be pumped underground from the process water pond and used for dust suppression and equipment requirements like drill water. Excess mine supply water would be recaptured through a series of sumps.
1208 1209 1210 1211 1212 1213	The dewatering system would consist of collection sumps, face pumps, skid pumps, tank pumping stations, secondary and primary pump stations, and main pump stations. The pumps would report to the main pump station and the underground mine water would be pumped through the conveyor decline to the sediment pond at the plant site, where it would be de-oiled and clarified, then flow into the process water pond to be reused as process water.

- 1214 Evaporation of water underground would occur from wetted down material and 1215 sumps. The evaporation underground would exit the mine as moisture in the mine
- 1216 ventilation exhaust.
- 1217 Plant Site Process Water Management
- 1218Process water at the plant site would circulate between the process water pond and1219the concentrator. Flows of recycled process water from the underground workings1220would be routed to the sediment pond before it would report to the process water1221pond. Flows of recycled process water from the tailings management site and of1222contact water from the plant site and the tailings management site would be routed to1223the process water pond at the plant site. The locations of the sediment pond and the1224process water pond are shown on Figure 3-10.
- 1225 Sediment Pond
- 1226 Underground mine water would be pumped to the sediment pond to be de-oiled and clarified. Outflow from the sediment pond would report to the process water pond.
- 1228 The sediment pond would be a 60 thousandth of an inch (mil) HPDE or engineer-1229 approved alternate geomembrane liner over a 1 ft (300 mm) thick, low-permeability, 1230 compacted soil liner and would be sized to require clean-out less than once a year.
- 1231 Process Water Pond
- 1232The process water pond would be the central collection and distribution point for1233process water used during ore processing. It would also supply service water to the1234underground workings.
- 1235 The process water pond would be a double-lined pond with leak detection designed 1236 for year-round operation with a volume of 18.5 million gal (70,000 m³). The process 1237 water pond would not function as a collection point for contact water at the plant site 1238 (contact water ponds would collect stormwater and pump it to the process water 1239 pond), therefore the process water pond would be designed with appropriate 1240 freeboard to contain the probable maximum precipitation from direct precipitation for 1241 the process water pond footprint. The process water pond liner system would consist of a 60 mil (1.5 mm) high-density polyethylene (HDPE) or engineer-approved 1242 1243 alternate geomembrane liner underlain by a geocomposite drainage layer, a 40 mil 1244 (1.0 mm) HDPE or engineer-approved alternate geomembrane liner, and a 1-foot 1245 (30.5-centimeters [cm]) layer of compacted material. A process water tank would be 1246 installed to act as a buffer between the process water pond and the concentrator; a 1247 make-up tank would be installed to act as a distribution point for make-up water from 1248 Birch Lake reservoir.

Environmental Review Support Document

1249 Tailings Management Site Process Water Management

1250 At the tailings management site, process water would be managed within the tailings 1251 dewatering plant. At the tailings dewatering plant, process water would flow from the 1252 concentrator to the tailings dewatering plant with the tailings. Process water would be 1253 removed from the solids during the thickening and filtering processes within the tailings dewatering plant and this process water would be recirculated to the process 1254 1255 water pond for reuse in the process. Process water would be used to transport the 1256 engineered tailings backfill underground for placement. Process water would remain 1257 in the tailings filter cake that is transported by truck to the dry stack facility for 1258 permanent placement.

1259 The dry stack facility would be constructed as a compacted fill slope with no internal 1260 pond. The filtered tailings would be unsaturated after placement and compaction 1261 although there would be entrained process water in the void space of the tailings. 1262 The potential for draining of the entrained process water by gravity over time is expected to be minimal and requires additional study. Any draining of entrained 1263 process water would mix with infiltrating precipitation, and be collected by the dry 1264 1265 stack facility liner system and classified as draindown, as described in the section Contact Water Management. 1266

1267 Contact Water Management

1268Footprints managed as contact water areas would be graded to direct stormwater to1269contact water ponds for storage before use in the process. There would be contact1270water areas at the plant site and tailings management site. There would be no1271contact water areas associated with the ventilation raise sites or the three corridors:1272access road corridor, water intake corridor, and transmission corridor.

1273 Plant Site Contact Water Management

1274The plant site would be divided into non-contact water areas and water contact1275areas. The water contact areas at the plant site would be associated with ore flow1276from the mine and would include the portals, the mine services buildings, the1277temporary rock storage facility, and the connecting internal site roads. The contact1278water area of the plant site would be graded to collect stormwater into three contact1279water ponds (north, central, and south), these ponds are shown on Figure 3-10.

1280 The plant site contact water ponds would be sized to contain a 100-year, 24-hour 1281 storm event. The contact water ponds would be lined with a 60 mil HPDE or 1282 engineer-approved alternate geomembrane liner over a 1-ft (300-mm) thick, low-1283 permeability, compacted soil liner; the soil layer would be compacted to meet 1284 maximum hydraulic conductivity requirements of not more than 1 x 10⁻⁶ centimeters 1285 per second (cm/sec). Stormwater from the surface near the mine portals would flow 1286 by gravity to the north contact water pond before being pumped to the central contact 1287 water pond. The catchment area for the central contact water pond would include the 1288 temporary rock storage facility. The central and south contact water ponds would be

1289

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

pumped into the process water pond and used as process water. The contact water

Environmental Review Support Document

1290 ponds would be normally kept at a minimal level and water would be pumped to the 1291 process water pond. 1292 The temporary rock storage facility would be lined with an 80 mil (2.0 mm) linear low-1293 density polyethylene (LLDPE) or engineer-approved alternate geomembrane liner, 1294 overlain by 12 inches (300 mm) of compacted low permeability soil and 12 inches 1295 (300 mm) of sand. All stormwater from the temporary rock storage facility would be 1296 collected in a perimeter ditch designed for a 10-year storm event and conveyed to 1297 the central contact water pond. The coarse gradation of the ore stockpiles placed on 1298 the temporary rock storage facility would provide good drainage to limit build-up of 1299 pore-pressure. The rock and underlying sand protection layer would have a 1300 sufficiently high permeability to drain towards the perimeter ditches. 1301 To facilitate separation of contact water from non-contact water, the plant site roads 1302 would be divided into contact roads and non-contact roads. Contact roads would be 1303 confined to use by vehicles used for mine operations and non-contact roads would 1304 be for vehicles that are not directly related to production or maintenance. Vehicles 1305 that use a contact road would go through the tire wash before exiting back to the non-contact roads. Stormwater from contact roads would be routed to the contact 1306 1307 water ponds. 1308 Snowmelt would also be managed as contact water. There would be three designated snow storage areas. These snow storage areas have been designed to 1309 1310 accommodate a snow water equivalent of between 7.3 to 11.9 inches (185 to 1311 301 mm). Locations of the snow storage areas are shown on Figure 3-10. 1312 Tailings Management Site Contact Water Management 1313 The tailings management site would be classified as a contact zone with three 1314 exceptions: 1) the reclamation material stockpile, 2) portions of exposed liner prior to 1315 tailings filter cake being placed and 3) concurrently reclaimed portions of the dry 1316 stack facility that have the cover installed. Tailings management site contact water 1317 systems would collect stormwater in the contact zone and route it to contact water 1318 ponds. Water collected in the contact water ponds would be used for dust control at the tailings management site with the excess pumped to the process water pond at 1319 the plant site for use as process water. 1320 1321 At the tailings dewatering plant, surfaces would be graded so stormwater would flow 1322 to the south and into tailings management site contact water pond 1. The dry stack facility contact water management system would include a liner system (including 1323 1324 over-liner and under-liner drains), contact water pond, groundwater cutoff wall, and 1325 contact water ponds. 1326 The dry stack facility would be constructed as a compacted fill slope with no internal 1327 pond. Stormwater from the exposed tailings would be shed to the outer edges of the 1328 dry stack facility. The dry stack facility crest and slopes would be provided with

- 1329swales, ditches, and erosion protection in the ditches to prevent formation of gullies1330and uncontrolled erosion. The dry stack facility swales and ditches that direct water1331off the dry stack facility would discharge into the contact water ditch that extends1332around the full perimeter of the dry stack facility.
- 1333Until the dry stack facility is covered during concurrent reclamation, some of the1334precipitation that falls on the tailings may infiltrate and percolate vertically through the1335tailings. Infiltrating precipitation would be intercepted by the dry stack facility liner1336system. The liner system includes an over-liner drain, a geomembrane liner, and an1337under-liner drain; a typical cross section of the liner system is shown in Figure 3-18.
- 1338 The first step in construction of the liner system would be to install a network of 1339 gravel under-liner drains along the natural drainage courses (i.e., low points in the 1340 topography to which water would naturally drain) that cross the dry stack facility footprint. The gravel drains would be created by excavating ditches into the 1341 1342 foundation soils at the base of these drainage courses. The excavated ditches would 1343 be backfilled with gravel. The under-liner drain would discharge to the contact water 1344 ditch. The purpose of the under-liner drains would be to limit the phreatic head in the 1345 foundation soils under the geomembrane liner, to prevent uplift of the liner prior to tailings placement. The under-liner drain would also be a secondary control to 1346 capture potential seepage through the dry stack facility liner. Seepage through the 1347 1348 membrane to the under-liner drain is expected to be insignificant due the design of 1349 the dry stack facility, QA/QC during construction, and documented performance of other dry stack facilities; however, quantity and quality of seepage has not been 1350 calculated and will be addressed as a future scope of work. Seepage from the dry 1351 stack facility would be further controlled by the construction of the groundwater cutoff 1352 1353 wall. The potential magnitude of seepage has not yet been quantified and would be 1354 addressed as a future scope of work, as discussed in Section 6.3.2.
- 1355The dry stack facility geomembrane liner would be a 60 mil (1.5 mm) thick LLDPE or1356engineer-approved alternate geomembrane liner. The LLDPE liner would be installed1357over the prepared foundation and over the network of gravel under-liner drains. The1358liner would be protected by a minimum 1 ft (0.3 m) thick layer of compacted tailings1359which would be pushed into place by dozers and compacted prior to any truck traffic1360being allowed over the liner.
- 1361 The intercepted precipitation that would infiltrate through the tailings - referred to as 1362 draindown - would be intercepted by the liner and collected by a network of gravel 1363 finger drains constructed above the liner extending across the dry stack facility footprint in the same location as the under-liner drains (i.e., natural drainage 1364 courses). A gravel blanket drain would also be constructed around the full perimeter 1365 1366 of the dry stack facility at the toe, having a width of 160 ft (50 m). The over-liner drains - both finger drains and blanket toe drain - would discharge to the perimeter 1367 1368 contact water ditch. The potential magnitude of draindown has not yet been quantified and would be addressed as a future scope of work, as discussed in 1369 1370 Section 6.3.2.

- 1371At the dry stack facility, stormwater, seepage from the under-liner drain, and1372draindown from the over-liner drain would all be captured in contact water ditches1373installed around the perimeter toe of the dry stack facility. Compacting the tailings1374after placement would increase the amount of runoff and decrease the amount of1375draindown compared to non-compacted tailings. The crest of the dry stack facility1376would be graded to shed stormwater to the perimeter of the dry stack facility, limiting1377ponding of precipitation
- 1378The contact water ditch would route the water to the closest contact water pond. For1379significant portions of the perimeter length, the contact water ditch would be1380excavated into bedrock. The contact water ditch side slopes and base of the ditch1381would be a compacted low permeability soil. In locations where the ditches would be1382excavated into soil, the side slopes and base of the ditch would be protected against1383erosion with grass vegetation or armoring with riprap or alternate permanent erosion1384control measures.
- 1385 The groundwater cutoff wall would be on the outer edge of the contact water ditches 1386 beneath the perimeter haul road to encompass the dry stack facility and contact 1387 water ditch. The groundwater cutoff wall would include a seepage cutoff trench with a grout curtain installed as necessary depending on bedrock condition. The seepage 1388 cutoff trench would consist of an excavated trench from ground surface to the top of 1389 bedrock that would be backfilled with compacted, low permeability soil. In locations 1390 1391 where the bedrock has been identified as fractured, faulted, or weathered, a grout curtain would be installed, consisting of pressure grouted boreholes to a depth that 1392 would be based on geotechnical investigations. The groundwater cutoff wall would 1393 1394 serve two purposes: 1) reduce flow of regional groundwater from outside the dry 1395 stack facility footprint into the foundation soils below the dry stack facility, minimizing the need to manage additional non-contact water volumes and 2) restrict the flow of 1396 1397 contact water out of the contact water ditch and dry stack facility footprint. 1398 Figure 3-19 shows a typical cross section of the exterior slope of the dry stack facility, including the contact water ditch, groundwater cutoff wall, and the haul road. 1399
- 1400 Five permanent tailings management site contact water ponds would be constructed, 1401 as shown on Figure 3-13, in addition to two interim contact water ponds that would 1402 be installed to manage water during stage 1 and stage 2 of the dry stack facility before the facility is at the full footprint. The tailings management site contact water 1403 1404 ponds would be sized to contain the 100-year, 24-hour storm event, for their respective catchment areas. In addition, the collective storage capacity of the tailings 1405 1406 management site contact water ponds for the dry stack facility during operation 1407 would be sized to meet the runoff requirements from a 100-year snowpack. The 1408 tailings management site contact water ponds would be single lined with the same 1409 liner design as the plant site contact water ponds.
- 1410The dry stack facility contact water management system (liner, over-liner and under-1411liner drains, contact water ditch, groundwater cutoff wall, and contact water pond)1412would be constructed concurrently with the dry stack facility stages. Two interim

Environmental Review Support Document

- 1413contact water ponds would be constructed along the Stage 1 and Stage 2 interim1414toes of the dry stack facility. Stage 1 of the dry stack facility would include1415construction of tailings management site contact water pond 1, tailings management1416site contact water pond 2, and interim contact water pond 11. Stage 2 would include1417construction of tailings management site contact water pond 3 and interim contact1418water pond 12. Stage 3 would include construction of tailings management site1419contact water pond 4 and tailings management site contact water pond 5.
- 1420The dry stack facility would be concurrently reclaimed during the operation phase. As1421portions of the slope and crest of the dry stack facility are constructed, the completed1422surfaces would be graded and covered to promote runoff and inhibit infiltration. The1423cover would consist of at least 2 ft (.6 m) of cover soil underlain by a hydraulic1424barrier. Cover soil would be sourced from the reclamation material stockpile and1425seeded to establish grasslands.
- 1426Portions of the dry stack facility that have been concurrently reclaimed would no1427longer generate contact water, and stormwater would be collected in a temporary1428non-contact water ditch and managed as non-contact water, as described in section1429Non-contact Water Management.
- 1430 Non-contact Water Management

1433

1434

1435

1436

- 1431 Non-contact water would be managed in the following areas:
- Non-contact water diversion area;
 - Plant site non-contact area;
 - Tailings management site non-contact area;
 - Underground Mine Area non-contact area; and
 - Corridors.
- 1437BMPs would be used across the Project to manage non-contact water. BMPs may1438include, but are not limited to, mulching and biodegradable erosion control blankets,1439establishing and maintaining vegetation, collection and conveyance structures (e.g.,1440swales, ditches, and culverts), non-vegetative soil stabilization such as rock1441armoring, and sediment barriers or basins.
- 1442 <u>Non-contact Water Diversion Area Water Management</u>
- 1443Non-contact water from the adjacent watersheds would be intercepted and diverted1444around the plant site and the tailings management site to prevent non-contact water1445from co-mingling with contact water and to protect infrastructure.
- 1446To divert non-contact water around the plant site, two non-contact water ditches,1447would be constructed to intercept and divert water south of the plant site. To divert1448non-contact water around the tailings management site, non-contact water ditches1449and diversions dikes would be constructed in stages, corresponding to the staged

1450

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

development of the dry stack facility. Interception and diversion of non-contact water

Environmental Review Support Document

1451 from adjacent wetlands and watersheds would be managed through non-contact 1452 water ditches and diversion dikes, as shown on Figure 3-13. 1453 The five diversion dikes around the north side of the tailings management site would 1454 be offset at least 328 ft (100 m) from the outer edge of the perimeter haul road. These diversion dikes would be staged concurrently with the dry stack facility 1455 1456 construction stages. They would be constructed by placing and compacting fill 1457 across drainage depressions, as required, and armoring the upstream side with 1458 riprap. These dikes would result in ponding of non-contact water from adjacent 1459 surface flows. The non-contact water ponds would not be constructed ponds. On 1460 Figure 3-13 they are shown as the size pond that would form from a 100-year, 24-1461 hour storm event. Four non-contact water ditches would be built to drain ponded 1462 water from the diversion dikes on the north side of the tailings management site to Birch Lake reservoir. 1463 1464 The three diversion dikes and a non-contact water ditch on the northeast side of the 1465 tailings management site would intercept and divert water east. Water impounded on 1466 the east side of the most eastern diversion dike would eventually overtop a "saddle" and flow out of the drainage course into a tributary of Keeley Creek. 1467 1468 The diversion dikes would be designed to hold back the runoff from a 100-year, 1469 24-hour storm event while maintaining a minimum 3.3 ft (1 m) of freeboard. The non-1470 contact water ditches would be designed to convey the peak flow from a 10-year, 24-1471 hour storm event with no erosion. The overflow weirs and non-contact water ditches would be designed to convey the 100-year, 24-hour storm event with a minimum 1472 freeboard of 1 ft (0.3 m). The diversion ditches would be designed with the 1473 1474 appropriate slope to control for suspended sediment. The non-contact water ditches would discharge to existing drainage ways or other diversions ditches through 1475 1476 energy dissipation devices (e.g., rip-rap, erosion control mats, etc.). Plant Site Non-contact Water Management 1477 1478 A portion of the plant site would be managed as a non-contact area to allow flexibility 1479 for water management during extreme storm events. During extreme storm events, 1480 stormwater on the non-contact area at the plant site would be routed through 1481 appropriate discharge controls. However, during typical precipitation years, 1482 stormwater from the non-contact area at the plant site would be routed to and collected by the contact water collection system and used in the process. The 1483 1484 collection of stormwater managed as contact water at the plant site is discussed in the section Plant Site Contact Water Management. 1485 1486 The non-contact area at the plant site would include, the security gatehouse, 1487 reclamation material stockpile 1 and 2, the plant site electrical substation, the ball 1488 storage bunker, the concentrator, the concentrator services building, the reagent 1489 storage building, and the areas surrounding and connecting these facilities that are not directly involved in transport of ore or tailings by truck. The slopes of the working 1490 Document No. TMM-ES-025-0099 Page 39 **Revision 0A** 12-18-2019

1491 1492 1493 1494 1495 1496	pad at the plant site would be a non-contact area and designed to limit erosion so stormwater from the slopes would be routed through appropriate discharge controls. Based on the operational water needs for the process at the time of storm events, water from the non-contact area would be either 1) diverted away from the plant site to minimize the amount of contact water collected from the plant site or 2) collected by the contact water collection system.
1497 1498 1499	During clearing and grubbing, non-saleable lumber would be chipped and used to cover reclamation material stockpile 1 and 2 to prevent wind and water erosion; other sediment control features would be installed as needed.
1500	Tailings Management Site Non-contact Water Management
1501 1502	The tailings management site would manage the following five main non-contact areas:
1503 1504 1505 1506 1507 1508	 Tailings management site reclamation material stockpile; Undeveloped portions of the tailings management site prior to development of stage 2 and 3; Portion of the exposed dry stack facility liner prior to tailings placement; Portion of the tailings dewatering plant; and Reclaimed portion of the dry stack facility.
1509	Tailings Management Site Reclamation Material Stockpile
1510 1511 1512 1513 1514 1515 1516 1517	The tailings management site reclamation material stockpile would be classified as a non-contact area and stormwater would be captured in perimeter ditches that would discharge into the reclamation material stockpile sedimentation pond. The outlet from the tailings management site reclamation material stockpile sedimentation pond would be to the north, with an ultimate outlet through the non-contact water ditch to the west. Erosion of the reclamation material stockpile would be limited through seeding of the stockpile surface with grass and temporary erosion control measures (e.g., silt fencing) until the vegetation is established.
1518	Undeveloped Portion of the Tailings Management Site
1519 1520 1521 1522 1523 1524 1525 1526	Prior to development of dry stack facility stage 2 and stage 3, the footprint of stage 2 and stage 3 would be undeveloped. Stormwater on the undeveloped land would be non-contact water and continue to flow around the dry stack facility footprint unaffected by the development of the dry stack facility at that point in time. The footprint of dry stack facility stage 2 and 3 would be non-contact water during operations when tailings are placed on stage 1. The footprint of dry stack facility stage are placed on stage 1. The footprint of dry stack facility stage 2 would be managed as non-contact water during operations when tailings are placed on stage 2.

- 1527 Exposed Dry Stack Facility Liner 1528 Development of the dry stack facility would result in exposed sections of the dry 1529 stack facility liner prior to tailings filter cake being placed and compacted. Portions of 1530 the exposed dry stack facility liner would be managed as non-contact areas. The non-contact areas would be identified and managed as areas where there is a 1531 separation between contact water and non-contact water. Water from the non-1532 1533 contact areas for the exposed dry stack facility liner would be continually updated as 1534 the placement of tailings filter cake on the dry stack facility progresses eastward.
- 1535 Portion of the Tailings Dewatering Plant
- 1536A portion of the tailings dewatering plant would be managed as a non-contact area to1537allow flexibility for water management during extreme storm events. During extreme1538storm events, stormwater on the non-contact area at the tailings dewatering plant1539would be routed through appropriate discharge controls. However, during typical1540precipitation years, stormwater from the non-contact area at the tailings dewatering1541plant would be routed to and collected by the contact water collection system and1542used in the process.
- 1543 Reclaimed Portion of the Dry Stack Facility
- 1544During concurrent reclamation of the dry stack facility, a cover system would be1545installed. The final dry stack facility cover system would consist of a cover soil1546underlain by a hydraulic barrier. The cover system would be designed to function as1547a growth medium to support revegetation, reclassify the covered area of the dry1548stack facility as a non-contact water area and acting as a hydraulic barrier to mitigate1549the generation of draindown and / or seepage in closure.
- 1550Tailings filter cake would be preferentially placed to promote runoff and inhibit1551infiltration as part of operations and likely relatively little grading would be required to1552establish a finished slope towards the perimeter of the dry stack facility. The1553contouring of the dry stack facility surface for reclamation and placement of cover1554material would be continued in a manner that promotes runoff and inhibits infiltration.
- 1555 Portions of the dry stack facility that have been concurrently reclaimed would no longer generate contact water, and stormwater would be managed as non-contact 1556 1557 water. In these areas, a temporary non-contact water ditch would be constructed 1558 near the toe of the dry stack facility inside and above the contact water ditches, as 1559 shown on Figure 3-20. These non-contact water ditches would drain to controls to remove suspended solids. Controls for suspended solids removal may include but 1560 1561 are not limited to temporary dedicated settling / detention ponds or other controls and 1562 would drain to the surrounding environment following removal of suspended solids.
- 1563 The post-closure surface of the dry stack facility would be graded to drain toward the 1564 perimeter of the dry stack facility. Reclamation design would aim to create conditions 1565 where runoff rates and volumes are similar to runoff reaching downstream surface

Environmental Review Support Document

- 1566water receptors for pre-Project site conditions. When the dry stack facility surface is1567fully revegetated and vegetation growth is dense and well established, runoff may no1568longer require suspended solids removal to meet water quality standards. Once1569suspended solids removal is no longer necessary, runoff would be discharged1570directly to the environment and the collection ditches and ponds (both contact and1571non-contact) would be reclaimed and revegetated.
- 1572 Underground Mine Area Non-contact Water Management
- 1573Direct precipitation and stormwater would generate non-contact water on the1574ventilation raise sites and the ventilation raise access road. Non-contact water from1575these areas would be directed to the environment and would be managed to meet1576applicable surface water quality standards. BMPs would be implemented to meet1577erosion control and stormwater management requirements.
- 1578 Corridors Non-contact Water Management
- 1579The corridors include the access road, water intake corridor, and transmission1580corridor. Direct precipitation and stormwater would generate non-contact water on1581the corridors. Non-contact water from these areas would be directed to the1582environment and would be managed to meet applicable surface water quality1583standards. BMPs would be implemented to meet erosion control and stormwater1584management requirements.

1585 Construction Stormwater Management

- 1586Construction activities would be conducted in accordance with the Minnesota1587Construction Stormwater General Permit, following standard BMPs. Specific BMPs1588would likely include:
- 1589 • Erosion and sediment control structures such as diversions (e.g., stormwater interceptor trenches, check dams, or swales), siltation or filter 1590 1591 berms, filter or silt fences, filter strips, sediment barriers, and / or 1592 sediment basins: 1593 Collection and conveyance structures, such as rock lined ditches and / or • 1594 swales: 1595 Vegetative soil stabilization practices such as seeding, mulching, and / or • 1596 brush layering and matting; 1597 Non-vegetative soil stabilization practices such as rock and gravel • mulches, jute and / or synthetic netting; 1598 Slope stabilization practices such as slope shaping, and the use of 1599 • retaining structures and riprap; and 1600 Infiltration systems such as infiltration trenches and / or basins. 1601 • 1602 Following construction activities, areas such as cut and fill slopes, embankments, 1603 and reclamation material stockpile would be seeded as soon as practicable. Contact

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

water generated during construction would be discharged, as required, in compliance

Environmental Review Support Document

1605 with permits. 1606 Concurrent reclamation would be maximized to the extent practicable to accelerate 1607 revegetation of disturbed areas. Sediment and erosion control BMPs would be 1608 routinely inspected, evaluated for performance, and maintenance and repairs performed, as needed. BMPs such as straw wattles or staked straw bales would be 1609 1610 used as necessary to contain sediment liberated from direct precipitation. 1611 Water Management at Closure 1612 Closure and reclamation of the plant site and tailings dewatering plant would include 1613 use of surface water management features to control erosion, and stormwater 1614 quality, quantity, and rates. Once the planned plant site post-closure surface 1615 topography is established, reclamation cover materials, serving as a growth medium for revegetation, would be placed. The post-closure surface of the plant site would be 1616 1617 graded with the goal to re-establish pre-mining hydrology, which generally would 1618 allow the site to drain toward adjacent wetland complexes. 1619 During the closure stage of the dry stack facility, the dry stack facility cover system would mitigate the generation of dry stack facility draindown and seepage. If 1620 1621 draindown and / or seepage occurred and did not meet water quality requirements, 1622 and if planned management methods are no longer available, treatment technologies and management options would be evaluated to identify methods to meet water 1623 quality standards. If draindown and / or seepage did occur and was shown by 1624 monitoring to meet surface water quality requirements, it would be routed to non-1625 1626 contact water ditches. 1627 **Environmental Protection Measures** 1628 The following general considerations, commitments, and design criteria have been 1629 applied to the Project for the purpose of protecting environmental resources: 1630 The Project has been designed as an underground mine to reduce 1631 surface disturbance, noise, fugitive dust, light emissions, and visual and 1632 surface water-related impacts; 1633 No mining would occur under Birch Lake reservoir; • 1634 The Project would not discharge any process water in accordance with 40 CFR Part 440 and is designed not to require a discharge of contact water; 1635 The Project's ore processing circuit has been designed to remove sulfide 1636 1637 minerals. Thus, tailings from the Project would not produce ARD; No waste rock would be permanently stored on the surface thereby 1638 1639 eliminating a potential source of ARD; 1640 A dry stack facility has been selected as a tailings management method 1641 to reduce ground disturbance, wetland impacts, water appropriation 1642 requirements, and the potential for seepage. Additionally, A dry stack

1643 1644 1645 1646 1647	 facility has been selected because it would be highly geotechnically stable; and After Project closure no permanent infrastructure would remain, with the exception of the dry stack facility and some non-contact water management features.
1648 1649	The following considerations, commitments, and design criteria have been applied to the Project for the purpose of protecting specific environmental resources:
1650	To protect water resources:
1651	• The process water pond would be double-lined with leak detection
1652	as described in the section Water Management Plan;
1653	 All contact water ponds would be single lined over low-
1654	permeability compacted soil layer as described in the section
1655	Water Management Plan;
1656	 Contact water ponds would be sized to contain a 100-year, 24-
1657	hour storm event. In addition, the collective storage capacity of the
1658	contact water ponds for the dry stack facility would be sized to
1659	meet the runoff requirements from a 100-year snowpack;
1660	 The dry stack facility would be lined as described in the section
1661	Water Management Plan;
1662	 The dry stack facility would include over-liner drains and a blanket
1663	toe drain to capture draindown intercepted by the liner at the base
1664	of the dry stack facility;
1665	 The dry stack facility would include an under-liner drainage
1666	system to protect groundwater resources if seepage occurs. The
1667	under-liner drainage system would be designed to capture
1668	seepage and route it to the contact water ditch;
1669	 A cover would be placed on the dry stack facility, as described in
1670	the section <i>Water Management Plan</i> ;
1671	 Groundwater cutoff wall would be installed during construction of the dry steely fealling to protect water recovered in the ground the dry.
1672	the dry stack facility to protect water resources in the event the dry
1673 1674	stack facility produces seepage;
1674	 The dry stack facility design and location has been optimized to avoid direct impacts to Keeley Creek;
1676	 Pipes containing petroleum products, liquid reagents, or
1677	processing fluids would be double-walled and/or would have a
1678	system of leak detection and secondary containment, as
1679	necessary; and
1680	 Reclamation material stockpiles would be covered with wood
1681	chips and revegetated to prevent erosion.
1682	To protect wetland resources:
1683	 Project infrastructure has been designed and located to avoid
1684	wetlands; and
1685	 The dry stack facility design and location has been optimized to
1686	avoid direct impacts to adjacent wetlands.

1687 •	To protect cultural resources:
1688	 The Project area has been sited and designed to avoid or
1689	minimize impacts to cultural resources; and
1690	• The access road has been sited and designed to avoid a known
1691	cultural resource.
1692 •	To reduce impacts from noise:
1693	 The concentrator building and water intake facility have been
1694	designed to be higher grade buildings with a Sound Transmission
1695	Class suitable to prevent potential impacts from noise;
1696	 For the concentrator building and water intake facility, primary
1697	ventilation openings would be equipped with standard acoustical
1698	louvers;
1699	 Exhaust outlets on building would be equipped with silencers;
1700	T I I I I I I I I I I I I I I I I I I I
1701	
1702	 I he exhaust ventilation fans for the underground mine would be located underground; and
1703	
1704	 Above-ground conveyor transfer points would be equipped with sound barriers, as needed.
	,
1705 •	To reduce impacts to air quality:
1706	• The coarse ore stockpile would be covered;
1707	 Conveyors would be covered and water sprays would be provided
1708	at transfer points, as needed, to control dust;
1709	 The crushers would be located underground to reduce dust;
1710	 Most employees would be transported via bus to the Project from
1711	the administration building in Babbitt or the parking lot in Ely to
1712	reduce traffic and associated emissions;
1713	 To reduce dust, concentrate would be loaded into sealed
1714	containers within a building prior to being transported off-site; and
1715	 Instead of constructing in-situ power production facilities, a
1716	transmission line would be extended from an off-site electrical
1717	substation to provide power to the Project.
1718 •	To protect visual resources, the potential for visibility of mine structures or
1719	activities from high intensity recreation areas has been reduced:
1720	 The coarse ore stockpile has been designed to minimize the
1721	height of its geodesic dome cover;
1722	 The comminution circuit and the flotation circuit have been
1723	specifically designed to reduce the height of the concentrator
1724	building;
1725	• The mine would be accessed via a decline rather than a shaft,
1726	thus eliminating the need for a tall headframe;
1727	• The dry stack facility would be concurrently reclaimed, whereby
1728	construction and revegetation would be sequenced to minimize
1729	potential effects to the view from Birch Lake reservoir;
1730	 Building colors would be selected to blend into the surrounding
1731	environment; and

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748		 Steps would be taken to limit light pollution consistent with the International Dark Sky Association. To reduce impacts related to surface disturbance: The underground workings would be backfilled with waste rock and engineered tailings backfill to reduce surface disturbance; Vent raises would be located on or near existing USFS and exploration drill roads to reduce surface disturbance from new roads; Exhaust vent fans would be located underground; Power for the surface ventilation raises would be brought up from the underground workings to minimize surface disturbance associated with transformers and power distribution lines; and Concentrate would be trucked from the plant site to existing port facilities to reduce additional surface disturbance associated with rail-loadout areas; To prevent subsidence, the Project would operate with an appropriate crown pillar depth.
1749	3.6.3	Project Magnitude
1750 1751		Please see Table 3-2 Project Magnitude for Project surface disturbance and Table 3-6 for building square footages.
1752	3.6.4	Project Purpose
1753 1754		The purpose of the Project is to mine the Maturi deposit by underground methods to produce concentrates for base, platinum group, and other metals.
1755	3.6.5	Future Stages
1756 1757		Are future stages of this development including development on any other property planned or likely to happen? \square Yes $~\textbf{X}$ No
1758 1759 1760 1761 1762		The Project is based on the Maturi deposit alone and is independent of any other future activity. There are currently no other projects, stages, or developments associated with the Project. It would be speculative at best to anticipate a future project given the long planning horizon for metallic mining projects and any future project would need to undergo separate environmental review at that time.
1763	3.6.6	Earlier Project Stage
1764		

Environmental Review Support Document

1765 **3.7 Cover Types**

1766 Table 3-7 provides estimated areas by land cover types as identified in the National Land Cover Database (NLCD) for the Project area and the areas with potential 1767 1768 ground disturbance, including the ventilation raise sites, ventilation access road, plant site, tailings management site, access road, water intake corridor, and 1769 transmission corridor. During the construction and operation phases these land 1770 1771 covers would be converted to accommodate the Project facilities. Reclamation plans, as outlined in Section 3.6.2, are designed to restore, to the degree practicable, these 1772 1773 areas to previous land cover types.

1774 **3.8 Permits and Approvals**

1775Table 3-8 describes the primary permits that may be required for the Project. The1776table is organized to identify the regulatory agency responsible, the permit or1777approval considered, and the status of the approval.

1778 **4.0 LAND USE**

1779**4.1Baseline Conditions**

1780 4.1.1 Existing Land Use

1781 The Project area would be in both Lake and St. Louis Counties on a mix of uplands and forested wetlands within the Superior National Forest (SNF). The landscape 1782 1783 surrounding the Project area is primarily characterized by undeveloped, forested uplands and wetlands to the north, east, and south, with Birch Lake reservoir located 1784 to the west. A portion of the Project area includes School Trust Land within the Bear 1785 1786 Island State Forest. School Trust Lands are state-owned lands which are set aside to 1787 provide a continual source of funding for public education. Revenue from School 1788 Trust Lands is generated from sale and lease of the lands and minerals, and resource extraction through timber sales and mineral royalties. Within the vicinity of 1789 the Project area (~10 miles [16 km]) examples of land use include: 1790

1791 Subsistence hunting, fishing, and gathering 1792 Gravel pits: • A hydroelectric plant; 1793 • 1794 Dimension stone mining operations; • 1795 State, county, and forest road networks; • 1796 High voltage transmission lines; • 1797 An airport: • 1798 • Historic and current mining features such as pit lakes and stockpiles; 1799 Commercial timber harvest: 1800 Silviculture: • 1801 Agriculture; •

1802	 Residential (cities of Babbitt, Minnesota and Ely, Minnesota);
1803	 Fire management; and
1804	Recreation.
1805	The land within the Project area is managed for multiple uses, including mineral
1806	resource development. The Project area has a history of mineral exploration and
1807	development. In the late 1960s, the International Nickel Company, Ltd (INCO)
1808	developed a shaft in the Project area to a depth of 1,095 ft (334 m). During this same
1809	period, several other exploration companies had leases and conducted limited
1810	deeper drilling and other exploration activities in the Project area; these companies
1811	included Duval, Newmont, and Hanna. There was a break in activity and from the
1812	mid-1970s to 2005, two holes were drilled by Wallbridge Mining. Since 2006,
1813	development for exploration drilling activities has included access roads and drill pad
1814	development.
1815	In addition to commercial and industrial uses, the region is a destination for
1816	recreation. The Project lies within the Bear Island State Forest boundary and is
1817	approximately five miles from the southwestern border of the Boundary Waters
1818	Canoe Area Wilderness (BWCAW) at the nearest point. Additionally, the Project is
1819	outside of the state minerals management corridor adjacent to the BWCAW
1820	(Figure 4-1). The law that created the BWCAW also designated the BWCAW as a
1821	Mining Protection Area, which prohibits exploration, lease, and exploitation of
1822	minerals in the wilderness. It further extends the prohibition of mineral exploration or
1823	exploitation on property owned by the United States if that activity could materially
1824	change the wilderness characteristics of the BWCAW.
1825	Recreational land uses typically occurring within the Project area or within 25 miles
1826	(40.2 km) of the Project area may include, but are not limited to:
1827	 Boating, canoeing, and camping in the BWCAW and other local, state,
1828	and federal lands;
1829	 Hunting and fishing;
1830	 Year-round recreation, including downhill skiing, snowmobiling, off-
1831	highway vehicle (OHV) use, mountain biking, hiking, and golf; and
1832	Recreational trails.
1833	Recreation opportunities in the SNF are managed within the framework of the
1834	Recreation Opportunity Spectrum (USFS, 2004). The Project lies within a designated
1835	Roaded Natural area. This designation indicates areas where motor vehicles have
1836	full access with limited-moderate remoteness, interactions with other users may be
1837	frequent, and where human activity such as timber harvesting may be visible.
1838	The Project area also falls within the boundaries of territory governed by the 1854
1839	Treaty between the Chippewa of Lake Superior and the United States (Figure 4-2).
1840	The 1854 Treaty ceded all of the Lake Superior Chippewa lands in the Arrowhead

Environmental Review Support Document

- 1841Region of Northeastern Minnesota to the United States, in exchange for reservations1842for the Lake Superior Chippewa in Wisconsin, Michigan, and Minnesota.
- 1843The rights to capture or gather (or take) subsistence resources within the 18541844Ceded Territory are provided to the Bands on a usufruct basis. The concept of1845individuals not owning specific land, but using the resources on land controlled by1846larger cultural groups, represented this usufruct basis that was so important to the1847survival of the Ojibwe everywhere in Minnesota prior to European settlement.
- 1848As a usufructuary created by the 1854 Treaty, the Bands are allowed to use1849resources from land owned by others. The Project area falls within the territory ceded1850as part of the 1854 Treaty between the U.S. government and the Chippewa of Lake1851Superior. Rights for hunting and fishing under the 1854 Treaty are exercised on1852lands within this territory.
- 1853The Bois Forte Band of Chippewa, Grand Portage Band of Lake Superior Chippewa,1854and the Fond du Lac Band of Lake Superior Chippewa (the Bands) are located within1855the 1854 Ceded Territory. These land uses may occur in the Project area; however,1856the extent of use by Band members has not been documented at this time.
- 1857There are no prime or unique farm lands, agricultural preserves, or conservation1858lands in the Project area.

1859 4.1.2 Planned Land Use

1862

1863

1864

1865

1866

1867

1868

1869

1870 1871

1872

1873

- 1860There are six land use management plans that geographically overlap with the1861Project area;
 - Lake County Comprehensive Plan and Land Use Ordinance (Lake County, 2017);
 - Lake County Local Water Management Plan (Lake County, 2012);
 - St. Louis County Comprehensive Land Use Plan (St. Louis County, 2019);
 - St. Louis County Comprehensive Water Management Plan (St. Louis County, 2010);
 - City of Babbitt Comprehensive Plan (Arrowhead Regional Development Commission [ARDC] Regional Planning Division, 2014);
 - SNF Land and Resource Management Plan (USFS, 2004); and
 - Northern Superior Uplands Section Forest Resource Management Plan (MDNR, 2015a Draft).
- 1874 While comprehensive plans are not regulatory decision standards, these plans do
 1875 provide a vision for land management within each respective location and have been
 1876 developed through collaboration between the primary governing body (Lake County,
 1877 St. Louis County, Babbitt, or USFS), other applicable governmental bodies, local
 1878 constituents, and other interested parties. The comprehensive plans do provide a

1879 1880 1881 1882 1883 1884 1885 1886 1887	framework for decisions reflected in other regulatory contexts, such as zoning ordinances and forest management. A comprehensive map of local zoning and management areas can be found on Figure 4-3. Figure 4-4 shows private parcels of land within Lake and St. Louis Counties subject to local land or water management plans. Additionally, Figure 4-4 identifies the nearest residences, which are associated with the South Kawishiwi Association (SKA) located to the north and west of the Project. These residences are the nearest sensitive receptors to the Project. Figure 4-5 shows federal parcels of land subject to the SNF Land and Resource Management Plan.
1888	Lake County Comprehensive Plan and Land Use Ordinance
1889 1890 1891 1892 1893 1894 1895 1896	Private parcels of land associated with the plant site, water intake corridor, ventilation raise site 1, and portions of the transmission corridor within Lake County would be subject to the Lake County Comprehensive Plan and Land Use Ordinance. The primary purpose of the plan is to provide a vision statement for Lake County and to "promote the health, safety, and general welfare of the Lake County community." The plan identifies goals under various subject topics (i.e., housing, transportation, recreation, etc.) that act as a guide for achieving the vision the document lays out. Development plans created to achieve these goals are governed by five principles:
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907	 Establish a land use program based upon public involvement that takes into consideration the values, traditions, customs, and well-being of county residents, using locally accepted principles of land management; Recognize and respect the rights of property owners; Base resource management strategies on sound scientific data using the best available techniques; Demand equal footing with all levels of government in all matters affecting Lake County; and Accept this Comprehensive Plan with its goals and strategies as intended to accommodate and address future growth and service demands until 2013.
1908	The plan provides the applicable land use goal as follows:
1909	Land Use Goal: Support growth that is orderly and planned.
1910 1911 1912 1913 1914 1915 1916 1917	 Support the development of industry within established communities with adequate infrastructure (with the exception of natural resource-based industries); Support the development of non-recreationally based commercial enterprises within communities with established infrastructure and clustered in areas with adequate infrastructure; Minimize the impacts of land disturbing activities, on natural features, relative to erosion, stormwater runoff, wetlands, and scenic views;

1918 1919	 Develop tools to preserve green space in an effort to prevent sprawl.
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935	 Encourage development that protects the integrity of ridgelines; Inventory and identify ridges holding visual and environmental importance to Lake County; Develop standards for vegetative clearing, building height, screening, and building color for development on ridges holding visual and environmental importance to Lake County; Encourage densities to remain low on ridges holding visual and environmental importance to Lake County. Minimize land use conflicts between industrial, commercial, and residential areas; Consider establishing buffer zones between conflicting uses. Evaluate and strengthen the land use education and enforcement processes; Secure adequate legal counsel; and Consider licensing / bonding any earth-moving contractors operating in Lake County.
1936 1937 1938	Commercial / Industrial Development Goal 1: Maintain a favorable climate for business activity and support the development of a strong and balanced economic base.
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948	 Support existing Lake County businesses; Encourage commercial and industrial development and redevelopment; Participate in state and federal legislative processes related to economic development issues; Support the multiple-use of public lands and recognize the importance of resource-based industry; Actively participate in resource management in the Lake County planning process; and Work with the state to emphasize the income producing requirements of School Trust Lands in its control;
1949	Lake County, Minnesota, Local Water Management Plan
1950 1951 1952 1953 1954 1955	Private parcels of land associated with the plant site, water intake corridor, ventilation raise site 1, and portions of the transmission corridor within Lake County would be subject to Lake County's Local Water Management Plan. The plan was created to "maintain and improve both surface and groundwater quality and quantity through sound ecosystem management" (Lake County, 2012). The plan attempts to accomplish this goal by focusing on the following priority water concerns:
1956 1957	 Increased development pressures – erosion control on construction sites, road management, cumulative impacts, shoreline erosion control;

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	 Enforcement of existing land use laws and use of BMPs in development activities and forest management activities; Stormwater management; Wastewater management - non-conforming sewage treatment systems, surface and groundwater contamination, drinking water quality; Natural resources education on water / land issues; Lake and stream water quality, water quantity and biological integrity; and Supportive of total maximum daily load (TMDL) research Project efforts and would work with landowners to complete objectives and goals identified in the TMDL implementation plans (BMPs projects / education) on north shore streams.
1969 1970	The Lake County Water Management Plan has been approved for an extension until 2019.
1971	St. Louis County Comprehensive Land Use Plan
1972 1973 1974 1975 1976 1977 1978 1979 1980	Private parcels of land associated with the transmission corridor and located in St. Louis County would be subject to the St. Louis County Comprehensive Land Use Plan (St. Louis County, 2019). The county's land use plan "provides a blueprint for managing growth, development, conservation, and other land use objectives in St. Louis County." The plan is sectioned into six areas of focus; natural environment, economic development, recreation and tourism, transportation, public safety, and land use. Goals, objectives, and implementation plans are then developed for each area of focus. The implementation plans are then ranked and tracked to provide a long-term vision for managing land use within St. Louis County.
1981 1982 1983 1984	Chapter 2 of the St. Louis County Comprehensive Land Use Plan provides insight into the county's land use goals with respect to economic development. The chapter specifically addresses mining and defines mining impact areas within the county in a three-tier system:
1985 1986 1987 1988 1989 1990 1991	 Tier 1 encompasses the actively mined iron formation; Tier 2 includes areas of more active non-ferrous exploration and mineral lease activity in the Duluth Complex. It encompasses the general co-location of exploratory borings, active mineral leases, and known mineral prospects; and Tier 3 extends beyond the mining formations to include ancillary uses, such as tailings basins.
1992 1993 1994 1995 1996	The plan identifies the location of the Project area in St. Louis County as Tier 2. The plan further supports mining within these tiers by indicating that "the county will proceed cautiously with permitting of uses that are not related to mining, especially within Tiers 1 and 2. This discretion is needed to preserve opportunities for mining industry growth, to mitigate environmental hazards, and to avoid potential land use

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

conflicts before they begin. This approach is intended to provide clarity to all current

Environmental Review Support Document

1998 and future owners of land and minerals within the mining impact areas." St. Louis County Comprehensive Water Management Plan 1999 2000 Private parcels of land associated with the transmission corridor and located in 2001 St. Louis County would be subject to the St. Louis County Comprehensive Water Management Plan. The county's water management plan "provides strategy to 2002 address the water-related issues in St. Louis County." The plan recognizes the 2003 2004 following priorities: 2005 Identify existing and potential problems facing the county's water 2006 resources: 2007 Identify opportunities to protect those water resources; • 2008 Identify goals and objectives to manage the county waters and their 2009 related land uses in ways that promote sound, hydrologic, and efficient 2010 management and effective environmental protection of those water 2011 resources: and 2012 Devise and carry out a plan of action that achieves the stated goals and 2013 objectives related to managing the county's water resources. 2014 The plan identifies four primary areas of concern related to water management within St. Louis County including negative impacts from development, pollution resulting 2015 2016 from inadequate wastewater management, pollution to surface and groundwaters from contaminated runoff and impaired water management. The primary area of 2017 2018 concern most associated with the Project would be the potential negative impacts 2019 from development. The plan identifies action items associated with this concern that are centered around the proper management of stormwater. The implementation of 2020 2021 BMPs for construction stormwater control are emphasized. **City of Babbitt Comprehensive Plan** 2022 2023 Several private parcels of land associated with the transmission corridor and off-site 2024 electrical substation would be subject to the City of Babbitt Comprehensive Plan. 2025 This plan is intended to, "set policies for efficient land use and allocate land among 2026 industry, commerce, residences, public facilities, parks and recreation spaces, open 2027 and natural spaces, and other public and private uses." The land use goals outlined 2028 by the City of Babbitt Comprehensive Plan are as follows: 2029 Support the compact, efficient and orderly growth of all urban • 2030 development including residential, commercial and industrial areas; 2031 Have adequate amounts of land properly zoned, with infrastructure, to meet demand for development within the city; 2032 2033 Strengthen the distinction between the developed and developing parts of 2034 the city:

2035 2036 2037 2038 2039	 Provide and maintain adequate community parks and open space to meet the future needs of the community; Enhance the community's character and identity; and Maintain a modern, up-to-date zoning ordinance, zoning map, official map, and permitting documents.
2040 2041 2042	The City of Babbitt Comprehensive Plan identifies mining as, "integrally linked to the history of the community" and makes the following note regarding mining, timber, and tourism:
2043 2044 2045 2046	"While related objectives are established in the economic development and land use chapters of the plan, these industries are so critical that specific goals and objectives have been outlined during the planning process to continue to build Babbitt's future economically."
2047 2048	One of the specific goals outlined in the plan is to support non-ferrous mining projects in and around Babbitt.
2049	Superior National Forest Land and Resource Management Plan
2050 2051 2052 2053 2054 2055 2056	Portions of the plant site, tailings management site, ventilation access roads, access road, and transmission corridor located on federally owned land would be subject to the SNF Land and Resource Management Plan. The purpose of the plan is to "guide all natural resource management activities for the Superior National Forest." The plan provides direction, goals, and implementation guidance intended to influence day-to-day management and long-term management of the SNF. Fundamental principles guiding this management strategy include:
2057 2058 2059 2060 2061 2062 2063 2064	 The USFS will follow laws and regulations as well as policies in the USFS Manuals and Handbooks that relate to managing National Forest System land; The USFS will coordinate management activities with the appropriate local, state, or Tribal governments as well as with other federal agencies; The USFS will actively consult with Tribal governments and collaborate with interested organizations, groups, and individuals; and The USFS will manage the SNF for multiple uses.
2065	Northern Superior Uplands Section Forest Resource Management Plan
2066 2067 2068 2069 2070 2071 2072	The Project would be located within the Bear Island State Forest, which is managed by the MDNR. Previously, this area was managed as three separate sections: Border Lakes, North Shore Area, and a portion of North 4. Currently, the forestry management plan for this area is being revised to consolidate these three areas into one area known as the Northern Superior Uplands (NSU). The Northern Superior Uplands Section Forest Resource Management Plan is in the process of being drafted with an anticipated completion date of 2019 according to information

Environmental Review Support Document

2073 available on the MDNR website. The state forest management units within the 2074 Project area would be subject to the Northern Superior Uplands Section Forest 2075 Resource Management Plan.

2076 4.1.3 **Current Zoning and Management Codes**

2077 There are four zoning authorities associated with the Project area; Lake County, 2078 MDNR, St. Louis County, and Babbitt, Local zoning controls apply to the portions of the Project area within private ownership. Federal and state lands are not subject to 2079 local zoning controls but are governed by federal and state rules and regulations. A 2080 2081 comprehensive map of local zoning districts applicable to the Project area are illustrated on Figure 4-3. This figure also identifies the Shoreland Zoning areas 2082 surrounding water basins (Birch Lake reservoir) and water courses (Keeley Creek, 2083 2084 Denley Creek, and Stony River) within the Project area subject to additional shoreland zoning requirements. Figure 4-4 identifies parcels of land within the 2085 2086 Project area subject to local zoning (Lake County, St. Louis County, and Babbitt).

2087 Lake County

2088 Forest and Recreation (FR)

- 2089 Most private parcels associated with the plant site, or transmission corridor within 2090 Lake County would be located on land zoned as FR. According to the Lake County zoning ordinance, the FR district: 2091
- 2092 "provides for remote residential development distant from public services, prevents destruction of natural or man-made resources, maintains large tracts for 2093 forest recreation purposes, provides for the continuation of forest management 2094 2095 and production programs, and fosters certain recreational uses and other activities which are not incompatible with the public welfare" (Lake County, 2017) 2096
- 2097 Permitted uses for this zoning district include:
- 2098 Single-family dwellings; • 2099

2100

2101

2102

2103

2104

2105 2106

2107

2108

- Forest management and utilization; •
 - Soil and water conservation programs; •
- Wildlife preserves; •
- Tree plantations; •
 - Home occupations; •
 - Compatible recreational uses; •
 - Farms and commercial livestock:
 - Portable sawmills; •
 - Customary accessory structures and uses; and •
 - Vacation rental home. •

2109 Interim uses for this type of zoning include:

Environmental Review Support Document

2110 Aggregate pits. 2111 Prohibited uses for this type of zoning include: 2112 Uses requiring urban level public services. 2113 A Conditional Use Permit is required for any use not listed as permitted, interim or 2114 prohibited. 2115 **Residential Recreation (RR)** A portion of the water intake corridor and ventilation raise site 1 would be located on 2116 2117 private land zoned RR. According to the Lake County zoning ordinance the RR 2118 district: 2119 "provides for residential development and essential recreation-oriented services 2120 in areas of high recreational value where soil conditions and other physical features will support such development without depleting or destroying natural 2121 resources" 2122 2123 Permitted uses for this zoning district include: 2124 Single-family dwellings; Home occupations; and 2125 2126 Customary accessory structures and uses. 2127 Interim uses for this type of zoning include: 2128 Vacation rental home. 2129 Prohibited uses for this type of zoning include: 2130 Commercial agriculture, kennels, aggregate pits. 2131 A Conditional Use Permit is required for any use not listed as permitted, interim, or prohibited. 2132 2133 **Shoreland Zoning Provisions** 2134 Article 7.0, Shoreland Zoning Provisions, of the Lake County Zoning Ordinances 2135 defines the shoreland boundary as land within 1,000 ft (304.8 m) of the ordinary high 2136 water mark of public water basins (Birch Lake reservoir) and within 300 ft (91.4 m) of 2137 the ordinary high water mark of public watercourses (Denley Creek, and Stony 2138 River). Structures within the shoreland of Birch Lake reservoir are required to be set back 100 ft (30.5 m) from the ordinary high water mark. Denley Creek and Stony 2139 2140 River are watercourses with special shoreland classifications. Structures developed

Environmental Review Support Document

- 2141 within the shoreland of these water courses are required to be setback 100 ft 2142 (30.5 m) from the ordinary high water mark.
- 2143 MDNR
- 2144 The MDNR is responsible for implementing Minn. R., chapter 6120, which govern 2145 shoreland management for public water basins and watercourses. These rules are 2146 implemented on private lands through the local zoning authority ordinance; however, on state lands the MDNR administers the shoreland rules directly. Within the Project 2147 area, Minnesota School Trust Lands where Keeley Creek is located would have 2148 2149 shoreland administered by the MDNR. The administrative rules identify that structures developed within 300 ft of the ordinary high water mark of watercourses 2150 identified as urban or tributary (Keeley Creek), are required to be set back 100 ft for 2151 2152 unsewered developments.

2153 St. Louis County

2156

2157

2158

2159 2160

2161 2162

2163

2175

2176

- 2154Uses associated with the Project, are defined within the St. Louis County zoning2155ordinance (St. Louis County, 2016) as follows:
 - Utility Facilities Class I A category of uses that includes, but is not limited to: electrical lines, fuel tanks, ham radio towers, outdoor wood boilers, small collector wastewater treatment plants, solar panel battery or storage stations for private residential use, and wind turbines for private residential use; and
 - Utility Facilities Class II A category of uses that includes, but is not limited to: electrical substations, communication towers, and wastewater treatment plants (municipal or sanitary districts).
- 2164 Forest Agricultural Management District (FAM)
- 2165A portion of the transmission corridor crosses the FAM district within St. Louis2166County. According to the St. Louis County zoning ordinance, the FAM district is2167intended to:
- 2168 "promote the development of the country's forestry and agricultural industry and
 2169 encourage recreational use of such areas. This district is typically used in areas
 2170 with land developed at very low densities and often there is considerable
 2171 government and corporate ownership. A low level of development is important in
 2172 areas where this district is used since the uses encouraged in this district would
 2173 be less compatible in a more urban setting" (St. Louis County, 2016)
- 2174 Uses allowed without a permit for this zoning district include:
 - Agricultural Use Class I, II
 - Utility Facilities Class I

2177	Uses allowed that require a permit within this zoning district include:
2178 2179 2180 2181 2182 2183 2183 2184 2185 2186 2187 2188	 Residential Outdoor Signs Extractive Use – Class I, II Industrial Use – Class I, II, III Transportation – Class I, II Utility Facilities – Class II, III Commercial Retail and Service Establishments – Class I, II, III Mineral Exploration and Evaluation Planned Development – Class I Public / Semi-public Use Recreational Use – Class I, II
2189	Prohibited uses within this zoning district include:
2190	Planned development – Class II
2191	Residential (RES)
2192 2193 2194	A portion of the transmission corridor crosses the RES district within St. Louis County. According to the St. Louis County zoning ordinance, parcels within the RES district are:
2195 2196 2197 2198 2199 2200	"intended to be used in those areas of the county with extensive or the potential for extensive residential development. This district shall be used to promote a high quality residential living environment where non-residential uses are restricted. This district may be used in shoreland and nonshoreland areas that are typically platted, or, in not platted, have a development density of dwellings of more than one dwelling per 300 lineal feet of lot frontage"
2201	Uses allowed without a permit for this zoning district include:
2202 2203	 Agricultural Use – Class I Utility Facilities – Class I
2204	Uses allowed that require a permit within this zoning district include:
2205 2206 2207 2208 2209 2210 2211	 Residential Use Outdoor Signs Agricultural Use – Class II Extractive Use – Class I Industrial Use – Class I Utility Facility – Class II Commercial, Retail, and Service Establishments – Class I

2212	 Mineral Exploration and Evaluation
2213	 Planned Development – Class I
2214	Public / Semi-public Use
2215	Transportation – Class I, II
2216	Uses prohibited within this zoning district include:
2217	 Commercial, Retail, and Service Establishments – Class II, III
2218	Extractive Use – Class II
2219	 Planned Development Class II
2220	 Industrial Use – Class II, III
2221	 Recreational Use – Class I, II
2222	Utility Facilities – Class III
2223	Industrial (IND)
2224	A portion of the transmission corridor crosses the IND district within St. Louis County.
2225	According to the St. Louis County zoning ordinance, parcels within the IND district
2226	are:
2227	"intended to encourage the development of heavy industry in the county by
2228	providing appropriate locations for such activities. The district should always be
2229	located in an area and manner which will ensure the most effective and beneficial
2230	impact to the county. This district shall not be used in any shoreland district"
2231	Uses allowed without a permit for this zoning district include:
2232	Agricultural Use – Class I, II
2233	 Industrial Use – Class III
2234	Mineral Exploration and Evaluation
2235	Uses allowed that require a permit within this zoning district include:
2236	Outdoor Signs
2237	 Extractive Use – Class I, II
2238	 Transportation – Class I
2239	 Industrial Use – Class I, II
2240	 Utility Facilities – Class I, II, III
2241	Uses prohibited within this zoning district include:
2242	 Commercial, Retail, and Service Establishments – Class I, II, III
2243	 Planned Development – Class I, II
2244	Public / Semi-public Use
2245	 Recreational Use – Class I, II

2246 2247	 Transportation – Class II Recreational Use
2248	<u>Babbitt</u>
2249	Mineral Mining District (MM)
2250	A portion of the transmission corridor crosses the MM district within the city limits of
2251	Babbitt. According to the Babbitt zoning ordinances, parcels within the MM district
2252	are:
2253	"areas of existing and potential mineral mining, processing, storage and loading,
2254	tailings and waste disposal, and accessory and support activities required for
2255	proper operation of mining activities located outside of the limits of the open pit
2256	and ore formation and to assure the compatibility of these uses to other uses
2257	within the city of Babbitt" (City of Babbitt, 1996)
2258	Permitted uses within this zoning district include:
2259	 Forestry;
2260	 Mineral mining and any ancillary activities necessary for management;
2261	and
2262	 Operation and uses involved in the mineral extraction, processing
2263	transportation and disposal of waste as regulated by Minnesota.
2264	There are no uses listed as requiring a Conditional Use Permit for the MM district
2265	within Babbitt; however, all mineral mining activity is required to conform to
2266	Minnesota regulations. Additionally, no prohibited uses are listed.
2267	1854 Treaty Area Management
2268	1854 Treaty Authority
2269	The 1854 Treaty Authority is an Inter-tribal Natural Resources Management
2270	Organization that manages the off-reservation hunting, fishing, and gathering rights
2271	of the Grand Portage and Bois Forte Bands of Lake Superior Chippewa in the
2272	territory under legal agreement with the State of Minnesota. The 1854 Treaty
2273	Authority's mission statement is to "provide an Inter-Tribal natural resource program
2274	to ensure that the rights secured to member Native American tribes by treaties of the
2275	United States to hunt, fish, and gather within the 1854 Ceded Territory shall be
2276	protected, preserved and enhanced for the benefit of present and future member
2270	Native American tribes in a manner consistent with the character of such rights,
2278	through provisions of services." The 1854 Treaty Authority's management of natural
2279	resources generally focuses on some of the most commonly hunted, fished, or
2280	gathered natural resources.

Environmental Review Support Document

2313	4.2	Project Impacts
2311 2312		 to the fullest extent possible, to promote and protect the rights of the Fond du Lac Band of Lake Superior Chippewa retained under the 1854 Treaty
2310		Member harvesting activities; and
2309		plant populations in the Ceded Territory through the regulation of Band
2308		conservation and management of fish, wildlife, natural resources and
2307		 provide a means to promote public health and safety and the
2306		territory;
2305		gathering, trapping and resources management in the 1854 ceded
2304		 an orderly system for tribal control and regulation of hunting, fishing,
2302 2303		The Fond du Lac Band of Lake Superior Chippewa has adopted a Ceded Territory Conservation Code (as amended). The purpose of the Code is to provide:
2300		protect the rights of the Fond du Lac retained under the 1854 Treaty.
2299		management of natural resources within the Ceded Territory, and to promote and
2298		regulation of hunting, fishing, and gathering within the Ceded Territory, provide a means to promote public health and safety through the conservation and
2297 2298		Code. The purpose of the Code is to provide a system for tribal control and
2296		Ceded Territory is demonstrated in the Fond du Lac Ceded Territory Conservation
2295		resources by the Fond du Lac Band of Lake Superior Chippewa within the 1854
2294		Governance of hunting, fishing, trapping, management, and gathering of natural
2293		Fond du Lac Band of Lake Superior Chippewa
2292		activities.
2291		the Ceded Territory through the regulation of Band Member harvesting
2290		conservation and management of fish, wildlife and plant populations in
2289		 to provide a means to promote public health and safety; and the
2288		subsistence use in the Ceded Territory; and,
2280		regulation of hunting, fishing, trapping and gathering of resources for
2286		 to provide an orderly system for 1854 Treaty Authority control and
2285		Ordinance is:
2284		ordinance by Band Members within the Ceded Territory. The purpose of the
2283		gathering activities of resources for subsistence use," subject to the provisions of this
2282		(2018). The Ordinance governs the Ceded Territory's "hunting, fishing, trapping and
2281		The 1854 Treaty Authority has adopted the Ceded Territory Conservation Code

2314 4.2.1 Planned Land Use

2315Impacts within the context of land use plans are defined in terms of the compatibility2316with the plan. No impact would occur for actions that are compatible with the2317respective plan. The Project would be compatible with planned land uses identified

- by Lake County, St. Louis County, Babbitt, and the USFS. All plans acknowledge the importance of responsible management of resource extraction.
- 2320 Lake County Comprehensive Plan and Land Use Ordinance
- 2321The Project would be compatible with the Lake County Comprehensive Plan and2322Land Use Ordinance. Principle 1 of the plan lists "logging and mining" as one of the2323"definitive values, traditions, and customs." Additionally, the Project would be in2324alignment with land use goals and the primary commercial / industrial use goal2325outlined within the plan.
- 2326 Lake County, Minnesota, Local Water Management Plan
- 2327The Project would be compatible with the Lake County Local Water Management2328Plan. This plan identifies six high priority watersheds, none of which are included in2329the Project area. The plan also identifies stormwater management as one of the2330priority concerns established by the Water Plan Advisory Committee; the Project2331would implement a Stormwater Pollution Prevention Plan to mitigate stormwater2332impacts during construction and operation.
- 2333 St. Louis County Comprehensive Land Use Plan
- 2334 Development of a portion of the transmission corridor within St. Louis County would 2335 be compatible with the St. Louis County Land Use Plan. Specifically, the Project 2336 meets the goals outlined within the economic development portion of the plan. The 2337 Project would be within the mining impact area Tier II, where the development of infrastructure to support mining operations is encouraged. The plan also identifies 2338 the development of additional utility coverage within St. Louis County as a goal, 2339 2340 which is in direct alignment with the development that would be associated with the 2341 Project.
- 2342 St. Louis County Comprehensive Water Management Plan
- 2343Development of a portion of the transmission corridor within St. Louis County is2344compatible with the St. Louis County Comprehensive Water Management Plan.2345Construction of this corridor would be completed using construction stormwater2346BMPs that may include, but would not be limited to, standard practices such as the2347implementation of silt fencing, sediment logs, and re-vegetation of disturbed surfaces2348as soon as practicable. These development BMPs are compatible with the St. Louis2349County's Comprehensive Water Management Plan.
- 2350 City of Babbitt Comprehensive Plan
- 2351Development of a portion of the transmission corridor and the off-site electrical2352substation within the limits of Babbitt is compatible with the City of Babbitt2353Comprehensive Plan. The plan states that the mining industry is critical to Babbitt's2354economic future specifically lists the support of non-ferrous mining as a goal.

2355		Superior National Forest Land and Resource Management Plan
2356 2357		The SNF Land and Resource Management Plan identifies mineral development as a desired condition in the Project area and applies two desired conditions to this
2358		resource:
2359 2360 2361 2362		 "Exploration and development of mineral and mineral material resources is allowed on National Forest System land, except for federally owned minerals in designated wilderness (BWCAW) and the Mining Protection Area; and
2363 2364 2365		 Ensure that exploring, developing, and producing mineral resources are conducted in an environmentally sound manner so that they may contribute to economic growth and national defense."
2366 2367 2368 2369 2370 2371		Additionally, most of the Project area is identified as General Forest, where the development of mineral resources is identified as an allowable resource management practice. Portions of the plant site, water intake corridor, and transmission corridor may cross SNF lands identified as Recreation Use in Scenic Landscape, where development of mineral resources and structures including power lines and pipelines are an acceptable development.
2372 2373 2374		Given that the Project meets the two desired conditions, as well as the land uses allowable by the plan, the Project would be compatible with the SNF Land and Resource Management Plan.
2375		Northern Superior Uplands Section Forest Resource Management Plan
2376 2377 2378 2379 2380 2381 2382 2383		As identified in Section 4.2.1, the Northern Superior Uplands Section Forest Resource Management Plan is currently being drafted with an anticipated completion date of 2019. Initial draft sections of this document available on the MDNR website indicate that mining would be an acceptable use within the state forest. Specifically, within the draft introduction to the new management plan, the MDNR identifies that, "Logging, forest management, tourism, recreation, and mining are important industries." It is anticipated that the Project would be compatible with the Northern Superior Uplands Section Resource Management Plan.
2384		Land Use Impacts Summary
2385 2386 2387		The available information is adequate to make a reasoned decision about Project's compatibility with the land use plans reviewed in this section. Based on this review, there are no potential significant effects identified and the topic is considered minor.
2388	4.2.2	Zoning and Management Codes
2389 2390 2391		Impacts within the context of zoning are defined in terms of the compatibility with the applicable ordinances. No impact would occur for actions that are compatible with the respective zoning. The Project would likely require conditional use permitting in

Environmental Review Support Document

2392Lake County and St. Louis County and would be compatible with the underlying2393zoning.

2394 Lake County

- 2395The plant site, water intake corridor, and transmission corridor are acceptable uses2396in the zoning districts with which they are associated (FR and RR in Lake County but2397would require local permitting. The Project would not effect the zoning designation2398for SKA residences.
- 2399Additionally, the water intake facility, portions of the tailings management facility, and2400portions of the transmission corridor would be required to abide by setback2401requirements for Birch Lake reservoir, Keeley Creek, Denley Creek, and Stony River,2402identified by Lake County Shoreland Zoning Ordinances.
- 2403 The Project would be compatible with Lake County zoning.

2404 MDNR

2405Most of the tailings management site would be outside of the shoreland boundary.2406The tailings management site would adhere to the shoreland setback requirements2407identified by Minnesota's Administrative Rules. The Project would be compatible with2408the statewide minimum shoreland standards.

2409 St. Louis County

- 2410The transmission corridor is listed as an acceptable use in all three zoning districts it
crosses in St. Louis County (FAM, RES, and IND) but would require local permitting.
- 2412A portion of the transmission corridor would be required to adhere to St. Louis2413County's Shore Impact Zone requirements for Birch Lake reservoir, as well as an2414unnamed stream that feeds Birch Lake reservoir.
- 2415 The Project would be compatible with St. Louis County zoning.

2416 Babbitt

2417The transmission corridor is a permitted use within Babbitt's MM district. No impacts2418or additional permitting are anticipated for land use within Babbitt.

2419 1854 Treaty Area Management

2420Within the entire 1854 Treaty Territory, there are approximately 2.9 million acres of2421tribal and public lands. The tribal and public lands provide access to Band members2422exercising usufructuary rights to hunt, fish, and gather plants within the 1854 Ceded2423Territory. The Project would restrict access on approximately 800 acres of public2424lands due to the presence of Project facilities or fences. The change in accessibility

Environmental Review Support Document

represents a .03% reduction in total acreage within the 1854 Treaty Territory. These
land uses may occur in the Project area; however, the extent of use by Band
members has not been documented at this time.

2428 Zoning Impacts Summary

2429The available information is adequate to make a reasoned decision about Project's2430compatibility with the zoning ordinances reviewed in this section. The Project would2431follow the applicable zoning ordinances. Based on this review, there are no potential2432significant effects identified and the topic is considered minor.

2433 **4.3 Future Scope**

2434Existing use by Band members on lands within the Project area has not been2435documented. In order to better understand the extent of use by Band members, TMM2436will work with the lead agencies and with the affected Bands to better understand2437historic, as well as present day subsistence uses, by Band members.

2438 5.0 GEOLOGY, SOILS, AND TOPOGRAPHY / LAND FORMS

2439 **5.1 Baseline Conditions**

2440 5.1.1 <u>Geology</u>

2441 The Project area is underlain by the geologic group referred to as the Duluth 2442 Complex which is composed of magmatic (igneous) rocks associated with the Midcontinent Rift System. The Midcontinent Rift System occurred approximately 2443 2444 1.1 billion years ago and is traceable from the east side of Michigan, arcing west across the Lake Superior basin, and extending south-southwest to northeastern 2445 2446 Kansas. The thinning of the earth's crust (rifting) that resulted from tectonic extension 2447 allowed for large layered igneous intrusions and vulcanism; the largest composite of 2448 these layered intrusions is the Duluth complex, a composite intrusion of igneous 2449 rocks (troctolites to gabbros and anorthosites) derived from episodic intrusive events from an evolving magma source related to rift development. The Duluth Complex is 2450 2451 the host of the Maturi mineral deposit shown on Figure 5-1. To the north and west of 2452 the Project area, rocks of the Superior Province of the Canadian Shield include 2453 Archaean (greater than [>] 2,600 million years old) mafic to felsic metavolcanic rocks, metasedimentary rocks, ortho- and paragneisses, and granitic intrusions; and 2454 to the southwest, Paleoproterozoic (~1,850 million years old) iron-formation, clastic, 2455 2456 and carbonate metasedimentary rocks of the Animikie Basin.

2457 Bedrock

2458The Project area would be located at the contact of two major bedrock units, the2459Giants Range Batholith (GRB) and the Duluth Complex.

Environmental Review Support Document

- 2460The Duluth Complex is composed of mafic to felsic tholeiitic magmas related to the2461Midcontinent Rift System and makes up much the bedrock of northeast Minnesota. It2462is bounded by a footwall of Paleoproterozoic sedimentary rocks and Archean2463granite-greenstone terranes and a hanging wall largely of rift-related flood basalts2464and hypabyssal intrusions of the Beaver Bay Complex (Miller et al., 2002).
- 2465 The targeted mineralization of the Maturi deposit is hosted within the basal portion of 2466 the South Kawishiwi Intrusion (SKI), known as the BMZ. The SKI is bordered on the 2467 southwest by the Partridge River Intrusion, on the northwest by the Giant's Range 2468 GRB and Biwabik Iron Formation, the Anorthositic Series to the northeast, and on 2469 the southeast by the Bald Eagle Intrusion. Excluding the transmission corridor, 2470 lithologic units within the Project area include Mesoproterozoic rocks of the SKI and 2471 the Anorthositic Series of the Duluth Complex, as well as basalt xenoliths of the 2472 North Shore Volcanic Group. SKI magmas intruded sub-horizontally between hanging wall Anorthositic Series rocks and footwall granitic rocks of the GRB. 2473 2474 Additionally, the transmission corridor portion of the Project area includes the 2475 lithologic units of the Biwabik Iron Formation and the Giants Range Granite. A brief description of the map units associated with the Project are discussed in the 2476 2477 generalized stratigraphy of the Maturi deposit shown on Figure 5-2. A bedrock 2478 geology map of the Project area is shown on Figure 5-3 and cross sections of the deposit are shown on Figure 5-4 through Figure 5-7. 2479
- 2480As shown in the cross sections and discussed in the geologic description, the Project2481area does not include shallow limestone formations and the bedrock conditions2482associated with the Project are not susceptible to geologic conditions such as2483sinkholes or karst conditions.

2484 Surficial Geology

2485 Surficial geology in the Project area is dominated by glacial deposits associated with 2486 the Rainy Lobe that include areas of peat and lake sediment. In some localities along the shoreline of Birch Lake reservoir, the Rainy Lobe Till has been eroded by water, 2487 2488 resulting in a less rugged surface expression and a possible surface lag consisting of concentrated coarse-grained clasts. The lake sediment is predominantly silt, clay, 2489 2490 and organic material (Jennings and Reynolds, 2005). The thickness of surficial 2491 material in the Rainy Lake Watershed is generally less than (<) 50 ft (15.6 m) and is 2492 laterally discontinuous. In the vicinity of the plant site, bedrock crops out in 5 to 20% 2493 of the area (Ericson et al., 1976).

2494 Mineralogy

2495The deposit is composed of anorthositic troctolite to troctolites. The mineralogy2496consists primarily of plagioclase, olivine, pyroxenes, and oxides which make up more2497than 85% of the total mineralogy. The alteration minerals (e.g., serpentine, chlorite,2498etc.) typically comprise 1% to 6% of the mineralogy but are locally found in amounts2499up to 15%. Sulfide content of the ore-bearing geologic units ranges from 1% to 6%,2500with very local areas having sulfide contents outside of that range.

- 2501 The main four sulfides present in the deposit include: 2502 Chalcopyrite; . 2503 Cubanite: • 2504 Pentlandite; and 2505 Pvrrhotite. 2506 Other copper and nickel sulfides are present in the deposit but occur in minor 2507 amounts (<5% total sulfides). 2508 Structure 2509 Rock units and mineralization in the BMZ are planar and sub-parallel to the lower 2510 contact with an average strike approximately 60 degrees (°) and dips of 20°-52° to 2511 the southeast. The vertical thickness of the potentially mineable grades varies in 2512 width from 49 to over 591 ft (15 to 180 m), averaging from 197 to 328 ft (60 to 100 m). The depth of the potentially mineable grades ranges between 984 2513 2514 to -3,005 ft (300 to -916 m) amsl. 2515 The Maturi deposit has not been significantly deformed, but it has been subjected to 2516 minor displacements along reactivated basement faults, as well as cross faults. Mapped structures are mostly sub-vertical north-northeasterly striking faults. 2517 2518 5.1.2 Soils and Topography / Landforms The Project area is within the Nashwauk Uplands (212Lc) and Border Lakes (212La) 2519 2520 subsections of the Northern Superior Uplands Section within the Laurentian Mixed Forest (LMF) Province (MDNR, 2019a). Wetlands commonly occur in the numerous 2521 2522 depressions and potholes. The upland vegetation typically consists of fire-dependent 2523 forests and woodlands. Generally, the terrain within the Project area is flat to gently 2524 sloping with localized areas of small, steep ascents. From the low topographic point on the shoreline of Birch Lake reservoir, the topography gradually increases moving 2525 2526 inland and culminates just east of the Project area. Within a mile of the Project area, 2527 topographic relief varies as much as approximately 200 ft (61 m). 2528 Natural Resources Conservation Service Soil Data Survey
- 2529The Natural Resources Conservation Service (NRCS) maintains a public inventory of2530soil survey data for Minnesota. This inventory contains a variety of information on soil2531map unit distribution, physical and chemical characteristics, and information on soil2532usability for purposes such as structural foundations, septic fields, and other uses.
- 2533The NRCS soil survey data are complete for the entire Project area and there are no2534gaps in the mapping or the attribute data. NRCS soil survey data identified within the2535Project area are displayed on Figure 5-8. Map unit descriptions, physical soil2536properties, hydric soil, soil engineering properties, including information on corrosion

Environmental Review Support Document

- 2537 susceptibility and frost heave potential are described in Table 5-1. The most 2538 abundant NRCS soil map units within the Project area include: Eveleth-Conic-2539 Aquepts (I2b21D), Greenwood soils (J1a40A), Rollins-Cloquet (F25D), and Babbitt-2540 Aquepts, (I2b19A). 2541 Sensitive soils for this area include both hydric soils (which are susceptible to rutting in non-frozen conditions) and thin soils over shallow bedrock (which are susceptible 2542 2543 to erosion when disturbed). Sensitive hydric soil units have at least 50% abundance 2544 of hydric components and include the following map units: Rifle soils (1021A),
- 2544of hydric components and include the following map units: Rifle soils (1021A),2545Greenwood soils (1022A), Aquepts-Tacoosh-Rifle (I3-11A), Cathro muck (J2-40A),2546and Bowstring / Fluvaquents soils (K2-10A). According to the NRCS data,2547predominantly hydric soils account for approximately 27% of the NRCS data within2548the Project area.
- 2549Sensitive shallow soils have bedrock within 60 inches (1.5 m) of the ground surface2550and include the following map units: Eaglesnest-Wahlsten (F2B), Eveleth-Conic2551(F4E), Eveleth-Eaglesnest-Conic (F3D), and Eveleth-Conic-Aquepts (F35D).2552According to the NRCS data, soils with depths to bedrock of <60 inches (1.52 m)</td>2553account for <10% of the NRCS data within the Project area.</td>

2554 Ecological Land Types Data

- 2555The USFS maintains a public inventory of Ecological Land Types (ELT), which2556includes natural community information on geologic landforms, soils, and associated2557botanical assemblages within the SNF. These data are part of a hierarchy of2558landscape information that is intended to guide decision-making, inform2559environmental analyses, and direct the management and monitoring of natural2560resources on public lands. As defined in the Land and Resource Management Plan2561for the SNF (USFS, 2004), an ELT is:
- 2562 "an ecological map unit which is a subdivision of landtype associations or groupings
 2563 of landtype phases that are areas of land with a distinct combination of natural,
 2564 physical, chemical and biological properties that cause it to respond in a predictable
 2565 and relatively uniform manner to the application of given management practices. In a
 2566 relatively undisturbed state and / or a given stage of plant succession, an ELT is
 2567 usually occupied by a predictable and relatively uniform plant community."
- 2568The USFS ELT data are complete for the portion of the Project within Lake County.2569ELTs identified by the USFS within the Project area include those displayed on2570Figure 5-9. ELT 1 and 5 are considered to have sensitive soils because of2571susceptibility to rutting and compaction. ELT 18 is considered to have sensitive soils2572because of susceptibility to erosion. Attributes of each ELT are described in2573Table 5-2.

Environmental Review Support Document

2574 Monitor Well Data

2575In addition to the NRCS and ELT data, the thickness of unconsolidated sediments2576was recorded during the installation of monitor wells in and around the underground2577mine area and is shown on Figure 5-10. Monitor well records indicate most2578unconsolidated deposits range from 0 to 20 ft (0 to 6 m) thick near the underground2579mine area.

2580 5.1.3 Rock and Mineral Geochemical Characterization

2581 Geochemical characterization is a method for evaluating the reactivity of rock, 2582 minerals, and the potential for generation of ARD and metal leaching (ML). ARD is a result of the natural oxidation of sulfide minerals when exposed to air and water. The 2583 2584 process of oxidation occurs in series of chemical reactions and in stages, which 2585 typically progress from a near neutral state to a more acidic state. The rate at which this reaction occurs can vary based on a number of different environmental factors 2586 2587 such as mineral content and climate. Associated geochemical processes can also 2588 lead to ML, which is the release of metals into solution.

2589 The ARD and ML potential of Duluth Complex rocks, rocks which host the targeted 2590 mineralization, has been studied extensively by the MDNR, USGS, and private 2591 industry through both laboratory and field scale testing methodologies (e.g., Kellogg, 2592 et., al., 2014; Lapakko et., al., 2013; PolyMet, 2015; Schulte, et., al., 2016; and Wenz, 2016). In particular, MDNR has been conducting ongoing studies since the 2593 late 1970s. Many of the studies conducted have incorporated a tool known as kinetic 2594 testing, which demonstrates how a rock type weathers over time and allows for the 2595 identification of weathering patterns. Analysis of these weathering patterns allows for 2596 2597 the identification of whether ARD and ML is produced over time and to what extent. In some cases, kinetic testing has been conducted for more than a decade on Duluth 2598 Complex rocks and has led to the following fundamental understanding of the 2599 2600 potential for ARD and ML:

- Sulfur content is the controlling factor for the rate and severity of ARD generation from Duluth Complex rocks.
- The silicate minerals (i.e., olivine and calcic plagioclase) present in Duluth Complex rocks are sufficient to maintain approximately non-acidic conditions for extended periods (i.e., decades) for rock with low total sulfur content. For higher total sulfur content rock, silicate minerals have the ability to neutralize the generation of acidity (i.e., neutralization potential) and delay the development of ARD, thereby allowing time for implementation of appropriate engineering controls.
 - The potential for ARD is the primary control on ML.

2611Although a fundamental understanding of the potential for ARD and ML within Duluth2612Complex rocks exists, TMM has developed a Project-specific material

2601

2602

2603

2604

2605

2606 2607

2608 2609

2610

Environmental Review Support Document

2613 2614		characterization program in consultation with MDNR and in alignment with Minn. R., part 6132.1000. This program is ongoing and can be divided into three components:
2615 2616 2617 2618 2619		 Characterization of sulfide mineralization and ARD and ML potential of tailings, waste rock, development rock, and ore associated with the Duluth Complex and GRB rock; Utilization of characterization data to further inform material management; and
2620 2621		 Inclusion of data obtained from the material characterization program into modeling to further understand potential impacts to water quality.
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633		To date, TMM has conducted chemical composition and ARD analysis on development rock, waste rock, ore, and tailings. With respect to development rock and ore, less than 10% of samples tested to date are preliminarily classified as having an ARD potential. Unlike many other ore types, elevated sulfur contents in the Maturi deposit occur almost exclusively in association with the ore with the remainder of samples being classified as waste rock. Ore would be transported to surface and processed and the waste rock that has elevated sulfur, but below ore grade, would be placed in mined out stopes before engineered tailings backfill is pumped into the stope. Planned future testing of the development rock, waste rock, and ore includes continued static testing to inform necessary kinetic testing and additional mineralogical analysis with a specific focus towards the GRB that comprises the footwall, as this is a lesser studied rock unit.
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643		Tailings samples included in the chemical composition and ARD analyses were obtained from pilot plant testing conducted in March 2013. The material source for pilot testing originated from drill core in the western portion of the Maturi deposit. Total sulfur concentrations within the tailings were found to be less than or equal to 0.2 weight percent (wt. %). These low sulfur concentrations in the tailings occur because most of the sulfur is removed in the flotation process and would be captured as part of the concentrate material (the marketable product). The dominant mineral types found in the tailings are plagioclase, olivine, and pyroxene, which have been shown to provide neutralization potential. Leachate from initial kinetic testing of the tailings material was non-acidic over a 20-week period.
2644 2645		A future work scope for the continued development and execution of the material characterization program can be found in Section 5.3.
2646	5.2	Project Impacts
2647	5.2.1	Subsidence and Crown Pillar Stability
2648 2649 2650		An analysis (Wood, 2019) of subsidence and crown pillar stability was completed. A crown pillar is defined as the "rock bridge left between the upper most underground openings and the top of the bedrock." Subsidence is the surface movement

2651

Environmental Review Support Document

2652 mining, or underground mining. Subsidence is created when the surrounding ground 2653 moves through either an elastic response or through failure that fills the excavated 2654 void. The amount and extent of subsidence associated with mining depends on the 2655 type of mining, the size of the openings, the depth of the workings, the geology of the deposit, and the strength of the rock. 2656 2657 To assess the potential impacts from subsidence, a three-dimensional numerical 2658 simulation was developed based on the 25-year operation of the Project. Using 2659 expected average rock mass quality and assuming no backfill would be present, the 2660 simulation indicated that surface deformations may manifest as a positive heave above the crown pillar of $\pm 1/16$ to $\pm 1/8$ inch (or ± 2 to 3 mm) with subsidence in the 2661 2662 range of -1/24 to -1/16 inch (-1 to -2 mm) over areas where mining occurs at greater 2663 depths below ground surface (bgs). 2664 Simulations conducted for the 25-year operation of the Project using the worst-case 2665 rock mass guality indicated heave above the crown pillar and subsidence above areas where mining occurs at greater depths would be in the range of $\pm 2/3$ inch (or 2666 ±16 mm). The extent of these modeled surface deformations would be substantially 2667 2668 less than frost heave action of 1.5 inches (38 mm) for a typical 10 ft (3 m) depth of unconsolidated deposit assuming a 35% saturated porosity and frost action down 4 ft 2669 2670 (1.2 m). 2671 The same analysis modeled the impacts of crown pillar stability for the Project. 2672 Typically, surficial impacts associated with crown pillar stability manifest similarly to 2673 subsidence and can result in the lowering of ground surface. 2674 Stability of the crown pillar was analyzed using the internationally recognized 2675 empirical Scaled Span Crown Pillar assessment, as well as numerical modeling. The analysis assessed several configurations of the crown pillar and strength of the rock 2676 mass to determine that the crown pillar "would be stable with a Reliability of around 2677 2678 99%" indicating there would be minimal, if any, anticipated impact resulting from crown pillar stability. The results indicated "long-term use is suitable for public 2679 2680 access, with limited to no concern regarding conditions on closure." 2681 The analysis indicated that no perceptible subsidence is expected. The extent of 2682 potential subsidence and crown pillar stability impacts, assuming no backfilling, would be within the range of surface deformations associated with naturally occurring 2683 2684 environmental conditions such as frost heave. Modeling the stability of the mine without backfill would over-estimate the potential for subsidence as backfill provides 2685 pillar confinement increasing the geotechnical stability of the mine (further reducing 2686 the potential for subsidence). 2687

2688 5.2.2 Volume and Acreage of Soil Excavation and Grading

2689 Impacts from soil excavation and grading would be associated with the construction 2690 phase of the Project, primarily. The principal NRCS soil classifications that have the 2691 potential to be impacted include: Eveleth-Conic-Aguepts (I2b21D), Greenwood soils

2712

2713 2714

2715 2716

2717

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

Environmental Review Support Document

2692 (J1a40A), Rollins-Cloquet (F25D), and Babbitt-Aquepts, (I2b19A). The principal ELT 2693 classifications that have the potential to be impacted include: Upland Shallow Loamy 2694 Dry (16), Upland Very Shallow Loamy Droughty (17), and Upland Extremely Shallow 2695 Loamy Droughty (18). During construction, it is estimated that the Project would excavate approximately 2.2 million yd³ (1.7 million m³) and grade approximately 2696 2697 984.2 acres (398.3 ha).

2698 5.2.3 Soils and Topography Environmental Protection Measures

- 2699 The potential for impacts to soils and topography are associated with clearing and 2700 grubbing practices during the construction phase of the Project, as well as 2701 development of the dry stack facility during the operations phases.
- 2702 EPMs employed to reduce soil erosion during construction may include temporary 2703 control measures such as silt fences, sediment logs, and other industry standard 2704 construction stormwater controls. In addition to control measures employed during 2705 the construction phase of the Project, BMPs would be used to limit the erosional 2706 effects of wind and stormwater during operation and closure. BMPs that would be used may include: 2707
- 2708 • Surface stabilization measures - Compaction, surface roughening, dust 2709 control, mulching, erosion matting, riprap, temporary gravel construction 2710 access, temporary and permanent revegetation / reclamation, and placing plant growth media;
 - Run-off and run-on control and conveyance measures engineered channels, grade stabilization structures, ditch checks, run-off and run-on diversion berms; and
 - Sediment traps and barriers sediment detention basins, sediment traps, drill sumps, stabilized construction entrances, tire wash stations, silt fence, wattles, and straw bale barriers.

2718 Sediment and erosion control BMPs would be routinely inspected, evaluated for 2719 performance, and maintenance and repairs performed, as needed. Disturbed areas would be revegetated to reduce the potential for wind and water erosion. 2720 2721 Revegetation concurrent with construction activities would be maximized to the 2722 extent practicable to accelerate revegetation of disturbed areas. Stormwater control measures and management systems are discussed in further detail in Section 6.2.2. 2723

- Soils removed during construction would be stored in stockpiles and used for 2724 2725 reclamation purposes. Reclamation as described in Section 3.6.2, would be 2726 designed to meet Minn. R., chapter 6132, to "ensure that the mining area is left in a condition that protects natural resources." 2727
- 2728 The potential erodibility of tailings used to construct the dry stack facility would be minimized through Project design measures such as slope, compaction, soil cover, 2729

2731

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

and vegetation. These measures have been incorporated into the design of the dry

stack facility and would be implemented in conjunction with EPMs.

Environmental Review Support Document

2732 5.2.4 Geology, Soils, and Topography / Landform Impacts Summary The available information is adequate to make a reasoned decision about the 2733 2734 potential for, and significance of, the Project impacts to geologic, soil, and topographic resources. The potential impacts associated with soils and topography 2735 or subsidence and crown pillar stability are characterized in the following manner: 2736 2737 Temporary – The potential geologic impact to soils associated with erosion would be anticipated to be temporary. EPMs have been included 2738 in Project design to reduce impacts from stormwater during the 2739 2740 construction, operation, and closure phases of the Project. The analysis of subsidence and crown pillar stability indicates no perceivable impact 2741 2742 would be anticipated: 2743 Extent - Potential geologic impacts to soils would result in areas where soil disturbing activities occur. The extent of impact would be anticipated 2744 to be 2.2 million yd³ (1.7 million m³) of excavation and 984.2 acres (398.3 2745 2746 ha) of grading. The extent of potential impacts would be reduced through 2747 Project design measures such as stormwater controls and reclamation 2748 practices; and Regulatory Oversight - Potential impacts associated with soil 2749 2750 stabilization, erosion control, and stormwater management would be subject to continual oversight by the Minnesota Pollution Control Agency 2751 2752 (MPCA). Potential impacts and required soil stabilization associated with 2753 reclamation would be subject to continual oversight from MDNR. 2754 The analysis of potential geologic impacts associated with subsidence and crown pillar stability, and soils and topography did not identify any potential significant 2755 effects, and the topic is considered minor. 2756 2757 5.3 **Future Scope** 2758 The development and implementation of the materials characterization program is an ongoing effort by TMM which will culminate in documentation which captures the 2759 following information: 2760 2761 A framework for the materials characterization program including common terminology, incorporated references, and commonly used 2762 2763 acronyms; An overall Project description as it relates to geology, resource 2764 • development, and anticipated facilities; 2765 A work plan for the characterization of development rock, ore, and tailings 2766 • 2767 including data quality objectives, testing methods, sample selection rationale, laboratory selection, and data management; 2768 Document No. TMM-ES-025-0099 Page 73 **Revision 0A** 12-18-2019

Environmental Review Support Document

- A work plan for the implementation of the program to include sample group selection and testing proposals; and
 - A summary of results broken into static testing, kinetic testing, and field testing.
- 2773The current focus of the material characterization program is to continue static2774testing to further inform where kinetic testing is necessary. Results from future static,2775kinetic, and field testing will further inform material management and engineering2776controls, as necessary. In addition to informing material management and2777engineering controls, data from the material characterization program will be used as2778an input to water quality modeling outlined in Section 3.6.3.

2779 6.0 WATER RESOURCES

2780 **6.1 Baseline Conditions**

2781This section describes baseline conditions for surface water, groundwater, and2782wetlands in the vicinity of the Project area. For each of these water resources, this2783section identifies the resources in the vicinity of the Project area, describes the2784available information, and summarizes the baseline characteristics of the resources.

2785 6.1.1 Surface Water

2786This section identifies the watersheds and surface water bodies in the vicinity of the2787Project area, describes the available data sources, and summarizes baseline2788hydrology, stream morphology, and surface water quality.

2789 Watersheds and Waterbodies in the Vicinity of the Project Area

- 2790The Project would be located north of the Laurentian Divide with water flowing north2791towards Hudson Bay. The U.S. Geological Survey (USGS) defines this at a broad2792scale as the Rainy Headwaters (Hydrological Unit Code-8 [HUC-8] Subbasin [HUC279309030001]). The same area is defined by MDNR as the Rainy River Headwaters2794Major Surface Water Watershed. USGS HUC boundaries are shown on Figure 6-12795and MDNR watershed boundaries are shown on Figure 6-2. Figure 6-3 shows PWI2796waterbodies in the vicinity of the Project area.
- 2797At a finer watershed scale, the Project area is within the USGS Birch Lake and Stony2798River watersheds (HUC10) and Birch Lake, South Kawishiwi River, Denley Creek,2799and Outlet Stony River sub-watersheds (HUC12). The Project area is within the2800MDNR South Kawishiwi River, Filson Creek, Keeley Creek, Denley Creek, Stony2801River, and Unknown minor watersheds shown on Figure 6-2. Table 6-1 shows the2802area of Project features within the HUC and MDNR watersheds. PWI waterbodies2803within 1 mile of the Project area are listed on Table 6-2 and Table 6-3.

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815	In addition to the USGS and MDNR watersheds, five Project-specific watersheds were selected for evaluation in the vicinity of the Project area as shown on Figure 6-4, for future modeling and analysis of surface water flow. The Project- specific basins consist of sub-basins within the USGS / MDNR basins and were delineated by using a combination of light detection and ranging (LiDAR) imagery, outcrop mapping, and actual surveyed points from well completions to interpolate the drainage basin boundaries. The Project-specific watersheds include the MDNR designated Keeley Creek Minor Watershed (Watershed 1), Filson Creek Minor Watershed (Watershed 2), and portions of Birch Lake Minor Watershed split into three Project watersheds (Watersheds 3, 4, and 5), excluding Birch Lake reservoir and the South Kawishiwi River and terminating to the north at the dam on Birch Lake reservoir. Acreages for the five Project-specific watersheds are the following:
2816	 Watershed 1 (Keeley Creek) – 7,005 acres (2,835 ha)
2817	 Watershed 2 (Filson Creek) – 6,517 acres (2,637 ha)
2818	 Watershed 3 (Birch Lake North) – 2,839 acres (1,149 ha)
2819	 Watershed 4 (Birch Lake West) – 3,099 acres (1,254 ha)
2820	 Watershed 5 (Birch Lake Southeast) – 4,872 acres (1,971 ha)
2821	Topography in the five Project-specific watersheds generally slopes towards Birch
2822	Lake reservoir and towards the South Kawishiwi River. The high point is on the
2823	divide between Watershed 1 and Watershed 5 at approximately 1,610 ft (490.7 m)
2824	amsl compared with the elevation on the lake shore of approximately 1,420 ft
2825	(432.8 m) amsl.
2826	Birch Lake reservoir is the largest water body in the vicinity of the Project area. It was
2827	originally a complex of river beds before the 1890s when it was impounded for log
2828	transport (Reavie, 2013) by a dam at its northern end where it feeds into White Iron
2829	Lake reservoir through the South Kawishiwi River. Birch Lake reservoir has a
2830	maximum depth of 25 ft (7.6 m) and the water level can drop by as much as 4 ft
2831	(1.2 m) in winter according to water management needs of the Winton Hydroelectric
2832	Station located on the South Kawishiwi River between Garden Lake reservoir and
2833	Fall Lake.
2834	Figure 6-5 presents a diagram of conceptualized surface water flow through the
2835	Birch Lake and Stoney USGS Major Watershed. The three main inlets to Birch Lake
2836	reservoir are the South Kawishiwi River to the northeast, the Birch River to the west,
2837	and the Dunka River to the south. Stony River and Denley Creek, both part of the
2838	Stony River watershed, are also tributaries to Birch Lake reservoir.
2839	Surface water in all of the Project-specific watersheds drains towards Birch Lake
2840	reservoir and the South Kawishiwi River. North Nokomis Creek (Kittle Number:
2841	H-001-092-017.4) originates from the underground mine area and flows into Birch
2842	Lake reservoir, and South Nokomis Creek (Kittle Number: H-001-092-017.2) flows
2843	just north of the plant site before flowing into Birch Lake reservoir. North Nokomis
2844	Creek and South Nokomis Creek are designated by both their local name from past

Environmental Review Support Document

- 2845 field work and their Kittle Number to provide clarity to the reader. An unnamed creek 2846 originates at the eastern end of the underground mine area and flows into Filson 2847 Creek. Two unnamed creeks originate from Watershed 4 and flow into Birch Lake 2848 reservoir. Crocket Lake, located in Watershed 3, flows into a creek that flows across Watershed 3 and into the South Kawishiwi River. The South Kawishiwi River flows 2849 2850 southwest past the underground mine area into Birch Lake reservoir. Birch Lake reservoir is dammed where Trunk Highway (TH) 1 crosses over and flows into White 2851 Iron Lake reservoir below the dam. 2852
- 2853 Public waters basins and watercourses within one mile of the Project area are listed 2854 in Table 6-2 and Table 6-3.

2855 Data Sources

- 2856Surface water investigation activities date back to 1951 with USGS gaging station2857data. Site-specific investigative activities including stage readings, flow2858measurements, and water quality testing, have been undertaken by TMM from 20072859to the present. TMM has monitored over 65 surface water sites including streams,2860lakes, reservoirs, and rivers.
- 2861All publicly available and site-specific surface water hydrology and water quality2862monitoring sites are identified on Figure 6-6 and summarized in Table 6-4. Table 6-42863notes what water quality monitoring sites are currently being monitored, and the2864current monitoring sites are displayed on Figure 6-7.

2865 Publicly Available Data

- 2866USGS stream flow data is available for several gauging stations in the vicinity of the2867Project area. The period of record ranges from 1951 to the present; however, none2868of the gauging station records cover the full period. Additionally, lake stage has been2869recorded daily at Birch Lake reservoir and White Iron Lake reservoir.
- A long water quality record exists for the USGS station at the South Kawishiwi River, which was sampled monthly from 1966 to 1970 and quarterly until 1995.

2872 Site-Specific Data

- 2873Surface water baseline hydrology and water quality in the vicinity of the Project area2874has been characterized through targeted investigations since 2007. The Project2875surface water monitoring network includes both flow and water quality monitoring2876sites. The number of monitoring sites and frequency of monitoring has been refined2877as the Project has evolved.
- 2878Stream flow monitoring has been conducted in Filson Creek, North Nokomis Creek,2879Stony River, Flamingo Creek, Denley Creek, Kangas Creek, and three Unnamed2880Creeks. Streamflow monitoring stations and monitoring periods are listed in2881Table 6-4.

Environmental Review Support Document

2882 The Project surface water monitoring program has also included water quality 2883 sampling. Initial water quality sample locations were focused on Birch Lake reservoir. 2884 major streams draining to Birch Lake reservoir, and streams near the Dunka Pit. Two 2885 locations on Filson Creek and the South Kawishiwi River upstream of the underground mine area were also included. The number of sampling locations 2886 2887 expanded between 2008 and 2012 and ultimately included 26 sampling locations 2888 numbered DMSW1 through DMSW27 (DMSW6 was deleted from the program when a discharge from the Peter Mitchell Pit was terminated and the drainage dried up). 2889 2890 Surface water quality monitoring stations and monitoring periods are listed in 2891 Table 6-4. 2892 In addition to the Project-specific water quality monitoring stations, 11 water quality 2893 stations were monitored from 2007 through 2013 in the vicinity of the Dunka Pit as part of the Cliffs Erie National Pollutant Discharge Elimination System permit. These 2894 locations are listed in Table 6-4 and shown on Figure 6-6. 2895 2896 Parameters monitored as part of the Project surface water quality program have 2897 varied across both monitoring locations and monitoring events. In general, monitored 2898 parameters have included field measured parameters such as pH and temperature: general parameters such as alkalinity, chloride, and sulfate; nutrients such as 2899 2900 nitrogen and phosphorus; and metals such as aluminum, copper, and mercury. 2901 In addition to site-specific flow and surface water quality data, TMM has also 2902 conducted stream morphology surveys, as described in the section Stream 2903 Morpholoav. 2904 Hydrology 2905 This section describes stream flow, stream morphology, and water levels in Birch Lake reservoir. 2906 2907 The general hydrologic regime in the vicinity of the Project consists of a relatively thin, discontinuous, layer of quaternary unconsolidated materials (QUM) overlving 2908 relatively impermeable bedrock. Precipitation runs off into surface water bodies or 2909 2910 recharges groundwater in the QUM. Groundwater from the QUM primarily discharges to streams, lakes, reservoirs, and wetlands in the area. 2911 2912 Stream Flow 2913 Generally, stream flow can be divided into two components. The first is event flow, 2914 which is water that enters streams promptly in response to individual water-input 2915 events (rain or snow melt). The second is base flow, which is water that enters from 2916 persistent, slowly varying sources and maintains streamflow between water-input 2917 events. It is typically assumed that most, if not all, base flow is supplied by groundwater circulation in the drainage basin; however, base flow may also be 2918 2919 supplied by drainage of lakes or wetlands (Dingman, 2002). In the Project area, the

groundwater contribution is primarily a function of the more permeable

2920

Environmental Review Support Document

- 2921 unconsolidated deposits overlying relatively impermeable bedrock redistributing 2922 precipitation to surface water features. 2923 Table 6-5 presents average, minimum, and maximum stream flows over the period of 2924 record for eight gauging stations in the vicinity of the Project area: five USGS / 2925 MDNR stations and three Project-specific stations currently being monitored. Generally, stream flow follows a seasonal pattern, with peak flows in the spring and 2926 2927 low flow in the winter. Magnitude of flow varies widely with stream size with the highest flows measured in the South Kawishiwi River and the lowest flows in Filson 2928 2929 Creek and Keeley Creek. 2930 Base flow data were analyzed for rivers in the vicinity of the Project area using 2931 USGS / MDNR gauging station data for the South Kawishiwi River and Dunka River. 2932 A computer program called PART, developed by the USGS, was used to estimate 2933 average groundwater discharge under the most recent continuous stream flow daily 2934 record. The analysis is a preliminary step to characterize base flow and was only 2935 conducted for the locations that had daily record data sets available over the last five 2936 years (2014 through 2018) with minimal data gaps. Table 6-6 provides the results of 2937 the analysis. As additional data becomes available base flow will be further analyzed. 2938 These initial base flow results indicate that groundwater routed through the 2939 unconsolidated materials above the bedrock (caused by the impermeable nature of 2940 the bedrock and topography of the bedrock surface) provides a significant proportion of the stream flows. In the South Kawishiwi River, downstream of the Birch Lake 2941 2942 reservoir dam (Station USGS 0512610 / MDNR 72065002), where releases from the 2943 dam provide both event flow and continued base flow as release from Birch Lake 2944 reservoir storage, the preliminary base flow analysis indicates there is also a likely 2945 base flow component from unconsolidated deposit groundwater. Examination of the 2946 annual hydrographs for these streams also indicates large peaks in flow during the 2947 spring snow melt. Many of the wetland areas in the vicinity of the Project area may have a dampening effect on runoff from storm events. 2948 2949 The stream flow data available for DMSW3, DMSW16, and SW29 monitoring 2950
- 2950locations was not usable for the analytical base flow analysis because the2951measurements were not recorded frequently enough to define the response to an2952individual storm event. Additional analysis of base flow for these streams will be2953conducted as information becomes available. However, as presented in Table 6-5,2954all eight streams in the vicinity of the Project area generally maintain at least a small2955amount of flow during low flow periods indicating a component of base flow from2956shallow groundwater contributions, from the thin unconsolidated materials above the2957bedrock.

2958Stream Morphology

A stream morphology assessment was conducted in the summer of 2008 at seven sites identified on Figure 6-6 and summarized in Table 6-4. Entrenchment ratio, bankfull width-depth ratio, sinuosity, and the number of channels for the stream

2962 2963 2964 2965 2966 2967	(braided versus non-braided channels) was used to classify each stream into one of seven stream types (Rosgen, 1994). Each stream type shares some core characteristics and streams within each type often behave in similar ways. Therefore, the Rosgen classification system provides a reasonable starting point for evaluating each stream (Rosgen, 1994). All seven sites assessed were either Type E or Type C streams as summarized below:
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977	 Rosgen Classification Type E DMSM1 – Filson Creek DMSM3 – North Nokomis Creek (Kittle Number: H-001-092-017.4) DMSM21 – South Nokomis Creek (Kittle Number: H-001-092-017.2) DMSM5 – Unnamed Creek DMSM10 – Flamingo Creek Rosgen Classification Type C DMSM4 – Dunka River DMSM22 – Dunka River
2978 2979 2980 2981	Type E streams are typically stable streams and are not in the process of a channel evolution. They typically have low width-depth ratios (<12); are slightly entrenched (entrenchment ratio >2.2), and high sinuosity (> 1.5). The riparian vegetation is often dominated by grasses and shrubs.
2982 2983 2984 2985 2986	Type C streams are also typically stable streams not in the process of channel evolution. They typically have moderate to high width-depth ratios (>12); are slightly entrenched (entrenchment ratio >2.2), and moderate to high sinuosity (>1.2). Type C streams often have point bars on the inside bank of a meander and a relatively low stream slope. The vegetation is often dominated by woody trees and shrubs.
2987	Birch Lake Reservoir Water Level
2988 2989 2990 2991 2992 2993	Birch Lake reservoir water level is at an elevation of roughly 1,414 ft (431 m) amsl. The water level on Birch Lake reservoir is controlled by a dam operated by Minnesota Power at the northern most end of the lake where it drains into White Iron Lake reservoir through the South Kawishiwi River. Water levels are controlled based on water management needs of the Winton Hydroelectric Station at the north end of Garden Lake reservoir. Dam operation results in a winter drawdown of about 4 ft.
2994 2995	The <i>MDNR LakeFinder</i> (MDNR, 2019b) data identifies Birch Lake reservoir as having a recorded water level range of 5.7 ft (1.7 m).
2996	Surface Water Quality
2997 2998 2999	This section provides an overview of regional surface water quality, identifies impaired waters in the Project vicinity, and describes site specific surface water quality.

3000	Regional Surface Water Quality
3001 3002 3003 3004	The Project would be located in a region composed of forests, marshes, and wetlands. Surface water quality is generally considered good, with dilute cation / anion concentrations and broadly characterized as a calcium-bicarbonate type water with generally low turbidity, low TSS, and neutral pH (7.2 to 8.3) (MPCA, 2017).
3005 3006 3007 3008 3009 3010 3011 3012	Generally, the data demonstrate stream water quality at the South Kawishiwi River is weakly buffered, with dilute cations / anions, exhibiting fairly low specific conductance ranging between 19 to 50 microSiemens per centimeter (μ S/cm), and alkalinity between 120 and 320 milliequivalents per liter. Like many rivers in the region, the South Kawishiwi River is tea-colored due to high tannins, or incompletely dissolved organic materials. Water type is calcium-magnesium-bicarbonate type, likely due to the influence of geology and weathering of primary minerals, including calcium-rich plagioclase and pyroxene minerals. (Mast and Turk, 1999).
3013 3014 3015 3016 3017 3018 3019 3020	Streams in the vicinity of the Project area contain soft water with low alkalinity, low total dissolved solids (TDS), low nutrients, high color, very low trace metals concentrations and low fecal coliform counts (EQB, 1979). Relative to other streams, nutrient concentrations (i.e., phosphorous and nitrogen) are low. Concentrations of copper, nickel, and zinc are very low within the region (generally 1 to 2 microgram per liter [μ g/L]). Other trace metals of biological importance, including arsenic, cadmium, cobalt, mercury, and lead have median concentrations significantly below 1 μ g/L (EQB, 1979).
3021 3022 3023 3024 3025 3026 3027 3028	In lakes, the overall concentrations of nutrients (phosphorous and nitrogen) is relatively low, though median values were higher south of the Laurentian Divide than north of it. The most productive lakes within the region are shallow headwater lakes, surrounded by extensive bog and marsh areas (EQB, 1979). Because lakes have a large surface area of bottom sediments and longer residence times, the chemistry of outflow water can differ from the inflow water with respect to trace metals concentrations. Large lakes, such as Birch Lake reservoir, also exhibit variability in concentration of metals.
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040	While surface water quality is generally good (MPCA, 2017), the lakes in the region have been subject to human-induced environmental changes since European settlement of the region approximately 140 years ago (Reavie, 2013). Work to reconstruct past environmental conditions in the White Iron Chain of Lakes has shown anecdotal and measured evidence that indicates "several stressors are having detrimental impacts, or have the potential for negative effects, on the quality of this system" (Reavie, 2013). This is a result of treated and untreated domestic wastewater, and agricultural and urban runoff. Another historical human-induced water quality stressor in the area is erosion. This was a result of much of the watershed being deforested in the late 1800s through the early 1900s and is still an issue today with development of residential property and recreational motor boating (Reavie, 2013).

Environmental Review Support Document

3041 Impaired Waters 3042 There are two MPCA 303d Impaired Waters within 1 mile of the Project: 3043 Birch Lake reservoir for aquatic consumption-mercury in fish tissue; and 3044 Keeley Creek for aquatic life-fishes' bioassessments. 3045 Site-Specific Surface Water Quality 3046 Project-specific surface water quality data collected in 2017 and 2018 is presented in 3047 Table 6-7 as averaged values. In general, surface water in the vicinity of the Project 3048 area can be characterized as magnesium-bicarbonate type, with three exceptions. The Birch Lake reservoir outlet (DMSW12) and the South Kawishiwi River 3049 3050 (DMSW13) are calcium-bicarbonate type, and Keeley Creek (DMSW15) is characterized as magnesium-chloride type water. The water can be generally 3051 3052 characterized as well-oxygenated, low turbidity, pH neutral, and low sulfate. 3053 Average copper, nickel, and zinc concentrations range from approximately 1 to 3054 8 µg/L. Average concentrations of other trace metals of biological importance, 3055 including arsenic, cadmium, cobalt, and lead range from non-detectable to <3 μ g/L. All locations exhibited average mercury concentrations below 6.05 nanograms per 3056 3057 liter, the highest average measured at Keeley Creek (DMSW15). These average metal concentrations are generally similar to what was reported within the Minnesota 3058 3059 Regional Copper-Nickel Study (EQB, 1979). Average aluminum concentrations 3060 generally ranged from 100 to 200 µg/L, with two high outliers at Keeley Creek (DMSW15) and at North Nokomis Creek (DMSW3) (Kittle Number: H-001-092-017.4) 3061 3062 where average aluminum concentrations were approximately 350 µg/L. The 3063 aluminum concentration at South Nokomis Creek (SW28) (Kittle Number: H-001-092-017.2) was lower than the other locations with an average of 30 milligrams per 3064 3065 liter (mg/L). 3066 Surface water quality in creeks (North Nokomis Creek (Kittle Number: 3067 H-001-092-017.4), South Nokomis Creek (Kittle Number: H-001-092-017.2), and 3068 Keeley Creek) showed higher overall variability than lakes and rivers, with typically 3069 higher average concentrations for salts and metals at North Nokomis Creek (Kittle 3070 Number: H-001-092-017.4) and lower average concentrations at South Nokomis 3071 Creek (Kittle Number: H-001-092-017.2). The pH of the creeks was circumneutral to 3072 slightly acidic, ranging from 5.9 to 6.4. Redox (reduction / oxidation potential) of creeks was on average higher than the lakes and rivers. Average alkalinity ranged 3073 from approximately 3 to 22 mg/L between the creek sites, while hardness was 3074 3075 generally similar close to 20 mg/L. Copper concentrations in all three creeks was similar and low, near 1 µg/L, while nickel concentrations ranged from 2.6 µg/L to 3.9 3076 3077 µg/L. Concentrations of aluminum were most variable, and averages ranged tenfold 3078 from 30 to 354 µg/L. Average sulfate concentration within the creeks was low relative 3079 to rivers and lakes, with the highest average concentration at 0.3 mg/L. The creeks 3080 had higher average turbidity and higher TSS than rivers and lakes.

Environmental Review Support Document

- 3081 Surface water quality in rivers (Dunka River, Stony River, and South Kawishiwi 3082 River) exhibited circumneutral pH with values ranging from 6.9 to 7.3, and 3083 comparable redox and dissolved oxygen concentrations. In general, the Dunka River 3084 stands apart from the Stony River and the South Kawishiwi River because its water is roughly twice as hard as the other two rivers (approximately 60 mg/L vs 30 mg/L). 3085 3086 In addition to having a higher concentration of some metals, the Dunka River also has average salt concentrations that are elevated relative to the other rivers. For 3087 example, average sulfate concentration at Dunka River was 16.4 mg/L, and average 3088 3089 chloride concentration was 8.3 mg/L, while other river sites had concentrations close to 1 to 1.5 mg/L for both parameters. The Dunka River also had higher average 3090 3091 turbidity, TSS, and alkalinity than the other rivers.
- 3092 Birch Lake reservoir water quality was sampled at two locations, in 2017 to 2018, 3093 one at the outlet and one near the center. The center location (DMSW20) was 3094 sampled at various depths. Average concentrations of many parameters were similar 3095 between the two locations at the surface, including alkalinity, chloride, dissolved 3096 oxygen, and nutrients such as phosphorus and nitrogen. At DMSW20, pH decreases with depth from 7.4 at the top to 7.0 at lower lake depths, while measured redox 3097 3098 potential increases. These changes in redox and pH exert some control on metals concentrations and average nickel, copper, and lead concentrations decreased 3099 slightly from the surface to the bottom of the lake. Aluminum concentrations exhibited 3100 3101 the opposite pattern, with concentrations slightly increasing with depth. Sulfate 3102 concentrations in Birch Lake reservoir were constant, between 5.1 µg/L and 5.3 µg/L, 3103 with lower concentrations of 3.6 µg/L at the outlet.

3104 6.1.2 Groundwater

- 3105This section identifies the hydrogeologic units (HGU) in the vicinity of the Project3106area, describes the available hydrogeologic data sources, summarizes baseline3107hydrogeologic characteristics and groundwater quality, and identifies groundwater3108use in the vicinity of the Project area.
- 3109 Hydrogeologic Units in the Vicinity of the Project Area
- 3110HGU are groupings of geologic materials that have similar hydrogeologic properties3111and offer a degree of continuity across a project or regional area. Using field3112methods and associated interpretations of data the following HGUs have been3113defined for the Project area:
- QUM The QUM includes soil, alluvial deposits, peat, and glacial deposits from ground surface to the top of bedrock, generally a thickness of 0 (where bedrock occurs as an outcrop) to 50 ft (15.2 m);
 Shallow Bedrock Shallow bedrock is Duluth complex and Giants Range Batholith rock with low permeability, from the top of bedrock to a depth of approximately 300 ft (91.4 m) below the top of bedrock. Shallow bedrock is differentiated from deep bedrock by higher relative fracture density. In

Environmental Review Support Document

- 3121 areas near the BMZ outcrop, the BMZ can be considered shallow 3122
- 3123
- 3124
- 3125

3129

- 3126
- 3127 3128

bedrock; and

- Deep Bedrock Deep bedrock is Duluth complex rock with very low permeability (lower relative fracture density) that extends from approximately 300 ft (91.4 m) below the top of bedrock to the top of the GRB. Deep bedrock includes the BMZ in down dip locations.
- A conceptualization of the defined HGUs is shown on Figure 6-8, and the characteristics of the HGUs are detailed in the section Characteristics of Hydrogeologic Units.

3130 Data Sources

3131 While some public hydrogeologic data is available, most of the hydrogeologic data 3132 about the Project area has been obtained by TMM through targeted, site-specific 3133 investigations since 2008.

3134 **Publicly Available Data**

3135 Groundwater has been evaluated dating back to 1965.

3136 Site-Specific Data

3137 Field investigations by TMM have included various down-hole geophysical testing of 3138 open exploration coreholes, installation of monitor wells, vibrating wire piezometers, 3139 and wetland piezometers, hydraulic conductivity testing, water level readings from 3140 the monitor well / piezometer network, and water quality sampling of the monitor well 3141 network.

- 3142 Geophysical Testing
- 3143 Geophysical testing has been conducted at selected existing exploration coreholes 3144 including: acoustic televiewer photography of fractures in the corehole wall, down-hole hydrogeophysical logging, and discrete-interval inflatable packer testing. 3145 3146 The goal of the geophysical testing has been to characterize the spatial and depth 3147 distribution of hydraulic conductivity within the bedrock.
- 3148 TMM has conducted corehole hydrogeophysical testing at over 400 intervals in 74 3149 coreholes. Field investigation activities conducted in exploration coreholes through 3150 2018 are summarized in Table 6-8. Table 6-8 also summarizes current work in 3151 progress (field testing and data analysis). Figure 6-9 shows the locations of 3152 coreholes that have been hydrologically tested.
- 3153 Hydrogeophysical borehole logging testing methodology developed by Colog, Inc. 3154 has been employed to define flowing zones within the corehole and to focus further 3155 packer testing. For this method, the formation water in an open corehole is displaced 3156 with deionized water. Then, while pumping from the top of the water column at a low flow rate, the entire borehole is logged with an electrical conductivity and 3157

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170	temperature probe. The electrical conductivity / temperature log identifies where groundwater from the geologic formation (with elevated salinity) has entered the corehole. Typically, pumping is continued, and two or three specific conductance logs are run at later times. For a particular zone producing groundwater, the multiple electrical conductivity logs show the migration of the salinity front in the borehole, which can be used to estimate the water production flow rate of the producing zone and define preferred test intervals. An example of a hydrogeophysical log is shown on Figure 6-10. The identified flow zones are then targeted for isolation via down– hole packers and testing is conducted at those discrete zones to estimate formation hydraulic conductivity. Standard aquifer test analysis was conducted and the results of the geophysical testing were used to inform the hydrogeologic conceptual model, HGUs, and hydraulic conductivity distribution. Additional corehole testing is not anticipated at this time.
3171	Monitor Well Network
3172	Monitor wells and piezometers to facilitate testing, sample acquisition, and water
3173	level measurements have been installed in the vicinity of the underground mine area
3174	since 2014. The monitoring points were installed as "nested sites" with several wells
3175	installed at pre-determined discrete intervals at each drill pad to target the various
3176	HGUs. Targeted HGUs included the following:
3177	 QUM HGU – Q1 piezometers and Q2 monitor wells.
3178	 Q1 Wells – Hand augered piezometers installed in wetland
3179	settings located as close to a well pad site as possible. These
3180	wells are intended to provide wetland water level data and are
3181	typically shallow (3 to 7 ft [0.9 to 2.1 m]) 2-inch steel installations;
3182	and
3183	 Q2 Wells – Sonic drilled monitor wells installed at the nested pad
3184	and screened in the QUM above the bedrock to intersect the
3185	water table. Q2 wells are constructed with 2-inch polyvinyl chloride
3186	(PVC) and terminate at the bedrock surface.
3187	 Shallow Bedrock HGU – B1 and B2 monitor wells.
3188	\circ B1 Wells – isolate the top zone of 30 to 50 ft (9.14 to 15.2 m) into
3189	the competent shallow bedrock HGU. 2-inch PVC wells installed
3190	by setting a cemented surface casing into the bedrock and then
3191	coring into the bedrock to approximately 40 to 50 ft (12.2 to 15.2
3192	m) and isolating the well in competent bedrock (screened in the
3193	bottom approximately 20 ft [6.1 m] of bedrock); and
3194	 B2 Wells – isolate the zone of 100 to 150 ft (30.5 to 45.7 m) into
3195	the shallow bedrock HGU. 2-inch PVC wells installed by setting a
3196	cemented surface casing into the bedrock and then coring into the
3197	bedrock to approximately 150 ft (45.7 m) and isolating the well in
3198	bedrock (screened in the bottom approximately 20 to 30 ft [6.1 to
3199	9.1 m] of bedrock).
3200	 Deep Bedrock HGU – B4 monitor wells
	·

3201 3202 3203 3204 3205 3206 3207 3208 3209	 B4 Wells – 2-inch or 5-inchstainless steel wells installed by setting a cemented surface casing into the bedrock and then coring into the bedrock to the approximate bottom of the BMZ (approximately 300 ft to 2,200 ft [91.4 m to 670.6 m] depending on location) and isolating the well in the BMZ (approximately 200 ft (61 m) of screen). Vibrating Wire Piezometers – Installed by setting a cemented surface casing into the bedrock and then coring into the bedrock to selected intervals and setting pressure transducers at three discrete intervals.
3210 3211 3212	Table 6-9 presents the correlation between monitor wells and HGUs and Table 6-10 summarizes the monitoring points installed to support the Project: 94 monitor wells and piezometers have been installed. Figure 6-11 shows the monitor well locations.
3213	Hydraulic Conductivity Testing in Monitor Wells
3214 3215 3216	To define the hydraulic characteristics of the QUM and further define the hydraulic characteristics of the bedrock, all Q2, B1, B2, and B4 monitor wells were scheduled for aquifer testing. Aquifer testing was implemented in two steps:
3217 3218 3219 3220 3221 3222 3223 3223 3224 3225	 Slug Testing – volume displacement within each well was implemented and the resulting water level response was recorded; and Wells that exhibited the capability to produce enough groundwater based on drilling observations and slug test results were then pump tested. After a constant pumping rate was identified, each tested well was allowed to recover and then the constant rate was applied while measuring pumping rate and water levels over time. At the end of the test the pumping was terminated and the corresponding recovery was recorded.
3226 3227 3228 3229 3230	Monitor well hydraulic conductivity testing is summarized in Table 6-11 and included 132 tests. Standard aquifer test analysis was conducted, and the results of the hydraulic conductivity testing programs were used to inform the hydrogeologic conceptual model, HGUs, and hydraulic conductivity distribution. Aquifer testing of the 2019 monitor wells is anticipated to be completed in 2019.
3231	Groundwater Level Measurements
3232 3233 3234 3235 3236 3237 3238	Each groundwater monitoring point has been surveyed to determine an elevation reference point. Monthly water level measurements are obtained by measuring the depth to groundwater from the surveyed measuring point. The water elevation data is used to determine groundwater flow direction, seasonal variation, response to precipitation trends, model calibration, and further inform the hydrogeologic model / HGU differentiation. Monthly water level data acquisition is anticipated to continue through the permitting process.

3239	Groundwater Quality Sampling
3240 3241 3242 3243 3244 3245	Groundwater sampling commenced in the second quarter of 2018 and has been conducted on a quarterly basis at all available wells once they are constructed and adequately developed. Sample protocol included initial water level measurements, a pre-determined well purging methodology, field parameter data acquisition via an instrumented flow-through cell, sample preservation for laboratory analysis, and documentation. Table 6-12 summarizes the sample events conducted to date.
3246 3247 3248 3249 3250	Quarterly sampling of groundwater in different HGUs measures natural variations in groundwater quality over time. In addition to collection of field parameters, samples are preserved for laboratory analysis for select constituents. The groundwater results are currently being analyzed to determine baseline water quality, water types, and variation across the Project area.
3251 3252 3253	Sampling is anticipated to continue with the sampling schedule to be determined. Sample results will be used to define baseline conditions and differentiate water quality types over space, time, and HGU.
3254	Ongoing Groundwater Studies
3255 3256	In addition to the field efforts completed to date, ongoing sampling, monitoring, and testing activities continue including:
3257 3258 3259	 Slug and pump testing of monitor wells installed in 2019; Monthly water level data acquisition; and Quarterly water quality sampling.
3260 3261 3262	The tailings management site and the plant site the subjects of current investigative activities with additional monitor wells and associated testing / sampling planned for later 2019 / 2020.
3263 3264 3265 3266 3267 3268 3269	The existing information base coupled with ongoing efforts are anticipated to yield results that would continue to allow the hydrogeologic system to be characterized to the degree necessary to define and address potential impacts to the hydrological regime and support the various permitting efforts associated with the Project. This characterization would provide data for assessing certain aspects of the Project as it pertains to engineering and environmental analysis including, but not limited to, the following:
3270 3271 3272 3273 3274 3275	 Definition of baseline hydrogeologic conditions; Estimation of groundwater inflows to the access decline and underground workings as they are developed; Definition of groundwater quality; Estimation of water level drawdowns in overburden and bedrock due to mine dewatering;

Environmental Review Support Document

3276 Assessment of the re-saturated mine workings and mixing with adjacent 3277 groundwater analysis of effects associated with the dry stack facility; and Analysis of effects associated with the plant site. 3278 Characteristics of Hydrogeologic Units 3279 3280 This section describes each of the HGUs, then presents site-specific hydraulic 3281 conductivity information and describes site-specific groundwater flow directions. 3282 **Description Hydrogeologic Units** 3283 Quaternary Unconsolidated Materials Hydrogeologic Units 3284 The uppermost HGU in the Project area is the QUM. The QUM is made up of 3285 unconsolidated deposits including stream alluviums, peat, and glacial deposits consisting of outwash gravels, sands, silts, and clays. The QUM is laterally 3286 3287 discontinuous with its thicknesses defined by the underlying bedrock surface topography. It ranges from zero thickness in areas of bedrock outcrop to 3288 3289 approximately 50 ft (15.2 m) in areas of outwash and incised bedrock valleys. Sand 3290 and gravel deposits associated with glacial outwash are scattered throughout this region and are generally 10 to 30 ft (3.1 to 9.1 m) thick. Peat deposits have been 3291 3292 accumulating since the ice retreated and may be a few feet thick up to 20 ft (6.1 m) thick. Individual layers of the materials tend to be laterally discontinuous and 3293 3294 normally cannot be correlated between boreholes. An analysis of borehole data 3295 found that local QUM deposits generally ranged in thickness from 0.5 to 52 ft (0.2 to 13.1 m) with an average thickness of 10 ft (3.1 m). 3296 3297 The QUM usually contains a water table that roughly follows the ground surface topography, but that may locally be related to the geometry of the top of the bedrock 3298 3299 surface (Ground Water Monitoring and Assessment Program [GWMAP], 1999). As a 3300 result, sand and gravel zones in glacial drift are the most favorable sources of groundwater in the region. However, the surrounding area has little groundwater 3301 3302 development because the glacial drift is impermeable, thin, discontinuous, or absent (Ericson et al., 1976). 3303 3304 Shallow groundwater in the QUM in the vicinity of the Project area originates as 3305 recharge resulting from precipitation, raising the water table locally. A significant 3306 percentage of precipitation is consumed by vegetation (evapotranspiration) or 3307 intercepted by the QUM and drained toward surface water bodies (Ericson et al., 1976). Recharge has been estimated at 2.3 to 7.6 inches per year (Smith and 3308 Westenbroek, 2015). Wetland areas can intercept and reduce recharge to the QUM 3309 3310 as most wetlands contain a lower layer of peat with very low hydraulic conductivity 3311 that restricts downward seepage Vertical downward infiltration is limited by the low-permeability of the bedrock units. Zones of low permeability till may produce 3312 3313 locally confined conditions but generally the system is assumed to be unconfined

- 3314In general, groundwater flow in the QUM is slow because of the relatively low3315permeability of glacial till and peat, the relatively small hydraulic gradients, and3316because the flow system in the surficial materials is disrupted by outcrops of3317relatively impermeable bedrock (Siegel and Ericson, 1980).
- 3318In the Project vicinity, a portion of the shallow groundwater discharges to ponds,3319wetlands, and local streams, which connect to larger surface water features such as3320Filson Creek or Keeley Creek that direct surface water to the South Kawishiwi River3321or Birch Lake reservoir.
- 3322Groundwater flow directions in the Project area are generally towards Birch Lake3323reservoir to the west and the South Kawishiwi River to the north or other smaller3324surface water tributaries, as further described in the section Site-Specific3325Groundwater Flow Direction.
- 3326 Shallow Bedrock HGU
- The crystalline bedrock in the Duluth Complex has little to no primary porosity, but 3327 3328 open fractures and fault rubble zones can provide secondary porosity that can 3329 convey groundwater (Siegel and Ericson, 1980). Fractures and joints in the Duluth 3330 Complex may extend to considerable depths but are more extensive in the upper 3331 200 or 300 ft (61.0 or 91.4 m) (Siegel and Ericson, 1980). Overall, the shallow 3332 bedrock HGU has very low hydraulic conductivity. Potential recharge from precipitation greatly exceeds the bedrocks capacity to conduct water, resulting in 3333 most of the precipitation being routed to surface runoff and discharge / storage to 3334 3335 lakes, streams, and wetland features.
- 3336Locally, the top few feet of the bedrock can exhibit enhanced weathering and3337alteration providing increased hydraulic conductivity in contrast to relatively unaltered3338bedrock a few feet deeper. In these areas, this weathered veneer is likely in direct3339contact and responds with the groundwater in the QUM.
- 3340The distinction between the shallow bedrock HGU and the deep bedrock HGU3341appears to be localized and depth-dependent rather than geological. The upper zone3342is locally composed of sub-horizontal fractures resulting in part from post glacial3343isostatic rebound. Three hundred feet of bedrock thickness is generally considered3344the limit of isostatic rebound forces associated with glaciation. Hydraulic3345conductivities have generally been found to be higher above 300 ft (91.4 m), and3346lower below 300 ft (91.4 m).
- 3347Fracture frequency is higher above approximately 300 ft (91.4 m) bgs, and a very low3348percentage of fractures have been observed to generate flow. Hydrogeophysical3349logging and packer testing demonstrate that approximately 1% of the total fractures3350convey groundwater flow. Hydrogeophysical logging suggests that groundwater flow3351tends to be concentrated in a relatively small number of discrete flow zones. It is3352typical when performing hydrogeophysical logging in a deep open corehole, that3353measurable flow is observed to come from two or three narrow zones, each typically

Environmental Review Support Document

3354 <10 ft (3.1 m) thick. Most of the flow zones are in shallow bedrock associated with 3355 B1, although there are occasionally deeper flow zones. For 11 coreholes logged by 3356 hydrogeophysical in 2018, the total length of no-flow zones varied from 3357 approximately 80% to 98% of the total length of the hole. The average flow zone frequency is approximately 1.5 measurable fractures per 100 ft (30.6 m) above a 3358 3359 depth of 300 ft (91.4 m). Below a depth of 300 ft (91.4 m), the flow zone frequency is 3360 significantly less. Deep Bedrock HGU 3361 3362 Horizontal hydraulic conductivity in the deep bedrock HGU is the result of secondary porosity due to fracturing and faulting; the unfractured bedrock has little to no 3363 porosity (Siegel and Ericson, 1980). The probability of obtaining water from bedrock 3364 3365 decreases with depth and is slight at depths >300 to 500 ft (91.4 to 152.4 m) below 3366 the top of bedrock (Ericson et al., 1976). 3367 The transition from the shallow bedrock to the deep bedrock is not abrupt and has 3368 been estimated to occur at approximately 300 ft (91.4 m). The deep bedrock HGU includes bedrock >300 ft (91.4 m) in thickness and extends to the base of the Duluth 3369 3370 Complex. The BMZ is generally present within the bottom of the deep bedrock HGU and represents the bottom of the Duluth Complex and the top of the GRB. This 3371 3372 boundary also reflects the general lower limit of mining with the bottom of the BMZ 3373 serving as the foot wall. 3374 The deep bedrock HGU is characterized by competent bedrock and low fracture 3375 density compared to the overlying bedrock HGUs. The average fracture flow zone 3376 frequency is approximately 0.5 measurable fractures per 100 ft (30.6 m) of vertical 3377 thickness in the depth range of 300 ft to 4,000 ft (91.4 to 1219.2 m) bgs. The transition within the deep bedrock HGU from augite troctolite to the BMZ is a distinct 3378 geologic and mineralogical boundary but hydraulically the BMZ and other deeper 3379 3380 bedrock characteristics are similar. Site-Specific Hydraulic Conductivity 3381 3382 <u>QUM</u> 3383 At the end of 2018, three Q2 monitor wells had been hydraulically tested in the Project area. The range in hydraulic conductivity of all Q2 tests is 2.65 x 10⁻⁵ to 3384 3385 5.25 x 10^{-4} cm/sec, and the geometric mean of those tests is 2.8 x 10^{-4} cm/sec. 3386 Bedrock 3387 Data from packer and aquifer testing to date has yielded a range of hydraulic 3388 conductivity from 4.6 x 10^{-10} to 3.0 x 10^{-4} cm/sec. Studies to date show that hydraulic conductivities are generally at the higher end of the measured range generally above 3389 3390 300 ft (91.4 m) bgs, while hydraulic conductivities are generally very low below 300 ft 3391 (91.4 m) bgs. Document No. TMM-ES-025-0099 Page 89

3392	The hydraulic conductivity data from corehole packer test and monitor well aquifer
3393	tests were plotted and reviewed. The data set was filtered by removing results of
3394	tests conducted above the depth of 100 feet as well as tests in which the lower limit
3395	of resolution of the equipment was exceeded. Figure 6-12 is a plot showing
3396	measured hydraulic conductivity versus bedrock depth. Testing shows that the
3397	hydraulic conductivity of bedrock decreases with depth. The red line on the plot is the
3398	geometric mean of hydraulic conductivity values with specific depth intervals in
3399	bedrock. As shown, the hydraulic conductivity values range over many orders of
3400	magnitude and reflect the nature of the bedrock hydraulics where groundwater flow
3401	tends to occur in discrete intervals that are a small portion of the rock mass and are
3402	vertically separated. The black line on this plot approximates the likely maximum
3403	hydraulic conductivity values with depth and shows a decrease in hydraulic
3404	conductivity with depth.
3405	Hydraulic conductivity results from the 2019 aquifer testing field program will be
3406	added to the hydraulic conductivity database and used to update the plot on
3407	Figure 6-12. This information will improve the understanding of the groundwater flow
3408	system and the hydraulic properties of HGU's in the Project area vicinity.
3409	Based on the distribution of hydraulic conductivity with respect to underground
3410	mining areas under consideration coupled with the very low hydraulic conductivity
3411	values measured, very little mine inflow is expected. Figure 6-13 shows the depth
3412	and percentage of mine workings with respect to the measured hydraulic conductivity
3413	distribution. As shown on Figure 6-13, 74% of the mine workings are expected to
3414	produce virtually no flow due the low hydraulic conductivities at depths >1,600 ft
3415	(487.7 m) and the high percentage of mining occurring below 1,600 ft (487.7 m).
3416	Measurable groundwater inflows are expected in about 21% of the upper mine
3417	workings. The lack of groundwater flow into the mine is expected to minimize
3418	hydrological effects associated with mine dewatering.
5410	nyulological ellects associated with hime dewatering.
3419	Site-Specific Groundwater Flow Direction
3420	Groundwater flow directions for the QUM and shallow bedrock HGUs were evaluated
3421	based on the water level data collected for the June 2019 measurement event. The
3422	Birch Lake reservoir outlet maintained a lake water elevation of approximately
3423	1,419.5 ft (432.7 m) amsl at the time the water level measurements were obtained.
3424	Potentiometric surface maps of the QUM HGU (Q2 monitor wells), the upper portion
3425	of the shallow bedrock HGU (B1 monitor wells), and the deeper portion of the
3426	shallow bedrock HGU (B2 monitor wells), are presented as Figure 6-14, Figure 6-15,
3427	and Figure 6-16, respectively.
3428	To construct each potentiometric surface, Birch Lake reservoir and the South
3429	Kawishiwi River were assumed to represent regional groundwater hydrologic
3430	boundary with a prescribed hydraulic head elevation of 1,419.5 ft (432.7 m) amsl.
3430	The groundwater level contour lines fit the measured water levels and the presence
3431	•
3432	of this hydrologic boundary. As expected, the water level data shows flow directions Document No. TMM-ES-025-0099 Page 90
	Page 90

Environmental Review Support Document

- in all three depth intervals which are generally oriented towards Birch Lake reservoir
 and the South Kawishiwi River. Additionally, the potentiometric surfaces mimic each
 other in terms of contour geometry and elevation as would be expected in this
 system.
- 3437 While the groundwater contours show a shallow hydraulic gradient towards Birch Lake reservoir, the very low hydraulic conductivity of the bedrock severely limits the 3438 3439 potential for actual flow of groundwater from the deeper bedrock HGU into Birch 3440 Lake reservoir. The likelihood of flow paths going toward Birch Lake reservoir 3441 decreases with depth in the bedrock due to: (1) increasing vertical distance required 3442 for a relatively short horizontal distance from the BMZ to Birch Lake reservoir, and 3443 (2) decreasing vertical conductivity with depth. Groundwater from the deep bedrock 3444 HGU (which would be exposed during mining) presents a very low potential for interaction with Birch Lake reservoir due to the extremely low hydraulic conductivity 3445 measured in this HGU and because flow would have to move vertically upward over 3446 3447 3,500 feet within a small horizontal distance, which is highly unlikely. Even though 3448 the shallow hydraulic gradient is oriented towards Birch Lake reservoir, virtually all of the subsurface flow would be from the more permeable QUM HGU. Shallow bedrock 3449 3450 and deep bedrock contributions to Birch Lake reservoir are likely to be negligible.
- 3451 The very low hydraulic conductivity of the deep bedrock has been demonstrated by 3452 the very slow recovery of several of the newly constructed B4 wells. Of the six B4 3453 wells constructed, as of fall 2019, five have not yet recovered over a rand of 25 to 79 weeks to static water elevations and are exhibiting very slow recovery rates. Monitor 3454 well MN-503B4 located near the BMZ outcrop has recovered to static water elevation 3455 3456 conditions and currently is the only viable water level measurement point. Once the 3457 other B4 monitor wells have sufficiently recovered, data from the B4 monitor well 3458 network will be used to construct a potentiometric surface for the deep bedrock HGU.

3459 Groundwater – Surface Water Interactions

3460 The QUM HGU is in direct contact with surface water features and can serve locally 3461 as a either a recharge source or a discharge sink depending on the bedrock surface 3462 geometry. The bedrock HGUs generally are not in direct contact with surface water 3463 features and primarily function as a layer which retards infiltration of precipitation and 3464 directs precipitation to surface water features through the QUM. Hydraulic contact and flow between the bedrock HGUs and surface water features is negligible due to 3465 3466 the minimal hydraulic conductivity of the bedrock and the shallow hydraulic gradients 3467 in the area.

3468 Groundwater Quality

3469This section provides an overview of regional groundwater quality then summarizes3470the site-specific groundwater data collected by TMM.

3471	Regional Groundwater Quality
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481	Groundwater quality in Northern Minnesota varies locally with geology and with depth, but can be generalized broadly as hard water, with elevated concentrations of iron and / or manganese (Cotter et al, 1965; Maclay, 1966). Siegel and Ericson (1980) reported groundwater quality from within the Project area and observed significant differences related directly to the geology of the aquifer. For example, the reported mean and median concentrations of major ions, specific conductivity, and hardness in water from till hydrostratigraphic units was twice that found in water from sand and gravel aquifers. The source of some of this variation may be related to the surface area to volume ratios between the till and sand / gravel aquifers and retention / contact times due to differences in hydraulic conductivity.
3482 3483 3484 3485 3486	The observed pH of water from sand and gravel aquifers ranged from 5.8 to 7.1 while the pH of water from Rainy Lobe till ranged from 6.2 to 8.0. This difference likely reflects rapid recharge to the sand and gravel aquifers from precipitation, and a shorter time available for equilibration and chemical reactions with aquifer material (Siegel and Ericson, 1980).
3487 3488 3489 3490 3491 3492 3493 3493 3494 3495 3496 3497	Samples from sand and gravel aquifers, and also from peat, are mixed calcium- magnesium bicarbonate type groundwater, which is typical of groundwater in contact with calcic igneous minerals. Water sampled from wells in till are calcium- magnesium-bicarbonate or calcium-magnesium-sulfate type, with the latter being collected in the vicinity of the Project area (Siegel and Ericson, 1980). Concentrations of trace metals such as copper, cobalt, and nickel are generally low (<30 µg/L) but can exceed 100 µg/L in surficial material directly over the mineralized contact zone between the Duluth Complex and older rocks. Siegel and Ericson (1980) attribute these concentrations to the oxidation of sulfide ores at the contact zone. Less variation is observed in chromium, cadmium, and lead. Iron concentrations vary strongly and may reflect local redox conditions.
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507	Groundwater quality in the deeper wells is difficult to characterize from historical data but can be characterized as sodium-chloride to sodium-bicarbonate type. The occurrence of localized brackish water has been reported by the Superior National Forest. Siegel and Ericson (1980) sampled six wells in the Duluth Complex, and observed high level of variability. For example, chloride concentrations ranged three orders of magnitude, from 1.3 to 1500 mg/L. Some data suggests concentrations may increase with depth, but it is likely that groundwater quality is a function of local hydrogeochemical conditions because water in the Duluth Complex occurs in isolated fractures and joints. The pH of water at depth was generally neutral to basic ranging from 7.0 to 8.5.
3508 3509 3510 3511	MPCA (GWMAP, 1999) reports that groundwater quality is generally good in the region, and generally controlled by geology. Precambrian aquifers in the region have groundwater quality comparable to similar aquifers statewide. Concentrations of major cations and anions are generally lower in Quaternary hydrostratigraphic units

- 3512relative to deeper units statewide, though concentrations of trace metals can be3513higher. Trace inorganic parameters that may be of concern locally include beryllium,3514boron, manganese, arsenic, and selenium. In general, the Quaternary aquifers tend3515to be calcium-magnesium-bicarbonate type waters, while localized deeper water can3516be sodium chloride type.
- 3517 Site-Specific Groundwater Quality
- 3518The following description and characterization of the site-specific water quality is3519based on field and laboratory results from the sampling events during the second,3520third and fourth quarters of 2018. Fourteen wells were sampled during the second3521quarter, 16 wells were sampled during the third quarter, and 25 wells were sampled3522during the fourth quarter. Twelve wells were sampled during all three quarters.3523Average concentrations for monitored parameters at these locations are presented in3524Table 6-13. The monitor well network is shown on Figure 6-11.
- 3525Samples have also been collected in Q1 and Q2 of 2019 but the data is not currently3526available and has not been presented here. As monitor wells are adequately3527developed and have recovered to approximate pre-drilling conditions, they will be3528added to the water quality sampling network to provide spatial and temporal3529information to further characterize the groundwater quality of the Project area.
- 3530 QUM HGU (Q2) Monitor Wells
- 3531Three Q2 wells were monitored during each of the three quarters sampled in 2018,3532including EISV-511Q2, EISV-511Q2A, and MN-520Q2.
- 3533 Groundwater in the QUM can be characterized as either calcium-bicarbonate or 3534 magnesium-bicarbonate type waters. The pH of water in the Q2 wells was the lowest of the three HGUs, averaging 5.6 to 6.4, and likely reflecting meteoric influence. 3535 3536 Groundwater in the QUM had higher average temperatures than deeper HGUs, and 3537 generally lower turbidity and TDS. Groundwater in the QUM ranged from soft to 3538 moderately hard and was buffered with average alkalinity ranging from approximately 3539 40 to 75 mg/L. Ion concentrations were generally more dilute than wells in other 3540 HGUs, with concentrations of sodium that were nearly an order of magnitude less 3541 than what was observed in shallow bedrock HGU wells. Similarly, sulfate 3542 concentrations at Q2 wells were lowest of any HGU with average concentrations of approximately 4 mg/L. Nickel and copper concentrations are low in two of three wells 3543 3544 in the QUM HGU. Nutrient concentrations are low to non-detect in Q2 wells. 3545 Comparison between groundwater in the QUM and surface water shows that the 3546 surface water is more dilute than the groundwater.
- 3547 Shallow Bedrock HGU (B1) Monitor Wells
- 3548Six B1 wells were monitored during each of the three quarters sampled in 2018,3549including EISV-509B1, MN-512B1, MN-522B1, MN-543B1, MN-544B1, and3550MN-545B1.

3551	The B1 wells exhibit more heterogeneous water quality and include calcium-
3552	bicarbonate type, sodium-bicarbonate type, and magnesium-bicarbonate type
3553	waters, with some wells reflecting water quality similar to the QUM HGU while others
3554	showing signatures more similar to B2 wells. For example, the average pH observed
3555	in B1 wells ranged from 6.5 to 9. Average chloride concentrations ranged three
3556	orders of magnitude from 0.9 to 1180 mg/L. Similarly, large variation and ranges
3557	were observed in average concentrations for TDS, (142 to 3350 mg/L), for turbidity
3558	(5.6 to 82.7 mg/L), for hardness (46 to 1720 mg/L) and for alkalinity (7.3 to
3559	173 mg/L). The range of constituents may be related to continued well and adjacent
3560	bedrock HGU recovery and will be further evaluated as the hydrologic system
3561	equilibrates and additional data is obtained and will be monitored as the wells are
3562	further purged or developed. Average metals concentrations are generally low in B1
3563	wells with occasional exceptions (i.e., copper at MN-512B1, nickel at MN543B1 and
3564	MN-544B1, and zinc at EISV-509B1). Comparison between B1 wells and surface
3565	water shows that the surface water concentrations are more dilute than the
3566	groundwater.
3300	groundwater.
3567	Shallow Bedrock HGU (B2) Monitor Wells
2500	Three D2 wells were menitored during each of the three guerters compled in 2010
3568 3569	Three B2 wells were monitored during each of the three quarters sampled in 2018, including EISV 500B2, MN 522B2, and MN 544B2
3009	including EISV-509B2, MN-522B2, and MN-544B2.
3570	The B2 wells are characterized as sodium-bicarbonate type waters, with higher
3571	concentrations of sodium than the Q2 wells and some of the B1 wells. The pH of the
3572	B2 wells is higher than the Q2 wells, and generally more buffered. Relative to the Q2
3573	wells, the B2 wells have higher TDS, higher TSS, and higher turbidity. Average water
3574	temperature is lower in these deeper wells, though average dissolved oxygen
3575	concentrations were comparable to Q2 and B1 wells. Average sulfate concentrations
3576	were higher in B2 wells than in Q2 wells. Nickel and copper concentrations were
3577	generally low in the B2 wells, with the exception of elevated average concentration at
3578	MN-544B2. Comparison to surface water shows that surface water is more dilute
3579	than B2 groundwater and while surface water is calcium-bicarbonate type, the
3580	dominant cation in B2 groundwater is sodium.
0000	dominant bation in D2 groundwater is bodiam.
3581	Deep Bedrock HGU (B4) Monitor Wells
3582	A single B4 well, MN-503B4, was available for sampling during the third and fourth
3583	quarters of 2018. Average concentrations, based on the two available sampling
3584	events are presented in Table 6-13. Water quality between these two events was
3585	characteristically different between the two samples and subject to further evaluation
3586	as additional sample data is obtained. The summary in the following paragraph
3587	compares the fourth quarter results from MN-503B4 to other HGUs.
0007	
3588	Water quality is characterized as sodium-bicarbonate type, similar to the B2 wells.
3589	The pH in the B4 well was well buffered and slightly basic, with moderate hardness.
3590	The turbidity and TSS were elevated relative to the Q2 wells. Sulfate concentration
3591	was relatively low at approximately 10 mg/L. Metals concentrations (e.g., aluminum
	Document No. TMM-ES-025-0099 Page 94
	Revision 0A
	12-18-2019

Environmental Review Support Document

3592and iron) were two to three orders of magnitude higher than what was measured in3593other wells. The cations / anions in well MN-503B4 were significantly more3594concentrated than surface water as would be expected in a monitor well screened3595within the mineralized BMZ. Water quality analyses have not detected brines.

3596 Groundwater Use

3597 The Minnesota Department of Health (MDH) establishes well head protection zones 3598 which serve to limit activities which could impact public water supplies. The Project would be located outside of any establish well head protection zone with the closest 3599 3600 wellhead protection area located in Babbitt about 10 miles (16 km) from the plant site as shown on Figure 6-17. Twenty-five private and public water wells are located 3601 within 1 mile (1.6 km) of the underground mine area, plant site, and tailings 3602 3603 management site as identified in the Minnesota Well Index (MWI). Wells registered with in the MWI are shown on Figure 6-18. 3604

3605 6.1.3 <u>Wetlands</u>

- 3606This section describes the available data sources, then characterizes the wetlands in3607the Project area using two different classification systems:
- 3608 The simplified plant community classification system - The Minnesota 3609 update of the National Wetlands Inventory (NWI) uses a classification 3610 system that is based on the Eggers and Reed (2015) system. In the NWI data. the Eggers and Reed (2015) classification system was simplified 3611 from the 15 original classes to nine vegetated classes and one non-3612 vegetated aquatic class (Macleod et al., 2016). This simplification was 3613 3614 done because of the difficulty of assessing distinctions between these plant community classes at a remote sensing scale. This classification 3615 3616 system was used to describe the wetlands in the Project area because 3617 the Eggers and Reed system is commonly used to quantify potential wetland impacts and set wetland replacement goals: and 3618 3619 The Circular 39 classification system - The Circular 39 system was developed by the U.S. Fish and Wildlife Services (USFWS) in 1956 and 3620 broadly divides the wetlands in Minnesota into eight types. This 3621 classification system was used to describe wetlands in the Project area 3622 because it is required for an EAW by EQB guidance. 3623

3624 Data Sources

3625The Minnesota update of the NWI was used to establish a baseline of wetlands in3626the Project area. This is a public geographic information system (GIS) database3627based on the framework of the NWI and was created for use for wetland regulation3628and management, land use and conservation planning, environmental impact3629assessment, and natural resource inventories (Macleod et al., 2016). The update

3630

Environmental Review Support Document

3631	Cowardin et al., [1979]):
3632 3633 3634 3635 3636 3637 3638 3639	• "Wetlands are lands transitional between terrestrial and aquatic systems where the water table is usually at or near the surface or the land is covered by shallow water. Wetlands must have one or more of the following three attributes: (1) at least periodically, the land supports predominantly hydrophytes; (2) the substrate is predominantly undrained hydric soil; and (3) the substrate is non-soil and is saturated with water or covered by shallow water at some time during the growing season each year."
3640	Simplified Plant Community Classification System
3641 3642 3643 3644 3645 3645 3646 3647 3648 3649 3650	Baseline acreages of wetlands in the Project area, calculated using the simplified plant community classification system, are listed in Table 6-14, and shown on Figure 6-19. In the NWI data, the Eggers and Reed (2015) classification system was simplified from the 15 original classes to nine vegetated classes and one non-vegetated aquatic class (Macleod et al., 2016). This simplification was done because of the difficulty to assess distinctions between these plant community classes at a remote sensing scale. This Eggers and Reed classification system was used to estimate the wetlands in the Project area because it is the Eggers and Reed system is commonly used regarding quantifying potential wetland impact and setting wetland replacement goals.
3651 3652 3653 3654 3655 3656 3657 3658	The most common wetlands within the Project area by this classification system are Coniferous Bog, Open Bog, and Shrub Wetland. These wetland types are also the most common wetlands in the Rainy River - Headwaters watershed. The Minnesota update to the NWI calculated summary statistics of wetlands for the whole Rainy River – Headwaters watershed and showed that the main wetland types by the simplified plant community classification system are Non-Vegetated Aquatic Community (37.9%), Coniferous Bog (32.8%), and Shrub Wetland (8.5%) and Open Bog (8.1%) (Kloiber et al., 2019).
3659 3660	Brief descriptions from Eggers and Reed (2015) of the wetland types present in the Project area are included below.
3661	Coniferous Bog
3662 3663 3664 3665	Mature trees are present and form closed stands with more than 50% canopy cover. Coniferous trees, specifically tamarack and black spruce, are dominant. Soils are typically acidic and water saturated with continuous sphagnum moss mats (Eggers and Reed, 2015).

uses the same wetland definition as was used for the original NWI (adapted from

Environmental Review Support Document

3666 Hardwood Wetland

- 3667Similar to the coniferous bog, mature trees are present and form more than 50%3668canopy cover. Hardwood trees are dominant tree types (e.g., Black ash, green ash,3669American elm, etc.) and the soils are typically alluvial, peaty / mucky, or poorly3670drained mineral soils (Eggers and Reed, 2015).
- 3671 Non-Vegetated Aquatic Community
- 3672This class includes all non-vegetated aquatic communities including: unconsolidated3673bottoms, rock bottoms, rocky shores, unconsolidated shores, and streambeds3674(Macleod et al., 2016).

3675 Open Bog

3676In the open bog-type communities mature trees are absent or present in open,3677sparse stands. Other woody plants are shrubs or saplings and pole-size trees. Open3678bog communities are dominated by woody shrubs and sphagnum moss may or may3679not be present. Soils are wet or poorly-drained soils or in groundwater seepage3680areas (Eggers and Reed, 2015).

3681 Seasonally Flooded / Saturated Emergent Wetland

3682Seasonally flooded / saturated emergent wetland are open communities with <50%</th>3683vegetative cover during the early growing season or shallow open water with3684submergent, floating, and / or floating-leaved aquatic vegetation. When vegetation3685exists, it is dominated by herbaceous plants. Standing water may be present but3686generally these are dry and dominated by annuals such as smartweeds and wild3687millet (Eggers and Reed, 2015).

3688 Shallow Marsh

3689Closed community dominated by herbaceous plants growing on saturated soils to3690areas covered by standing water up to 6 inches in depth throughout most of the3691growing season. Dominant vegetation includes sedges, particularly cattails,3692bulrushes, water plantain, Phragmites, arrowheads, slough sedge, and / or lake3693sedges. Soils are usually neutral to alkaline, poorly-drained and range from mineral3694soils to mucks (Eggers and Reed, 2015).

3695 Shallow Open Water Community

3696Shallow open water communities are areas of shallow, open water (<2 m in depth)</th>3697dominated by submergent, floating and / or floating-leaved aquatic vegetation3698(Eggers and Reed, 2015).

Environmental Review Support Document

3699 Shrub Wetland

3700Shrub wetlands are communities dominated by tall, woody deciduous shrubs usually3701>3 ft high. Mature trees are generally absent or present in open, sparse stands. Soils3702are wet, lowland, or poorly-drained soils, or in groundwater seepage areas. Willows,3703red-osier dogwood, silky dogwood, meadowsweet and / or steeplebush are dominant3704on neutral to alkaline poorly drained muck / mineral soils (Eggers and Reed, 2015).

3705 Circular 39 Classification System

3706Baseline acreages of wetlands in the Project area, calculated using the Circular 393707classification system, are listed in Table 6-15, and shown on Figure 6-20. Acreages3708in the Project area were estimated using this system as its simplicity is an asset for3709remote sensing and desktop mapping. Similar to the simplified plant classification3710system, the Circular 39 wetland classifications show that the most common wetlands3711within the Project area are also the most common in the Rainy River - Headwaters3712watershed.

- 3713The most common wetlands within the Project area by this classification system are3714Type 8 Bogs, Type 6 Shrub Swamp, and Type 3 Shallow Marsh. The Minnesota3715update to the NWI calculated summary statistics of wetlands for the whole Rainy3716River Headwaters watershed and showed that the main wetland types by the3717Circular 39 system are Type 8 Bogs (40.9%), Type 5 Shallow Open Water (38.6%),3718Type 6 Shrub Swamp (8.6%), and Type 3 Shallow Marsh (5.0%) (Kloiber et al.,37192019).
- 3720 The following are narrative descriptions of the Circular 39 wetland types.

3721 Type 1: Seasonally Flooded Basin or Floodplains

3722This wetland occurs in both upland depressions and in overflow bottomlands. Soils3723are water covered or water logged but typically well-drained during much of the3724growing season. Vegetation varies according to the season and amount of flooding3725but can include: smartweeds, wild millet, fall panicum, chufa, various amaranths, and3726other plants (i.e., marsh elder, ragweed, and cockleburs) (Shaw and Fredine, 1971).

3727 Type 2: Wet Meadows

3728In wet meadows standing water is usually absent during most of the growing season3729but is saturated within at least a few inches of the surface. Vegetation includes3730grasses, sedges, rushes, and various broad-leaved plants. Other wetland plant

Environmental Review Support Document

3731 community types include low prairies, sedge meadows, and calcareous fens (Shaw 3732 and Fredine, 1971).

3733 Type 3: Shallow Marsh

Shallow marsh wetland types typically have waterlogged soils early in the spring and are often covered by 6 inches or more of water. Vegetation includes grasses,
bulrushes, spike rushes, cattails, arrowheads, pickerelweed, and smartweeds. These marshes may nearly fill shallow lake basins or sloughs or may border deep marshes on the landward side (Shaw and Fredine, 1971).

3739 Type 4: Deep Marsh

3740Soils in deep marsh wetland types are usually covered with water from 6 inches to37413 ft or more of water during the growing season. These deep marshes may3742completely fill shallow lake basins, potholes, limestone sinks and sloughs, or they3743may border open water in such depressions. Vegetation includes cattails, reeds,3744bulrushes, spikerushes, and wild rice and in open areas pondweeds, naiads,3745coontail, watermilfoils, waterweeds, duckweed, water lilies, or spatterdocks may3746occur (Shaw and Fredine, 1971).

3747 Type 5: Shallow Open Water

- 3748Shallow open water wetlands are completely inundated with water up to 10 ft deep3749and fringed with a border of emergent vegetation which is similar to open areas of3750Type 4. Vegetation mainly occurs in areas <6 ft deep and includes pondweeds,</td>3751naiads, wild celery, coontail, watermilfoils, muskgrass, waterlilies, and spatterdocks3752(Shaw and Fredine, 1971).
- 3753 Type 6: Shrub Swamp; Shrub Carr, Alder Thicket
- 3754In shrub swamps the soil is usually waterlogged during the growing season and can3755be covered with as much as 6 inches of water. Shrub swamps occur mostly along3756slow moving streams and typical vegetation includes alders, willows, buttonbush,3757and dogwoods (Shaw and Fredine, 1971).

3758 Type 7: Wooded Swamps; Hardwood Swamp, Coniferous Swamp

3759Wood swamp wetlands are waterlogged to at least to within a few inches of the3760surface during the growing season and are often covered with a foot of water or3761more. Wood swamps can occur along slow-moving stream, oxbow lakes, flood3762plains, or in very shallow lake basins. Tree vegetative species include tamarack,3763white cedar, black spruce, balsam fir, red maple, and black ash. Commonly the soil3764has a thick covering of moss (Shaw and Fredine, 1971).

Environmental Review Support Document

3765 Type 8: Bogs; Coniferous Bogs, Open Bogs

3766Bog wetland soils are water logged and the soils are covered by mosses. These3767wetland types occur in shallow lake basins or along slow-moving stream. Vegetation3768is variable and can range from wood to herbaceous. Black spruce and tamarack may3769occur in northern bogs and leatherleaf, Labrador-tea, cranberries, Carex, and3770cottongrass are often present (Shaw and Fredine, 1971).

3771 6.2 Project Impacts

3772 Potential impacts to water resources would be avoided, minimized, and mitigated as 3773 described in the section Environmental Protection Measures. The following sections 3774 assess potential impacts from the Project to the baseline surface water, 3775 groundwater, and wetland resources that are anticipated based on the current 3776 Project design, including the EPMs. Other impacts could possibly result from the 3777 Project, but further work is needed prior to determine whether the impact could occur and if so, how significant it would be. Future work to assess the nature and extent of 3778 3779 potential impacts that have been identified, and to identify whether other potential 3780 impacts would occur is discussed in Section 6.3.

3781 6.2.1 Surface Water

3782 Project Water Management

- 3783As described in the section Water Management Plan, the Project would not require3784treatment and discharge of process water and would instead reuse all process water3785during processing.
- 3786Domestic wastewater would be collected and disposed of off-site by a licensed,3787third-party contractor and would not be included in the Project water management3788plans.

3789Birch Lake Reservoir Water Withdrawal – Effects to Birch Lake Reservoir and3790Downstream Hydrologic System

- 3791Water would be pumped from Birch Lake reservoir to support operations when3792contact and process reuse water sources are insufficient. Potential impacts to Birch3793Lake reservoir include changes to lake levels.
- 3794The potential impacts due to appropriating water from Birch Lake reservoir were3795calculated based on the watershed area, lake volume, reported gaged flows3796downstream, and projected use volume. Preliminary calculations show that3797appropriating water required to meet process demand would be equivalent to3798<2 inches (5 cm) of water level decrease to Birch Lake reservoir. This calculation</td>3799overestimates the need for process demand, assumes a continuous appropriation3800(24 hours per day, 7 days per week, 365 days per year), and does not account for

Environmental Review Support Document

- 3801 inflows or dam operational water management). Birch Lake reservoir is controlled by 3802 a dam on TH 1 operated by Minnesota Power to control water levels for the Winton 3803 Hydroelectric Station. Dam operation results in a winter drawdown of about 4 ft. 3804 These data show that the amount of water withdrawn from the reservoir would be <5% of the annual 4 ft variation due to the water management for the Winton 3805 3806 Hydroelectric Station (Section 6.1.1). 3807 Based on this simple calculation, it appears that Birch Lake reservoir would be 3808 sufficient to supply the required make up water for the Project and the impact of 3809 water appropriations would be insignificant compared with the seasonal and 3810 managed water level fluctuation of the reservoir. 3811 Plant Site Contact Water Management on Surface Water Hydrology 3812 Due to the contact water management system, precipitation falling within the contact area of the plant site would no longer contribute to the surface water hydrologic 3813 3814 system, essentially removing watershed area from affected streams. This would be a 3815 temporary impact to the hydrologic balance and would be restored during Project closure and reclamation. Potential effects of this impact may include: reduced stream 3816 3817 flows under a variety of low flow conditions, indirect effect locally on surface water contribution to wetlands, and reduction in flow to Birch Lake reservoir. Additionally, 3818
- 3819the reduction in precipitation reaching the surface water hydrologic system in the3820plant site may also reduce groundwater recharge as discussed in Section 6.2.2,3821Changes in Groundwater Recharge Associated With the Plant Site Contact Water3822Management. Containment and rerouting of stormwater are expected to have a3823negligible effect on surface water quality and is not future considered.

3824Tailings Management Site Contact Water Management – Effects on Surface3825Water Hydrology

- 3826 The construction, operation, and concurrent reclamation of the dry stack facility and 3827 other features at the tailings management site, as described in the sections Tailings Management Site, and Water Management Plan, some portion of the tailings 3828 management site would receive direct precipitation to open areas of the facility. This 3829 precipitation would be captured by contact water systems, routed to the contact 3830 water storage for use in the process, and would no longer contribute to the adjacent 3831 3832 surface water hydrologic system, essentially removing watershed area from affected streams. Concurrent reclamation of the dry stack facility would reduce the amount of 3833 captured precipitation, however some precipitation would be lost over the operational 3834 3835 period. Containment and rerouting of stormwater is expected to have a negligible effect on surface water quality and is not future considered. 3836
- Precipitation captured at the tailings management site would result in a deficit of
 runoff available to the surface water system. The lost precipitation would be a
 temporary effect and would end once the mining and tailings disposal were
 terminated at which point precipitation would be routed back to the adjacent
 watersheds via the dry stack facility cap and diversion system. Impacts from the lost

Environmental Review Support Document

- 3842precipitation contribution to adjacent surface water systems may include: reduced3843stream flows under a variety of flow conditions, indirect effect locally on surface3844water contribution to wetlands and reduction in flow to Birch Lake reservoir. Keeley3845Creek is near the southern boundary of the tailings management site and may be3846most influenced.
- 3847As the dry stack facility is constructed and once it is completed, precipitation3848intersecting the cap and the diversion system would be routed back to undisturbed3849terrain. This rerouting would result in changes to runoff and stream flow3850contributions. Following final reclamation, precipitation would be diverted back to the3851natural surface water system via the cap and diversion network. Some additional3852loss may occur via evapotranspiration from the cap.
- 3853 Overall the Project features would result in different drainage patterns and routing characteristics as compared to baseline conditions. The total volume of surface 3854 3855 water contribution would remain largely unchanged, however, routing characteristics 3856 would be modified permanently. Small changes to down-gradient stream flow and 3857 water quality may occur but would be expected to return to a stabilized, equilibrated 3858 surface water flow system similar to baseline conditions. These effects to the baseline conditions are anticipated to be minor as the precipitation component would 3859 3860 not be lost (excepting potential increase in evapotranspiration) and the diversion system would be designed to work in concert with the local surface water hydrologic 3861 3862 system. The very low topographic and stream channel gradients in the area are expected to further minimize stream channel effects. 3863
- 3864 The fully reclaimed dry stack facility would include the use of surface water management features to control erosion, slope stability, and stormwater quality, 3865 3866 guantity, and rates. Per state requirements, drainage from the dry stack facility would 3867 also be reintegrated into the natural watershed within three years of the start of 3868 closure. Reclamation design would aim to create conditions where runoff rates and volumes are similar to runoff reaching downstream surface water features and 3869 defined baseline site conditions. Post-closure grading plans and drainage features 3870 3871 would be designed to minimize concentrated flow and limit flow velocities such that, 3872 together with the vegetated cover, the resulting site would be stabilized with erosion potential generally similar to baseline site conditions. Related effects to groundwater 3873 recharge are also expected and described in Section 6.2.2, the section Changes in 3874 Groundwater Recharge Associated with the Tailings Management Site Contact 3875 3876 Water Management.

3877Non-Contact Water Management – Diversion of Non-Contact Surface Water3878Effects

3879As described in the section Non-contact Water Diversion Area, precipitation falling on
the watersheds upgradient from the plant site and the tailings management area
would be diverted and routed to streams and drainage ways that flow to Birch Lake
reservoir. The diversion system would result in changes to the surface water system.

3883

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

These changes may include alteration of stream flow properties such as changes to

Environmental Review Support Document

3884 timing of peak flows, maximum and minimum flow rates, inducement of channelized 3885 flow, and modification of channelized velocities. These are referred to as routing 3886 characteristics. The potential effects to the baseline conditions are anticipated to be minor as the diversion ditches would be designed for appropriate slope, sufficient 3887 3888 channel width, and rip rap to prevent scouring, erosion, and sediment contribution. BMPs would also be employed during construction to minimize erosion and 3889 sedimentation. The total volume of surface water entering waterways would remain 3890 3891 largely unchanged, however, routing characteristics would be modified temporarily, occurring during the period of Project construction and operations. This change may 3892 also have a temporary indirect effect locally on surface water contribution to 3893 3894 wetlands. Containment and rerouting of runoff is expected to have a negligible effect 3895 on surface water quality and is not future considered. 3896 Access Road, Water Intake Corridor, and Transmission Corridor Effects on 3897 Surface Water Runoff 3898 Construction activities and vehicular travel within the transmission and water intake 3899 corridors and the access roads would result in slight changes to the baseline surface 3900 water runoff conditions. Changes in surface cover composition, compaction, and 3901 grades related to the transmission and water intake corridors and access roads modifications would slightly alter precipitation runoff characteristics during the period 3902 of mine operations / transmission and water intake corridors / access road use. The 3903 use of standard BMPs related to road design, construction methods, and continued 3904 maintenance would minimize effects to runoff. An integral part of road installation 3905 3906 would involve the design and construction of water conveyance infrastructure (such 3907 as culverts, road grade requirements, crowning, lateral conveyance features, and water bars) to maintain uninterrupted surface water flow. 3908 Surface Water Impacts Summary 3909 3910 Available information to fully assess potential Project impacts to surface water is 3911 insufficient but could be reasonably obtained. Potential impacts have been preliminarily identified, and future work is planned to assess their nature and extent. 3912 3913 These impacts are preliminarily characterized in the following manner: 3914 Impacts due to water withdrawal from Birch Lake reservoir - Potential • 3915 effects to Birch Lake reservoir include changes to the lake level. Due to 3916 the small amount of water use under consideration and the water 3917 management practices of the Winton Hydroelectric Station, measurable 3918 changes to reservoir levels would not be anticipated. Any effects to Birch Lake reservoir would be temporary, limited to the Project operations 3919 3920 period: 3921 Hydrologic impacts due to contact water and non-contact water 3922 management - Plant site and tailings management site contact water 3923 management would result in a loss of contributing precipitation and likely Document No. TMM-ES-025-0099 Page 103

Environmental Review Support Document

3924 3925 3926	cause a reduction in stream flow. The net effect would be expected to be minimal. The precipitation loss period would be temporary and limited to the period of mining operations;
3927 3928	 Rerouting of runoff around the plant site and tailings management site components of the Project would cause a change in surface water
3929	conveyance potentially including changes to routing characteristics,
3930	stream channel properties, streamflow distribution, and surface water
3931	quality. The combined effects of loss and rerouting would be expected to
3932	be minimal. Most of this rerouting would be temporary, limited to the
3933	Project operations period. However, in the vicinity of the tailings
3934	management site the surface water system would be permanently
3935	modified;
3936	 Surface water quality impacts due to non-contact water management –
3937	Containment and rerouting of runoff is anticipated to have negligible
3938	impact on surface water quality as non-contact water runoff water quality
3939	will be generally consistent with natural background water quality and
3940	conveyance ditches and outlets are designed with BMPs to reduce scour
3941	and erosion potential and TSS. Any effect would be temporary, limited to
3942	the Project construction and operation periods and thus is not further
3943	considered; and
3944	 Surface water impacts due to land use changes in the corridors -
3945	Construction activities and vehicular travel within the access roads, water
3946	intake corridor and transmission corridor would result in slight changes to
3947	the baseline surface water runoff conditions. The available information is
3948	adequate to make a reasoned decision about the potential for, and
3949	significance of, the surface water impacts due to the land use changes in
3950	the corridors. Potential effects to surface water resources are anticipated
3951	to be negligible.
0050	

3952 Future work to assess potential impacts to surface water is outlined in Section 6.3.1.

3953 6.2.2 Groundwater

3954Depressurization Effects and Groundwater Loss from Adjacent Bedrock HGUs3955Caused by Underground Mine Dewatering

3956 As the declines and underground mine are developed, groundwater from the shallow and deep bedrock HGUs would be encountered. Groundwater contributions from the 3957 3958 QUM unconsolidated materials are not expected as the QUM would be sealed with a 3959 collar during construction. The groundwater potentiometric surface associated with the bedrock HGUs would be expected to be encountered within approximately 10 ft 3960 of the ground surface. Once groundwater was encountered, it would flow into the 3961 underground workings and would be dewatered as described in the section Water 3962 Management Plan. 3963

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974	A result of mine dewatering would be the potential depressurization of adjacent bedrock. As the shallow and deep bedrock HGUs are depressurized during excavation, a cone of depressurization would occur in the adjacent bedrock HGUs. The cone of depression would extend to the bottom of the deepest mine working and radiate outward to a distance controlled by bedrock hydraulic properties. This depressurized zone would be temporary during Project operation and once mining activities were complete and dewatering was terminated, the groundwater system would be expected to recover and return to approximate pre-mining conditions. The extent of the cone of depressurization would be limited due to the very low hydraulic conductivity of the bedrock and would not be expected to extend substantially into the QUM.
3975 3976 3977 3978 3979 3980 3981	In addition, dewatering of the underground mine during construction and operation would remove groundwater from storage and would transfer the removed groundwater into the contact / process water management system. This would result in a reduction of groundwater to the hydrologic system in the vicinity of the underground mine. The baseline groundwater conditions would be temporarily affected as long as dewatering occurs and until recovery allows the system to return to approximate pre-dewatering saturation and flow conditions.
3982 3983	Overall, effects to the groundwater system are anticipated to be minimal and limited to the immediate sub-basins adjacent to the underground mine area.
3984 3985 3986	Mine dewatering during Project construction, operation, and the post-mining equipment recovery period would have an effect on local groundwater balance and the bedrock potentiometric surface.
3987	Groundwater Quality Effects Due to Flooded Underground Mine
3988 3989 3990 3991 3992 3993	Mine dewatering would occur during construction and operations to keep the mine dry. During mine dewatering, the groundwater gradient would be temporarily directed towards the underground mine. During Project closure, the underground workings would flood, and groundwater conditions would return to approximate pre-Project conditions. This flooding process would be expected to take a substantial period of time due to the very low hydraulic conductivities of the bedrock.
 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 	As the underground workings flood, groundwater would contact unmined surfaces and engineered tailings backfill. This could affect groundwater quality. Groundwater that had contacted unmined surfaces and engineered tailings backfill would eventually migrate away from the mine in flow patterns similar to baseline conditions. As groundwater from the flooded mine mixes with adjacent groundwater, groundwater quality changes could occur. However, substantive changes are not expected in groundwater quality at distances away from the mine due to the composition of the exposed surfaces, the properties of the engineered tailings backfill, and the very low hydraulic conductivity of the bedrock. Groundwater quality in the re-saturated system would be expected to eventually return to equilibrium exhibiting similar properties to baseline conditions.
	Document No. TMM-ES-025-0099 Page 105

Environmental Review Support Document

4005 Overall, mine flooding would be expected to have a minimal effect on adjacent 4006 groundwater quality.

4007Changes in Groundwater Recharge Associated With the Plant Site Contact4008Water Management

- 4009 The plant site contact water management system would capture precipitation falling 4010 on the contact area of the plant site for use as process water, as described in the 4011 section Water Management Plan. As such, the portion of this water that originally 4012 recharged the shallow groundwater system would be lost during the operation of the 4013 plant site. Due to the higher hydraulic conductivity in the QUM relative to bedrock. the QUM would be most impacted by this effect and possibly be reflected in effects 4014 to surface water features in contact with the QUM (such as surface water bodies, 4015 4016 streams, and wetlands).
- 4017Effects to resources which interact with groundwater within the QUM may include4018changes to stream flow characteristics, surface water body contributions, and4019wetland hydrologic functions.
- 4020These effects would be temporary and limited to the period of Project construction4021and operation of the plant site during mining. During Project closure and reclamation,4022recharge to groundwater would be expected to return to approximate baseline4023conditions.
- 4024The loss of groundwater recharge from the containment of contact water at the plant4025site would be expected to have a minor, temporary effect on the shallow groundwater4026system in the immediate area of the plant site.
- 4027Changes in Groundwater Recharge Associated with the Tailings Management4028Site Contact Water Management
- 4029The construction, operation, and reclamation of the dry stack facility and tailings4030management site as described in the section *Tailings Management Site* would likely4031result in a reduction of recharge to local QUM groundwater.
- 4032Active portions of the dry stack facility and other areas within the tailings4033management site would capture and contain precipitation, removing it from the4034hydrologic system. This lost precipitation would result in a small deficit of recharge4035available to the groundwater system, primarily to the QUM but also a limited amount4036to the shallow bedrock, and would affect groundwater movement and the local4037potentiometric surface.
- Precipitation landing on reclaimed portions of the dry stack facility during dry stack
 facility operation, reclamation, and post-closure, would be diverted back to
 undisturbed terrain. This diversion of precipitation would result in changes to
 groundwater recharge, groundwater movement, and the local potentiometric surface.

Environmental Review Support Document

- 4042These effects would be permanent but are expected to be localized to the dry stack4043facility area since that the source would be rerouted rather than lost.
- 4044Effects to resources which interact with groundwater within the QUM may include4045changes to stream flow characteristics, surface water body contributions, and4046wetland hydrologic functions.
- 4047Overall, the loss of groundwater recharge due to containment and diversion of4048precipitation would result in an effect to the shallow groundwater regime in the dry4049stack facility area.

4050 Groundwater Effects Summary

4055

4056

4057 4058

4059

4060 4061

4062

4063

4064

4065 4066

4067 4068

4069

4070 4071

4072

4073

4074

4075 4076

4077

4078

4079 4080

4081

- 4051 Available information to fully assess potential Project impacts to groundwater is
 4052 insufficient but could be reasonably obtained. Potential impacts have been
 4053 preliminarily identified, and future work is planned to assess their nature and extent.
 4054 These impacts are preliminarily characterized in the following manner:
 - Impacts due to mine dewatering A cone of depressurization would be caused by mine dewatering in adjacent bedrock and groundwater contributions to adjacent hydrologic system may be reduced. The projected effects would be temporary and would be expected to return to approximately baseline conditions after mining activities cease. The magnitude of the expected effects would be significantly reduced by the very low hydraulic conductivities in the bedrock units and associated limited ability of the bedrock to transmit water. Interaction between the QUM and bedrock HGUs would also be expected to be reduced due to the low hydraulic conductivity of the bedrock;
 - Impacts due to mine flooding and resulting mixing with adjacent groundwater – Groundwater flow and elevation conditions would be expected to return to approximate baseline conditions once fully flooded conditions were achieved. Once groundwater flow conditions were restored, flooded mine water would mix with adjacent groundwater. After an initial mixing period, equilibrium would also be expected to occur. Given composition of the engineered tailings backfill, exposed mine surfaces, and local groundwater, the groundwater system at equilibrium would be expected to be exhibit water quality similar to baseline conditions; and
 - Impacts due to the loss of groundwater recharge associated with containment of precipitation from surface facilities – The effects of precipitation lost from groundwater recharge would be temporary at the plant site and localized at the dry stack facility. Since the direct effect would be related to QUM recharge, surface water features within the QUM such as stream flow, lake contributions, and wetlands hydrologic functions could be affected.

Environmental Review Support Document

4082

4113

4114

4115

4116

4117

4118

Further work to assess potential impacts to groundwater is outlined in Section 6.3.2.

4083 6.2.3 <u>Wetlands</u>

4084 Direct impacts to wetlands would occur within the areas of potential ground disturbance of the Project. Wetland impacts would be due to clearing, filling, and 4085 4086 grading activities. The compact size of the plant site, the use of underground mining 4087 methods, the selection of the dry stack facility design, and the close proximity to 4088 each other are all designed to minimize the direct impact foot print of the Project. The 4089 Project would specifically site supporting infrastructure, such as the water intake 4090 corridor and ventilation raise sites / access road, to avoid direct wetland impacts. 4091 Additionally, measures would be taken to minimize impacts. For example the transmission corridor would limit direct wetland impacts by limiting construction in 4092 4093 wetland crossings to only winter months when the ground is frozen and vegetation is 4094 dormant. Also, within the transmission corridor the two-track access and the power 4095 poles would be sited, to the extent practical, to avoid wetlands. Total direct wetland impacts from the Project would be 155.9 acres (63.1 ha) which represents 9% of the 4096 wetland in the Project area. 4097

- 4098Direct impacts within the areas of potential ground disturbance would be permanent.4099Direct impacts are shown in Table 6-16 and Table 6-17. As shown on Table 6-17,4100these impacts are minimal relative to the proportion of these wetlands within the4101Rainy River Headwater watershed and would account for <0.03% reduction in</td>4102watershed wetland acres.
- 4103 In addition to direct impacts, there is potential for the Project to cause indirect 4104 wetland impacts. The construction of the plant site and the tailings management site 4105 would potentially fragment wetlands and the water management systems would also potentially impact wetland hydrology and wetland recharge. Mine development and 4106 mine dewatering could lower the water table and impact wetlands near the 4107 4108 underground mine. However, this impact may be attenuated as the wetlands in the Project area typically contain a lower layer of peat or other fine-grain sediments with 4109 4110 very low hydraulic conductivity negating the effects of dewatering.
- 4111 Additionally, there could be indirect impacts due to atmospheric deposition from dust 4112 emissions. These indirect impacts are reduced by Project design, specifically:
 - Reduced surface footprint to reduce indirect impacts;
 - Sealing of the decline in the QUM reducing any potential groundwater draw down in the area of the decline; and
 - Concurrent reclamation of the dry stack facility which minimizes the area exposed and EPMs including water trucks to reduce fugitive dust from the plant site and tailings management site.

4119		Compensatory Wetland Mitigation
4120 4121 4122 4123 4124 4125 4126 4127		Future work would be done to complete wetland delineations and assess the requirements for compensatory wetland mitigation including probable mitigation ratios, mitigation approaches, and potential banking sites. Impacts to wetlands would require a permit from the U.S. Army Corps of Engineers under Section 404 of the Clean Water Act and from the MDNR under the requirements of Minnesota's Wetland Conservation Act (WCA). The Section 404 Clean Water Act permit would also include Section 401 Clean Water Act Water Quality Certification, which is coordinated with the MPCA.
4128 4129 4130 4131 4132		The Project has completed preliminary wetlands surveys, but has not completed wetland delineations and has not yet identified a conceptual wetland mitigation plan. The future wetland identification and delineation scope is discussed in Section 6.3.3 and wetland mitigation plans would be developed and submitted for approval to compensate for the expected impacts.
4133		Wetlands Impacts Summary
4134 4135 4136 4137		Available information to fully assess potential Project impacts to wetlands is insufficient but could be reasonably obtained. Potential impacts have been preliminarily identified, and future work is planned to assess their nature and extent. These impacts are preliminarily characterized in the following manner:
4138 4139 4140 4141 4142		 Direct impacts to wetlands would occur due to Project construction, specifically clearing, grading, and filling; and The Project could result in potential indirect impacts to wetlands due to wetland fragmentation, changes in wetland hydrology and recharge, and dust deposition.
4143 4144 4145 4146		Future work to assess potential direct or indirect impacts to wetlands is included as part of the surface water and groundwater future scopes of work, outlined in Section 6.3.1 and Section 6.3.2. Further work on wetland delineation and monitoring is described in Section 6.3.3.
4147	6.3	Future Scope
4148	6.3.1	Surface Water Supplemental Scope
4149		Surface Water Supplemental Scope Purpose
4150 4151 4152 4153 4154		Supplemental data acquisition and analysis will better define the surface water baseline environmental conditions, hydrologic regime, surface water / groundwater interactions and relationships, and potential Project impacts to the surface water system. Additional data collection will occur related to supplemental surface water sampling and testing locations, sample frequency, parameters to be measured,
	Documo	nt No. TMM-ES-025-0000 Page 100

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164	establishment of instrumented stations, and collection of geomorphologic information. The information collected will be used to further define baseline conditions and develop conceptual models for the surface water systems. The conceptual model will guide analysis of hydrologic features though the combined use of appropriate data characterization, analytical solutions and models, analog evaluations, stochastic models, numerical models, and dynamic systems modeling to simulate existing baseline hydrologic conditions and simulate the effects to the baseline conditions that could result from the Project. Additionally, this work will inform Project design by suggesting design options or EPMs to reduce potential impacts from the Project to the greatest extent possible.
4165	Surface Water Supplemental Scope Questions to be Answered
4166 4167	The scope of work outlined in the following subsections has been developed to address the following scoping elements:
4168 4169 4170 4171 4172	 What are the nature and extent of potential impacts to surface water hydrology, stream morphology, and surface water quality? Are there potential impacts that are significant, and can Project EPMs or reduction methods be identified to reduce the significance of any impacts to surface water hydrology and water quality identified?
4173 4174 4175	Accordingly, based on the anticipated surface water impacts described in Section 6.2.1 and other potential surface water impacts that could result from the Project, the following specific questions will be addressed:
4176 4177 4178 4179 4180 4181	 Will the Project design features, operating protocols, and the resulting water balance model confirm that a direct discharge of process water or contact will not be anticipated? How will water appropriation, contact water management, non-contact water management, and mine dewatering affect the Birch Lake reservoir water level or hydrologic system?
4182 4183 4184 4185 4186	 How will contact water management and non-contact water management affect surface water flows and stream morphology? Could the management of process water and contact water result in impacts to water quality in area streams or Birch Lake reservoir and if so, to what extent?
4187 4188 4189 4190	 Could the flooded underground workings in closure result in impacts to water quality in area streams or Birch Lake reservoir and if so, to what extent? Could dust deposition from the dry stack facility and other mine features
4191 4192	impact water quality in area streams or Birch Lake reservoir, and if so, to what extent?

Environmental Review Support Document

4193 Surface Water Supplemental Scope Approach

- 4194 Phase 1 – Supplemental Data Collection. Although TMM has obtained and 4195 developed a substantial database with respect to surface water hydrology, additional 4196 information is needed to evaluate potential impacts to the surface water hydrologic 4197 system. Instrumented gaging stations will be installed to further define the flow regime in Keeley Creek upstream and downstream of the tailings management site. 4198 4199 Flow measurement frequency of existing grab sample locations will be increased. Supplemental information will be obtained regarding stream channel morphology and 4200 4201 watershed characteristics to allow simulation of future expected conditions.
- 4202Phase 2 Water Balance Model. The combined hydrologic regime, both surface4203water and groundwater, for all Project operations will be simulated using a water4204balance model. The water balance model will be developed using the commercial4205simulation software GoldSim™ to combine and integrate all Project and natural4206conditions.
- 4207 The water balance model will include results of a stochastic climate generation 4208 model. A model will be developed to represent both the short-term and long-term behavior of the climate in and around the Project. This will be accomplished with a 4209 4210 synthetic climate generator, capable of producing daily precipitation, temperature, 4211 and evaporation amounts that are representative of conditions at the site, both current and projected into the future. The synthetic climate generator will be based 4212 4213 on the climate generator model (WGEN) developed by the U.S. Department of 4214 Agriculture (Richardson, 1984) and verified using a GoldSim[™] Probabilistic and Dynamic model and Monte-Carlo simulations. The stochastic model will be used to 4215 generate precipitation data sets that reflect the mean operational period annual 4216 4217 precipitation, a dry operational period annual precipitation, and a wet operational period annual precipitation. 4218
- 4219 The water balance model will include the simulation of process water flow, including water gains and losses and consumptive use, contact water management, and 4220 4221 rerouting of non-contact water flows. It will also simulate unimpacted watershed areas and area streams and Birch Lake reservoir. The model will simulate the highly 4222 4223 interdependent relationship between climatic influences (e.g., precipitation, 4224 temperature, evaporation) on snowpack accumulation and melt, icepack accumulation and melt, runoff from precipitation and melt, and streamflow routing. 4225 4226 Each of these components will be simulated independently, then combined to 4227 produce a single integrated system that is capable of simulating streamflow at the various locations within the Project area surface water regime. 4228
- 4229The water balance model will function as a deterministic integrator combing the4230aforementioned modeling and groundwater modeling results, and the Project water4231requirements to produce resulting, quantifiable impacts to surface water flows as4232compared to baseline conditions. Both conditions can be simulated using identical

- 4233 climatic conditions, allowing an evaluation of the impacts of the Project on water-4234 related aspects over the Project.
- In addition to being used to simulate hydrologic impacts, the model will also be used
 to demonstrate that the project will not discharge any process water and is designed
 not to require a discharge of contact water.
- 4238 Phase 3 Surface Water Quality Modeling
- 4239As was previously discussed, it is unlikely that the Project will result in water quality4240impacts to area streams and Birch Lake reservoir; however, the potential for impacts4241will be considered.
- Potential pathways for how process water and/or contact water could be released to
 surface waters will be considered and then quantified. Pathways that could be
 considered are leakage from process water and contact water ponds, leakage from
 the dry stack facility, flow from flooded mine workings in closure, unique projectrelated conditions (such as, system failures, up-set conditions, storage overtopping,
 etc.) and dust deposition.
- 4248For pathways that are carried forward, mixing calculations will be performed as a4249screening step to assess the potential impact to surface waters. This will require4250estimates of the quality of water associated with each pathway, which will be based4251on the geochemical conceptual model developed for the Project. If the screening4252level mixing calculations suggest a measurable impact could occur, more4253sophisticated modeling could be conducted.
- 4254 Phase 4 – Submission of Technical Memoranda and Hydrology Reports. A 4255 series of interim summary reports and technical memorandums will be prepared to present Work Plans, guality assurance / guality control protocols, laboratory and field 4256 4257 data, data analysis, and hydrologic system interpretations associated with the 4258 surface water hydrologic system. Standard professionally accepted data collection, analysis, and modeling techniques and protocols will be used as pre-defined in 4259 4260 specific work plans. The interim reports and technical memorandums will serve as 4261 references to the primary deliverables consisting of four Hydrological Characterization Reports as follows: 4262
- 4263
 4264
 4264
 4265
 4265
 4266
 4267
 4268
 Hydrology Characterization Baseline Conditions Volume 2
 Hydrology Characterization Conceptual Model and Impact Analysis Methods Volume 3

Environmental Review Support Document

- 4269Volumes 1 through 4 are anticipated to evolve and be updated throughout the4270environmental review and permitting processes as supplemental information and
- 4271 analysis become available.

4288

4289

4290

4291

4292

4293

4294

4272 Surface Water Supplemental Scope Deliverables

- 4273 Hydrology Characterization Data Package Volume 1. A review and validation of data 4274 will be conducted within this report to evaluate the data and its usability to support 4275 environmental assessments as the Project moves into state and federal processes 4276 for environmental review and permitting. Climatological, geological, hydrogeological, 4277 groundwater guality, surface water guality, and surface water flow will be evaluated through the validation processes described within this report. For each data type, an 4278 individual qualifying criteria matrix will be developed to document data quality review, 4279 4280 and to identify potential qualifiers that should be resolved or recognized in the use of 4281 the data.
- 4282 *Hydrology Characterization Baseline Conditions Volume 2.* This report will utilize the 4283 data documented and validated in Volume 1 to summarize baseline environmental 4284 conditions at the Project with respect to surface water, groundwater, climate, and 4285 geology. Analysis and interpretations of the validated data set will be used to further 4286 define the hydrologic regime associated with the Project area. Baseline 4287 interpretations will include:
 - Precipitation, and other applicable climatic data;
 - Stream and lake characteristics (flow, water quality, water level);
 - Groundwater occurrence, movement, and water quality;
 - Groundwater and surface water hydraulic and runoff controlling components;
 - Surface water / groundwater interactions; and
 - Seasonal, temporal, and spatial data variations.

4295 Hydrology Characterization Conceptual Model and Impact Analysis Methods Volume 3. The qualified data and information brought forth in Volume 1, and 4296 4297 interpreted in Volume 2 will be further analyzed to present a conceptual model of the 4298 hydrologic regime. This document will apply the conceptual model to a set of 4299 methodologies designed to analyze, estimate, and quantify potential changes to the hydrologic regime as a result of implementation of the Project. A comparison of the 4300 baseline hydrologic conditions to the conditions expected as a result of Project 4301 4302 activities will provide an avenue to evaluate potential influences to the surface and 4303 groundwater systems. Based on the conceptual models developed for the 4304 groundwater, surface water systems, and geochemical considerations from the Project; analytical, analog, stochastic, and numerical models will be specified to 4305 simulate existing baseline hydrologic conditions and simulate the response of the 4306 4307 baseline conditions as a result of implementation of the Project. The intended 4308 outcome of the modeling effort described will be to provide a basis to quantify Project 4309 influences on the surface water, groundwater, and cumulative hydrologic regime.

Environmental Review Support Document

4310 Hydrology Modeling Results and Cumulative Assessment of Project Effects 4311 Volume 4. The defined conceptual models and the analysis / modeling methods 4312 presented in Volume 3 will be developed as surface water and groundwater 4313 numerical models and other analysis methods which reflect Project area conditions. Analysis and modeling of the hydrologic system will include baseline conditions, the 4314 4315 mine operational period, and the reclamation / closure period. A no-action alternative will also be simulated. Model domains, input data (from Volume 2), and modeling 4316 functions will be constructed to simulate baseline conditions. When reasonable, 4317 4318 simulated baseline conditions will undergo a calibration process resulting in models 4319 that statistically correspond to measured baseline conditions. Once each model is 4320 calibrated, the input information will be modified to reflect Project operations. 4321 Selected monitoring points will be assigned to allow specific comparison of baseline 4322 and mine operational results for specific parameters such as water level, 4323 groundwater basin balance, stream flow, water quality, etc. The models will be run and Project conditions will be compared to baseline conditions to quantify potential 4324 impacts. Various sensitivity analysis will be performed to determine the influence of 4325 4326 model input.

4327 6.3.2 Groundwater Supplemental Scope

4328 Groundwater Supplemental Scope Purpose

- 4329 This work will better define the groundwater baseline environmental conditions, hydrogeologic regime, surface water / groundwater interactions and relationships, 4330 4331 and Project impacts to the groundwater system. Additional data collection will occur 4332 related to the existing groundwater monitoring network, supplemental groundwater locations, construction of supplemental monitoring / test wells, supplemental aquifer 4333 4334 testing, geochemical analysis, and further definition of the QUM. The information collected will be used to further develop conceptual models for the groundwater 4335 4336 systems. The conceptual model will guide analysis of hydrogeologic features and the development of analytical, analog, and numerical models to simulate existing 4337 baseline hydrogeologic conditions and simulate the response of the baseline 4338 4339 conditions as a result of implementation of the Project. Additionally, this work will 4340 inform Project design to the greatest extent possible in reducing potential impacts 4341 resulting from the Project.
- 4342

4345

4346

4347

4348 4349

Groundwater Supplemental Scope Questions to be Answered

- 4343Similar to the surface water section, the scope of work outlined in the following4344subsections has been developed to address the following scoping elements:
 - What are nature and extent of potential impacts to groundwater occurrence and movement and groundwater quality?
 - Are there potential impacts to hydrogeology that will be significant, and can Project EPMs or reduction methods be identified to reduce the significance?

4350	Accordingly, based on the anticipated groundwater impacts described in
4351	Section 6.2.2 and other potential groundwater impacts that could result from the
4352	Project, the following specific questions will be addressed:
4353	What will be the three dimensional extent of the cone of depression over
4354	the life of dewatering activities (projected groundwater potentiometric
4355	surface maps and cross sections)?
4356	 What will be the timeframe and expected rate to initiate and complete
4357	flooding of the mine workings?
4358	 How will contact water management and non-contact water diversion
4359	affect groundwater recharge and the potentiometric surface in the shallow
4360	groundwater system?
4361	 How will the changes in the potentiometric surfaces affect local
4362	streamflow, contribution to Birch Lake reservoir and wetlands?
4363	 Will local domestic wells be affected by mining activities?
4364	 Could the management of process water and contact water result in
4365	impacts to groundwater quality and if so, to what extent?
4366	 Could the flooded mine workings in closure result in impacts to
4367	groundwater quality and if so, to what extent?
4368	Groundwater Supplemental Scope Approach
4000	
4369	Phase 1 – Supplemental Data Collection. Although TMM has obtained and
4370	developed a substantial database with respect to groundwater hydrology, additional
4371	information is needed from the existing monitor well network to evaluate potential
4372	groundwater impacts to the groundwater hydrologic system. Supplemental monitor
4373	wells / test wells and data acquisition from those new locations are needed. The
4374	following specific activities are under consideration for implementation:
4375	 Continue to obtain baseline data (monthly groundwater levels and
4376	scheduled (to be determined water quality samples from the existing
4377	network of monitor wells);
4378	Conduct aquifer test analysis on monitor wells which have not been field
4379	tested to date;
4380	 Add newly constructed monitor wells to the water level and water quality
4381	sampling program;
4382	 Install new monitor wells at selected locations to supplement the current
4383	monitor well network;
4384	 Conduct aquifer testing at new monitor well locations;
4385	 Add new well locations to the sampling network;
4386	Define the construction and operating characteristics of the tailings
4387	management site;
4388	Conduct static and kinetic testing of tailings and ore geochemistry; and
4389	Obtain local domestic well construction and operational details.

4390	Phase 2 – Groundwater Analysis and Flow Modeling. The Project Area
4391	groundwater system will be analyzed using a combination of applicable predictive
4392	analytical and numerical modeling approaches. First, two conceptual models, will be
4393	developed:
4394	 A model of current groundwater conditions at the Project area based on
4395	monitor well test results, watershed characteristics, site data collected for
4396	the Project, and other publicly-available data sets; and
4397	A model of future groundwater conditions, representing the effects of the
4398	Project during the operation phase and the reclamation and closure
4399	phase.
4400	These conceptual models will be used to produce a finite-difference (MODFLOW)
4401	numerical groundwater flow model and other analytical or analog models to answer
4402	specific questions for the Project area. The numerical model will be capable of
4403	assessing changes to the groundwater system based on Project operations,
4404	specifically changes to the baseline conditions due to underground mine operations
4405	and changes in land-use which can impact aquifer recharge. The model will cover
	• • •
4406	the Project area and sub-regional area of the Project.
4407	Phase 3 - Groundwater Quality Modeling. As was previously discussed, it is
4408	unlikely that the Project will result in water quality impacts to groundwater; however,
4409	the potential for impacts will be considered.
4410	Potential pathways for how process water and/or contact water could be released to
4411	groundwater will be considered and then quantified consistent with surface water
4412	
	analyses. Anticipated pathways that could be considered are leakage from process
4413	water and contact water ponds, leakage from the dry stack facility, flow from flooded
4414	mine workings in closure, unique project-related conditions (such as, system failures,
4415	up-set conditions, storage overtopping, etc.) and dust deposition.
4416	For pathways that are carried forward, mixing calculations or simple analytical
4417	methods will be performed as a screening step to assess the potential impact to
4418	groundwater. This will require estimates of the quality of water associated with each
4419	pathway, which will be based on the geochemical conceptual model developed for
4420	the Project. If the screening level mixing calculations suggest a measurable impact
4421	could occur, more sophisticated modeling could be conducted.
	could occur, more sophisticated modeling could be conducted.
4422	Phase 3 – Submission of Technical Memoranda and Hydrology Reports. The
4423	data acquisition, analysis, and predictive modeling accomplished during the
4424	Groundwater Supplemental Scope will be integrated into the appropriated reports.
4425	Groundwater Supplemental Scope Deliverables
4426	The result of this work will be delivered through interim data delivery / analysis
	The result of this work will be delivered through interim data delivery / analysis
4427	reports and technical memorandums. The groundwater data, analysis, and simulated

Environmental Review Support Document

- 4428 hydrologic conditions will be combined with the results from the Section 6.3.1, and 4429 will be included in Hydrology Volumes 1 through 4.
- 6.3.3 4430 Wetlands

4441

4442

4443

4444

4445

4446

4447

4463

4431 Wetlands Purpose

- 4432 TMM will conduct wetland delineations in the Project area to identify wetlands and 4433 regulatory boundaries and perform functional assessments. Additionally, this work will inform future steps necessary to define potential direct and indirect impacts to 4434 4435 wetlands in the Project area.
- 4436 This delineation will help refine the baseline wetland conditions and identify possible reduction measures that the Project could implement to limit impacts. This work will 4437 4438 also inform permit applications, including Minnesota WCA and U.S. Army Corps of 4439 Engineers (USACE) Section 404.
- 4440 Wetlands Questions to be Answered
 - What are the wetland extent, quantities, qualities, and classifications in • the Project area?
 - What are the potential direct and indirect effects regarding wetland water balance and wetland water quality?
 - Are there potential impacts to wetlands identified that are significant, and can Project EPMs or reduction methods be identified to reduce the significance of the impacts?
- 4448 Wetlands Approach
- 4449 Phase 1 - Desktop Review. This phase will build off the baseline conditions of the 4450 SEAW Data Submittal and will include review of the public data. This will include 4451 both the spatial extent of wetland in the Project area as well as estimated wetland 4452 plant community types. Desktop surveys will be used as the basis for the wetland delineation. Sources reviewed will include: 4453
- 4454 USGS topographic maps and digital elevation models; USFS ELT soils data; 4455 • 4456 NRCS soils data: • 4457 MDNR NWI update mapping; • 4458 USFWS NWI map; • 4459 SNF USFS stand data: . 4460 USGS National Hydrography Data Set; • 4461 MDNR Protected / Public Waters mapping; • 4462
 - Farm Service Administration aerial photography; and •
 - Forest Plan maps. •

4464 4465 4466 4467 4468 4469 4470 4471 4472	Phase 2 – Wetland Delineations. A field delineation will be conducted to identify wetlands, regulatory boundaries, and functional assessments within the Project area. The presence / absence of wetlands will be identified in the field using routine level two on-site delineation methods and criteria in accordance with the USACE Wetlands Delineation Manual (USACE Environmental Laboratory, 1987) and the Regional Supplement to the Corps of Engineers Wetlands Determination Manual: Northcentral and Northeast Region (Version 2.0) (USACE, 2011). Wetland boundaries will be delineated with a handheld Trimble Global Positioning System capable of sub-meter accuracy.
4473 4474 4475	A Wetland Functional Assessment will also be conducted for the Project area using the Minnesota Routine Assessment Method to assess the following functions and values:
4476 4477 4478 4479 4480 4481 4482 4483	 Vegetative diversity / integrity; Maintenance of characteristic hydrologic regime; Flood / stormwater / attenuation; Downstream water quality; Maintenance of wetland water quality; Shoreline protection; Maintenance of characteristic wildlife habitat structure; and Maintenance of characteristic fish habitat.
4484 4485 4486 4487	Due to the location of wetlands within the same landscape, wetlands with similar characteristics may be grouped together and assessed. Rankings of exceptional, high, medium, and low will be provided for each of the functions and values for each group of wetlands with similar characteristics.
4488 4489 4490 4491	Phase 3 – Direct and Indirect Impact Data Acquisition and Analysis. After delineation and functional assessment of wetlands in the Project area were complete, further work will be done to define potential indirect impacts to wetlands. This work could include:
4492 4493 4494 4495 4496	 Installing nested piezometers; Collecting and measuring undisturbed peat thicknesses and subsurface structure; Characterizing wetland water quality; and Characterizing wetland seasonal water level variability.
4497 4498 4499	These methods for modeling and monitoring indirect impacts to wetlands will be refined as the future work scope related to surface water and groundwater (Sections 6.3.1 and 6.3.2) are completed.

Environmental Review Support Document

4500 Wetlands Deliverables

4504 4505

4506

4507

4508

4509

4510 4511

4512

4513 4514

4515

4516 4517

4518

4519 4520

4521

4501The results of Phases 1 to 3 will be combined with the results from the Habitat,4502Vegetative, Wildlife, and Aquatics Baseline Surveys and will be included in the4503following reports:

- Wetland and Terrestrial and Aquatic Resources Volume 1 Baseline Data and Methods;
- Wetland and Terrestrial and Aquatic Resources Volume 2 Baseline Conditions;
- Wetland and Terrestrial and Aquatic Biology—Volume 3 Impact Assessment Methodology: This volume will provide a description of the methodology used to assess potential effects from changes identified in surface and groundwater hydrology to terrestrial and aquatic resources identified. The methodology will include a decision matrix for how effected resources are determined, the relevant areal extent is defined, how potential impacts are determined, and the criteria used to determine the magnitude of potential effects; and
- Wetland, and Terrestrial and Aquatic Biology—Volume 4 Potential Impacts and Mitigation: Based on methodology described in Volume 3, potential impacts from the Project will be described. The report will characterize potential effects based on the temporal and areal extent. The report will identify opportunities or approaches that may be available to avoid, minimize, or mitigate the identified potential effects.

4522 7.0 CONTAMINATION / HAZARDOUS MATERIALS / WASTES

- 4523Section 7.0 addresses hazardous material handling and waste management4524practices that would be employed by the Project. In order to facilitate common4525understanding of the terminology used in this section, the following definitions are4526provided.
- Solid Waste According to the Resource Conservation and Recovery Act (RCRA) of 4527 4528 Title 42 of the U.S. Code Chapter 82 § 6901 et seq, the term solid waste refers to 4529 "any garbage or refuse, sludge from a wastewater treatment plant, water supply treatment plant, or air pollution control facility and other discarded material, resulting 4530 4531 from industrial, commercial, mining, and agricultural operations, and from active communities, but does not include solid or dissolved material in domestic sewage, or 4532 4533 solid or dissolved materials in irrigation return flows or industrial discharges which 4534 are point sources subject to permits under section 1342 of title 33, or source, special 4535 nuclear, or byproduct material as defined by the Atomic Energy Act of 1954, as 4536 amended ." In addition, various federal and state regulatory programs have

Environmental Review Support Document

- 4537additional terms and approaches for addressing solid waste and the facilities4538associated with managing such waste.
- 4539 Hazardous Materials - Hazardous materials are generally characterized as any 4540 materials that are potentially harmful to humans, animals, or the environment, by itself or through interaction with other substances or environmental settings. These 4541 materials may include, but are not limited to, items such as explosives, flammables, 4542 4543 oxidizers, poisons, irritants, and corrosives. Hazardous materials are subject to 4544 federal requirements regarding the management, handling, and transportation of 4545 these materials, and regulated by the U.S. Environmental Protection Agency 4546 (USEPA), Occupational Safety and Health Administration, and U.S. Department of 4547 Transportation. Locally, Minnesota implements regulations for hazardous materials 4548 through the MPCA and Minnesota Department of Transportation (MnDOT).
- 4549 Hazardous Waste - Hazardous wastes are defined by Minnesota as refuse, sludge, 4550 or other waste material or combinations of refuse, sludge, or other waste materials in 4551 solid, semi-solid, liquid, or contained gaseous form, which, because of the quantity, 4552 concentration, or chemical, physical, or infectious characteristics, may cause or 4553 significantly contribute to an increase in mortality or an increase in serious irreversible, or incapacitating reversible illness. Like hazardous materials, hazardous 4554 4555 wastes are subject to state and federal requirements regarding management, transportation, and disposal. Locally, Minnesota implements regulations for 4556 hazardous wastes through the MPCA and MnDOT. 4557

4558 **7.1 Baseline Conditions**

- 4559 A review of the What's In My Neighborhood (MPCA, 2019) web mapping tool was conducted to identify potential areas of concern within or proximal (within 0.5 mile 4560 4561 [0.8 km]) to the Project area. Areas of concern identified, but not limited to, hazardous waste generators, solid waste facilities, remediation sites, leak sites, and 4562 4563 locations with aboveground storage tanks. The review indicated there are no known areas of concern within the Project area; however, there are two potential areas of 4564 concern adjacent to the Project area identified as Sites 12 and 13 within Dunka Mine 4565 4566 Area 8. Both locations are petroleum remediation leak sites associated with former 4567 LTV Steel mining activity located near the southwest end of the transmission corridor 4568 and the off-site substation. The MPCA identifies these sites as inactive and provided closure letters for both locations in 1998. No actions connected to the Project are 4569 4570 anticipated to disturb these locations.
- 4571 **7.2 Project Impacts**

4572 7.2.1 Generation and Management of Solid Wastes

4573The Project would produce solid waste during construction, operation, and closure.4574Solid waste, as defined in the RCRA, would be disposed of in accordance with4575federal, state, and local regulations.

4576 4577		The following is a list of solid wastes anticipated to be generated by the Project, as well as the anticipated disposal method for each waste:
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592		 Solid industrial waste – tires, scrap metal, concrete, construction waste, and office waste (paper, utensils, etc.). Solid industrial waste generated by the Project would be taken off-site to be treated by a third party and recycled when available; Unused blasting agents – expired or damaged containers of blasting caps, initiators and fuses, and other high explosives used in blasting. These items would be taken back by the explosives distributer or otherwise used concurrently during blasting activities; Spent equipment maintenance products solvent-contaminated fuels, grease, lubricants, anti-freeze, solvents, and lead-acid batteries used for equipment operation and maintenance. Spent equipment maintenance products would be recycled by a third-party vendor off-site; Waste oil – waste oil and lubricants would be collected and transported off-site by a buyer/contractor for recycling; and Sewage – sewage would be removed and treated off-site by a third party.
4593	7.2.2	Management of Hazardous Material
4594 4595 4596 4597 4598 4599 4600		Hazardous materials stored on site would include diesel fuel, gasoline, propane, lubricants, coolant, lead acid batteries, concentration process reagents, explosives, and explosive devices. A preliminary list of fuel storage and consumption volumes is identified in Table 7-1, and a preliminary list of anticipated reagents that would be used at the plant site and in the process is included in Table 7-2. A review of Safety Data Sheets would be conducted on final reagent selections and used to update Table 7-2 as applicable.
4601 4602 4603 4604 4605 4606 4607		Aboveground tanks (including aboveground tanks in the underground mine) would be used to store diesel, gasoline, lubricants, reagents, and propane. Diesel fuel would be delivered by truckload to a surface bulk delivery tank. The bulk delivery tank would be used to service a surface diesel transfer tank and a surface fueling station. The surface diesel transfer tank would assist in transporting diesel fuel via gravity flow to tanks located at one of three underground fueling stations. A surface gasoline filling station would have its own independent tank.
4608 4609 4610		Reagents listed in Table 7-2 would be stored on site in a covered facility in the MnDOT-approved containers in which they were delivered until they are required in the reagent makeup area.
4611 4612 4613 4614 4615		Emulsion, primers, and initiation systems for blasting would be kept in approved magazines on the surface. An aboveground emulsion tank would be used to store bulk loads of emulsion delivered to the site by trucks. A special transportation truck would be used to take the emulsion required for a day's use from the tank to the underground location of the shot.
	Deeumo	nt No. TMM ES 025 0000 Bage 121

Environmental Review Support Document

4616 Propane for surface structure and underground mine temperature control would be 4617 stored on surface. 7.2.3 4618 Generation and Management of Hazardous Waste Generation of hazardous wastes would be limited to residual cleaning fluids, residual 4619 4620 reagents, and cross-mixed reagents. The remainder of the hazardous materials 4621 listed in Section 7.2.2 are anticipated to be wholly consumed or recyclable. Recyclable materials include batteries and coolant, which would be transported and 4622 4623 disposed of by third party vendors. In order to reduce the potential for incidental 4624 contact and spills, hazardous solid wastes would be stored on site in facilities that 4625 comply with the RCRA regulations prior to shipment. Hazardous waste would be transported in USDOT-approved containers to permitted hazardous waste treatment, 4626 4627 storage, and disposal facilities. Additionally, the Project would employ common practices such as mixing dissimilar fluids for disposal, proper labeling, employee 4628 4629 training, recycling, and practicing proper documentation of disposal protocols, to avoid potential adverse effects. 4630 4631 The primary impact associated with the use of hazardous materials or the generation 4632 of hazardous wastes would be the potential for release of these materials to the environment. To minimize the potential for release, the Project would include the 4633 4634 following design principles and BMPs, where necessary: 4635 Double walled storage tanks / piping; • 4636 Properly sized containment areas; • 4637 • Vapor minimization: 4638 Indoor storage when practicable; • 4639 Sight gauges; • Scheduled inspections of storage tanks and piping; 4640 • Proper training for handling, transfer, and storage of hazardous materials; 4641 4642 and Proper maintenance programs for equipment. 4643 4644 Additionally, the Project would employ the following practices aimed at minimizing 4645 impact were a spill to occur: 4646 • Maintain readily accessible spill response kits; Proper response training for employees: 4647 • 4648 Overfill protection alerts; • Grading of the plant site to facilitate containment; and 4649 • Maintain and implement a Spill Contingency Plan. 4650 • Contamination / Hazardous Materials / Wastes Impacts Summary 4651 7.2.4 4652 The available information is adequate to make a reasoned decision about the 4653 potential for, and significance of, environmental impacts due the Project's use,

4654 4655 4656 4657		transportation, or disposal of solid wastes, hazardous materials, and hazardous wastes. Impacts due the Project's use, transportation, or disposal of solid wastes, hazardous materials, and hazardous wastes are characterized in the following manner:
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669		 Temporary – Solid wastes, hazardous materials, and hazardous wastes would be present only during the life of the Project. Hazardous wastes would be stored, transferred, and disposed of in a RCRA compliant manner; Extent – The extent of impacts associated with solid wastes, hazardous materials, and hazardous wastes would be low as the Project design incorporates principles aimed to minimize the potential for impacts, and the Project would comply with applicable regulations and employ BMPs to avoid impacts; and Regulatory Oversight – Hazardous waste storage, transportation, and disposal would be subject to continual oversight by the MnDOT and the MPCA.
4670	7.3	Future Scope
4671		No future scope of work is proposed.
4672	8.0	TERRESTRIAL AND AQUATIC RESOURCES
4673	8.1	Baseline Conditions
4674 4675 4676 4677 4678 4679		Terrestrial and aquatic resource baseline conditions were examined within the Project area using multiple sources of information outlined in Section 8.1.1. The Project area is used for baseline characterization and provides the context for assessing potential Project impacts to terrestrial and aquatic resources discussed in Section 8.2. The specific resources examined in this section include land cover, habitat, ecosystems, fish, wildlife, and vegetation including sensitive species.
4680	8.1.1	Baseline Data Sources and Evaluation Methods
4681 4682 4683		The following public data sets represent the best available data for the Project area and were used to describe the baseline terrestrial and aquatic resource conditions within the Project area:
4684 4685 4686 4687		 Land Cover and Habitat USGS Gap Analysis Program (GAP) / LANDFIRE (USGS, 2011b) USGS NLCD (USGS, 2011a) MDNR / USFS Ecological Classification System ([ECS] MDNR,
4688		2019c)

4689	 MDNR Minnesota Biological Survey ([MBS] MDNR, 2019d and
4690	MDNR, 2019e)
4691	 Vegetative, Terrestrial Wildlife, and Sensitive Species Baseline
4692	 MDNR Rare Species Guide (MDNR, 2019f)
4693	 Minnesota Natural Heritage Information System (NHIS) Database
4694	(MDNR, 2018)
4695	 USFS Regional Forester Sensitive Species ([RFSS] USFS, 2012)
4696	 USFWS Midwest Region Endangered Species (USFWS, 2018)
4697	 USFWS Information for Planning and Consultation ([IPaC]
4698	USFWS, 2019)
4699	 MDNR Wildlife Action Plan 2015-25 (MDNR, 2016)
4700	Aquatic Species Baseline
4701	 MPCA Environmental Data Access (MPCA, 1998, 2014a, 2014b,
4702	2014c)
4703	 MPCA Rainy River-Headwaters Monitoring and Assessment
4704	Report (MPCA, 2017)
4705	 MDNR Fishes of Minnesota Mapper (MDNR, 2015b)
4706	 USFS Current Invasive Plants (USFS, 2019) Missionate Department of Amigulture (MDA) 2010 Neurious Mand
4707	 Minnesota Department of Agriculture (MDA) 2019 Noxious Weed List (MDA) 2010)
4708	List (MDA, 2019)
4709	The evaluation was conducted using the native geospatial data files. Land cover was
4710	reviewed along with habitat information to identify the habitats present. The identified
4711	habitats were reviewed and compared to the habitats that support various sensitive
4712	species of interest and within their designated range.
4713	For the review of sensitive species, the following search criteria were considered:
4714	 Any species listed as an endangered or threatened species under the
4715	authority of the Endangered Species Act of 1973;
4716	USFWS Migratory Bird, any bird listed under Title 50 Code of Federal
4717	Regulations Part 10.13.3 and protected under Migratory Bird Treaty Act of
4718	1918;
4719	• Bald eagles, protected under the Bald and Golden Eagle Protection Act of
4720	1940;
4721	• Any species listed by the MDNR as "endangered" or "threatened" by the
4722	authority of Minnesota Statute, section 84.0895, listed under Minn. R.,
4723	chapter 6134, and protected under Minn. R., chapter 6212;
4724	• Minnesota species of special concern which are listed under Minn. R.,
4725	chapter 6134, but are not protected under Minnesota Statute,
4726	section 84.0895 or Minn. R., chapter 6212;
4727	• Species on the USFS RFSS list. The USFS is required by the National
4728	Forest Management Act to maintain viable populations of native and
4729	desired non-native vertebrate species in National Forests and considers
4730	sensitive species as "those plant and animal species identified by a
4731	Regional Forester for which population viability is a concern as evidenced

Environmental Review Support Document

4732 4733		by significant current or predicted downward trend in numbers or density" (USFS, 2012);
4734		 Species listed by the National Forest Management Act as Management
4735		Indicator Species for the SNF. These species are "plant and animal
4736		species, communities, or special habitats selected for their emphasis in
4737		planning, and which are monitored during forest plan implementation in
4738		order to assess the effects of management activities on their populations
4739		and the populations of other species with similar habitat needs which they
4740		may represent" (USFS, 1991); and
4741		 Species in Greatest Conservation Need (SGCN), defined in the
4742		Minnesota Wildlife Action Plan 2015-2025.
4740		The MDND Date Species Quide was used to further refine the selected behitter and
4743		The MDNR Rare Species Guide was used to further refine the selected habitats and
4744		sensitive species for inclusion in the analysis. The Border Lakes Subsection was
4745 4746		used for this analysis, because the Project area would be almost entirely within this subsection. Less than 0.3% of the Project area would be located in the Nashwauk
4740		•
4748		Upland Subsection on the southern margin of the Project area. The habitats identified in this analysis were: Forest Acid Peatland, Fire Dependent Forest, Mesic
4740 4749		· · · · ·
4749 4750		Hardwood Forest, Non-Forested Acid Peatland, and Non-Forested Rich Peatland for
		terrestrial species and Small Rivers and Streams, Littoral Zone of Lake, and Deep
4751		Water Zone of Lake for aquatic species. The search criteria are shown in Table 8-1.
4752		The NHIS Database was reviewed under license number LA-941 for any
4753		documented occurrences of endangered, threatened, special concern, and tracked
4754		species in the Project area. The NHIS Database was also reviewed for any
4755		occurrences of unique vegetation communities and animal assemblages in the
4756		Project area.
4757		The USFWS IPaC and the USFWS Midwest Region Endangered Species lists were
4758		reviewed to identify additional species that may potentially be present and if there
4759		are designated critical habitats in the Project area.
1100		
4760		The USFS GIS current invasive plants shapefile was reviewed to identify potential
4761		invasive and noxious weeds existing within the Project area. This database contains
4762		plant infestation polygons collected by the USFS in accordance with the National
4763		Invasive Plant Inventory Protocol. The species identified in this search were
4764		compared against the current MDA noxious weed list to determine if any occurrences
4765		exist within the Project area.
4766		MDNR Section of Fisheries information and MPCA field observations data were
4767		reviewed as part of the aquatic resources baseline assessment.
4768	8.1.2	Terrestrial Resources

4769The Project area is within the boundaries of the SNF and the Bear Island State4770Forest. Generally, the Project area is categorized as upland coniferous forest

Environmental Review Support Document

- 4771 dominated by pine, fir, aspen, and spruce. Wet cover types within the Project area 4772 include lowland conifer swamps, poor fens, and bogs.
- Human activities have influenced the characteristics of the existing terrestrial
 resources. Historically, much of the area was deforested in the late 1800s through
 the early 1900s (Reavie, 2013). Logging in the 19th century was followed by
 widespread slash-fueled wildfires in the 20th century. More recently fire suppression
 and vegetation management activities have determined the present forest makeup.
 Like most natural systems, the effects of disturbances on the landscape shape the
 habitats seen today.
- The Project area is crossed by a system of unpaved roads that allow access for
 ongoing timber harvest, silvicultural activities, fire management, recreational access,
 and mineral exploration. On the northwestern edge of the Project area permanent
 residential structures have been constructed on the shore of Birch Lake reservoir.
- The Project area has a history of mineral exploration and mining, as described in
 Section 4.0. Currently, Kasota Stone operates a stone quarry on state of Minnesota
 School Trust Lands located within the footprint of the tailings management site.
 Logging has also taken place on the School Trust Lands.

4788 <u>Terrestrial Habitat</u>

In order to characterize the baseline habitat conditions for terrestrial species, existing
land cover and habitats were identified based on the MDNR/USFS ECS, the USGS
GAP data, and the USGS NLCD.

4792 MDNR / USFS Ecological Classification System

- The Project would be located almost entirely within the Ecological Classification
 System's Border Lakes subsection of the NSU section of the LMF Province, as
 shown on Figure 8-1. There is a small portion at the southern end of the Project area
 that is within the Nashwauk Uplands subsection.
- 4797The LMF is characterized by broad areas of conifer forest; mixed hardwood and4798conifer forests; and conifer bogs and swamps. The NSU section largely coincides4799with the extent of the Canadian Shield in Minnesota and consists mostly of fire-4800dependent forests and woodlands. At the Border Lakes subsection scale, the major4801forest communities are characterized as jack pine forest, white pine-red pine forest,4802and hardwood-conifer forest. The Nashwauk Uplands subsection is dominated by4803quaking aspen forests (MDNR, 2019a).

4804USGS Gap Analysis Program / LANDFIRE National Terrestrial Ecosystems4805Data

4806 4807 4808	The Project area is also defined by the USGS GAP / LANDFIRE land cover types as predominantly upland coniferous as shown on Figure 8-2. The Project area consists of:
4809 4810 4811	 Boreal White Spruce-Fir-Hardwood Forest (42%); Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen (42%); and Boreal Jack Pine-Black Spruce Forest (8%).
4812 4813	The USGS GAP / LANDFIRE land cover types by Project components is provided in Table 8-2.
4814	USGS National Land Cover Database
4815	The NLCD data characterizes the Project area consists of:
4816 4817 4818 4819 4820	 Woody Wetlands (39%), Evergreen Forest (32%), Mixed Forest (9%); and Shrub / Scrub Shrubland (8%) with minor amounts of other land covers including Grassland / Herbaceous and Deciduous Forest.
4821 4822	The NLCD land cover types are shown on Figure 8-3 and are broken down by Project components in Table 8-3.
4823	These different classifications are defined (USGS, 2011b) as:
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835	 Woody Wetlands - areas where forest or shrubland vegetation accounts for >20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water; Evergreen Forest - areas dominated by trees generally >16.5 ft (5 m) tall, and >20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage; Mixed Forest - areas dominated by trees generally >16.5 ft (5 m) tall, and >20% of total vegetation cover. Neither deciduous nor evergreen species are >75% of total tree cover; Shrub / Scrub - areas dominated by shrubs; <16.5 ft (5 m) with shrub canopy typically >20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from
4835 4836 4837 4838 4839 4840 4841 4842	 young trees in an early successional stage or trees stunted from environmental conditions; Grassland / Herbaceous - areas dominated by graminoid or herbaceous vegetation, generally >80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing; and Deciduous Forest - areas dominated by trees generally >16.5 ft (5 m) tall, and >20% of total vegetation cover. More than 75% of the tree species
4843	shed foliage simultaneously in response to seasonal change.

4844	MDNR Minnesota Biological Survey
4845	The classification of baseline terrestrial resources within the Project area also
4846	considered the presence of native plant communities. A native plant community is a
4847	group of native plants that interact with each other and with their environment in
4848	ways not greatly altered by modern human activity or by introduced organisms.
4849	These groups of native plant species form recognizable units, such as pine forests,
4850	or marshes, that tend to repeat over space and time.
4851	The MDNR MBS systematically collects, interprets, monitors, and delivers data on
4852	plant and animal distribution as well as the ecology of native plant communities and
4853	functional landscapes. Native plant communities are classified and described by
4854	considering vegetation, hydrology, landforms, soils, and natural disturbance regimes.
4855	For this review the MDNR Native Plant Community (NPC) database was used to
4856	identify whether native plant communities were present in the Project area. The
4857	database was developed by the MDNR using Minnesota's NPC Classification
4858	system.
4859 4860	The classification system hierarchy has six classification levels: system groups, ecological system, floristic region, NPC class, NPC type, and NPC subtype.
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4874 4875 4876 4877 4878 4879 4880 4881	 System groups, the highest level, were created to allow development of manageable field keys for lower levels of the classification. System groups were formed by combining lower levels of the classification along major physiognomic and hydrologic splits in vegetation; Ecological systems, the next level are groups of NPCs unified by strong influence from a major ecological process or set of processes, especially nutrient cycling and natural disturbances; Floristic regions are divisions within ecological systems that reflect the distribution of Minnesota's plant species into characteristically northern, northwestern, central, and southern groups, or floras; NPC classes are units of vegetation that generally have uniform soil texture, soil moisture, soil nutrients, topography, and disturbance regimes. For wooded vegetation, NPC classes were developed by emphasizing understory vegetation more than canopy trees, under the hypothesis that in much of Minnesota (such as levels of nutrients and moisture) than are canopy trees; NPC types are defined by dominant canopy trees, variation in substrate, or fine-scale differences in environmental factors such as moisture or nutrients. Type distinctions were also made to describe geographic patterns within a class; and
4882	 NPC subtypes are based on finer distinctions in canopy composition,
4883	substrates, or other environmental factors (MDNR, 2019d).

4884 4885 4886 4887 4888 4889 4890 4891 4892	Within the Project area, the NPC data becomes less complete in coverage further down the hierarchy. At the ecological system level, the majority of the Project area has data available, and the ecological systems identified are shown on Figure 8-4. Approximately 650 acres (263 ha) of the southwestern extent of the transmission corridor are unmapped (MDNR, 2019e). Within the Project area, the majority (93%) of the mapped ecological systems are acid peatland systems, fire-dependent forest / woodland systems, and a mesic forest complex, as shown in Table 8-4. Overall, upland communities cover approximately 70% of the Project area with wetland community types at 30% of the Project area.
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902	The MBS data files include raw candidate data that has been mapped by MDNR's Ecological and Water Resources division but not certified for inclusion in the NPC database. Much of this candidate data shows disturbed features not part of the NPC classification and are tracked for future NPC mapping purposes. By definition these disturbed areas would not contain NPC. Table 8-5 summarizes the candidate data associated by Project features. The candidate data from the NPC database shows that much of Project area has been disturbed with over 1,930 acres (781 ha) of disturbance. This includes almost all of the plant site and water intake corridor (143 acres [58 ha]), a portion of the tailings management site (151 acres [61 ha]) and much of the transmission corridor (199 acres [80.5 ha]).
4903 4904	The following are descriptions of the most prevalent ecological systems in the Project area:
4905 4906 4907 4908 4909 4910 4911 4912 4913 4914	 Acid Peatland Systems (MDNR, 2019g). – Acid peatland systems are characterized by conifer, low-shrub, or graminoid dominated communities that develop with Sphagnum in an acidic (pH < 5.5) environment. The types of flora associated with these systems are restricted to species adapted to these harsh, low-nutrient environments. Hydrology is dominated by precipitation rather than groundwater and the communities are widespread in the LMF province because of cool climate, abundant precipitation, numerous poorly drained basins, and extensive poorly drained glacial lake plains. The dominant vegetative species are those that can handle the difficult conditions, and are made up of dominantly
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926	 that can handle the difficult conditions, and are made up of dominantly tamarack, black spruce, bog laurel, labrador tea, small cranberry, pitcher plant, three-leaved false Solomon's seal, and tussock cottongrass; Fire Dependent Systems (MDNR, 2019h) – These are communities across the LMF province and are strongly influenced by wildfires. Fires have a strong impact on the mortality, germination, and regeneration of species within these communities. These communities in the LMF province are characterized by evergreen species, most visibly pines and other conifers. Fire-dependent communities occur in areas with thin coarse sandy or gravelly soils over bedrock. Dominant species in these communities have adaptations for fire and include balsam fir, bunchberry, twinflower, ground-pine, white spruce, velvet-leaved blueberry, fly honeysuckle, and mountain maple; and

Environmental Review Support Document

4927	 Mesic Forest (MDNR, 2019i) - Poor Dry Mesic Woodland – In the Project
4928	area this consists of Northern Mesic Mixed Forest interspersed with
4929	Northern Poor Dry-Mesic Mixed Woodlands. The two NPC types are
4930	similar and both commonly associated with bedrock outcrops and ridge
4931	complexes with relatively nutrient-poor, shallow, loamy soils. The
4932	community is more likely to occur on sites with higher quality soils such
4933	as valleys, lower slopes, and large depressions in the bedrock. Typical
4934	vegetative species in this type are balsam fir and paper birch in the tree
4935	canopy and sweet scented bedstraw, mountain maple, rose twistedstalk,
4936	and one-sided pyrola in the understory. The community occurs in rolling
4937	topography, along ridges or on ridge tops, where soils are thin, and
4938	boulders and / or bedrock are close to the surface. Typical vegetative
4939	species in this type are red pine and northern red oak in the understory
4940	and creeping snowberry, stemless lady's slipper, and tessellated
4941	rattlesnake plantain in the ground layer.
4942	NPC types and subtypes are assigned conservation status ranks (MDNR, 2009) that
4943	reflect the risk of elimination of the community from within Minnesota. The scale is:
4944	• S1 = critically imperiled
4945	• S2 = imperiled
4946	 S3 = vulnerable to extirpation
4947	 S4 = apparently secure; uncommon but not rare
4948	 S5 = secure, common, widespread, and abundant
1010	
4949	Table 8-4 provides the S ranking for all the community and subtypes identified within
4950	the Project area. No S1 rankings are present within the Project area. S2 and S3
4951	rankings are often combined and the total acreage within this ranking is 1,389 acres
4952	(562 ha). Acreage for S4 and S5 rankings respectively are 187.3 acres (75.8 ha) and
4953	402.4 acres (162.8 ha).
4954	Vegetation

4955 Sensitive Species

4956There are 65 sensitive terrestrial vegetative species potentially present in the Project4957area (1 fungus, 14 lichen, 4 moss, and 46 vascular plants) as summarized in4958Table 8-6. The species' federal and state statuses, RFSS status, SGCN status,4959recorded occurrences within the Project area in the NHIS data, and listed habitats

Environmental Review Support Document

- 4960are also provided in Table 8-6. Descriptions for each of the species within the Project4961area are available from the MDNR Rare Species Guide (MDNR, 2019f).
- 4962 The approximate locations of documented occurrences of sensitive vegetative and 4963 terrestrial species occurrences have been documented as shown on Figure 8-5.
- 4964 Non-native Invasive Plants
- 4965There are 98 instances of non-native invasive plants potentially present in the4966Project. These include 16 instances of bull thistle (*Cirsium vulgare*), 33 instances of4967Canada thistle (*Cirsium arvense*), one instance of common St. John's wort4968(*Hypericum perforatum*), 43 instances of common tansy (*Tanacetum vulgare*), and4969five instances of spotted knapweed (*Centaurea biebersteinii*).
- 4970The MDA maintains a list of State Prohibited Noxious Weeds, with two categories;4971eradicate and control (MDA, 2019). Three species included on the MDA control list4972are also identified as present within the Project area (Canada thistle, common tansy,4973and spotted knapweed). There were no species identified in the Project area listed4974on the eradicate list.
- 4975 <u>Terrestrial Wildlife</u>

4976 Sensitive Species

- 4977 There are 20 sensitive terrestrial wildlife species potentially present in the Project area (four insects, one spider, one reptile, six birds, and eight mammals). Potential 4978 4979 sensitive terrestrial species within the Project area are identified in Table 8-7. The 4980 table also includes species' federal and state listing status, RFSS status, SGCN status, SNF indicator species status, recorded occurrences within the Project area in 4981 the NHIS data, and listed habitats. Descriptions for each of the species within the 4982 4983 Project area are not included but available from the MDNR Rare Species Guide 4984 (MDNR, 2019f).
- 4985 8.1.3 Aquatic Resources
- 4986 Aquatic Habitat
- 4987The Project area contains three different aquatic habitats: Small Rivers and Streams,4988Littoral Zone of Lake, and Deep Water Zone of Lake. Lowlands and wetlands are4989considered as part of and included in the terrestrial habitats.
- 4990 Aquatic Biota

4991Fisheries survey data

4992The MPCA has conducted fisheries surveys on several streams and rivers in the4993Project area, as shown on Figure 8-6.

Environmental Review Support Document

4994 Birch Lake Reservoir

4995Birch Lake reservoir is one of the most heavily used lakes in the MDNR's Tower4996Fisheries Management area. The MDNR has posted periodic fisheries survey data4997on the Birch Lake reservoir from 1981 through 2015. Fish species reported by the4998MDNR for Birch Lake reservoir include black crappie, bluegill, burbot, cisco species,4999largemouth bass, northern pike, rock bass, smallmouth bass, tullibee, walleye, yellow5000perch, white sucker, bluntnose minnow, common shiner, emerald shiner, golden5001shiner, Johnny darter, logperch, spottail shiner, and trout-perch.

5002The non-native invasive species rusty crayfish are noted in the MDNR's Lake Finder5003summary for Birch Lake reservoir, with surveys through 2012 showing the rusty5004crayfish to be limited to the east end of the lake. The rusty crayfish is of concern for5005disrupting ecosystems, in part due to its larger appetite compared to native species5006of crayfish.

5007 Keeley Creek

5008 Keeley Creek is located just south of the tailings management site. In 2014, MPCA 5009 conducted a biological assessment of the creek at station ID 14RN006. MPCA 5010 documented the following fish species in the 2014 assessment: blacknose dace, 5011 brook stickleback, central mudminnow, common shiner, creek chub, finescale dace, 5012 genus notropis, lowa darter, logperch, northern redbelly dace, pearl dace, and white sucker. Data on invertebrates was not collected. The assessment indicated that the 5013 5014 fish rating was good with an Index of Biotic Integrity (IBI) of 88. The assessment also recorded August water temperature at 80.8°F (27.1°C) and dissolved oxygen levels 5015 5016 of 7.07 mg/L (MPCA, 2014a).

5017 <u>Stony River</u>

5018Stony River was sampled by the MPCA in 2014 upstream of where the transmission5019corridor would cross at station ID 14RN007. Aquatic biota sampling conducted in5020Stony River documented the presence of eight fish species and dominated by5021burbot. The assessment indicated that the fish and invertebrate rating was good, with5022an IBI of 87 and 72 respectively. The 2014 assessment also recorded August water5023temperature at 69.6°F (20.9°C) and dissolved oxygen levels of 9.89 mg/L (MPCA,50242014b).

5025 Denley Creek

5026Denley Creek is a tributary to Stony River and is part of the Upper Stony River5027Watershed (MPCA, 2017). Denley Creek was sampled 0.5 mile upstream of where5028the transmission corridor would cross by the MPCA in 2014 at station ID 14RN067.5029Aquatic biota sampling conducted in Denley Creek documented the presence of503011 fish species and dominated by northern redbelly dace (MPCA, 2014c). In addition,5031MPCA documented a diverse invertebrate community. The upstream portions of5032Denley Creek are designated as cold-water resources. Brook trout have been

Environmental Review Support Document

- 5033documented in upper portions of Denley Creek and associated tributaries. MPCA5034has concluded that Denley Creek fully supports the aquatic life use and that the fish5035and invertebrate rating was good, with an IBI of 75 and 83 respectively. The 20145036assessment also recorded August water temperature at 64.4°F (18.5°C) and5037dissolved oxygen levels of 5.59 mg/L.
- 5038 Unnamed Creek

5039 Unnamed Creek is located east of the Dunka Pit and is a tributary to Birch Lake 5040 reservoir. In 1998, MPCA conducted a biological assessment of the creek at station 5041 ID 98RN001. During that assessment, MPCA documented the following fish species: blacknose dace, brook stickleback, creek chub, finescale dace, northern redbelly 5042 dace, and pearl dace. Data on invertebrates was not collected. The assessment 5043 5044 indicated that the fish rating was good, with an IBI of 64. The 1998 assessment also recorded July water temperature at 65.1°F (18.4°C) and dissolved oxygen levels of 5045 5046 6.9 mg/L (MPCA, 1998).

5047 Sensitive Species

5048There are 16 aquatic sensitive species potentially present in the Project area5049(2 birds, 6 fish, 6 insects, 1 mussel, 1 reptile, and 16 vascular plants). Potential5050sensitive aquatic species within the Project area are identified in Table 8-8. The table5051also includes species' federal and state status, RFSS status, SGCN status, recorded5052occurrences within the Project area in the NHIS data, and listed habitats.5053Descriptions for each of the species within the Project area are not included but5054available from the MDNR Rare Species Guide (MDNR, 2019f).

5055 Wild Rice

5056 Wild rice has been a culturally significant resource and a valuable food source for 5057 Native Americans for centuries. Wild rice is also recognized as an important food 5058 source for both migrating and resident wildlife. Birch Lake reservoir has been identified by the 1854 Treaty Authority and the MDNR as a wild rice water with 5059 5060 potential to produce harvestable quantities of rice (MDNR, 2008). No other surface 5061 waters in the Project area are listed as wild rice waters by the MDNR.TMM has monitored wild rice in Birch Lake reservoir and other in the vicinity of the Project area 5062 5063 since 2009.

5064 <u>Historic Review</u>

5065To establish a baseline for wild rice in the Project area, publicly available documents5066containing information on the presence and absence of wild rice were reviewed.5067Local MDNR Fisheries offices in Minnesota store new and historical records5068regarding surface waters within their management zones which can include5069information of the presence of wild rice. Files from the Tower MDNR Fisheries office5070were reviewed for information on the presence of wild rice in the Project area. These5071documents include the Lake and Stream Survey Files generated and stored by the

- 5072MDNR and regional resource documents, such as wild rice investigational reports5073and inventories. Hard copies of the MDNR data were reviewed at the Tower5074Fisheries office.
- 5075A Birch Lake reservoir file from the Tower Fisheries office was reviewed in paper5076format. The file contained numerous records describing vegetation and physical5077conditions in Birch Lake reservoir. Wild rice is specifically identified in the Lake5078Survey Reports for 1954, 1975, and 1997. Wild rice is not mentioned in the Lake5079Survey Reports for 2001, 2004, 2006, and 2009.
- 5080 The Tower Fisheries office did not have a Keeley Creek file.
- 5081In addition to the MDNR Fisheries files, wild rice investigational reports with regional5082or statewide significance were also reviewed. Some of the documents did not contain5083information about wild rice within the Project area. Information pertaining to wild rice5084is included in section Baseline Results Birch Lake Reservoir.
- 5085 Baseline Monitoring Methods
- 5086 TMM has conducted baseline wild rice monitoring that has included surveys. 5087 macrophyte collection, and water quality monitoring. Wild rice survey and water 5088 quality monitoring methods used for the Project were similar to those used by the 5089 1854 Treaty Authority, "Wild Rice Monitoring and Abundance in the 1854 Ceded Territory (1998–2017)" (Vogt, 2018) and other vegetation plot data surveys designed 5090 to quantify in situ plant species (e.g., The Relevé Method [MDNR, 2007]). In 5091 5092 summary, these methods include gualitative (shoreline surveys) and guantitative 5093 (grid sampling) of wild rice stand density measurements and in-situ (in the field) and 5094 ex-situ (in the lab) wild rice plant measurements and statistical analyses. Wild rice sampling and processing was done as part of 2018 wild rice survey along with 5095 identifying other aquatic macrophytes growing in or near wild rice stands. The 5096 5097 purpose of these observations and the sampling was to provide an overview of 5098 dominant macrophyte species in the water bodies. Observations of more common 5099 macrophyte species were noted, but not collected.
- 5100 Baseline Results Birch Lake Reservoir
- 5101The locations of wild rice stands were identified and plant densities were measured5102as shown on Figure 8-7 during field surveys conducted in August and September51032018. Wild rice was present along 39.8% (46.7 miles [75 km]) of the surveyed5104shoreline. A total of 120 wild rice plants were collected from eight field grids in 2018.5105These wild rice plants were all processed in the fall of 2018.
- 5106A total of 69 species of aquatic macrophytes have been collected or observed in or5107near identified wild rice stands during field surveys conducted annually between51082014 and 2018. The number of macrophyte species collected between 2014 and51092018 ranged between 41 and 48 species. In 2018, 31 water samples were collected5110from water bodies near wild rice stands.

Environmental Review Support Document

5111 8.2 Project Impacts

5112 This section describes the potential Project impacts to terrestrial resources and aquatic resources.

5114 8.2.1 <u>Terrestrial Resources</u>

5115 This section describes the potential Project impacts to terrestrial habitat, terrestrial 5116 vegetation, and terrestrial wildlife resources.

5117 <u>Terrestrial Habitat Effects</u>

5118 Impacts would primarily occur as a result of the Project construction. Clearing and grubbing of the access roads, water intake corridor / facility, tailings management 5119 5120 site, plant site, ventilation raise sites, and ventilation access road, would directly 5121 impact the habitats within the area of potential ground disturbance. After clearing and 5122 grubbing, these sites would be graded and filled with crushed stone and supporting infrastructure would be constructed. During the Project operation phase, with the 5123 5124 exception of the tailings management site, habitat would not be re-established on 5125 these sites. The tailings management site would incorporate concurrent reclamation 5126 during operations. Concurrent reclamation involves the creation of areas that can be reclaimed as soon after initiation of the operation as practical and as continuously as 5127 5128 practical throughout the life of the operation.

- 5129 Habitat in the transmission corridor is also within the areas of potential ground 5130 disturbance of the Project and would be impacted by the footprint of the power line poles and parallel two-track maintenance trail. The transmission corridor would not 5131 be graded or filled with crushed stone and would be maintained to prevent 5132 tall-growing vegetation from interfering with the overhead power lines and associated 5133 infrastructure. This would allow for the reestablishment of primarily open grass / 5134 5135 shrub habitat. The transmission corridor would be maintained in permanent vegetative cover and potentially provide shelter and food for wildlife in the area. The 5136 5137 transmission corridor would allow for wildlife to traverse the corridor.
- 5138To reduce potential habitat impacts, the surface facilities have been designed on a5139compact layout to minimize the areas of potential ground disturbance, as described5140in Section 3.6.2.
- 5141 Habitat impacts would be temporary as the Project would be of limited duration and 5142 at closure the habitats would be reclaimed to restore effected habitats. Phased 5143 construction of the dry stack facility would allow for concurrent reclamation that 5144 would reduce the duration of some impacts during operation, and full reclamation 5145 would be required for closure. The Project would preserve the original soil by segregating and stockpiling organic soil for reclamation purposes. To bolster success 5146 5147 of reclamation the Project would establish reference sites and revegetation plots. The reference sites would be undisturbed areas established prior to construction 5148

5149 5150 5151 5152	where vegetation type and quality would be documented. Revegetation would use the standards of Minn. R., chapter 6132, specifically that within ten growing seasons following the initiation of vegetation, the vegetative community would have characteristics similar to those of the approved reference sites.
5153	Habitat Loss Effects
5154 5155 5156 5157 5158 5159	Construction of the surface facilities of the Project would impact 1,156 acres (467.8 ha) of habitat (Table 8-9 and Table 8-10). As discussed in Section 4.1.1 and 8.1.1, much of this habitat has been previously disturbed by human activity. The Project would reduce the available habitats within the Project area during Project construction and operation by 16.8%. Using the habitat classifications, the major habitat losses due to Project construction would be:
5160 5161 5162 5163 5164 5165 5166	 USGS GAP / LANDFIRE- Boreal White Spruce-Fir-Hardwood Forest and Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen habitats (USGS, 2011b). Total impacts from the Project are shown in Table 8-9; and USGS NLCD-Woody Wetlands, Evergreen Forest, and Shrub / Scrub habitats (USGS, 2011a). Total impacts from the Project are shown in Table 8-10.
5167 5168 5169	These habitats are common in Northern Minnesota and make up a significant portion of the Rainy River Headwaters watershed portion of the Border Lake subsection, as shown in Table 8-9 and Table 8-10).
5170	NPC and Rare Natural Community Effects
5171 5172 5173 5174 5175	Some NPC have been identified within the areas of potential ground disturbance and would be impacted by construction of the surface facilities, as shown in Table 8-11. The surface disturbance would reduce the amount of NPC in the Project area by 19%. These NPC include 264.5 acres (107.0 ha) of NPC types and subtypes that have a conservation status rank of S2 or S3.
5176 5177 5178 5179 5180	At an ecological systems level, NPCs that would be impacted by the Project, specifically Fire-Dependent Forest / Woodland, Mesic Forest Complex, and Acid Peatland System communities, are abundant in the region around the Project area. The impacts resulting from the Project would not reduce the regional abundance of these NPCs at an ecological systems level, e.g. where NPC exist:
5181 5182 5183 5184	 Within 5 miles of the Project area Fire-Dependent Forest / Woodland, Complex Community (including Mesic Forest Complex), and Acid Peatland System communities make up 57.5%, 13.4%, and 22.6% respectively.

Environmental Review Support Document

5185 While the NPCs at the ecological systems level are common within the Project area 5186 and region, insufficient information is available to determine whether specific NPC 5187 classes, types, and subtypes could be impacted by the Project. Most of the NPC 5188 data has been developed remotely and while sufficient to describe NPCs at an ecological systems level the data is less accurate when categorizing specific NPC 5189 5190 classes, types, and subtypes. 5191 Habitat Fragmentation Effects 5192 Ground disturbance could lead to habitat fragmentation, a process by which large 5193 and contiguous habitats get divided into smaller, isolated patches of habitats. The results of habitat fragmentation could cause: 5194 5195 Population fragmentation: this occurs when groups of animals become separated from other groups of the same species increasing the 5196 5197 possibility of compromising the long-term survival of the species in the 5198 area: 5199 Ecosystem decay: this occurs when populations of species are isolated 5200 leading to inbreeding and a decrease in the population of local species; 5201 and Edge effects: this occurs when there are changes in the amount of wind 5202 5203 and sunlight available to understory vegetation which could lead to population changes of vegetation and wildlife. 5204 5205 Existing disturbances within the Project, including approximately 40 miles (64 km) of 5206 existing roads and trails, have caused habitat fragmentation. The Project would 5207 further alter the forest cover in the area by adding 12.5 miles (20.1 km) of corridors and roads and 1.156 acres (467.8 ha) of surface facilities that have the potential to 5208 5209 fragment habitats. However, the compact design and temporary nature of the Project would reduce the potential for significant effects. The Project area is also surrounded 5210 by large tracts of public lands that are subject to further restrictions on development 5211 5212 of additional fragmented land uses. 5213 Population fragmentation and ecosystem decay occur at larger scales and the 5214 potential for these effects due to the Project would be reduced due to the small scale 5215 and abundant suitable habitat in and near the Project area. Additionally, edge effects 5216 would likely occur at a localized scale and would be reduced by the abundance of 5217 suitable habitat undisturbed by the Project. The effects would be temporary during 5218 Project construction and operation and reclamation would promote the 5219 re-establishment of habitat, vegetation, and wildlife to reverse the potential effects of 5220 fragmentation.

5221Wildlife Corridor Effects

5222Wildlife corridors serve as a link for wildlife between habitats within their ranges.5223Previous studies (Emmons & Oliver Resources, Inc. [EOR], 2006 and Barr, 2009)

Environmental Review Support Document

5224 show that the greatest impacts to wildlife corridors in northern Minnesota, specifically 5225 on the Iron Range southwest of the Project area, are related to urban developments 5226 and mine operations. Large open mine pits, conventional tailings basins, and networks of haul roads were identified as the primary disruptions to wildlife corridors 5227 from mine operations. The size of the surface features and the scale of their 5228 5229 respective impacts described in those reports are orders of magnitude greater than the Project's potential ground disturbance. 5230 5231 The Project is in an area that has physical limits in providing a wildlife corridor. The 5232 Project area is bounded to the north and the west by Birch Lake reservoir which 5233 serves as a natural impediment to wildlife travel to the north and west. Previous and 5234 current disturbances, including existing forest roads and rural residential roads, 5235 intersect the Project area and influence the movement of wildlife. No specific 5236 corridors have been identified within the Project area and there is abundant contiguous habitat to the east of the Project area which wildlife would preferentially 5237 5238 use. 5239 **Terrestrial Habitat Impacts Summary** 5240 Available information to fully assess potential Project impacts to terrestrial habitat is insufficient but could be reasonably obtained. Potential impacts have been 5241 preliminarily identified, and future work is planned to assess their nature and extent. 5242 5243 These impacts are preliminarily characterized in the following manner: 5244 The Project would alter the habitat in the Project area adding 12.5 miles (20.1 km) of corridors and roads and 1,156 acres (467.8 ha) of surface 5245 5246 facilities that have the potential to fragment habitats; and 5247 The magnitude of terrestrial habitat impacts would be minor because: 1) habitat types and NPC found within the area of potential ground 5248 5249 disturbance are common within the Project area and the Rainy River 5250 Headwaters watershed; 2) habitat fragmentation effects would be 5251 reduced by the existing disturbances in the area, the limited geographic 5252 extent of the Project, and the temporary nature of the Project; and 3) 5253 similar habitat in and near the Project area would be undisturbed and 5254 have restricted development potential due to public ownership. 5255 Future work to assess potential impacts to terrestrial habitat is outlined in 5256 Section 8.3.1. 5257 **Terrestrial Vegetation** 5258 **Common Terrestrial Vegetation Effects** This section discusses the potential effects to individual species in contrast to the 5259 5260 Terrestrial Habitat Effects that discussed effects to terrestrial habitats and 5261 communities. Clearing, grubbing, and construction of the surface facilities would

Environmental Review Support Document

- 5262result in the removal of existing vegetation. As discussed in the Terrestrial Habitat5263Effects, these habitat types and NPC are common in the Project area, the region5264around the Project area, and the Rainy River Headwaters watershed; and the5265impacts from the Project would not present a significant change to the regional5266distribution of vegetative species.
- 5267Reclamation and revegetation plans would reduce the duration of impacts by5268reclaiming the Project back to a natural area consistent with the surrounding5269landscapes. Vegetation impacts are temporary and reversible through concurrent5270reclamation of the tailings management site and reclamation of other surface5271disturbances such as the plant site at closure.

5272 Sensitive Vegetative Species Effects

- 5273 Based on the habitat data there is the potential for sensitive vegetative species to be present within the Project area. Sensitive vegetative species were reviewed for their 5274 5275 habitat associations. Habitats that are associated with sensitive vegetative species 5276 are considered to potentially contain sensitive species. These habitats, if present in areas of potential ground disturbance, would indicate a potential for impact to 5277 5278 sensitive vegetative species. Potential effects would be from the removal of vegetation during clearing, grubbing, and construction. The species that could be 5279 impacted by the Project are shown in Table 8-6. There is potential for the Project to 5280 5281 impact sensitive species based on habitat associations; however, inadequate 5282 information is available to verify whether sensitive species are present.
- 5283 Non-native Invasive Plants Effects
- 5284 A limited number of non-native invasive plants have been identified in the Project 5285 area including three species of plants on the MDA control list. There is a potential to increase populations of non-native invasive plants through the construction activities 5286 5287 associated with the Project. During clearing and grubbing activities, soils would be 5288 exposed, which provides a pathway for non-native invasive plants to be established in the seed bed. This can occur through various vectors including natural spread of 5289 5290 seed or plant material and transportation by construction equipment. During 5291 construction, operation, closure, and post-closure, selective weed control practices 5292 would be implemented to limit the growth and spread of non-native invasive plants, including noxious weeds. 5293
- 5294Prior to construction a non-native invasive plant survey would be conducted to5295identify the location, type, and extent of non-native invasive plants within the5296potential area of disturbance. A non-native invasive vegetation management plan5297would be developed, which would include BMPs for avoiding exposure to areas of5298non-native invasive plants, cleaning vehicles which may have come in contact with5299non-native invasive plants and removing or controlling non-native invasive plants5300near areas of potential ground disturbance to minimize further propagation.

5301 5302 5303 5304 5305 5306 5307 5308 5309	A variety of weed control techniques would be considered and used as necessary. Weed monitoring would be conducted for the life of the operation. If the spread of noxious weeds is noted, weed control procedures would be developed in consultation with USFS personnel and would be in compliance with USFS handbooks and the Minnesota Noxious Weed List. Additionally, during reclamation, mowing may be used along with herbicide treatments where weed control is necessary to achieve reclamation revegetation goals. Specific herbicides would be carefully selected to target noxious weed species needing control, taking into account their extent of growth.
5310 5311	The potential effects of non-native invasive vegetation from the Project would be minor, for the following reasons:
5312 5313 5314	 The small number of non-native invasive plants identified on site; The EPMs to control temporary impacts; and The reversibility by reclamation of the Project at closure.
5315	Terrestrial Vegetation Impacts Summary
5316 5317 5318 5319	Available information to fully assess potential Project impacts to terrestrial vegetation is insufficient but could be reasonably obtained. Potential impacts have been preliminarily identified, and future work is planned to assess their nature and extent. These impacts are preliminarily characterized in the following manner:
5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330	 The potential impacts from the Project would not present a significant change to the regional distribution of vegetative species; No federally-listed endangered or threatened vegetative species were identified as present within the areas of potential ground disturbance; There is a potential for the Project to affect state threatened and endangered vegetative species, vegetative species on the RFSS, and state species of special concern, but insufficient information exists to confirm the presence of these listed species. A small number of non-native invasive plants were identified on site and would be controlled by BMPs and non-native invasive species management plans.
5331 5332	Future work to assess potential impacts to terrestrial vegetation is outlined in Section 8.3.1.
5333	Terrestrial Wildlife Resources
5334	Common Terrestrial Wildlife Effects
5335 5336 5337	Direct effects from the Project would primarily occur during the clearing, grubbing, and construction of Project infrastructure. Direct impacts include habitat loss, habitat fragmentation, species displacement, and mortality. More mobile species would be

Environmental Review Support Document

5338 able to relocate into the surrounding environment where suitable habitat is abundant. 5339 Species with less mobility would have an increased potential of direct impact from 5340 the Project construction as they are less likely to be able to relocate and avoid 5341 encounters with ground disturbing activities. Examples of common less mobile terrestrial species potentially associated with 5342 habitats within areas of potential ground disturbance would be: 5343 5344 Reptiles: • 5345 Mammals: mice, voles, and rats, shrews, bats; • 5346 Insects: and • 5347 Arachnids. 5348 Examples of common more mobile terrestrial species potentially associated with habitats within areas of potential ground disturbance would be: 5349 5350 Mammals: white-tailed deer, black bear, fox, coyotes, porcupine, raccoons, skunks, beaver, hares and rabbits; and 5351 5352 Birds. • 5353 As discussed in Terrestrial Habitats, similar habitats exist adjacent to the Project 5354 area increasing the probability that mobile species could successfully relocate into 5355 adiacent habitats. Direct impacts to nests, burrows, or hibernating wildlife (depending 5356 on seasonality) could occur. The Project would be unlikely to significantly affect 5357 regional populations of any of these species as these habitats are common within the 5358 region around the Project area and the Rainy River Headwaters watershed. Individuals displaced from these sites would be able to assimilate into suitable 5359 5360 adjacent habitat. 5361 Wildlife can hear sound frequencies, many of which are inaudible to humans. Wildlife 5362 will often habituate to noise, especially noises that are steady or continuous but are less likely to habituate to sudden, infrequent impulse noises. These sudden, 5363 5364 infrequent impulse noises such as back up alarms on mobile equipment or material 5365 handling at the plant site and tailings management site, could displace a variety of wildlife found in and around the Project area, including mammals and birds many of 5366 which could successfully relocate into adjacent habitats. The Project would aim to 5367 5368 reduce the impact of both sudden, infrequent impulse noises and steady or continuous to receptors outside the Project footprint by using EPMs outlined in 5369 5370 Section 12.2. Because of these EPMs, the potential significance of the impacts of noise on wildlife would be reduced. 5371 5372 Lighting and glare from the Project would result in some nocturnal wildlife avoiding the Project area. Wildlife, particularly nocturnal species, would avoid the Project area 5373 5374 and a buffer around it depending on how lighting was positioned and managed. 5375 EPMs identified in Section 10.2 would reduce the significance of potential effects to wildlife. 5376

Environmental Review Support Document

5377 The Project would increase vehicular traffic on public roads within the Project area. 5378 This increases the potential for wildlife encounters with vehicles, leading to some 5379 increased chance of vehicle strikes. Several EPMs would be implemented to 5380 minimize this potential effect. The Project would utilize employee busing to greatly reduce the traffic generated to the Project. Road designs would utilize appropriately 5381 5382 sized clear zones to increase driver visibility and the Project would incorporate safe driving practices into their standard operating procedures. The impacts on traffic and 5383 EPMs are outlined further in Section 13.2. These EPMs reduce the potential for 5384 5385 significant effects to wildlife from traffic.

5386 Sensitive Terrestrial Wildlife Species Effects

5387 Based on the habitat data there is the potential for sensitive wildlife species to be 5388 present within the Project area. Sensitive wildlife species were reviewed for their habitat associations. Habitats that are associated with sensitive wildlife species are 5389 5390 considered to potentially contain those species. These habitats, if present in areas of potential ground disturbance, would indicate a potential for impact to sensitive wildlife 5391 species. Potential impacts would primarily occur during the clearing, grubbing, and 5392 5393 construction of Project infrastructure. The species that could potentially be impacted by the Project are shown in Table 8-7. There is potential for the Project to impact 5394 sensitive species based on habitat associations; however, inadequate information is 5395 available to verify whether sensitive wildlife species are present. 5396

5397 Terrestrial Wildlife Impacts Summary

- 5398Available information to fully assess potential Project impacts to terrestrial wildlife is5399insufficient but could be reasonably obtained. Potential impacts have been5400preliminarily identified, and future work is planned to assess their nature and extent.5401These impacts are preliminarily characterized in the following manner:
- 5402 Direct impacts would include habitat loss, habitat fragmentation, species displacement, or mortality; 5403 5404 The extent of habitat loss would be small in contrast to the available habitat within the region. The Project is unlikely to significantly affect 5405 regional populations of any of these species as these habitats are 5406 common within the region and the surrounding area of the SNF: 5407 5408 Impacts from noise, lighting, and glare would be reduced following EPMs and designs outlined in Section 12.2 and Section 10.2 respectively; 5409 5410 There is a potential for wildlife encounters with vehicles, leading to some 5411 increased chance of vehicle strikes which would be reduced using EPMs 5412 and BMPs: 5413 There is a potential for the Project to affect federal and state threatened 5414 and endangered terrestrial wildlife species, terrestrial wildlife species on 5415 the RFSS list, and terrestrial wildlife state species of special concern, but insufficient information exists to confirm the presence of any of the listed 5416 5417 species.

Environmental Review Support Document

5418 Future work to assess potential impacts to terrestrial vegetation is outlined in 5419 Section 8.3.1.

5420 8.2.2 Aquatic Resources

5421This section describes the potential Project impacts to aquatic habitat, aquatic biota,
and wild rice.

5423 Aquatic Habitat

- 5424The placement of the water intake pipe on the bed of Birch Lake reservoir would be a5425direct effect to the littoral area of the reservoir. The disturbance, as described in the5426section Water Intake Corridor, would affect an estimated 0.25 acres (0.1 ha) of littoral5427area. MDNR indicates that there is 1,060 acres (429 ha) of littoral area on Birch Lake5428reservoir. This change in littoral area would be insignificant.
- 5429Water appropriation could also have a direct impact on the aquatic habitat in Birch5430Lake reservoir. However, as described in Section 6.2.1, the impact of water5431appropriations would be insignificant compared with the seasonal and managed5432water level fluctuation of the reservoir and would not impact the aquatic habitat of5433Birch Lake reservoir.
- 5434Streams would be crossed by overhead power lines and no direct effect to the5435stream habitat would occur. The transmission corridor would be designed to avoid5436impacts to the watercourses. During construction, the Project would use BMPs which5437may include temporary control measures such as silt fences, sediment logs, and5438other industry standard construction stormwater controls. Also, the tailings5439management site would be sufficiently set back with design and EPMs to avoid5440construction impacts to Keeley Creek.

5441 Aquatic Biota

- 5442Project water management would avoid and minimize the potential for impacts to5443aquatic biota. Specifically, the Project would not discharge any process water in5444accordance with 40 CFR Part 440 and is designed not to require a discharge of5445contact water. Further, non-contact water would be managed to reduce sediment5446transport.
- 5447Potential water resources impacts related to surface water quality and quantity5448(Section 6.2) could result in impacts to aquatic biota, however the nature and extent5449of these water resources impacts are currently unknown and will be evaluated in the5450future scopes of work outlined in Section 6.3.
- 5451 Wild Rice
- 5452The Project has been designed to minimize the release of sulfate and potential5453effects to wild rice through water management practices. The Project would not

Environmental Review Support Document

- 5454discharge any process water in accordance with 40 CFR Part 440 and is designed5455not to require a discharge of contact water. Engineered designs of contact water5456ponds and dry stack facility facilities that would reduce the likelihood of seepages or5457discharges are incorporated.
- 5458Potential water resources impacts related to surface water quality and quantity5459(Section 6.2) could result in impacts to wild rice, however the nature and extent of5460these water resources impacts are currently unknown and will be evaluated in the5461future scopes of work outlined in Section 6.3

5462 Aquatic Resources Impacts Summary

- 5463Available information to fully assess potential Project impacts to aquatic resources is5464insufficient but could be reasonably obtained. Potential impacts have been5465preliminarily identified, and future work is planned to assess their nature and extent.5466These impacts are preliminarily characterized in the following manner:
 - Potential impacts to aquatic habitats associated with the construction of the water intake pipe would be insignificant. No other impacts to aquatic habitats from Project construction are expected;
 - Potential water resources impacts related to surface water quality and quantity) could result in impacts to aquatic resources, however the nature and extent of these water resources impacts are currently unknown and will be evaluated in the future scopes of work outlined in Section 6.3
- 5474No future scope of work exclusive to aquatic resources is proposed. Potential5475impacts to aquatic resources will be assessed using results from the future scope for5476water resources outlined in Section 6.3.
- 5477 **8.3 Future Scope**
- 54788.3.1Terrestrial Resources
- 5479 Habitat, Vegetative, and Wildlife Baseline Surveys

5480 Purpose

5467

5468 5469

5470

5471

5472

5473

- 5481TMM proposes a scope of work to conduct habitat, vegetative, and wildlife surveys in5482the Project area with the purpose of:
- 5483
 5484
 5484
 5485
 5486
 5486
 6 Creating a plant community map and recording evidence of natural or anthropogenic disturbances to biological communities;
 5488
 6 If present, locating and documenting sensitive vegetative populations;

5489 5490 5491 5492 5493 5494 5495	 Conducting an inventory of the sensitive wildlife and general wildlife species; Identifying areas providing important or critical habitat to sensitive wildlife species; Assessing habitat quality and the ability of the Project area to provide suitable habitat for sensitive wildlife species, and Compiling a list of all wildlife species observed during surveys.
5496 5497 5498 5499 5500	This survey will help refine the baseline habitat, vegetative, and wildlife conditions and identify possible reduction measures that the Project could implement to limit impacts. This work will also inform potential permit applications pertaining to the taking of listed species under Minn. R., part 6212.1800, if applicable. Terrestrial Resources Questions to be Answered
5500 5501 5502	The scope of work is developed to answer specific questions for the agencies to make a decision on the scope of the EIS.
5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520	 What are the NPC classes, types, and subtype within the Project area and area of potential ground disturbance? What is the presence or absence of vegetative sensitive species, specifically those with protected statuses within the Project area and area of potential ground disturbance? What is the presence or absence of high-quality NPCs and classify the quality of any rare native plant communities identified within the Project area and area of potential ground disturbance? Do Project EPMs or reduction methods to reduce impacts to vegetative sensitive species, high quality NPCs, or rare native plant communities need to be revisited? What is the presence or absence of sensitive wildlife species, specifically those with protected statuses within the Project area and area of potential ground disturbance? Do Project EPMs or reduction methods to reduce impacts to sensitive species, high quality NPCs, or rare native plant communities need to be revisited? What is the presence or absence of sensitive wildlife species, specifically those with protected statuses within the Project area and area of potential ground disturbance? Do Project EPMs or reduction methods to reduce impacts to sensitive wildlife species need to be revisited? Does the Project have the potential for significant effects to habitat, vegetative, and wildlife?
5521	Approach
5522 5523	TMM proposes the work in three phases. The phases are generally sequential and will lead to a supporting report or technical memorandum as a reference document.
5524 5525 5526 5527	Phase 1 – Pre-field research on habitats, vegetation, and wildlife . <i>Habitat and vegetation</i> – This phase will build off the baseline conditions of the SEAW and using additional remote sensing and desktop sources to evaluate the types of habitat and vegetative cover present. This phase will also include compilation of information on

5528 5529 5530 5531 5532	plant associations, phenology, and key identifying characteristics for a list of species that were most likely to be present as identified in the SEAW. <i>Wildlife</i> – Similar to the habitat and vegetation phase, this will evaluate the types of sensitive species potentially present. This phase will also include compilation of information on wildlife associations and survey methodology.
5533 5534	Phase 2 – Terrestrial vegetation baseline surveys. The field survey is designed to:
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5551 5552 5553 5554 5553	 Create a plant community map using aerial photograph interpretation and spot verification with global positioning system (GPS) that will enable mapping of cover type; Conduct "meanders surveys" within the community, in conjunction with topographic maps and air photos, to generally document variability and microhabitats; Gather information on the composition, structure, and function that enables characterization, qualitative ranking, and classification to community type; Record evidence of disturbance, whether natural or anthropogenic, recent or in the distant past, as it relates to biological communities. Where possible, the severity of impact and degree of recovery or potential for recovery will be estimated; Conduct plant surveys throughout representative portions of NPCs. Conduct surveys on a controlled intuitive or meander basis; Observe and note ecological and abiotic factors which may influence the NPC's potential to harbor rare plant species; Perform three, one-week field visits to cover the various blooming periods and target field work for time windows when known of suspected rare species will be easiest to identify; Record observations of non-listed and invasive plant species identified as
5556 5557	 "prohibited" under the Minnesota Noxious Weed Law; and If present, rare plant populations will be located and documented.
5558	Phase 3 – Terrestrial wildlife baseline surveys. The field survey is designed to:
5559 5560 5561 5562 5563 5564 5565 5566	 Identify areas providing important or critical habitat for state and federal threatened or endangered species; Provide an assessment of the habitat quality and the ability of the Project area to provide suitable habitat for sensitive, threatened, or endangered wildlife species. In addition, identify any factors affecting or potentially affecting the quality of the habitat; and Compile a supplemental list of all wildlife species observed during prescribed surveys.
5567	Wildlife surveys will be conducted using the following procedures:

Environmental Review Support Document

5568 Birds 5569 Standardized bird point count survey methods will be used to determine presence of threatened and endangered songbirds breeding within the 5570 Project area: 5571 5572 A game bird brood survey will be completed by recording broods observed while completing normal field operations. Brood surveys will be 5573 conducted in conjunction with other wildlife and site surveys being 5574 5575 completed on the Project area; Nocturnal bird species surveys will be completed for owls and nightjars. 5576 • Approximately 10 owl and nightjar monitoring stations will be equally 5577 5578 spaced approximately 1 mile from each other along the existing forest roads and trail system of the Project area; and 5579 In addition to the standardized bird surveys and species-specific bird 5580 surveys described, incidental observations of bird species detected during 5581 other routine work performed on the Project area will be recorded and 5582 5583 summarized. 5584 Bats, Reptiles, and Amphibians Bat, reptile, and amphibian surveys will be conducted during three 5585 • 5586 weeklong periods; 5587 An inventory of bats occupying the various habitats of the Project area will 5588 be conducted using acoustic bat detection equipment; Reptile surveys will be completed using visual meander or trapping 5589 5590 techniques: Amphibian surveys will be completed by surveying wetland areas near 5591 dusk and recording amphibian calls; and 5592 Incidental observations of other reptile / amphibian species will be 5593 5594 catalogued during field surveys. 5595 Mammals 5596 Digital camera trap surveys will utilize up to 10 motion-detection cameras 5597 spaced throughout the Project area. The cameras will be used in conjunction with bait / scent stations. The cameras will be monitored 5598 throughout the wildlife field assessments; 5599 Small mammal surveys will be completed using baited live traps; and 5600 • Incidental observations of other mammal species will be catalogued 5601 during the winter tracking and digital camera trap surveys, and other 5602 routine work performed on the Project area. 5603 **Deliverables** 5604 The result of this work will be combined with the results from the Wetlands Baseline 5605

work outlined in Section 6.3.1 and will be included in two reports.

5606

5607 5608 5609 5610		 Project area Wetland and Terrestrial Biology–Volume 1 Baseline Data and Methods, and Project area Wetland and Terrestrial Biology–Volume 2 Baseline Conditions.
5611	8.3.2	Aquatic Resources
5612 5613		Potential impacts to aquatic resources will be assessed using results from the future scope for water resources outlined in Section 6.3.
5614	9.0	HISTORIC PROPERTIES AND CULTURAL RESOURCES
5615	9.1	Baseline Conditions
5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5633 5634 5635 5636 5637 5638 5639 5639 5640 5641		 In order to assess baseline historic, archaeological, and cultural resources, a review of archaeological surveys previously conducted within the Project area was completed. The results of this review inform ongoing Project planning and aid in compliance with state or federal cultural resources law, as applicable. The review used USFS files for the SNF and survey data on file at State Historic Preservation Office (SHPO) and Office of the State Archaeologist (OSA) as the primary sources of information. Table 9-1 provides a list of previous intensive archaeological reports within the Project area. The field investigations associated with these reports are summarized as follows: The Duluth Archaeology Center conducted a Phase I archaeological survey along TH 1 in 2003. No archaeological resources were identified within the Project area; In 2011, 10,000 Lakes Archaeology, Inc. conducted a Phase I for potential Project components in Lake and St. Louis Counties. No archaeological resources were identified; A Phase I survey of a portion of the Project area was completed by 106 Group in 2012. One new archaeological site and three potential cultural resources (PR) were documented. Of the three, PR #2 and PR #3 are identified as being located within the Project area; 106 Group completed a Phase I survey for hydrogeologic and exploratory drilling activities in 2013. No archaeological resources were identified; In 2016, 106 Group completed a Phase I survey for hydrogeologic and exploratory drilling activities in 2013. No archaeological resources were identified; In 2016, 106 Group completed a Phase I survey for hydrogeologic and exploratory drilling activities in 2013. No archaeological resources were identified; In 2016, 106 Group completed a Phase I survey associated with a potential access road route. No archaeological resources were identified; In 2017, portions of the Project area reaceived a Phase I visual
5642 5643		assessment and Phase IB shovel testing. No archaeological resources were identified; and

5644 5645 5646		 106 Group conducted a Phase I survey of hydrogeological well locations in 2018, a portion of which were in the Project area. One previously identified archaeological site was encountered.
5647	9.1.1	Archaeological Sites
5648 5649 5650		Within the Project area, two archaeological sites have been previously identified. One of these sites, 21LA0568, has been field confirmed and the other, 05-006, has been reported, but not field confirmed.
5651 5652 5653 5654		Site 21LA0568 was recorded by SNF archaeologists in 1981. The site is characterized by metallic debris, cast iron stove parts, a bedspring, and a slag rock pile. Site 21LA0568 has not been evaluated for eligibility for listing in the National Register of Historic Places (NRHP). This location falls within the Project area.
5655 5656 5657		Site 05-006 is an unconfirmed location of a settler's cabin. The existence and precise location of this site have not been field-verified. This site has not been evaluated for eligibility for listing in the NRHP. This location falls within the Project area.
5658	9.1.2	Historic Properties
5659 5660 5661		In addition to the two previously identified archaeological sites, two architectural properties have been previously inventoried within the Project area: the Erie Mining Company Mining Landscape Historic District and a building listed as LA-FLK-005.
5662 5663 5664 5665 5666 5667 5668		The Erie Mining Company Mining Landscape Historic District (XX-DST-004) has been previously determined to be eligible for listing in the NRHP. The boundary for this district is not clearly defined and additional survey work not associated with the Project is being completed to more clearly define the boundary and contributing properties. Preliminary information identifies that the potential boundaries of the district, and at least one contributing property (Dunka Road, SL-ROD-004), overlap with a portion of the Project area.
5669 5670		LA-FLK-005 is a building within the Project area that has been previously inventoried but has not been evaluated for listing in the NRHP.
5671	9.1.3	Cultural Resources
5672 5673 5674 5675 5676		Two PR have been identified within the Project area during previous survey work or work associated with other projects. These two PR have not been formally recorded as archaeological sites or historical properties by SHPO, OSA, or SNF. These sites are identified as PR #2 and PR #3. In addition to these sites, the Mesabe Widjiu is potentially in the vicinity of the Project area but the exact geographic extent is not

- 5676 potentially 5677 known.
- 5678PR #2 is identified as a pictograph of a geometric form in red pigment located on a5679large glacial erratic; this site was identified in 2013. Site visits with the Bois Forte

Environmental Review Support Document

- 5680Band of Chippewa elders indicate that this resource may have potential significance5681to Native Americans.
- 5682PR #3 is a semicircular stone arrangement associated with a rectangular depression;5683this site was identified in 2013. The origin and function, or potential significance to5684Native Americans, are unknown. Shovel tests excavated around the feature were5685negative, and no charcoal was observed.
- 5686Mesabe Widjiu, or the Laurentian Divide, is of cultural importance to Ojibwe tribes.5687This natural feature is a line of Precambrian hills that separates watersheds flowing5688north to the Arctic Ocean from those flowing south to the Great Lakes. The exact5689geographic extent of the Mesabe Widjiu and its proximity to the Project area are5690unknown.

5691 9.2 Project Impacts

5692The review of previous historic and cultural investigations indicate there are recorded5693and potential resources within the Project area; however, all of the recorded and5694potential resources which have clearly defined limits fall outside of the construction5695limits for the Project. As a result, there are no anticipated impacts to recorded and5696potential historic or cultural resources which have been identified.

5697 9.2.1 Archaeological Sites

5698While identified archaeological sites 21LA0568 and 05-006 are within the Project5699area, they are not within the construction limits of any Project features and there are5700no anticipated impacts to these archaeological sites.

5701 9.2.2 Historic Properties

- 5702The Erie Mining Company Mining Landscape Historic District overlaps small portions5703of the transmission corridor, however, the limits of construction for the transmission5704corridor and off-site electrical substation are outside of the anticipated boundaries for5705this district. There are no anticipated impacts to this historic district.
- 5706LA-FLK-005 would be located within the Project area but this resource is not located5707within the construction limits of any features associated with the Project. There is no5708anticipated need to disturb LA-FLK-005.

5709 9.2.3 Cultural Resources

- 5710 The alignment of the access road to the plant site was adjusted to avoid potential 5711 impacts to PR #2. No impacts are anticipated to this potential resource.
- 5712 PR #3 is located within the Project area but is not located within the construction 5713 limits of the transmission corridor; therefore, no impacts are anticipated to this 5714 potential cultural resource.

Environmental Review Support Document

5715 The geographical extent of the Mesabe Widjiu is currently not known; therefore, 5716 coordination with tribal representatives regarding potential Project impacts is 5717 anticipated.

5718 9.2.4 Historic Properties and Cultural Resources Impacts Summary

- 5719Available information to fully assess potential Project impacts to historic properties5720and cultural resources is insufficient but could be reasonably obtained. Available5721information indicates no potential impacts would occur, but additional work is needed5722to determine whether previously unidentified sites exist in the Project area. Potential5723impacts are preliminarily characterized in the following manner:
- Historic and cultural resources which have been identified during previous investigations fall outside of the Project area. As a result, there are no anticipated impacts for areas of the Project that have been previously investigated.
- In portions of the Project area where no previous investigation has occurred, there is insufficient information to assess the potential for impacts to historic or cultural resources but this information could be reasonably obtained. In order to fully assess the potential impacts to historic and cultural resources, areas of planned soil disturbing activities, which have not previously been investigated, would need to be investigated.
- 5734 Future work to assess potential impacts to historic properties and cultural resources 5735 in portions of the Project area where no previous investigation has occurred is 5736 outlined in Section 9.3.

5737 **9.3** Future Scope

5738 The purpose of the following scope of work is to identify additional historic or cultural 5739 resources existing within the Project area. The extent of the investigation area will be 5740 limited to the tailings management site, plant site, underground mine area, water intake corridor, access road, and transmission corridor where soil disturbing activities 5741 5742 are anticipated to occur and where no previous investigations have occurred. Areas 5743 considered to have low potential for containing archaeological resources include 5744 disturbed or inundated areas, former or existing wetlands areas, poorly drained 5745 areas, and areas with slopes of >20°. Areas assessed as possessing low potential 5746 will not be investigated further.

5747 9.3.1 Cultural Resources

5748Prior to cultural resource surveys being completed, TMM will notify and coordinate5749with the Bois Fort Band of Chippewa, the Grand Portage Band of Lake Superior5750Chippewa, the Fond du Lac Band of Lake Superior Chippewa, and other tribes as5751directed to develop an approach that considers Native American perspectives. TMM

Environmental Review Support Document

5752 will work with tribes to coordinate field survey work and maintain a high degree of 5753 communication throughout the cultural resources survey work.

5754 9.3.2 <u>Historic Properties and Archaeological Resources</u>

- 5755 The approach used to identify these resources will utilize methods used during 5756 previous investigations associated with the Project. These methods were developed 5757 in accordance with SHPO Manual for Archaeological Projects in Minnesota (Anfinson, 2005); the Secretary of the Interior's Standards and Guidelines for 5758 5759 Archaeology and Historic Preservation (48 Federal Register 44716-44740; National 5760 Park Service, 1983); and all required permits, including Special Use Permits issued by the USFS pursuant to the Archaeological Resources Protection Act of 1979 for 5761 surveys on federally-owned lands and Minnesota Archaeological Survey Licenses 5762 issued by the OSA for surveys on non-federal public lands. 5763
- 5764The Phase I archaeological survey will be divided into two components: Phase IA5765visual assessment, and Phase IB survey (pedestrian survey or shovel testing).

5766 Phase IA Visual Assessment

5767Visual reconnaissance will be employed to ascertain whether aboveground historic5768or cultural features were present within survey areas, to assess whether portions of5769survey areas have been extensively disturbed, and to assess survey areas for5770archaeological potential. Areas having a moderate to high potential of containing5771intact archaeological resources will then be subject to Phase IB.

- 5772 Areas considered to have a moderate to high potential of potentially containing intact 5773 archaeological resources generally include undisturbed areas that are:
 - Located within 500 ft (150 m) of an existing or former water source of 40 acres (19 ha) or greater in extent, or within 500 ft (150 m) of a former or existing perennial stream;
 - Located on topographically prominent landscape features;
 - Located within 300 ft (100 m) of a previously reported or recorded archaeological site; or
 - Located within 300 ft (100 m) of a former or existing historical structure feature (such as a building foundation or cellar depression).

5782 Phase IB survey

5774

5775

5776

5777

5778

5779

5780

5781

5783A systematic pedestrian survey will be conducted in portions of survey areas5784identified during visual assessment as possessing moderate to high potential to5785contain intact archaeological resources, and where >25% of the ground surface was5786visible. Systematic pedestrian survey will generally be conducted in 50-ft (15 m)5787intervals.

Environmental Review Support Document

- 5788 Shovel tests will be conducted in portions of survey areas identified during visual 5789 assessment as possessing moderate to high potential to contain intact 5790 archaeological resources, and where <25% of the ground surface was visible. 5791 Shovel tests will be small, circular excavations, measuring approximately 14 to 16 inches (35 to 45 cm) in diameter. All excavated soil matrices will be passed 5792 5793 through ¼-inch hardware mesh to ensure the consistent recovery of artifacts. Tests will be distributed at 50-ft (15 m) intervals, as allowed by the natural and topographic 5794 characteristics of the area. According to the professional judgment of the field 5795 5796 director and crew leaders, transects will be sometimes narrowed to 15 ft (5 m) or 30 5797 ft (10 m) in areas assessed as having higher potential for pre-contact archaeological sites, such as terraces adjacent to rivers or lakes. Transects will be occasionally 5798 5799 widened in areas where landscape features, such as slope or bedrock outcrops, 5800 prohibited regular transects. Shovel tests will be excavated down to the level of 5801 archaeologically sterile subsoil or until an impasse was reached.
- 5802Survey data will be recorded through standardized forms and the field director's daily5803log. Recorded information included observations on field conditions and surface5804visibility; shovel test locations; the depth of shovel tests; the thickness of excavated5805soil layers; soil textures and inclusions (both natural and cultural); and soil color5806according to Munsell color charts.
- 5807The deliverable from a Phase I archaeological survey will be a report summarizing5808findings from the survey. This report will identify additional potential historic5809resources within the Project area where soil disturbing activities were planned to5810occur and help further inform the level of potential impact associated with the Project.
- 5811 **10.0 VISUAL**
- 5812 **10.1 Baseline Conditions**

5813 10.1.1 <u>Viewshed</u>

5814 Within the Project area, the viewshed from the ground is predominantly tree cover 5815 with open areas created by timber harvest and dimension stone mining activities. Viewshed openings within a half mile of the plant site or tailings management site 5816 occur along the forest road network, from commercial logging activities, or around 5817 and on Birch Lake reservoir. Birch Lake reservoir is characterized by a viewshed 5818 similar to those commonly found on lakes in northern Minnesota of forested 5819 5820 shoreline, residential buildings, seasonal cabins, campgrounds, resorts, and rural 5821 roads. At the nearest point, the Project area is approximately five miles from the southwestern border of the BWCAW, an area characterized by viewsheds of 5822 5823 undeveloped upland forests, open water, and wetlands relatively free from the sights 5824 and sounds of human activity. Approximately the same distance to the southwest the 5825 viewshed includes active iron mining operations and land uses consistent with iron 5826 mining activities and ongoing reclamation. The predominant land cover within a five 5827 mile radius is forested and the viewshed within that radius is dominated by tree

Environmental Review Support Document

5828cover. The regional terrain reflects historic glaciation and is marked by rolling to hilly5829areas interspersed with wet lowland depressional areas. Within a mile of the Project5830area, topographic relief can vary as much as approximately 200 ft (61 m).

5831 **10.2 Project Impacts**

- 5832 Project-related potential visual impacts include:
- 5833

- Infrastructure visibility;Light visibility at night; and
- 5834 5835
- Potential visibility of plumes (discussed in Section 10.3).

5836The potential visual impacts associated with the Project are assessed in the context5837of the desired scenic resource conditions outlined in the SNF Land and Resource5838Management Plan (USFS, 2004). Within this plan, the location of the Project area is5839identified as having a moderate scenic integrity. The plan further characterizes the5840Project location as primarily General Forest, with a minor amount of the Project area5841designated Recreation Use in a Scenic Environment. The desired scenic resource5842condition for these land designations are as follows:

5843 General Forest

5844 The forest has a fairly continuous canopy and frequent openings of various sizes up to 1,000 acres (404.7 ha). The openings' size, shapes, and habitat conditions, not 5845 5846 necessarily their appearance, mimic the scale, pattern, and ecological function of 5847 large-scale natural disturbances. In the most frequently visited and most scenically 5848 valued areas of this management area, the large-scale openings have a natural 5849 appearance. Other, less scenic areas of this management area will be actively 5850 managed for timber production with a lower relative emphasis on scenery compared 5851 to other resource concerns.

5852 **Recreation Use in a Scenic Environment**

5853Viewsheds are managed for scenic beauty and big-tree character. Generally, this5854management area offers natural-looking forest surroundings with some facility and5855trail development and roads for recreation. SNF management enhances recreation5856and scenic objectives and management activities may be noticeable to visitors.5857Visitors to the SNF may occasionally see management activities such as timber5858harvest, management-ignited fire, tree planting, and other resource management5859techniques.

5860 **10.2.1** <u>Visual Simulation</u>

5861A visual simulation is the graphic representation of the Project that is created to help5862visualize a potential change to the landscape. In this case, a view looking east from5863Birch Lake reservoir was chosen as the existing condition and Project infrastructure

Environmental Review Support Document

- 5864was imposed into the landscape to simulate the scale of the Project at the end of the586525-year operational life in an unreclaimed state (Figure 10-1). Concurrent5866reclamation would begin with the portion of the dry stack facility facing Birch Lake5867reservoir and be ongoing during the operational life of the Project.
- 5868 In order to create the visual simulation, aerial panoramas were collected during winter using a DJI brand guadcopter from the western side of Birch Lake reservoir. 5869 5870 Based on local topography and tree cover, this location on Birch Lake reservoir was 5871 selected as the most likely to demonstrate visual impacts from Project infrastructure. 5872 From the location on Birch Lake reservoir, the guadcopter hovered 30 ft (9.1 m) above lake level where 12 to 34 overlapping images were taken. Overlapping images 5873 5874 were then edited and stitched together to create a final panorama to be used in the 5875 simulation.
- 5876Publicly available LiDAR was used to create the bare earth surface. Tree canopy5877height was created using classified vegetation points within the publicly available5878LiDAR. The bare earth and tree canopy surfaces were then imported into Civil 3D5879and combined with a 3D model of Project infrastructure within Civil View.
- 5880The visual simulation indicated that the top of the overflow ore stockpile, the top of5881the coarse ore stockpile, the rooftop of the concentrator, and a portion of the dry5882stack facility are likely to be visible from the location selected on Birch Lake5883reservoir.

5884 10.2.2 Viewshed Analysis

- 5885In addition to the visual simulation from Birch Lake reservoir, a preliminary "direct line5886of sight" viewshed analysis was completed to identify Project impacts on a regional5887scale (>1 mile [1.6 km]). A "direct line of sight" viewshed analysis evaluates whether5888there is a direct line of sight between two points on a map by analyzing the elevation5899of both objects and incorporating existing landmarks that may obstruct the line of5890sight.
- 5891 The preliminary viewshed analysis assessed the visibility of the dry stack facility at 5892 the end of operations. This Project feature, the dry stack facility, was chosen as it would eventually be the tallest point of Project infrastructure, averaging 130 ft (40 m). 5893 5894 Emissions from the plant site and / or ventilation raises may also be visible under specific climatic conditions, but not consistently present. In addition, fugitive dust 5895 5896 from small areas of the dry stack facility may be intermittently visible. The analysis focused on identifying areas where a direct line of site to the dry stack facility may be 5897 possible from key points of interest (POI). POI accessible to the public were 5898 assessed both within the BWCAW (lakes, rivers, campsites, portages and 5899 5900 designated hiking trails) and outside of the BWCAW (TH 1. Elv airport).
- 5901 In order to narrow down the number of POI that may have a direct line of site to the 5902 dry stack facility, the viewshed analysis first assessed which POI may be visible from 5903 the perimeter of the crest of the dry stack facility, assuming no tree cover was

Environmental Review Support Document

- 5904 present. This evaluation was then compared to a more representative assessment. 5905 which looked at POI potentially visible from the perimeter of the crest of the dry stack 5906 facility assuming tree cover was present; tree height was estimated based on the 5907 difference between ground and vegetation surfaces in LiDAR data. The two assessments were compared and used to identify seven POI where the likelihood of 5908 5909 having a direct line of site to the dry stack facility was highest; three POI were 5910 identified in the BWCAW, three POI located along TH 1, and one POI located at the Ely airport shown on Figure 10-2. The three POI selected within the BWCAW were 5911 5912 the POI with the highest likelihood of having a direct line of site to the dry stack 5913 facility. 5914 An evaluation of each POI was then conducted to analyze whether a direct line of 5915 sight to the dry stack facility existed. This evaluation assessed the viewshed from 5916 each POI looking towards the dry stack facility assuming the viewpoint to be fixed at 6 ft aboveground level and conservatively applying a condition of no tree cover for 5917 5918 the first 1,000 ft (304.8 m). 5919 The viewshed analysis indicated one POI (DSF-C3) located along TH 1 may have a 5920 direct line of sight to the dry stack facility, as shown in the cross section displayed on Figure 10-3. This potential line of sight is not anticipated to be unobstructed, as tree 5921 5922 cover would likely interfere with visibility. Additionally, Figure 10-3 represents the scale of the dry stack facility at full development after 25 years of operation. It is 5923 anticipated that concurrent reclamation and revegetation of the dry stack facility 5924 during this operational life would limit this potential visibility. Additional locations 5925 along TH 1 may have a direct line of site to the dry stack facility depending on tree 5926 5927 cover and elevation.
- 5928The three POI within the BWCAW that were assessed (DSF-A, B, D) are not5929anticipated to have a direct line of sight with the dry stack facility. The direct line of5930sight for these locations is anticipated to be obstructed by topography or tree cover.

5931 10.2.3 Light Visibility

- 5932 The Project included recommendations from International Dark-Sky Association 5933 (IDA, 2019), a recognized authority on light pollution whose mission it is to preserve 5934 dark skies through environmentally responsible outdoor lighting practices. As such, the International Dark Sky Association has developed a list of best design practices 5935 that reduce light pollution. Potential sources of light pollution associated with the 5936 Project would include but would not be limited to, vehicle traffic around the plant site 5937 5938 and tailings management site, safety lighting for walkways or driving corridors, and entry / exit lighting for Project infrastructure. 5939
- 5940Mining would occur underground, thereby limiting surficial visual impacts to Project5941infrastructure. Surficial Project infrastructure was designed to minimize impact5942through the following practices:

5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5959 5960 5961 5962 5963		 The coarse ore stockpile would be designed to minimize the height of its geodesic dome cover; The concentrator would be designed to reduce the overall height of process buildings; The mine would be designed to be accessed through a decline, thereby eliminating the need for a mine shaft and hoist derrick; The design of the Project would allow for no surficial waste rock stockpiles; The stockpiles on the temporary rock storage facility and reclamation material stockpile stockpiles would be sized to reduce overall height. Additionally, the overflow ore stockpile would be a temporary feature that would be processed in the first few years of operation; Buildings would be painted, stained, and / or treated to produce flattoned, non-reflective surfaces; Building color would be selected to blend into the surrounding environment; Revegetation of the dry stack facility would be designed to be ongoing during operations beginning with the dry stack facility face closest to Birch Lake reservoir; and The water intake infrastructure would be designed to be screened from Birch Lake reservoir.
5964 5965		The following standards have been included in the Project design to reduce light visibility where practicable:
5966 5967 5968 5970 5971 5972 5973 5974 5975 5976		 Project lighting, where practicable, would be located to avoid light pollution. All light fixtures would be hooded and shielded, located within soffits, and faced downward or directed toward the operating areas. Light fixtures would incorporate shields and / or louvers where possible and be full cut-off type; The use of dimmers, timers, and motion sensors would be installed where appropriate; Lighting would be no brighter than necessary; Blue light emissions would be minimized; and Fugitive dust would be minimized in order to reduce "sky glow" by reducing the light reflectance from dust particles.
5977	10.2.4	Visual Impacts Summary
5978 5979 5980 5981		The available information is adequate to make a reasoned decision about the potential for, and significance of, Project visual impacts. The potential visual impacts identified by the visualization, viewshed analysis, and lighting are characterized in the following manner:
5982 5983		 Temporary / Permanent – The visual impacts and lighting from buildings would be temporary, as these buildings would be removed during

Environmental Review Support Document

5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000		 reclamation. The visual impacts associated with the dry stack facility would be permanent. The dry stack facility would be reclaimed to become part of the natural landscape and would resemble local topographic relief; Reversibility – Grading and revegetation of the dry stack facility would serve to partially reverse impacts associated with construction of the dry stack facility; and Extent – The extent of potential visual impacts would be limited to portions of Birch Lake reservoir western shoreline areas, and potentially intermittent segments from TH 1 depending on tree cover. The visual simulation indicated that the top of the overflow ore stockpile, the top of the dry stack facility are likely to be visible from the POI location selected on Birch Lake reservoir. The magnitude of this impact would be comparable to local topographic relief which can vary up to 200 ft (61 m) within one mile of the Project area. Additionally, the level of visibility expected to result from the Project corresponds to expected scenic resource conditions identified for the SNF.
6001 6002 6003		Based on the impact reduction measures incorporated into Project design and the desired scenic resource conditions identified by the SNF Land and Resource Management Plan, visual impacts are minor.
6004	10.3	Future Scope
6005 6006 6007		No future scope of work exclusive to visual impacts is proposed. Future work described in Section 11.3 will inform assessment of potential visual impacts related to plumes.
6008	11.0	AIR
6009	11.1	Baseline Conditions
6010	11.1.1	Air Quality
6011 6012 6013		Historically, air quality impacts to this location have been limited to impacts derived from emission sources associated with logging, mineral exploration, and OHV recreation.

6014 In order to assess the baseline ambient conditions in the vicinity of the Project, a 6015 review of publicly available data was conducted. The MPCA has ambient monitoring 6016 data available for monitoring stations throughout the state and provides air modeling 6017 design values for projects in these locations. The current design values are based on data for the most recent full monitoring years of 2015, 2016, and 2017. These design 6018 6019 values include specific values for different size fractions of particulate matter (PM), specifically PM_{2.5} and PM_{10.} The 24-hour PM_{2.5} and annual PM_{2.5} ambient background 6020 concentrations were acquired from the Ely, Minnesota (Station No. 0005) location, 6021

Environmental Review Support Document

- 6022which is relatively close to the Project area. The 24-hour PM10 concentrations were6023obtained from Silver Bay (Station No. 7640-1), near the North Shore process plant6024site. While this site is located along Lake Superior, this is the closest site that has6025ambient background concentrations processed for PM10. Given these air monitoring6026stations are both in the general vicinity of the Project area, they are considered to be6027representative of background concentrations.
- 6028 The ambient background levels for 1-hour and annual nitrogen dioxide (NO_2); 24-hr, 6029 3-hour, 1-hour, and annual sulfur dioxide (SO_2) ; and 1-hour carbon monoxide (CO), 6030 and 8-hour CO were determined using data from Rosemount (Station No. 0423) near 6031 Minneapolis as the most representative location. This site was used because there 6032 are no recent design values available for these gaseous pollutants in northern 6033 Minnesota. This monitoring site is also located away from major roadways, so it is considered to be the most representative monitoring location for background 6034 conditions in rural northern Minnesota. 6035
- 6036 Background concentrations are shown in Table 11-1.

6037 11.1.2 Air Quality Standards

Through the federal Clean Air Act (CAA), under Title 42 U.S. Code Section 7401 et 6038 seq, the USEPA has developed National Ambient Air Quality Standards (NAAQS), 6039 6040 under Title 40 Code of Federal Regulations Part 50, for criteria air pollutants relevant to the Project: NO₂, SO₂, CO, PM₁₀, PM_{2.5}, and lead. Under the applicable federal 6041 and state regulations, the primary standards are set to protect the public health, 6042 while secondary standards are designed to protect public welfare, including 6043 protection from damage to animals, crops, vegetation, visibility, and buildings. The 6044 6045 USEPA has delegated authority for implementing these NAAQS standards to the MPCA. In Minnesota, the MPCA has promulgated ambient air standards known as 6046 the Minnesota Ambient Air Quality Standards under Minn. R., part 7009.0080. In 6047 6048 addition to the criteria pollutants set forth by the USEPA, the Minnesota Ambient Air Quality Standards contain standards for total suspended particulate and hydrogen 6049 6050 sulfide.

6051 11.1.3 Ambient Air Quality Attainment Status

6052 Under the CAA, the USEPA has defined all areas within the U.S. as one of two 6053 classifications: attainment or non-attainment. Attainment areas are those areas for 6054 which ambient air quality data has been collected that demonstrates that they are in compliance, or for which there are insufficient data to demonstrate non-compliance 6055 6056 with NAAQS, known as unclassified areas. Various permitting programs, air quality standards, and emissions limits are in place to limit adverse air impacts within 6057 6058 attainment areas. An area that does not meet NAAQS requirements for a particular pollutant is classified as a non-attainment area for that pollutant, and the USEPA 6059 6060 requires the state to develop implementation plans to control existing and future emissions to bring the area into compliance with the NAAQS. The Project lies in an 6061

Environmental Review Support Document

6062area that is designated as attainment or unclassified for air quality pollutants.6063Therefore, the non-attainment requirements are not applicable.

6064 **11.2 Project Impacts**

6065 11.2.1 Stationary Source Emissions

- 6066This section describes preliminary air emission sources anticipated for the6067underground mine, plant site, and tailings management site. Table 11-2 provides a6068list of anticipated emission sources and types, as well as preliminarily assumed6069quantities of emissions associate with those sources. As the Project progresses, the6070list of sources would need to be refined to reflect any additional sources included in6071Project design and used in the additional modeling work discussed in Section 11.3.
- 6072 Plant Site and Underground Mine Emissions
- 6073Sources of emissions from underground activities would include combustion6074emissions from use of propane for heating, drilling and blasting emissions, material6075handling, material transfer using conveyors, and use of up to three primary crushers6076at any one time to process ore. Final crushed ore would be transported to the6077surface using a main conveyor.
- 6078Underground emissions would be vented through two exhaust vents, one at6079ventilation raise site 1 and one at ventilation raise site 3. The mine would also6080exhaust passively from the mine access declines located at the plant site. However,6081it is anticipated only the decline that includes the main conveyor would vent6082particulate emissions from underground.
- 6083Conveyor transfer points include transfers from the decline to the temporary rock6084storage facility feed conveyor, as well as reclaim conveyor transfer points to service6085the temporary rock storage facility. Additional conveyor transfer points include a feed6086conveyor at the coarse ore stockpile and a transfer point at the SAG mill. Conveyor6087transfer points would serve as potential emission sources.
- 6088There would be a potential for particulate emissions during off-loading of material6089from delivery trucks.
- 6090 Travel along an on-site unpaved access road would be anticipated to be a potential 6091 source of emissions. The access road would be expected to accommodate approximately 40 concentrate transport trucks per day during normal operating 6092 6093 conditions, and 80 concentrate transport trucks per day during springtime road 6094 conditions. There would be approximately 170, 20-ton trucks per month that would deliver fuel to the site. There would also be approximately 256, 20-ton trucks per 6095 6096 month that would deliver binder material and processing reagents to the site. Product 6097 haul trucks and delivery trucks would enter and leave the mine site at the north end 6098 of the boundary through the access road.

6102

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

Environmental Review Support Document

6099During the construction period, development rock would be temporarily stockpiled6100within the footprint of the plant site for up to a week before it would be crushed and6101used as construction aggregate. There would be emissions from a temporary

aboveground crusher near the portal when crushing the development rock.

6103 For up to the first two years of operations, the pre-operational ore stockpile would be crushed using a temporary aboveground crusher before being fed to the coarse ore 6104 6105 stockpile and processed through the concentrator. Emissions from a temporary 6106 aboveground crusher would be present while this material was being processed. 6107 During operations, ore would be crushed underground and conveyed to surface 6108 while waste rock would remain underground as an initial fill for stopes prior to engineered tailings backfill. Ore stored at the temporary rock storage facility would 6109 6110 be 0.5 to 1 ft (0.1 to 0.3 m) in diameter. Emissions from this source are expected to 6111 be minimal due to the large particle size.

6112 Tailings Management Site

- 6113Sources of emissions from the tailings management site include up to 20 haul trucks6114used to transfer filtered tailings to the dry stack facility. Trucks would be anticipated6115to have a capacity of 40 60 tons of material. All haul trucks would be operated6116within the boundary of the Project area. At the dry stack facility, dewatered tailings6117would be offloaded at designated areas for placement and construction. The dry6118stack facility would be constructed in lifts over the lifetime of the Project.
- 6119Emissions for the dry stack facility are anticipated to manifest as fugitive dust6120emissions. These emissions would result from potential wind erosion occurring after6121placement of dewatered tailings within the dry stack facility. Water trucks would be6122utilized to control dust emissions on the haul roads and the dry stack facility as6123required.

6124 Greenhouse Gas Emissions

- 6125 In addition to gaseous criteria pollutants such as NO₂, SO₂, and CO, greenhouse gas 6126 (GHG) emissions are anticipated from mine heaters and underground blasting 6127 activities. Table 11-3 provides an estimate for preliminary GHG emissions anticipated for the Project. USEPA emission factors for liquid petroleum gas were 6128 6129 used to estimate GHG emissions for combustion of liquid petroleum gas in mine heaters. For underground blasting activities, an emission factor for blasting activities 6130 6131 associated with copper concentrate production in Australia was used as a representative benchmark. Preliminary GHG emission calculations show carbon 6132 6133 dioxide equivalent emissions would be 58,072 tons per year (tpy), which is well below the threshold for a major source of air emissions of 100,000 tpy in Minnesota. 6134 6135 This is based on the mine heaters being used at maximum capacity, 24-hrs per day, 6136 seven days per week, and six months out per year.
- 6137 In the EIS, GHG information would be refined by inclusion of GHG emissions from 6138 certain on-site mobile sources of emissions, including haul trucks and loaders. The

Environmental Review Support Document

6139 impact of GHG emissions would be further reviewed with respect to direct and 6140 indirect impacts from a regional and global perspective. Total GHG emissions from 6141 this Project would be compared against annual GHG emissions emitted globally, 6142 nationally, and within Minnesota. GHG emissions from the Project could then be assessed against overall contribution from each of these sectors as total emissions 6143 6144 and as a percentage. Indirect impact evaluation would include evaluation of Project's consumption of resources, including consumption of electrical power and fuel, and 6145 how this would impact GHG emissions. The EIS would also review potential methods 6146 6147 to mitigate these impacts.

6148**11.2.2**Class II Air Dispersion Modeling and Prevention of Significant Deterioration6149Review

6150Preliminary air modeling was conducted to compare potential emissions of PM10,6151PM2.5, NO2, SO2, and CO to NAAQS and the applicable prevention of significant6152deterioration (PSD) increment standards. This initial modeling characterized the6153sources identified in Section 11.2.1 as either point sources (stack sources) or fugitive6154emission sources. All emission estimates are based on a maximum ore processing6155rate of 22,000 tons per day (tpd) and waste rock production of 3,300 tpd.

6156 **NAAQS**

- 6157Preliminary results indicate that concentrations of PM_{10} would be below the6158applicable 24-hour NAAQS for PM_{10} of 150 micrograms per cubic meter ($\mu g/m^3$).6159This is after including the applicable background concentration of 70 $\mu g/m^3$.
- 6162Preliminary modeling also evaluated NO2, SO2, and CO for the underground blasting6163activities and propane mine heaters. Based on preliminary designs, a source of air6164emission factors for water-based emulsion was utilized to estimate emissions of NO2,6165SO2, and CO from blasting activities. Modeled results indicate that ambient6166concentrations would be below the annual NO2 NAAQS of 100 μ g/m³, as well as the61671-hour NO2 standard of 188 μ g/m³.
- Results for SO₂ indicate the Project would meet the annual, 24-hour, 3-hour, and
 1-hour NAAQS of 80 μg/m³, 365 μg/m³, 1,300 μg/m³, and 196 μg/m³, respectively.
 Modeled concentrations would also be less than the 8-hour and 1-hour CO NAAQS
 of 10,000 and 40,000 μg/m³, respectively.
- 6172A summary of preliminary air modeling results compared to NAAQS can be found in6173Table 11-4. To continue to understand the extent of potential air impacts, this table6174would be updated as the modeling work outlined in Section 11.3 is completed.

Environmental Review Support Document

6175 **PSD**

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186	A permit applicability analysis was conducted as part of the dispersion analysis for the underground mine, plant site, and tailings management site. This analysis reflected the federal PSD requirements of the Clean Air Act, which provide for a pre- construction review and permit process of new or modified major stationary sources of emissions in attainment areas. The PSD program is intended to prevent degradation of air quality within attainment areas. The PSD air permitting program is triggered at 100 tpy for a Project if it falls within one of 28 industrial categories, or 250 tpy for all other facilities. There are two primary regulatory classifications under the PSD program, Class I areas (which include national parks, national monuments, and wilderness) where air quality should be given special protection, and Class II areas, which includes most other locations.
6187 6188 6189 6190	For attainment areas, the USEPA has promulgated PSD increments (allowable increases in emissions above certain baselines) for four pollutants (NO ₂ , SO ₂ , PM ₁₀ , and PM _{2.5}) for both Class I and Class II areas. The Project would be located within a Class II attainment area, as designated by the USEPA and the MPCA.
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205	Through the use of controls such as sprays, wet material, locating emission sources indoors, or the use of dust collection equipment, preliminary modeling indicates the potential emissions of federal hazardous air pollutants (HAP) would fall below major source triggers of 10 tpy for an individual HAP and 25 tpy for aggregate HAPs. While comparison against PSD Class II increments is always required for major PSD sources of air emissions, it can also be triggered for other air emission sources in air quality regions where the "minor source baseline" has been set. This baseline is set when the first PSD major source air permit is issued for that region. According to MPCA records, minor source baselines for PM ₁₀ , NO ₂ , and SO ₂ have been set in both Lake and St. Louis Counties. The MPCA has indicated in its MPCA Air Dispersion Modeling Practices Manual (MPCA, 2016) that consideration of PSD increments may be required for certain emission sources not undergoing PSD review. There are six criteria listed in the guidelines that are used to determine the need for consideration of PSD increment consumption. These six criteria are as follows:
6206 6207 6208 6209 6210 6211 6212 6213	 Triggering PSD, non-attainment area New Source Review, or environmental review; The installation of non-emergency internal combustion engines; The Project would be located in a non-attainment or maintenance area for a related pollutant; Existing modeling that indicates a potential threat to the NAAQS; An increase in emissions of a related pollutant; and Public interest.

Environmental Review Support Document

- 6214 Given these criteria, air dispersion modeling results have been compared against 6215 applicable PSD increments. All preliminary air emission estimates comply with the 6216 applicable PSD increment.
- 6217 A summary of preliminary air modeling results compared to PSD requirements can 6218 be found in Table 11-5. Note that the PM_{2.5} Class II minor source baseline has not been set for Lake County, therefore, the PM_{2.5} Class II PSD increment is not 6219 6220 applicable to the Project. However, there is a possibility that this baseline could be 6221 triggered by a major source of air emissions near the time the facility is ready to seek 6222 an air permit. Table 11-5 would be updated as preliminary Class II air dispersion 6223 modeling work is updated and refined to reflect Project operations and modeling 6224 work outlined in Section 11.3 is completed.
- 6225 11.2.3 Class | Areas
- The BWCAW is located approximately five miles northeast of the Project. Preliminary 6226 6227 Class II air dispersion modeling results show particulate matter impacts to be very 6228 low at this distance from the Project. For example, PM₁₀ concentrations were at 0.003 µg/m³ at the BWCAW boundary compared to the 24-hour NAAQS of 150 6229 6230 μ g/m³. While preliminary emission calculations indicate the Project would not be a major source of air emissions and trigger an analysis of impacts to Class I areas 6231 6232 under the CAA, there may be interest in further assessing these impacts within the 6233 EIS. The specific requirements for a Class I area impact analysis would be discussed with the RGU as part of the air quality impact analysis process. This process would 6234 6235 be conducted to satisfy environmental review requirements. One task could include 6236 Class I air dispersion modeling using a refined air dispersion model that assesses 6237 impact to receptors beyond 50 kilometers of the Project and within 300 kilometers of 6238 identified Class I areas near the Project. Other tasks may include assessments of Class I increment effects, acid deposition on ecosystems, and a visibility impacts 6239 6240 analysis.
- 6241 11.2.4 Vehicle Emissions
- 6242 Most vehicle emissions are anticipated to come from four sources:
- 6243

6244

6245

6246

- Underground internal combustion engines;
- Over-the-road concentrate cartage trucks;
- On-site haul trucks used to transfer tailings filter cake; and
 - Non-company supply delivery vehicles.
- 6247As discussed in Section 11.2.1, haul trucks would be used on-site to transfer tailings6248filter cake from the tailings dewatering plant to the dry stack facility. The Project6249design utilizes 15 to 20 trucks that would have the capacity to transfer 40 tons of6250material at a time. Minor vehicle emissions are expected from other aboveground6251mobile equipment.

Environmental Review Support Document

6252 11.2.5 Dust and Odors

- 6253Fugitive dust and odor sources are primarily generated from windblown dust, fueling6254station vapors, earth moving activities, and flotation circuits. Modeled emissions of6255PM10 and PM2.5 would comply with the applicable NAAQS for each form of particulate6256matter.
- 6257 Potential impacts to air quality may include, but are not limited to, the following:
 - Fugitive dust generation due to construction and operation-related activities;
 - Changes to air quality and visibility in surrounding areas resulting from fugitive dust-creating activities, combustion equipment, and ventilation fan emissions; and
 - No impacts resulting from odors are anticipated.

6264 11.2.6 Human Health and Sensitive Receptors

- 6265 Residential properties are located to the north of the plant site, tailings management 6266 site, and underground mine. Prevailing winds are most commonly from the northwest; these residential properties will be upwind of the Project when the wind is 6267 6268 from the northwest. There are also recreational users of Birch Lake reservoir to the 6269 west and recreational users of the SNF surrounding the area. Generally, these 6270 residential properties are occupied during warmer months and recreational users are 6271 present intermittently in these areas. These areas are considered to be sensitive receptors in that there would be a potential that air emissions could impact human 6272 6273 health due to proximity to the Project. However, Preliminary air dispersion modeling 6274 has demonstrated that concentrations of priority air pollutants such as PM, SO₂, NO₂, and CO would meet federal and state ambient air quality standards in these areas. 6275 6276 Preliminary air dispersion modeling also indicates that fence-line concentrations of 6277 selected metal HAPs, including mercury, pose low inhalation risk as metal air toxics 6278 based on the Minnesota Air Emission Risk Analysis (AERA) process.
- 6279The ore that would be processed contains non-asbestiform mineral fibers. Non-6280asbestiform concentrations in ore for the Project would be reviewed and6281characterized further from an air quality standpoint. The potential impacts on human6282health would then be discussed further in the EIS with input from the RGU.
- 6283In order to limit potential emissions and impacts to human health, air quality6284management for the Project would include control of point source emissions and6285fugitive dust emissions. Control of point source emissions from activities in the6286underground mine, the plant site, and the tailings management site, would include:
- 6287 6288

6258

6259

6260

6261

6262 6263

Proper use of engineered control equipment (wet scrubbers, dust collectors, etc.);

Environmental Review Support Document

6289 6290 6291 6292 6293 6294 6295		 Ensuring complete combustion of blasting materials through proper blast design protocols; Implementing water sprays at transfer points; Proper maintenance of site infrastructure to ensure equipment is properly functioning; and Hooded / covered transfer points; or backfilling of materials so they are not point source emissions.
6296 6297		Control of fugitive dust emissions from the plant site and tailings management site may include as appropriate:
6298 6299 6300 6301 6302		 The use of speed limits on unpaved roads; Watering unpaved roads; Revegetation of disturbed surfaces; Proactive road maintenance; or Use of dust suppression chemicals.
6303	11.2.7	Air Impacts Summary
6304 6305 6306 6307		Available information to fully assess potential Project air impacts is insufficient but could be reasonably obtained. Potential impacts have been preliminarily identified, and future work is planned to assess their nature and extent. These impacts are preliminarily characterized in the following manner:
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317		 Emissions would be temporary, occurring only during construction and operation phases of the Project. Revegetation practices associated with reclamation would eliminate long-term fugitive dust emissions; Based on preliminary modeling, the extent of emissions for both NAAQS and PSD would be within allowable ranges. Engineering controls and fugitive dust management practices would be employed throughout the operational life of the Project; and Based on the emission calculations, EPMs identified for the Project, and preliminary air modeling results, potential impacts to the environment and human health are anticipated to be minor.
6318		Further work to assess potential air impacts is outlined in Section 11.3.
6319	11.3	Future Scope
6320 6321		Based on preliminary information and initial modeling, the following will be addressed further in the EIS:

6322 11.3.1 Emission Calculations

6323Preliminary emission calculations for the Project will be further refined to include all
operations, including activities and equipment not included to date. In addition, all air

Environmental Review Support Document

6325toxics associated with the Project (including metal-bearing process materials and6326combustion activities) will be included in the evaluation. Human risk to air toxics will6327be fully evaluated using the Minnesota AERA process.

6328 11.3.2 Greenhouse Gas Emissions

6329 In the EIS, GHG information will be refined by inclusion of GHG emissions from 6330 certain on-site mobile sources of emissions, including haul trucks and loaders. The 6331 impact of GHG emissions will be further reviewed with respect to direct and indirect 6332 impacts from a regional and global perspective. Total GHG emissions from this 6333 Project will be compared against annual GHG emissions emitted globally, nationally, and within Minnesota. GHG emissions from the Project could then be assessed 6334 against overall contribution from each of these sectors as total emissions and as a 6335 6336 percentage. Indirect impact evaluation will include evaluation of Project's consumption of resources, including consumption of electrical power and fuel, and 6337 6338 how this will impact GHG emissions. The EIS will also review potential methods to mitigate these impacts 6339

6340 11.3.3 Class II Air Dispersion Modeling

6341Preliminary Class II air dispersion modeling will be updated and further refined as6342emission calculations are updated and additional information about operations are6343obtained. This will include refinement of the site boundary and expansion and6344modification of the receptor grid outside the boundary to include sensitive receptors.

6345 11.3.4 Class | Air Quality Analysis

6346 The specific requirements for a Class I area impact analysis will be negotiated and 6347 discussed with the RGU as part of the air quality impact analysis process. This process will be conducted to satisfy environmental review requirements. One task 6348 6349 could include Class I air dispersion modeling using a refined air dispersion model 6350 that assesses impact to receptors beyond 50 kilometers of the Project and within 300 kilometers of identified Class I areas near the Project. Other tasks could include 6351 6352 assessments of Class I increment effects, acid deposition on ecosystems, and a 6353 visibility impacts analysis.

6354 11.3.5 Cross-Media Impacts and Cumulative Impacts

6355The EIS will review information on cross-media impacts, including deposition of6356metals and sulfate on nearby water bodies. The scope will include deposition6357modeling of metal and sulfate emissions from the Project to quantify annual load at6358selected nearby receptors. Output from the model will be coupled with water body6359flows to estimate concentrations due to deposition from Project activities.6360Concentrations could then be compared to protective water quality standards and/or6361recommended levels.

Environmental Review Support Document

6362 **12.0** NOISE

6363 **12.1 Baseline Conditions**

6364The Project would be located within the SNF, an area characterized by manmade6365noise associated with recreation activities such as OHV use, boating, and vehicle6366travel, resource management activities such as exploratory drilling and timber6367harvest, and natural noises such as wind and wildlife activity.

6368 12.1.1 Baseline Ambient Noise

6369 Baseline ambient noise level data was collected by the USFS within the SNF in the 6370 vicinity of the Project area between 2014 and 2016. Data provided to TMM by the 6371 USFS in September 2017 included a total of 11 measurement sites, five of which were identified as being located proximal to the Project area. Figure 12-1 shows the 6372 6373 location of the 11 sites. For the five sites identified as proximal to the Project area, 6374 data were collected during winter months (January – March), when human noise 6375 producing activity and natural noise producing sources are at a minimum; therefore, 6376 the data collected by the USFS during this survey represents the lowest anticipated ambient noise levels that can be expected. Timing of data collection varied at the 6377 other six sites and included summer and fall measurements, which provided context 6378 6379 for seasonal variation.

- 6380 Data from three of the 11 collection sites supplied by the USFS were used by TMM to assess baseline ambient noise levels within the vicinity of the Project; these sites 6381 included River Point Resort, Spruce Road, and Birch West. River Point Resort was 6382 6383 chosen because it would be the closest location to the plant site and this site would 6384 be near some of the most important noise-sensitive receptors. Spruce Road was chosen because the data were collected during the fall rather than the winter and 6385 may identify seasonal noise variations. Birch West was chosen because 6386 measurements there were made in the spring and summer and may also be used to 6387 6388 identify seasonal noise variations.
- 6389 An analysis of the data included an assessment of the 1-hour average calculated 6390 from the one-second measure for each location in accordance with Minnesota noise 6391 regulation specifically Minn. R., part 7030.0040 which limits noise on a 1-hour average basis. Additionally, the data for each location were used to identify the 6392 minimum and maximum values during both daytime and nighttime periods. The 6393 6394 results of this analysis are shown in Table 12-1 and indicate times that are very quiet 6395 (<20 dBA) for each location and times that are loud with maximum 1-hour levels 6396 reaching 50 to 60 dBA for each area. The average levels for River Point and Spruce Road locations were similar (30 dBA); however, the average at Birch West was 6397 6398 10 dBA louder (40 dBA), potentially indicating seasonal changes in ambient noise 6399 levels.

Environmental Review Support Document

6400 12.1.2 Nearby Sensitive Receptors

6401A total of 55 nearby sensitive receptors were identified including residences6402(single-family homes or cabins) to the north and to the west (across Birch Lake6403reservoir), camping to the north, west, and southwest, and a resort (across South6404Kawishiwi River to the northwest) (Figure 12-2).

6405 12.1.3 State Noise Standards

- 6406Minnesota establishes noise level limits according to the land use activity at the6407location of the receiver. Land uses are divided into the following four noise area6408classifications (NAC):
- 6409 6410

6411

6412

6413

6414

6415

- NAC 1: Residential housing, religious activities, camping and picnicking areas, health services, hotels, educational services;
 - NAC 2: Retail, business and government services, recreational activities, transit passenger terminals;
- NAC 3: Manufacturing, fairgrounds and amusement parks, agricultural and forestry activities; and
 - NAC 4: Undeveloped and unused land.

6416 The limits for each NAC are identified in Minne. R., part 7030.0040 and are outlined 6417 in Table 12-2. The statistical limits identified in Table 12-2 are defined in terms of the level exceeded 50% of the time period of interest (one hour in this case), which is 6418 denoted L₅₀, and expressed in units of A-weighted dBAs. A separate statistical limit, 6419 6420 L_{10} , refers to the level exceeded 10% of the time period. Nearby sensitive receptors to the Project identified in Section 12.1.2 would primarily be associated with the 6421 NAC-1 classification. This classification would require a nighttime L_{50} of 50 dBA or 6422 less from the Project. 6423

6424 **12.2 Project Impacts**

6425 12.2.1 Source, Characteristics, Duration, Quantities, and Intensity

- An analysis of potential noise emissions associated with the construction and
 operation of the Project was conducted to assess potential impacts. This analysis
 was developed using International Organization for Standardization (ISO)
 9613-2:1996 (ISO, 1996) methods and implemented using SoundPLAN software.
 The following parameters were assumed for the noise analysis:
- 6431
 Completely reflective ground for the plant site (often hard packed soil or pavement);
 6433
 Completely reflective water bodies (Birch Lake reservoir);
 6434
 50% absorption from other areas which are mainly forested;
 6435
 Receptors were modeled at a height of 5 ft aboveground (industry standard); and

6437	 Air temperature, relative humidity, and atmospheric pressure were set to
6438	50°F (10°C), 70%, and one atmosphere, respectively, which are
6439	commonly used to represent minimal absorption.
6440	Noise emissions from the Project would be subject to Minnesota regulations, which
6441	defines daytime and nighttime noise limits for different types of properties. Because
6442	the Project would operate 24-hrs per day, the more restrictive nighttime limits within
6443	the NAC-1 classification would apply. Residential and camping / picnicking areas
6444	have a nighttime L_{50} limit of 50 dBA (1-hour L_{50}) and 55 dBA (1-hour L_{10}). For
6445	relatively steady-state noise sources, which mining operations are considered to be
6446	given the distance between sources and receptors, compliance with the L_{50} standard
6447	is expected to result in compliance with the L_{10} standard.
6448	Sources of noise during the operation phase of the Project may include the following
6449	equipment:
6450	Processing facilities
6451	Ventilation fans
6452	Propane heaters
6453	Ore conveyors
6454	Maintenance activities
6455	Substations
6456	Water intake pumps
6457	Filtration plant operations
6458	Air compressors
6459	Backfill plant operations
6460	Haul truck
6461	Water truck
6462	Bulldozer
6463	Excavator
6464	Front-end loader
6465	Vibratory rollers
6466	Noise levels associated with these potential sources were identified from previous
6467	measurements at other existing operations, manufacturer specifications associated
6468	with individual pieces of equipment, or literature review.
6469	In order to conservatively assess potential noise impacts, the analysis assumed all
6470	mobile equipment associated with the tailings management site was operating along
6471	the crest of the dry stack facility closest to the sensitive receptors, with no EPMs in
6472	place. The result of this conservative analysis identified that noise levels at sensitive
6473	receptors ranged from 0 to 42 dBA, which are well below the NAC-1 nighttime
6474	standard of 50 dBA.

Environmental Review Support Document

12.2.2 6475 **Quality of Life**

6476 The ambient noise monitoring data collected by the USFS indicate baseline ambient 6477 noise of the three locations ranges from <20 dBA to approximately 50 dBA. Of these 6478 three sites, two were found to have averages of 30 dBA and one was found to have an average of 40 dBA. The extent of anticipated noise impacts associated with the 6479 operation phase of the Project is 42 dBA. This level falls below the L₅₀ nighttime 6480 requirement identified by Minnesota Administrative Rules for NAC-1 designated 6481 areas and is similar to current ambient noise levels. 6482

6483 12.2.3 **Noise Impacts Summary**

•

6484 In order to ensure noise levels remain below the NAC-1 nighttime limit of 50 dBA, the 6485 Project would include the following noise reduction technologies:

Silencers for ventilation raise exhausts; and

- 6486
- 6487

6494

6495

6496

6497

6498 6499

6500 6501

6502

6503

6504

- 6488 6489
- Transfer point barriers for conveyors.

Acoustically treated ventilation openings;

- 6490 The available information is adequate to make a reasoned decision about the potential for, and significance of, Project noise impacts. Potential noise impacts 6491 6492 during operations, as well as the potential impacts to quality of life are characterized in the following manner: 6493
 - Timing Potential noise impacts would occur only during the life of the Project;

Construction materials with a higher sound transmission class rating;

- Extent The reach of potential noise impacts would be limited to sensitive receptors proximal to the plant site, tailings management site, and ventilation raise sites. The extent of this impact in not anticipated to exceed the nighttime L₅₀ standard set by Minn. R., part 7030.0040. No noise impact was identified that would fall outside of the baseline ambient noise range was identified for the Project; and
 - Regulatory Oversight Potential noise impacts associated with the Project would be subject to ongoing oversight by the MPCA, through the anticipated implementation of an air permit.
- 6505 The assessment of potential impacts from noise associated with the Project indicates 6506 the topic would be minor.

6507 12.3 **Future Scope**

6508

No future scope of work is proposed.

Environmental Review Support Document

6509 13.0 TRANSPORTATION

6510 **13.1 Baseline Conditions**

6511 Annual average daily traffic (AADT) is a measure commonly used to identify baseline 6512 traffic conditions for projects that may have transportation implications. MnDOT's Traffic Mapping Application (MnDOT, 2018), an interactive web tool that allows users 6513 to review spatial traffic data, was used to determine baseline AADT on the following 6514 6515 roadways associated with the Project: TH 1, St. Louis County Road (CR) 21 / CR 120, New Tomahawk Road, National Forest Road (NFR) 1900, and NFR 1901 6516 shown on Figure 13-1. NFR 1436 and 1493 are secondary access roads and were 6517 6518 therefore not considered in the baseline.

6519 13.1.1 Traffic Conditions

6520The following are baseline traffic conditions for roadways which would be impacted6521by the Project.

6522 **Regional Corridors**

- 6523The section of TH 1 between the Project area and Ely, Minnesota is a paved two-6524lane roadway with an AADT volume of 1,150 daily trips. TH 1 to the southeast of the6525Project is also a paved two-lane roadway with an AADT volume between 375 to 9306526daily trips.
- 6527The portion of CR 21 / CR 120 between Babbitt, Minnesota and TH 1 is a paved two-6528lane roadway with AADT volume ranging from 360 daily trips on CR 120 to 1,4006529daily trips on CR 21. The portion of CR 21 to the west of Babbitt has an AADT6530volume of 2,000 daily trips.
- 6531 New Tomahawk Road is a rural, unpaved two-lane roadway with an AADT of 130.
- 6532 Local Roads / National Forest Roads
- 6533NFR 1900 is located north / northeast of the plant site and intersects TH 1. NFR65341900 is currently an unpaved rural roadway. No AADT information is available for6535NFR 1900.
- 6536 NFR 1901 is currently an unpaved rural roadway located north of the plant site. No 6537 AADT information is available for this NFR 1901.

6538 13.1.2 Traffic Forecast

6539Using historic traffic volumes identified from MnDOT's mapping application, traffic6540forecasts were developed for key regional corridors, local roads, and NFRs, where6541data was available. A straight-line growth factor was applied to the historic traffic

Environmental Review Support Document

6542volumes in order to forecast AADT values in the year 2040. As a result of stable6543traffic patterns over the previous 10 to 20 years on key regional corridors, the6544straight-line growth factor that was applied was flat, indicating no growth should be6545applied to the existing AADT values. The forecast traffic volumes identified by this6546approach can be found in Table 13-1.

6547 13.1.3 Regional Transportation System

- In addition to baseline traffic volumes and forecast traffic volumes, the current 6548 6549 condition of regional transportation systems was assessed using the Federal 6550 Highway Administration's Simplified Highway Capacity Calculation Method for the Highway Performance Monitoring System Report (Margiotta and Washburn, 2017). 6551 This approach uses daily traffic volumes to determine a level of service (LOS) that 6552 can be applied to individual roadways. Six LOS levels are defined, designated by 6553 6554 letters A through F. LOS A represents the best operating conditions (no congestion), 6555 and LOS F represents the worst operating conditions (severe congestion).
- 6556Application of this method to regional roadways TH 1, New Tomahawk Road, and6557CR 21 / CR 120 indicates the current designation for these roadways is LOS A.

6558 **13.2 Project Impacts**

6559A transportation assessment was completed to identify potential traffic operation6560deficiencies, within the local and regional transportation network (Short Elliott6561Hendrickson Inc. [SEH], 2019). The assessment reviewed potential impacts to6562baseline traffic conditions for roadways associated with the Project.

6563 13.2.1 Impacts to Traffic Conditions

- 6564The increase in traffic volume anticipated for the Project would be within the volumes6565associated with a LOS A designation; therefore, the infrastructure has been designed6566to support the additional traffic volume associated with the Project. Based on Project6567design assumptions outlined in the transportation assessment, the following increase6568in traffic patterns would occur within the local and regional traffic network:
- 6569 194 truck trips per day; 6570 16 bus trips per day; • 664 employee vehicle trips per day to the Ely and Babbitt parking lots; 6571 • 6572 and 6573 In total, these additional trips per day equate to an additional 874 • 6574 anticipated vehicles per day on local and regional transportation systems. 6575 These trips are outlined by trip type, as well as trip destination, in Table 13-2. 6576

Environmental Review Support Document

6577 13.2.2 Estimated Maximum Peak Hour Traffic

6578Vehicle trips to and from the plant site would occur throughout the day. Peak traffic6579hours for the Project would correlate with shift changes occurring twice daily.

6580 13.2.3 Impacts to Regional Transportation Systems

The current AADT for TH 1, New Tomahawk Road, and CR 21 / CR 120 is outlined 6581 6582 in Section 13.1.1. The additional trips associated with the Project are associated with truck traffic, bus traffic, and employee vehicle traffic to and from the parking lots. As 6583 a result of these additional trips, the AADT assumed as a result of the Project is 6584 1,320 trips per day, 130 trips per day, and 2,704 trips per day for TH 1, New 6585 Tomahawk Road, and CR 21 / CR 120, respectively. The anticipated AADT identified 6586 for these regional transportation systems as a result of the Project is accommodated 6587 6588 by the LOS A designation shown in Table 13-3. Additional explanation of how these rankings are identified can be found in the Twin Metals Transportation Study (SEH. 6589 6590 2019).

6591 13.2.4 Additional Infrastructure Development and Availability of Transit

6592Based on preliminary Project designs, the transportation assessment assumed that a6593245-space parking lot and a 72-space parking lot would be in Babbitt and Ely,6594respectively. From the parking lots, buses would transport employees to and from6595the plant site. Initial design indicates three buses would report to the parking lot6596located in Babbitt and one bus would report to the parking lot located in Ely. In total,6597bus trips to and from the plant site would account for 12 trips per day. Additional6598parking would be available at the plant site to facilitate visitor and contractor parking.

6599 13.2.5 Transportation Impacts Summary

- 6600The traffic study concluded that the Project would not change the LOS rating for local6601and regional roadways impacted by the Project. Even so, the Project plans to6602minimize vehicle traffic by providing buses from Babbitt and Ely to transport6603employees to the plant site.
- 6604The available information is adequate to make a reasoned decision about the6605potential for, and significance of, Project transportation impacts. Potential impacts to6606regional transportation systems, as identified in the transportation assessment, are6607characterized in the following manner:
- Timing Traffic impacts are anticipated only during the life of the Project. These impacts are associated with the additional vehicle traffic necessary to support construction, operation, and closure activities. Additionally, NFR 1901 would be used temporarily to support the construction phase of the Project;
 Extent – The Project utilizes to the greatest extent possible the following
 - Extent The Project utilizes to the greatest extent possible the following road networks: CR 21, CR 120, and TH 1. The magnitude of impacts to

6614

Environmental Review Support Document

- 6615 these roadways would not be enough to exceed the LOS rating currently, 6616 or during the anticipated life of the Project, as identified by the traffic
- 6617
- 6618 6619

6631

6632

6633

6634

6635 6636

6637 6638

- Regulatory Oversight Public roads are subject to ongoing oversight by designated road authorities and design standards.
- 6620The transportation assessment indicates that transportation impacts would not create6621conditions unanticipated under the current LOS; therefore, changes to the current6622traffic levels are considered to be minor.
- 6623 **13.3** Future Scope
- 6624 No future scope of work is proposed.

6625 14.0 CUMULATIVE POTENTIAL EFFECTS

forecast; and

- 6626Cumulative potential effects analysis is intended to address the combined effects of6627a proposed project with other projects that could contribute similar environmental6628effects. This is done in the context of past, present, and future projects that have6629overlapping impacts with the Project. For future projects, EQB applies a two-part test6630in determining whether a project must be considered:
 - The future project is "reasonably likely to occur";
 - applications for permits have been filed with any units of government;
 - detailed plans and specifications have been prepared;
 - adopted comprehensive plans, zoning, or other ordinances;
 - historic or forecasted development trends; or
 - "Sufficiently detailed information is available about the project to contribute to the understanding of cumulative potential effects" (Minn. R., part 4410.0200, subpart 11a).

6639 EQB guidance suggests that potential cumulative effects would occur where the 6640 "environmental footprints" of projects overlap. The areal extent of the potential 6641 project-specific effects are identified and used to define the environmental footprint of 6642 the Project. Past, present and reasonably foreseeable future actions are then assessed based on their environmental footprints to identify overlapping areas of 6643 6644 potential effect. These overlapping footprints are referred to as environmentally 6645 relevant areas (ERA). ERA are determined on a case-by-case basis, based on each resource and each potential impact. Similarly, the timescales of potential effects 6646 need to be considered on a case-by-case basis, based on when each resource may 6647 be impacted. Using this approach provides a framework for analyzing whether 6648 affected resources have the capacity to accommodate additional effects and to 6649 6650 determine the potential for significance of identified cumulative effects. Cumulative 6651 potential effects are analyzed in terms of potentially affected resources, environmentally relevant areas, and impact timescale. 6652

Environmental Review Support Document

6653 14.1 Context and Setting

- 6654The primary communities and projects that would potentially contribute to cumulative6655effects within the Mesabi Iron Range are located in the Nashwauk Uplands ECS6656subsection and St. Louis River Watershed. The Project is located in the Border6657Lakes ECS subsection and within the Rainy River Headwaters Watershed, which are6658the likely ERA for the Project (Figure 14-1). This ERA includes two cities, Babbitt and6659Ely, and the geography is dominated by public lands such as the BWCAW, SNF,6660state forest lands, and county lands.
- 6661The greatest potential contributor (due to areal extent) to cumulative effects within6662the likely ERA would be from silvicultural activities and logging. These activities have6663been ongoing for decades and are dispersed across the region. Mining and public6664resource management have been historically the primary drivers defining regional6665development and land use within the potential ERA for over 100 years, existing6666conditions are considered indicative and representative of historical mining and6667resource management activities.
- 6668The cumulative effects analysis in the Final NorthMet EIS is instructive, in that it6669considered projects using a similar approach in establishing an ERA. However, the6670NorthMet project is located within the Nashwauk Uplands ECS subsection and St.6671Louis River Watersheds where the primary development activity of the Mesabi iron6672range is focused.

6673 **14.2 Project-Specific Potential Effects**

- 6674Because cumulative potential effects need to be assessed in comparison to the6675potential effects of the Project, it is important to first inventory the potential effects of6676the Project. These potential effects are identified and described in detail within the6677individual resource impact sections, i.e., Sections 4.2 through 13.2 and summarized6678as follows:
- 6679 • Changes to surface water system, including loss or rerouting of 6680 stormwater, reduction in stream base flow, and changes in surface water 6681 quality due to non-contact water systems discharges; 6682 Changes to the groundwater system including effects due to mine dewatering, effects due to mine re-saturation, and effects due to either 6683 6684 the loss of groundwater recharge or the effects of rerouting precipitation; 6685 Habitat loss or changes; • 6686 NPCs, rare natural communities, and sensitive vegetative species loss or . 6687 change: 6688 Sensitive terrestrial species loss or change; • 6689 Visual changes due to the Project facilities; • 6690 Noise related to the mining and processing; and • Changes to air quality from dust and GHG emissions. 6691 •

Environmental Review Support Document

6692There are three future scopes of work defined for water resources; fish, wildlife, and6693sensitive resources; and air resources in sections 6.3, 8.3, and 11.3 respectively.6694The results of these three future scopes of work will be used along with existing data6695in the SEAW data submittal to update the project specific potential effects.

6696 14.3 Potentially Affected Resources

6697 ERA are not defined for resources where future scopes of work are necessary to
6698 further assess potential effects and to determine appropriate Project impact areas.
6699 The results of the three identified future scopes of work will be used along with the
6700 existing data in the SEAW data submittal to update the potentially affected resources
6701 and environmentally relevant areas.

6702 14.4 Reasonably Foreseeable Future Actions

- 6703Past impacts within the environmentally relevant areas have been accounted for in6704the baseline conditions in Sections 4.1 through 13.1. The baseline condition would6705be the result of the past and present activity that yields the present landscape.
- 6706The NorthMet project will be considered as a reasonably foreseeable future action6707with the potential for cumulative effects to air resources. The future scopes of work6708identified in Section 11.3 will inform whether the environmental footprints for potential6709air impacts overlap. Data developed for the NorthMet EIS and permitting will be6710utilized as appropriate in the analysis.
- 6711 Potential mining and exploration activities within the Border Lakes ECS subsection 6712 and the South Kawishiwi River or Keeley Creek subwatersheds were considered. There were no other reasonably foreseeable mining projects identified. Exploration 6713 6714 activities may occur periodically. However, exploration activities are highly speculative and variable as to when they would occur and as to what the extent of 6715 the activities associated with an exploration plan would contain. Encampment 6716 6717 Minerals, Inc. has filed an exploration plan to drill exploratory borings in bedrock at four sites using the diamond core drilling method within the tailings management site. 6718 6719 This activity would be completed in 2020 and identifies minor vegetation clearing and 6720 construction of a 400 ft (122 m) access trail to one site. These activities would be 6721 consistent with land clearing activities within the tailings management site and so no 6722 additional affects would be anticipated.
- 6723No other reasonably foreseeable actions with overlapping environmentally relevant6724areas were identified at this time. The results of the three identified future scopes of6725work will be used with the existing data in the SEAW data submittal to update the6726assessment of potentially affected resources, ERA, and reasonably foreseeable6727future actions.

6728 **14.5** Summary of Cumulative Potential Effects

Environmental Review Support Document

6729		The Project would be in an area with many past human disturbances, which include:
6730		Gravel pits;
6731		A hydroelectric plant;
6732		Dimension stone mining operations;
6733		State, county, and forest road networks;
6734		High voltage transmission lines;
6735		An airport;
6736		 Historic and current mining features such as pit lakes and stockpiles;
6737		 Commercial timber harvest and silviculture;
6738		Agriculture;
6739		 Residential (communities of Babbitt, Minnesota and Ely, Minnesota);
6740		 Fire management; and
6741		Recreation.
6742		These disturbances are accounted for within the baseline conditions of the sections
6743		4.1 through 13.1. The identified potentially affected resources, environmentally
6744		relevant areas, and timescale are listed in Table 14-1.
6745		For a number of the potentially affected resources, the environmentally relevant
6746		areas could not be determined due to the need to complete additional scopes of
6747		work. The results of the three identified future scopes of work will be used with the
6748		existing data in the SEAW data submittal to update the assessment of potentially
6749		affected resources, ERA, and reasonably foreseeable future actions.
6750	15.0	OTHER POTENTIAL ENVIRONMENTAL EFFECTS
6751 6752 6753 6754		The SEAW data submittal provides information that is considered within the Minnesota Environmental Policy Act scoping process. Additional information will be developed in support of the Minnesota Environmental Policy Act and National Environmental Policy Act processes. These areas are listed in the subsections that follow.
6755		

6756 **15.1 Socioeconomics**

- 6757Socioeconomic consequences of the Project are expected to occur on a regional6758scale. Socioeconomics includes demographic characteristics of the population,6759economic characteristics (employment, income, market composition—i.e., the types6760of firms and employers located in the study area), public finance, housing, public6761services, and the cultural and economic characteristics of subsistence activities of6762Native American populations. Further studies will be conducted to document the6763socioeconomic effects of the Project.
- 6764The analysis will also include the collection of baseline data and an evaluation of6765potential impacts to state-defined areas of concern for environmental justice. These

Environmental Review Support Document

6766 areas include tribal areas, and census tracts with higher concentrations of low-6767 income residents and people of color.

6768 **15.2** Vibration

Humans can feel ground vibration at levels well below thresholds that would cause
damage to property. Ground vibration evaluation would consider two aspects: an
environmental or acceptable human (annoyance) threshold, and a structural damage
threshold. Vibration from blasting activities would be subject to ongoing regulatory
controls through the requirements of Minn. R., part 6132.2900, subpart 2. Further
studies will be conducted to document the vibration effects of the Project.

6775 16.0 RESPONSIBLE GOVERNMENTAL UNIT CERTIFICATION

6776 I hereby certify that:

•	The information contained in this document is accurate and complete to the best of my knowledge.
•	The EAW describes the complete Project; there are no other projects,
	stages or components other than those described in this document, which
	are related to the Project as connected actions or phased actions, as
	defined at Minn. R., part 4410.0200, subparts 9c and 60, respectively.
•	Copies of this EAW are being sent to the entire EQB distribution list.
Signature	Date
Title	
	•

6786	17.0	REFERENCES
6787 6788		1854 Treaty Authority, 2018. Ceded Territory Conservation Code. April 24, 2018. www.1854treatyauthority.org. Website accessed September 13, 2019.
6789 6790		Anfinson, S.F., 2005. SHPO Manual for Archaeological Projects in Minnesota. Minnesota Historic Preservation Office, St. Paul, MN.
6791 6792		ARDC Regional Planning Division, 2014. City of Babbitt Comprehensive Plan. December 2014.
6793 6794 6795		Barr, 2009. Cumulative Effects Analysis of Wildlife Habitat and Threatened and Endangered Wildlife Species: Keetac Expansion Project. Prepared for U. S. Steel. February 2009.
6796 6797 6798		City of Babbitt, 1996. Babbitt, Minnesota Zoning Ordinance, Ordinance #137, as amended June 6, 1996. https://www.babbitt-mn.com/code-of-ordinances.html
6799 6800 6801		Cotter, R.D., Young, H.L., Petri, L.R., Prior, C.H., 1965. Water Resources in the Vicinity of Municipalities on the West-Central Mesabi Iron Range, Northeastern Minnesota.
6802 6803 6804		Cowardin, L.M., Carter, V., Golet, F.C., LaRoe. R.T. 1979. Classification of Wetlands and Deepwater Habitats of the United States. USFWS. FWS / OBS-79/31. December 1979.
6805 6806		Dingman, S. L., 2002. Physical Hydrology, Second Edition. Prentice-Hall, New Jersey.
6807 6808 6809		Eggers, Steve D. and Donald M. Reed, 2015. Wetland Plants and Plant Communities of Minnesota and Wisconsin. Version 3.2. U.S. Army Corps of Engineers, St. Paul District. July 2015.
6810 6811 6812		EOR, 2006. Cumulative Effects Analysis on Wildlife Habitat and Travel Corridors in the Mesabi Iron Range and Arrowhead Regions of Minnesota. Prepared for the MDNR. May 1, 2006.
6813 6814		EQB, 1979. Minnesota Regional Copper-Nickel Study (1976-1979), 1979. Volume I, Executive Summary. August 31, 1979
6815 6816		EQB, 2013. EAW Guidelines: Preparing Environmental Assessment Worksheets. Minnesota Environmental Quality Board. St. Paul, MN. October 2013.
6817 6818 6819		Ericson, D.W., Lindholm, G.F., and Helgeson, J.O., 1976. Water Resources of the Rainy Lake Watershed, Northeastern Minnesota. Hydrologic Investigations Atlas HA-556. USGS. 2 plates.
	Documer	nt No. TMM-ES-025-0099 Page 180

6820	Ground Water Monitoring and Assessment Program (GWMAP), 1999. Baseline
6821	Water Quality of Minnesota's Principal Aquifers – Region 1, Northeastern
6822	Minnesota. St. Paul, Minnesota. January 1999.
6823 6824	IDA, 2019. International Dark-Sky Association. <u>https://www.darksky.org</u> . Website accessed June 28, 2019.
6825 6826	ISO, 1996. ISO 9613-2:1996. Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation. December 1996.
6827	Jennings, C.E. and Reynolds, W.K., 2005. M-164 Surficial Geology of the Mesabi
6828	Iron Range, Minnesota. Minnesota Geological Survey. Accessed online at
6829	http://hdl.handle.net/11299/58160. Database downloaded December 29,
6830	2017.
6831	Kellog, C., Lapakko, K., Olson, M., Jenzen, E., and Antonson, D., 2014. Laboratory
6832	Dissolution of Blast Hole Samples of Duluth Complex Rock from the South
6833	Kawishiwi Intrusion: Twenty-Four Year Laboratory Experiment. Minnesota
6834	Department of Natural Resources. February 2014.
6835	Kloiber, S.M., Norris, D.J., and Bergman, A.L. 2019. Minnesota Wetland Inventory:
6836	User Guide and Summary Statistics. MDNR, St. Paul, MN. June, 2019.
6837	Lapakko, K.A., Olson, M.C., Antonson, D.A. 2013. Duluth Complex Tailings
6838	Dissolution: Ten-Year Laboratory Experiment. Minnesota Department of
6839	Natural Resources. June 2013.
6840 6841	Lake County, 2012. Lake County Local Water Management Plan 2005 – 2015 July 2005. Amended November 2012.
6842	Lake County, 2017. Lake County Comprehensive Plan and Land Use Ordinance.
6843	Ordinance #12. Effective June 23, 2017.
6844	Maclay, Robert, 1966. W. Reconnaissance of the Geology and Ground-Water
6845	Resources in the Aurora Area St. Louis County, Minnesota. U.S. Geological
6846	Survey Water-Supply Paper 1809-U.
6847	Macleod R.D., Paige, R.S., and Kreiger, A.J., 2016. Updating the National Wetland
6848	Inventory in Northeast Minnesota: Technical Documentation. Ducks
6849	Unlimited, Inc. Ann Arbor, MI. May 31, 2016.
6850	Margiotta, R., Washburn, S., 2017. Federal Highway Administration's Simplified
6851	Highway Capacity Calculation Method for the Highway Performance
6852	Monitoring System Report. Bethesda, MD. October 15, 2017. Report No.
6853	PL-18-003.

6854	Mast, M.A. and Turk, J.T., 1999. Environmental characteristics and water quality of
6855	Hydrologic benchmark network stations in the west-central US, 1963-95.
6856	US Geological Survey Circular 1173-B, 130 p.
6857	MDA, 2019. 2019 Noxious Weed List.
6858	https://www.mda.state.mn.us/sites/default/files/2019-
6859	01/2019%20MN%20Noxious%20Weed%20List%20Fact%20SheetADAV2.
6860	pdf. Website accessed May 20, 2019.
6861	MDNR, 2008. Wild Rice Distribution and Abundance in Minnesota.
6862	https://files.dnr.state.mn.us/fish_wildlife/wildlife/shallowlakes/statewide-
6863	inventory-wild-rice-waters.pdf. Website accessed June 5, 2019.
6864	MDNR, 2009. Conservation Status Ranks for Native Plant Community Types and
6865	Subtypes.
6866	https://files.dnr.state.mn.us/natural_resources/npc/s_ranks_npc_types_&_s
6867	ubtypes.pdf. Website Accessed May 22, 2019.
6868	MDNR, 2013. A Handbook for Collecting Vegetation Plot Data in Minnesota: The
6869	Relevé Method. Minnesota County Biological Survey, Minnesota Natural
6870	Heritage and Nongame Research Program, and Ecological Land
6871	Classification Program, St. Paul, MN.
6872	MDNR, 2015a. Northern Superior Uplands Section Forest Resource Management
6873	Plan. <u>https://www.dnr.state.mn.us/forestry/subsection/nsu/index.html</u> .
6874	Website accessed September 9, 2019.
6875	MDNR, 2015b. Fishes of Minnesota Mapper. Birch Lake reservoir ID 69000300.
6876	https://www.dnr.state.mn.us/maps/fom/index.html. Website accessed
6877	March 29, 2019.
6878	MDNR, 2016. Minnesota's Wildlife Action Plan 2015-2025.
6879	https://www.dnr.state.mn.us/mnwap/index.html. Website accessed May 20,
6880	2019.
6881	MDNR, 2018. Division of Ecological and Water Resources. Natural Heritage
6882	Information System Data. Accessed by Foth under License Agreement LA-
6883	941. Data current as of October 30, 2018. Database accessed August 8,
6884	2019.
6885	MDNR, 2019a. Northern Superior Uplands Section.
6886	https://www.dnr.state.mn.us/ecs/212L/index.html. Website accessed May
6887	14, 2019.
6888	MDNR, 2019b. MDNR LakeFinder. Birch Lake reservoir ID 69000300.
6889	https://www.dnr.state.mn.us/lakefind/lake.html?id=69000300. Website
6890	accessed March 29, 2019.
	Document No. TMM-ES-025-0099 Page 182 Revision 0A

6891	MDNR, 2019c, Ecological Classification System.
6892	https://www.dnr.state.mn.us/ecs/index.html. Website Accessed May 22,
6893	2019.
6894	MDNR, 2019d. Minnesota Biological Survey - Division of Ecological Division of
6895	Ecological and Water Resources.
6896	https://www.dnr.state.mn.us/mbs/index.html. Website accessed May 14,
6897	2019.
6898	MDNR, 2019e. MDNR Native Plant Communities. Accessed online at
6899	https://gisdata.mn.gov/dataset/biota-dnr-native-plant-comm. Database
6900	downloaded May 28, 2019.
6901	MDNR, 2019f. Rare Species Guide. https://www.dnr.state.mn.us/rsg/index.html.
6902	Website Accessed April 8, 2019.
6903	MDNR, 2019g, Laurentian Mixed Forest Province, Acid Peatland System Summary.
6904	https://files.dnr.state.mn.us/natural_resources/npc/acid_peatland/Imf_ap_sy
6905	stem.pdf. Website Accessed May 22, 2019.
6906	MDNR, 2019h. Laurentian Mixed Forest Province, Fire-Dependent Forest /
6907	Woodland System Summary.
6908	https://files.dnr.state.mn.us/natural_resources/npc/fire_dependent_forest/Im
6909	f_fd_system.pdf. Website Accessed May 22, 2019.
6910	MDNR, 2019i. Laurentian Mixed Forest Province, Mesic Hardwood Forest System
6911	Summary.
6912	https://files.dnr.state.mn.us/natural_resources/npc/mesic_hardwood/Imf_mh
6913	_system.pdf. Website Accessed May 22, 2019.
6914	Miller, Jim, et al. 2002 Geology and Mineral Potential of the Duluth Complex and
6915	Related Rocks of Northeastern Minnesota. Minnesota Geological Survey.
6916	MnDOT, 2018. The Minnesota Department of Transportation's Traffic Mapping
6917	Application. https://www.dot.state.mn.us/traffic/data/tma.html. Website
6918	Accessed May 22, 2019.
6919	MPCA, 1998. Environmental Data Access. Tributary to Birch Lake reservoir ID
6920	98RN001. https://www.pca.state.mn.us/quick-links/eda-surface-water-data.
6921	Website accessed May 7, 2019.
6922	MPCA, 2014a. Environmental Data Access. Keeley Creek ID 14RN062.
6923	https://www.pca.state.mn.us/quick-links/eda-surface-water-data. Website
6924	accessed May 7, 2019.

6925	MPCA, 2014b. Environmental Data Access. Stony River ID 14RN007.
6926	https://www.pca.state.mn.us/quick-links/eda-surface-water-data. Website
6927	accessed May 7, 2019.
6928	MPCA, 2014c. Environmental Data Access. Denley Creek ID 14RN067.
6929	https://www.pca.state.mn.us/quick-links/eda-surface-water-data. Website
6930	accessed May 7, 2019.
6931	MPCA, 2016. MPCA Air Dispersion Modeling Practices Manual. September 2016.
6932	MPCA, 2017. Rainy River-Headwaters Watershed Monitoring and Assessment
6933	Report. https://www.pca.state.mn.us/sites/default/files/wq-ws3-
6934	09030001b.pdf. Website Accessed April 8, 2019.
6935	MPCA, 2019. What's In My Neighborhood. https://www.pca.state.mn.us/data/whats-
6936	my-neighborhood. Website Accessed April 8, 2019.
6937	National Park Service, 1983. Secretary of the Interior's Standards and Guidelines for
6938	Archeology and Historic Preservation. Federal Register 48(190):44716-
6939	44740.
6940 6941	PolyMet Mining. 2015. NorthMet Project Waste Characterization Data Package – Version 12. Prepared by Barr Engineering Co. February 2015.
6942 6943 6944	Reavie, Euan, 2013. Paleolimnological Reconstructions for the White Iron Chain of Lakes. University of Minnesota Duluth. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/187336.
6945	Richardson, C. W., 1984. WGEN: A Model for Generating Daily Weather Variables.
6946	[Washington, D.C.]: U.S. Dept. of Agriculture, Agricultural Research
6947	Service.
6948	Rosgen, D. L., 1994. A classification of natural rivers. Catena 22: 169 – 199.
6949	Schulte, F.R., Piatak, N.M., Seal, R., and Woodruff, L.G. 2016. Acid-Generating and
6950	Acid-Neutralizing Potential of Silicate Rocks from the Basal Mineralized
6951	Zone of the Duluth Complex, Minnesota. In Proceedings of the Institute of
6952	Lake Superior Geology. May 2016.
6953	Shaw, S.P. and Fredine, C.G., 1971. Wetlands of the United States - Their Extent
6954	and Their Value to Waterfowl and Other Wildlife. U.S. Department of the
6955	Interior. 67. 1971.
6956	Siegel, D. and Ericson D., 1980. Hydrology and Water Quality of the Copper-Nickel
6957	Study Region, Northeastern Minnesota. U.S. Geological Survey Water-
6958	Resources Investigations Open-File Report 80-739

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

Environmental Review Support Document

6959	Smith, E.A. and Westenbroek, S.M., 2015. Potential Groundwater Recharge for the
6960	State of Minnesota Using the Soil-Water-Balance Model, 1996-2010. U.S.
6961	Geological Survey Scientific Investigations Report 2015–5038, p. 85.
6962	Accessed online at http://dx.doi.org/10.3133/sir20155038. Data
6963	downloaded April 28, 2015.
6964	St. Louis County, 2010. St. Louis County Comprehensive Water Management Plan
6965	Update 2010 – 2020.
6966	https://files.dnr.state.mn.us/lands_minerals/northmet/water-
6967	approp/references/mn-comprehensive-water-mgmt-plan-2010-2020.pdf
6968	Website Accessed February 18, 2019.
6969	St. Louis County, 2016. Zoning Ordinance of St. Louis County, MN, Ordinance #62,
6970	Amended Oct. 1, 2016.
6971	https://www.stlouiscountymn.gov/Portals/0/Library/Dept/Planning%20%26%
6972	20Development/Land-Use/Ordinance-62-Zoning-Amended-2016.pdf
6973	St. Louis County, 2019. St. Louis County Comprehensive Land Use Plan Adopted
6974	January 22, 2019.
6975	https://www.stlouiscountymn.gov/Portals/0/Library/Dept/Auditor/County-
6976	Board/Final%20plan%20adopted%20Feb%201%202019.pdf. Website
6977	Accessed July 11, 2019.
6978	USACE, Environmental Laboratory, 1987. Corps of Engineers Wetlands Delineation
6979	Manual. U.S. Army Engineer Waterways Experiment Station, Vicksburg,
6980	MS. Technical Report Y-87-1.
6981	USACE. 2012. Regional Supplement to the Corps of Engineers Wetland Delineation
6982	Manual: Northcentral and Northeast Region (Version 2.0). U.S. Army
6983	Engineer Waterways Experiment Station, Vicksburgh, MS.
6984	USFS, 1991. Forest Service Manual 2620.5, Washington Office amendment 2600-
6985	91-5.
6986	USFS, 2004. SNF Final Plan.
6987	https://www.fs.usda.gov/detail/superior/landmanagement/planning/?cid=fsm
6988	91_049716. Website Accessed April 8, 2019.
6989	USFS, 2012. Region 9 Regional Forester's Sensitive Species (RFSS) List.
6990	https://www.fs.usda.gov/detail/r9/plants-animals/?cid=stelprdb5250780.
6991	Website Accessed April 8, 2019.
6992	USFS, 2019. Current Invasive Plant feature class. Accessed online at
6993	https://data.fs.usda.gov/geodata/edw/edw_resources/meta/S_USA.Invasive
6994	PlantCurrent.xml. Database downloaded May 30, 2019.

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

Environmental Review Support Document

6995	USFWS, 2018. Endangered Species in Minnesota.
6996	https://www.fws.gov/midwest/endangered/lists/pdf/MinnesotaCtyList10Jan2
6997	018.pdf. Website Accessed May 21, 2019.
6998	USFWS, 2019. IPaC Information for Planning and Consultation.
6999	https://ecos.fws.gov/ipac/. Website Accessed May 21, 2019.
7000	USGS, 2011a. NLCD 2011 Land Cover. Accessed online at
7001	https://gisdata.mn.gov/dataset/biota-landcover-nlcd-mn-2011. Database
7002	downloaded May 13, 2019
7003	USGS, 2011b. GAP / LANDFIRE National Terrestrial Ecosystems 2011. Accessed
7004	online at https://www.usgs.gov/gapanalysis/land-cover-data-download?qt-
7005	science_center_objects=0#qt-science_center_objects. Database
7006	downloaded May 13, 2019.
7007	Vogt, D.J., 2018. Wild Rice Monitoring and Abundance in the 1854 Ceded Territory
7008	(1998–2017). http://www.1854treatyauthority.org/management/biological-
7009	resources/fisheries/reports.html?id=124&task=document.viewdoc. Website
7010	Accessed May 10, 2019.
7011	Wenz, Z., 2016. Geochemistry of Leachate from a Naturally Weathering Duluth
7012	Complex Rock Pile: Sulfur Removal Models for a 38 Year Record of
7013	Leachate Composition. Minnesota Department of Natural Resources.
7014	February 2016.
7015	Wood, 2019. Crown Pillar and Subsidence Analysis – Maturi Deposit. June 11, 2019.
7016	

TWIN METALS MINNESOTA PROJECT SCOPING ENVIRONMENTAL ASSESSMENT WORKSHEET DATA SUBMITTAL

Environmental Review Support Document

7017 **TABLES**

7018

7019

Parcel ID 20-6011-06310							
20-0011-06310			Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership Acres
20-6011-06983	6 6	60 60	11 11	GOVT LOT 4 GOVT LOT 5	USA	USA USA	0.585
20-6011-06983	6	60	11	GOVELOTS GOVELOTS	USA	USA	17.415
20-6011-06986	6	60	11	GOVT LOT 8	USA	USA	23.748
20-6011-06987	6	60	11	GOVT LOT 9	USA	STATE OF MINNESOTA	26.379
20-6011-06988	6	60	11	GOVTLOT 10	USA	STATE OF MINNESOTA	0.699
20-6011-06990 20-6011-06991	6 6	60 60	11 11	GOVT LOT 16 GOVT LOT 17	USA STATE OF MINNESOTA	UNCLEAR: STATE OF MN? UNCLEAR: STATE OF MN?	0.533 3.968
20-6111-02250	2	61	11	GOVILOT 3	USA	USA	8.548
20-6111-02310	2	61	11	GOVT LOT 4	USA	USA	35.712
20-6111-02370	2	61	11	SW 1/4 OF NW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	8.517
20-6111-03010	3	61	11	GOVT LOT 1	STATE OF MINNESOTA	STATE OF MINNESOTA	34.279
20-6111-03070	3	61	11	GOVILOT2	USA STATE OF MINIFEOTA	USA	38.292
20-6111-03130 20-6111-03190	3	61 61	11 11	SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4	STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA	37.99 30.964
20-6111-03250	3	61	11	GOVT LOT 3	STATE OF MINNESOTA	STATE OF MINNESOTA	36.042
20-6111-03310	3	61	11	GOVT LOT 4	STATE OF MINNESOTA	STATE OF MINNESOTA	36.072
20-6111-03370	3	61	11	SW 1/4 OF NW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	36.176
20-6111-03430	3	61	11	SE 1/4 OF NW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	36.352
20-6111-03490	3	61	11	NE 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	39.725
20-6111-03550 20-6111-03610	3	61 61	11 11	NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4	STATE OF MINNESOTA USA	USA	40.219 40.113
20-6111-03670	3	61	11	SW 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	19.662
20-6111-03730	3	61	11	NE 1/4 OF SE 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	2.191
20-6111-03790	3	61	11	NW 1/4 OF SE 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	21.69
20-6111-04010	4	61	11	GOVT LOT 1	USA	USA	36.381
20-6111-04070	4	61	11	GOVT LOT 2	USA	USA	36.033
20-6111-04130	4	61 61	11	SW 1/4 OF NE 1/4	STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA	36.884 36.677
20-6111-04190 20-6111-04250	4	61 61	11 11	SE 1/4 OF NE 1/4 GOVT LOT 3	STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA	36.677 37.135
20-6111-04250	4	61	11	GOVE LOT 3	STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA	37.135
20-6111-04370	4	61	11	SW 1/4 OF NW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	37.942
20-6111-04430	4	61	11	SE 1/4 OF NW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	37.685
20-6111-04490	4	61	11	NE 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	40.354
20-6111-04550	4	61	11	NW 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	40.068
20-6111-04610	4	61	11	SW 1/4 OF SW 1/4	USA	Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81)	"Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)"
20-6111-04670	4	61	11	SE 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA	40.551
20-6111-04730	4	61	11	NE 1/4 OF SE 1/4	USA	USA	40.481
20-6111-04790	4	61	11	NW 1/4 OF SE 1/4	USA	USA	40.199
20-6111-04850	4	61	11	SW 1/4 OF SE 1/4	USA		
20 6111 04010		61	11			USA	40.333
20-6111-04910 20-6111-05010	4	61 61	11 11	SE 1/4 OF SE 1/4	USA	USA	40.256
20-6111-04910 20-6111-05010 20-6111-05190	5	61 61 61	11 11 11				
20-6111-05010		61	11	SE 1/4 OF SE 1/4 GOVT LOT 1	USA USA	USA USA	40.256 38.149
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670	5 5	61 61 61 61	11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4	USA USA USA USA USA USA	USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730	5 5 5 5 5 5	61 61 61 61 61	11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4	USA USA USA USA USA USA	USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790	5 5 5 5 5 5 5	61 61 61 61 61 61	11 11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4	USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.151
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730	5 5 5 5 5 5	61 61 61 61 61	11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4	USA USA USA USA USA USA	USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05790 20-6111-05850	5 5 5 5 5 5 5	61 61 61 61 61 61 61	11 11 11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81)	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra L. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-0570 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-00020	5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81)	40.256 38.149 39.116 39.728 39.728 37.519 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jeam M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05850 20-6111-05910 20-6111-05910 20-6178-00020 20-6178-00030	5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT SE 1/4	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81)	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) Janes K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00020 20-6178-00030 20-6178-00040	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra L. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Sandra L. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.73
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05790 20-6111-05790 20-6111-0590 20-6111-05910 20-6178-00020 20-6178-00020 20-6178-00040 20-6178-00050	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT E OUTLOT B OUTLOT C OUTLOT D OUTLOT E	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.773 0.73
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00030 20-6178-00050 20-6178-00050	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT SE 1/4 OUTLOT B OUTLOT C OUTLOT D OUTLOT F OUTLOT F	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/8) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) Janes K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 2.643
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05910 20-6118-00020 20-6178-00030 20-6178-00040 20-6178-00050 20-6178-00060	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00050 20-6178-00050	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT SE 1/4 OUTLOT B OUTLOT C OUTLOT D OUTLOT F OUTLOT F	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA Goldie I. Foster, a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/8) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) Janes K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 2.643
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05670 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6118-0020 20-6178-00020 20-6178-00040 20-6178-00080 20-6178-00080	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT B OUTLOT C OUTLOT D OUTLOT E OUTLOT F OUTLOT D OUTLOT F OUTLOT D OUTLOT F OUTLOT D OUTLOT F OUTLOT D OUTLOT F OUTLOT H OUTLOT H	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA Goldie I. Foster, a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jeam M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lass/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.944 2.94
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05810 20-6178-00020 20-6178-00040 20-6178-00050 20-6178-00050 20-6178-00090 20-6178-00100 20-6178-00110 20-6178-00120	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NV 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 OUTLOT D OUTLOT C OUTLOT D OUTLOT D OUTLOT F OUTLOT H OUTLOT H OUTLOT H OUTLOT I OUTLOT J OUTLOT J OUTLOT J OUTLOT J OUTLOT K OUTLOT K OUTLOT K	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) Janes K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.038 2.944
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00050 20-6178-00050 20-6178-00090 20-6178-00090 20-6178-00100 20-6178-00120 20-6178-00120	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 OUTLOT E OUTLOT F OUTLOT J OUTLOT K OUTLOT K OU	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.733 0.303 2.643 65.553 2.944 2.038 3.089 3.636 3 3
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00040 20-6178-00080 20-6178-00080 20-6178-00100 20-6178-00100 20-6178-00110 20-6178-00130 20-6178-00130	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 OUTLOT E OUTLOT F OUTLOT H OUTLOT K	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.038 3.089 3.089 3.089 3.089
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05670 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05850 20-6178-00020 20-6178-00030 20-6178-00050 20-6178-00050 20-6178-00100 20-6178-00110 20-6178-00120 20-6178-00140 20-6178-00150	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SUTLOT E OUTLOT C OUTLOT D OUTLOT F OUTLOT F OUTLOT H OUTLOT I OUTLOT J OUTLOT L OUTLOT L OUTLOT N OUTLOT N	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 3.214 0.73 0.303 2.643 3.089 3.039 2.944 2.038 3.636 3.214 3.049
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05670 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-0020 20-6178-0020 20-6178-00040 20-6178-00050 20-6178-00080 20-6178-00100 20-6178-00100 20-6178-00120 20-6178-00120 20-6178-00130 20-6178-00130 20-6178-00130 20-6178-00150 20-6	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 OUTLOT E OUTLOT F OUTLOT H OUTLOT K OUTLOT M	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Jeant C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 3.214 0.771 0.733 0.303 2.643 65.553 2.944 2.038 3.089 3.636 3 2.281 3.604 2.872
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00040 20-6178-00040 20-6178-00050 20-6178-00050 20-6178-00100 20-6178-00100 20-6178-00100 20-6178-00100 20-6178-00130 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT B OUTLOT D OUTLOT D OUTLOT D OUTLOT D OUTLOT F OUTLOT H OUTLOT H OUTLOT K OUTLOT K OUTLOT N OUTLOT N OUTLOT N	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 3.214 0.771 0.73 0.73 0.303 2.643 65.553 2.944 2.038 3.089 3.089 3.089 3.089 3.089 3.636 2.281 3.604
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00040 20-6178-00040 20-6178-00050 20-6178-00050 20-6178-00100 20-6178-00100 20-6178-00110 20-6178-00110 20-6178-00120 20-6178-00120 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00170 20-6178-00180	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert R- Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Sandra L. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Jean M. Maki (1/9) David A. Maki (1/2 of 19) James K. Maki (1/9) David A. Maki (1/2 of 19) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.038 3.636 3.089 3.636 3 3.224 3.604 3.634
20-6111-05010 20-6111-05490 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-0020 20-6178-00120 20-6178-00050 20-6178-00050 20-6178-00080 20-6178-00100 20-6178-00100 20-6178-00100 20-6178-00130 20-6178-00130 20-6178-00130 20-6178-00150 20-6178-00150 20-6178-00160 20-6178-00160 20-6178-00180 20-6178	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61 61 61 61 61 61 61 61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SUTLOT B OUTLOT C OUTLOT C OUTLOT D OUTLOT F OUTLOT F OUTLOT H OUTLOT H OUTLOT J OUTLOT K OUTLOT J OUTLOT N OUTLOT R LOT S BLOCK 1	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.73 0.73 0.303 2.643 65.553 2.944 2.038 3.089 3.089 3.089 3.089 3.228 3.604 4.342 2.872
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05490 20-6111-05790 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05850 20-6111-05910 20-6178-00020 20-6178-00040 20-6178-00040 20-6178-00040 20-6178-00040 20-6178-00100 20-6178-00110 20-6178-00110 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00180	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster, a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lass/Lake- Forest Enterprise, Inc. (1/9)" 3.214 0.771 0.731 0.303 2.643 65.553 2.944 2.038 3.089 3.636 3 2.282 3.604 2.872 43.425
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05490 20-6111-05730 20-6111-05790 20-6111-05790 20-6111-05790 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-00100 20-6178-00130 20-6178-00140 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 2.244 0.771 0.733 0.303 2.6433 65.553 2.944 2.038 3.089 3.089 3.089 3.089 3.041 2.287 4.342 63.415 1.653 1.653
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05790 20-6111-05790 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-00100 20-6178-00100 20-6178-00130 20-6178-00140 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-01050 20-6178-0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NE 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT B OUTLOT D OUTLOT D OUTLOT F OUTLOT I OUTLOT N OUTLOT N OUTLOT N OUTLOT R OUTLOT R OUTLOT R <	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.038 3.089 3.089 3.089 3.089 3.041 2.287 4.342 63.415 1.653 1.653 1.653 1.653 1.653 1.653
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05790 20-6111-05910 20-6111-05910 20-6178-00020 20-6178-00020 20-6178-00020 20-6178-00080 20-6178-00080 20-6178-00100 20-6178-00100 20-6178-00110 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00180 20-6178-01100 20-6178-01070 20-6178-01070 20-6178-01090 20-6178-01090 20-6178-01090 20-6178-01090 20-6178-01090 20-6178-01100	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SE 1/4 NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Jane M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.73 0.73 0.303 2.643 65.553 2.944 2.038 3.636 3 2.28 3.604 2.27 4.342 63.415 1.631 1.631 1.631 1.062 0.932 0.932 1.324
20-6111-05010 20-6111-05190 20-6111-05490 20-6111-05670 20-6111-05730 20-6111-05790 20-6111-05790 20-6111-05850 20-6111-05910 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-0020 20-6178-00100 20-6178-00100 20-6178-00130 20-6178-00140 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-00150 20-6178-01050 20-6178-	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 61	11 11	SE 1/4 OF SE 1/4 GOVT LOT 1 SE 1/4 OF NE 1/4 NE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4 NE 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 SU 1/4 OF SE 1/4 SW 1/4 OF SE 1/4 OUTLOT B OUTLOT D OUTLOT D OUTLOT F OUTLOT I OUTLOT N OUTLOT N OUTLOT N OUTLOT R OUTLOT R OUTLOT R <	USA USA USA USA USA USA USA USA USA USA	USA USA USA USA USA USA USA USA USA STATE OF MINNESOTA Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81) USA USA USA USA USA USA USA USA USA USA	40.256 38.149 39.116 39.728 37.519 40.235 40.235 40.235 40.151 37.744 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 40.293 3.214 0.771 0.73 0.303 2.643 65.553 2.944 2.038 3.089 3.089 3.089 3.089 3.041 2.287 4.342 63.415 1.653 1.653 1.653 1.653 1.653 1.653

Table 3-1 Tax Parcel Number		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
20-6178-01140 and 20-6178-	5	61	11	1/2 INTEREST (EACH OWN) LOT 14 BLOCK 1	HOFFMAN FAMILY REAL ESTATE TRUST AND HOFFMAN TRUST ET	USA		1.657
01141	-							
20-6178-01150 20-6178-01160	5	61 61	11 11	LOT 15 BLOCK 1 LOT 16 BLOCK 1	CHELESNIK FAMILY TRUST RUSSELL MARILYN SOLBERG	USA USA		1.418 0.94
20-6178-01170	5	61	11	LOT 17 BLOCK 1	MITCHUM PHILLIP L & COLLEEN M	USA		0.879
20-6178-01180 and 20-6178- 01181 and 20-6178-01182	5	61	11	LOT 18 BLOCK 1 - 1/3 UDI (each own)	HELMER MARK AND CLARK RICHARD C AND JOHNSON JEANINE ET AL	USA		0.955
20-6178-01190 20-6178-01200	5	61 61	11 11	LOT 19 BLOCK 1 LOT 20 BLOCK 1	TEICHERT MICHAEL R & BARBARA J CHILDS ANDREA S	USA USA		1.245 1.5
20-6178-01200	5	61	11		HENRY PATRICK M & LUCILLE B	USA		1.5
N/A	5	61	11	Road right of way	The South Kawishiwi Association, LLC	USA		13.165
20-6178-00070	6	61	11	OUTLOT G	SOUTH KAWISHIWI ASSOCIATION LLC	USA		8.715
20-6178-01230	6	61	11	LOT 23 BLOCK 1	HIRSCH DUANE C & TONI L	USA		1.274
20-6178-01240	6	61	11	LOT 24 BLOCK 1	BOLLIS CHRISTOPHER J & GAIL M	USA		1.392
20-6178-01250 20-6111-07010	6	61 61	11 11	LOT 25 BLOCK 1 GOVT LOT 1	FROEMLING ROBERT A TRUST #12-12 + USA	USA USA		1.247 1.78
20-6111-07010	7	61	11	GOVI LOT 12	USA	USA		0.001
20-6111-08010	8	61	11	NE 1/4 OF NE 1/4	USA	Goldie I. Foster; a/k/a Goldie I. Parker; a/k/a Goldie I. Mayer; and Walter B. Foster (17/81)	 "Richard A. Maki (1/9) Diane J. Manuszak (1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Mathew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jean M. Maki (1/9) David A. Maki (1/2 0f 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)" 	40.695
20-6111-08070	8	61	11	NW 1/4 OF NE 1/4	USA	USA		37.278
20-6111-08130	8	61	11	SW 1/4 OF NE 1/4	USA	USA		33.747
20-6111-08190	8	61	11	SE1/4 OF NE1/4	TWIN METALS MINNESOTA LLC	STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	40.457
20-6111-08250	8	61	11	GOVT LOT 1	USA	USA		8.937
20-6111-08310	8	61	11	GOVT LOT 2	USA	USA		27.191
20-6111-08430 20-6111-08490	8	61 61	11 11	GOVT LOT 4 LOT 5	USA PINE BRANCH LLC	USA STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	0.759 16.312
20-6111-08490	0 8	61	11	NE1/4 OF SE1/4	TWIN METALS MINNESOTA LLC	STATE OF MN (1/2) STATE OF MN (1/2)	St. Croix Lumber Co (1/2) St. Croix Lumber Co (1/2)	40.218
20-6111-08790	8	61	11	NW 14 OF SE 14	USA	USA	St. Croix Euriber Co (1/2)	31.46
20-6111-08850	8	61	11	SW 1/4 OF SE 1/4	LAKE COUNTY	STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	29.269
20-6111-08910	8	61	11	SE1/4 OF SE1/4	TWIN METALS MINNESOTA LLC	STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	39.98
20-6111-09010	9	61	11	NE 1/4 OF NE 1/4	USA	USA		40.065
20-6111-09070 20-6111-09130	9	61 61	11 11	NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4	USA	USA USA		40.016 40.05
20-6111-09190	9	61	11	SE 1/4 OF NE 1/4	USA	USA		40.05
20-6111-09250	9	61	11	NE 1/4 OF NW 1/4	USA	USA		40.169
20-6111-09310	9	61	11	NW 1/4 OF NW 1/4	USA	GOLDIE I. FOSTER; A/K/A GOLDIE I. PARKER; A/K/A GOLDIE I. MAYER; AND WALTER B. FOSTER (17/81)	(1/2 of 1/9) Kristina Metheny (1/2 of 1/6 of 17/81) Robert F. Adolfson (1/6 of 17/81) Paula Moser (1/6 of 17/81) Sandra I. Stigar (1/6 of 17/81) Matthew Adolfson (1/6 of 17/81) Robert Rodriguez (1/2 of 1/6 of 17/81) Laura Richert (1/6 of 17/81) Earl C. Hook (2/81) Jeam M. Maki (1/9) David A. Maki (1/2 of 1/9) James K. Maki (1/9) Ina Lassi/Lake- Forest Enterprise, Inc. (1/9)"	40.151
20-6111-09370	9	61	11	SW1/4 OF NW1/4	TWIN METALS MINNESOTA LLC	STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	40.37
20-6111-09430	9	61	11	SW 1/4 OF NW 1/4 SE 1/4 OF NW 1/4	USA	USA		40.37
20-6111-09490	9	61	11	NE 1/4 OF SW 1/4	USA	USA		40.265
20-6111-09550	9	61	11	NW 14 OF SW 14	USA	USA		40.399
20-6111-09610 20-6111-09670	9	61	11	SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4	USA	USA USA		40.429 40.294
20-6111-09670	9	61 61	11 11	SE 1/4 OF SW 1/4 NE 1/4 OF SE 1/4	USA	USA		40.294 40.134
20-6111-09790	9	61	11	NW 1/4 OF 5E 1/4	USA	USA		40.134
20-6111-09850	9	61	11	SW 1/4 OF SE 1/4	USA	USA		40.118
20-6111-09910	9	61	11	SE 1/4 OF SE 1/4	USA	USA		40.168
20-6111-10250	10	61	11	NE 1/4 OF NW 1/4	USA	USA		2.284
20-6111-10310 20-6111-10370	10 10	61 61	11 11	NW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4	USA	USA USA		39.863 38.766
20-6111-10370	10	61	11	NE 1/4 OF NW 1/4 NE 1/4 OF SW 1/4	USA	USA		0.404
20-6111-10550	10	61	11	NW 1/4 OF SW 1/4	USA	USA		38.129
20-6111-10610	10	61	11	SW 1/4 OF SW 1/4	USA	USA		39.937
20-6111-10670	10	61	11	SE 1/4 OF SW 1/4	USA	USA		16.021
20-6111-15250	15	61	11	NE 1/4 OF NW 1/4 NW 1/4 OF NW 1/4	USA	USA		20.834 39.903
	15	61	11	SW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4	USA	USA USA		39.903 39.886
20-6111-15310	15	61					+	
20-6111-15310 20-6111-15370 20-6111-15430	15 15	61 61	11	SE 1/4 OF NW 1/4	USA	USA		20.845
20-6111-15370 20-6111-15430 20-6111-15490			11 11	NE 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		20.855
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550	15 15 15	61 61 61	11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4	STATE OF MINNESOTA USA	STATE OF MINNESOTA USA		20.855 39.868
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15610	15 15 15 15	61 61 61 61	11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA		20.855 39.868 39.85
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15610 20-6111-15670	15 15 15 15 15 15	61 61 61 61 61	11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA		20.855 39.868 39.85 20.866
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15610 20-6111-15670 20-6111-16070	15 15 15 15 15 15 16	61 61 61 61 61 61	11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE NE 1/4 OF NE	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15610 20-6111-15670	15 15 15 15 15 15	61 61 61 61 61 61 61 61	11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 SE 1/4 OF SW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA		20.855 39.868 39.85 20.866
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15670 20-6111-15670 20-6111-16010 20-6111-16070	15 15 15 15 15 16 16	61 61 61 61 61 61	11 11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133
20-6111-15370 20-6111-15430 20-6111-15430 20-6111-15550 20-6111-15550 20-6111-15670 20-6111-16070 20-6111-16010 20-6111-16130 20-6111-16130 20-6111-16190	15 15 15 15 16 16 16 16 16 16	61 61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SU 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 NU 1/4 OF NU 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15570 20-6111-15670 20-6111-16070 20-6111-16070 20-6111-16130 20-6111-16190 20-6111-16190	15 15 15 15 16 16 16 16 16 16 16 16	61 61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 NE 1/4 OF NE 1/4 NE 1/4 OF NE 1/4 NE 1/4 OF NW 1/4 NW 1/4 OF NW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15610 20-6111-15670 20-6111-16670 20-6111-16070 20-6111-16130 20-6111-16130 20-6111-16130 20-6111-16370	15 15 15 15 16 16 16 16 16 16 16 16 16	61 61 61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 NE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 NW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4	STATE OF MINNESOTA USA USA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173 40.049
20-6111-15370 20-6111-15430 20-6111-15490 20-6111-15550 20-6111-15570 20-6111-15670 20-6111-16010 20-6111-16010 20-6111-16130 20-6111-16130 20-6111-16370 20-6111-16430	$ \begin{array}{r} 15 \\ 15 \\ 15 \\ 15 \\ 16 \\$	61 61 61 61 61 61 61 61 61 61 61 61	11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NW 1/4 NW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 SE 1/4 OF NW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173 40.049 40.092
20-6111-15370 20-6111-15430 20-6111-15430 20-6111-1550 20-6111-15670 20-6111-15670 20-6111-16670 20-6111-16070 20-6111-16130 20-6111-16130 20-6111-16130 20-6111-16310 20-6111-16370	15 15 15 15 16 16 16 16 16 16 16 16 16	61 61 61 61 61 61 61 61 61 61 61	11 11 11 11 11 11 11 11 11 11 11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 NE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 NW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4 SW 1/4 OF NW 1/4	STATE OF MINNESOTA USA USA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173 40.049
20-6111-15370 20-6111-15430 20-6111-15430 20-6111-15550 20-6111-15550 20-6111-15670 20-6111-16070 20-6111-16070 20-6111-16130 20-6111-16130 20-6111-16370 20-6111-16370 20-6111-16390	$ \begin{array}{r} 15 \\ 15 \\ 15 \\ 15 \\ 16 \\$	61 61 61 61 61 61 61 61 61 61 61 61	11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SU 1/4 OF NE 1/4 SU 1/4 OF NE 1/4 SU 1/4 OF NE 1/4 SE 1/4 OF NW 1/4 NU 1/4 OF NW 1/4 SU 1/4 OF SW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173 40.049 40.049 40.092
20-6111-15370 20-6111-15430 20-6111-15430 20-6111-1550 20-6111-15670 20-6111-15670 20-6111-15670 20-6111-16670 20-6111-16130 20-6111-16130 20-6111-16130 20-6111-16370 20-6111-16370 20-6111-16490 20-6111-16450	$ \begin{array}{r} 15 \\ 15 \\ 15 \\ 15 \\ 16 \\$	61 61 61 61 61 61 61 61 61 61 61 61 61 6	11 11	NE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4 NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4 SE 1/4 OF NE 1/4 SW 1/4 OF NE 1/4 SE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 NW 1/4 OF NW 1/4 SE 1/4 OF NW 1/4 SE 1/4 OF SW 1/4 NW 1/4 OF SW 1/4 NE 1/4 OF SW 1/4	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA USA STATE OF MINNESOTA USA STATE OF MINNESOTA STATE OF MINNESOTA		20.855 39.868 39.85 20.866 40.126 40.133 40.076 40.069 40.215 40.173 40.049 40.092 40.027 40.027

	nber / Ownership							
Parcel ID		Township		Legal Description	Surface Owner STATE OF MINNESOTA	Majority Mineral Ownership	Minor Mineral Ownership	Acres
20-6111-16790 20-6111-16850	16	61 61	11 11	NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4	STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA		40.019 39.962
20-6111-16910	16	61	11	SE 1/4 OF SE 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		39.955
20-6111-17010	17	61	11	NE 1/4 OF NE 1/4	USA	STATE OF MN (1/2)	St. Croix Lumber Co (1/2)	37.299
20-6111-17070	17	61	11	GOVT LOT 1	USA	ST. CROIX LUMBER CO (1/2)	USA	11.701
20-6111-17190	17	61	11	SE 1/4 OF NE 1/4	USA	USA		30.413
20-6111-17730	17	61	11	GOVILOT 8	USA	USA		29.309
20-6111-17910	17	61	11	SE 1/4 OF SE 1/4	USA	USA USA		30.409
20-6111-20010 20-6111-20070	20	61 61	11 11	NE 1/4 OF NE 1/4 NW 1/4 OF NE 1/4	USA	USA		33.873 1.508
20-6111-20130	20	61	11	SW 1/4 OF NE 1/4	USA	USA		8.6
20-6111-20190	20	61	11	SE 1/4 OF NE 1/4	USA	USA		22.24
20-6111-20730	20	61	11	NE 1/4 OF SE 1/4	USA	USA		19.668
20-6111-20790	20	61	11	NW 1/4 OF SE 1/4	USA	USA		10.749
20-6111-20850	20	61	11	SW 1/4 OF SE 1/4	USA	USA		11.479
20-6111-20910	20	61	11	SE 1/4 OF SE 1/4	USA	USA		18.937
20-6111-21010	21	61	11	NE 1/4 OF NE 1/4	USA	USA		30.789
20-6111-21070 20-6111-21250	21	61 61	11 11	NW 1/4 OF NE 1/4 NE 1/4 OF NW 1/4	USA	USA USA		36.226 30.167
20-6111-21250	21	61	11	NW 1/4 OF NW 1/4	USA	USA		30.167
20-6111-2250	21	61	11	NE 1/4 OF NW 1/4	USA	USA		10.838
20-6111-22310	22	61	11	NW 1/4 OF NW 1/4	USA	USA		29.495
20-6111-29010	29	61	11	NE 1/4 OF NE 1/4	USA	USA		18.149
20-6111-29070	29	61	11	NW 1/4 OF NE 1/4	USA	USA		12.188
20-6111-29130	29	61	11	SW 1/4 OF NE 1/4	USA	USA		13.048
20-6111-29190	29	61	11	SE 1/4 OF NE 1/4	USA	USA	<u></u>	17.394
20-6111-29670	29	61	11	SE 1/4 OF SW 1/4	USA	USA		9.273
20-6111-29730	29	61	11	NE 1/4 OF SE 1/4	USA	USA		7.967
20-6111-29790	29 29	61 61	11 11	NW 1/4 OF SE 1/4 SW 1/4 OF SE 1/4	USA	USA	l	26.6
20-6111-29850 20-6111-31190	29	61	11 11	SW 1/4 OF SE 1/4 SE 1/4 OF NE 1/4	USA	USA	+	25.422 8.398
20-6111-31490	31	61	11	GOVT LOT 8	USA	USA		0.292
20-6111-31610	31	61	11	GOVT LOT 0	USA	USA		4.147
20-6111-31670	31	61	11	GOVT LOT 13	USA	USA		27.057
20-6111-31730	31	61	11	NE 1/4 OF SE 1/4	USA	USA		27.288
20-6111-31790	31	61	11	NW 1/4 OF SE 1/4	USA	USA		17.407
20-6111-31850	31	61	11	GOVT LOT 14	USA	USA		18.78
20-6111-31910	31	61	11	GOVT LOT 15	USA	USA		0.532
20-6111-32070	32	61	11	NW 1/4 OF NE 1/4	USA	USA USA		4.493
20-6111-32250 20-6111-32310	32	61 61	11 11	NE 1/4 OF NW 1/4 NW 1/4 OF NW 1/4	USA	USA		29.383 0.868
20-6111-32370	32	61	11	SW 1/4 OF NW 1/4	USA	USA		30.674
20-6111-32430	32	61	11	SE 1/4 OF NW 1/4	USA	USA		14.414
20-6111-32550	32	61	11	NW 1/4 OF SW 1/4	USA	USA		4.698
20-6178-01220	5 & 6	61	11	LOT 22 BLOCK 1	SEEKER MICHAEL & REBECCA C	USA		1.473
28-6278-00010	32	62	11	OUTLOT A	SOUTH KAWISHIWI ASSOCIATION LLC	USA		0.205
28-6278-00190	32	62	11	OUTLOT S	SOUTH KAWISHIWI ASSOCIATION LLC	USA		5.007
28-6278-00200	32	62	11		SOUTH KAWISHIWI ASSOCIATION LLC	USA		11.807
28-6278-00210 28-6278-01010	32	62 62	11	OUTLOT U LOT 1 BLOCK 1	SOUTH KAWISHIWI ASSOCIATION LLC ZGONC MICHAEL J & JENNIFER L	USA		9.324 1.029
28-6278-01010	32	62	11 11	LOT 7 BLOCK 1	BUSTA MARK W & BARBARA A	USA		1.137
28-6278-01030	32	62	11	LOT 3 BLOCK 1	DEVANEY DEBRA J	USA		1.325
28-6278-01040	32	62	11	LOT 4 BLOCK 1	PICKFORD JW FAMILY TRUST	USA		1.045
28-6211-33130	33	62	11	GOVT LOT 2	USA	USA		4.99
28-6211-33190	33	62	11	SE1/4 OF NE1/4	USA	USA		26.91
28-6211-33490	33	62	11	GOVT LOT 7	USA	USA		15.651
28-6211-33550	33	62	11	GOVT LOT 6	USA	USA		49.997
28-6211-33670	33	62	11	SE 1/4 OF SW 1/4	USA	RGGS Land & Minerals Ltd LP		40.757
28-6211-33730 28-6211-33790	33	62	11	NE 1/4 OF SE 1/4 NW 1/4 OF SE 1/4	USA	USA RGGS Land & Minerals Ltd LP		39.67 37.127
28-6211-33850	33	62 62	11 11	SW 1/4 OF SE 1/4	USA	USA		40.175
28-6211-33910	33	62	11	SE 1/4 OF SE 1/4	USA	RGGS Land & Minerals Ltd LP		39.384
						FRANCONIA MINERALS CORPORATION INC.		
28-6211-34010	34	62	11	NE 1/4 OF NE 1/4	USA	(1/2)	Hector Iron Co. (1/2)	10.034
28-6211-34070	34	62	11	NW 1/4 OF NE 1/4	USA	FRANCONIA MINERALS CORPORATION INC.	Hector Iron Co. (1/2)	0.24
						(1/2)		
28-6211-34130	34	62	11	SW 1/4 OF NE 1/4	USA	USA		33.857
28-6211-34190 28-6211-34370	34	62	11	SE 1/4 OF NE 1/4	USA	USA USA		38.731
28-6211-34370 28-6211-34430	34	62 62	11 11	SW 1/4 OF NW 1/4 SE 1/4 OF NW 1/4	USA	USA	<u> </u>	31.828 23.993
28-6211-34490	34	62	11	NE 1/4 OF SW 1/4	USA	USA		38.934
28-6211-34490	34	62	11	NW 1/4 OF SW 1/4	USA	USA		38.66
28-6211-34610	34	62	11	SW 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		38.645
28-6211-34670	34	62	11	SE 1/4 OF SW 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		38.919
28-6211-34730	34	62	11	NE 1/4 OF SE 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		38.889
28-6211-34790	34	62	11	NW 1/4 OF SE 1/4	USA	USA		38.68
28-6211-34850	34	62	11	SW 1/4 OF SE 1/4	USA	USA		38.928
28-6211-34910	34	62	11	SE 1/4 OF SE 1/4	STATE OF MINNESOTA	STATE OF MINNESOTA		39.173
28-6211-35070	35	62	11	NW 1/4 OF NE 1/4		USA PCCS Land & Minorala Ltd LP		10.157
28-6211-35130 28-6211-35250	35 35	62 62	11 11	SW1/4 OF NE1/4 NE 1/4 OF NW 1/4	TWIN METALS MINNESOTA LLC USA	RGGS Land & Minerals Ltd LP USA		37.757 25.002
28-6211-35250	35	62	11	NW 1/4 OF NW 1/4	USA	USA	1	20.265
28-6211-35370	35	62	11	SW1/4 OF NW1/4	TWIN METALS MINNESOTA LLC	RGGS Land & Minerals Ltd LP		40.037
28-6211-35430	35	62	11	SE1/4 OF NW1/4	TWIN METALS MINNESOTA LLC	RGGS Land & Minerals Ltd LP		40.196
28-6211-35490	35	62	11	NE1/4 OF SW1/4	TWIN METALS MINNESOTA LLC	RGGS Land & Minerals Ltd LP		40.684
28-6211-35550	35	62	11	NW 1/4 OF SW 1/4	USA	USA		40.347
28-6211-35610	35	62	11	SW1/4 OF SW1/4	TWIN METALS MINNESOTA LLC	RGGS Land & Minerals Ltd LP		40.071
28-6211-35670	35	62	11	SE1/4 OF SW1/4	TWIN METALS MINNESOTA LLC	RGGS Land & Minerals Ltd LP		34.599
28-6211-35790	35	62	11	NW1/4 OF SE1/4	TWIN METALS MINNESOTA LLC	RGGS LAND & MINERALS LTD LP		21.677
28-6211-35850	35	62	11	SW 1/4 OF SE 1/4	USA	USA Baadaaa laa		2.175
105-0060-00010	1	60 60	12 12	GOVT LOT 1 GOVT LOT 2	USA	Rendrag Inc.	l	29.23 25.821
105 0060 00040	1 1				USA	Longyear Mesaba	ł	
105-0060-00010 105-0060-00010	1	60	12					8 004
105-0060-00010 105-0060-00010 105-0060-00370	1	60 60	12 12	GOVT LOT 3 LOT 3	CLIFFS ERIE LLC	Rendrag Inc. DUNKA MINERALS CORP. (1/3)	"KMK Dunka Inc. (1/3) DRM Minerals Corp.	8.904 5.512

Parcel ID	Section	Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
105-0060-00380	3	60	12	N 660 FT OF W 660 OF GOVT LOT 4	ALLETE INC	STATE OF MN (1/3)	"Dunka Minerals Corp. (2/9) KMK Dunka Inc. (2/9) DRM Minerals Corp. (2/9)"	9.997
105-0060-00382	3	60	12	GOVT LOT 4 EX N 660 FT OF W 660 FT	FRANCONIA MINERALS (US) LLC	STATE OF MN (1/3)	"Dunka Minerals Corp. (2/9) KMK Dunka Inc. (2/9) DRM Minerals Corp. (2/9)"	24.544
105-0060-00490	4	60	12	NE1/4 OF NE1/4	USA	RENDRAG INC.		3.996
610-0011-03620	25	61	12	Government Lot 4, Section 25, Township 61 North, Range 12, EXCEPT that part beginning at a point where the southerly line of Government Lot 4 meets the easterly shoreline of Bobs Bay; thence East 400 feet; thence North 470 feet; thence West 400 feet; thence Southerly to the point of beginning.	RENDFIELD LAND CO INC	STATE OF MINNESOTA		0.041
610-0011-03630	25	61	12	"That part of the NW1/4 of SW1/4 Section 25 Township 61 North Range 12 West lying SE'ly of the following described ""Lines A and B"": Commencing at the NW corner of the SE1/4 of NW1/4, said Section 26; thence S 76 degrees 38 minutes 05 seconds E bearing based on the Saint Louis County Transverse Mercador 1996 Projection, a distance of 268.32 ft; thence SE'ly along a non-tangential curve concave to the NE having a radius of 50.00 ft, central angle of 81 degrees 4 minutes 32 seconds (chord bearing of S 51 degrees 45 minutes 17 seconds E), a distance of 71.29 ft to the point of tangency; thence NS7 degrees 24 minutes 03 seconds E a distance of 486.88 ft; thence SE'ly, along a tangential curve concave to the S Naving a radius of 177.00 ft, central angle of 37 degrees 33 minutes 24 seconds, a distance of 437.26 ft; thence SE'ly, along tangential curve concave to the NE having a radius of 717.00 ft, central angle of 33 degrees 33 minutes 20 seconds E a distance of 437.26 ft; thence SE'ly, along atagential curve concave to the NE having a radius of 333.00 ft, central angle of 43 degrees 11 minutes 47 seconds, a distance of 22 degrees 33 minutes 24 seconds, a distance of 564.28 ft to the point of reverse curve; thence SE'ly, along said reverse curve concave to the NE having a radius of 133.00 ft, central angle of 24 degrees 12, along said reverse curve; thence SE'ly, along said reverse curve; thence SE'ly, along said reverse curve; there SE'ly,	ALLETE INC	DU NORD LAND CO (1/2)	"Frederic Paine Worthen/Frederic P. Worthen 1980 Trust (1/22) Anna Welles Paines Williams/Sarah Townsend Williams (1/22) U.S. Bank N.A., Truste of F. Rodney Paine Article VI Trust U/W fbo Robecca Paine Fields (1/32) U.S. Bank N.A., Truste of F. Rodney Paine Article VI Trust U/W fbo John S. Paine (1/32) Thomas H. Paine, Jr. (1/32) Roger Townsend Williams (1/60) Geoffrey Paine Williams (1/60) Joel Hooker Williams (1/60) Sarah Townsend Williams (1/60) Susan Barton Williams (1/60) Mary T. Morton Revocable Trust/Jane M. Fetter and Barbara D. Morton (3/64) State of Minnesota (391/2112)"	14.995
610-0011-03631	25	61	12	That part of the NW% of SW%, Section 25 in Township 61 North, Range 12 West lying NIV, NEIV and NWIV of the following described line: Beginning at the NW corner of SE% of NW%, said Section 26; thence S 76 degrees 38 minutes 05 seconds E bearing based on the Saint Louis County Transverse Mercador 1996 Projection, a distance of 268.32 ft.; thence SEIV, along a non-tangential curve concave to the NE having a radius of 50.00 ft., central angle of 81 degrees 41 minutes 24 seconds (chord bearing of S 51 degrees 45 minutes 17 seconds E), a distance of 71.29 ft. to the point of tangency; thence N 87 degrees 42 minutes 03 seconds E a distance of 486.88 ft.; thence SEIV, along a tangential curve concave to the S having a radius of 1734.00 ft., central angle of 16 degrees 03 minutes 24 seconds, a distance of 485.94 ft. to the point of compound curvature; thence SEIV, along said compound curve concave to the SW having a radius of 717.00 ft., central angle of 73 degrees 33 minutes 26 seconds, a distance of 489.99 ft. to the point of angency; thence S S3 degrees 59 minutes 07 seconds E a distance of 143.72 ft.; thence SEIV, along gand compound curve concave to the NW having a radius of 143.20 ft., central angle of 23 degrees 33 minutes 20 seconds, a distance of 564.28 ft. to the point of reverse curve; thence SEIV, along said ceverse curve; thence SEIV, along said compound curve concave to the NW having a radius of 143.30 of ft., central angle of 81.00 ft., central angle of 61 degrees 11 minutes 29 seconds, a distance of 188.45 ft. to the point of reverse curve; thence SEIV, along said reverse curve; thence SEIV, along said reverse curve; therce SEIV, along said reverse curve; thence SEIV, along said reverse curve; the	RENDFIELD LAND CO INC	DU NORD LAND CO (1/2)	"Frederic Paine Worthen/Frederic P. Worthen 1980 Trust (1/22) Anna Welles Paines Williams/Sarah Townsend Williams (1/22) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo Rebecca Paine Fields (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo John S. Paine (1/32) Thomas H. Paine, Jr. (1/32) Roger Townsend Williams (1/60) Geoffrey Paine Williams (1/60) Joel Hooker Williams (1/60) Sarah Townsend Williams (1/60) Susan Barton Williams (1/60) Mary T. Morton Revocable Trust/Jane M. Fetter and Barbara D. Morton (3/64) State of Minnesota (391/2112)"	2.48
610-0011-03632	25	61	12	"That part of the NW1/4 of the SW1/4 lying S'ly and W'ly of the following described line; Commencing at the NW corner of the SE1/4 of NW1/4, Section 26, Township 61 North, Range 12 West; thence S 76 degrees 38 minutes 05 seconds E bearing based on Saint Louis County Tansverse Mercardor 1996 Projection, a distance of 268.32 ft; thence SE'ly along a non-tangential curve concave to the NE having a radius of 50.00 ft, central angle of 81 degrees 41 minutes 24 seconds (chord bearing S 51 degrees 45 minutes 17 seconds E), a distance of 71.29 ft to the point of tangency; thence N 87 degrees 41 minutes 03 seconds E, a distance of 486.88 ft; thence SE'ly along a tangential curve concave to the S having a radius of 173.400 ft, central angle of 16 degrees 03 minutes 24 seconds, a distance of 486.994 ft to the point of compound curvature; thence SE'ly, along said compound curve concave to the SW having a radius of 717.00 ft, central angle of 37 degrees 33 minutes 26 seconds, a distance of 469.99 ft to the point of tangency; thence S 38 degrees 59 minutes 07 seconds E, a distance of 143.72 ft; thence SE'ly along a tangential curve concave to the NE having a radius of 33.00 ft, central angle of 21.05 ft to the point of compound curvater; thence NE'ly along said compound curva concave to the NW having a radius of 143.00 ft, central angle of 22 degrees 33 minutes 24 seconds, a distance of 564.28 ft to the point of reverse curve; thence SE'ly, along said reverse curve concave to the SW having a radius of 160.00 ft, central angle of 30 degrees 25 minutes 54 seconds, a distance of 548.68 ft to the point of reverse curve; thence SE'ly, along said reverse curve concave to the SW having a radius of 130.00 ft, central angle of 30 degrees 25 minutes 24 seconds, a distance of 544.88 ft to the point of compound curvative; thence SE'ly, along said compound curve concave to the SW having a radius of 130.00 ft, central angle of 30 degrees 20 minutes 30 seconds, a distance of 544.88 ft to the point of compound curvative; thence SE'ly, along	FRANCONIA MINERALS (US) LLC	DU NORD LAND CO (1/2)	"Frederic Paine Worthen/Frederic P. Worthen 1980 Trust (1/22) Anna Welles Paines Williams/Sarah Townsend Williams (1/22) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fob Rebecca Paine Fields (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo John S. Paine (1/32) Thomas H. Paine, Jr. (1/32) Roger Townsend Williams (1/60) Geoffrey Paine Williams (1/60) Joel Hooker Williams (1/60) Sarah Townsend Williams (1/60) Susan Barton Williams (1/60) Mary T. Morton Revocable Trust/Jane M. Fetter and Barbara D. Morton (3/64) State of Minnesota (391/2112)"	4.79

Table 3-1 Tax Parcel Number Parcel ID		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-03640	25	61	12	"SW1/4 of SW1/4 Section 25 in Township 61 North Range 12 West of the Fourth Principal Meridian EXCEPT that part of the SW1/4 of SW1/4 Section 25 Township 61 North Range 12 West lying S1y and W1y of ""Line A"" to be described and 300.00 ft NW1y of, measured at right angles to and parallel with ""Line B" to be described. ""Line A" and ""Line B" are described as follows: ""Line A"" Commencing at the NW corner of the SE1/4 of NW1/4 Section 26 Township 61 North Range 12 West; thence S F1 degrees 35 minutes 05 seconds E bearing based on Saint Louis County Transverse Mercador 1996 Projection, a distance of 268.32 ft; thence SE1y, along a non-tangential curve concave to the NE having a radius of 50.00 ft, central angle of 81 degrees 41 minutes 03 seconds E a distance of 486.88 ft, thence SE1y, along a tangential curve concave to the S Naing a radius of 1734.00 ft, central angle of 16 degrees 03 minutes 24 seconds, a distance of 485.94 ft to the point of compound curvature; thence SE1y along said compound curve concave to the NE having a radius of 173.00 ft, central angle of 37 degrees 35 minutes 25 seconds, a distance of 469.99 ft to the point of tangency; thence S 38 degrees 59 minutes 07 seconds E a distance of 413.72 ft; thence SE1y, along a tangential curve concave to the NE Ne having a radius of 143.30 ft, central angle of 22 degrees 33 minutes 24 seconds, a distance of 564.28 ft to the point of compound curvature; thence SE1y along said compound curve concave to the NW having a radius of 143.30 ft, central angle of 26 degrees 33 minutes 24 seconds, a distance of 564.28 ft to the point of reverse curve; thence SE1y along said reverse urve; thence SE1y	ALLETE INC	USA		22.881
610-0011-03641	25	61	12	"That part of the SW1/4 of SW1/4, Section 25, Township 61 North, Range 12 West, lying S'ly and W'ly of ""Line A"" to be described and 300.00 ft NW'ly of measured at right angles to and parallel with ""Line B" to be described. ""Line A"" and ""Line A"" and "Line B"" are described as follows: ""Line A"" Commencing at the NW corner of the SE1/14 of NW1/4, Section 26, Township 61 North, Range 12 West, thence S 76 degrees 38 minutes 05 seconds E bearing based on Saint Louis County Transverse Mercador 1996 Projection, a distance of 268.32 ft; thence SE1y, along a non-tangential curve concave to the NE having a radius of 10.00 ft, central angle of 81 degrees 24 minutes 03 seconds E adistance of 486.88 ft; thence SE1y, along a tangential curve concave to the S having a radius of 173.40 ft to the point of tangency; thence N 87 degrees 23 minutes 03 seconds E adistance of 486.88 ft; thence SE1y, along a tangential curve concave to the S having a radius of 143.00 ft, central angle of 16 degrees 03 minutes 07 seconds, a distance of 485.94 ft to the point of compound curvature; thence SE1y, along said compound curve concave to the SW having a radius of 1717.00 ft, central angle of 33.00 ft, central angle of 1717.00 ft, central angle of 143.72 ft; thence SE1y, along at angential curve concave to the NW having a radius of 143.30.00 ft, central angle of 22 degrees 33 minutes 42 seconds, a distance of 564.28 ft to the point of compound curve concave to the NW having a radius of 133.00 ft, central angle of 32 degrees 25 minutes 27 seconds, a distance of 848.88 ft to the point of compound curve curve; thence SE1y along said reverse curve, thence SE1y along said reverse curve; thence SE1y along	FRANCONIA MINERALS (US) LLC	USA		6.911
610-0011-03650	25	61	12	SE1/4 OF SW 1/4	RENDFIELD LAND CO INC	STATE OF MINNESOTA		0.971
610-0011-03740	26	61 61	12	NE 1/4 OF SW 1/4 SW 1/4 OF SW 1/4	FRANCONIA MINERALS (US) LLC FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA STATE OF MINNESOTA		16.208
610-0011-03760 610-0011-03770	26 26	61	12 12	SW 1/4 OF SW 1/4 SE 1/4 OF SW 1/4	FRANCONIA MINERALS (US) LLC FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA STATE OF MINNESOTA		20.88 25.9
610-0011-03780	26	61	12	"That part of the NE1/4 of the SE1/4 lying S'ly and SW'ly ofthe following described line: Beginning at the NW corner of the SE1/4 of NW1/4, said Section 26; thence S 76 degrees 38 minutes 05 seconds E bearing based on St Louis County Transverse Mercardor 1996 Projection, a distance of 268.32 ft; thence SE'ly, along a non-tangential curve concave to the NE having a radius of 50.00 ft, central angle of 81 degrees 41 minutes 24 seconds (chord bearing of S 51 degrees 45 minutes 17 seconds E), a distance of 71.29 ft to the point of tangency; thence N 87 degrees 24 minutes 03 seconds E, a distance of 486.88 ft, thence SE'ly along a tangential curve concave to the S having a radius of 1734.00 ft, central angle of 16 degrees 03 minutes 24 seconds, a distance of 485.94 ft to the point of compound curvature; thence SE'ly along said compound curve concave to the SW having a radius of 717.00 ft, central angle of 43.72 ft, thence SE'ly, along a tangential curve concave to the NE having a radius of 333.00 ft, central angle of 43.02 gt; thence SE'ly along a tangential curve concave to the NE having a radius of 333.00 ft, central angle of 43.02 gt; thence SE'ly along a tangential curve concave to the NE having a radius of 333.00 ft, central angle of 426.08 ft. to the point of compound curvature; thence NE'ly along said compound curve concave to the NW having a radius of 143.02 ft; thence SE'ly along said reverse curve; thence SE'ly along said reverse cu	FRANCONIA MINERALS (US) LLC	DU NORD LAND CO (1/2)	"Emilie WashburnWorthen Hall (1/32) John Stuart Paine (1/32) Thomas H. Paine (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo Rebecca Paine Fields (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo John S. Paine (1/32) Thomas H. Paine, Jr. (1/32) Mary T. Morton Revocable Trust/Jane M. Fetter and Barbara D. Morton (3/64) Frederic Paine Worthen (1/22) Anna Welles Paines Williams (1/22) Rebecca Paine Field (1/22) Mary Paine Worthen (1/22) Mary Worthen Morton (1/22) State of Minnesota (391/2112)"	29.118

Table 3-1 Tax Parcel Number Parcel ID		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-03781	26	61	12	That part of the NE¼ of SE¼, Section 26, in Township 61 North, Range 12 West lying N'ly, NE'ly and NW'ly of the following described line: Beginning at the NW corner of SE¼ of NW¼, said Section 26; thence S 76 degrees 38 minutes 05 seconds E bearing based on the Saint Louis County Transverse Mercador 1996 Projection, a distance of 268.32 ft.; thence SE'ly, along a non-tangential curve concave to the NE having a radius of 50.00 ft., central angle of 81 degrees 41 minutes 03 seconds E a distance of 486.88 ft.; thence SE'ly, along a tangential curve concave to the SM having a radius of 1734.00 ft., central angle of 16 degrees 03 minutes 24 seconds, a distance of 486.89 ft.; thence SE'ly, along a tangential curve concave to the SM having a radius of 1734.00 ft., central angle of 16 degrees 59 minutes 24 seconds, a distance of 485.94 ft. to the point of compound curvature; thence SE'ly, along said compound curve concave to the SM having a radius of 71.700 ft., central angle of 333.00 ft., central angle of 43 degrees 11 minutes 47 seconds, a distance of 251.05 ft. to the point of compound curvature; thence SE'ly, along said reverse curve; thence SE'ly, along said reverse se curve; thence SE'ly, along said reverse secure; thence SE'ly, along said reverse curve; thence SE'ly, along said reverse securve; thence SE'ly, along said reverse securve	RENDFIELD LAND CO INC	DU NORD LAND CO (1/2)	"Emilie WashburnWorthen Hall (1/32) John Stuart Paine (1/32) Thomas H. Paine (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo Rebecca Paine Fields (1/32) U.S. Bank N.A., Trustee of F. Rodney Paine Article VI Trust U/W fbo John S. Paine (1/32) Thomas H. Paine, Jr. (1/32) Mary T. Morton Revocable Trust/Jane M. Fetter and Barbara D. Morton (3/64) Frederic Paine Worthen (1/22) Anna Welles Paines Williams (1/22) Rebecca Paine Field (1/22) Mary Paine Worthen (1/22) Mary Worthen Morton (1/22) State of Minnesota (391/2112)"	0.634
610-0011-03790	26	61	12	NW 1/4 OF SE 1/4	FRANCONIA MINERALS (US) LLC	ALLETE INC		30.063
510-0011-03800 and 610-0011- 03801	26	61	12	That part of the SW% of SE% Section 26 Township 61 North Range 12 West lying westerly, northwesterly and northerly of the following described line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence South 71 degrees 44 minutes 20 seconds West, bearing based on the east line of said Section 9 having a bearing of South 03 degrees 27 minutes 19 seconds East, St Louis County Transverse Mercator 1996 projection a distance of 462.67 feet; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears North 22 degrees 35 minutes 37 seconds West a distance of 2378.47 feet to the point of tangency; thence North 23 degrees 59 minutes 36 seconds East a distance of 426.28 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 51 minutes 36 seconds a distance of 280.81 feet to the point of tangency; thence North 37 degrees 12 minutes 40 seconds East a distance of 101.36 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 33 seconds a distance of 2168.30 feet to the point of tangency; thence North 42 degrees 35 minutes 64 degrees 14 minutes 53 seconds a distance of 2463.58 feet to the point of tangency; thence North 53 degrees 35 minutes 64 seconds East a distance of 664.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 44 degrees 00 minutes 27 seconds a distance of 6246.36 feet to the point of tangency; thence North 53 degrees 35 minutes 50 seconds West a distance of 1469.17 feet; thence North 52 degrees 08 minutes 24 seconds East a distance of 700 feet; thence South 77 degrees 26 minutes 00 seconds East a distance of 1541.34 feet; thence North 52 degrees 08 minutes 41 seconds East a distance	CLIFFS ERIE LLC AND TWIN METALS MN LLC.	PETER WOODBURY (3/4)	"DUNKA MINERALS CORP. (1/12) KMK DUNKA INC. (1/12) DRM MINERALS CORP. (1/12)"	0.677
610-0011-03810 and 610-0011- 03811	26	61	12	UND 3/4 (CE) AND UND 1/4 (CE) OF SE1/4 OF SE1/4	CLIFFS ERIE LLC	PETER WOODBURY (3/4)	"DUNKA MINERALS CORP. (1/12) KMK DUNKA INC. (1/12) DRM MINERALS CORP.	0.048
610-0011-03860	27	61	12	SE1/4 OF SE1/4	USA	STATE OF MINNESOTA	(1/12)"	0.333
610-0011-04400	33	61	12	SE1/4 OF SE 1/4 "That part of the NE1/4 OF NE1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S0 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection , a distance of 462.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet; central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 58 minutes 37 seconds W a distance of 62378.47 feet to the point of tangency; thence N 37 degrees 12 minutes 10 seconds E a distance of 426.67 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 101.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 101.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 378.62 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 2463.58 feet to the point of tangency; thence N 37 degrees 02 minutes 41 seconds E 7 seconds, a distance of 463.58 feet to the point of tangency; thence N 57 degrees 36 minutes 54 seconds E a distance of 643.66 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 40 degrees 00 minutes 27	MESABI IRON CO FRANCONIA MINERALS (US) LLC	MESABI IRON CO		2.152

able 3-1 Tax Parcel Number / Owners							
Parcel ID Section	on Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-04441 34	61	12	That part of the NE¼ of NE¼, Section 34, Township 61 North, Range 12 West, EXCEPT that part lying W1y and NW1y of a line drawn parallel with and distant 200 ft. W1y and NW1y of the first following described line and W1y, NW1y and N1y of the second following described line: First Described Line: Commencing at the E quarter corner of Section 9, Township 60 North, Range 12 West, thence S 71 degrees 44 minutes 20 seconds W, bearing based on the E line of said Section 9 having a bearing of 50 30 degrees 27 minutes 19 seconds E, St Louis County Transverse Mercator 1996 projection, a distance of 462.67 ft. to the point of beginning of the line to be described; thence NE1y along a non-tangential curve concave to the E, having a radius of 2925.20 ft., central angle of 46 degrees 35 minutes 33 seconds, the tangent to said curve at this point bears N 22 degrees 35 minutes 33 seconds W a distance of 2378.47 ft. to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.28 ft.; thence NE1y along a tangential curve concave to the SE, having a radius of 1217.20 ft., central angle of 13 degrees 13 minutes 36 seconds E a distance 20.81 ft. to the point of tangency; thence N 23 degrees 51 minutes 39 seconds, a distance of 246.28 ft.; thence N 04 degrees 21 minutes 03 seconds E, a distance of 246.36 ft.; thence N 53 degrees 54 minutes 39 seconds E, a distance of 62.66 ft. to the NM, having a radius of 378.06 ft., central angle of 224.31 ft.; thence NE1y along a tangential curve concave to the SE, having a radius of 32.69 ft.; thence N 53 degrees 35 minutes 39 seconds E, a distance of 62.66 ft. to the point of tangency; thence N 57 degrees 36 minutes 54 seconds E, a distance of 664.36 ft.; thence NE1y along a tangential curve concave to the SE. having a radius of 910.15 ft., central angle of 04 degrees 00 minutes 27 seconds , a distance of 146.9.01 ft.; thence N 53 degrees 35 minutes 39 seconds A, a distance of 664.36 ft.; thence N 53 degrees 30 minutes 39 seconds S, a distance of 62.66 ft. to the poin	CLIFFS ERIE LLC	STATE OF MINNESOTA		0.465
610-0011-04450 34	61	12	NW1/4 OF NE1/4	USA	STATE OF MINNESOTA		0.125
610-0011-04450 34	61	12	NW1/4 OF SW1/4	USA	USA		1.248
610-0011-04450 34	61	12	SE1/4 OF NW1/4	USA	USA		0.606
610-0011-04450 34	61	12	SW1/4 OF SW1/4	USA	USA		34.392
610-0011-04460 34	61	12	"That part of the SW1/4 OF NE1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection , a distance of 420.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2292.520 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 37 degrees 12 minutes 117.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 3780.62 feet, central angle of 49 degrees 51 minutes 39 seconds, a distance of 2463.85 feet to the point of tangency; thence N 04 degrees 21 minutes 06 64.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 664.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 64.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 04 degrees 00 minutes 37 seconds, a distance of 2463.58 feet to the point of tangency; thence N 53 degrees 35 minutes 45 seconds E, a distance of 664.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 49 degrees 00 minutes 32 seconds, a distance of 2463.58 feet to the point of tangency; thence N 57 degrees 36 minutes 21 sec	FRANCONIA MINERALS (US) LLC	USA		24.741
610-0011-04470 34	61	12	That part of the SE¼ of NE¼, Section 34 Township 61 North Range 12 West; lying Ely and SEly of a line drawn parallel with and distant 200 feet Wly and NWly of the first following described line and Ely, SEly and Sly of the second following described line: First Described Line: Commencing at the East quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the East line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection, a distance of 426.67 feet to the point of beginning of the line to be described ; thence NETy along a non-tangential curve concave to the East, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.28 feet; thence NETy along a tangential curve concave to the SE, having a radius of 1217.20 feet, central angle of 101.36 feet; thence NETy langent at magential curve concave to the NW, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 2168.30 feet to the point of tangency; thence N 04 degrees 21 minutes 02 seconds E, a distance of 6243.58 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 63.66 feet; thence NETy along a tangential curve concave to the SE, having a radius of 2866.16 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 426.58 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 63.66 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 600 feet to the point of tangency; thence N 54 degrees 21 minutes 50 seconds E a distance of 482.88 feet; thence N 34 degrees 17 minutes 24 seconds E a distance of 1462.54 feet; thence N 32 degrees 23 minutes 39 s	CLIFFS ERIE LLC	USA		1.156

Table 3-1 Tax Parcel Numbe Parcel ID		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-04475	34	61	12	"That part of the SE1/4 OF NE1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line and westerly, northwesterly and northerly of the second following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, SL Louis County Transverse Mercator 1996 projection , a distance of 462.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 37 degrees 90 minutes 36 seconds E a distance of 426.28 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 2468.30 feet to the point of tangency; thence N 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 2468.30 feet to the point of tangency; thence N 246 degrees 35 minutes 02 seconds E, a distance of 6324.11 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 404 degrees 14 minutes 53 seconds, a distance of 2463.58 feet to the point of tangency; thence N 54 degrees 35 minutes 54 seconds E, a distance of 664.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 40 degrees 12 seconds, a distance of 63.66 feet to the point of tangency; thence N 57 degrees 35 minutes 54 seconds E,	FRANCONIA MINERALS (US) LLC	USA		18.534
610-0011-04520	34	61	12	That part of the NE½ of SW¼, Section 34 Township 61 North Range 12 West; lying Ely and SEly of a line drawn parallel with and distant 200 feet Wly and NWly of the first following described line and Ely, SEly and Sly of the second following described line: First Described Line: Commencing at the East quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the East line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection, a distance of 462.67 feet to the point of begrinning of the line to be described; thence NE¹y along a non-tangential curve concave to the East, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.26 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence NE¹y along a tangential curve concave to the NW, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 246.83 degrees 35 minutes 54 seconds E, a distance of 684.36 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 2806.16 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 2463.80 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 680.46 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 910.15 feet, central angle of 04 degrees 00 minutes 27 seconds, a distance of 206 feet to the point of tangency; thence N 57 degrees 23 minutes 50 seconds W a distance of 482.88 feet; thence N 34 degrees 17 minutes 24	CLIFFS ERIE LLC	STATE OF MINNESOTA		0.886
610-0011-04525	34	61	12	"That part of the NE1/4 OF SW1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line and westerly, northwesterly and northerly of the second following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection , a distance of 462.67 feet to the point of be line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.26 feet; thence ontheasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 3780.62 feet, central angle of 30 degrees 53 minutes 39 seconds, a distance of 2463.58 feet to the point of tangency; thence N 53 degrees 35 minutes 53 seconds, a distance of 2463.58 feet to the point of tangency; thence N 53 degrees 00 minutes 27 seconds, a distance of 2463.66 feet to the point of tangency; thence N 57 degrees 36 minutes 31 seconds E a distance of 2464.16 feet to the point of tangency; thence N 57 degrees 35 minutes 31 seconds E a distance of 154.34 feet; thence ontheasterly along a the point of tangency; thence N 57 degrees 36 minutes 27 seconds E a distance of 206 feet to the point of tangency; thence N 57 degrees 36 minutes 27 seconds E a d	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		26.34

Table 3-1 Tax Parcel Numbe Parcel ID		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-04550	34	61	12	That part of the SE½ of SW¼, Section 34 Township 61 North Range 12 West; lying E¹y and SE¹y of a line drawn parallel with and distant 200 feet W¹y and NW¹y of the first following described line and E¹y, SE¹y and S¹y of the second following described line: First Described Line: Commencing at the East quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the East line of said Section 9 having a bearing of S03 degrees 27 minutes 19 seconds E, SL Louis County Transverse Mercator 1996 projection, a distance of 462.67 feet to the point of beginning of the line to be described ; thence NE¹y along a non-tangential curve concave to the East, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 36 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 42.6.87 feet to the obint of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 42.6.83 of feet to the point of tangency; thence N 23 degrees 51 minutes 30 seconds a distance of 426.30 feet to the point of tangency; thence N 41 seconds E, a distance of 100.36 feet; thence NE¹y along a tangential curve concave to the SW, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 426.30 feet to the point of tangency; thence N 40 degrees 21 minutes 02 seconds E, a distance of 2243.58 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 64.36 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 910.15 feet, central angle of 04 degrees 00 minutes 27 seconds, a distance of 6140.50 feet tone N 53 degrees 35 minutes 54 seconds E, a distance of 64.36 feet to the point of tangency; thence N 57 degrees 36 minutes 41 seconds E a distance of 482.88 feet; thence N 34 degrees 16 minutes 44 seconds E a distance of 192.54 feet; thence N 06	CLIFFS ERIE LLC	STATE OF MINNESOTA		0.286
610-0011-04555	34	61	12	"That part of the SE1/4 OF SW1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line and westerly, northwesterly and northerly of the second following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection, a distance of 462.67 feet to the point of be line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.28 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance 0420.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 3780.62 feet, central angle of 2244.11 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 2466.16 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 2463.58 feet to the point of tangency; thence N 57 degrees 36 minutes 37 seconds W a distance of 30.66 feet to the point of tangency; thence N 57 degrees 36 minutes 27 seconds, a distance of 62.66 feet to the point of tangency; thence N 57 degrees 36 minutes 27 seconds W a distance of 200 feet to the point of tangency; thence N 57 degrees 36 minutes 21 seconds E a distance of 148.61 feet; thence N 57 degrees 23 minutes 50 seconds S a distance of 206 fe	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		15.915
610-0011-04570	34	61	12	That part of the NW½ of SE½, Section 34 Township 61 North Range 12 West; lying E'ly and SE'ly of a line drawn parallel with and distant 200 feet Wly and NW'ly of the first following described line and E'ly, SE'ly and S'ly of the second following described line: First Described Line: Commencing at the East quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the East line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, SL Louis County Transverse Mercator 1996 projection, a distance of 462.67 feet to the point of beginning of the line to be described ; thence NE'ly along a non-tangential curve concave to the East, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.68 feet; thence NE'ly along a tangential curve concave to the SE, having a radius of 127.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence NE'ly along a tangential curve concave to the NW, having a radius of 3780.62 feet, central angle of 2244.11 feet; thence NE'ly along a tangential curve concave to the SE, having a radius of 2686.16 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 2463.58 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 63.66 feet to the point of tangency; thence N 57 degrees 35 minutes 54 seconds E, a distance of 63.66 feet to the point of tangency; thence N 57 degrees 23 minutes 50 seconds W a distance of 482.86 feet; thence N 34 degrees 17 minutes 24 seconds E a distance of 1463.17 feet, thence N 68 degrees 23 minutes 39 seconds W a distance of 63.66 feet to the point of beginning of the line to be described	CLIFFS ERIE LLC	STATE OF MINNESOTA		3.004

Table 3-1 Tax Parcel Number / Ownersh							
Parcel ID Section	n Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-04575 34	61	12	"That part of the NW1/4 OF SE1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection, a distance of 462.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.28 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 101.36 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 2168.30 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1464.26 feet, toentor alongency; thence N 37 degrees 21 minutes 02 seconds E, a distance of 63.66 feet to the point of tangency; thence N 49 degrees 14 minutes 53 seconds, a distance of 246.85 feet to the point of tangency; thence N 54 degrees 35 minutes 32 seconds E, a distance of 64.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 40 degrees 14 minutes 53 seconds, a distance of 246.35 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		13.173
610-0011-04645 35	61	12	Northeast Quarter of Northwest Quarter, Section 35, Township 61 North, Range 12 West, St. Louis County, Minnesota, lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence 571 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of 50 do grees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection , a distance of 462.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 55 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 55 minutes 30 seconds b, a distance of 280.81 feet to be point of tangency; thence N 37 degrees 12 minutes 19 seconds E, a distance of 101.36 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 248.11 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds a, a distance of 2168.30 feet to the point of tangency; thence N 04 degrees 21 minutes 02 seconds L, a distance of 6224.11 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 2866.16 feet, central angle of 49 degrees 00 minutes 27 seconds, a distance of 63.66 feet to the point of tangency; thence N 53 degrees 23 minutes 50 seconds W a distance of 63.66 feet to the point of tangency; thence N 54 degrees 23 minutes 50 seconds W a distance of 426.85 feet 1; thence northeasterly along a tangential curve concave to the southeast, having a radius	FRANCONIA MINERALS (US) LLC	State of Minnesota (Remainder. See notes)	"Dunka Minerals Corporation (20/864) KMK Dunka Inc. (20/864) DRM Minerals Corporation (20/864) Harold A. Knutson, as trustee of the Harold A. Knutson Living Trust under Agreement dated April 30, 2008 (5/576) Daryl E. Coons (5/576) Dulth- Superior Area Community Foundation (5/576) Peter Woodbury (180/864) Nancy Jordan (1/10 of 10/864) Susa Eastep (1/10 of 10/864) Cynthia Williams (1/10 of 10/864) John Mahier (1/10 of 10/864) Elizabeth Gowdy (1/10 of 10/864) The Thomas J. Manthey Disclaimer Trust F/8/O Virginia P Manthey (1/2 of 864) John Jacob Spencer Jr. (10/4032) Charlotte Spencer Miller (10/4032) Florence Spencer Schmidt (10/4032) Helen Spencer Morley (10/4032) Rexford A. Emery (10/4032) Jane M. Spencer and Norman Miller Spencer Jr. (5/4032) Jorman Miller Spencer Jr. (5/4032) Jean Thomas Johnson, as Trustee of the Second Amended and Restated Jean Thomas Johnson Tamily Trust (U/D/T/D/10-8-1992), executed February 15, 2010 (5/576) Margaret T. Fleischmann (15/864) State of Minnesota (remainder)"	0.314
610-0011-04650 35	61	12	That part of the NW¼ of NW¼, Section 35 Township 61 North Range 12 West; lying E¹y and SE¹y of a line drawn parallel with and distant 200 feet W¹y and NW¹y of the first following described line and E¹y, SE¹y and S¹y of the second following described line: First Described Line: Commencing at the East quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the East line of said Section 9 having a bearing of S 03 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection, a distance of 426.67 feet to the point of beginning of the line to be described ; thence NE¹y along a non-tangential curve concave to the East, having a radius of 2252.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 59 minutes 36 seconds E a distance of 426.28 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 1227.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence NE¹y along a tangential curve concave to the NW, having a radius of 3780.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 1268.30 feet to the point of tangency; thence N 04 degrees 21 minutes 02 seconds E, a distance of 224.11 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 3266.16 feet, central angle of 49 degrees 14 minutes 53 seconds, a distance of 2463.86 feet to the point of tangency; thence N 53 degrees 35 minutes 54 seconds E, a distance of 684.36 feet; thence NE¹y along a tangential curve concave to the SE, having a radius of 910.15 feet, central angle of 04 degrees 00 minutes 27 seconds a distance of 63.66 feet to the point of tangency; thence N 57 degrees 36 minutes 21 seconds E a distance of 1	CLIFFS ERIE LLC	STATE OF MINNESOTA		5.956

3-1 Tax Parcel Number Parcel ID		Township	Range	Legal Description	Surface Owner	Majority Mineral Ownership	Minor Mineral Ownership	Acres
610-0011-04655	35	61	12	"That part of the NW1/4 OF NW1/4 lying westerly and northwesterly of a line drawn parallel with and distant 200 feet westerly and northwesterly of the first following described line: First Described Line: Commencing at the east quarter corner of Section 9 Township 60 North Range 12 West; thence S 71 degrees 44 minutes 20 seconds W, bearing based on the east line of said Section 9 having a bearing of S0 degrees 27 minutes 19 seconds E, St. Louis County Transverse Mercator 1996 projection , a distance of 426.67 feet to the point of beginning of the line to be described; thence northeasterly along a non-tangential curve concave to the east, having a radius of 2925.20 feet, central angle of 46 degrees 35 minutes 13 seconds, the tangent of said curve at this point bears N 22 degrees 35 minutes 37 seconds W a distance of 2378.47 feet to the point of tangency; thence N 23 degrees 50 minutes 36 seconds E a distance of 426.28 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 1217.20 feet, central angle of 13 degrees 13 minutes 05 seconds, a distance of 280.81 feet to the point of tangency; thence N 37 degrees 12 minutes 41 seconds E, a distance of 1001.36 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 378.62 feet, central angle of 32 degrees 51 minutes 39 seconds, a distance of 2463.80 feet to the point of tangency; thence N 30 degrees 21 minutes 02 seconds E, a distance of 244.11 feet; thence northeasterly along a tangential curve concave to the northwest, having a radius of 380 degrees 10 minutes 37 seconds, a distance of 2463.86 feet to the point of tangency; thence N 54 degrees 35 minutes 04 degrees 30 minutes 37 seconds, a distance of 2463.86 feet to the point of tangency; thence N 54 degrees 35 minutes 34 seconds E, a distance of 664.36 feet; thence northeasterly along a tangential curve concave to the southeast, having a radius of 910.15 feet, central angle of 90 degrees 20 minutes 27 seconds, a distance of 20.86 feet	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		13.58
040 0044 04700		64	40	0544 05 0544				1.00
610-0011-04760 610-0011-04760	36 36	61 61	12 12	SE1/4 OF SE1/4 SW1/4 OF SE1/4	STATE OF MINNESOTA STATE OF MINNESOTA	STATE OF MINNESOTA STATE OF MINNESOTA		1.98
610-0011-04800	36	61	12	NE1/4 OF NW1/4 TO THE WEST OF THE NORMAL HIGH WATER MARK OF BIRCH LAKE	RENDFIELD LAND CO INC	STATE OF MINNESOTA	1	0.77
610-0011-04810	36	61	12	be described and 300.00 feet NWTy of and 300.00 SETy of, measured at right angles to and parallel with ""Line B"" to be described, ""Line A"" and ""Line B"" are described as follows; ""Line A"" commencing at the NW corner of said Section 36; thence S 88 degrees 33 minutes 39 seconds E along the N line of said NW1/4 of NW1/4, a distance of 334.90 feet; thence ETy a distance of 22.42 feet along a non-tangential curve concave to the N, having a radius of 333.00 feet, a central angle of 03 degrees 51 minutes 28 seconds, and a chord bearing S 89 degrees 30 minutes 26 seconds E; thence ETy a distance of 257.22 feet along a reverse curve concave to the S, having a radius of 484.00 feet, and a central angle of 30 degrees 50 minutes 15 seconds; thence C sol 3 degrees 48 minutes 53 seconds E; thence ETy a distance of 491.25 feet along the same curve having a radius of 484.00 feet, a central angle of 58 degrees 09 minutes 15 seconds; thence S 03 degrees 48 minutes 53 seconds E; a distance of 919.86 feet to the S line of said NW1/4 of NW1/4 and said "Line A"" there terminating. "Line B"" commencing at the NW corner of said Section 36; thence S 88 degrees 33 minutes 39 seconds E along the N line of said Section 36, a distance of 334.90 feet to the beginning of the line to be described; thence C 344 section 36, Township 61 North, Range 12 West, Nang 01.000 Sel'y of, measured at right angles to and parallel with a line described as follows: Commencing at the NW corner of said Section 36; thence S 88 degrees 59 minutes 39 seconds E along the N line of said Section 36, a distance of 334.90 feet to the beginning of the line to be described; thence C TING That part of SW1/4 of NW1/4 to NW1/4 A SW1/4 A NW1/4 A NW1/4 LAND FURTHER EXCEPTING That part of SW1/4 of NW1/4 SC NW1/4 A SW1/4 A SW	RENDFIELD LAND CO INC	STATE OF MINNESOTA		19.39
610-0011-04811	36	61	12	"Those parts of NW1/4 of NW1/4, Section 36, Township 61 North, Range 12 West, lying Wly of ""Line A"" to be described and 300.00 feet NWly of and 300.00 SE'ly of, measured at right angles to and parallel with ""Line B"" to be described. ""Line A"" and ""Line B"" are described as follows; ""Line A"" Commencing at the NW corner of said Section 36; thence S 88 degrees 33 minutes 39 seconds E along the N line of said NW1/4 of NV1/4, a distance of 334.90 feet; thence E'ly a distance of 22.42 feet along a non-trangential curve concave to the N. having a radius of 330.00 feet, a central angle of 03 degrees 51 minutes 28 seconds, and a chord bearing S 89 degrees 30 minutes 36 seconds E; thence E'ly a distance of 257.22 feet along a neverse curve concave to the S, having a radius of 484.00 feet, and a central angle of 30 degrees 26 minutes 59 seconds to the beginning of the line to be described; thence continuing E'ly a distance of 491.25 feet along the saidus of 434.00 feet, and a S degrees 09 minutes 15 seconds; thence S 03 degrees 48 minutes 53 seconds E, a distance of 919.86 feet to the S line of said NW1/4 of NW1/4 and said ""Line A"" there terminating. "Line B"" Commencing at the NW corner of said Section 36; thence S 18 degrees 33 minutes 39 seconds E along the N line of said Section 36; distance of 334.90 feet to the beginning of the line to be described; thence contaid angle of 38 degrees 09 minutes 15 seconds; thence S 03 degrees 48 minutes 53 seconds E, a distance of 919.86 feet to the S line of said NW1/4 of NW1/4 and said ""Line A"" there terminating. "Line B"" Commencing at the NW corner of said 300.00 foot wide strips terminates 50 seconds W, a distance of 1325.94 feet and said ""Line B"" there terminating. The side lines of said 300.00 foot wide strips terminate on the N and W lines of said NW1/4 of NW1/4."	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		10.9
610-0011-04821	36	61	12	That part of SW1/4 of NW1/4 Section 36, Township 61 North, Range 12 West, lying 300.00 SE'ly of, measured at right angles to and parallel with a line described as follows: Commencing at the NW corner of said Section 36; thence S 88 degrees 33 minutes 39 seconds E along the N line of said Section 36, a distance of 334.90 feet to the beginning of the line to be described; thence S 14 degrees 59 minutes 50 seconds W, a distance of 1895.30 and said line there terminating. The said line of said 300.00 foot wide strip terminates on the N and W lines of said SW1/4 of NW1/4.	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		31.1
610-0011-04840	36	61	12	NE 1/4 OF SW 1/4	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		15.51
610-0011-04850	36	61	12	NW 1/4 OF SW 1/4	FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA		28.8
	36	61	12	SW 1/4 OF SW 1/4	FRANCONIA MINERALS (US) LLC FRANCONIA MINERALS (US) LLC	STATE OF MINNESOTA STATE OF MINNESOTA	Į	0.78
610-0011-04860 610-0011-04870	36	61	12	SE 1/4 OF SW 1/4				

 $\label{eq:second} \begin{array}{l} \text{DESC} = \text{described} \\ \text{E} = \text{east} \\ \text{EX} = \text{exempt} \\ \text{EXCL} = \text{excluding} \\ \text{FT} = \text{feet} \\ \text{GOVT} = \text{government} \\ \text{MV} = \text{Minnesota} \\ \text{N} = \text{north} \\ \text{NE} = \text{northeast} \\ \text{NO} = \text{number} \\ \text{NO} = \text{number} \\ \text{NW} = \text{northwest} \\ \text{S} = \text{south} \\ \text{SE} = \text{southeast} \\ \text{SLY} = \text{southerly} \\ \text{SW} = \text{southerly} \\ \text{SW} = \text{southerly} \\ \text{SW} = \text{southerly} \\ \text{UDI = undivided interest} \\ \text{UDI = undivided interest} \\ \text{USA} = \text{United States of America} \\ \text{W} = \text{west} \end{array}$

W = west W = westerly

 Table 3-2 Project Magnitude Surface Disturbance

Project Feature	Acres
Total Project	1156
Plant Site	153
Tailings Management Site	653
Transmission Corridor	187
Access Road	44
Water intake corridor	8
Ventilation raise sites and access road	15
Non-contact Water Diversion Area	97

Equipment	Fleet Count
Development Jumbo	5
Bolter	9
Powder Truck - Development	Cassette
Loader 18 t	8
Loader 14 t	15
Haul Truck 30 t	5
Haul Truck 40 t	14
Easer	1
Uphold Production Drill	1
In-the-Hole Drill	4
Powder Truck - Production	Cassette
Utility Cassette Carrier	5
Maximum Fleet Count	68

Table 3-3 Primary Mining Equipment

Abbreviations:

t = ton

Table 3-4 Surface Mobile Equipment at Plant Site

Equipment	Number of Units
Tool Handler	1
Bobcat	1
Pick-up Truck	11
Boom Truck	1
Front-end Loader	1
Electrician Vehicle	1
30 t Mobile Crane	1
Grader	1
Water Tanker	1
Vibratory Packer	1
Ambulance	1
Fire Truck	1
Abbreviations:	

t = ton

Equipment	Stage 1	Stage 2	Stage 3
60 Ton Trucks	10	11	12
Front End Wheel Loader	3	3	3
Vibratory Roller Compactors	3	3	3
Dry Stack Facility Dozers	3	3	3
Graders	2	2	2
Water Trucks	3	3	3
Bob Cat	2	2	2
Fork Lift	2	2	2
Flat Bed Truck	2	2	2
Pickup Truck	5	5	5

Table 3-5 Surface Mobile Equipment at Tailings Management Site

Table 3-6 E	Building	Square	Footages
-------------	----------	--------	----------

Property	Building Type	Commercial Building Area (sq ft)	Industrial Building Area (sq ft)	Building Height (ft)	Notes
Plant Site					
Concentrator Building	Pre-Engineered	Inclusive of All Building Areas Below			Buildings are all attached
Grinding Mill Area	Pre-Engineered	0	35000	66	Part of Main Building
Flotation and Dewatering Area	Pre-Engineered	0	67000	66	Part of Main Building
Concentrate Storage and Loadout Area	Pre-Engineered	0	16000	38	Lean-to off building
Reagent Makeup Area	Pre-Engineered	0	7800	44	Lean-to off building
Air Services Area	Pre-Engineered	0	6900	44	Lean-to off building
Coarse Ore Stockpiling Building	Geodesic Dome	0	35000	94	Dome
Mine Services Building	Pre-Engineered	15000	38000	39	2 stories for a portion of the building
Concentrator Services Building	Pre-Engineered	11000	17000	26	2 stories for a portion of the building
Reagent Storage	Fabric Building	0	7000	26	
Ball Storage Bunker	Fabric Building	0	3600	26	
Security Building / Gatehouse	Modular Building	0	340	10	
Water Intake Facility Building	Modular Building	0	320	15	
Tire Wash Building	Modular Building	0	3600	26	
Tailings Management Site					
Tailings Filter Plant	Pre-Engineered	0	42000	115	
Backfill Plant	Pre-Engineered	0	5400	31	
Filter Cake Storage and Loadout Building	Pre-Engineered		47500	59	
Off Site	· · · · ·				
Administration Building (Babbitt)	Pre-Engineered	7800		16	

Abbreviations:

ft = feet

sq ft = square feet

Project area					
Title	Before	After ²	Title	Before	After ²
Wetlands	2695.2	2309.0	Lawn/landscaping	0.0	0.0
Deep water/streams	63.6	55.7	Impervious surface	45.1	84.1
Wooded/forest	3479.8	2995.3	Stormwater Pond	0.0	0.0
Brush/Grassland	3.3	842.9	Other (describe)	0.0	0.0
Cropland	1.4	1.4			
			TOTAL	6288.4	6288.4
Project					
Title	Before	After ²	Title	Before	After ²
Wetlands	431.2	45.0	Lawn/landscaping	0.0	0.0
Deep water/streams	8.2	0.3	Impervious surface	4.6	43.6
Wooded/forest	711.0	226.5	Stormwater Pond	0.0	0.0
Brush/Grassland	0.4	840.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0			
·			TOTAL	1155.4	1155.4
Plant site					
Title	Before	After	Title	Before	After
Wetlands	48.5	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	0.4	0.0	Impervious surface	0.0	0.0
Wooded/forest	103.8	152.9	Stormwater Pond	0.0	0.0
Brush/Grassland	0.2	0.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0			
			TOTAL	152.9	152.9
TMS					
Title	Before	After	Title	Before	After
Wetlands	275.4	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	5.3	0.0	Impervious surface	1.3	0.0
Wooded/forest	370.9	0.0	Stormwater Pond	0.0	0.0
Brush/Grassland	0.2	653.1	Other (describe)	0.0	0.0
Cropland	0.0	0.0			
			TOTAL	653.1	653.1
Access road					
Title	Before	After	Title	Before	After
Wetlands	12.9	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	0.0	0.0	Impervious surface	0.0	43.6
Wooded/forest	30.7	0.0	Stormwater Pond	0.0	0.0
Brush/Grassland	0.0	0.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0		10.0	
— · · · · ·	_		TOTAL	43.6	43.6
Transmission corridor	D.(A (1		D.(
Title	Before	After	Title	Before	After
Wetlands	37.0	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	2.2	0.0	Impervious surface	3.3	0.0
Wooded/forest	144.4	0.0	Stormwater Pond	0.0	0.0
Brush/Grassland	0.0	186.9	Other (describe)	0.0	0.0
Cropland	0.0	0.0	ΤΟΤΑΙ	196.0	106.0
			TOTAL	186.9	186.9

Table 3-7 Land Cover¹

Table 3-7 Land Cover¹

Water intake corridor / facility					
	Before	After	Title	Before	After
Wetlands	3.2	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	0.0	0.0	Impervious surface	0.0	0.0
Wooded/forest	4.2	7.4	Stormwater Pond	0.0	0.0
Brush/Grassland	0.0	0.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0			
·			TOTAL	7.4	7.4
Ventilation raise sites and acce	ss road				
Title	Before	After	Title	Before	After
Wetlands	9.2	0.0	Lawn/landscaping	0.0	0.0
Deep water/streams	0.0	0.0	Impervious surface	0.0	0.0
Wooded/forest	5.7	14.9	Stormwater Pond	0.0	0.0
Brush/Grassland	0.0	0.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0			
			TOTAL	14.9	14.9
Non-contact water diversion are	ea				
Title	Before	After	Title	Before	After
Wetlands	45.0	45.0	Lawn/landscaping	0.0	0.0
Deep water/streams	0.3	0.3	Impervious surface	0.0	0.0
Wooded/forest	51.3	51.3	Stormwater Pond	0.0	0.0
Brush/Grassland	0.0	0.0	Other (describe)	0.0	0.0
Cropland	0.0	0.0			_
			TOTAL	96.6	96.6

Notes

¹ Land cover was calculated using the USGS GAP/LANDFIRE Data. Wetlands identified in the GAP data may not match with wetlands identified in the NWI survey.

² Acreages calculated based on planned post-closure usage and reclamation types, outlined in the Project Reclamation Plan.

Table 3-8 Permits and Approvals	Dormit/A na vovel	Status
Agency or Organization	Permit/Approval	Status
	Federal Government	
Bureau of Land Management	Federal Preference Right Leases	Pending
Bureau of Land Management	Mine Plan of Operations	Pending
U.S. Forest Service	Road Use Permit	To be applied for, if needed
U.S. Forest Service	Special Use Permit	To be applied for
Bureau of Land Management/U.S. Forest	Section 106 of the National Historic Preservation Act	Consultation will occur with Tribal Historic Preservation Officer/State Historic Preservation
Service/U.S. Army Corps of Engineers	Consultation	Office, as appropriate
		Consultation will occur with U.S. Fish and Wildlife
U.S. Fish and Wildlife Service	Section 7 Endangered Species Act Compliance	Service, as appropriate, to comply with
U.S. FISH and Wildlife Service	Section 7 Endangered Species Act Compliance	Endangered Species Act.
U.S. Army Corps of Engineers	Section 404 Dredge and Fill Permit	To be applied for, if needed
U.S. Environmental Protection Agency	Type V Underground Injection Control	To be applied for, if needed
	State Government	
Minnesota Department of Natural Resources	Permit to Mine	To be applied for
Minnesota Department of Natural Resources	Minnesota Wetlands Conservation Act	To be applied for
Minnesota Department of Natural Resources	Easement Across State-Owned Land Managed by the	To be applied for, if needed
Mininesola Department of Natural Resources	Minnesota Department of Natural Resources	To be applied for, if fielded
Minnesota Department of Natural Resources	License to Cross Public Lands and Waters	To be applied for
Minnesota Department of Natural Resources	Water Appropriation Permit	To be applied for
Mininesola Department of Natural Resources	Permit for Work in Public Waters (water intake and	
Minnesota Department of Natural Resources	outfall)	To be applied for, if needed
Minnesota Department of Natural Resources	Burning - Burning Permit	To be applied for
Minnesota Department of Natural Resources	Lease or Land Exchange to use State Surface	To be applied for
Mininesola Department of Natural Nesources	Take of Endangered or Threatened Species Incidental to	
Minnesota Department of Natural Resources	a Development Project	To be applied for, if needed
Minnesota Department of Health	Drinking Water - Noncommunity/Nontransient Public	To be applied for, if needed
	Water Supply System	To be applied for, if fleeded
Minnagata Doportmont of Health	Hazardous Materials - Radioactive Material License (for	To be applied for, if needed
Minnesota Department of Health	measuring equipment)	To be applied for, if needed
Minnesota Pollution Control Agency	Synthetic Minor Air Emissions Permit	To be applied for
Minnesota Pollution Control Agency	Hazardous Waste Generator Notification/License	To be applied for, if needed
Minnesota Pollution Control Agency	Hazardous Waste Treatment, Storage or Disposal Facility Permit	To be applied for, if needed
	Fernin	
Minnesota Pollution Control Agency	National Pollution Discharge Elimination System / State	To be applied for
Mininesola i oliulion control Agency	Disposal System - Construction Stormwater Permit	To be applied for
Minnesota Pollution Control Agency	National Pollution Discharge Elimination System / State	To be applied for
Mininesola i oliulion control Agency	Disposal System - Industrial Stormwater Permit	To be applied for
Minnesota Pollution Control Agency	Tanks - General Storage Tank Registration	To be applied for
Minnesota Pollution Control Agency	401 Water Quality Certification	To be applied for
	-or water edulity certification	
	Local Government	
Lake County Planning and Zoning	Conditional Use - Conditional Use Permit	To be applied for, if needed
Lake County Highway Department	Access Road/Driveway - Access Driveway Permit	To be applied for, if needed
St. Louis County Planning and Community Development	Landscape Alteration - Land Alteration Permit	To be applied for, if needed
St. Louis County Planning and Community	Entrance Permit (Driveway Access)	To be applied for, if needed
Development	, , ,	
St. Louis County Planning and Community	Conditional Use - Conditional Use Permit	To be applied for, if needed
Development St. Louis County Environmental Service	Building Construction - Building Permit	To be applied for, if needed
-		
City of Babbitt Zoning Office	Sign Permit - Sign Permit	To be applied for, if needed

Table 5-1 Natural Resources Conservation Service Map Unit Descriptions

NRCS Map Unit	Unit Name	Acres Within the Project Area ¹	Hydric Soil	Geomorphic Description	Drainage Characteristics	Susceptibility to Frost Heaving	Susceptibility to Corrosion - Concrete	Susceptibility to Corrosion - Steel
1003B	Udorthents, loamy (cut and fill land)	6	No	fills on moraines, beveled cuts on moraines	Well drained	Low	Not defined	Not defined
1020A	Bowstring and Fluvaquents, loamy, 0 to 2 percent slopes, frequently flooded	26	Yes	flats on flood plains	Very poorly drained	High	Low	High
1021A	Rifle soils, 0 to 1 percent slopes	82	Yes	swamps on end moraines, swamps on outwash plains, swamps on till plains	Very poorly drained	High	High	High
1022A	Greenwood soils, 0 to 1 percent slopes	21	Yes	bogs on end moraines, bogs on outwash plains, bogs on till plains	Very poorly drained	High	High	High
F10D	Cloquet-Pequaywan complex, 0 to 18 percent slopes, pitted	24	No	pitted outwash plains	Well drained	Low	High	High
F10E	Cloquet-Pequaywan complex, 0 to 45 percent slopes, pitted	59	No	pitted outwash plains	Well drained	Low	High	High
F166A	Aquepts, rubbly-Tacoosh-Rifle complex, 0 to 2 percent slopes	3	Yes	drainageways on moraines	Very poorly drained	High	Moderate	High
F19A	Pequaywan loam, 0 to 3 percent slopes	12	No	rises on outwash plains, flats on outwash plains	Moderately well drained	Moderate	High	Moderate
F21D	Quetico, stony-Rock outcrop complex, 15 to 35 percent slopes	11	No	moraines	Well drained	Low	High	Moderate
F22F	Eveleth-Conic complex, 20 to 50 percent slopes, very bouldery	2	No	moraines	Well drained	Moderate	High	Moderate
F23B	Rollins-Biwabik complex, 1 to 8 percent slopes, very rocky	20	No	moraines	Somewhat excessively drained	Low	High	Moderate
F25D	Rollins-Cloquet complex, 8 to 18 percent slopes	484	No	pitted outwash plains	Somewhat excessively drained	Low	High	Moderate
F29E	Shagawa, extremely stony-Beargrease, extremely stony-Tacoosh complex, 0 to 35 percent slopes	164	No	end moraines	Well drained	Low	High	Moderate
F2B	Eaglesnest-Wahlsten complex, 2 to 8 percent slopes, bouldery	342	No	moraines	Moderately well drained	Moderate	High	Moderate
F35D	Eveleth, bouldery-Conic, bouldery-Aquepts, rubbly, complex, 0 to 18 percent slopes	73	No	moraines	Well drained	Moderate	High	Moderate
F3D	Eveleth-Eagelsnest-Conic complex, bouldery, 6 to 18 percent slopes, very rocky	23	No	moraines on till plains	Well drained	Moderate	High	Moderate
F40D	Rollins cobbly sandy loam, 8 to 18 percent slopes	10	No	kames, outwash plains	Somewhat excessively drained	Low	High	Moderate
F4E	Eveleth-Conic, bouldery-Rock outcrop complex, 18 to 30 percent slopes	25	No	moraines	Well drained	Moderate	High	Moderate

Table 5-1 Natural Resources Conservation Service Map Unit Descriptions

NRCS Map Unit	Unit Name	Acres Within the Project Area ¹	Hydric Soil	Geomorphic Description	Drainage Characteristics	Susceptibility to Frost Heaving	Susceptibility to Corrosion - Concrete	Susceptibility to Corrosion - Steel
F5B	Babbitt, bouldery-Wahlsten, bouldery-Aquepts, rubbly, complex, 0 to 8 percent slopes, rocky	8	No	till plains on moraines	Somewhat poorly drained	High	High	High
F8D	Biwabik-Graycalm-Friendship complex, 0 to 18 percent slopes, pitted	22	No	pitted outwash plains	Excessively drained	Low	High	Moderate
F9B	Cloquet loam, 2 to 8 percent slopes	33	No	outwash plains	Well drained	Low	High	High
I2a10C	Quetico, bouldery-Insula, bouldery-Rock outcrop complex, 3 to 18 percent slopes	305	No	moraines on till plains	Moderately well drained	Moderate	High	High
I2a10D	Quetico, stony-Rock outcrop complex, 15 to 35 percent slopes	67	No	moraines	Well drained	Low	High	Moderate
l2a23G	Conic, very bouldery-Insula, very bouldery- Rock outcrop complex, 20 to 70 percent slopes	83	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
I2a31D	Eveleth-Eagelsnest-Conic complex, bouldery, 6 to 18 percent slopes, very rocky	158	No	moraines on till plains	Well drained	Moderate	High	Moderate
I2b19A	Babbitt, bouldery-Aquepts, rubbly complex, 0 to 3 percent slopes	401	No	rises on moraines	Somewhat poorly drained	Moderate	High	High
I2b20B	Babbitt, bouldery-Wahlsten, bouldery-Aquepts, rubbly, complex, 0 to 8 percent slopes, rocky	137	No	till plains on moraines	Somewhat poorly drained	High	High	High
I2b21D	Eveleth, bouldery-Conic, bouldery-Aquepts, rubbly complex, 0 to 18 percent slopes, very rocky	2106	No	moraines	Well drained	Moderate	High	Moderate
I3-11A	Aquepts, rubbly-Tacoosh-Rifle complex, 0 to 2 percent slopes	203	Yes	drainageways on moraines	Very poorly drained	High	Moderate	High
J1a40A	Greenwood soils, dense substratum, 0 to 1 percent slopes	1151	Yes	bogs on moraines	Very poorly drained	High	High	High
J2-40A	Cathro muck, depressional, dense substratum, 0 to 1 percent slopes	39	Yes	depressions on moraines	Very poorly drained	High	High	High
K1-10	Pits, gravel-Udipsamments complex	7	Undefined	Undefined	Undefined	Undefined	Undefined	Undefined
K2-10A	Bowstring and Fluvaquents soils, 0 to 2 percent slopes, frequently flooded	166	Yes	flats on flood plains	Very poorly drained	High	Moderate	High

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets

Table 5-2 Ecological Land Type Map Unit Descriptions

Ecological Landtype Unit	Landtype Phase	Acres Within the Project Area ¹
1	Poorly drained, loamy soils, greater than 40 inches deep, surface coarse fragment content ranges from 25 to 90 percent in drainways and depressions.	291
4	Poorly and very poorly drained fibrist greater than 60 inches deep, occurring in depressions and former lake beds.	458
5	Well drained, 2.5 yellow-red to 10 yellow-red, sandy loam or loam 8 inches deep over bedrock, occurring on ridge top and upper slope positions. Bedrock out-cropping can range from 5-50 percent.	390
7	Somewhat poorly drained, 10 yellow-red or 2.5 yellow-red, sandy loam, loam and/or silt loam greater than 40 inches deep, occurring in drainways, lower concave slopes, and in a transitional position between well drained and poorly drained sites. Coarse fragment content can range to 35 percent.	111
10	Moderately well or well drained, 10 yellow-red to 2.5 yellow sandy loam and/or loam greater than 40 inches deep, occurring on ridge positions. Clay content is less than 18 percent. B horizons are 10 yellow-red.	68
14	Well drained 7.5 yellow-red or 10 yellow-red sandy loam and loamy sand, greater than 50 percent fine sand, less than 20 inches deep over 10 yellow-red, gravelly coarse sand greater than 40 inches deep, with greater than 35 percent coarse fragments. Landscape position is upper elevation in outwash plain. Sand size includes fine through very coarse.	296
18	Well drained, 5 yellow-red to 10 yellow-red, sandy loam and/or loam, 20 to 40 inches deep over bedrock, occurs on bedrock controlled ridges.	1642
21	Well drained, 10 yellow-red to 2.5 yellow-red, sandy loam or loam 8 to 20 inches deep over bedrock, 7.5 yellow-red B horizons are common. Controlled ridge tops and upper slopes	1076
24	Poorly drained, hemist greater than 53 inches deep, occurring in depressions and former lake beds.	816
28	Well drained 10 yellow-red loamy sand or loamy fine sand less than 12 inches deep with over 2.5 yellow-red to 2.5 yellow sand greater than 40 inches deep occurring upper elevation positions on outwash or lacustrine plains. Sand in size includes fine through very coarse. Gravel content is less than 35 percent.	30
30	Well drained, 7.5 yellow-red or 5 yellow-red, fine sandy loam, 16 to 24 inches deep over 10 yellow-red, very gravelly sandy loam or very gravelly loamy sand, greater than 40 inches deep and occurring on ridges. A discontinuous fragipan can occur at 16-24 inches. Coarse fragment content of the C horizon ranges from 35 to 50 percent.	267
32	Poorly drained, organic material 18 to 53 inches deep over mineral soils occurring in drainways and depressions.	51
46	Moderately well drained 5 yellow-red to 10 yellow-red sandy loam or loamy sand less than 20 inches deep over gravelly sand. Water table and/or mottling within 60 inches. Coarse fragment content is variable. Landscape position lower elevation concave areas in an outwash glacial drainages and terraces.	1
47	Poorly drained, 10 yellow-red or 2.5 yellow-red, sandy loam, loam, clay loam, and/or silt loam greater than 40 inches deep, occurs in drainways and depressions. Histic epipedons can occur. Surface coarse fragment content is less than 25 percent.	194
89	Water (lake or river), intermittent water body	39
99 Site Units	Gravel pit, landfill, or quarry Site Descriptions	7
BR	Bedrock	
GP	Gravel Pit	
INT	Intermittent Water Body	
LF NM	Landfill Not Mapped	
Q	Quarry	
W	Water	
Slope Qualifiers	Slope Descriptions	
	Less than 6 percent	
No symbol	0 to 6 porcept	
Â	0 to 6 percent 7 to 18 percent	
	0 to 6 percent 7 to 18 percent 19 to 35 percent	

Notes:

¹Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets.

Table 6-1 Project Component Watersheds

	Project Area ¹	Underground Mine Area	Plant Site	Tailings Management Site	Transmission Corridor	Non-Contact Water Diversion Area	Water Intake Corridor	Ventilation Raises and Ventilation Access Road	Access Road
Minnesota Department of Natural Reso	ources Minor Waters	hed (acres)							
South Kawishiwi River	3926.2	1735.5	152.9	121.4	111.0	62.3	7.5	14.9	43.6
Keeley Creek	1274.7			532.0	9.5	34.3			
Filson Creek	327.7	125.9							
unknown	317.6	125.1							
Stony River	260.4				38.9				
Denley Creek	180.6				27.6				
U.S. Geological Survey HUC12 (acres)									
Birch Lake	5200.9	1735.5	152.9	653.4	120.5	96.6	7.5	14.9	43.6
South Kawishiwi River	645.3	251.0							
Outlet Stony River	260.4				38.9				
Denley Creek	180.6				27.6				
Notos:									

Notes:

¹ Acreages for the Project area shown on Figure 6-1.

Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets.

Table 6-2 Public Water Basins within 1 Mile of the Project Area

County	Public Water Identification #	Public Waters Name	Section	Township	Range
Lake	38-774P	Unnamed	31	61	11
Lake	38-775P	Unnamed	31	61	11
St. Louis/Lake	69-3P	Birch Lake	Various	60; 61	11; 12; 13

Table 6-3 Public Watercourses within 1 Mile of the Project Area

County	Name
Lake	South Fork Kawishiwi River
Lake	Keeley Creek
Lake	Denley Creek
Lake	Stony River
St. Louis	Dunka River

Table 6-4 Surface Water Monitoring Locations

Station Identification	TMM Stations Currently Being Monitored	tations urrently Being Drainage Area (square miles) Years of Flow Data Years of Water Quality Data Data		Years of Stream Morphology Assessment	Years of Stage Elevation Data	Location Description	
Twin Metals Minnesota LLC Controlled Sta	ations						
DMSW1		9.8	2008-2009	2008-2013	not collected	not collected	Filson Creek on County Highway 16
DMSW2		690.2	not collected	2008-2013	not collected	not collected	South Kawishiwi River upstream of the confluence with Filson Creek
DMSW3	х	2.7	2008-2013, 2017-current	2008-2013, 2017-current	not collected	2017-2018	North Nokomis Creek (Kittle Number: H-001-092-017.4)
DMSW4	Х	54.5	not collected	2008-2015, 2017-current	not collected	not collected	Dunka River
DMSW5		2.9	2008-2013	2008-2013	not collected	not collected	Unnamed Creek near Bob Bay
DMSW6		10.4	2008-2010	2008-2010	not collected not collected		Unnamed Creek, tributary to the Dunka River, at County Road 623
DMSW7		43.2	not collected	2008-2013	not collected	not collected	Dunka River upstream at Forest Road 424
DMSW8		208.2	2014-2016	2008-2013	not collected	not collected	Stony River at Forest Road 424
DMSW9		37.1	not collected	2008-2013	not collected	not collected	Birch Lake reservoir west of Bob Bay
DMSW10		0.1	2008-2013	2008-2013	not collected	not collected	Flamingo Creek
DMSW11		111.6	not collected	2008-2013	not collected	not collected	Birch Lake reservoir north of Bob Bay
DMSW12	Х	1089.8	not collected	2008-current	not collected	not collected	At the Birch Lake reservoir outlet
DMSW13	Х	707.7	not collected	2008-current	not collected	not collected	South Kawishiwi River at Highway 1
DMSW14		1115.8	not collected	2009-2013	not collected	not collected	White Iron Lake resevoir
DMSW15	Х	10.6	not collected	2010-2013, 2017-current	not collected	not collected	Keeley Creek
DMSW16	Х	14.9	2014-current	2010-2013	not collected	not collected	Denley Creek
DMSW17	Х	236.2	not collected	2010-current	not collected	not collected	Stony River near its mouth to Birch Lake
DMSW18		3.0	not collected	2011-2013	not collected	not collected	Bob Bay
DMSW19		27.5	not collected	2012-2013	not collected	not collected	Birch River
DMSW20	Х	371.5	not collected	2012-2013, 2017-current	not collected	not collected	Birch Lake reservoir
DMSW21		68.0	not collected	2012-2013	not collected	not collected	Bear Island River
DMSW22		1149.3	not collected	2012-2013	not collected	not collected	Garden Lake reservoir
DMSW23		10.3	not collected	2012-2013	not collected	not collected	Filson Creek, downstream of DMSW1
DMSW24		2.3	2014-2016	2012-2016	not collected	not collected	Kangas Creek
DMSW25		1.4	not collected	2012-2013	not collected	not collected	Unnamed Creek
DMSW26		0.4	not collected	2012-2013	not collected	not collected	Unnamed Creek
DMSW27		0.9	2014-2016	2012-2016	not collected	not collected	Unnamed Creek at the north end of Birch Lake reservoir

Table 6-4 Surface Water Monitoring Locations

Station Identification	TMM Stations Currently Being Monitored	Drainage Area (square miles)	Years of Flow Data	Years of Water Quality Data	Years of Stream Morphology Assessment	Years of Stage Elevation Data	Location Description
FR-1		110.0	not collected	2007-2008	not collected	not collected	Birch Lake reservoir
FR-2		2.9	2007	2007-2008	not collected	not collected	Mouth of Unnamed Creek where it enters into Bob Bay
FR-3		3.0	not collected	2007-2008	not collected	not collected	Bob Bay
FR-4		371.5	not collected	2007	not collected	not collected	Birch Lake reservoir
FR-5		707.4	not collected	2007-2008	not collected	not collected	South Kawishiwi River
FR-6		1089.8	not collected	2007-2008	not collected	not collected	South Kawishiwi River
FR-7		354.9	not collected	2007-2008	not collected	not collected	Birch Lake reservoir
FR-8		3.1	not collected	2007-2008	not collected	not collected	Unnamed Stream
FR-9		0.1	not collected	2008	not collected	not collected	Unnamed Creek near Scott Road, Babbitt
FR-10		55.1	not collected	2008	not collected	not collected	Dunka River, 3000 feet upstream of Birch Lake reservoir
FR-11		1100.4	not collected	2008	not collected	not collected	White Iron Lake reservoir
FR-12		236.2	not collected	2008	not collected	not collected	Stony Creek at its mouth
FR-13		34.2	not collected	2008	not collected	not collected	Birch Lake reservoir north of Babbitt
FR-14		0.7	not collected	2008	not collected	not collected	Unnamed Creek, a tributary to the Stony River, near Forest Route 178
SW28	Х	0.2	not collected	2017-current	not collected	not collected	South Nokomis Creek (Kittle Number: H-001-092-017.2)
SW29	х	0.4	2017-current	not collected	not collected	2017-2018	South Nokomis Creek (Kittle Number: H-001-092-017.2) at the culvert
DMSM1		9.8	not collected	not collected	2008	not collected	Filson Creek on County Highway 16
DMSM3		2.5	not collected	not collected	2008	not collected	North Nokomis Creek (Kittle Number: H-001-092-017.4)
DMSM4		55.6	not collected	not collected	2008	not collected	Dunka River, close to its mouth
DMSM5		2.9	not collected	not collected	2008	not collected	Unnamed Creek near Bob Bay
DMSM10		0.2	not collected	not collected	2008	not collected	Flamingo Creek
DMSM21		0.2	not collected	not collected	2008	not collected	South Nokomis Creek (Kittle Number: H-001-092-017.2)
DMSM22		54.8	not collected	not collected	2008	not collected	Dunka River, upstream of Birch Lake reservoir
ernment Controlled Stations							
SD-001		43.8	not collected	2008-2013	not collected	not collected	Pit dewatering discharge into Dunka River
SD-005		0.1	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site east of Dunka Pit
SD-006		0.1	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site northeast of Dunka Pit

Table 6-4 Surface Water Monitoring Locations

Station Identification	Stations		Currently Drainage Area Years of Flow Data Years Being (square miles) Years of Flow Data Years		Years of Water Quality Data	Years of Stream Morphology Assessment	Years of Stage Elevation Data	Location Description
SD-007		0.1	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site east of Dunka Pit	
SD-008		1.2	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site east of Dunka Pit	
SD-009		1.1	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site east of Dunka Pit	
SW-001		2.8	not collected	2007-2013	not collected	not collected	Unnamed Creek close to Bob Bay	
WS-001		0.0	not collected	2007-2013	not collected	not collected	Seepage treatment monitoring site east of Dunka Pit	
WS-003		0.1	not collected	2007-2013	not collected	not collected	Seepage monitoring site east of Dunka Pit	
WS-004		1.1	not collected	2007-2013	not collected	not collected	Seepage monitoring site east of Dunka Pit	
WS-005		0.0	not collected	2007-2013	not collected	not collected	Seepage monitoring site east of Dunka Pit	
USGS 05125000 / MDNR 72065001		442	1951-1961, 1976-1978, 2003-current	not collected	not collected	1951-1961, 1976-1978, 2003-current	South Kawishiwi River upstream of Birch Lake reservoir	
USGS 05126210 / MDNR 72065002		837	1975-1978, 2003-current	not collected	not collected	1975-1978, 2003-current	South Kawishiwi River downstream of Birch Lake reservoir	
USGS 05126000 / MDNR 72047001		57	1951-1962, 1975-1980, 2011-current	not collected	not collected	1951-1962, 1975-1980, 2011-current	Dunka River	
USGS 05125550 / MDNR 72045001		211	1975-1980, 2014-current	not collected	not collected	1975-1980, 2014-current	Stony River	
USGS 05124990 / MDNR 72032001		10	1974-1985, 2009-current	not collected	not collected	1974-1985, 2009-current	Filson Creek	

Table 6-5 Stream Flow Summary

Station Name	General Station Location	General Station Location Data Summary Period		Average Flow (cfs)	Minimum Flow (cfs)	Maximum Flow (cfs)	
USGS 05125000 / MDNR 72065001	South Kawishiwi River upstream of Birch Lake reservoir	1951-1961, 1976-1978, 2003-2018	442	420	17	5,110	
USGS 05126210 / MDNR 72065002	South Kawishiwi River downstream of Birch Lake reservoir	1975-1978, 2003-2018	837	689	27	8,040	
USGS 05126000 / MDNR 72047001	Dunka River	1951-1962, 1975-1980, 2011-2018	57	39	0	828	
USGS 05125550 / MDNR 72045001	Stony River	1975-1980, 2014-2018	211	178	0	2,460	
USGS 05124990 / MDNR 72032001	Filson Creek	1974-1985, 2009-2018	10	7	0	324	
DMSW3	North Nokomis Creek (Kittle Number: H-001-092-017.4)	2008-2013, 2017-2018	2.79	3	0.4	9	
DMSW16	Denley Creek	2014-2018	15.12	12	2	31	
SW29	South Nokomis Creek (Kittle Number: H-001-092-017.2) at the culvert	2017-2018	0.46	0.4	0	1.5	

Notes:

Average, minimum, and maximum flow calculated using all data available as summarized under the data summary period column. **Abbreviations:**

cfs = cubic feet per second

mi² = square miles

Table 6-6 Base Flow Estimates from PART Analysis

Station Name	General Station Location	Drainage Area (mi ²)	Time Period	Mean Daily Streamflow (cfs)	Mean Daily Baseflow (cfs)
USGS 05125000 / MDNR 720650011	South Kawishiwi River upstream of Birch Lake reservoir	442.0	2014-2018	481.8	437.2
USGS 05126210 / MDNR 72065002	South Kawishiwi River downstream of Birch Lake reservoir	837.0	2014-2018	815.0	705.3
USGS 05126000 / MDNR 72047001 ²	Dunka River	57.0	2014-2018	41.5	35.4

Notes:

¹ Flow data was estimated for 12/27/2018 through 12/31/2018 to complete dataset for 2018. The 12/26/2018 flow rate was used for all of these dates.

² Flow data was estimated for 5/8/2018 using value from previous day. Flow data was estimated for 8/10/2018 to 8/13/2018 using flow data from 8/9/2018.

Abbreviations:

cfs = cubic feet per second

 mi^2 = square miles

Table 6-7 Average S	Surface Water Co	ncentrations from	Locations Measu	red in 2017 and 2018

Table 6-7 Average Surface Water Con	Location	DMSW12	DMSW20, 0 ft	DMSW20-mid	DMSW20-deep	DMSW4	DMSW17	DMSW13	DMSW3	DMSW15	SW28
Parameter	Units	Lake	Lake	Lake	Lake	River	River	River	Creek	Creek	Creek
General Parameters				•							
Alkalinity, Total as CaCO ₃	mg/L	25.2	26.1	27.5	26.8	49.6	26.0	20.7	3.0	10.3	21.5
Alkalinity, Bicarbonate (CaCO ₃)	mg/L	25.2	26.1	27.5	26.8	49.6	26.0	20.7	3.0	10.3	21.5
Carbon, dissolved organic	mg/L	17.6	20.9	21.0	21.0	25.9	25.8	14.8	42.9	32.3	11.7
Carbon, total organic	mg/L	17.6	20.8	20.8	20.7	26.2	26.0	15.1	46.0	32.6	12.2
Chemical Oxygen Demand	mg/L	48.5	57.2	60.5	60.9	78.4	74.6	39.0	126.9	99.2	35.9
Chloride	mg/L	1.7	2.5	2.5	2.4	8.3	1.4	1.0	7.6	4.1	0.7
Chlorophyll a, pheophytin-adjusted	μg/L	3.40	3.43	4.25	3.40	NM	NM	3.90	NM	NM	NM
Dissolved oxygen	mg/L	9.9	9.6	9.0	9.0	9.6	10.4	9.9	9.2	9.5	5.7
Fluoride	mg/L	0.079	0.073	0.073	0.071	0.082	0.073	0.085	0.041	0.026	0.041
Hardness, as $CaCO_3$	mg/L	31.7	35.6	36.0	35.3	62.9	33.3	24.6	19.3	19.6	21.5
Nitrogen, ammonia, as N	mg/L	0.055	0.063	0.060	0.065	0.122	0.081	0.056	0.172	0.606	0.074
Nitrogen, NO ₃ + NO ₂	mg/L	0.053	0.049	0.051	0.066	0.106	0.075	0.056	0.017	0.033	0.020
рН	S.U.	7.2	7.4	7.2	7.0	6.9	6.9	7.3	5.9	6.1	6.4
Phosphorus as P	mg/L	0.019	0.021	0.020	0.022	0.027	0.021	0.017	0.025	0.033	0.043
Redox (oxidation potential)	mV	181.9	153.8	155.5	177.6	141.4	106.2	153.0	205.0	153.9	164.1
Solids, total dissolved	mg/L	60.4	69.8	99.3	84.0	149.8	77.4	55.2	99.4	95.8	52.6
Solids, total suspended	mg/L	1.6	2.3	2.1	2.1	3.7	1.8	1.8	4.6	5.1	6.9
Specific Conductance	µS/cm@25 C	67.5	75.9	75.2	75.7	162.1	64.6	52.4	55.9	48.6	49.8
Sulfate, as SO ₄	mg/L	3.6	5.3	5.3	5.1	16.4	0.8	1.6	0.2	0.3	0.1
Temperature	deg C	14.7	15.8	15.6	15.3	13.6	17.2	15.4	10.4	13.1	14.3
Turbidity	NTU	1.5	1.1	1.1	2.3	2.9	2.2	2.1	2.2	3.2	3.1
Metals - Total											
Aluminum	μg/L	109.1	140.0	140.5	142.3	142.2	189.6	89.0	347.2	354.0	30.0
Antimony	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	μg/L	0.30	0.58	0.49	0.44	0.58	0.58	0.26	0.88	0.58	0.31
Barium	μg/L	5.1	6.3	6.2	6.2	8.1	5.1	4.0	8.1	7.0	11.7
Beryllium	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Boron	μg/L	5.5	13.5	13.8	7.9	76.2	2.9	2.6	1.0	1.2	1.2
Cadmium	µg/L	0.028	0.110	0.088	ND	0.026	ND	ND	0.034	ND	ND
Calcium	µg/L	6440	6900	6925	6850	11460	6160	5680	3348	3440	4100
Chromium	μg/L	0.29	0.27	0.24	0.25	0.23	0.46	0.26	1.10	0.88	0.21
Cobalt	µg/L	0.14	0.26	0.24	0.17	0.59	0.23	0.08	1.87	2.77	0.63
Copper	μg/L	1.5	1.5	1.5	1.5	1.2	1.3	1.9	1.0	1.5	1.1
Iron	μg/L	773	895	899	910	2574	1241	625	2768	2588	2968
Lead	μg/L	0.17	0.29	0.28	0.21	0.14	0.26	0.13	0.50	0.31	0.01
Magnesium	µg/L	3780	4450	4525	4425	8320	4320	2560	2642	2700	2740
Manganese	µg/L	34.1	36.8	38.1	40.0	216.1	66.9	28.0	110.1	202.2	148.4
Mercury	ng/L	3.10	3.78	3.56	3.70	5.74	5.04	2.86	4.17	6.05	1.26
Molybdenum	μg/L	0.15	0.24	0.24	0.24	0.98	0.12	0.08	0.04	0.01	0.01
Nickel	µg/L	1.6	2.4	2.3	2.2	1.7	1.1	1.0	3.9	3.9	2.6
Potassium	µg/L	308	405	400	318	1090	210	198	228	130	652

Table 6-7 Average Surface Water Concentrations from Locations Measured in 2017 and 2018

Units	Lake	Lake	Lake	Laba						
ua/l			Lake	Lake	River	River	River	Creek	Creek	Creek
µy/L	0.04	0.16	0.18	0.09	0.13	0.12	0.08	0.20	0.04	0.04
μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
μg/L	2040	2475	2500	2425	8660	1660	1620	4674	3240	1190
μg/L	26.8	33.3	33.7	32.2	81.7	19.8	21.2	15.8	16.3	25.6
µg/L	0.0013	0.0025	0.0023	0.0021	0.0016	0.0018	0.0011	0.0041	0.0039	0.0006
μg/L	2.37	1.88	2.15	1.85	4.06	7.68	1.30	4.80	3.78	1.96
	μg/L μg/L	μg/L ND μg/L 2040 μg/L 26.8 μg/L 0.0013	μg/L ND ND μg/L 2040 2475 μg/L 26.8 33.3 μg/L 0.0013 0.0025	μg/L ND ND ND μg/L 2040 2475 2500 μg/L 26.8 33.3 33.7 μg/L 0.0013 0.0025 0.0023	μg/L ND ND ND ND μg/L 2040 2475 2500 2425 μg/L 26.8 33.3 33.7 32.2 μg/L 0.0013 0.0025 0.0023 0.0021	μg/L ND ND ND ND ND μg/L 2040 2475 2500 2425 8660 μg/L 26.8 33.3 33.7 32.2 81.7 μg/L 0.0013 0.0025 0.0023 0.0021 0.0016	μg/L ND ND ND ND ND ND μg/L 2040 2475 2500 2425 8660 1660 μg/L 26.8 33.3 33.7 32.2 81.7 19.8 μg/L 0.0013 0.0025 0.0023 0.0021 0.0016 0.0018	μg/L ND ND	μg/L ND ND	μg/L ND ND

Notes:

Average concentrations of five sampling events in 2017 and 2018; DMSW20 averages only four sampling events because it was not sampled in May 2018.

DMSW20-mid, sampled at depths of 3 ft on 7/26/17, 8 ft on 10/16/17, and 8 ft on 8/13/18 and 10/12/18.

DMSW20-deep, sampled at depths of 6 ft on 7/26/17, 17.7 ft on 10/16/17, and 15 ft on 8/13/18 and 10/12/18.

Non-detects were set equal to 0 for average calculations presented in this table. This methodology will be reviewed and modified, as needed, during environmental reivew. ND is reported when all results for a particular parameter and location were non-detectable.

Decimal formatting is generally in alignment with laboratory analytical reporting.

Abbreviations:

µg/L = micrograms per liter

µS/cm@25 C = microsiemens/centimeter at 25 degrees Celsius

 $\deg C = \deg rees$ in Celsius

mg/L = milligrams per liter

mV = millivolts

ND = non-detectable

ng/L = nanograms per liter

NM = not measured

NTU = nepholometric turbidity units

s.u. = standard units

Table 6-8 Core Hydrogeophysical Studies (2008-2019)

Year	Field Investigation	Total No. of Locations Tested	Total No. of Tests Performed	Test Corehole/ Well Name	Quaternary (Q) or Bedrock (B)	Hydrostratigraphic Unit	No. of Tests Performed in Quaternary	No. of Tests Performed in Bedrock	Test Interval (ft bgs)	Comments
2008	Water levels, and short-term pumping	2	2	BL00-9B	В		0	1	WL to 75	Single well pumping tests were performed in boreholes
	tests in open exploration boreholes.			BL-062	В		0	1	WL to 85	which were cased through overburden material,
										with open boreholes across shallow through deep bedrock.
2008	Water levels, water quality field	9	9	MEX-1	В	B1, B2 and B4	0	1	WL to 3975	Single well pumping tests were performed in boreholes
	parameters, and short-term pumping			MEX-33	В	B1, B2 and B4	0	1	WL to 1835	which were cased through overburden material, with
	tests in open exploration boreholes.			MEX-35	В	B1, B2 and B4	0	1	WL to 2609	open boreholes across shallow through deep bedrock.
				MEX-50	В	B1, B2 and B4	0	1	WL to 3244	Bedrock hydraulic conductivity values over these long
				MEX-55	В	B1, B2 and B4	0	1	WL to 4193	test intervals were calculated to range from
				MEX-61	В	B1, B2 and B4	0	1	WL to 3721	1.1 x 10-7 cm/sec to 4.6 x 10-9 cm/sec.
				MEX-67	В	B1, B2 and B4	0	1	WL to 3478	
				MEX-107	В	B1, B2 and B4	0	1	WL to 3976	
				MEX-109	В	B1, B2 and B4	0	1	WL to 3600	
2012/2013	Water levels, slug tests, and packer	10	39	MEX-403	Q, B	Q2 ¹ ,B1, B2 and B4	1	3	9 to 1627	Borehole packer tests were performed, primarily in
	tests in open exploration boreholes.			MEX-0342	В	B1, B2, B4	0	2	WL to 45	bedrock. For test intervals less than 200 feet in total
				MEX-0349	В	B1, B2, B4	0	2	WL to 45	length, the hydraulic conductivities were observed to
				MEX-0384	В	B1, B2, B4	0	2	WL to 45	decrease with depth, ranging from 3.0 x 10-4 cm/sec in
				MEX-0395	В	B1, B2, B4	0	2	WL to 45	shallow bedrock to 1.6 x 10-6 cm/sec in deeper
				MEX-387	B	B1, B2, B4	0	7	19 to 1496	bedrock.
				MEX-397 MEX-346	BB	B1, B2, B4 B1, B2, B4	0	5	38.5 to 1348 213 to 1167	
				MEX-346 MEX-392	B	B1, B2, B4 B1, B2, B4	0	5	53.5 to 1187	
				MEX-402	B	B1, B2, B4 B1, B2, B4	0	3	300 to 1284	
2013	Water levels and slug tests in open	12	172	MEX-227	Q, B	Q2 ¹ ,B1, B2 and B4	0	18	8.5 to 4086	For test intervals less than 200 feet in total length, the
	exploration boreholes; 15-21 packer			MEX-244	Q, B		0	16	9.5 to 3748	hydraulic conductivities were observed to decrease
	tests/hole.			MEX-249	Q, B Q, B	Q2 ¹ ,B1, B2 and B4	0	13	8.5 to 1748	with depth, ranging from 2.6 x 10-4 cm/sec in
	lesis/hole.					Q2 ¹ ,B1, B2 and B4	-			
				MEX-257	Q, B	Q2 ¹ ,B1, B2 and B4	0	12	7 to 1457	quaternary/shallow bedrock to 4.3 x 10-6 cm/sec in
				MEX-313	В	B1, B2, B4	0	12	18.5 to 1229	deeper bedrock.
				MEX-319	Q, B	Q2 ¹ ,B1, B2 and B4	0	15	3.5 to 1328.5	
				MEX-321	Q, B	Q2 ¹ ,B1, B2 and B4	0	20	8.5 to 4586	
				MEX-323	В	B1, B2, B4	0	12	21.5 to 3909	
				BL10-2	В	B1, B2, B4	0	11	17.5 to 1655	
				BL10-4	Q, B	Q2 ¹ ,B1, B2 and B4	0	21	9 to 2892	
				BL 11-6	Q, B	Q2 ¹ ,B1, B2 and B4	0	20	8.5 to 3068	
				MEX-0110M	Q, B	Q2 ¹ ,B1, B2 and B4	0	2	WL to 1479	
2015	Water levels, downhole geophysics	2	21	VWP-MN-545	В	B1,B2	0	11	40 to 468	Hydraulic conductivities decrease with depth, from
	and packer tests.			VWP-MN-546	В	B1,B2	0	10.0	22 to 775	1.5 x 10-4 cm/sec in shallow bedrock to 1.8 x 10-8 cm/sec in intermediate bedrock.
2016	Geophysical logging and straddle-	4	33	MEX-0001	В	B1, B2, B4	0	8	235 to 3975	No evidence of increased hydraulic conductivity or
	packer testing of four open			MEX-0009	В	B1, B2, B4	0	8	68 to 2868	preferential groundwater flow associated with mapped
	exploration boreholes.			MEX-0011	В	B1, B2, B4	0	9	200 to 3148	structures. Hydraulic conductivities decrease with
				MEX-0286	В	B1, B2, B4	0	8	158 to 2568	depth, from 1.0 x 10-5 cm/sec in shallow bedrock to 1.0 x 10-7 cm/sec in deep bedrock.
2016	Slug tests and single-packer tests during the advancement of MEX-0496, near the confluence of the Kawishiwi River and Birch Lake, extending underneath Birch Lake.	1	8	MEX-0496	В	B1, B2 and B4	0	8	14.1 to 1252	The Duluth complex hanging wall, hanging-basal mineralized zon contact and basal mineralized zone-footwall contact are all characterized by low K values, 2 x 10 ⁻⁶ cm/sec or lower.

Table 6-8 Core Hydrogeophysical Studies (2008-2019)

Year	Field Investigation	Total No. of Locations Tested	Total No. of Tests Performed	Test Corehole/ Well Name	Quaternary (Q) or Bedrock (B)	Hydrostratigraphic Unit	No. of Tests Performed in Quaternary	No. of Tests Performed in Bedrock	Test Interval (ft bgs)
2017	Geophysical logging and packer	11	41	MEX-0122M	В	B1, B2, B4	0	3	WL to 2059
	testing of eleven open exploration			MEX-0124	В	B1, B2, B4	0	5	WL to 4257
	boreholes and one deep well.			MEX-0125	В	B1, B2, B4	0	4	WL to 1831.2
				MEX-0129	В	B1, B2, B4	0	3	WL to 3328
				MEX-0130	В	B1, B2, B4	0	3	WL to 4202
				MEX-0150	В	B1, B2, B4	0	5	WL to 1636.4
				MEX-0165	В	B1, B2, B4	0	4	WL to 3747
				MEX-0174	В	B1, B2, B4	0	4	WL to 4028
				MEX-0203	В	B1, B2, B4	0	4	WL to 4419
				MEX-0231	В	B1, B2, B4	0	3	WL to 3398
				MEX-0244	В	B1, B2, B4	0	3	WL to 3748
2018	2018 Bedrock Hydrogeologic Results.	10	43	MEX-0126	В	B1, B2, B4	0	4	WL to 3946.8
	Included packer testing at ten			MEX-0128	В	B1, B2, B4	0	4	WL to 2859
	exploratory boreholes.			MEX-0142	В	B1, B2, B4	0	4	WL to 3622.1
				MEX-0308	В	B1, B2, B4	0	4	WL to 3647
				MEX-0341	В	B1, B2, B4	0	6	WL to 3248
				MEX-0351	В	B1, B2, B4	0	4	WL to 2879
				MEX-0353	В	B1, B2, B4	0	4	WL to 3275.5
				MEX-0358	В	B1, B2, B4	0	4	WL to 2948
				MEX-0362	В	B1, B2, B4	0	4	WL to 3078
				MEX-0369	В	B1, B2, B4	0	5	WL to 3068
2018	HGP Addendum	4	20	MN-503B4	В	B4	0	4	33 to 316
				MN-510B4	В	B4	0	6	WL to 2408.5
				MN-544B4	В	B4	0	5	WL to 1541
				MN-548B4	В	B4	0	5	WL to 1550
2019	2019 Bedrock Hydrogeologic Results.	9	45	MEX-0187	В	B1, B2, B4	0	4	WL to 4919
	Included packer testing at 7			MEX-0200	В	B1, B2, B4	0	5	WL to 3957
	exploratory boreholes and 2 B4			MEX-0201	В	B1, B2, B4	0	3	WL-to 4639
	boreholes prior to well construction.			MEX-0234	В	B1, B2, B4	0	4	WL to 3899
				MEX-0240	В	B1, B2, B4	0	5	WL to 4238
				MEX-0243	В	B1, B2, B4	0	5	WL to 3178
				MEX-0294	В	B1, B2, B4	0	6	WL to 3197.5
				MN-542B4	В	B1, B2, B4	0	5	WL to 1945
				MN-507B4	В	B1, B2, B4	0	8	WL to 928
	Total	74	433						

Notes:

¹ Testing is in long boreholes including the overburden Q material and extending into deep bedrock.

Where available, the estimates of hydraulic conductivity from test intervals less than 200 feet in total length were used.

Abbreviations:

B = bedrock

B1 = shallow bedrock

B2 = intermediate bedrock

B4 = deep bedrock

bgs = below ground surface

cm/s = centimeters per second

ft = feet

HGP = Hydrogeophysics K = hydraulic conductivity

Q = quaternary

WL = static water level

Comments
Borehole packer tests were performed in bedrock. Although the majority of the test intervals were greater than 200 feet in length, the hydraulic conductivities decrease with depth, ranging from 1.0 x 10-5 cm/sec in shallow bedrock to less than 5.0 x 10-9 cm/sec (approaching the lower limit of equipment resolution) in deep bedrock.
Borehole packer tests were performed in bedrock. For the test intervals were less than 200 feet in length, the hydraulic conductivities decrease with depth, ranging from 1.2 x 10-5 cm/sec in shallow bedrock to less than 3.6 x 10-7 cm/sec in deep bedrock.
Borehole packer tests were performed in bedrock, prior to installation of B4 monitoring wells. Hydraulic conductivities decreased with depth, from 1.1 x 10-5 cm/sec to 4.7 x 10-10 cm/sec in deep bedrock.
Data collected, waiting analysis.

Range of K : 4.7 x 10⁻¹⁰ cm/sec to 3.0 x 10⁻⁴ cm/sec

Table 6-9 Summary of Hydrogeologic Units

HGU	Depth Range	Well	Depth Range	Monitoring Zone
QUM ¹	0-50 ft	Q1	~5 ft	Wetland Pz
QUM ¹	0-50 ft	Q2	0-50 ft	QUM MW
Shallow Bedrock ²	0-350 ft	B1	50-100 ft	Shallow Bedrock
Shallow Bedrock ²	0-350 ft	B2	120-170 ft	Shallow Bedrock
Deep Bedrock (BMZ) ³	>300 ft	B4	0-2,300 ft	BMZ

Notes:

¹ QUM ends at the bedrock surface, which could be 0 to approximately 50 ft.

 2 Shallow bedrock starts at the termination of the QUM - could result in up to 350 ft total depth.

³ BMZ is dependent on location due to dip and overburden thickness.

Abbreviations:

~ = approximately

BMZ = Basal Mining Zone

ft = feet

HGU = hydrogeologic units

MW = monitoring well

Pz = piezometer

QUM = quaternary unconsolidated materials

Year	Q1 Piezometer	Q2 Monitor Wells	B1 Monitor Wells	B2 Monitor Wells	B4 Monitor Wells	Vibrating Wire Piezometer	TOTAL
2014	18	3	0	0	0	0	21
2015	0	0	0	0	0	2	2
2016	3	0	2	2	0	0	7
2017	0	0	2	2	0	0	4
2018	0	4	7	7	4	0	22
2019	9	7	10	10	2	0	38
TOTAL	30	14	21	21	6	2	94

Table 6-10 Summary of Monitor Wells and Piezometers

Year	Monitor Wells Slug Tested	Monitor Wells Pump Tested	TOTAL
2017	7	1	8
2018	21	19	40
2019	42	42	84
TOTAL	70	62	132

Table 6-11 Summary of Monitor Well Hydraulic Conductivity Testing

Event	Q2 Monitor Wells	B1 Monitor Wells	B2 Monitor Wells	B4 Monitor Wells	TOTAL
Q2 2018	3	7	3	0	13
Q3 2018	3	8	4	1	16
Q4 2018	5	11	7	1	24
Q1 2019	3	11	7	1	22
Q2 2019	5	11	9	1	26
TOTAL	19	48	30	4	101

Table 6-12 Summary of Groundwater Quality Sample Acquisition

Table 6-13 Average Groundwater Cor														
	Location	EISV-509B1	MN-512B1	MN-522B1	MN-543B1	MN-544B1	MN-545B1	EISV-509B2	MN-522B2	MN-544B2	EISV-511Q2	EISV-511Q2A	MN-520Q2	MN-503B4 ¹
Parameter	Units													
General Parameters	-	1	1	1	1	•	•	1	•	-	-	I	1	
Alkalinity as CaCO ₃	mg/L	96.9	114.0	173.0	7.3	94.3	150.0	109.0	163.0	72.8	76.2	42.0	70.9	72.3
Alkalinity, Bicarbonate as $CaCO_3$	mg/L	96.9	114.0	166.0	7.3	69.6	125.0	109.0	163.0	18.5	76.2	42.0	70.9	61.3
Alkalinity, Carbonate as $CaCO_3$	mg/L	ND	ND	5.0	ND	23.4	22.3	ND	ND	54.0	ND	ND	ND	11
Bromide, Total as Br	mg/L	0.040	0.054	0.500	1.100	0.042	0.061	0.020	0.082	0.130	ND	ND	0.190	0.330
Chloride	mg/L	2.2	4.6	64.4	1180.0	0.9	4.1	1.6	5.8	9.4	0.9	0.3	3.3	42.9
Dissolved Organic Carbon	mg/L	3.6	7.7	3.6	2.9	3.3	7.8	7.6	6.8	6.2	4.3	4.6	34.3	13.5
Dissolved Oxygen	mg/L	2.99	2.05	4.70	3.63	2.98	6.08	4.76	1.89	2.49	2.21	5.92	1.89	3.69
Fluoride	mg/L	0.21	0.14	0.14	0.08	0.15	0.23	0.14	0.24	0.44	0.07	0.03	0.08	0.69
Hardness	mg/L	86.200	87.700	153.000	1720.000	90.500	46.000	24.000	31.700	11.200	71.500	38.700	69.200	72.700
Methane, % of Dissolved Gases	µg/L	0.7	16.5	168.0	43.5	2.9	14.4	49.3	1309.7	59.2	1.7	3.5	60.5	53.3
Nitrogen, Ammonia	mg/L	0.068	ND	0.071	ND	ND	ND	0.030	ND	ND	ND	ND	ND	0.185
Nitrogen, NO ₃ + NO ₂	mg/L	0.062	ND	0.057	0.019	ND	0.110	0.007	ND	ND	0.180	0.340	ND	0.015
рН	s.u.	6.47	7.27	7.67	7.39	9.36	9.30	7.11	7.55	9.62	6.13	6.42	5.63	8.49
Phosphate, Total as PO ₄	mg/L	0.036	0.052	0.170	0.017	0.095	0.430	0.087	0.130	0.340	0.034	0.006	0.012	0.170
Phosphorus	mg/L	0.038	0.056	0.180	0.140	0.310	0.930	0.089	0.180	0.330	0.053	0.009	0.046	0.290
Redox Potential	mV	171.4	-38.7	135.1	83.3	95.3	98.9	-54.8	113.8	80.5	137.3	219.4	153.0	209.4
Specific Conductance	uS/cm @25 C	220.9	228.7	376.8	3651.0	208.1	312.3	198.8	301.3	183.5	144.3	76.1	173.6	281.9
Sulfate	mg/L	27.4	15.4	3.5	16.3	8.3	4.7	6.0	11.6	11.7	4.2	4.1	3.3	10.8
Sulfide	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Temperature	deg C	8.32	6.70	8.40	7.22	7.48	7.41	7.68	7.30	6.50	10.50	9.14	9.55	8.06
Total Dissolved Solids	mg/L	181.0	157.0	276.0	3350.0	142.0	220.0	181.0	238.0	150.0	91.3	77.0	158.0	312.0
Total Suspended Solids	mg/L	0.4	2.2	13.6	143.0	51.5	41.3	9.4	42.8	38.0	11.8	2.0	6.8	85.5
Turbidity	NTU	19.0	5.6	30.5	82.7	32.5	54.7	23.2	40.6	25.2	2.9	4.2	8.0	307.5
Metals - Total			-		-	_			_			-	_	
Aluminum	µg/L	20.4	149.0	755.0	6240.0	3160.0	2050.0	509.0	1940.0	898.0	390.0	63.0	689.0	14305.0
Antimony	µg/L	0.73	0.10	ND	0.40	0.34	0.31	0.07	0.69	0.61	ND	ND	ND	0.45
Arsenic	µg/L	ND	0.64	0.45	ND	0.87	1.90	ND	0.29	3.50	ND	ND	0.90	2.25
Barium	µg/L	34.2	18.1	17.3	491.0	17.0	12.3	10.9	14.9	8.5	25.1	5.3	25.6	78.6
Beryllium	µg/L	ND	ND	ND	0.04	0.05	ND	ND	0.290	ND	ND	ND	0.065	0.35
Boron	μg/L	24.0	1.9	26.8	16.9	4.2	5.1	61.2	73.1	33.2	1.8	ND	3.1	70.1
Cadmium	μg/L	ND	0.110	ND	0.053	ND	ND	ND	0.057	0.033	ND	ND	0.026	0.110
Calcium	μg/L	23200	23800	34900	675000	28400	13700	6300	7830	3420	14600	8860	9870	10685
Chromium	μg/L	0.3	0.4	3.2	22.1	24.1	4.7	1.7	4.9	3.0	0.7	0.2	2.9	29.8
Cobalt	μg/L	0.1	0.4	0.5	2.8	1.4	0.4	1.3	0.8	0.6	0.4	0.1	53.4	12.0
Copper	μg/L	2.7	23.0	4.1	9.4	5.8	8.8	13.3	6.0	29.1	4.8	5.8	22.8	492.5
Iron	µg/L	18	387	463	2010	1860	445	506	608	574	362	76	6990	16550
Lead	μg/L	ND	0.250	ND	0.190	1.300	0.074	0.220	1.000	0.230	0.063	ND	0.037	3.400
Lithium	μg/L	0.70	3.10	ND	0.90	0.53	ND	0.47	0.57	1.70	0.97	ND	ND	6.10
Magnesium	µg/L	6920	6870	15900	7600	4730	2910	2010	2970	638	8510	4030	10800	11160
Manganese	µg/L	180	170	65	590	38	17	88	46	21	103	10	1910	291
Mercury	ng/L	0.74	6.42	0.92	1.05	2.66	1.21	1.96	2.66	3.82	1.42	2.51	21.70	13.38
Molybdenum	µg/L	1.20	0.97	3.70	3.40	4.00	1.70	3.90	6.30	3.30	1.80	0.00	0.37	13.10
Nickel	µg/L	1.2	2.4	5.2	23.9	19.7	4.6	2.9	4.7	4.4	1.9	1.8	36.6	169.5
Palladium	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Platinum	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 6-13 Average Groundwater Concentrations from Wells Measured in 2018

	Location	EISV-509B1	MN-512B1	MN-522B1	MN-543B1	MN-544B1	MN-545B1	EISV-509B2	MN-522B2	MN-544B2	EISV-511Q2	EISV-511Q2A	MN-520Q2	MN-503B4 ¹
Parameter	Units		•				•							
Potassium	µg/L	2200	5410	1300	4370	2320	2970	690	960	1710	1010	1050	654	2005
Selenium	µg/L	0.20	0.12	0.84	3.70	ND	0.42	ND	ND	0.44	ND	ND	0.78	1.50
Silicon	µg/L	8667	8497	11300	11487	13567	11960	8520	14300	19033	14433	10933	14523	41300
Silver	μg/L	ND	0.10	0.33	1.50	0.33	0.96	0.25	0.06	0.43	0.00	0.00	0.24	12.10
Sodium	μg/L	16300	21800	44400	340000	19000	45000	44200	69300	38200	4960	2880	5370	53400
Strontium	µg/L	43.9	44.4	90.4	767.0	28.7	23.5	15.9	28.9	12.3	43.0	33.0	89.0	58.3
Thallium	µg/L	ND	0.017	ND	0.007	0.008	ND	ND	0.027	0.008	ND	0.007	0.009	0.063
Titanium	µg/L	2.0	4.6	8.5	82.6	69.6	14.6	9.3	13.2	15.5	17.0	3.5	7.2	324.5
Uranium	µg/L	0.20	0.34	0.51	0.05	0.52	0.83	0.14	0.71	0.13	0.02	0.01	0.15	0.97
Zinc	µg/L	42.9	7.9	5.9	4.4	14.6	2.9	3.7	9.2	5.4	10.1	4.1	4.5	68.3
Metals - Dissolved						-			-					
Aluminum	µg/L	ND	26	11	13	22	60	66	192	289	7	7	623	2830
Arsenic	µg/L	ND	0.49	0.15	ND	0.09	0.77	ND	0.22	2.60	ND	ND	0.87	2.10
Boron	µg/L	26.3	4.3	29.6	27.2	4.8	6.1	64.2	75.2	34.4	5.3	3.9	5.6	69.9
Cadmium	µg/L	ND	ND	ND	0.037	ND	ND	ND	ND	0.000	ND	ND	0.029	ND
Chromium	µg/L	0.1	0.4	0.3	0.6	4.0	1.8	0.5	1.2	1.5	0.1	0.1	2.7	6.5
Cobalt	µg/L	0.3	0.6	0.7	0.8	0.6	0.2	0.3	0.6	0.9	0.2	0.1	54.1	2.9
Copper	µg/L	2.1	1.6	1.1	1.4	0.6	2.4	1.7	2.3	11.0	2.9	5.2	15.6	101.0
Iron	µg/L	3	267	53	17	23	39	99	58	94	12	4	6780	3180
Manganese	µg/L	180	150	66	556	12	8	61	36	11	19	1	2010	82
Molybdenum	µg/L	1.20	0.70	3.10	1.80	1.00	0.83	3.70	6.20	2.70	2.10	0.00	0.27	13.85
Nickel	µg/L	0.9	1.8	1.4	3.8	1.3	1.5	1.4	1.5	1.8	0.6	1.4	35.8	54.6
Selenium	µg/L	0.14	ND	0.97	3.10	ND	ND	ND	0.16	0.63	ND	ND	1.00	1.05
Silver	µg/L	ND	ND	ND	ND	ND	ND	0.02	ND	0.10	ND	ND	0.15	1.50
Zinc	µg/L	43.5	0.7	2.0	2.6	1.6	0.4	1.3	3.0	2.8	2.1	3.8	3.2	15.5

Notes:

Average concentrations of groundwater from three sampling events in 2018.

Non-detects were set equal to 0 for average calculations presented in this table. This methodology will be reviewed and modified, as needed, during environmental reivew. ND is reported when all results for a particular parameter and location were non-detectable.

Decimal formatting is generally in alignment with laboratory analytical reporting.

¹ MN-503B4 was not sampled in second quarter 2018; average concentrations for MN-503B4 taken from third and fourth quarters of 2018.

Abbreviations:

µg/L = micrograms per liter

µS/cm@25 C = microsiemens/centimeter at 25 degrees Celsius

deg C = degrees in Celsius

mg/L = milligrams per liter

mV = millivolts

ND = non-detectable

ng/L = nanograms per liter

NM = not measured

NTU = nepholometric turbidity units

s.u. = standard units

Table 6-14 Minnesota National Wetland Inventory Simplified Plant Community Classification Baseline

Wetland Type	Baseline Acres ¹
Project area	
Coniferous Bog	818.7
Hardwood Wetland	110.5
Non-Vegetated Aquatic Community	60.9
Open Bog	360.3
Seasonally Flooded/Saturated Emergent Wetland	26.7
Shallow Marsh	169.5
Shallow Open Water Community	5.5
Shrub Wetland	187.2
Tota	l 1739.3

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets

and rounding.

Table 6-15 Minnesota National Wetland Inventory U.S. Fish and Wildlife Service Circular 39 System Baseline

Wetland Type	Baseline Acres ¹
Project area	
Type 1 Seasonally flooded basins or flats	3.9
Type 2 Wet Meadows	22.8
Type 3 Shallow Marsh	169.5
Type 4 Deep Marsh	8.3
Type 5 Shallow Open Water	38.5
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	187.2
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	110.5
Type 8 Bogs; Coniferous Bogs, Open Bogs	1179.1
90 Rivers and streams	19.6
Total	1739.4

Notes:

¹ Minor differences in acreages between tables are due

to variations in the spatial resolution of underlying datasets and rounding.

		aa
Table 6-16 Minnesota National Wetland Invento	v Simplified Plant Communit	V Classification Impacts
	y empiried i lance een manie	, olaooliloadoll impaolo

Wetland Type		Project Direct Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed ²	% Reduction in Watershed Wetlan Acres
Project area				
Artificially Flooded		0.0	101	0.00%
Coniferous Bog		76.2	184,190	0.04%
Deep Marsh		0.0	6,288	0.00%
Hardwood Wetland		19.0	19,707	0.10%
Non-Vegetated Aquatic Community		19.6	213,170	0.01%
Open Bog		5.4	45,714	0.01%
Seasonally Flooded/Saturated Emergent Wetland		1.9	12,674	0.01%
Shallow Marsh		17.9	28,010	0.06%
Shallow Open Water Community		0.0	4,280	0.00%
Shrub Wetland		16.1	47,692	0.03%
Τα	tal	156.1	561,826	0.03%
Plant site				
Coniferous Bog		2.7		
Hardwood Wetland		7.2		
Non-Vegetated Aquatic Community		0.1		
Open Bog		0.2		
Seasonally Flooded/Saturated Emergent Wetland		0.0		
Shallow Marsh		0.5		
Shallow Open Water Community		0.0		
Shrub Wetland		0.6		
	tal	11.3		
Tailings management site	tui	1110		
Coniferous Bog	Т	47.0		
Hardwood Wetland		8.8	-	
Non-Vegetated Aquatic Community		5.6	-	
Open Bog		4.7	-	
Seasonally Flooded/Saturated Emergent Wetland		0.0	-	
Shallow Marsh		11.0	-	
Shallow Open Water Community		0.0	-	
Shrub Wetland		11.8	-	
	tal	88.9	-	
Access Road	a	00.0		
Coniferous Bog		0.9		
Hardwood Wetland	\dashv	0.9		
Non-Vegetated Aquatic Community	\dashv	0.0		
Open Bog	\rightarrow	0.0		
Seasonally Flooded/Saturated Emergent Wetland	-+	0.0		
Seasonally Flooded/Saturated Emergent Wetland	-+	0.0		
Shallow Open Water Community	\dashv		-	
Shallow Open Water Community	\rightarrow	0.0	-	
	4 - 1	0.6		
To	otal	1.6		

Table 6-16 Minnesota National Wetland Inventor	Simplified Plant Community Classification Impacts
	,

Wetland Type	Project Direct Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed ²	% Reduction in Watershed Wetland Acres
Transmission corridor			
Coniferous Bog	12.8		
Hardwood Wetland	1.3		
Non-Vegetated Aquatic Community	5.8		
Open Bog	0.5		
Seasonally Flooded/Saturated Emergent Wetland	1.8		
Shallow Marsh	4.7		
Shallow Open Water Community	0.0		
Shrub Wetland	2.1		
Tota	29.0		
Water intake corridor			
Coniferous Bog	0.0		
Hardwood Wetland	0.2		
Non-Vegetated Aquatic Community	0.0		
Open Bog	0.0		
Seasonally Flooded/Saturated Emergent Wetland	0.0		
Shallow Marsh	0.0		
Shallow Open Water Community	0.0		
Shrub Wetland	0.0		
Total			
Ventilation raise sites and access road			
Coniferous Bog	0.4		
Hardwood Wetland	0.0		
Non-Vegetated Aquatic Community	0.0		
Open Bog	0.0		
Seasonally Flooded/Saturated Emergent Wetland	0.0		
Shallow Marsh	0.0		
Shallow Open Water Community	0.0		
Shrub Wetland	0.0		
Total			
Non-contact water diversion area			
Coniferous Bog	12.4		
Hardwood Wetland	1.5		
Non-Vegetated Aquatic Community	8.1		
Open Bog	0.0		
Seasonally Flooded/Saturated Emergent Wetland	0.0		
Shallow Marsh	1.7		
Shallow Open Water Community	0.0		
Shrub Wetland	1.0		
Total			

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets and rounding.

² Source for Rainy River Headwater wetland data is: Robb D. Macleod, Robert S. Paige and Alek J. Kreiger, 2016. Updating the National Wetland Inventory in Northeast Minnesota: Technical Documentation. Ducks Unlimited, Inc.

Wetland Type	Project Direct Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed ²	% Reduction in Watershed Wetland Acres
Project area	•	•	
Type 1 Seasonally flooded basins or flats	0.0	1,687	0.00%
Type 2 Wet Meadows	1.9	11,921	0.02%
Type 3 Shallow Marsh	17.9	28,010	0.06%
Type 4 Deep Marsh	8.2	1,646	0.50%
Type 5 Shallow Open Water	10.5	216,995	0.00%
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	16.1	47,692	0.03%
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	19.0	18,774	0.10%
Type 8 Bogs; Coniferous Bogs, Open Bogs	81.6	229,904	0.04%
90 Rivers and streams	0.8	5,097	0.02%
Municipal-Industrial	0.0	101	0.00%
Total		561,827	0.03%
Plant site	•		
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.0		
Type 3 Shallow Marsh	0.5		
Type 4 Deep Marsh	0.0		
Type 5 Shallow Open Water	0.1		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	0.6		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	7.2		
Type 8 Bogs; Coniferous Bogs, Open Bogs	2.9		
90 Rivers and streams	0.0		
Total			
Tailings management site			
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.0		
Type 3 Shallow Marsh	11.0		
Type 4 Deep Marsh	0.4	1	
Type 5 Shallow Open Water	5.2		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	11.8	1	
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	8.8		
Type 8 Bogs; Coniferous Bogs, Open Bogs	51.7	1	
90 Rivers and streams	0.0		
Total		1	
Access Road			
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.1		
Type 3 Shallow Marsh	0.0		
Type 4 Deep Marsh	0.0		
Type 5 Shallow Open Water	0.0		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	0.6		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	0.0		
Type 8 Bogs; Coniferous Bogs, Open Bogs	1.0		
90 Rivers and streams	0.0		
Total			

Table 6-17 Minnesota National Wetland Inventory U.S. Fish and Wildlife Service Circular 39 System Impacts

Wetland Type Wetland Type Transmission corridor Type 1 Seasonally flooded basins or flats Type 2 Wet Meadows Type 3 Shallow Marsh Type 4 Deep Marsh Type 5 Shallow Open Water	Project Direct Impacts (acres) ¹ 0.0 1.8 4.7 0.0 4.9	Acres in Rainy River - Headwaters Watershed ²	% Reduction in Watershed Wetland Acres
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	2.1		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	1.3	-	
Type 8 Bogs; Coniferous Bogs, Open Bogs	13.2	-	
90 Rivers and streams Total	0.8 28.8		
Water intake corridor	20.0		
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.0		
Type 3 Shallow Marsh	0.0		
Type 4 Deep Marsh	0.0		
Type 5 Shallow Open Water	0.0		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	0.0		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	0.2		
Type 8 Bogs; Coniferous Bogs, Open Bogs	0.0		
90 Rivers and streams	0.0		
Total	0.2		
Ventilation raise sites and access road			
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.0		
Type 3 Shallow Marsh	0.0		
Type 4 Deep Marsh	0.0		
Type 5 Shallow Open Water	0.0		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	0.0		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	0.0		
Type 8 Bogs; Coniferous Bogs, Open Bogs	0.4		
90 Rivers and streams	0.0		
Total	0.4		
Non-contact water diversion area			
Type 1 Seasonally flooded basins or flats	0.0		
Type 2 Wet Meadows	0.0		
Type 3 Shallow Marsh	1.7		
Type 4 Deep Marsh	7.8		
Type 5 Shallow Open Water	0.3		
Type 6 Shrub Swamp; Shrub Carr, Alder Thicket	1.0		
Type 7 Wooded Swamps; Hardwood Swamp, Coniferous Swamp	1.5 12.4		
Type 8 Bogs; Coniferous Bogs, Open Bogs 90 Rivers and streams	0.0		
Total			
Totai	24.1		

Table 6-17 Minnesota National Wetland Inventory U.S. Fish and Wildlife Service Circular 39 System Impacts

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets and rounding.

² Source for Rainy River Headwater wetland data is: Robb D. Macleod, Robert S. Paige and Alek J. Kreiger, 2016. Updating the National Wetland Inventory in Northeast Minnesota: Technical Documentation. Ducks Unlimited, Inc.

Table 7-1 Estimated Fuel Storage and Consumption

Fuel (L/yr)	Annual Consumption	Delivered Form	Storage (m³)	Amount per Delivery	Anticipated Trucks per Month	Anticipated Consumption per Day (L)	Storage Time (days)
Diesel	20,700,000	Tanker	300	30,000 L / 25 ST	58	57,000	5
Gasoline	300,000	Tanker	20	20,000 L / 14.4 ST	2	500	24
Propane	12,700,000	Tanker	160	10 ST	53	35,000	5

Abbreviations:

L = liters

L/day = liters per day L/yr = liters per year

m³ = cubic meters

ST = short tons

t = tons

Table 7-2 Process Reagents

Reagent	Annual Consumption (ST)	Delivered Form	Storage (ST)	Amount per Delivery (ST)	Deliveries per year
TETA (triethylenetetramine)	650	Bulk - Solution	25	19.6	34
Sodium Sulphite (Na ₂ SO ₃)	610	Bags	25	15.4	40
Aerophine 3418A (sodium-diisobutyl dithiophosphinate)	60	Bulk - Solution	20	20.0	3
SIPX (Sodium isopropyl xanthate)	1,400	Bags	25	15.4	91
MIBC (Methyl isobutyl carbinol)	800	Bulk - Solution	30	16.2	50
Lime	10,500	Bulk	140	15.4	680
Copper Sulphate (CuSO ₄)	600	Bags	25	15.4	39
Sulfuric Acid	840	Bulk - Solution	32	20.0	42
Flocculant	120	Bags	5	15.4	8
Binder (Slag-Cement Mix)	34,000	Bulk	450	15.4	2210

Abbreviations:

 m^3 = cubic meters

ST = short tons

t = metric tonnes

tpa = tonnes per year

tpd = tonnes per day

Resource	Rare Species Group	Habitats	Listing status	Location
Vegetative Species	Moss	Forest Acid Peatland	Federal endangered	Border Lakes Subsection (212La)
	Lichen	Fire Dependent Forest	Federal threatened	
	Moss	Mesic Hardwood Forest	Federal candidate	
	Vascular plant	Non-Forested Acid Peatland	State endangered	
Terrestrial Species	Amphibian	Non-Forested Rich Peatland	State threatened	
	Insect		State special concern	
	Mammal		State delisted	
	Mussel		U.S. Forest Service sensitive	
	Reptile			
	Snail			
	Spider			
Aquatic Species	Amphibian	Small Rivers and Streams		
	Fish	Littoral Zone of Lake		
	Fungus	Deep Water Zone of Lake		
	Insect			
	Lichen			
	Mammal			
	Moss			
	Mussel			
	Reptile			
	Snail			
	Spider			
	Vascular plant			

Table 8-1 Search Criteria for Potential Sensitive Species

GAP Classification	Baseline Acres
Project area	
Boreal Aspen-Birch Forest	207.8
Boreal Jack Pine-Black Spruce Forest	503.6
Boreal White Spruce-Fir-Hardwood Forest	2625.6
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	2614.6
Cultivated Cropland	1.4
Developed, High Intensity	19.3
Developed, Low Intensity	1.3
Developed, Open Space	3.1
Eastern Boreal Floodplain	4.6
Harvested Forest - Grass/Forb Regeneration	3.3
Laurentian-Acadian Floodplain Systems	20.4
Laurentian-Acadian Northern Hardwoods Forest	26.8
Laurentian-Acadian Northern Pine-(Oak) Forest	115.9
Laurentian-Acadian Swamp Systems	55.6
Open Water (Fresh)	63.6
Quarries, Mines, Gravel Pits and Oil Wells	21.4
Total	6288.4

Table 8-2 U.S. Geological Survey GAP / LANDFIRE Data Baseline

National Land Cover Data Classification	Baseline Acres
Project area	
Deciduous Forest	283.1
Developed, Open Space	192.7
Developed, Low Intensity	0.4
Emergent Herbaceous Wetlands	78.2
Evergreen Forest	2025.9
Grassland/Herbaceous	145.4
Mixed Forest	568.8
Open Water	58.7
Shrub/Scrub	494.7
Woody Wetlands	2439.1
Total	6287.2

Table 8-3 National Land Cover Data Baseline

Type/Subtype Code	Type/Subtype Name Community total	S-Rank	Baseline Acres ¹
Project area	•		
APn81a	Poor Black Spruce Swamp	S5	437.8
APn81b	Poor Tamarack - Black Spruce Swamp	S4	64.3
APn81b1	Poor Tamarack - Black Spruce Swamp, Black Spruce Subtype	S4	5.9
APn81b2	Poor Tamarack - Black Spruce Swamp, Tamarack Subtype	S4	88.1
APn91a	Low Shrub Poor Fen	S5	207.0
APn91b	Graminoid Poor Fen (Basin)	S3	4.1
	Acid Peatland System Total		807.3
CTn32a	Mesic Mafic Cliff (Northern)	S3	2.0
	Cliff/Talus System Total		2.0
BW_CX	Beaver Wetland Complex		50.2
	Beaver Wetland Complex Total		50.2
MF_PDMW_CX	Poor Dry-Mesic Woodland_Mesic Forest Complex		469.8
	Mesic Woodland/Mesic Forest Complex Total		469.8
FDn32	Northern Poor Dry-Mesic Mixed Woodland		248.3
FDn32a	Red Pine - White Pine Woodland (Canadian Shield)	S3	61.9
FDn32c	Black Spruce - Jack Pine Woodland	S2 or S3	1048.8
FDn32c1	Black Spruce - Jack Pine Woodland, Jack Pine - Balsam Fir Subtype	S2	20.4
FDn33	Northern Dry-Mesic Mixed Woodland		24.8
FDn33a	Red Pine - White Pine Woodland	S3	65.1
FDn43	Northern Mesic Mixed Forest		4.0
FDn43a	White Pine - Red Pine Forest	S2	116.5
FDn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	122.2
FDn43b2	Aspen - Birch Forest, Hardwood Subtype	S5	4.0
	Fire-Dependent Forest/Woodland System Total		1715.9
FPn62a	Rich Black Spruce Swamp (Basin)	S3	70.2
	Forested Rich Peatland System Total		70.2
OPn81	Northern Shrub Shore Fen		2.2
OPn81b	Leatherleaf - Sweet Gale Shore Fen	S5	27.8
OPn91	Northern Rich Fen (Water Track)		4.8
	Open Rich Peatland System Total		34.9
WFn55a	Black Ash - Aspen - Balsam Poplar Swamp (Northeastern)	S4	20.7
WFn64c	Black Ash - Alder Swamp (Northern)	S4	8.2
	Wet Forest System Total		29.0
WMn82b1	Sedge Meadow, Bluejoint Subtype	S5	41.4
	Wet Meadow/Carr System Total		41.4
	Total		3220.7

Table 8-4 Minnesota Department of Natural Resources Minnesota Biological Survey Data Baseline

Notes:

¹ MBS NPC / candidate data is not available for the full Project area. Southwest portion of the transmission corridor has not been mapped.

Abbreviations:

MBS = Minnesota Biological Survey

NPC = Native Plant Community

Table 8-5 Previously	/ Disturbed Land /	Candidate Minnesot	a Biological Survey	v Data from Minnesota [Department of Natural Resources
			a Diological Sulve	y Data nom winnesota L	

Project Feature	Acres ¹	Minnesota Department of Natural Resources Comments
Project area ²	184.4	Upland and lowland native plant communities, nearly all harvested in mid to late 1960s or later. Regeneration to tree species typical of land forms here - jack pine, black spruce aspen. Overall native plant community conditions unknown.
Project area ²	1932.2	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Project area ² 199.1		Upland and lowland native plant communities nearly all harvested in early1970s or later. Regeneration to tree species typical of land forms here - jack pine and black spruce; planted red pine patches on state land in southwest. Overall native plant community conditions unknown.
Total	2315.7	
Plant site	148.8	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Tailings management site	177.6	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Access Road	11.0	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Transmission corridor ³	2.4	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Transmission corridor ³	30.6	Upland and lowland native plant communities nearly all harvested in early1970s or later. Regeneration to tree species typical of land forms here - jack pine and black spruce; planted red pine patches on state land in southwest. Overall native plant community conditions unknown.
Water intake corridor / facility	1.3	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.
Ventilation raise sites and access road	10.7	Upland harvests in mid to late 1970s or later. Regeneration mostly to aspen; some planted red pine and spruce. Overall native plant community conditions unknown. Fragmented by roads, mining exploration, and development.

Notes:

¹ Minnesota Biological Survey native plant community / candidate data is not available for the full Project area. Southwest portion of the transmission corridor has not been mapped.

² Three different polygons of candidate Minnesota Biological Survey data exist in the Project area. These are broken out to show the individual comments and associated acreages.

³ Two different polygons of candidate Minnesota Biological Survey data exist in the transmission corridor. These are broken out to show the individual comments and associated acreages.

Table 8-6 Terrestrial Vegetative Sensitive Species

Scientific Name	Common Name	Federal Status	State Status	Regional Forester Sensitive Species Status for Superior National Forest	Natural Heritage Information System Occurrence in Project Area	Minnesota Department of Natural Resources Rare Species Guide Habitats	Potentially Present in Areas of Potential Ground Disturbance
Fungus							
Sarcosoma globosum	A Cup Fungus	none	special concern			Fire Dependent Forest	Х
Lichen		-		-		1	
Ahtiana aurescens	Eastern candlewax lichen	none	special concern		Yes	Forested Rich Peatland	X
Allocetraria oakesiana	Yellow ribbon lichen	none	threatened	Yes		Fire Dependent Forest	X
Bryoria fuscescens	Pale-footed Horsehair Lichen	none	special concern			Fire Dependent Forest, Forested Rich Peatland, Non-Forested Acid Peatland	X
Lobaria scrobiculata	Textured lungwort	none	endangered	Yes		Forested Rich Peatland	X
Melanohalea subolivacea	Brown-eyed Camouflage Lichen	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	X
Menegazzia terebrata	Port-hole Lichen	none	special concern			Forested Rich Peatland	X
Ochrolechia androgyna	Powdery Saucer Lichen	none	special concern			Fire Dependent Forest, Forested Rich Peatland	X
Peltigera venosa	Fan lichen	none	special concern	1		Fire Dependent Forest	Х
Protopannaria pezizoides	Brown-gray Moss-shingle Lichen	none	threatened	Yes		Forested Rich Peatland	X
Pseudocyphellaria holarctica	Yellow specklebelly lichen	none	endangered			Fire Dependent Forest, Mesic Hardwood Forest	X
Ramalina thrausta	Angel's Hair Lichen	none	special concern			Forested Rich Peatland	X
Sticta fuliginosa	Peppered moon lichen	none	special concern	Yes		Forested Rich Peatland	X
Thelocarpon epibolum	A Species of Thelocarpon Lichen	none	special concern			Fire Dependent Forest, Forested Rich Peatland	X
Usnea longissima	Methuselah's Beard Lichen	none	special concern			Fire Dependent Forest, Forest Acid Peatland, Forested Rich Peatland	Х
Moss							
Buxbaumia aphylla	Bug-on-a-stick Moss	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest, Non-Forested Rich Peatland	Х
Frullania selwyniana	Selwyn's Ear-leaf Liverwort	none	special concern			Forested Rich Peatland	Х
Sphagnum compactum	Cushion Peat Moss	none	threatened			Fire Dependent Forest, Forest Acid Peatland	Х
Splachnum rubrum	Red Parasol Moss	none	endangered	Yes		Forest Acid Peatland, Forested Rich Peatland, Non-Forested Acid Peatland	Х
Vascular Plant							
Achillea alpina	Siberian Yarrow	none	threatened			Fire Dependent Forest	Х
Botrychium lunaria	Common Moonwort	none	threatened	Yes	Yes	Fire Dependent Forest	Х
Botrychium minganense	Mingan Moonwort	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	Х
Botrychium mormo	Goblin Fern	none	threatened	Yes		Mesic Hardwood Forest	Х
Botrychium oneidense	Blunt-lobed Grapefern	none	threatened		Yes	Mesic Hardwood Forest	Х
Botrychium pallidum	Pale Moonwort	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	Х
Botrychium rugulosum	St. Lawrence Grapefern	none	special concern		Yes	Fire Dependent Forest	Х
Botrychium simplex	Least Moonwort	none	special concern			Mesic Hardwood Forest	Х
Botrychium spathulatum	Spatulate Moonwort	none	endangered			Fire Dependent Forest	Х
Caltha natans	Floating Marsh Marigold	none	endangered	Yes		Non-Forested Rich Peatland	Х
Cardamine pratensis	Cuckoo Flower	none	threatened	Yes		Forested Rich Peatland, Non-Forested Rich Peatland	Х
Carex exilis	Coastal Sedge	none	special concern			Non-Forested Acid Peatland	Х
Carex michauxiana	Michaux's Sedge	none	special concern			Forested Rich Peatland, Non-Forested Rich Peatland, Non-Forested Acid Peatland	Х
Carex ormostachya	Necklace Sedge	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	Х
Cladium mariscoides	Twig Rush	none	special concern			Non-Forested Rich Peatland	Х
Crataegus douglasii	Black Hawthorn	none	special concern			Fire Dependent Forest	Х
Cypripedium arietinum	Ram's Head Orchid	none	threatened	Yes		Fire Dependent Forest, Forested Rich Peatland	Х
Drosera anglica	English Sundew	none	special concern			Non-Forested Rich Peatland	Х
Eleocharis flavescens var. olivacea	Olivaceous Spikerush	none	threatened			Non-Forested Acid Peatland	Х
Eleocharis quinqueflora	Few-flowered Spikerush	none	special concern			Non-Forested Rich Peatland, Non-Forested Acid Peatland	Х
Gymnocarpium robertianum	Northern Oak Fern	none	special concern			Forested Rich Peatland	Х
Huperzia porophila	Rock Fir Moss	none	threatened	Yes		Mesic Hardwood Forest	Х
Juncus stygius var. americanus	Bog Rush	none	special concern			Non-Forested Rich Peatland, Non-Forested Acid Peatland	Х
Listera convallarioides	Broad-leaved Twayblade	none	special concern		l	Forested Rich Peatland	Х

Table 8-6 Terrestrial Vegetative Sensitive Species

Scientific Name	Common Name	Federal Status	State Status	Regional Forester Sensitive Species Status for Superior National Forest	Natural Heritage Information System Occurrence in Project Area	Minnesota Department of Natural Resources Rare Species Guide Habitats	Potentially Present in Areas of Potential Ground Disturbance
Luzula parviflora	Small-flowered Woodrush	none	threatened	Yes		Fire Dependent Forest, Mesic Hardwood Forest, Forested Rich Peatland	Х
Malaxis monophyllos var. brachypoda	White Adder's Mouth	none	special concern			Forested Rich Peatland	Х
Malaxis paludosa	Bog Adder's Mouth	none	endangered			Forested Rich Peatland	Х
Moehringia macrophylla	Large-leaved Sandwort	none	threatened	Yes		Fire Dependent Forest	Х
Muhlenbergia uniflora	One-flowered Muhly	none	special concern			Non-Forested Acid Peatland	Х
Osmorhiza berteroi	Chilean Sweet Cicely	none	endangered	Yes		Mesic Hardwood Forest	Х
Osmorhiza depauperata	Blunt-fruited Sweet Cicely	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	Х
Phacelia franklinii	Franklin's Phacelia	none	threatened		Yes	Fire Dependent Forest	Х
Piptatherum canadense	Canadian Ricegrass	none	threatened	Yes		Fire Dependent Forest	Х
Platanthera clavellata	Small Green Wood Orchid	none	special concern		Yes	Forest Acid Peatland, Forested Rich Peatland	Х
Polystichum braunii	Braun's Holly Fern	none	threatened	Yes		Fire Dependent Forest, Mesic Hardwood Forest	Х
Potamogeton confervoides	Algae-like Pondweed	none	endangered	Yes		Non-Forested Acid Peatland	Х
Prosartes trachycarpa	Rough-fruited Fairybells	none	endangered	Yes		Fire Dependent Forest	Х
Pyrola minor	Small Shinleaf	none	special concern			Fire Dependent Forest, Forest Acid Peatland, Forested Rich Peatland	Х
Ranunculus lapponicus	Lapland Buttercup	none	special concern			Forested Rich Peatland	Х
Rubus chamaemorus	Cloudberry	none	threatened	Yes		Forest Acid Peatland	Х
Rubus semisetosus	Swamp Blackberry	none	threatened	Yes		Forested Rich Peatland	Х
Shepherdia canadensis	Soapberry	none	special concern			Fire Dependent Forest	Х
Trichophorum clintonii	Clinton's Bulrush	none	threatened			Fire Dependent Forest	Х
Utricularia geminiscapa	Hidden-fruit Bladderwort	none	threatened	Yes		Non-Forested Rich Peatland, Non-Forested Acid Peatland	Х
Waldsteinia fragarioides var. fragarioides	Barren Strawberry	none	special concern			Fire Dependent Forest, Mesic Hardwood Forest	Х
Xyris montana	Montane Yellow-eyed Grass	none	special concern		Yes	Non-Forested Rich Peatland, Non-Forested Acid Peatland	X

Table 8-7 Terrestrial Wildlife Sensitive Species

Scientific Name	Common Name	Federal Status	State Status	Regional Forester Sensitive Species Status for Superior National Forest	Superior National Forest Indicator Species	Species of Greatest Conservation Need	Natural Heritage Information System Occurrence in Project Area	Minnesota Department of Natural Resources Rare Species Guide Habitats	Potentially Present in Areas of Potential Ground Disturbance
Bird									
Accipiter gentilis	Northern Goshawk	none	special concern	Yes	Yes	Yes		Fire Dependent Forest, Mesic Hardwood Forest	Х
Aegolius funereus	Boreal Owl	none	special concern	Yes		Yes		Fire Dependent Forest, Mesic Hardwood Forest, Forested Rich Peatland	Х
Haliaeetus leucocephalus	Bald Eagle	Eagle Act	delisted		Yes			Fire Dependent Forest, Mesic Hardwood Forest	Х
Cardellina Canadensis	Canada Warbler	Migratory Bird Act	none					not included in the MDNR rare species guide	Х
Setophaga tigrina	Cape May Warbler	Migratory Bird Act	none					not included in the MDNR rare species guide	Х
Coccothraustes vespertinus	Evening Grosbeak	Migratory Bird Act	none					not included in the MDNR rare species guide	Х
Insect									
Cicindela denikei	Laurentian Tiger Beetle	none	special concern			Yes		Fire Dependent Forest	Х
Ophiogomphus anomalus	Extra-striped Snaketail	none	special concern			Yes		Fire Dependent Forest, Mesic Hardwood Forest	Х
Plebejus idas nabokovi	Nabokov's Blue	none	special concern	Yes		Yes		Fire Dependent Forest	Х
Somatochlora forcipata	Forcipate Emerald	none	special concern			Yes		Forested Rich Peatland, Non-Forested Rich Peatland	X
Mammal	•								-
Canis lupus lycaon	Gray Wolf	threatened	delisted		Yes				X
Eptesicus fuscus	Big Brown Bat	none	special concern			Yes		Fire Dependent Forest, Mesic Hardwood Forest	X
Lynx canadensis	Canada Lynx	threatened	special concern			Yes			Х
Myotis lucifugus	Little Brown Myotis	none	special concern	Yes		Yes	Yes	Mesic Hardwood Forest	Х
Myotis septentrionalis	Northern Long-eared Bat	threatened	special concern			Yes		Fire Dependent Forest, Mesic Hardwood Forest	X
Phenacomys ungava	Eastern Heather Vole	none	special concern	Yes		Yes	Yes	Fire Dependent Forest, Non-Forested Rich Peatland, Non-Forested Acid Peatland	Х
Sorex fumeus	Smoky Shrew	none	special concern			Yes		Fire Dependent Forest, Mesic Hardwood Forest, Forest Acid Peatland, Forested Rich Peatland	Х
Synaptomys borealis	Northern Bog Lemming	none	special concern			Yes		Forest Acid Peatland, Forested Rich Peatland, Non-Forested Rich Peatland, Non-Forested Acid Peatland	no ¹
Reptile		•		+			•		
Emydoidea blandingii	Blanding's Turtle	none	threatened			Yes		Forested Rich Peatland	Х
Spider	~	1		•	1	1			•
Habronattus calcaratus maddisoni	A Jumping Spider	none	special concern	1				Fire Dependent Forest	no ²
Notes:		1		1	1	I	L	· ·	

Notes:

¹ Northern bog lemming need large tracts of suitable peatland (MDNR, 2019d) which are not present in the areas of potential ground disturbance. Therefore it is not expected that the Project would have an impact to the northern bog lemming.

² The only instance of the jumping spiders in Minnesota were at collection sites with cliffs capped by a layer of vegetation (MDNR, 2019d) which would not be present within the area of potential ground disturbance.

Therefore, it is not expected that the Project would have an impact to the jumping spider.

Table 8-8 Aquatic Sensitive Species

Table 0-0 Aqualic Sensitive Species							
Scientific Name	Common Name	Federal Status	State Status	Regional Forester Sensitive Species Status for Superior National Forest	Species of Greatest Conservation Need	Natural Heritage Information System Occurrence in Project Area	Minnesota Departi Spec
Bird	<u>l</u>		<u>I</u>				<u> </u>
Cygnus buccinator	Trumpeter Swan	none	special concern		Yes		Littoral Zone of Lake
Sterna hirundo	Common Tern	none	threatened		Yes		Littoral Zone of Lake
Fish				-	•		•
Acipenser fulvescens	Lake Sturgeon	none	special concern	Yes	Yes		Littoral Zone of Lake
Coregonus nipigon	Nipigon Cisco	none	special concern	Yes	Yes		Deep Water Zone of
Coregonus zenithicus	Shortjaw Cisco	none	special concern	Yes	Yes		Deep Water Zone of
Couesius plumbeus	Lake Chub	none	special concern		Yes		Littoral Zone of Lake
Ichthyomyzon fossor	Northern Brook Lamprey	none	special concern	Yes	Yes		Small Rivers and St
Lepomis peltastes	Northern Sunfish	none	special concern		Yes		Littoral Zone of Lake
Insect	·					•	
Boyeria grafiana	Ocellated Darner	none	special concern		Yes		Small Rivers and St
Goera stylata	A Caddisfly	none	threatened	Yes	Yes		Small Rivers and St
Holocentropus glacialis	A Caddisfly	none	threatened				Littoral Zone of Lake
Ochrotrichia spinosa	A Purse Casemaker Caddisfly	none	endangered		Yes		Small Rivers and St
Ophiogomphus anomalus	Extra-striped Snaketail	none	special concern		Yes		Small Rivers and St
Triaenodes flavescens	A Triaenode Caddisfly	none	special concern		Yes		Small Rivers and St
Mussel							
Lasmigona compressa	Creek Heelsplitter	none	special concern	Yes	Yes		Small Rivers and St
Reptile							
Emydoidea blandingii	Blanding's Turtle	none	threatened		Yes		Small Rivers and Str
Vascular Plant							
Callitriche heterophylla	Larger Water Starwort	none	threatened	Yes			Littoral Zone of Lake
Caltha natans	Floating Marsh Marigold	none	endangered	Yes			Small Rivers and St
Carex flava	Yellow Sedge	none	special concern				Small Rivers and St
Cladium mariscoides	Twig Rush	none	special concern				Littoral Zone of Lake
Crassula aquatica	Water Pygmyweed	none	threatened				Littoral Zone of Lake
Elatine triandra	Three-stamened Waterwort	none	special concern				Littoral Zone of Lake
Eleocharis robbinsii	Robbins' Spikerush	none	threatened				Littoral Zone of Lake
Juncus subtilis	Slender Rush	none	endangered	Yes			Littoral Zone of Lake
Littorella americana	American Shore Plantain	none	special concern				Littoral Zone of Lake
Myriophyllum heterophyllum	Broadleaf Water Milfoil	none	special concern				Littoral Zone of Lake
Najas gracillima	Slender Naiad	none	special concern				Littoral Zone of Lake
Nymphaea leibergii	Small White Waterlily	none	threatened	Yes			Littoral Zone of Lake
Potamogeton oakesianus	Oakes' Pondweed	none	endangered	Yes			Littoral Zone of Lake
Subularia aquatica ssp. americana	Awlwort	none	threatened	Yes			Littoral Zone of Lake
Torreyochloa pallida	Torrey's Mannagrass	none	special concern				Littoral Zone of Lake
Utricularia resupinata	Lavender Bladderwort	none	threatened	Yes			Littoral Zone of Lake

tment of Natural Resources Rare cies Guide Habitats	Potentially Present in Areas of Potential Ground Disturbance
(e	
e, Deep Water Zone of Lake	
ke, Deep Water Zone of Lake	
of Lake	
of Lake	
e, Small Rivers and Streams	
treams	
Ce	
treams	
itreams	
treams	
treams	
treams	

treams	

treams	
2	
te Streams	
treams	
ke Ke	
(e	
(e	
ie	
(e	
ke Ke	
e, Small Rivers and Streams	
(e	
e, Small Rivers and Streams	
ke	

Table 8-9 U.S. Geological Survey GAP / LANDFIRE Data Impacts

GAP Classification	Project Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed Portion of Border Lakes Subsection	% Reduction in Acres
Project area			-
Boreal Aspen-Birch Forest	43.0	102,849	0.04%
Boreal Jack Pine-Black Spruce Forest	127.3	68,576	0.19%
Boreal White Spruce-Fir-Hardwood Forest	517.2	502,604	0.10%
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	420.8	228,560	0.18%
Cultivated Cropland	0.0	187	0.00%
Developed, High Intensity	1.1	2,372	0.05%
Developed, Low Intensity	0.0	462	0.00%
Developed, Open Space	0.2	821	0.02%
Eastern Boreal Floodplain	0.5	3,237	0.02%
Harvested Forest - Grass/Forb Regeneration	0.4	2,555	0.02%
Laurentian-Acadian Floodplain Systems	0.4	7,535	0.01%
Laurentian-Acadian Northern Hardwoods Forest	5.2	7,909	0.07%
Laurentian-Acadian Northern Pine-(Oak) Forest	18.1	61,636	0.03%
Laurentian-Acadian Swamp Systems	9.5	10,207	0.09%
Open Water (Fresh)	8.2	215,656	0.00%
Quarries, Mines, Gravel Pits and Oil Wells	3.3	726	0.45%
Other	0.0	34,691	0.00%
Total		1,250,582	0.09%
Plant site		.,	010070
Boreal Aspen-Birch Forest	1.7		
Boreal Jack Pine-Black Spruce Forest	15.3	1	
Boreal White Spruce-Fir-Hardwood Forest	85.7	1	
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	46.0	-	
Cultivated Cropland	0.0	-	
Developed, High Intensity	0.0	-	
Developed, Low Intensity	0.0	1	
Developed, Open Space	0.0	-	
Eastern Boreal Floodplain	0.0	-	
Harvested Forest - Grass/Forb Regeneration	0.0	-	
Laurentian-Acadian Floodplain Systems	0.2	-	
Laurentian-Acadian Northern Hardwoods Forest	0.0	-	
Laurentian-Acadian Northern Pine-(Oak) Forest	1.0	-	
Laurentian-Acadian Swamp Systems	2.5	-	
Open Water (Fresh)	0.4	-	
Quarries, Mines, Gravel Pits and Oil Wells	0.4	-	
		-	
Total	152.8	-	
Tailings management site	45.0	-	
Boreal Aspen-Birch Forest	15.3	-	
Boreal Jack Pine-Black Spruce Forest	89.4	-	
Boreal White Spruce-Fir-Hardwood Forest	254.2	-	
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	270.8	-	
Cultivated Cropland	0.0	-	
Developed, High Intensity	1.1	-	
Developed, Low Intensity	0.0	-	
Developed, Open Space	0.2	-	
Eastern Boreal Floodplain	0.1	-	
Harvested Forest - Grass/Forb Regeneration	0.2	-	
Laurentian-Acadian Floodplain Systems	0.0		
Laurentian-Acadian Northern Hardwoods Forest	1.4		
Laurentian-Acadian Northern Pine-(Oak) Forest	10.7		
Laurentian-Acadian Swamp Systems	4.4	-	
Open Water (Fresh)	5.3		
Quarries, Mines, Gravel Pits and Oil Wells	0.0		
Total	653.1		

GAP Classification	Project Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed Portion of Border Lakes Subsection	% Reduction in Acres
Access Road			
Boreal Aspen-Birch Forest	0.0]	
Boreal Jack Pine-Black Spruce Forest	6.8		
Boreal White Spruce-Fir-Hardwood Forest	23.7		
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	12.9	_	
Cultivated Cropland	0.0		
Developed, High Intensity	0.0		
Developed, Low Intensity	0.0		
Developed, Open Space	0.0	1	
Eastern Boreal Floodplain	0.0		
Harvested Forest - Grass/Forb Regeneration	0.0	1	
Laurentian-Acadian Floodplain Systems	0.0	-	
Laurentian-Acadian Northern Hardwoods Forest	0.0		
Laurentian-Acadian Northern Pine-(Oak) Forest	0.1		
Laurentian-Acadian Swamp Systems	0.0		
Open Water (Fresh)	0.0		
Quarries, Mines, Gravel Pits and Oil Wells	0.0	-	
Tota	l 43.5		
Transmission corridor		-	
Boreal Aspen-Birch Forest	24.7	-	
Boreal Jack Pine-Black Spruce Forest	8.0	-	
Boreal White Spruce-Fir-Hardwood Forest	105.4	-	
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	35.1	-	
Cultivated Cropland	0.0	-	
Developed, High Intensity	0.0	-	
Developed, Low Intensity	0.0	4	
Developed, Open Space	0.0	4	
Eastern Boreal Floodplain	0.4	4	
Harvested Forest - Grass/Forb Regeneration	0.0	-	
Laurentian-Acadian Floodplain Systems	0.4	-	
Laurentian-Acadian Northern Hardwoods Forest Laurentian-Acadian Northern Pine-(Oak) Forest	3.1 3.1	-	
Laurentian-Acadian Swamp Systems	1.1	-	
Open Water (Fresh)	2.2	-	
Quarries, Mines, Gravel Pits and Oil Wells	3.3	-	
Tota		4	
Water intake corridor / facility	1 100.0		
Boreal Aspen-Birch Forest	0.0	-	
Boreal Jack Pine-Black Spruce Forest	0.0	4	
Boreal White Spruce-Fir-Hardwood Forest	3.9	1	
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	3.2	-	
Cultivated Cropland	0.0	1	
Developed, High Intensity	0.0	-	
Developed, Low Intensity	0.0	1	
Developed, Open Space	0.0	1	
Eastern Boreal Floodplain	0.0	1	
Harvested Forest - Grass/Forb Regeneration	0.0		
Laurentian-Acadian Floodplain Systems	0.0		
Laurentian-Acadian Northern Hardwoods Forest	0.0		
Laurentian-Acadian Northern Pine-(Oak) Forest	0.0		
Laurentian-Acadian Swamp Systems	0.0		
Open Water (Fresh)	0.0		
Quarries, Mines, Gravel Pits and Oil Wells	0.0		
Tota			

Table 8-9 U.S. Geological Survey GAP / LA	NDFIRE Data Impacts
---	---------------------

GAP Classification	Project Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed Portion of Border Lakes Subsection	% Reduction in Acres
Ventilation raise sites and access road			
Boreal Aspen-Birch Forest	0.0	1	
Boreal Jack Pine-Black Spruce Forest	0.7		
Boreal White Spruce-Fir-Hardwood Forest	4.7		
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	8.7		
Cultivated Cropland	0.0		
Developed, High Intensity	0.0		
Developed, Low Intensity	0.0		
Developed, Open Space	0.0		
Eastern Boreal Floodplain	0.0		
Harvested Forest - Grass/Forb Regeneration	0.0		
Laurentian-Acadian Floodplain Systems	0.0		
Laurentian-Acadian Northern Hardwoods Forest	0.0		
Laurentian-Acadian Northern Pine-(Oak) Forest	0.3		
Laurentian-Acadian Swamp Systems	0.6		
Open Water (Fresh)	0.0		
Quarries, Mines, Gravel Pits and Oil Wells	0.0		
Total	15.0		
Non-contact water diversion area			
Boreal Aspen-Birch Forest	1.3		
Boreal Jack Pine-Black Spruce Forest	6.8		
Boreal White Spruce-Fir-Hardwood Forest	39.6		
Boreal-Laurentian Conifer Acidic Swamp and Treed Poor Fen	44.1		
Cultivated Cropland	0.0		
Developed, High Intensity	0.0		
Developed, Low Intensity	0.0		
Developed, Open Space	0.0		
Eastern Boreal Floodplain	0.0		
Harvested Forest - Grass/Forb Regeneration	0.0		
Laurentian-Acadian Floodplain Systems	0.0		
Laurentian-Acadian Northern Hardwoods Forest	0.7		
Laurentian-Acadian Northern Pine-(Oak) Forest	2.9		
Laurentian-Acadian Swamp Systems	0.9		
Open Water (Fresh)	0.3		
Quarries, Mines, Gravel Pits and Oil Wells	0.0		
Total	96.6		

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets and rounding.

National Land Cover Data Impacts	Project Impacts (acres) ¹	Acres in Rainy River - Headwaters Watershed Portion of Border Lakes Subsection	% Reduction in Acres
Project area			
Deciduous Forest	44.7	137,409	0.03%
Developed, Open Space	33.8	7,492	0.45%
Developed, Low Intensity	0.0	647	0.00%
Emergent Herbaceous Wetlands	1.9	22,862	0.01%
Evergreen Forest	322.0	227,015	0.14%
Grassland/Herbaceous	47.1	24,755	0.19%
Mixed Forest	159.7	247,012	0.06%
Open Water	8.4	211,656	0.00%
Shrub/Scrub	167.6	71,587	0.23%
Woody Wetlands	370.2	300,042	0.12%
Other	0.0	2,155	0.00%
Total	1155.4	1,252,632	0.09%
Plant site			
Decidious Forest	7.8		
Developed, Open Space	5.8		
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	0.0		
Evergreen Forest	19.0		
Grassland/Herbaceous	15.3		
Mixed Forest	35.5		
Open Water	0.5		
Shrub/Scrub	36.8		
Woody Wetlands	32.2	1	
Total	152.9		
Tailings management site			
Decidious Forest	5.1		
Developed, Open Space	19.5	1	
Developed, Low Intensity	0.0	1	
Emergent Herbaceous Wetland	0.0	1	
Evergreen Forest	181.9	1	
Grassland/Herbaceous	28.9	1	
Mixed Forest	96.1	1	
Open Water	5.5	1	
Shrub/Scrub	93.5	4	
Woody Wetlands	222.7	1	
Total		4	
Access Road	000.2		
Decidious Forest	0.0		
Developed, Open Space	3.2	· · · · · · · · · · · · · · · · · · ·	
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	0.0		
Evergreen Forest	30.6		
Grassland/Herbaceous	0.0		
	0.0		
Mixed Forest			
Open Water Shrub/Scrub	0.0		
	1.2	4	
Woody Wetlands	7.5	4	
Total	43.6		
Transmission corridor	00 F		
Decidious Forest	30.5	-	
Developed, Open Space	0.2		
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	1.9		

Table 8-10 National Land Cover Data Impacts

	Project Impacts	Acres in Rainy River - Headwaters	% Reduction
National Land Cover Data Classification	(acres) ¹	Watershed Portion of Border Lakes Subsection	in Acres
Evergreen Forest	45.5		
Grassland/Herbaceous	1.6		
Mixed Forest	15.9		
Open Water	2.4		
Shrub/Scrub	25.6		
Woody Wetlands	63.2		
Total	186.8		
Water intake corridor			
Decidious Forest	0.5		
Developed, Open Space	0.0		
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	0.0		
Evergreen Forest	2.9		
Grassland/Herbaceous	0.0		
Mixed Forest Open Water	1.2 0.0		
Shrub/Scrub	0.0	•	
Woody Wetlands	2.5	•	
Total		•	
Ventilation raise sites and access road	7.1		
Decidious Forest	0.0		
Developed, Open Space	0.9		
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	0.0		
Evergreen Forest	10.1		
Grassland/Herbaceous	0.0		
Mixed Forest	0.0		
Open Water	0.0		
Shrub/Scrub	0.0		
Woody Wetlands	3.9		
Total	14.9		
Non-contact water diversion area			
Decidious Forest	0.8		
Developed, Open Space	4.2		
Developed, Low Intensity	0.0		
Emergent Herbaceous Wetland	0.0		
Evergreen Forest	32.0		
Grassland/Herbaceous	1.3		
Mixed Forest	9.9		
Open Water	0.0		
Shrub/Scrub	10.2		
Woody Wetlands	38.2		
Total	96.6		

Notes:

¹ Minor differences in acreages between tables are due to variations in the spatial resolution of underlying datasets.

Type/Subtype Code	Type/Subtype Name Community total	S-Rank	Project Impacts (acres)
Project area			
APn81a	Poor Black Spruce Swamp	S5	65.0
APn81b	Poor Tamarack - Black Spruce Swamp	S4	5.5
APn81b1	Poor Tamarack - Black Spruce Swamp, Black Spruce Subtype	S4	0.0
APn81b2	Poor Tamarack - Black Spruce Swamp, Tamarack Subtype	S4	0.7
APn91a	Low Shrub Poor Fen	S5	3.9
APn91b	Graminoid Poor Fen (Basin)	S3	0.0
	Acid Peatland System Total		75.1
CTn32a	Mesic Mafic Cliff (Northern)	S3	2.0
	Cliff/Talus System Total		2.0
BW_CX	Beaver Wetland Complex		7.2
	Beaver Wetland Complex Total		7.2
MF_PDMW_CX	Poor Dry-Mesic Woodland_Mesic Forest Complex		107.2
	Mesic Woodland/Mesic Forest Complex Total		107.2
FDn32	Northern Poor Dry-Mesic Mixed Woodland		126.4
FDn32a	Red Pine - White Pine Woodland (Canadian Shield)	S3	0.0
FDn32c	Black Spruce - Jack Pine Woodland	S2 or S3	284.9
FDn32c1	Black Spruce - Jack Pine Woodland, Jack Pine - Balsam Fir Subtype	S2	1.0
FDn33	Northern Dry-Mesic Mixed Woodland		3.9
FDn33a	Red Pine - White Pine Woodland	S3	0.4
FDn43	Northern Mesic Mixed Forest		0.0
FDn43a	White Pine - Red Pine Forest	S2	4.4
FDn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	7.9
FDn43b2	Aspen - Birch Forest, Hardwood Subtype	S5	4.0
	Fire-Dependent Forest/Woodland System Total	00	432.9
FPn62a	Rich Black Spruce Swamp (Basin)	S3	3.7
1111020	Forested Rich Peatland System Total	00	3.7
OPn81	Northern Shrub Shore Fen		0.0
OPn81b	Leatherleaf - Sweet Gale Shore Fen	S5	1.2
OPn91	Northern Rich Fen (Water Track)	00	0.4
011181	Open Rich Peatland System Total		1.6
WFn55a	Black Ash - Aspen - Balsam Poplar Swamp (Northeastern)	S4	18.7
WFn64c	Black Ash - Alder Swamp (Northern)	S4 S4	0.1
	Wet Forest System Total	34	18.8
WMn82b1	Sedge Meadow, Bluejoint Subtype	S5	0.7
		35	
	Wet Meadow/Carr System Total		0.7
	Total ¹		649.2
Plant site			
APn91a	Low Shrub Poor Fen	S5	0.0
FDn32c	Black Spruce - Jack Pine Woodland	S2 or S3	1.8
FDn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	2.1
	Fire-Dependent Forest/Woodland System Total		3.9
WFn64c	Black Ash - Alder Swamp (Northern)	S4	0.1
	Wet Forest System Total		0.1
	Total		4.0
TMS			
APn81a	Poor Black Spruce Swamp	S5	43.7
APn81b	Poor Tamarack - Black Spruce Swamp	S4	0.9
	Acid Peatland System Total		44.6
CTn32a	Mesic Mafic Cliff (Northern)	S3	0.5
	Cliff/Talus System Total		0.5
BW_CX	Beaver Wetland Complex		6.5
	Beaver Wetland Complex Total		6.5
MF_PDMW_CX	Poor Dry-Mesic Woodland Mesic Forest Complex		74.1
	Mesic Woodland/Mesic Forest Complex		74.1
FDn32	Northern Poor Dry-Mesic Mixed Woodland		121.8
FDn32c	Black Spruce - Jack Pine Woodland	S2 or S3	205.5
	Black Spruce - Jack Pine Woodland, Jack Pine - Balsam Fir Subtype	S2 01 33 S2	0.6
FDn32c1	IBIACK Shriice - Jack Pine Woodland Jack Pine - Baleam Fir Subtype		

Table 8-11 Minnesota Department of Natural Resources Minnesota Biological Survey Data Impacts

Type/Subtype Code	Type/Subtype Name Community total	S-Rank	Project Impacts (acres)
FDn43b2	Aspen - Birch Forest, Hardwood Subtype	S5	4.0
2	Fire-Dependent Forest/Woodland System Total		333.2
Pn62a	Rich Black Spruce Swamp (Basin)	S3	2.7
	Forested Rich Peatland System Total		2.7
WFn55a	Black Ash - Aspen - Balsam Poplar Swamp (Northeastern)	S4	10.7
	Wet Forest System Total	01	10.7
	Total		472.3
Access road			
APn81a	Poor Black Spruce Swamp	S5	1.0
APn81b2	Poor Tamarack - Black Spruce Swamp, Tamarack Subtype	S4	0.5
	Acid Peatland System Total	•	1.5
Dn32c	Black Spruce - Jack Pine Woodland	S2 or S3	22.0
-Dn33	Northern Dry-Mesic Mixed Woodland	02 01 00	3.9
-Dn43a	White Pine - Red Pine Forest	S2	4.3
Dn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	0.1
	Fire-Dependent Forest/Woodland System Total		30.3
Pn62a	Rich Black Spruce Swamp (Basin)	S3	0.5
1 11024	Forested Rich Peatland System Total	00	0.5
	Total		32.3
ransmission corridor	l		52.5
APn81a	Poor Black Spruce Swamp	S5	2.2
APn81b	Poor Tamarack - Black Spruce Swamp		2.2
APn81b2	Poor Tamarack - Black Spruce Swamp Poor Tamarack - Black Spruce Swamp, Tamarack Subtype		0.3
APrio 102 APri 91a	Low Shrub Poor Fen	S4 S5	3.9
AFII9Ta		35	<u> </u>
	Acid Peatland System Total		
MF_PDMW_CX	Poor Dry-Mesic Woodland_Mesic Forest Complex		10.5
-0~20	Mesic Woodland/Mesic Forest Complex		<u> </u>
-Dn32 -Dn32c	Northern Poor Dry-Mesic Mixed Woodland	C2 er C2	
	Black Spruce - Jack Pine Woodland	S2 or S3	25.4
Dn32c1	Black Spruce - Jack Pine Woodland, Jack Pine - Balsam Fir Subtype	S2	0.3
Dn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	2.7
	Fire-Dependent Forest/Woodland System Total	05	31.6
DPn81b	Leatherleaf - Sweet Gale Shore Fen	S5	1.2
DPn91	Northern Rich Fen (Water Track)		0.4
	Open Rich Peatland System Total		1.6
VMn82b1	Sedge Meadow, Bluejoint Subtype	S5	0.7
	Wet Meadow/Carr System Total		0.7
	Total		52.9
Vater intake corridor /			
//F_PDMW_CX	Poor Dry-Mesic Woodland_Mesic Forest Complex		6.2
	Complex community Total		6.2
	Total		6.2
entilation raise sites a		- -	
APn81a	Poor Black Spruce Swamp	S5	0.4
	Acid Peatland System Total		0.4
-Dn33a	Red Pine - White Pine Woodland	S3	0.4
-Dn43a	White Pine - Red Pine Forest	S2	0.1
Dn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	1.6
	Fire-Dependent Forest/Woodland System Total		2.1
Pn62a	Rich Black Spruce Swamp (Basin)	S3	0.4
	Forested Rich Peatland System Total		0.4
	Total		2.9

Table 8-11 Minnesota Department of Natural Resources Minnesota Biological Survey Data Impacts

Table 8-11 Minnesota Department of Natural Resources Minnesota Biological Survey Data Impacts

Type/Subtype Code	Type/Subtype Name Community total	S-Rank	Project Impacts (acres)
Non-contact water dive	rsion area		
APn81a	Poor Black Spruce Swamp	S5	17.9
APn81b	Poor Tamarack - Black Spruce Swamp	S4	2.5
	Acid Peatland System Total		20.4
CTn32a	Mesic Mafic Cliff (Northern)	S3	1.5
	Cliff/Talus System Total		1.5
BW_CX	Beaver Wetland Complex		0.7
	Beaver Wetland Complex Total		0.7
MF_PDMW_CX	Poor Dry-Mesic Woodland_Mesic Forest Complex		16.4
	Mesic Woodland/Mesic Forest Complex		16.4
FDn32	Northern Poor Dry-Mesic Mixed Woodland		1.5
FDn32c	Black Spruce - Jack Pine Woodland	S2 or S3	30.2
FDn43b1	Aspen - Birch Forest, Balsam Fir Subtype	S5	0.1
	Fire-Dependent Forest/Woodland System Total		31.8
WFn55a	Black Ash - Aspen - Balsam Poplar Swamp (Northeastern)	S4	8.0
	Wet Forest System Total		8.0
	Total		78.8

Notes:

¹ MBS NPC/candidate data is not available for the full Project area. Southwest portion of the transmission corridor has not been mapped.

Abbreviations:

MBS = Minnesota Biological Survey

NPC = Native Plant Community

Table 9-1 Previous Intensive Archaeological Surveys within the Project Area

Author	Year	Report Title
Duluth Archaeology Center	2003	Phase I Archaeological Survey on T.H. 1 (S.P. 3802-18), Lake County, Minnesota
10,000 Lakes Archaeology	2012	Phase I Archaeological Survey of the Potential Maturi, Nokomis, Birch Lake Shaft Sites for Twin Metals Minnesota Inc., Lake and St. Louis Counties, Minnesota
106 Group	2012b	Phase I Archaeological Survey for Twin Metals Minnesota Hydrogeological Wells on Federal Lands, Lake County, Minnesota
106 Group	2012c	Phase I Archaeological Survey for Twin Metals Minnesota Hydrogeologic Field Activities on Non-Federal Lands, St. Louis and Lake Counties, Minnesota
106 Group	2013a	Phase I Archaeological Sruvey for Potential Twin Metals Minnesota Areas of Interest, St. Louis and Lake Counties, Minnesota
106 Group	2013b	Phase I Archaeological Survey for Twin Metals Minnesota 1-A Expansion Drill Program, Lake County, Minnesota
106 Group	2013c	Phase I Archaeological Sruvey for Twin Metals Minnesota 1-A Expansion Drill Program, Lake County, Minnesota
106 Group	2016	Phase I Archaeological Survey for Twin Metals Minnesota Well MN-512 Access Road Reroute Project, Lake County, Minnesota
106 Group	2017	Cultural Resources Study/Survey 2017 Season for Twin Metals Minnesota, St. Louis and Lake Counties, Minnesota
106 Group	2018a	Phase I Archaeological Survey for Twin Metals Minnesota Hydrogeological Wells on Federal Lands, Lake County, Minnesota
106 Group	2018b	Phase I Arcaheological Survey for Twin Metals Minnesota Hydrogeological Wells on Private Lands, St. Louis and Lake Counties, Minnesota
106 Group	2018c	Phase I Archaeological Survey for Twin Metals Minnesota Hydrogeological Wells on Non-Federal Public Lands, St. Louis and Lake Counties, Minnesota
106 Group	2018d	Phase I Archaeological Survey for Twin Metals Minnesota - 2018 Season on Federal Land, Lake County, Minnesota
106 Group	2019a	Phase I Archaeological Survey for Twin Metals Minnesota - 2018 Season on Private Land, St. Louis and Lake Counties, Minnesota
106 Group	2019b	Phase I Archaeological Survey for Twin Metals Minnesota - 2018 Season on Non-Federal Public Lands, Lake County, Minnesota

Criteria Pollutant	Averaging Period	Meteorological Data Year	Background Concentration ⁽¹⁾ (µg/m ³)
PM _{2.5}	Annual	2012-2016	4.0
PM _{2.5}	24-Hr Avg	2012-2016	12
PM ₁₀	24-Hr Avg	2012-2016	70
SO ₂	Annual	2012-2016	1.6
SO ₂	24-Hr Avg	2012-2016	3.7
SO ₂	3-Hr Avg	2012-2016	7.8
SO ₂	1-Hr Avg	2012-2016	10.5
NO ₂	Annual	2012-2016	5.6
NO ₂	1-Hr Avg	2012-2016	45
СО	8-Hr Avg	2012-2016	600
СО	1-Hr Avg	2012-2016	800

Table 11-1 Background Criteria Pollutant Concentrations

Notes:

Background ambient air concentrations are calculated design values based on data provided by the Minnesota Pollution Control Agency (MPCA) through its Criteria Pollutant Data Explorer website. PM_{2.5} data

were obtained from Ely, Minnesota (0005). Using MPCA guidance for calculation of background concentrations, the $PM_{2.5}$ 24-hour background concentration is the average of the 98th percentile 24-hour values over three years. The $PM_{2.5}$ annual background concentration is the average of the annual mean concentration over three years. PM_{10} data were obtained from Silver Bay (7640-1), near the North Shore Mining site. The PM_{10} 24-hour background concentration is the high 2nd high value over the three-year period.

Given there are no background concentrations for gaseous pollutants in the upper Minnesota area, design values from 2015 - 2017 for Rosemount (0423) south of Minneapolis/St. Paul were used for nitrogen dioxide, sulfur dioxide, and carbon monoxide. While this site is in an urban area, the monitoring location is away from major roadways that could influence the results. The 1-hour SO₂ background concentration is the three-year

average of the 99th percentile of the annual distribution of daily maximum one-hour average concentrations, while the annual SO_2 and NO_2 concentrations are the average of the annual mean concentration over three

years. The 24-hour and 3-hour SO₂ background concentrations are the second-high values over three years.

The 1-hour NO₂ background concentration is the three-year average of the 98th percentile of the annual

distribution of daily one-hour concentrations. The background CO concentrations are the high 2nd high value over the three-year period.

Abbreviations:

μg/m³ = micrograms per cubic meter Avg = average Hr = hour PM = particulate matter

Table 11-2 Preliminary Project Emission Sources

Source	Emission Source Type	PM (lb/hr)	PM ₁₀ (lb/hr)	PM _{2.5} (lb/hr)	NO ₂ (lb/hr)	SO ₂ (lb/hr)	CO (lb/hr)
Ventilation Raise Site 1	Point / Fugitive	1.8	0.4	0.2	3.6	0.4	23.5
Ventilation Raise Site 3	Point / Fugitive	2.8	0.6	0.4	5.7	0.7	37.1
Conveyor Portal	Point / Fugitive	0.8	0.2	0.1	1.6	0.2	10.1
Surface Material Transfer							
Main Conveyor to Coarse Ore Storage Pile Feed Conveyor	Fugitive	0.14	0.046	046 0.014		-	
Coarse Ore Pile Feed Conveyor to Coarse Oar Storage Pile	Fugitive	0.14	0.046	0.014	-	-	-
Coarse Ore Storage Pile to semi-autogenous grind Mill Feed Conveyor	Fugitive	0.14	0.046	0.014	-	-	-
Semi-autogenous grind Mill and Conveyor/Hopper Transfer Area	Fugitive	0.13	0.009	0.003	-	-	-
Surface Material Processing at Temporary Crusher							
Jaw Crusher and Transfer Points	Fugitive	0.08	0.02	0.007	-	-	-
Temporary Storage to Haul Truck	Fugitive	0.63	0.0001	0.00003	-	-	-
Temporary Rock Storage Facility							
Material Handling	Fugitive	0.06	0.03	0.004	-	-	-
Vehicle Travel - Portal to temporary rock storage facility	Fugitive	0.17	0.04	0.004	-	-	-
Vehicle Travel - Temporary Crusher (temporary rock storage facility) to Coarse Ore Storage	Fugitive	0.09	0.02	0.002	-	-	-
Mill/Concentrator Building							
Copper Concentrate Handling	Fugitive	0.023	0.009	0.003	-	-	-
Nickel Concentrate Handling	Fugitive	0.011	0.004	0.001	-	-	-
Product Truck Travel							
Roadway Emissions ¹	Fugitive	0.1	0	0	-	-	-
Cement and Fly Ash Silos							
Cement/Slag Silo	Fugitive	0.005	0.002	0.001	-	-	-
Tailings Management Site	· · · · · ·				•		
Dry Stack Facility Wind Erosion ²	Fugitive	1.2	0.6	0.09	-	-	-
Notos:		Abbuss	ations		•	•	

Notes:

¹ Roadway emissions include fugitive emissions from surface roadway travel, no tailpipe emissions. It includes emissions from concentrate trucks and cement/ slag product delivery transferring materials from the process plant area to the main gate of the facility at the primary access road access point. Trucks moving ore on-site as part of the temporary rock storage facility are calculated separately. All on-site roadways are unpaved.

² For air dispersion modeling purposes, the entire area of the dry stack facility was assumed to be exposed.

Abbreviations:

lb/hr = pounds per hour PM = particulate matter

Table 11-3 Preliminary Estimations for Greenhouse Gas Emissions

Greenhouse Gases	Greenhouse Gases Emission Factor (kg/MMBtu) ²		Emissions (ton/yr)	Global Warming Potential ³	Emissions (CO ₂ e Short Tons)
LPG Usage ¹					•
Carbon Dioxide	61.71	136.07055	45295	1	45295
Methane	0.003	0.006615	2	25	55
Nitrous Oxide	0.006	0.001323	0.4	298	131
		Total GHG Emissions (mass)	45,298	Total GHG Emissions (CO2e Short Tons) ⁴	45,481
Water-Based Blasting Emulsion					
Anticipated Ore Blasted Annually (tons/yr)	8,030,000				
Anticipated Ore Blasted Annually (tonnes/yr)	8,158,480		Total GHG Emissions]
Blasting Emission Factor (kg CO 2e/tonne ore) ⁵	1.4		(CO2e Short Tons)	58,071	
Total Emissions (kg CO ₂ e/year)	11,421,872				_
Total Emissions (Short Ton CO ₂ e/year)	12,590				

Notes:

¹ LPG usage assumed the maximum heat input rating for burners (76 MMBtu/hour), for two burners, operating 24 hours a day, 7 days a week, 6 months out of the year (4380 hours). Actual hours of operation are expected to be less.

² Emission factors obtained from Tables C-1 and C-2 to 40 CFR part 98, subpart C.

³ Global warming potential obtained from Table A-1 to 40 CFR part 98, subpart A.

⁴ There is no information regarding expected GHG emissions from use of water emulsion explosives. Emission factors for this potential source are not available; therefore, potential GHG emissions were not estimated from this source.

⁵ The emission factor was obtained from the following paper: Norgate, T. and Haque, N., 2010. Energy and Greenhouse Gas Impacts of Mining and Mineral Processing Operations, Journal of Cleaner Production, 18: pp. 266-274. Table 3 in the article provides GHG emission factors for blasting associated with copper production. However, the emission factor appears to be for use of ANFO rather than a water-based emulsion, so it is probably conservative. The USEPA and other sources do not provide emission factors for GHG associated with blasting emissions.

Abbreviations:

CO₂e = CO₂ equivalents

CO₂e/year = CO₂ equivalents per year

GHG = greenhouse gas

kg CO_2e /tonne ore = kilograms of carbon dioxide equivalents per tonne of ore

kg CO2e/year = kilograms of carbon dioxide equivalents per year

kg/MMBtu = kilograms per million british thermal units squared Ib/MMBtu = pounds per million british thermal units LPG = liquid propane gas ton/yr = tons per year tonnes/yr = tonnes per year

Table 11-4 Modeled Emissions	Compared to National	Ambient Air Quality Standar	rds
			ius –

Criteria Pollutant	Averaging Period	Meteorological Data Year	Preliminarily Modeled Ambient Impact (μg/m ³)	Background Concentration ⁽¹⁾ (μg/m ³)	Total Impact (μg/m ³)	National Ambient Air Quality Standards (µg/m ³)
PM _{2.5} ⁽²⁾	Annual	2012-2016	0.42	4.0	4.42	12
PM _{2.5} ⁽³⁾	24-Hr Avg	2012-2016	4.37	12	16.37	35
PM ₁₀ ⁽⁴⁾	24-Hr Avg	2012-2016	13.7	70	83.7	150
SO ₂	Annual	2012-2016	0.7	1.6	2.3	80
SO ₂ ⁽⁵⁾	24-Hr Avg	2012-2016	17.3	3.7	21	365
SO ₂ ⁽⁵⁾	3-Hr Avg	2012-2016	78.1	7.8	85.9	1,300
SO ₂ ⁽⁶⁾	1-Hr Avg	2012-2016	93.8	10.5	104.3	196
NO ₂	Annual	2012-2016	2.8	5.6	8.4	100
NO ₂ ⁽⁷⁾	1-Hr Avg	2012-2016	132	45	177	188
CO ⁽⁵⁾	8-Hr Avg	2012-2016	2,224	600	2,824	10,000
CO ⁽⁵⁾	1-Hr Avg	2012-2016	8,174	800	8,974	40,000

Notes:

⁽¹⁾ Background ambient air concentrations are calculated design values based on data provided by the MPCA through its Criteria Pollutant Data Explorer website. PM_{2.5} data were obtained from Ely, Minnesota (0005). Using MPCA guidance

for calculation of background concentrations, the PM2.5 24-hour background concentration is the average of the 98th percentile

24-hour values over three years. The PM2.5 annual background concentration is the average of the annual mean concentration

over three years. PM₁₀ data were obtained from Silver Bay (7640-1), near the North Shore Mining site. The PM₁₀ 24-hour

background concentration is the high 2nd high value over the three-year period. There are no background concentrations for gaseous pollutants in the upper Minnesota so design values from 2015 - 2017 for Rosemount (0423) south of Minneapolis/ St. Paul were used for nitrogen dioxide, sulfur dioxide, and carbon monoxide. While this site is in an urban area, the monitoring location is away from major roadways that could influence the results. The 1-hour SO₂ background concentration is the

three-year average of the 99th percentile of the annual distribution of daily maximum one-hour average concentrations, while the annual SO_2 and NO_2 concentrations are the average of the annual mean concentration over three years. The 24-hour

and 3-hour SO₂ background concentrations are the second-high values over three years. The 1-hour NO₂ background

concentration is the three-year average of the 98th percentile of the annual distribution of daily one-hour concentrations. The background CO concentrations are the high 2nd high value over the three-year period.

⁽²⁾ The PM_{2.5} annual value is the highest annual average concentration over five years of meteorological data.

⁽³⁾ The PM_{2.5} 24-hour concentration is the highest eighth high concentration over five years of meteorological data.

⁽⁴⁾ The PM₁₀ 24-hour concentration is the highest sixth high concentration over five year of meteorological data.

⁽⁵⁾ The SO₂ 24-hour and 3-hour values and CO 1-hour and 8-hour values are highest 2nd high concentrations over 5 years of meteorological data. These values are used for assessing compliance with the National Ambient Air Quality Standards.

⁽⁶⁾ The SO₂ 1-hour value is the 5-year average of the fourth-highest daily maximum 1-hour concentrations. This is representative of the 99th percentile of the daily maximum 1-hour concentration.

⁽⁷⁾ The NO₂ 1-hour value is the 5-year average of the eighth-highest daily maximum 1-hour concentrations. This is representative of the 98th percentile of the daily maximum 1-hour concentrations.
Abbreviations:

μg/m³ = microgram per cubic meter Avg = average Hr = hour PM = particulate matter

Criteria Pollutant	Averaging Period	Meteorological Data Year	Preliminarily Modeled Impact (μg/m ³)	Prevention of Significant Deterioration Increment - Class II (μg/m ³)
PM _{2.5} ^(1,2)	Annual	2012-2016	0.42	4
PM _{2.5} ^(1,3)	24-Hr Avg	2012-2016	7.6	9
PM ₁₀ ⁽²⁾	Annual	2012-2016	0.8	17
PM ₁₀ ⁽³⁾	24-Hr Avg	2012-2016	16.6	30
SO ₂	Annual	2012-2016	0.7	20
SO ₂ ⁽³⁾	24-Hr Avg	2012-2016	17.3	91
SO ₂ ⁽³⁾	3-Hr Avg	2012-2016	78.1	325
NO ₂ ⁽²⁾	Annual	2012-2016	2.8	25

Table 11-5 Modeled Emissions Compared to Prevention of Significant Deterioration

Notes:

⁽¹⁾ The minor source baseline date for $PM_{2.5}$ has not been triggered for Lake County in Minnesota.

Therefore, non-major sources such as TMM do not need to comply with the PM_{2.5} Prevention of

Significant Deterioration increment.

⁽²⁾ Annual results are the highest annual average concentration for the referenced modeling period.

⁽³⁾ All short-term values (non-annual) are the highest 2nd high concentrations over five years of meteorological data: 2012 through 2016.

Abbreviations:

 μ g/m³ = microgram per cubic meter

Avg = average

Hr = hour

PM = particulate matter

Table 12-1 Baseline Ambient Noise Levels

Measurement Location	Daytime Minimum	Daytime Average	Daytime Maximum	Nighttime Minimum	Nighttime Average	Nighttime Maximum
	(1-hour L _{eq} dBA)					
River Point Resort	<20	30	~50	<20	27	~50
Spruce Road	<20	30	~50	<20	27	~55
Birch West	~20	40	~60	<20	36	~60

Abbreviations:

~ = approximately

< = Less than

dBA = adjusted decibels

 L_{eq} = equivalent continuous sound level

Table 12-2 State of Minnesota Hourly Noise Limits per Minnesota Rule part 7030.0040 (dBA)

Noise Area Classification	Daytime (7am to 10pm) L ₁₀	Daytime (7am to 10pm) L ₅₀	Nighttime (10pm to 7am) L ₁₀	Nighttime (10pm to 7am) L ₅₀
1	65	60	55	50
2	70	65	70	65
3	80	75	80	75

Note:

There are no noise standards for NAC-4.

Abbreviations:

dBA = adjusted decibels

 L_{10} = 10 percent of the unit of time measured

 L_{50} = 50 percent of the unit of time measured

Route	Description	Existing Annual Average Daily Traffic	Forecast (2040) Annual Average Daily Traffic	Project Generated Trips	Existing and Forecast (2040) Annual Average Daily Traffic with Project Generated Trips
TH 1	Between plant site and Ely, Minnesota	1,150	1,150	170	1,320
New Tomahawk Road	Between Babbitt and TH 1	130	130	0	130
CR 21	East of Salo Road and Babbitt, Minnesota	2,000	2,000	704	2,704

Table 13-1 Existing and Forecast Annual Average Daily Traffic with and without Project Trips

Table 13-2 Anticipated Daily Vehicle Trips

Тгір Туре	Number of Trips		
Truck Trips	194		
Bus Trips	16		
Employee Vehicle Trips	664		
Trip Destination	Number of Trips		
Trip Destination Total Trips Traveling to and from the Project	Number of Trips874		

Table 13-3 Level of Service Thresholds¹

Speed Limit	Truck Percentage	LOS A Service Volume (annual average daily traffic)	LOS B Service Volume (annual average daily traffic)	LOS C Service Volume (annual average daily traffic)	LOS D Service Volume (annual average daily traffic)
45	10	<3,400	3,400	8,600	13,900
50	10	<8,600	8,600	13,900	19,000
55	10	<13,900	13,900	19,000	24,200
60	10	<19,000	19,000	24,200	29,300

Notes:

¹ Level of Service E and F are not provided in the FHWA HPMS Report

Abbreviations:

< = less than

Table 14-1 Cumulative Potential Effects Summary

Affected Resource	Timescale	Environmentally- relevant area	Reasonably Foreseeable Future Actions
Surface water quality	Temporary during Project construction, operations, and closure	Birch Lake Reservoir and lower Keeley Creek	None
Surface water hydrology	Temporary during Project construction, operations, and closure	Future work scope necessary - outlined in Section 6.3.1	To be defined based on future work scope
Groundwater quality	Temporary during Project closure	Future work scope necessary - outlined in Section 6.3.2	To be defined based on future work scope
Groundwater hydrogeology	Temporary during Project construction, operations, and closure Permanent - DSF recharge	Future work scope necessary - outlined in Section 6.3.2	To be defined based on future work scope
Wetlands	Temporary during Project construction, operations, and closure - Indirect Impacts Permanent - Direct Impacts	Project area	None
Habitat	Temporary during Project construction, operations, and closure	Area of potential ground disturbance	None
High quality NPCs, rare natural communities, and sensitive vegetative species	Permanent or temporary based on specific community or species, future work necessary	Future work scope necessary - outlined in Section 8.3.1	To be defined based on future work scope
Sensitive terrestrial species	Permanent or temporary based on specific community or species, future work necessary	Future work scope necessary - outlined in Section 8.3.2	To be defined based on future work scope
Noise	Temporary during Project construction, operations, and closure	Project area	None
Visual	Temporary during Project construction, operations, and closure - all other Permanent - DSF	Project area, portions of the surface of Birch Lake reservoir and a portion of the western shore of Birch Lake Reservoir	None
Air	Temporary during Project construction, operations, and closure	Future work scope necessary - outlined in Section 11.3.1	To be defined based on future work scope