MILE POST 7 WEST RIDGE RAILROAD RELOCATION, DAM EXTENSIONS, AND STREAM MITIGATION PROJECT ENVIRONMENTAL ASSESSMENT WORKSHEET (EAW)

RECORD OF DECISION – FINDING OF FACT 28.h 1975 CASAGRANDE REPORT

DNR Document Accessibility Acknowledgment

This document is available in alternative formats to individuals with disabilities by contacting Bill Johnson at 651-259-5126 (bill.johnson@state.mn.us) or Jill Townley at 651-259-5168 (jill.townley@state.mn.us).

MILE POST 7 WEST RIDGE RAILROAD RELOCATION, DAM EXTENSIONS, AND STREAM MITIGATION PROJECT EAW RECORD OF DECISION - FINDING OF FACT 28.h 1975 CASAGRANDE REPORT

CASAGRANDE CONSULTANTS

FOUNDATIONS & EARTHWORKS

TO RESERVE PROJECT TEAM STATE OF MINNESOTA

FINAL REPORT ON EVALUATION OF PROPOSED DESIGN MILEPOST 7 PROJECT

AUGUST 1975

40 Massachusetts Avenue/Arlington, Massachusetts 02174

CASAGRANDE CONSULTANTS

Arthur Casagrande Leo Casagrande Dirk R. Casagrande

FOUNDATIONS & EARTHWORKS

August 20, 1975

Reserve Project Team Room 424 1935 West County Road B2 Roseville, Minnesota 55113

Attention: Mr. Morris M. Sherman, Special Attorney

Subject: Final Report on Evaluation of Proposed Design of Milepost 7 Project

Gentlemen:

ŀ

-

We submit herewith 12 copies of our final report on our evaluation of the proposed Design of the Milepost 7 project.

We hope that we have succeeded in presenting all pertinent information in a form that will be understood also by educated laymen.

It has been a pleasure working with the members of your team and the other consultants involved in this project, and we wish to thank you for this interesting and challenging assignment.

Respectfully submitted,

eargy

D. R. Casagrande

LC/DRC:wc

40 Massachusetts Avenue, Arlington, Massachusetts 02174 Tel. (617) 648-3630 Pierce Hall, Cambridge, Massachusetts 02138 Tel. (617) 495-2843 or 648-3630 Arthur Casagrande Leo Casagrande Dirk R. Casagrande

ŀ

CASAGRANDE CONSULTANTS

FOUNDATIONS & EARTHWORKS

TO

RESERVE PROJECT TEAM STATE OF MINNESOTA

FINAL REPORT

ON EVALUATION OF PROPOSED DESIGN

MILEPOST 7 PROJECT

AUGUST 1975

40 Massachusetts Avenue, Arlington, Massachusetts 02174 Tel. (617) 648-3630 Pierce Hall, Cambridge, Massachusetts 02138 Tel. (617) 495-2843 or 648-3630

TABLE OF CONTENTS

.

10

.

L

		Page
I.	INTRODUCTION	1
II.	BORINGS AND SUBSOIL PROFILES	2
; *··	Lacustrine Stratum	3
	Glacial Till Stratum Surficial Pervious Deposits	3 4
III.	LABORATORY INVESTIGATIONS ON SOIL SAMPLES	4
	General Description	4
÷	Classification and Strength Tests Permeability Tests	5 7
IV.	GLACIAL TILL BORROW AREAS	8
۷.	COMMENTS ON DESIGN AND ON CONSTRUCTION OF MAIN DAMS	9
	General Comments Dam No. 1 Dam No. 2-3 Dam No. 4 Dam No. 5	.9 11 12 13 13
VI.	SETTLEMENTS OF DAMS UNDERLAIN BY LACUSTRINE STRATUM	14
VII.	WATER LOSSES THROUGH FOUNDATIONS AND THROUGH DAMS	15
VIII.	STABILIZATION OF TAILINGS DELTA AND STABILITY OF STRUCTURES ON DELTA	17
IX.	CONCLUSIONS AND RECOMMENDATIONS	19
• *	Site Characteristics	19
	Construction Materials	20
	Dam Design, Stability Analyses and Safety	20
	Settlements of Dams and Effects of Slow Regional Uplift	22
	Coarse Tailings Stockpile	22
	Glacial Till Borrow Areas	22 23
	Instrumentations of Dams	23
	Hydrology and Stream Diversions	25

i

TABLE OF CONTENTS (cont'd)

	page
Dust and Erosion Problems	24
Reclamation and Perpetual Maintenance	24
Stabilization of Delta and Stability of Structures	25
on Delta	
Inspection of Dams and Dikes During Construction and	26
After Completion	
Establishment of Board of Consultants	27

TABLE 1 - Results of Permeability Tests

PHOTO 1 - Reserve Mining Company's Tailings Delta in Lake Superior at Silver Bay, Minnesota; May 3, 1975

FIGURES - (see List of Figures on page iii)

APPENDICES - (see List of Appendices on page iv)

ii

LIST OF FIGURES

De

ļ

FIG. 1 -	General Location Plan and Cross-Sections of Dams						
FIG. 2 -	Locations of Borings at Dam No. 1						
FIG. 3 -	Locations of Borings at Dam No. 2-3						
FIG. 4 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 1002						
FIG. 5 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 1072						
FIG. 6 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 1077						
FIG. 7 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 3004						
FIG. 8 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 3037						
FIG. 9 -	Water Contents and Atterberg Limits of Samples from						
	Boring No. CASA 3056						
FIG. 10 -	Plasticity Chart, CASA Borings						
	Plasticity Chart, Klohn Leonoff Consultants Borings						
	and Test Pits						
FIG. 12 -	Grain Size Curves of Silt used for Permeability Tests						
FIG. 13 -							
FIG. 14 -	Proposed Cross-Sections for Starter Dam No. 1						
FIG. 15 -							
	Percent of Tailings in Delta Finer than No. 200 Sieve						
FIG. 17 -							
TTG. T/	blandard renetration Resistance in the lattings Delta						

iii

LIST OF APPENDICES

APPENDIX I	-	Field Logs of Borings CASA-1002, -1072, -1077,
		-3004, -3037, -3056; Prepared by W. A. Wahler
		& Associates
APPENDIX II	-	Description and Classification Tests of Undisturbed
		and Split-Spoon Samples
APPENDIX III	-	Photographs of Representative Sample-Sections of
3		Lacustrine Stratum
APPENDIX IV	-	List of Information Received and Reviewed in
		Commention with this Depart

Connection with this Report

I. INTRODUCTION

The purpose of this report is to submit our conclusions and recommendations regarding the proposed design of the Milepost 7 Tailings Storage Project and on the stabilization of the existing tailings delta. The various structures involved in this project are shown on the general location plan, Fig. 1. Our conclusions and recommendations were based on the following information:

- Meeting at the offices of Michael Baker, Jr., Inc., Beaver, Pa., on April 26, 1975.
- 2. Meetings at your offices on May 2, 1975, and July 15, 1975.
- Meeting at the offices of Reserve Mining Company on May 3, 1975.
- Inspection flight over the Mesabi Range and the Reserve Mining Company operations, on May 3, 1975.
- 5. Visit to the Milepost 7 area and the tailings delta in the lake, on May 3, 1975.
- 6. A tour of the Taconite processing plant, on May 3, 1975.
- Examination and testing of undisturbed samples and splitspoon samples, received on July 9, 1975, from 6 borings at the proposed locations of Dam No. 1 and Dam No. 2-3.
- Examination and testing of samples of fine and coarse tailings from the Pilot Plant, received on July 28 and July 31, 1975.
- 9. Reports, letters, and drawings listed in Appendix IV.

Because of the limited time available for the preparation of this report it was not possible to respond to all items of concern as listed in the Official Memorandum prepared by the Reserve Project Team, dated June 10, 1975. However, we believe that we have dealt with all issues of importance regarding the safety of the tailings pond and the stabilization of the Delta. We have reviewed all information which has been made available to us on this project and we commend the designers for their accomplishments within the relatively short period of time available. Of equal compentence are the extensive professional contributions by all others involved with this project.

II. BORINGS AND SUBSOIL PROFILE

In order to obtain a clear picture of the in-situ properties of the foundation strata at the dam sites, we requested by letter of May 8, 1975, that undisturbed and split-spoon samples be sent to us from several new borings made adjacent to existing borings at the proposed locations of Dam No. 1 and Dam No. 2-3. Under the supervision of W. A. Wahler & Associates, Palo Alto, California, six borings were made by Braun Engineering Testing, Minneapolis, Minnesota, close to existing boring Nos. 1002, 1072, 1077, 3004, 3037, and 3056. The locations of the borings at Dam No. 1 and Dam No. 2-3 are shown in Figs. 2 and 3, respectively.

The field logs of the six borings, prepared by W. A. Wahler & Associates, are presented in Appendix I.

Our descriptions of the samples based on visual and manual examination, and the results of classification tests and strength tests, together with other pertinent information, are presented in Tables 1 to 6, Appendix II. It should be noted that our description of the soil samples is not necessarily the same as given in the boring logs because the inspector who prepared the logs could only examine the soil at the ends of the sample tubes and the soil cleaned out of the hole between samples.

- 2 -

On the basis of all borings and the geologic survey by Michael Baker, Jr., Inc. and W. A. Wahler & Associates, during June, 1975, the subsoil profile at the proposed Milepost 7 site can be divided into essentially three groups of materials as follows:

The Lacustrine Stratum, a varved clay deposit, underlies the topsoil and ranges in thickness from zero on the valley slopes, above about El. 1200, to over 40 ft in the center of the valley. In undisturbed state, the clay is stiff to very stiff and brittle to a depth of 8 to 10 ft, and firm to stiff and brittle at greater depth. The top 5 to 10 ft of the clay are highly fissured, but fissures were found also at greater depths.

Except for the top few feet, the clay is stratified with silt and sand layers. The average thickness of the individual varves is less than one inch, but locally clay and silt layers may be up to several feet thick.

The lacustrine deposit contains some angular or sub-angular pebbles and occasionally also stones of several inches in size. Locally, this deposit contains pockets or lenses of glacial till several feet thick (see e.g. boring No. CASA 3004), which may have been deposited by ice rafting. The lacustrine deposit has been preconsolidated to its full depth either by drying or by temporary surcharge such as soil or ice which was later removed.

The Glacial Till Stratum, which underlies the lacustrine deposit, ranges in thickness from zero near the tops of the valley slopes, where bedrock is exposed, to over 100 ft in the bottom of the valley. The till primarily consists of clayey, angular silt, sand and gravel, but locally also contains larger particles. In situ it is very compact or hard, with the water content generally below the plastic limit.

Because of its dense nature and clay content, the glacial till is relatively impervious, except for isolated pockets or lenses of till

- 3 -

which may not contain any clay and could therefore be quite pervious.

The Surficial Pervious Deposits consist of talus deposits along the east slope of the valley and isolated deposits of sandgravel throughout the area. They were disclosed by the geologic survey conducted in June, and are approximately indicated in plan on Michael Baker, Jr., Inc., drawing titled MAP OF PRELIMINARY GEOLOGIC RECONNAISSANCE. It is our understanding that exploratory work is in progress to determine the extent of these deposits and how their presence will affect the design of the four dams.

III. LABORATORY INVESTIGATIONS ON SOIL SAMPLES

General Description

From the six boring Nos. CASA-1002, -1072, -1077, -3004, -3037, and -3056, a total of 50 undisturbed samples and 18 split-spoon samples were obtained and shipped to our laboratory. The undistured samples were taken with 30 in. long, 3 in. diameter thin-wall steel tubes, and the length of the samples ranged from 7.5 in. to 27 in.

In the laboratory each tube was cut by means of a special band saw into several sections. The sample was removed from each section by means of a hydraulic jack.

Except for three short sections of silt which were reserved for permeability tests, all samples were cut lengthwise using a wire saw, and a longitudinal section through the center was allowed to dry slowly in the humid room to disclose and accentuate the stratification. At natural water content, the majority of the lacustrine samples have a fairly uniform reddish-brown color. However, after drying the silt and fine sand layers were lightcolored, while the clay layers were still dark in color.

The dried sections were examined and representative photographs were taken; these are presented in Appendix III. As can be seen in the photographs, the samples show many signs of disturbance, the majority of which was caused by the sampling tube getting caught on a large pebble or stone which was then pushed down by the cutting edge. The cutting edge of a number of the tubes was found to have been severely damaged, and the lower portion of two tubes had even been deformed into an oval cross-section. Examples of severe disturbance of clay, stratified with silt and fine sand, are shown in photographs No. 18 and No. 23, Appendix III. A typical example for a partially disturbed varved clay is shown in photograph No. 22. It also should be pointed out that completely healed shear displacements of the type visible on the right in photograph Nos. 20 and 21 were due to natural causes (possibly resulting from a minor readvance of the ice sheet during the last glaciation or by a slide) and were not caused by the sampling operation. On the other hand, fresh shear displacements of the type shown in photograph Nos. 9, 10, 11, and 16, were created by excessive local pressure exerted on the clay by pebbles or stones during pushing of the tube, or by a partially dented cutting edge.

Classification and Strength Tests

In Tables 1 to 6, Appendix II, are listed the results of the natural water content determinations and of the liquid and plastic limit tests. Because the relation between natural water contents and limits is significant they are plotted in Figs. 4 to 9. In addition, the limits have been plotted in the plasticity chart in

- 5 -

Fig. 10. In Fig. 11 we have plotted the results of Atterberg limit tests conducted by Soil Exploration Company for Klohn Leonoff Consultants Ltd., and this figure shows good agreement with our results, Fig. 10. From the position of the points on the plasticity chart it can be concluded that the majority of the clay layers contain active clay minerals, located well above the A-line, with liquid limits ranging up to over 100. The lower liquid limits on these plots indicate that the clay contains more silt and sand particles; and liquid limits of between approximately 25 and 35 are indicative of clayey silts and sands, including clayey glacial till.

When clays containing active clay minerals, such as montmorillonite, are disturbed, they lose part of their undisturbed in-situ strength, and in presence of free water such clays will swell. This would occur even in a relatively undisturbed sample because of the reduction in confinement when removed from the ground. Since this varved clay contains numerous silt and fine sand layers, sample disturbance has caused the clay layers to absorb pore water from adjoining silt and fine sand layers which resulted in further loss in strength of the clay and apparent drying of silt and sand layers as compared with the undisturbed in-situ condition. This was clearly visible when examining the varved clay in our laboratory.

For the above reasons the water content of the clay layers, as determined in our laboratory and as recorded in Tables 1 to 6 of Appendix II, and Figs. 4 to 9, are somewhat too high. For the same reasons the water-plasticity ratios in the last column of the tables, i.e. the ratio of natural water content minus plastic limit to liquid limit minus plastic limit (plasticity index), expressed in percent, are also too high. The strength of a soil in the remolded state decreases with increasing water-plasticity ratio, and becomes very low as the water content approaches the liquid limit (ratio = 100).

- 6 -

Unconfined compression tests and triaxial tests require a minimum height of the specimen of 3 in. Because not enough undisturbed clay was available for such conventional strength tests, the range of the unconfined compressive strength of undisturbed clay layers was obtained by means of a pocket penetrometer, and the shear strength was determined by means of a TORVANE device. The results of these strength tests are recorded in Tables 1 to 6, Appendix II.

Permeability Tests

From experience we know that, depending on the degree of plasticity of the clay layers, the coefficient of permeability in undisturbed state ranges between $k = 10^{-8}$ and 10^{-10} cm/sec. It is equally well known that, depending on the grain size distribution of the fine sand and silt varves, their coefficient of permeability may range between $k = 10^{-3}$ and 10^{-6} cm/sec, or from 100 times to 10 million times greater than the permeability of the clay layers.

To show that even the finest silt layers (also referred to as rock flour) in this varved clay stratum, has ample horizonatal permeability to assure an adequate rate of consolidation of the highly impervious clay layers, we reserved three sections of silt from sample-sections 6B and 6C of Boring No. CASA 1077 and 8C of Boring No. CASA 3056. However, the section from Boring No. CASA 3056 was found to be disturbed and was not tested.

Cylindrical specimens were trimmed from the two Boring No. CASA 1077 sections such that the flow of water during the permeability test would be in the horizontal direction of the in-situ material. The test specimens were consolidated in a triaxial chamber under a confining pressure of $\sigma_3 = 0.45 \text{ kg/cm}^2$, which is equivalent to the in-situ effective stress. Both specimens were then saturated

- 7 -

by applying vacuum at the top of the specimen and feeding deaired, distilled water into the bottom of the specimens for one day. The permeability tests were of the falling-head type, and gave the following results (computed for water temperature of 20^OC):

Sample-Section 6B $k_{20} = 7.6 \times 10^{-6}$ cm/sec Sample-Section 6C $k_{20} = 4.8 \times 10^{-6}$ cm/sec Pertinent information of the permeability tests are given in

Table 1, and the grain size curves for the two specimens are presented in Fig. 12.

From these results it can be concluded that the average horizontal permeability of all granular varves probably is of the order of $k = 10^{-4}$ to 10^{-5} cm/sec, i.e. somewhat greater than the permeability of the very fine-grained silt we tested.

IV. GLACIAL TILL BORROW AREAS

The total volume of glacial till required for the various dams and dikes is of the order of 2 million cubic yards. This means that an average of 5 ft of till would have to be excavated from all three borrow areas as shown on Reserve Mining Co.'s Dr. No. 292-0039. Since a certain percentage of the till will have to be wasted because of unsuitable gradation or water content, the average depth will be somewhat greater. Therefore, till would probably also have to be excavated from below the groundwater table. Draining the groundwater in such large areas by means of ditches on the uphill side of the areas, as proposed by Klohn Leonoff, will probably not be effective in keeping the water table below the excavation level, especially during the spring thaw. Our experience with the compaction of glacial till indicates that such soils are very sensitive to the

water content during compaction. A few percent above optimum water content makes this material unsuitable for proper compaction.

The surface of the till in the borrow areas and in the embankments should always be sloped not less than 3% for proper drainage of precipitation.

It will not be desirable to expose bedrock in these areas. This could increase the seepage losses from the reservoir. However, since it is intended to stockpile any lacustrine soils overlying the till, these materials could be used to apply a blanket over any areas that are excavated to bedrock. Also, any pervious granular deposits exposed in the cut slopes or bottom of the borrow areas should be blanketed with impervious material.

V. COMMENTS ON DESIGN AND CONSTRUCTION OF MAIN DAMS

General Comments

In addition to removing any soft and organic soils from the foundations of the four dams, we recommend the following measures be carried out:

1. All test pits within the dam area and to a distance of 200 ft upstream from the upstream toe of a dam should be dewatered and then backfilled with compacted impervious material.

2. Where talus or surficial sand-gravel is within a dam foundation area, or if exposed bedrock with open jointing will be in direct contact with a dam, their depth and extent will have to be

- 9 -

investigated. In order to prevent excessive water losses through such zones the final design may have to incorporate one or several of the following measures:

 a) If of limited depth and extent, excavate surficial talus and sand-gravel and replace by clayey glacial till or coarse tailings mixture, in conformance with the design of the dam, compacted in thin layers.

- b) For pervious deposits of appreciable thickness and extent excavation of a minimum thickness of 5 ft and replacement with compacted clayey till may be satisfactory, provided that this blanket is tied to impervious material in upstream direction. Alternatively, the construction of a complete cutoff through such pervious deposits may become necessary.
- c) Open joints in exposed bedrock should be filled with clay slurry or cement grout(under gravity pressure only) and, where feasible, covered with a several foot thick blanket of clay or clayey till.

3. Installation of a 5 ft thick drainage blanket of cobb tailings for Dam No. 1 and Dam No. 2-3 should be limited to the area downstream of the centerline of the main dam, and extending up the abutments to about El. 1200; and for Dam No. 4 and Dam No. 5 the drainage blanket should be limited to the area downstream of the impervious core, and extending up the abutments to El. 1225 at Dam No. 4 and El. 1200 at Dam No. 5. The downstream toe of all dams should be protected with rockfill of sufficient thickness to assure continued drainage from the blanket during freezing weather.

The glacial till and the coarse tailings should be placed in 12 in. thick lifts and compacted by two coverages of a heavy

smooth-drum vibratory roller. In order to avoid problems with compaction of the glacial till, the water content must be carefully controlled to within two percent of optimum. No material should be placed on frozen fill and no frozen material should be placed in the embankments.

Dam No. 1

This dam will be safe as designed.

The investigation reported herein has confirmed our earlier assumption that the varved clay stratum contains numerous layers of silt and fine sand which, considering the slow rate of construction of the dam, would assure adequate drainage during consolidation of the clay layers, especially in view of the fact that the maximum thickness of the clay layers is only a few feet.

The combination of a drainage blanket under the starter dam and sand drains may result in the development of undesirable leakage from the tailings pond into the groundwater downstream of the dam. Apart from this problem, our experience with the effectiveness of sand drains is discouraging and may be summarized as follows:

1. The advantages and disadvantages of sand drains is a highly controversial topic. A number of papers have been published with settlement curves showing that a section of an embankment with sand drains is developing more rapid settlements as compared to a neighboring section without sand drains, i.e. with the implication that since the settlements are developing faster they will stop in a shorter period of time. Unfortunately, these settlement curves generally extend over only a short period of time. When sand drains are installed in a sensitive clay, the disturbance of the clay structure results in much greater

- 11 -

total settlements, which are reflected in long-term settlement records. A designer who staked his reputation on his recommendation to install sand drains, and has already published a paper "proving" that he was right on the basis of short-term records, may prefer not to publish another paper presenting the long-term records.

2. If it is decided that sand drains must be installed, disturbance to the structure of the clay can be reduced by prohibiting the driving of full displacement steel casings, and instead removing the clay (at much greater cost) by means of hollow-stem flight augers, or jetting. An alternate method would be to install "cardboard" wicks at close spacing, as developed in Sweden.

Because of the potential harmful effects of sand drains, and because of the proposed slow rate of increase in height of the embankments which will allow sufficient time for the foundation soils to consolidate, it is our considered judgment that neither sand drains nor a drainage blanket should be installed under the starter dam No. 1. To disperse any doubts in the minds of the designers about the safety of this starter dam, we recommend (1) replacing the El. 1150 berms of the starter dam by 1 on 6 slopes, as shown in Fig. 14, which will decrease the applied stresses in the foundation soils, and (2) constructing a test embankment without sand drains and with numerous piezometers to monitor the built-up and dissipation of pore pressure in the varved clay.

The glacial till used for construction of the starter dam should be well-graded and should not contain less than 5% of clay sizes.

- 12 -

Dam No. 2-3

This dam will be safe as designed.

For reasons discussed above, installation of a drainage blanket and sand drains under the starter dam should not be considered. However, a 5 ft thick drainage blanket should be placed between the downstream toe of the starter dam and the downstream toe of the main dam.

The type of glacial till for the construction of the starter dam should meet the same specifications as recommended for Starter Dam No. 1.

Dam No. 4

Since the foundation conditions at this site have not yet been investigated, we can make no definite statement about the adequacy of the design, except that it will probably be safe as designed. Depending on the type and thickness of foundation soils existing at this site it may be necessary to extend the glacial till core in form of a cut-off to an impervious foundation stratum.

If the downstream shell overlies impervious material the design should incorporate a 5 ft thick drainage blanket under the downstream shell.

Dam No. 5

Į

F

The same considerations presented above for Dam No. 4 apply also for Dam No. 5. In addition, because even a well-compacted mixture of cobbs and filter tailings will be relatively pervious, we recommend that also this dam be designed with a central core of clayey glacial till. VI. SETTLEMENTS OF DAMS UNDERLAIN BY LACUSTRINE STRATUM

For the following reasons we conclude that the magnitude of dam settlements will be smaller than computed by the designers, and the rate of settlement will be faster.

- The majority of the consolidation tests on which the settlement analyses were based, were performed on partially disturbed samples of clay. In undisturbed state, the void ratio-pressure curves display a rather sharp, well defined transition between the virgin compression branch and the preconsolidation branch. Depending on the degree of disturbance this transition becomes more gradual. Therefore, the more disturbed the clay specimen, the greater will be the coefficient of consolidation.
- 2. The granular layers in the lacustrine stratum will contribute only a small fraction to the settlements as compared to the clay layers. We estimate that between 30% and 50% of the lacustrine stratum consists of granular layers and, therefore, the total thickness of clay contributing to settlements will be substantially less than probably assumed by the designers.

Because the numerous granular layers in the varved clay stratum will act as reinforcement against shear, this will greatly reduce the probability of abrupt differential settlements developing, except possibly close to the steep east abutment of Dam No. 1 and Dam No. 2-3. Furthermore, the borings did not disclose any sharp discontinuities in the compressibility of the foundation materials. However, if cracks should develop, we agree with the designers that these dams would be self-healing.

- 14 -

VII. WATER LOSSES THROUGH FOUNDATIONS AND THROUGH DAMS

Assuming that locally-existing pervious areas in the pond foundation are sealed as recommended under Chapters IV and V in this report, and that sand drains are not installed, we agree with the designers that water losses through the varved clay stratum and through glacial till will be neglibible. Furthermore, both of these materials would act as an effective filter to prevent passage of even the finest fibrous particles.

When computing the water losses through the dams the designers assumed that the existence of a wide beach of fine tailings, with a small coefficient of permeability, will prevent water from getting into direct contact with the much more pervious main body of the dam. To check the permeability of the two materials involved, we made one permeability test on each of the following two specimens:

- Fine tailings deposited into the permeameter under water, with the finer material being removed from the surface as the coarser fraction settled in the water. The test was conducted with the tailings in a loose state.
- 2. A mixture of 75.5% (by weight) cobbs and 24.5% filtered tailings. (This is in the same proportion as these materials will be produced.) This mixture was moistened to prevent segregation and compacted into the permeameter in layers.

Both samples were tested using a constant-head method. The coefficient of permeability (at 20[°]C) of these specimens is as follows:

Fine tailings $k_{20} = 4.5 \times 10^{-5}$ cm/sec Coarse tailings $k_{20} = 3.7 \times 10^{-3}$ cm/sec

- 15 -

Pertinent data for the test specimens is given in Table 1, and the grain size curves of these specimens and of a specimen of the fine tailings as received are shown in Fig. 13.

The above permeabilities agree approximately with the figures used by the designers in their computations (note that their values are in terms of ft/min.). However, we believe that for the following reasons the water losses may, at times, be greater than computed by the designers:

- 1. After the height of a dam has been increased by an additional stage, spigotting may be continued from the new crest in which case it will require some time for a beach of fine tailings to cover the 1 on 2 slope of the dam. During this interim period, water from the spigotting operation would be able to enter directly into the relatively pervious body of the dam.
- 2. During prolonged rainfall and periods of melting snow the large surface area of the crest and downstream slope of the dams will temporarily store appreciable quantities of water which, during its seepage through the dam, may leach some of the finest fibrous particles and will contribute appreciably to the seepage water which has to be pumped back into the pond. E.g., one inch of precipitation on the area of Dam No. 1 will contribute about 6 million gallons to the seepage water. This does not include the water contributed by the catchment areas, which may be an additional 4 million gallons for a one-inch rainfall.

The ground surface contours downstream of Dam No. 1 indicate that additional seepage collection ditches may be necessary just downstream of the toe of the dam on the west abutment and within 3000 ft of the east end of the dam, to channel the seepage water to the reclaim ponds.

- 16 -

VIII. STABILIZATION OF TAILINGS DELTA AND STABILITY OF STRUCTURES ON DELTA

Except for the design of riprap for earth dams, we are not experts on coastal problems concerning protection against wave action. Our questions and comments on the proposed Delta stabilization may, therefore, be of only marginal significance. However, we have the following comments concerning the dike designed to stabilize the Delta:

- Unless a properly designed and constructed inverted filter underlies the armor rock on the beach, gradual erosion of the beach from beneath the armor may eventually result in the collapse of the proposed rock dike.
- Repeated costly maintenance of the armor and dike may force the mining company to eventually abandon all or at least a major portion of the Delta.

For the above reasons we believe that it may be important to analyze what the consequences would be of a gradual loss of the existing Delta by erosion. Since the potentially harmful fibrous particles are reportedly predominantly of colloidal sizes, i.e. less than about 5×10^{-6} mm size, we have attempted to establish whether the Delta contains a significant amount of colloidal particles, or whether practically all colloidal sizes have already been washed into the lake during formation of the Delta.

During our meeting on July 15, 1975, at the offices of the Reserve Project Team, we asked Dr. James R. Kramer whether in his opinion the Delta contains a significant fraction of the potentially harmful colloidal tailings. Dr. Kramer was quite outspoken in his belief that practically all of the colloidal sizes were washed directly into the lake from the launders. He confirmed this opinion in his "Note on Reserve Delta and Tailings Composition", dated 17th July, 1975. An areal photograph taken by us during our inspection in May, Photo No. 1, encourages us to agree with Dr. Kramer that the large quantities of water discharging from the two launders would effectively carry all colloidal particles directly into the lake.

The report by Professor Donald H. Gray titled PARTICLE SIZE ANALYSIS & RELATIVE DENSITY TESTS ON TACONITE TAILINGS FROM SILVER BAY, MINNESOTA, dated 9 May 1973, contains the grain size analysis of six samples of tailings taken at depths of 1 and 3 ft from locations near the two launders. Four of the samples did not contain any particles smaller than approximately 0.2 mm, one sample contained approximately 14% smaller than the No. 200 mesh (0.074 mm), and another sample contained approximately 66% of particles smaller than the No. 200 mesh. If the harmful particles are predominantly of a size smaller than 5×10^{-6} mm (see page 2 of Dr. Kramer's Note), it is reasonably safe to conclude that even the finest particles of most of the above six samples would not be potentially harmful.

Of equal or even greater importance are the results of 29 grain size determinations on specimens from the Delta by Soil Exploration Co. of St. Paul, Minn., transmitted by Klohn Leonoff Consultants to Reserve Mining Co. by letter dated June 19, 1975. The test specimens were taken in 5 borings, Nos. 1001 to 1005, at depths ranging from 0.5 ft to 81 ft. The locations of these borings are shown in Fig. 15. Of the 29 specimens, 23 were found to contain between 2 and 10% particles smaller than the No. 200 mesh (0.074 mm), four specimens contained between 12 and 15%, one sample contained 22% and one sample had 27% passing No. 200 mesh. The percent of particles smaller than the No. 200 mesh is plotted as a function of depth in Fig. 16, which illustrates that the distribution of fines is fairly uniform with depth in the Delta. The shapes of the grain size curves indicate that even the specimen containing 27% smaller than No. 200 mesh, had little or no colloidal sizes of the critical range.

From the available data we are inclined to conclude that (1) as soon as tailings are no longer discharged onto the Delta, lake pollution will decrease dramatically, and (2) even severe erosion of the Delta should not contribute significantly to hazardous lake pollution.

On the basis of the grain size distribution of the tailings in the Delta, in conjunction with the range of the standard penetration resistance, plotted vs. depth in Fig. 17, we conclude that even heavy structures could be built on spread footings. However, in areas where the Delta may be subject to erosion, structures would have to be supported on piles or piers.

IX. CONCLUSIONS AND RECOMMENDATIONS

It is our considered opinion that the basic design of the Milepost 7 tailings pond, as proposed by Klohn Leonoff Consultants, is safe beyond human doubt. If we recommend relatively minor modifications to this design and to the methods of construction, it is only in an attempt to improve upon the overall effectiveness of this project.

Site Characteristics

Milepost 7 is well suited for the purpose of developing the proposed tailings pond. The foundation conditions for the

construction of Dam No. 1 and Dam No. 2-3 are satisfactory and, although the sites for Dam No. 4 and Dam No. 5 have not yet been adequately investigated, the foundation conditions at these locations will probably be equally satisfactory.

Construction Materials

Both the glacial till, intended for construction of the starter dams, for the core of Dam No. 4 and for the diversion and reclaim dikes, and the coarse tailings (cobbs + filter tailings) are ideal construction materials. In compacted state, the angle of internal friction of these two angular materials is more than adequate to assure stability of the slopes.

Dam Design, Stability Analyses and Safety

Although the design of the dams is satisfactory, we believe the following recommendations would improve the overall integrity of this project:

- The starter dam for Dam No. 1 should be designed without sand drains and without drainage blanket. To improve the stability of this starter dam the berms should be replaced by 1 on 6 slopes, as shown in Fig. 14. Construction of a full-scale test section, including piezometer observations, would provide convincing evidence that sand drains are not necessary.
- 2. The drainage blanket under Dam No. 1 and Dam No. 2-3 should be 5 ft thick and should extend downstream of the centerline of the main dam, and up to about El. 1200. If it is decided that a drainage blanket is necessary at Dam No. 4 and Dam No. 5, it should be placed under the downstream shell, and up to El. 1225 at Dam No. 4 and El. 1200 at Dam No. 5.

- 20 -

- 3. Dam No. 5 should be designed with a central core of clayey glacial till, similar to Dam No. 4.
- 4. All materials should be compacted in 12 in. lifts with two passes of a heavy vibratory steel drum roller. Fill should not be placed on frozen material and no frozen materials should be placed in the dams or dikes.
- During construction the surface of all impervious zones of the dams and dikes should be sloped transversely not less than 3% for proper surface drainage.
- All dams should have a clean rockfill toe at the downstream side, with a proper filter between rockfill and drainage blanket, to assure continued drainage during freezing weather.
- At no time should the tailings pond elevation be permitted to rise to within 10 ft of the crest elevation of the lowest dam without an adequate spillway.

We believe that the in-situ shear strength of the varved clay stratum is appreciably greater than the 600 psf used by the designers in their stability analyses. Therefore, the factor of safety against foundation failure will be greater than that computed by the designers.

"Piping" could not develop through a well-compacted mixture of cobbs and filter tailings, in combination with a flat downstream slope. Also, such an embankment could not slump, even during a severe earthquake.

- 21 -

I

ſ

Γ

I

Settlements of Dams and Effects of Slow Regional Uplift

The settlements of Dam No. 1 and Dam No. 2-3 will be smaller and the rate of settlement will be faster than predicted because the designers based their analysis on (1) consolidation tests of partially disturbed clay specimens, and (2) apparently on the assumption that the lacustrine stratum consists only of clay.

We do not anticipate sharp differential settlements except possibly close to the steep east abutment of Dam No. 1 and Dam No. 2-3. However, because of the self-healing properties of the coarse tailings this should cause no problems.

A gradual regional uplift will have no detrimental effect on the dams or on the tailings pond.

Coarse Tailings Stockpile

On the basis of the high friction angle of the coarse tailings, we are of the opinion that even in loosely-dumped state the stockpile will be stable. Although we do not foresee any serious dust problem, dust may develop during dry and windy periods and would have to be alleviated by such means as occasional spraying with water or covering unused sections of the area with a thin layer of soil and developing vegetation.

Glacial Till Borrow Areas

For reasons discussed under Chapter IV we recommend that the designers review the proposed procedure of excavation with particular attention to questions of drainage and working the borrow area to obtain glacial till of suitable gradation. It may be most economical to process the till in the borrow area to eliminate oversize material.

- 22 -

Instrumentation of Dams

We underscore the importance of instrumentation to monitor the performance of the dams and foundations, as proposed by Klohn Leonoff Consultants. In particular, we recommend installation of standpipe-type piezometers along several cross-sections of all dams, and extending to the bottom of the embankments and to several elevations in the lacustrine stratum. These piezometer pipes should be extended as the dams are raised, and those piezometers that will be covered by the pond should be changed to pneumatic-type when the pond level reaches that location. All piezometer pipes should be well-protected against damage during construction and should be provided with secure caps. The piezometers must be frequently monitored during the intitial stages of construction, and then on a regular basis for the life of the structures.

All observational data should be reviewed periodically by a board of consultants.

Hydrology and Stream Diversions

i ka We are not specialized in the field of hydrology and stream diversions, and can only state that our review of the available information has not uncovered any items of questionable integrity. It is our impression that except for the following minor item, all design details have been competently dealt with. In their design report, Klohn Leonoff Consultants state that it is not essential to form a tight seal when the diversion culvert through Dam No. 1 is grouted. In our opinion, the fine tailings must not be depended on to seal any leaks through this culvert.

- 23 -

Dust and Erosion Problems

We do not anticipate serious dust problems arising from storage of coarse tailings or during placement and compaction of tailings in the dams. Any small particles attached to cobb tailings will be washed into the voids by rain and by any necessary sprinkling during compaction operations. However, we visualize that the topography of this area may cause wind eddies which could result in erosion of dry soil, including wind transport of the finer particles of filter tailings. If such wind erosion should develop, it could be controlled by watering or vegetation.

Unless the surface of the tailings pond beach is kept wet at all times, a serious dust problem could develop because of the fine gradation of these tailings. In such an event, installation of a sprinkler system may become necessary.

We see no serious problems with erosion of the coarse tailings by runoff from precipitation because, unless the rate of precipitation is exceptionally severe, most of it will enter directly into the tailings deposit. If there should be some gullies formed by surface runoff, the eroded material would be deposited either in the tailings pond or in the reclaim areas downstream of the dams. Any gullies should be promptly filled.

Reclamation and Perpetual Maintenance

In order to assure that the tailings pond, including the slopes of the four dams, will remain relatively problem-free for an indefinite period of time, the following measures will be necessary:

 Development of vegetative growth on the downstream slope of the dams as soon as a new construction stage has been completed, as proposed by Klohn Leonoff Consultants. If necessary, a veneer of soil will have to be placed on the slopes to support plant life. However, any erosion channels which may develop along the slopes as a result of heavy precipitation or spring runoff would have to be promptly filled to prevent more serious problems.

2. Once the tailings pond is filled, or if its use is interrupted or discontinued prematurely, several feet of coarse tailings should be spread over the entire area and graded such that any surface runoff drains toward the spillway. The area should then be vegetated, using a thin layer of soil if necessary.

After the above measures have been executed, any surface runoff will not be contaminated with potentially harmful particles nor will there be any dust problems to deal with. These measures will also, for practical purposes, prevent seepage into the fine tailings and into the dams, and it should be possible to discontinue the collection and recycling of water from the reclaim areas downstream of the dams. Some water will continue to seep indefinitely from the toes of the dams, but tests will probably show that this water is not a health hazard.

Stabilization of Delta and Stability of Structures on Delta

From all available information we conclude that the pollution of the lake will rapidly diminish as soon as an on-land tailings disposal system is placed in operation.

We are not convinced that the proposed method of stabilizing the Delta by means of a rock dike will be adequately effective. If, on the other hand, it should be decided by the State that gradual erosion of the Delta will not be potentially harmful, then the State need not be concerned with the effectiveness of the proposed Delta stabilization. In our opinion, the best solution to this problem

- 25 -

Should be determined by an observational approach. I.e. before deposition of tailings in the lake is discontinued, obtain as much information as possible about the size and character of the Delta and about the lake in the immediate vicinity of the Delta; then, continually monitor these parameters after tailings deposition is discontinued. These data will form a basis for determining the rate of erosion and what measures, if any, may be necessary to prevent erosion. At the same time, several test sections could be constructed and monitored to determine the most effective method.

The bearing capacity of the Delta is adequate to support heavy structures on spread footings. In areas which may be subject to erosion all structures would have to be built on piles or piers.

We recommend that the question of erosion of the Delta front be studied by a board of specialists with extensive experience in control of beach erosion.

Inspection of Dams and Dikes During Construction and After Completion

Close supervision of all aspects of construction by a team of experienced inspectors under the guidance of an engineer thoroughly familiar with this project is of utmost importance. In addition, to the designers' and mining company's inspectors, the State should set up a program of regular inspection to assure that the dams are being constructed in accordance with the design. This program of inspection should be continued indefinitely after the dams are completed. Of particular importance are frequent inspections of all dam slopes and of downstream abutment slopes with special attention to any visible leakage, development of erosion channels, and dust problems requiring attention. The Engineer in charge of this inspection will have to be responsible for obtaining the advice of experts whenever unusual problems develop.

Establishment of Board of Consultants

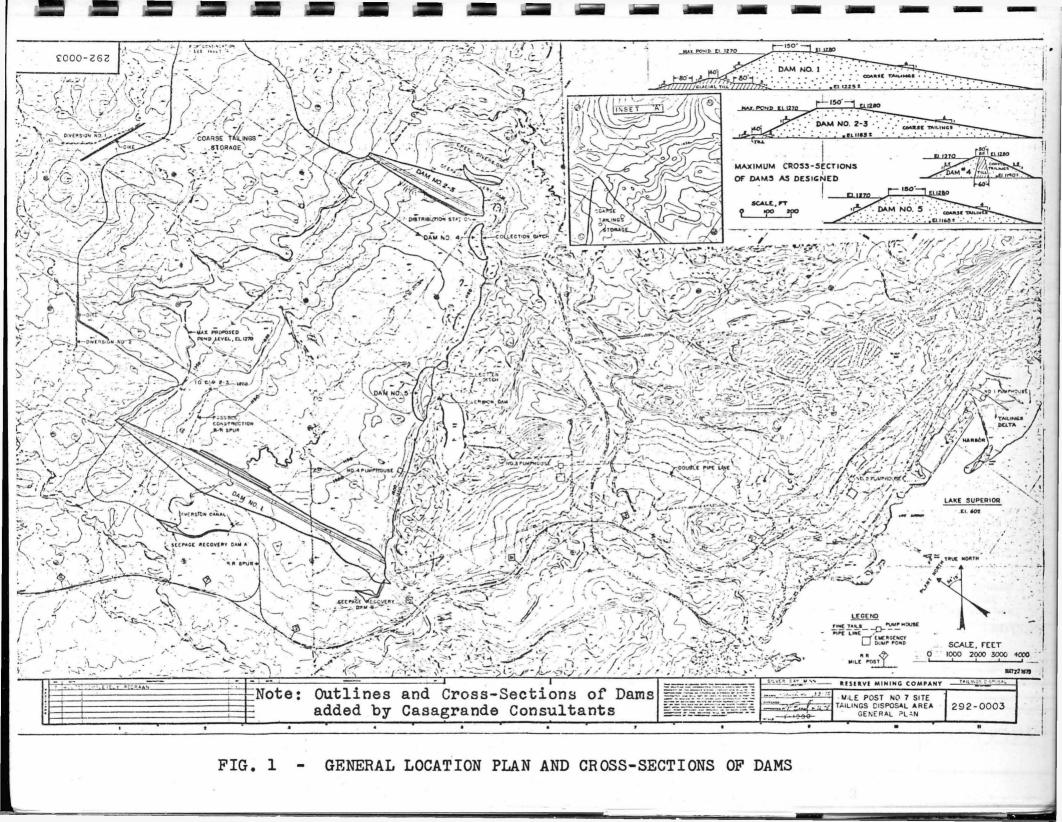
In recent years it has become common practice that the design of all important dams be reviewed by a board of independent consultants who also periodically inspect the construction. We recommend that the State nominates such a board or requires that the Owners do so.

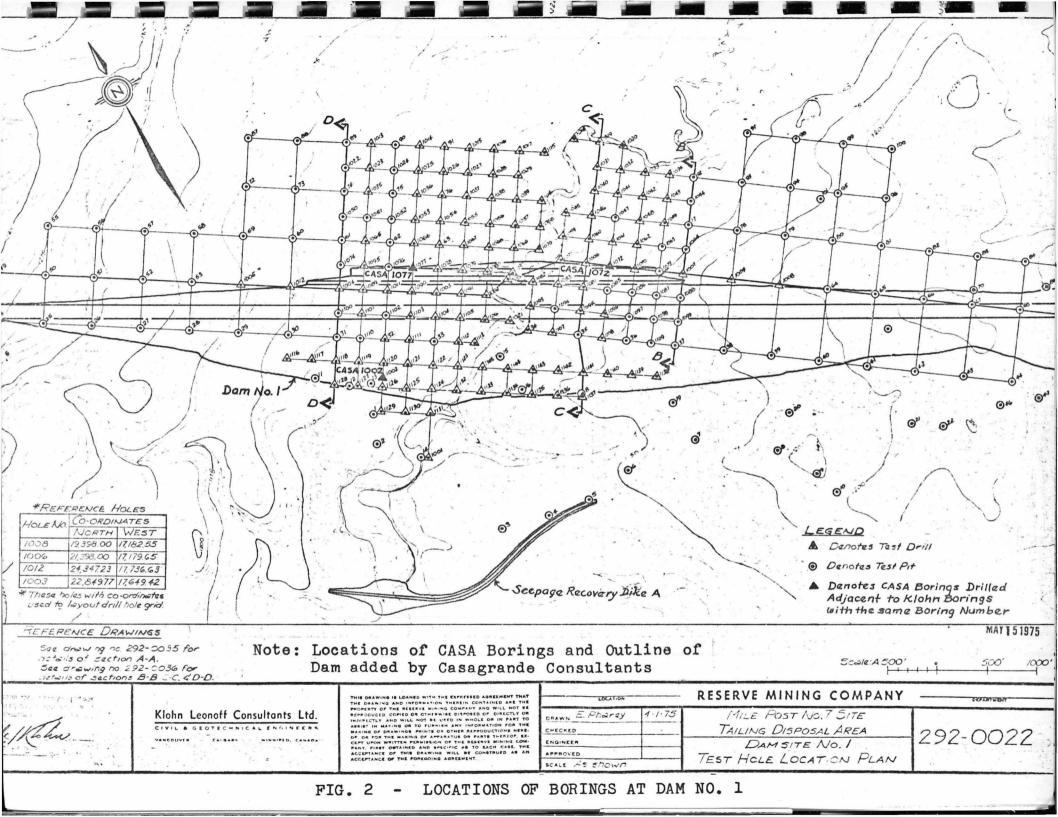
Respectfully submitted,

h. Mulpharde

D. R. Casagrande

TABLE 1


RESERVE MINING PROJECT: MILEPOST 7


RESULTS OF PERMEABILITY TESTS

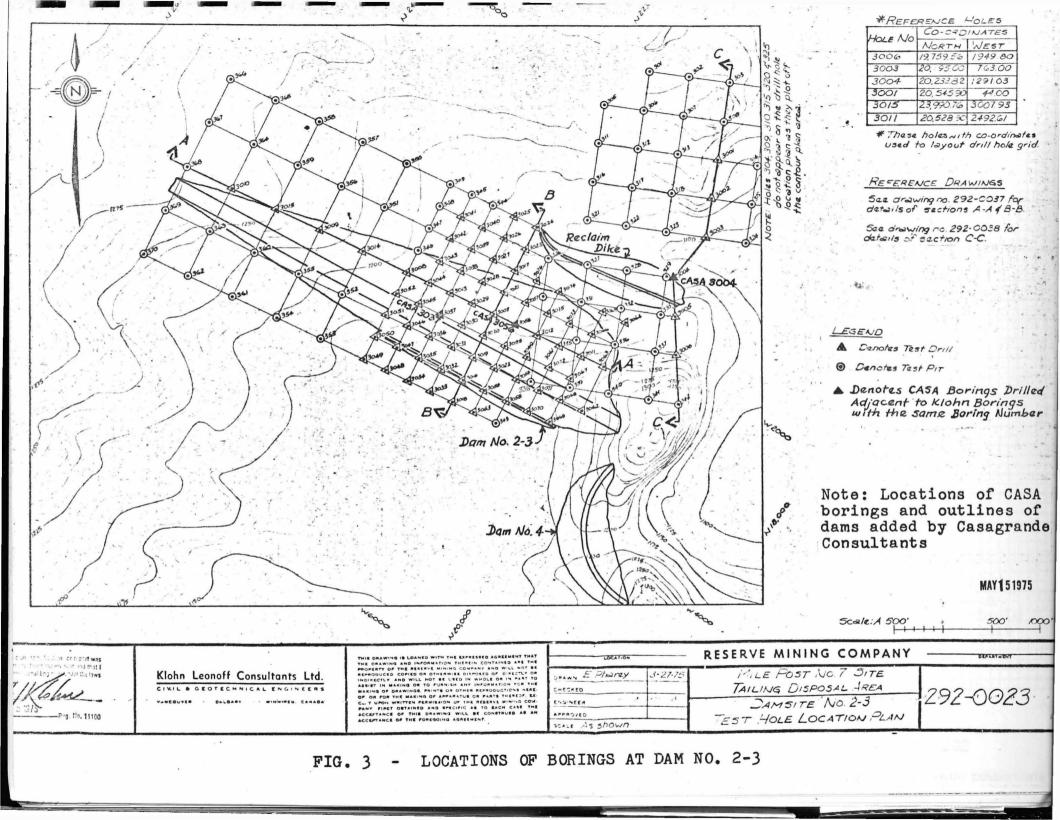

Material	Location	Depth ft	Type of Specimen	Dry Unit Weight,pcf	Water Content,%	Confining Pressure in Test,kg/cm ²	Gradient	Coef. of Permeability at 20°C,cm/sec
Silt	Bor.1077/6B	15.0	Undisturb.	104.1	24.5	0.45	35	7.60x10 ⁻⁶
Silt	Bor.1077/6C	16.0	Undisturb.	103.3	23.4	0.45	34	4.82x10 ⁻⁶
Fine Tailing s	Pilot Plant	-	Compacted	102.1	28.6	0	12	4.47x10 ⁻⁵
Coarse Tailings	Pilot Plant	-	Compacted	127.2	9.2	0	7	3.68x10 ⁻³

Photo 1: Reserve Mining Company's Tailings Delta in Lake Superior at Silver Bay, Minnesota; May 3, 1975.

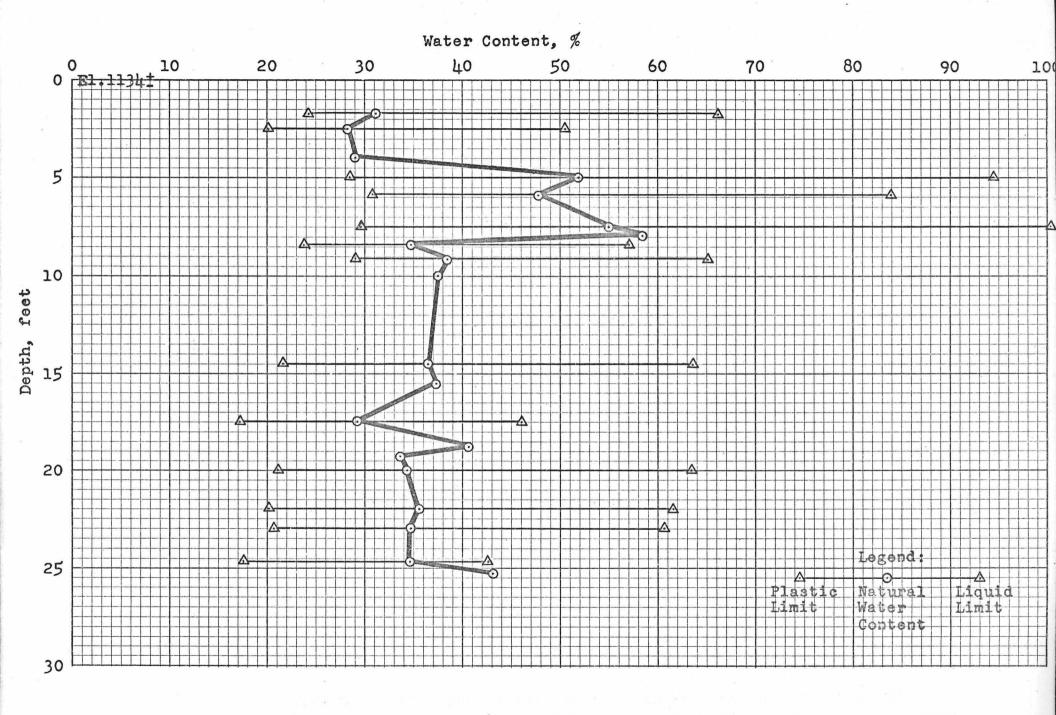


FIG. 4 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 1002

CASAGRANDE CONSULTANTS

5 - 5 - 5

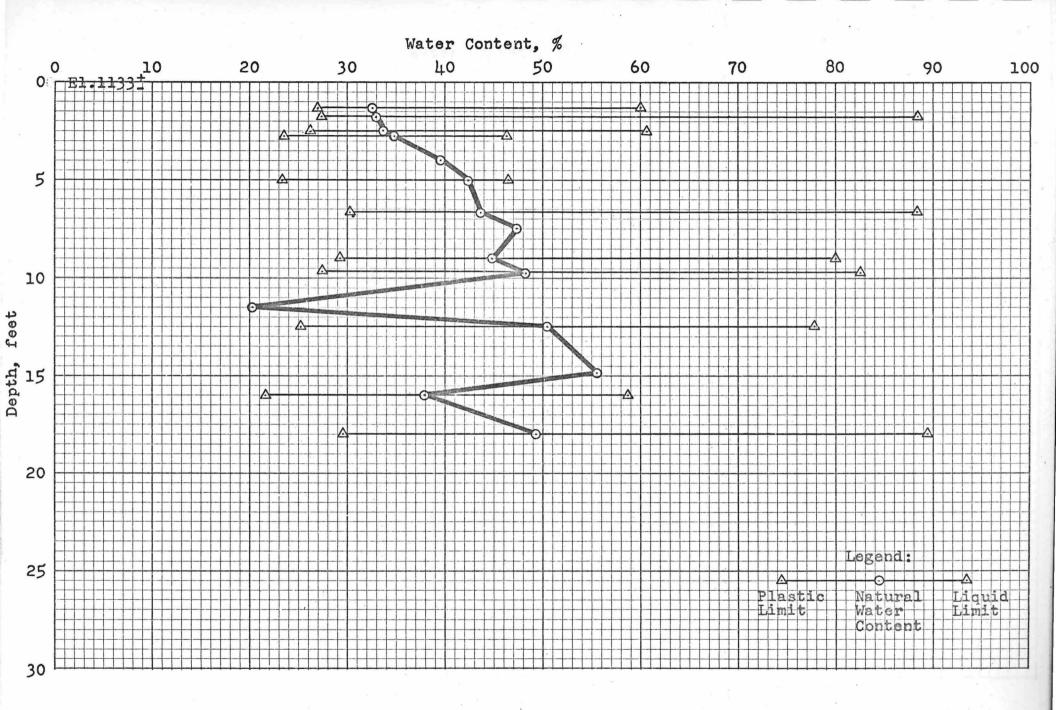


FIG. 5 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 1072

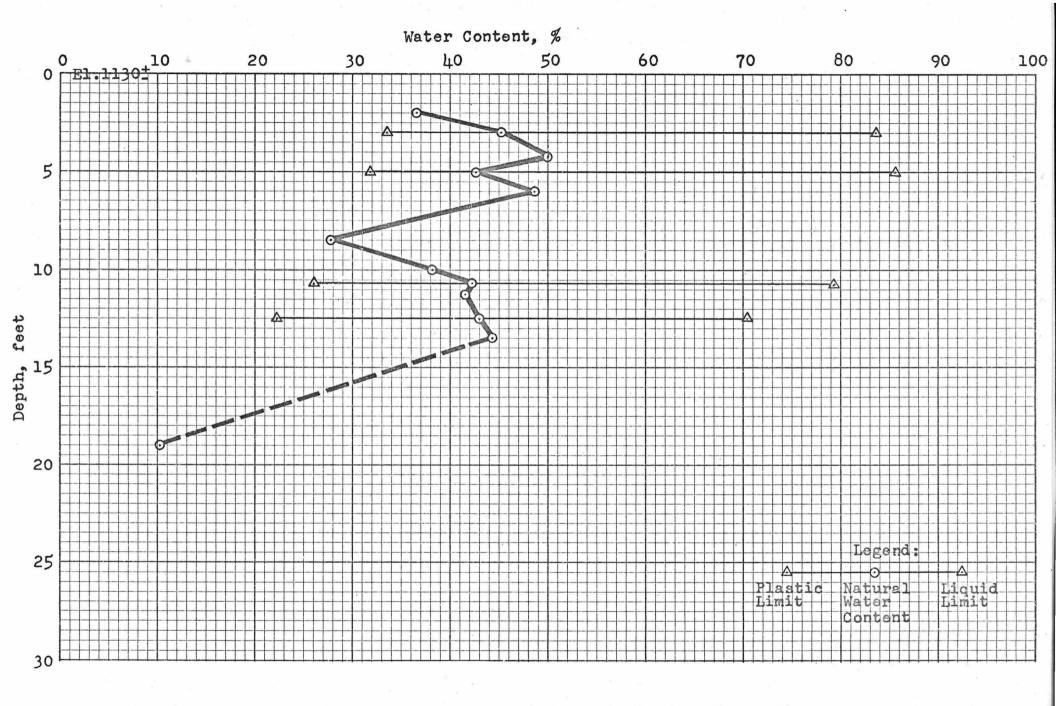


FIG. 6 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 1077

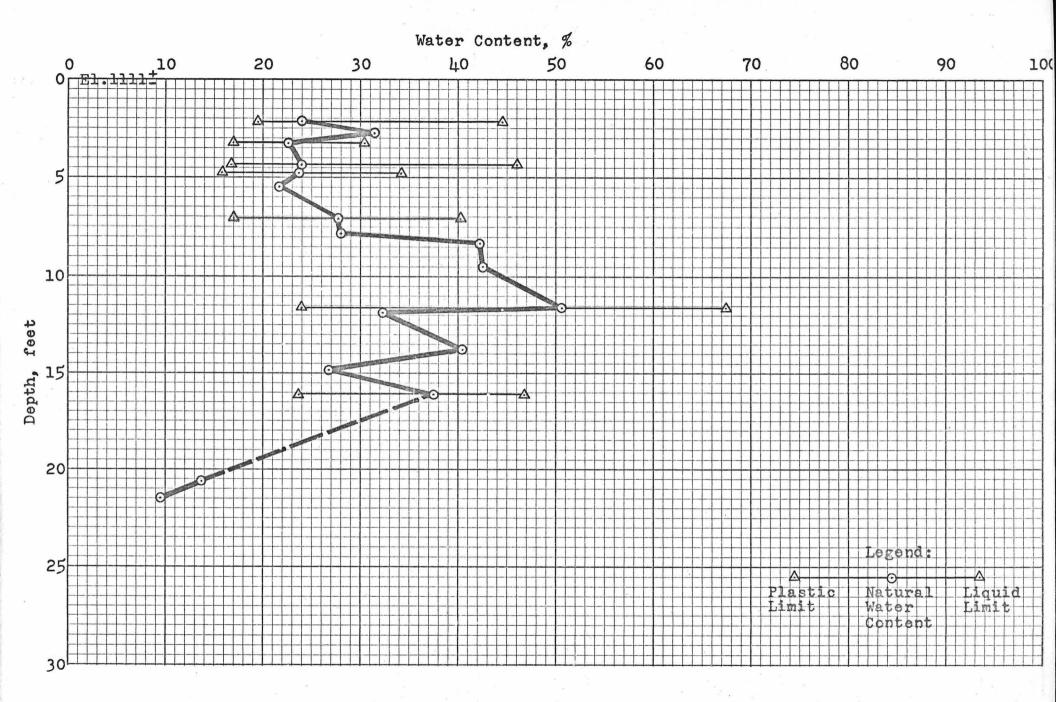


FIG. 7 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 3004

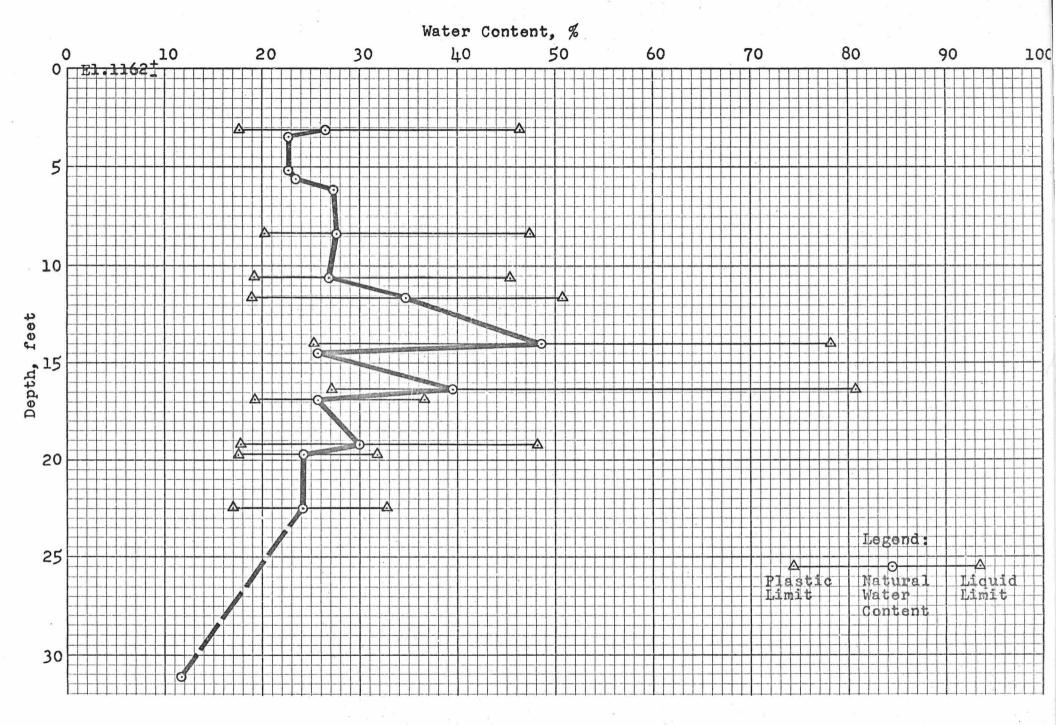


FIG. 8 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 3037

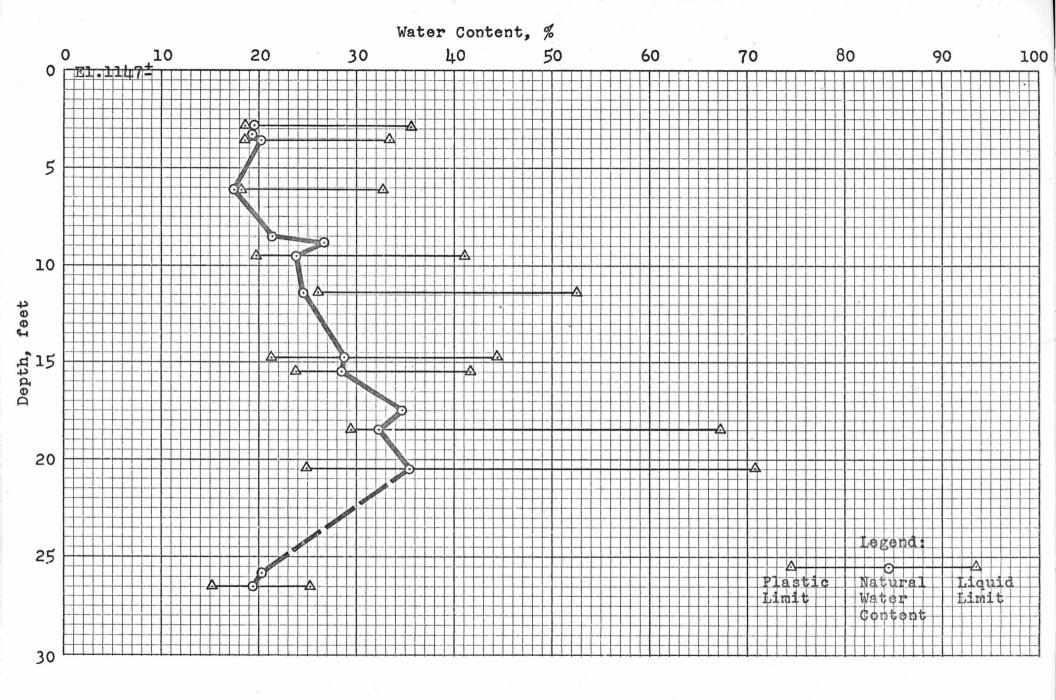


FIG. 9 - WATER CONTENTS AND ATTERBERG LIMITS OF SAMPLES FROM BORING NO. CASA 3056

CASAGRANDE CONSULTANTS

VEBENDIX III

YPPENDIX II

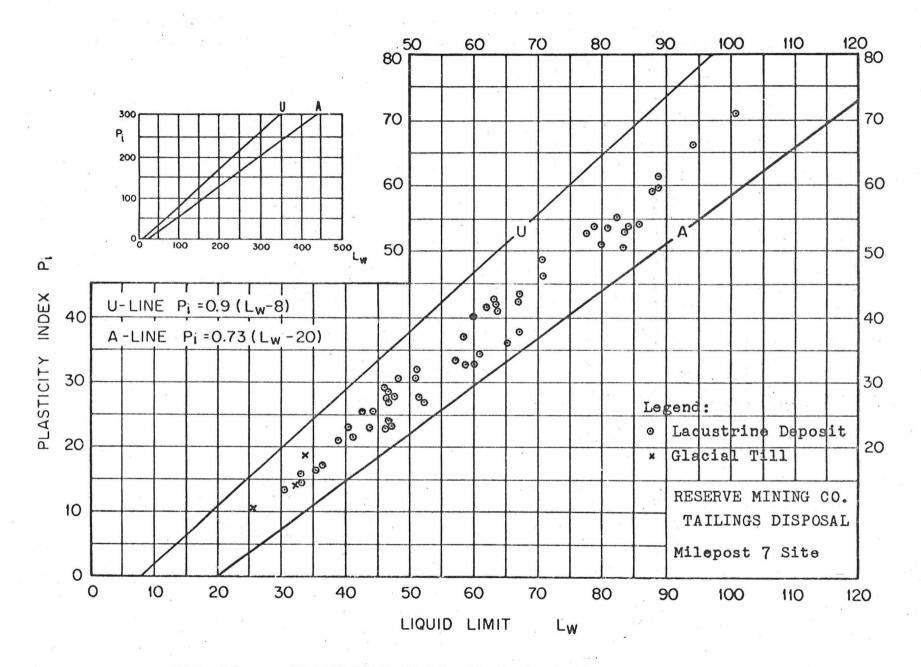


FIG. 10 - PLASTICITY CHART: CASA BORINGS

8-1-1-2

CASAGRANDE CONSULTANTS

APPENDIX II

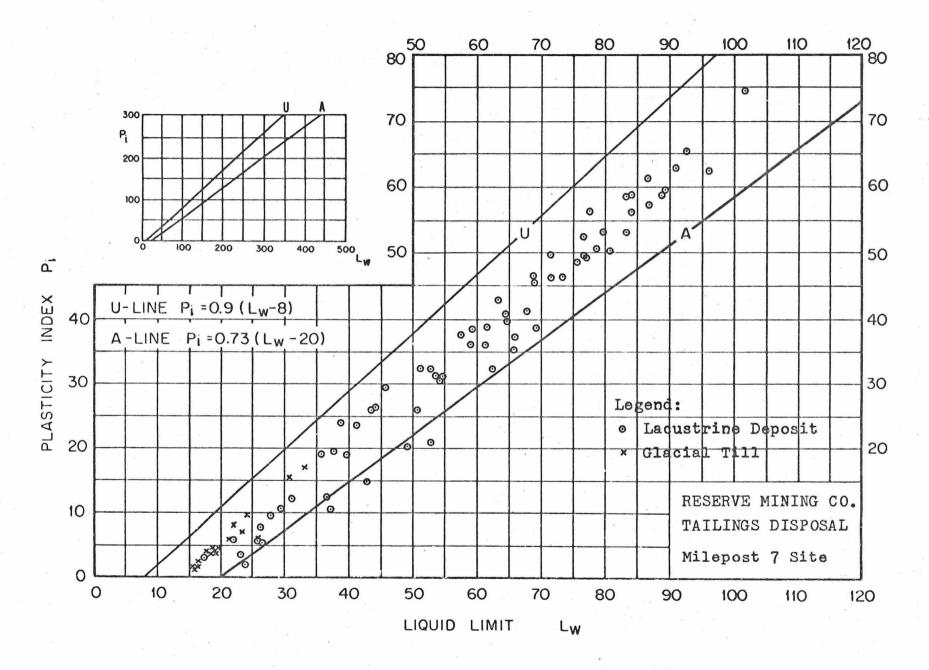


FIG. 11 - PLASTICITY CHART: KLOHN LEONOFF CONSULTANTS BORINGS & TEST PITS

APPENDIX II

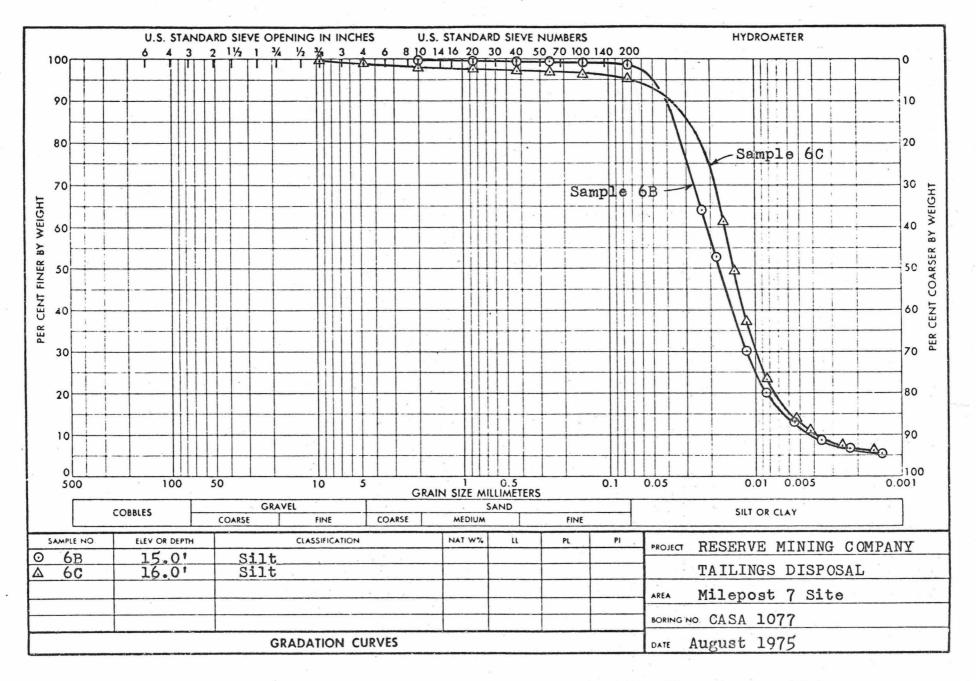


FIG. 12 - GRAIN SIZE CURVES OF SILT USED FOR PERMEABILITY TESTS

YPPENDIX II

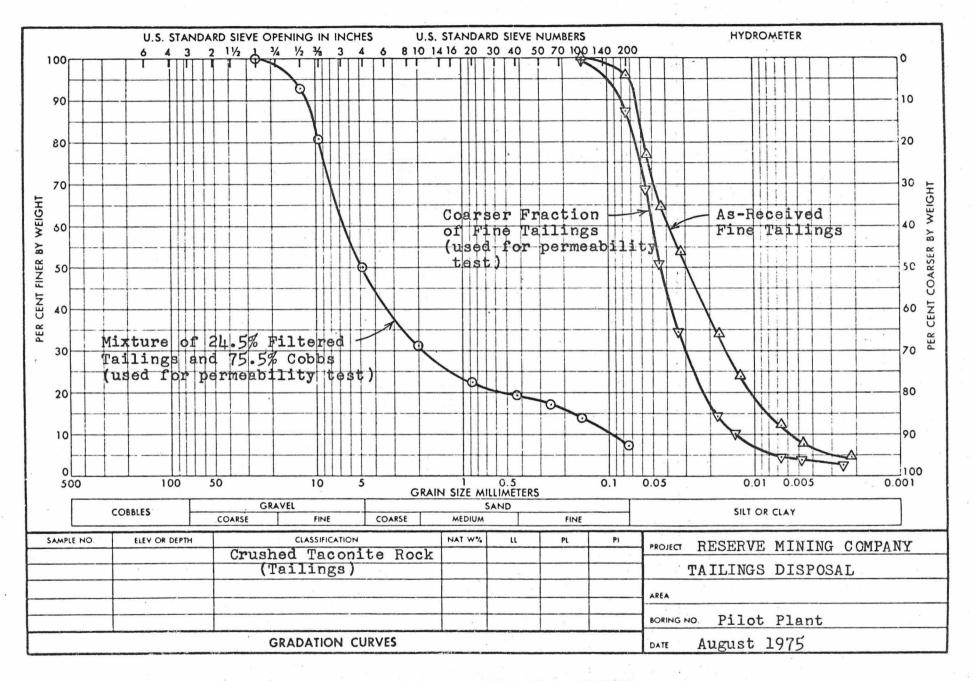
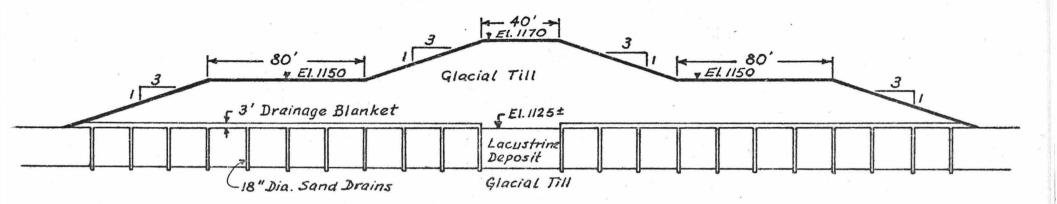
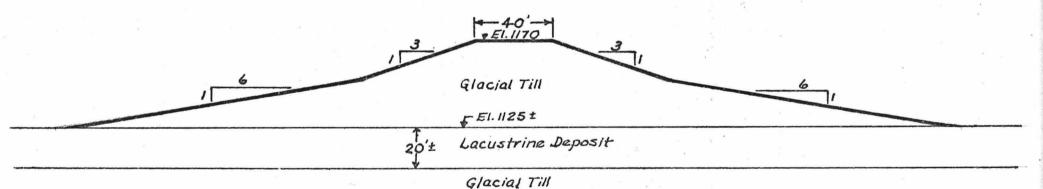



FIG. 13 - GRAIN SIZE CURVES OF TAILINGS

TUNHA


CASAGRANDE CONSULTANTS

YPPENDIX II

DESIGN PROPOSED BY KLOHN LEONOFF CONSULTANTS LTD.

SCALE : 1" = 50'

DESIGN PROPOSED BY CASAGRANDE CONSULTANTS

YPPENDIX

ΤI

FIG. 14 - PROPOSED CROSS-SECTIONS FOR STARTER DAM NO. 1

YEBENDIX

TIT

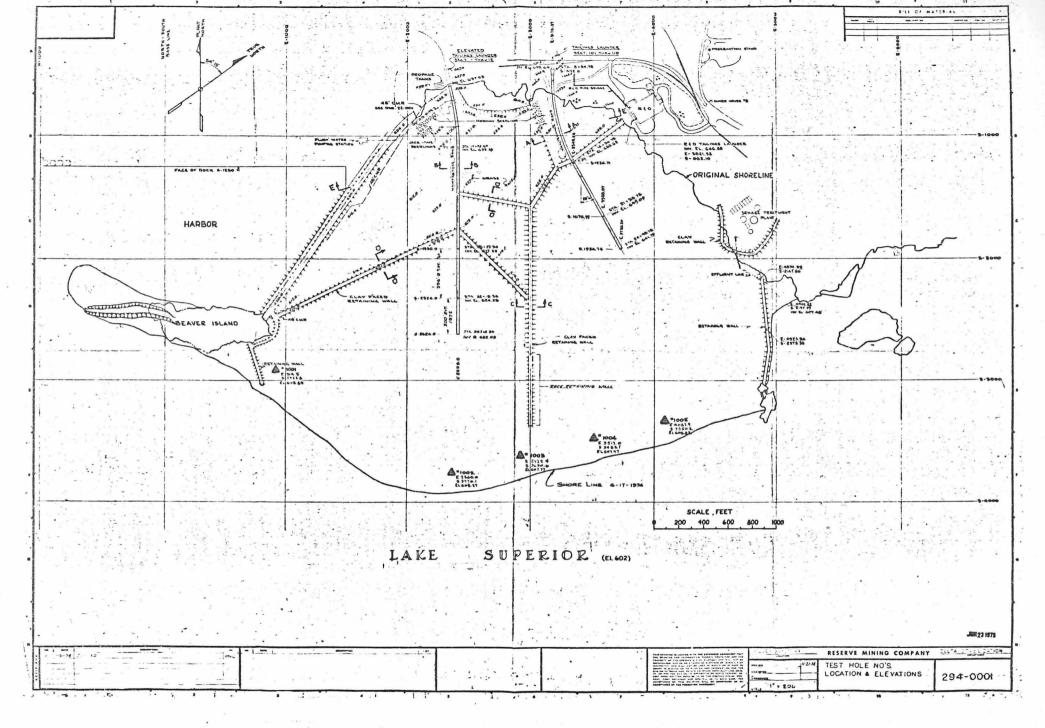


FIG. 15 - LOCATION PLAN OF BORINGS ON TAILINGS DELTA

III

YPPENDIX

YPPENDIX II

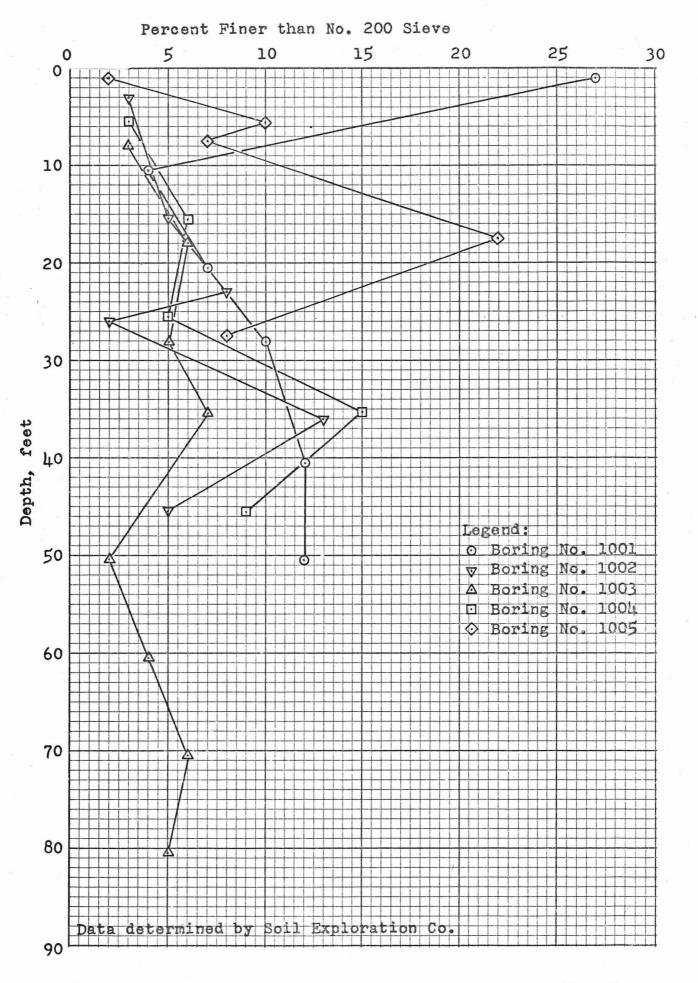


FIG. 16 - PERCENT OF TAILINGS IN DELTA FINER THAN NO. 200 SIEVE

APPENDIX

ΤT

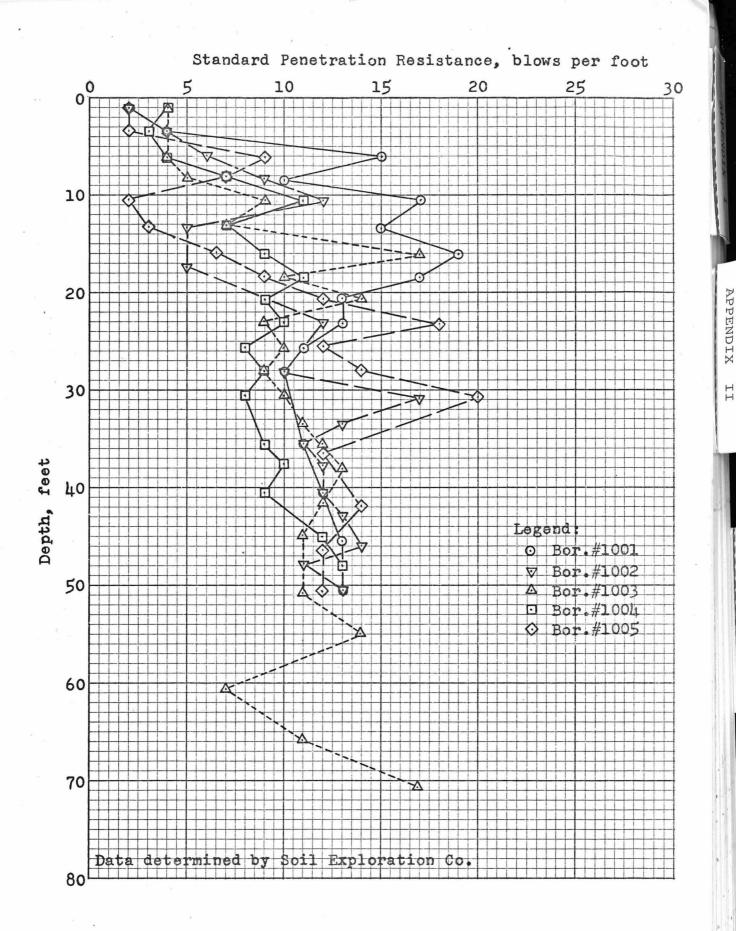


FIG. 17 - STANDARD PENETRATION RESISTANCE IN THE TAILINGS DELTA

APPENDIX

IPPENDIX

APPENDIX I

FIELD LOGS OF BORINGS

CASA-1002, -1072, -1077, -3004, -3037, -3056 PREPARED BY W. A. WAHLER & ASSOCIATES

			ED CHE 75	HOLE ELEVATION			D BY ASTEDANGAN	
CROUNDS ATEN	titt SURFA	LIJ	50' (G-16-75) E HOLE DRILLED MB	HOLE DIAMETER	Anterior concentration and service and a service of the		DRILLED 6/3/75	
10161 07					1			
ELEVATION (Depth)	CLASS.		DESCRIPTIO FIELD IDLATIFICA		SAMPLE NUMBER	NODE	REMARKS	-
			0.0 - 78.5 LACUSTRING	terosit.		AD	trilled with hollowst auger (AD)	cm
					PS-1	F~3	stationary riston som	pler (B).
2	Cł	4	-red clay; firm; l		-1.0'-3.0'	1.64	too to 300 psi applied hydroulic pressure. * recevery ratio indicate	6
						AD .	by fraction.	
					F PS-2	FS -	Groove along side	
	CH		+ red clay , shift ;	nighly plastic;	3.5-5.5'	2.0	rock frogment	
. 6 -					P5-3	AD	100 to 300 psi.	
		.			4 : 1	P5	on bottom B", pro	lesel
8 -	CI	h	- red clay; stift; h	ighly, plastic;	<u>+</u> 6.0' - 8,0'	1.9 2.0	by rock in the class	·] ·
					+ + +	AD	100 to 300 psi. Do	nice
	Cł	1	- reddigh brown s	ilty clay;	1 PS-4	PS	tip of tube;	
10			hard rock fra. highly plastic	WOWS	1 8.5-10.5	1.7		
		- :			P5-5	PS	100-to 400 psi. Dented tip after	bes.
12	M	L	- breun sandy sil	t; firm;	11.0-12.8	1.8		
			(change)			AD		
14-			(criange)		<u></u>		- 	
					P5-6	PS		
- 16 -		1	- reddien brewn eleg stiff: damp.	highly plastic	14.0-16.0	1.9		
					*	AD		
		M-	- known siltre Egund	and reddish	PS-7	FS	100 to 500 psi.	
18	30		breen silting chan will; dense and	firm; wet.	17.0-18.1		- Water level after framplin - PB-7 - 12.51 - Water Level V hour att	1.
					P5-8	PS	Water level 1/2 hour article previous reading - 5	
20	- ·		-		18.5-20.5	200	tip of tube.	
W.A. WA		M	ILEPOST 7 SITE	Ξ.	DRILL	L EXPLOR H O L		
& ASSUEL	ATTS L	FALO	ALTO . NEWPONT BLACK .		ROISCT NO.	CAIL	I MERTING CAS	A

APPENDIX III

APPENDIX IV

DRILL KIGTRUGKMONTED CME 75	HOLE ELEVATION	LOGGED BY ASERIANGAN 2
CHOUNDAATER DEPTH CONTON ENCOUND CURLICES	HOLE DIAMETER & 1/2"	MATE DRILLED 6-13-75
		а ^н а на полити и на полити на полити и дели и на полити и полити и полити.

ELEVATION (Depth)	CL AS:	s.	DESCRIPTION FIELD IDENTIFICATION	S/MPLE NUMBER	NODE	REMARKS
20		CH	- reddish brown charge included coarse Savid to fine gravel angular reck frogments. highly plasse; firm to shift: damp.		AD	
22 3		214	- roddish brown clay at tip of tubo;	PS-9	PS -	100 to 300psi andied prosoure. Tip of tube
			highly plastic; stiff; damp.	2115-23,5	<u>2.0</u> 2.0	
24 +					AD	
			- aboy at tip of tube; little fine	PS-10	PS :	100 to 200 ps1.
. 26 #		CL	tine and included coarse angular sand fragments; brown; stiff.	245-265	2.6	
****		•			AD	Easy drilling to 27.0' Rough in grauelly materia from 27.0'-27.5: Cleaned
28			- red clay in split spoon to 28.5'.	SPT-1 275-29.0	DR -	hollow sten by jetting. - to 27.5. Drove standard split
***			26,5: 33.0 : GUACIAL TILL	(fravel-sand)	-1.5	and 30" free fall (pr. 5/5' 7/5' 10:5'
30 +			GRAVEL AND SAUD; chay binder; red; donse		AD.	- Rough drilling in gravel material to 32.0'
+++++++++++++++++++++++++++++++++++++++						
32				\$PT-2	DR	5/ 37/ -21/
			- groutly storing cley; red; druge :	32.0-33.5	10	5/5, 37/5, 31/5,
34			BOTTOM OF HOLE 33,5 00 SUALLOW HOLE DRILLED 1.5'NW OF			Water level after pulling cu auger Eize pun, 16/15 75- 5
+			MAIN HOLE TO REGAUPLE DEPTH INTERVAL FROM 4.0'- 8.5'			
4 36			4.0'	PG-11	PS	- Som picd with thin wall piston somptor: 100 to
		•].	- red clay hiddly thating	4.0'- 6.5'	13 25 25	the c. 5.
\$ 38 4				6.5-0.5	130	- left in hole:
		•	* unit a compi			
40			ILEPOST 7 SITE -	¢	EXPLORA	
RLA, IVAN & Associa		171		DRILL	HOLI	LOS NO.
a usaasiy	113 -	PALO	ALTO - NEEPURI BEACH - CULH.	011CT ND.	DAIL	2 or 2 1002

APPENDIX

ΤI

APPENDIX

TIT

			KED IME 75	HOLE ELEVATION		LOGCE	D BY A.S. EUNUGAN	-
LOW CROL	ND SU	RFACE	5.3'(6-12-75)	HOLE DIAMETER	61/2"		DRILLED 6/11-12/15.	
ne. c.	15A	0.000	WEEL HOLE LOGI	TED VITHIN	10' OF KL	-CHN I	ACLE HOLE 1072	- Destruction
VATION Cpth)	CLA	ss.	DESCRIPT FIELD IDENTIF		S AMPLE NUMBER	MODE	REMARKS -	
+			0.0 - 19.0 LA EUSTEI	+		AD	Enilled w/ 6" hollow stow Suger (AD).	
		CH	O.O. 2.5 CLAY, MARTINE	ed; firm to	PS-1	PS :	Sampled with thin wall dati Piston sampler, 3"0.0 Applied hydraulic prosum	24
2.07	•		stiff: damp; V upper 2.0 proba from road that	tic.	1.0' - 3.0"	7.0米	From 100 to 200psi. (FS) * recovery ratio indicated b	
. ‡		ci-	I change in fulbe			AD :	ictilled to 35'. fraction	315
4.0		CH HU			PS-2	PS -	2 100 to 200 psi 2 ppied pressure.	The second second second
			- moderate ruddich to drayey sill;	firm to still?]	3.5-5.5	$\frac{2.0}{2.0}$		of a local difference of
6.0	.]		plastic.	e to highly "		AD -	-	
					PS.3	PS'	100 psi. applied pressure	
8.6			- moderate reddish l to clausoy citt. f moist: moderst prastik.	iron to still.	6.0-8.0	1.8		
0.01	-		change in tube			AD :		
-	ľ	~~~~	9.0- 15.0 ?		PS-4	PS	100.200 psi applied	
10.0	-	CL	- gracush wrocon g	ilty clay at tip	8.5-10.5	2.0		
+			of tube; firm - moderate > pla	stic.		AD :		
					PS-5	PS	200-300 psi applied pressure: Dented	
12.0			- brewn zilty c of tubo; some rock fragme	meludite	11.0'-13.0'	20	to rock fragment	
14.0		1	, , ,		-	AD .		
			change in tu	be	P5-6	PS .	200 FGI applied procesure mercasing to 400 pe	
160		СН	15.0' - 18.0' - CLAY moist; highly included hard	red: stiff; plastic; come rock frogmonta	140'-16.5	2.5	in last 21' ronized tip of tube due to rock fingment	
			27 16.0:	-ter)en		AD		
īB. 0			TB.0'- 19.0' CLAY SZ	ight some arous	PS-7	PS -	200-300 increasing to 500 psi in last 211,	
+		CL	lar, hard, rock Jamp. 19.0'- 24.0 GLACIA	frogments; stiff;	17.5'- 19.5'	2.0	Notor at 16.0"	
200		GP- SP	- gravel, sand, or	y clarited'		04	10,01 20,01.	
.A. WAH	LER	1 pr	TILEPOST 7 SIT	E	DRILL	HOLI		-

-

ι

APPENDIX ΤI

APPENDIX

III

APPENDIX IV

ļ,

		ied CME 75	HOLE ELEVATI			0 BY X.S. BUANGAN		
GROUNDWATER BELOW GROUI		E)	HOLE DIAMETE	R C'A'	DATE	DATE DRILLED 6 (11-12/75		
ELEVATION (Depth)	CLASS.	DESCRII FIELD IDENT		SAMPLE NUMBER	MODE	REMARKS		
				4		to 21.0 in rocky materi		
220	GP-			SPT-1 - 21.0'-27.0'	DR 15/10	Drave standard split-spec (DR) with 140 lb ham tailing 30". (DR) - 71.5 " 151.5		
	SP	in oplit op and and in oplit op	sandy day		AD	Fough drilling with hollow ston avgor from 21.0' to 24.0's in grave 11y material. Eleaned out bottom 3' of		
24.0-	-	- reddich brown Bilty clay.	gravel and	SPT-2 24.0.2.5	PR 1.0 1.5	with chopping bit. Stopped 5:30 pin 6-11-75 Featured 9:00 A:M 6-12-20		
W.0 18.0		BOTTOM OT	FHOLE-255			Noter level before drilling _0.3' Verted outhole to 34.0' Drove astandard eplit spoon from 24-155 -1.5 18/5' 18/5' Water lovel after pulling augers - 5.3',		
37.0								
340								
36.0				**				
32.0-								
W.A. WAHI & ASSOCIA	EH	MILEPOST 7 5	ITE	DRILL	L EXPLORA H O L	HOLE LOG SHEET NO. 2 OF 2- 1072		

APPENDIX ΤI

OUNDWATER	DEPTH Init	HOLE ELEVATION Hole ELEVATION Hole DIAMETER			DRILLED G-10 -75
CASAG	FINDE HOL	E LOGATED ON CENTER OF ACCESE FO	AD WITHIN 10' OF	KLOHN D	KILL HOLE 1077
EVATION Depth)	CLASS.	DESCRIPTION FIELD IDENTIFICATION	S AMPLE NUMBER	MODE	REMARKS
		0.0'-15.0 LACUSTRIVE DE:051J	+++++++++++++++++++++++++++++++++++++++	VD .	Drilled with hollow stem suger (AD).
2.0	СН	upper a' probably disturbed from road traffic.	PS-1	Prs 1	Sompled with thin wall stationary piston somehr (PS). 100 to 200 psi applied hydraulic pressure.
		- red clay at tip at take; stiff; downpy; highly plactic; varued.	1.5'-3.5'	20*	* recovery ratio indicated by Judition.
‡		(1		Ap	Easy dolling.
4.0	-		P8-2	P5.	150 psi applied proserver
4.0 H	СН	- red clay at tip of tube; stiff; damp; highly flastic; varved.	4.0'-6.5'	212	
Ĭ	· · [],]	11		AD -	Easy drilling
8.0			P5-3	P.S	200 psi arrived pressure
0.0 -		- horizontal stratification a at tip of PS-3; some thin	7.0'-9.0'	2.0	The second shift is a
Ŧ		(1/8"thick) fine sand lenses,	<u>+</u>	AD :	Easy drilling
100		water encountered at 9.5'.	PS-4	P5 -	300 psi applied pressure Tip of tube slightly dented probably due to small rock;
+++++++++++++++++++++++++++++++++++++++	CL	- savdy. day at tip of tube at 11.5' reddige preum, stiff, dawp.	9.5' 11.5.'	1.9	frogments.
12.0 I			+	AD .	I Easy drilling.
Ŧ		- change in tube	P5.5	P5 .	300 pei applied pressure Fenied tip of tube.
14.0.		-clay with little sand at tip of tuke.	12.0'- 14.0'	2.0	Essy drilling.
Ŧ	-	11/2" angular hard rock frogment in auger cuttings	<u>+</u>	47	= 200 psi applied pressure
Ŧ		in a second s	+ 15-6	PS	After sampling PS-6: water level rose from 9.5' to
14.0	HL	150 (?)-170' SILT, Gandy: Some coarse saw; moderate brown; firm; wet. sandy silt at tip of tube	14.5-16.5	2.0	= graund surface flowing. = St = PPPTOX 3 gpm. (. = Drilled to 17.0'. Fough drill-
Ŧ				AD	I ing in gravely material
18.0	GC	17.0-10.3 GLATAL TILL GRAVELAND GAVD; SOME day; mostly angular gravel; reddish brown; Very dense.	SPT-1	TR 12/2	+ sempler at 17 but hit refu- sal (600 psi apriled, pressure) + Drove standard splitsper With 140 b have or and
			SPT-2 100'-10.3	DR 3/3	Freugh chilling to 19.0!
<u>10.0</u>		BOTTOM OF HOLE-19.3	-		
W.A. WAHI & ASSOCIA	LEK	ALLEPOST 7 -SITE	DRILL ROJECT NO.	L EXPLORA H O L DATE	

1

5

APPENDIX

ΤI

APPENDIX III

LINU

DW FROM		REACE	FLOMPA (6-19-75) HOLE DIAMETER	61/1."	DATE	DRILLEO 6/18/75
TE. CA	SAGE	X1DE	INDLE LOCATED 12 FEET WEST	OF KLOHN I	HOLE	3004.
YA11011 epth)	CLAS	ss.	DESCRIPTION FIELD IDENTIFICATION	S AMPLE NUMBER	NUDE	REMARKS
0			0,0:0,5 TOPSOLL: clay. dark hown; ; organic: boulder near surface.		AD	Prilled with hollow stand
2 -		CH	0.5-16.5 LACUSTRINE REPOSIT	PS-1	P5	Sampled with thin wall star tionary piston sampler
			- red clay, silty; some coatse	1.5-3,5	1.8 *	Spplice in draulic pressure.
				and the second	AD	tread by fraction.
4 -				P6-2	95	tip of tube
			- moderate ied silty clay: sand. fine to coare sand come fine gravel; moderate to highly plastic; stiff;	4.0'-6.0'	2.0	Rough drilling in boulder
. 6 -			damp.		AD :	-======================================
			ted day; highly plastic : still;	· PS-3	PS	100 to 250 pein
8			- damp: block structure.	6.5-8.5	1.8	
			(change in tube)		AD	
	-	-	-? - brown silty play. alightly	PS-4 .	PS	water at top of
10		ĊL	sandy; moderately plastic; firm; moist.	9.0- 11.0'	2.0	-tuke.
. 0		× i			AD	
12 -	Ē			PS-5	FS .	100 to 200 psi; " FF 6"
		ML	- brewn clauley silt to sandy silt; low to moderate plasti- city; firm; moist.	12.0'-14.0'	2.5	Water level in hollow stem
14 -	†			<u></u>		
	+++			F PS.6	PS	+ 100 to 250 psi , Tube tip + clightly dented.
16 -		SC	_ moderate red clayey band; fine to coaree band; medium dense; moist:	14.5'- 16.5'	2.0'	+
	F			SPT-1	DR	+ free fail(or) = 5/5 8/5, 9/5
		56	-red gravelly, clayey cand; medium dense: wet.	165-18.0	03	Herd disample fell deur hole Frilled to 18:0: Water Frose to surface and diwin
18.			-red clayoy and growel; dense; (cample extruded in the field).	TP5-7; 18.d-18.5	F6 .4/.5	I Smin, 21ter conting to 10; I letted hole to wash out cleval Letter piston sampling.
20		х - ж	-red gravel and const. little day; medium dense; wet.	5PT-2 185-20.0	DR 06/15	- 100 to 600 pri applied tree- Sure. Sare tie of June. Sample - extruded in the fich. Artes - Slow after compling - or and s gr - 7/5' 8/.5' 15%.5
LA. WA ASSOC		1 1.0	ILEPOST 7 SITE-	DRILL	L EXPLOR. H O L	ATTON KOLE

APPENDIX

II

APPENDIX III

APPENDIX IV

GROUNDY ALER DEPTH	
INDLE DIAMETER 61/2" DATE DRILLED 6/181	175

(Depth)	CL/	ASS.	DESCRIPTION FIELD IDENTIFICATION	S AMPLE NUMBER	NODE	REMARKS
10		G.P-	20.0'-726.5' GILACIAL TILL	SPT-3 200-2115	DR 1.0 1.5	Drilled. to 20.0' Rough drilling Jetted hole to wash out slough. Onive Pomple 13/6. 21/5. 35/5'
22 -		SP SP	- grout and good with clay bindres; red; very derge; damp.		AP .	Very rough drilling from 22.0' to 22.5'. No actesia flow after anilling to 22,5
24			- grovel and sand; little fives; red: very devse; damp.	SPT-4 225-23,5	DK -0 10	38/3' 100/5'
						Rough drilling to 25.0'.
. 26			red; very dense; dampr	SPT-5 25.0'-26.5'	DR 1.0 1.5	18/5, 4.2/5, 58/5.
		•	BOTTOM OF HOLE 26.5"			Water level after fulling aucier 1:30 p.m - artesian flow.
28 -						Volar level at Sioop.m. - artesianfleur 1-2 gm Water level at 8:00 a.m 6/19/15- artesianfluu
30-						
2 -						
4 -						
6-						
8						
0						
W.A. WAI & ASSOCI		M	ILEPOST 7 SITE	TSUII DRILL	EXPLORA H D L	THON ELOC SHEET NO. CASA

APPENDIX

ΤI

		MED ON FN 160	1	LUGGE	D'BY KORDUANGAN
AUUNDNAILR CL	FIH O. SURFACE	o (G-18-15) HOLE DIAMETER	61/2"	DATE	DNILLEN 6/17 /75
ibte: CASA	GRAN	HOLE DRILLED GFT.SLOW	OF KLOHN H	OLE 3	037.
(Depth) C	LASS.	DESCRIPTION FIELD IDENTIFICATION	SAMPLE NUMBER	NODE	REMARKS
		0:0'- 1.0'- CLAY: dorkbrown; organic material; topsoil.		AD	Drilled with hollow stem Duger (AD).
		TO'-DO.O' LACEGTCINE PEROST	+		Stationery
2 +			PS-1	PS	Sempled with thin well picton Sempler, 100 per applied hydrau- lic pressure increasing to
	CH	stedday at tip of twice : some sind sind included hard gravel; ifirm to stiff : bamp;	2.0'- 3.7	1:3*	Acopsi in last 2". Dented tip of tube due to rock, " recovery istic Rough dailing in bouldery
4 1		highly plastic.		AD.	- Rough chilling in Bouldery material from 4.0' to 5.0'.
			PS.Z	PS	to GOO psi in last 1"
- 6	.CH	- red dzy, included gravels or - bourders, stiff; damp; highly plastic	5.0'- 4.8	1.8 1.8	Bottom 12" of tube crump- pled probably by boulders, grove along sides of sample
*		highly plastic	ł		
8 +	. CL.	- reddish brown silly day and sill; liffle fine sand; very stiff; damp; varved,	FS-3 7.5-9.0	15	Tip of tube elightly dented
	ML	이 아이지는 동안 집에 가지?	+ + +	AD	+ Rough chilling in cobble at
10 +		-? - brown Cloury, sandy silt;	F PS-4	PS	+0 600 psi gradually increasing
	ML	included rock frogments; stiff; domp.	10.0,-13.0,	2.0	probably by rock.
12 -				2.0 +D	Rough drilling in tock at 11.5%
		change in tube	P5.5	. PS	100 to 300 pei
	CH	- red day; stiff; downp; highly plastic.	13.0'- 15.0'	2.0	
			+		
6	· · · ·	Change in tube	P5-6	P5	I loopsi gradually increas
I. I.	CL		16.0'- 18.0'	2.0.	
18 1		- brown silty clay; stiff; damp	+ +	AD	Easy drilling.
		- moderate reddich brown siltyclau	PS-7	PS	+ 100-200 psi, increasing +0
10 T	N	Thille cond, some individ rock	1 17.0 200 SUI	T.O	+ probably in rock(ragment)
VI.A. WAILLE & Associati	li		DRILL PROJECT NO.	HOL DATE	E LOG HD.
e neodulai	LJ PAL	O ALTO . NEWFORT BEACH . SALIN.			1 . 0 2027

APPENDIX III

APPENDIX IV

and the second se

		M.A.	INTED ON FN160	HOLE ELEVATION		LUCCL			
CHUTHBEATER		<u>(1)</u>		HOLE DIAMETER	61/2"	DATE	DRILLED 6 17 75	-	
	×		:		·				
(Depth)	CLASS.		DESCRIPTIO FIELD IGENTIFICA	SAMPLE NUMBER	MODE	REMARKS			
10			20.0'- 20.0'			AD -	Easy. philling		40
							-	-	
	ML	-	- brown Gandy Silt; Som lenses and gravel;	i fine sand : stiff; dampi	45-8 22.0-27.8	PS0.8 0.8	Floo-300psi increasing to GOOpsi at bottom "." Probably in rock.		10
24			-brown band sill: day	w some		AD	Bent tip of tube. Sample 10050 inside tube. Rough Amilling 22,5'-24,0'		1
			-braun sandy sill; dau fine-gravely shift;	moist.	P5:9 24:0-24:5	85 -5/5	to 600 psi st Lottom I". Dented tip of tube, say bose inside tube.		1
. 26 7						AD	Slightly rough drilling to	the space of the state of the state	
		•	-brown sandy silt; cl clean sand pocke fine grovel; dense	ayey; some	SPT-1 26.0'-27.5	DR 10	Drown standard aphilopoon with 140 16 havener one 30" fice fall-(PR) 531-(PR)		
28			-(chavar in tube)		} 	AD .			
	· CI		(B-10	PS	Rough sampling. Dented		2.2
30		-	- reddich brewn sondy included fine gravel y tube	zi tip of	23.5.30.5	12	the of tube		
	Gf		300-39.5. GLACIAL TI - reddigt brown som		SPT-2	DR. 15 15	42/5' 54/5' 110/5'		an di sana di sa
32	Sf		dayey: very	deviserdanip	. 30.5-3z.0	1.5.	Rough drilling from 32.0		
		25	1. Sec. 1		‡ ‡ •	AD	to 34.0'.		
34 -	- Sf	0	word tick how we are	wall crant.	± 5PT-3	DR	•		
		٣.	-reduich brown gre clayer very den	se; damp.	340-355	1.2-	5, 32/5, 48/5		
36						AD	Very rough drilling from 855 Ho36.0 in groupily water		
					; ‡		‡ •	-	
38	5	SP	- reddich brown giz Clayer; very d	ense: damp	5PT-4 38.0'-39.5	DR 0,0	Water level alter rulling auger 3300 - 6117/15- 10.0		
40			BOTTON OF HO	16-39.51	* *		- Water level alige 12hr - 10.	0	-
IAVE A.W.		M	ILEPOST 7 SIT		DRILL DRILL	L EXPLORA H D L			-
& ASSOCI	1117 L	PAII	A JUID . NEWFORT BEACH .	and an and a state of the state	HEILCI NO.	CRIL	2 or 2 3037	1	

APPENDIX III

AFFENDIX IV

DRILL RIG C		MOUNTIO ON FN 160 0.0' (6-13-75)	HOLE ELEVATION			D BY A.S. EDANGAN
BELOW GROUN	DSURF	CE)	HOLE DIAMETER			DRILLED 6-12 - 75
NOTE	CASAG	FANCE HOLE DRILLER	S IO FEET E	STAT OF	REAL	RVE HOLE NO. 3056
ELEVATION (Depth)	CLASS.	DESCRIP FIELD IDENTIF		S AMPLE NUMBER	MODE	REMARKS
		0:0-0.5 CLAY	· · · · · · · · · · · · · · · · · · ·		AD	thilled with G"hollow them surger (AD)
2.0		. Marta		PS-1	PS :	etationary piston sampler (200 to 200 psi applied
	Cł	- red clay; little	and and him	2.0'-4.0'	1.64	The oftube elightly tented. * recovery ratio indicated b
4.0		gravel; highl shift; damp;	y plastic; at tip of tube.		2.0 AD	Stachan = nilled to 5.0' Same rock fragment.
60				P5-2	P5	100 poi applied presents increasing to 600 pei in last 2113
		- reddish brown d rock frog wie	ay with	5.0'- 6.7	1.4	tonted tip of tube
6.0		rock fragme damp: at tip	of tube."		AD.	For through hotomster
‡. ‡				P5-3	PS	-200 to GOO pei applied pressure. Fented tip eftube:
10.0		rock frequent	s; stiff; down =	8.0'-10.0'	17 2.0	
÷		highly prastic charge inside		Ro	AD	200 pgi applied precure inverse
12.0				PS-4	PS -7-10	200 psi apulical prosure increa ing to 600 in 12st 3". Dented tip of tube.
Į	M	- breun soudy silf tube; stiff; damp	at tip of		AD :	Little rough drilling to
14.0				PS-5	PS	200 poil applied pressure
ļ	CI	- reduish brown oil of tube; stiff;	ty dzy at tip highly tastic	14.0'-16.0'	<u>1.6</u> 2,0	grainally increasing to Goopsi.
16.0-		domp.	11 []		AD	Easy drilling. No rock.
18.0				PS-6	PS	100 to 300 per applied pressure.
	Ċĭ	grazimentse ist	huded rock .	17.0'-19.0'	2.0	
20.0		highly plastic.			AD	
W.A. WAHL & ASSOCIAT		MILEPOST 7 5	TE	DRILL DIECT NO	EXPLORAT HOLE	

1

.

APPENDIX II

. 1...

**

10 1.

10

.....

1	1	
1	1	
•	•	

DRILL RIG < GROUNDWATER (BELOW GROU	DEP	TH	HOLE D	ELEVATION I AMETER	6'h"		D BY A. S. EUANGAN DRILLED 6 12 175
,			×				
ELEVATION (Depth)	CL	ASS.	DESCRIPTION FIELD IDENTIFICATION		SAMPLE NUMBER	MODE	REMARKS
ŧ				+	PS-7	PS -	200 to 400 psi applied
		CL	· redich brown silty clay at -	Lip +	20.0'-22.0'	19	pressure .
27.0						ÀD	Water level at 10.0"
I I			change in tube		PS-8	PS	200-400 psi applied pressure. Difficulty pull out piston. Vacaum
24.0' +		ML- CL	24.0: 27.0' - Ell, sandy to cu Sznyy; brown; 15tiff; moi - brown sandy cilt at tip of		230'-250'	2.0	ectuary piston and example moved sample. Disturbed sample.
Ī			- show sonoy sill of the			AD	
26.0			-break savdy clay at tip of -	tube t	PS-9 260'-27.0'	PS0 1	300 pei increasing to 70 pei 27 27.0' approxitizin rock. Fube Was out with saw broaver of extreme difficulty pulli
		ML-	27.0 - 37.6 - GLACIAL TIL SILE = and r and CLAY			AP	out two from sampler head willing from 27,0%
280	•	CL	reddigh brown to brown i availar porescond and brown gravelly sandy, s some clay,	included fine grav	e; SPT-1 28.0'-295	210.10	three standard split spoon with 140 lb hommin and 30" free jall (DR) 10/6/25/6' 30/6'
, ŧ							Escy drilling
30.0						AD.	Rough drilling in gravel
32,0				, A			
Į			- redish brown sandy silt w roak traismonts.	ithindu	SFT-2	DR 1.0/	
Į			rock traicimonts.		37.0' 33.5'	15	13/5, 17/5, 26/5,
34.0						AD	Easy drilling to 36.0 in some rocky material
							bottom of hollow stan. by jetting, to get to \$6.0'for driver sample
36.0					SPT-3	PR:	
			- reddich brown sandy cla- ongular coarse sand a fine gravel dense da	and t	36.0'- 37.5	1%5	1/6. 18:21/5'
39.0			ENTON OF HOLE - 37			AD	Noter devel after pulling out avoins - 500 bits Nater level at surface Bico a.m. 6-13-75
100 1							
W.A. WAHI & ASSOCIA		3.15 1.15	MILEPOST 7 SITE		SOIL DRILL JECT NO.	HOLI DATE	

APPENDIX

ΙI

APPENDIX II

DESCRIPTION AND CLASSIFICATION TESTS OF UNDISTURBED AND SPLIT-SPOON SAMPLES

Abreviations Used in Tables

q_p = Compressive strength by means of pocket penetrometer

 $c_v =$ Shear strength by means of TORVANE device

Note: In these tables, the length of "Empty" sections include the sealing wax.

Ground El. 1134.3[±]

TABLE 1

Sheet No. 1

Depth to Water Level 5.0 ft

YLENDIX

ΛT

Undisturbed Sample Boring No. CASA 1002

Project No. 755

Sample No. and Depth ft	Section No.	Length In.	이 없다. 전 감정 방법을 얻는 것이 같이 다.	Consistency		Natural Water	Liquid	Plastic Limit	Plast. Index	Water Plast
	NO.	in.		As Received	Remolded	Content		Lunt	Index	Ratio %
				1.50						
PS-1	A	17.0	Empty							
1.0-3.0	В	7.1	Reddish-brown clay; highly fissured.	stiff & brittle	firm	31.2	66.4	24.3	42.1	16
			$q_{p} = 1.7 \text{ to } 2.2 \text{ tsf}$ $c_{v} = 0.93 \text{ tsf}$							
	С	11.4	Reddish-brown clay with a	stiff to	firm to	28.1	50.6	20.1	30.5	26
			3" zone of sandy clay in the	v. stiff	stiff					•
			middle; upper part fissured.	brittle						•
			$q_{p} = 1.8 \text{ to } 2.6 \text{ tsf}$ $c_{v} = 0.97 \text{ tsf}$							
	er jajanti		에 가장 같은 것 같은 가장에 가 물을 통 것이다. 등에 이 것은 것은 것은 것이 같은 것이 같은 것이 같은 것이다.							
						· · · ·				nin - F F

YPPENDIX

III

TABLE 1 (cont'd)

Sheet No.2

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No.755

Sample No. and Depth ft			h Description	Consistency		Natural Water		Plastic Limit		Water Plast.
	No.	In.		As Received	Remolded	Content		Limit	Index	Ratio %
PS-2	A	11.5	Empty							
3.5-5.5	В*	12.8	Reddish-brown clay with some layers of silt and clayey fine sand; and containing some small roots; fissured. $q_p = 1.5$ to 1.9 tsf $c_v = 0.84$ tsf	stiff & brittle	firm	29.1				
	С*	11.3		firm to stiff & brittle	firm	52.0	94.5	28.5	66.0	36

* see Photo 1, App. III

TABLE 1 (cont'd)

Sheet No. 3

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No. 755

Sample No. and	Section No.	Length In.	n Description	Consis	tency	Natural Water		Plastic Limit		
Depth ft	NO.			As Received	Remolded	Content			macx	Ratio %
							- T. (*)			
PS-3	A	13.0	Empty			· · · · · · ·				
			2018년 1월 20 1월 2019년 1월 2019년 1월 2019년 1월 2018년 1월 1월 2019년 1월 2018년 1월 2						r _{in}	· · ·
6.0-8.0	в*	11.0	Reddish-brown clay containing	stiff to	firm to				×	
	· 2		some pebbles and pockets of	v.stiff	stiff	1.0.7				
			dark gray organic clay with	& brittl	е					
			roots and stems.				12.			
			$q_{p} = 1.5 \text{ to } 2.7 \text{ tsf}$							
			$c_{\rm v}^{\rm p}$ = 0.94 tsf					5 10 10	·	
			V							
	С*	10.8	Reddish-brown clay with	firm to	soft to	55.1	100.5	29.7	70.8	36
	lan lan		several thin layers and	stiff &	firm			* <u>*</u> 1		æ
			lenses of brown silt; fissured	. brittl	e	12.5				
			$ \begin{array}{l} q_{p} = 1.6 \text{ to } 1.8 \text{ tsf} \\ c_{v} = 0.89 \text{ tsf} \end{array} \right\} top $							
			$ \begin{array}{l} q_{p} = 1.0 \text{ to } 1.2 \text{ tsf} \\ c_{v} = 0.70 \text{ tsf} \end{array} \right\} \text{bottom} $							
			Note: The lower half of this	1						
	•		section of tube was slightly							
			oval-shaped.							

* see Photo 2, App. III

Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring		002			oject No	
Sample No. Section Length and No. In.			Description	Consistency		Natural Water	Liquid Limit			Water Plast.
Depth ft				As Received	Remolded	Content %		-		Ratio %
PS-4	A	15.9	Empty							
8.5-10.5	в*	8.9	Reddish-brown clay containing	firm to	firm	38.5	65.1	29.1	36.0	26
			pebbles; highly fissured	stiff &						
			(almost a granular structure)	brittle						
			$ \begin{array}{l} q_{p} = 1.2 \text{ to } 1.5 \text{ tsf} \\ c_{v} = 0.74 \text{ tsf} \end{array} \right\} \text{bottom} $							-
	С*	11 4	man 4 2" similar to Castion D	finn he	6 i um	37.6				
		11.4	Top 4.3" similar to Section B	stiff &	firm	37.0				
		ar Ar	$q_p = 1.2$ to 1.7 tsf $c_v = 0.75$ tsf	brittle			 * 	e.		-
			Remaining 7.1" is brown	stiff &	firm		0 	-		
			varved clay with pockets and	brittle						
			lenses of silt and fine sand,							
	3.3		and containing some pebbles							
			up to 2" size.							
			$q_p = 2.1$ to 2.2 tsf							
x										
					L]				

TABLE 1 (cont'd)

Sheet No. 4

* see Photo 3, App. III

TABLE 1 (cont'd)

Sheet No. 5

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No. 755

Sample No. and	Section No.	Length In.		Consis	tency	Natural Water		Plastic Limit		Water Plast
Depth ft	110.			As Received	Remolded	Content				Ratio %
								5		
PS-5	A	13.5	Empty							
11.0-12.8	в*	10.6	Top 3" is brown varved silt							
			with some lenses of reddish-	l, ^a nn an s						
			brown clay (disturbed). Middle 6" is brown sandy clay			~ (
			containing pebbles.							
			Bottom 1.6" is varved brown	firm to	5					
			silt and reddish-brown clay.	stiff &	firm					
			$ \begin{array}{l} q_{p} = 1.3 \text{ to } 1.9 \text{ tsf} \\ c_{v} = 0.59 \text{ tsf} \end{array} \right\} \text{bottom} $	brittle						
	C*	11.3	Brown silt with two 1" layers						× 1	
	C	11.5	of reddish-brown clay and							
			a 1" layer of fine sand at							
			bottom.		4					
			$q_{p} = 2.5 \text{ to } 3.2 \text{ tsf}$			19 - 19 - 14				
			$c_v^p = 0.70 \text{ tsf}$							

* see Photo 4, App. III

TABLE 1 (cont'd)

Sheet No. 6

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast.
Depth ft	NO.			As Received	Remolded	Content				Ratio %
PS-6	A	12.5	Empty			, °*.				
	T			C 1 1 1		25.5				0.5
14.0-16.0	В	11.4	Reddish-brown clay with one	firm &	soft	36.6	63.8	21.8	42.0	35
	- 다양력		0.5" layer of silt near the	brittle						
			top of the section, and					1. 		
			containing some pebbles;						1	
a 1 m ¹⁰ (11)	4		highly fissured (almost							
=			granular structure).				a a		· · · · · ·	
			$q_p = 1.2$ to 1.4 tsf							
			$c_V^F = 0.66 \text{ tsf}$							
									-	
	С	11.5	Reddish-brown clay with	firm to	soft to	37.4				
			several pockets and lenses of	stiff &	firm					
			brown fine sand near the	brittle						
			middle of the section, and							
			containing pebbles; fissured.							
		1. 1. 1.	$q_p = 0.9$ to 1.1 tsf							
			$c_v = 0.59 \text{ tsf}$ top							
	1		$lc_{j} = 0.62 \text{ tsf}$	1	L	1	L	L		L

TABLE 1 (cont'd)

Sheet No. 7

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	No.			As Received	Remolded	Content				Ratio %
PS-7	A	21.9	Empty							
17.0-18.1	В	13.5	Reddish-brown clay with 0.2"	firm &	soft	29.3	46.1	17.2	28.9	42
			of fine sand at the top and	brittle					-	
	÷		several small pockets and		· · · ·					
	× 1	1	lenses of silt within the							
Stankstation	е. По се с		bottom 1/3; contains		2 - 2 A					÷
	8 . J		numerous pebbles; fissured.							
°a2 k	a di M		$q_p = 1.2$ to 1.3 tsf							÷ .
in di si			$c_v = 0.68$ tsf							
	, č									
	1. J. K.					°				
	- 1 							ж. -		÷., Х
s ***				1.5						
				•						5
· * · · ·		1			- 					
										×
	1					L				

Depth ft As Received Content % Ra % PS-8 A 11.7 Empty	Sample No.	Section	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast.
<pre>18.5-20.5 B* 12.3 Reddish-brown clay containing pockets and lenses of brown fine sand and silt, and containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to v. soft & sticky Bottom 4.3" firm firm 33.9</pre>		No.				Remolded	Content		~~~~~		Ratio %
18.5-20.5 B* 12.3 Reddish-brown clay containing pockets and lenses of brown fine sand and silt, and containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to v. soft v. s							×				
pockets and lenses of brown fine sand and silt, and containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9	PS-8	A	11.7	Empty							-
pockets and lenses of brown fine sand and silt, and containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9											
fine sand and silt, and containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9	18.5-20.5	в*	12.3	Reddish-brown clay containing		· · · ·					
containing pebbles and stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9				pockets and lenses of brown							
stones up to 3.5" size; apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9		алан (т. 1917) Стала (т. 1917)	8 ¹	fine sand and silt, and							
apparently disturbed. Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9				containing pebbles and			· · · · ·				
Top 8" soft to soft to 40.7 v. soft v. soft & sticky Bottom 4.3" firm firm 33.9			, =	stones up to 3.5" size;			, n.				
v. soft v. soft & sticky Bottom 4.3" firm firm 33.9				apparently disturbed.							
& stickyBottom 4.3"firmfirm33.9				Тор 8"	soft to	soft to	40.7				,
Bottom 4.3" firm firm 33.9					v. soft	v. soft					
						& sticky					
C 10.8 (see next page)		. ж.		Bottom 4.3"	firm	firm	33.9				
C 10.8 (see next page)	ж. К										
		C	10.8	(see next page)	an a' An a' Anna an						
											100 100 10

* see Photo 5, App. III

CASAGRANDE CONSULTANTS

TABLE 1 (cont'd)

Sheet No. 8

TABLE 1 (cont'd)

Sheet No. 9

Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring	No. CASA	1002		Pro	oject No	b. 755
Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid Limit			
Depth ft	NU.			As Received	Remolded	Content				Ratio %
PS-8	С	10.8	Top 7" is reddish-brown clay	firm to	soft to	34.4	63.6	21.1	42.5	31
(cont'd)	1 A	2	containing some pebbles;	stiff &	firm					
	6 M	²⁰	fissured.	brittle	n K					
	e et êtsi		$q_p = 1.3 \text{ tsf}$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>د</u> م			
	55 Śr.)		$c_v^P = 0.81 \text{ tsf}$							
			Remaining 3.8" is brown	firm	soft		(7)	1 - 1 - 2 		
		n de la com	sandy clay containing some						, ×	
			pockets and lenses of silt	*				~		
ø			and some pebbles.	5×.		194 - A				
			Note: Cutting edge dented.							
							- L ²			
		19. L						ж.		
den en e					· · · · · · · · · · · · · · · · · · ·					
	a 5		생각 이 이 것을 가지 않는 것이 없다.							
	. 3*									
				1			L			

CASAGRANDE CONSULTANTS

*TONSTAN

TABLE 1 (cont'd)

Sheet No. 10

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		
Depth ft	140.			As Received	Remolded	Content %				Ratio %
	÷ .					3				
PS-9	A	11.7	Empty							
21.5-23.5	В	12.3	Reddish-brown clay marbled				0.0			
			with some lenses and pockets							
			of silt in the lower half of							
			section, and containing				÷ 1	n 1	1.1	
	1.1	8 ⁷ 9 1	numerous pebbles; fissured.	i tan						
			Upper half appears disturbed.							
	ж. т. ,							e s s		
			$ q_p = 1.2 \text{ tsf} $ $ c_v = 0.74 \text{ tsf} $ lower half	firm	soft	35.8	61.8	20.3		27
			$c_v = 0.74 \text{ tsf}$		SULC	22.0	01.0	20.3	41.5	37
	a *								с. Хар	
	C*		Reddish-brown clay with	firm to		35.0	60.8	20. 8	40.0	36
	18 7 ⁻		several small pockets and	stiff &	firm					
		1	lenses of silt and fine sand;	brittle	•					
			and containing numerous							
			pebbles; fissured.							
			$q_p = 1.3$ to 1.5 tsf					11 A		
			$c_v^{F} = 0.79 \text{ tsf}$							

TTT

VEBENDIX

* see Photo 5, App. III

TABLE 1 (cont'd)

Sheet No.11

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No. 755

Sample No.	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid	Plastic Limit	Plast.	Water Plast.
Depth ft	140.			As Received	Remolded	Content		2000	index	Ratio %
PS-10	А	9.4	Empty							
24.5-26.5	В	14.5	Top 5" is brown clay	soft	soft to	34.8	42.8	17.6	25.2	68
			containing numerous pebbles. c _v = 0.16 tsf		v. soft					
			Remaining 9.5" is reddish- brown clay containing some pebbles; fissured.	firm & brittle	soft	43.1			÷	
			$q_p = 0.6$ to 0.9 tsf $c_v = 0.51$ tsf							
	C*	11.2	Varved reddish-brown clay and brown silt, containing	firm to stiff &	soft to firm					
			some pebbles up to 2.5" size; clay is fissured. Section partially disturbed.	brittle						
			$\begin{array}{l} q_p = 0.8 \text{ to } 1.0 \text{ tsf} \\ c_v = 0.48 \text{ tsf} \end{array} \right\} \text{top}$					2* -	e S	
			$ \begin{array}{l} q = 1.3 \text{ to } 1.5 \text{ tsf} \\ c_{v}^{p} = 0.57 \text{ tsf} \end{array} \right\} \text{bottom} $							

VEBENDIX

TTT

* see Photo 6, App. III

· · · · · · ·	
	Note: Sample PS-11 taken in
	redrilled boring adjacent to
	CASA 1002

fissured.

 $c_{v} = 0.83 \text{ tsf}$

 $q_p = 1.6$ to 1.8 tsf

PS-11 Α 19.7 Empty 4.0-6.5 в* Reddish-brown varved clay 15.0 firm 47.9 stiff & with layers of brown silt up brittle to 1.5" thick; highly

Description

Ground El. Undisturbed Sample Boring No. CASA 1002 Depth to Water Level

In.

Section Length

No.

Cine

Sample No.

and

Depth

ft

TABLE 1 (cont'd)

As

Consistency

Received Remolded

Project No.755

Index

53.1

Water

Plast.

Ratio

%

32

* see Photo 6, App. III

Sheet No. 12

Natural Liquid Plastic Plast.

84.0

Limit Limit

30.9

Water

Content

%

TABLE 1 (cont'd)

Sheet No. 13

Depth to Water Level

Undisturbed Sample Boring No. CASA 1002

Project No.755

Sample No.		Length	Description	Consis	stency	Natural Water	Liquid	Plastic Limit	Plast.	Water Plast.
and Depth ft	No.	In.		As Received	Remolded	Content		Dunit	muex	Ratio %
PS-12	A	20.4	Empty							
6.5-8.5	В	14.8	Upper 13.0" is reddish-brown clay; fissured. q _p = 0.8 to 1.2 tsf c _y = 0.62 tsf	firm & brittle	soft	58.5				
			Bottom 1.8" is brown silty clay.	firm to stiff &		34.7	57.2	23.8	33.4	33
			$q_p = 1.3$ to 1.7 tsf $c_v = 0.91$ tsf	brittle						*
			Note: Sample PS-12 taken in						а А	
			redrilled boring adjacent to CASA 1002							

Table 1 (cont'd)

Exploratory Boring No. CASA 1002

Ground El.

Depth to Water Level:

Project No. 755

Sample	Depth	No. of Blows		Consis	stency	Nat. Water		Plastic Limit	Plast Index	
No.	ft	per 6 in.	Description	As Received	Remolded	Cont.				Ratic %
		K (B) (∆) L								
SPT-1	27.5	5-7-10	Brown very clayey sand and	soft	soft					
	to		gravel; angular to subangular				-			
	29.0		particles (glacial till).							
			Disturbed.							
				5 8 C						
SPT-2	32.0	5-37-21	Similar to SPT-1. Disturbed	soft	soft					
	to									
1 A.	33.5									
					· · · ·					
		4								
		00 a								
		*								
		æ								
			· · · · · · · · · · · · · · · · · · ·							
									-	

Sheet 14

Undisturbed Sample Boring No. CASA 1072 Project No. 755 Depth to Water Level 5.3 ft Natural Liquid Plastic Plast. Sample No. Section Length Consistency Water Description Limit Limit Index Plast. Water In. and No. As Content Ratio Depth % % Received Remolded ft PS-1 8.7 Empty Α 61.2 1.0-3.0 Reddish-brown clay with one 33.0 88.5 27.3 9 clay B* 15.4 soft to soft layer of brown silty clay; firm & 33.0 32.6 27.0 17 silty highly fissured. 60.0 brittle $q_{p} = 0.7, 0.8 \text{ tsf}$ clay $c_v = 0.44 \text{ tsf}$ 34.5 C* 8.8 Top 5.2" is reddish-brown stiff & firm 33.7 60.7 26.2 22 clay containing some small brittle hard nodules. $q_{p} = 1.5 \text{ to } 2.0 \text{ tsf}$ $c_{v} = 0.91 \text{ tsf}$ 23.5 22.8 150 Bottom 3.6" is brown thinly- v. stiff stiff 34.8 46.3 stratified clay, silt and fine & sand. brittle $q_p = 3.6 \text{ tsf}$ Entire sample highly fissured.

* see Photo 7, App. III

CASAGRANDE CONSULTANTS

Ground El. 1133.3[±]

TABLE 2

Sheet No. 1

Ground El.			TABL	E 2 (con	it'd)			She	et No. 2	2
Depth to Wa	ter Leve	21	Undisturbed Samp	le Boring	No. CASA	1072		Pro	oject No	. 755
Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit	Plast. Index	
Depth ft	110.			As Received	Remolded	Content	and the second se	л ₁ . к		Ratio %
		1		¹						
PS-2	A	12.9	Empty							
3.5-5.5	в*	11.0	Top 6" is reddish-brown clay.	stiff &	firm	39.7				
	a - 5 ¹ 16 - 19 - 1	(z, z)	$q_{p} = 1.6, 1.7 \text{ tsf}$	brittle						
			$c_v = 0.57 \text{ tsf}$				~			
			Remainder is varved reddish-	v. stiff	crumbly					
	a + 1		brown clay with numerous	to hard						
			layers of brown silt and	& brittl	е					
			fine sand.							
			$q_p = 4.0 \text{ tsf}$						я 	
	C*	11.7	Reddish-brown varved clay wit	h stiff	firm	42.4	46.5	23.3	23.2	82
			brown silt and fine sand;	& brittl	e					
	2 x		layers ranging up to 1.5"							
			thick.		с 1					
			$q_p = 1.7 \text{ tsf}$				× *			
			$c_v = 0.80 \text{ tsf}$			12.1				
									j. J.	
* see Ph		App. T	1		1	1		CASAC	BRANDE CO	NSUITANTS

AND A

_1

* see Photo 8, App. III

0

TABLE 2 (cont'd)

Sheet No. 3

Depth to Water Level

WEBENDIX IA

Undisturbed Sample Boring No. CASA 1072

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Wate: Plast
Depth ft			F	As Received	Remolded	Content		3	5	Ratio %
									2	
PS-3	A	15.4	Empty							
6.0-8.0	в	8.7	Reddish-brown clay; fissured.	etiff s	firm	143.7	88.2	30.2	58.0	23
0.0 0.0	Ъ	0.7		brittle	1111	13.7	00.2	50.2	50.0	
			$c_{\rm v} = 0.84 \text{ tsf}$	DITCUTE						
	C*	11.3	Reddish-brown clay; fissured	stiff &	firm	47.2				an e
			$q_p = 1.7 \text{ tsf}$	brittle						
	1 the	55.00	$c_v = 0.78 \text{ tsf}$							·
						8				
				at a						
in an				a alek						
										5
								~		
					* .					
							-		-	

VEBENDIX

TTT

TABLE 2 (cont'd)

Sheet No. 4

Depth to Water Level

Undisturbed Sample Boring No. CASA 1072

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		Water Plast
Depth ft				As Received	Remolded	Content				Ratic %
		× A								
PS-4	A	11.0	Empty							
							~			
8.5-10.5	В	12.7	Reddish-brown clay; fissured.	stiff &	firm	44.9	80.0	29.2	50.8	31
			Contains some subangular	brittle						
		÷1	pebbles in lower portion of							
			section.					•	ч.	
			$q_p = 2.0 \text{ tsf}$				~			
	C*	11.6	Top 5" is reddish-brown clay;	stiff &	firm	48.2	82.5	27.5	55.0	38
			fissured.	brittle						i.
			$q_{p} = 1.7 \text{ tsf}$							E
			$c_{\rm V}^{\rm F}$ = 0.83 tsf				e **	а Д		8
		Ż	Remainder is brown varved	stiff &	crumbly			2		
			clay with numerous layers of	brittle						
			silt up to 0.4" thick.		ж. н ^{. с} .,		<i>y</i>			
a di la cara di seconda di second			0.3" vertical shear displace-							
	 	8	ment near center of sample.			. 2				
							÷.,	л. 		

YEFENDIX

III

* see Photo 9, App. III

ΛT

APPENDIX

TABLE 2 (cont'd)

Sheet No. 5

Depth to Water Level

Undisturbed Sample Boring No. CASA 1072

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast
Depth ft	No.			As Received	Remolded	Content				Ratio %
		1 .								
PS-5	A	10.5	Empty			-				
	÷									
11.0-13.0	B*	13.3	Reddish-brown varved clay	stiff &	firm	20.3				
			with layers of brown silt up	brittle						
			to 0.8" thick (total thicknes	6	· · · · ·					
	1.4		of silt layers greater than							
			clay layers). Contains				22			
	15 a		several pebbles.	3 24						
			$q_p = 1.9 tsf$							
	и — 20 - и — 20 		Sample has several shear			1 a 1				
		С., <u>с</u>	planes; probably due to							
			sampling.							· **
								~		
1	C*	11.5	Reddish-brown varved clay with	stiff &	firm	50.4	77.9	25.2	52.7	48
			layers of brown silt up to	brittle						
			3.7" thick. Total thickness	n a si						
			of silt exceeds clay.					. T		
			$q_{p} = 1.4, 1.7 \text{ tsf}$							
			$c_{\rm v}^{\rm p} = 0.45 \text{ tsf}$ silt							
			Note: Cutting edge dented.							

* see Photo 10, App. III

TABLE 2 (cont'd)

Sheet No. 6

Depth to Water Level

Undisturbed Sample Boring No. CASA 1072

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast
Depth ft				As Received	Remolded	Content				Ratic %
PS-6	A	9.0	Empty							
14.0-16.5	С	14.4	Reddish-brown clay containing a few pebbles; fissured sample partially disturbed. $q_p = 0.5, 0.8 \text{ tsf}$ $c_v = 0.46 \text{ tsf}$ top $q_p = 1.2, 1.4 \text{ tsf}$ bottom $r_v = 0.59 \text{ tsf}$ bottom Reddish-brown clay containing a few pebbles; fissured. Sample partially disturbed. $q_p = 1.3 \text{ to } 1.7 \text{ tsf}$ $c_v = 0.60 \text{ tsf}$ Note: Cutting edge dented.	stiff & brittle	firm		58.8	21.6	37.2	44
					, ,					

TTT

WALENDIX IN

VEBENDIX

Ground El.

Depth to Water Level

TABLE 2 (cont'd)

Undisturbed Sample Boring No. CASA 1072

Sheet No. 7

6000

Project No. 755

Sample No.			Description	Consis	stency	Natural Water		Plastic Limit		
and Depth ft	No.	In.		As Received	Remolded	Content		Liiiit	mdex	Ratic %
PS-7	A	11.2	Empty							
	1. 전문									
17.5-19.5	в*	12.8	Reddish-brown varved clay	firm to	soft to	49.2	89.4	29.7	59.7	33
	1.1		containing some pebbles and	stiff &	firm					
		5. a	with layers of brown silt up	brittle						
		1 S. 6.	to 2" thick. Total silt							
	나 다 먹는		exceeds total clay. Sample							v.
			partially disturbed.							
	sta at i	52.1	$q_{p} = 1.2 \text{ to } 1.8 \text{ tsf}$							
		1 : 상태	$c_v^p = 0.44 \text{ tsf}$ } bottom							
	C*	11.0	Top 6.5" is brown silt.	firm to	crumbly			×		3
			Next 2.5" is brown fine sand,	stiff &						
	t tana a		and bottom 2.0" is brown	brittle						
· · · ·	2 1 1 NO		glacial till.		e ber n	s				
			$q_{\rm p} = 1.7 \text{ to } 2.3 \text{ tsf}$		ati n ati territari ati territari				- 	a
			$c_v^p = 0.49 \text{ tsf}$. 1.
			Note: Cutting edge badly							
	· · · · ·		dented.							
		1				1				

* see Photo 11, App. III

Table 2 (cont'd)

Sheet 8

Exploratory Boring No. CASA 1072

Depth to Water Level:

YELENDIX IA

Ground El.

Project No. 755

Sample	Depth	No. of Blows		Consis	stency	Nat. Water		Plastic Limit	Plast. Index	
No.	ft	per 6 in.	Description	As Received	Remolded	Cont.				Ratio %
SPT-1	21.0	7-15	Brown very clayey sand and	soft	soft					
	to		gravel; angular to subangular	1 X						
	22.0		particles (glacial till).	· · · ·						
			Disturbed.	÷ .						
100										
SPT-2	24.0	?-18-18	Similar to SPT-1. Disturbed.	soft	soft					
	to								1	
	24.5									
			이 있는 것은 가지 않는 것은 것은 것은 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 있다. 가지 않는 것이 있는 것이 없는 것이 있는 것이 없는 것이 있 않는 것이 없는 것이 없 것이 않아? 것이 없는 것이 없이 없이 없는 것이 없이 없는 것이 없는 것이 것이 않아, 것이 없는 것이 없이 않이 않아, 것이 않아, 것이 않아, 것이 않아, 않아, 않아, 것이 않아, 것이 않아, 않아, 것이 않아, 것이 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않이 않아, 않아, 않이 않이 않이 않이 않아, 않아, 않이 않아, 않이 않아, 않이 않이 않이 않아, 않아, 않이							
	1									
							2 ¹			
						· · · · .				
÷			and the Part of the second second second							
				Anne and an and a second second			8	A COMPOSITION OF THE OWNER OF THE OWNER	สาราายการการการการการการการการการการการการการก	RUITAM

VEBENDIX III

Ground El. 1130.2[±]

TABLE 3

Sheet No. 1

Depth to Water Level 9.5 ft

Undisturbed Sample Boring No. CASA 1077

Project No. 755

Sample No.			Description	Consis	stency	Natural				Water
and Depth ft	No.	In.		As Received	Remolded	Water Content %		Limit	Index	Plast. Ratio %
				5						
PS-1	A	12.6	Empty							9 9 1
1.5-3.5	В	11.3	Reddish-brown clay with some	firm &	soft	36.6				
			silty clay marbling near top	brittle					3	
			of section, and containing							
		1.1.1	some pebbles; highly							
			fissured.							
с	- (C 1		$q_p = 0.7$ to 0.9 tsf							
			$c_v^r = 0.65 \text{ tsf}$	per state tra				2		
			en en el realizador el check en la				* * .	· 8		Ţ.
	С	11.3	Reddish-brown clay containing	firm to	soft to	45.2	83.7	33.5	50.2	23
			a few pebbles and small roots	stiff	firm	· ·				
			highly fissured.	& brittl	e					
		, and , 1	$q_p = 0.9$ to 1.7 tsf							
			$c_{v}^{-} = 0.64$ to 0.83 tsf		 applications 					
							•			, k
				William and the	n finn an					
			방법 그 것 같아. 말을 다 있었다. 같은 것							
			전 1일 - 1일 2014 - 1일	A. C. A. A. C. A.						
		1								

YEBENDIX

III

WEPENDIX IV

Sample No.		Length In.	Description	Consis	tency	Natural Water	Liquid Limit.	Plastic Limit	Plast. Index	
and Depth ft	No.			As Received	Remolded	Content				Ratio %
		and the							-	
PS-2	A	6.0	Empty							
								1 m		
4.0-6.5	В	6.0	Reddish-brown clay; highly	firm to	soft to	50.0				
			fissured.	stiff &	firm					
	6 12 14		$q_p = 1.3$ to 1.9 tsf	brittle	- x					
ж. 			$c_v^P = 0.86 \text{ tsf}$				* • • •		8 	
	С	1200	Reddish-brown clay containing	stiff to	firm to	42.8	85.7	31.9	53.8	20
			a few pebbles; fissured.		1					33.
			Also some small roots along						1. ¹ 0. 1. 1	
			several of the fissures.						· · · · ·	
	l de ^p a		$q_p = 1.8$ to 2.5 tsf							
		ling an	$c_{\rm v} = 0.95 \text{tsf}$	1 X.						
	i sa s		V							
	D*	11.7	Top 5.2" is reddish-brown clay	firm	soft to	48.7	4 m 4			
				to stiff	1					
			$q_{p} = 1.2 \text{ to } 2.1 \text{ tsf}$ $c_{v} = 0.80 \text{ tsf}$	& brittl	10 1					
			v olivite the	a DIICCI						2
		1	Remaining 6.5" is brown varved							
			silty clay with layers of silt	H						
	1		up to 0.4" thick.	1 a						and the second

Entire sample is highly fissured.

* see Photo 19, App. III

Ground El.

Depth to Water Level

TABLE 3 (cont'd) Undisturbed Sample Boring No. CASA 1077

Sheet No. 2

Project No. 755

TABLE 3 (cont'd)

Sheet No. 3

Depth to Water Level

Undisturbed Sample Boring No. CASA 1077

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast
Depth ft				As Received	Remolded	Content				Ratic %
				lan an a			* ****			
PS-3	A	12.5	Empty			2				
7.0-9.0	в*	11.7	Varved brown silty and	firm &	soft					1 m
		10	reddish-brown clay containing	brittle						
			some pebbles. Varves up to							
			0.9" thick. Total silt							
			exceeds total clay. Clay is							
	**		fissured.							
	35.10		$q_{p} = 1.2 \text{ to } 1.4 \text{ tsf}$							•
			$c_v^P = 0.60 \text{ tsf}$,				
	C*	11.3	Varved reddish-brown clay and	firm to	soft	27.8				
			brown clayey silt, silt and	stiff &						
			fine sand. Clay layers up to	brittle						
		V	0.8" thick. Total clay about							
			one-fourth of silt and fine							
			sand. Clay is fissured.							
			$q_{p} = 1.4 \text{ to } 2.4 \text{ tsf}$						1	
		1	$c_v = 0.60 \text{ tsf}$ } top							
			$q_p = 1.2$ to 1.4 tsf } bottom							
6999-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		4	$c_v = 0.75 \text{ tsf}$		A			CASAC	RANDE CO	NSULTANT
* see Phot	0 12. A	TT. da			·				*	
500 1100	- 121 A	LL				1. 1. 1.				
	-	<u> </u>								

III

WEFENDIX IV

YEFENDIX

Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring	No. CASA	1077		Pro	oject No	.755
Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	140.	111.		As Received	Remolded	Content				Ratio %
		-								
PS-4	A	12.4	Empty						3 	
9.5-11.5	в	11.7	Reddish-brown clay containing	firm to	soft to	38.1			5 m. 1	
			numerous pebbles in the	stiff &	firm					
	en pr		upper half; slightly fissured	brittle		* *				
			$q_{p} = 1.4 \text{ to } 1.8 \text{ tsf}$ $c_{v} = 0.88 \text{ tsf}$							
	С	11.0	(see next page)							
		а 1 г. 1 г. 1 г.								

Sheet No. 4

TABLE 3 (cont'd)

Sheet No. 5

Depth to Water Level

Undisturbed Sample Boring No. CASA 1077

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast.
Depth ft	NO.			As Received	Remolded	Content				Ratio %
	C	11.0	Reddish-brown clay containing a few thin seams of brown silt and fine sand and some pebbles in the upper one-third of the section, and one 0.2" layer of silt (dipping 5 ⁰)2" from the bottom of the section; fissured above silt layer and highly fissured below. $q_p = 1.7$ to 1.9 tsf $c_v = 0.80$ tsf		Remolded		79.3	26.0	53.3	%
•			$q_p = 0.8$ to 1.0 tsf } bottom	firm & brittle	soft	41.6				

CASAGRANDE CONSULTANTS

VEPENDIX IV

*

Sample No.			Description	Consis	tency	Natural Water		Plastic Limit		Water Plast.
and Depth ft	No.	In.		As Received	Remolded	Content		Dunit	Index	Ratio %
PS-5	А	11.4	Empty							
12.0-14.0	в*	12.3	Reddish-brown clay with a few partings of brown silt and containing a few pebbles fissured. q _p = 1.5 to 1.8 tsf c _y = 1.0 tsf	stiff & brittle	firm	43.0	70.4	22.3	48.1	43
	С*	11.5	Reddish-brown clay with a few partings of brown silt and fine sand and one 0.4" layer of silt near the middle of the section, and containing some pebbles; fissured. $q_p = 1.4$ to 1.8 tsf $c_v = 1.0$ tsf } top $q_p = 1.2$ to 1.3 tsf $c_v = 0.66$ tsf } bottom	stiff &	firm	44.2				

C. A. P

Depth to Water Level

TABLE 3 (cont'd)

Undisturbed Sample Boring No. CASA 1077

Sheet No. 6

* see Photo 13, App. III

CASAGRANDE CONSULTANTS

Project No. 755

.

TABLE 3 (cont'd)

Sheet No.7

Depth to Water Level

Undisturbed Sample Boring No. CASA 1077

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		
Depth ft				As Received	Remolded	Content %				Ratio %
PS-6	A	10.4	Empty							
14.5-16.5	в*	13.7	Upper 5.7" is varved reddish-	stiff &	firm					
е ^{ни} В. 18 [°] С. 17 18 години – С. 17 18 години – С. 17			brown clay and brown silt;	brittle					1	
			clay is fissured. Varves				-			1. I S
			are from 0.1" to 0.3" thick,	1						
			with total clay about equal	an tha an an a' sao a Tao an			1			
		이 역 (이 있)	to silt.							
			$q_p = 1.8$ to 2.3 tsf							
			$c_v = 0.71 \text{ tsf}$							
			Remaining 8.0" is brown silt							
			with several partings of							
			clay and containing pebbles							
	an Tarana	al f	up to 1.5" size.							
		1. s. s. 1.								
	C*	11.5	Brown silt with two thin							
			layers of reddish-brown clay,	4	1 · · · · · · ·					
			and containing pebbles							
			up to 1.5" size.							

* see Photo 14, App. III

AT XTONHARY

III

YPPENDIX

Table 3 (cont'd)

Exploratory Boring No. CASA 1077

Ground El.

Depth to Water Level:

Project No.755

Sample	Depth	No. of Blows		Consis	stency	Nat. Water	Plastic Limit	Plast. Index	
NO.	ft	per 6 in.	Description	As Received	Remolded	Cont. %			Ratio %
SPT-1	18.0 to 18.2	150/2"	Reddish-brown clayey coarse sand and gravel; angular to subangular particles (glacial till). Disturbed.						
SPT-2	19.0 to 19.3	100/4"	Similar to SPT-1.	hard & brittle	crumbly	10.1			
1									

Sheet 8

Ground El. 1111.2[±]

TABLE 4

Sheet No. 1

Depth to Water Level : overflowing

Undisturbed Sample Boring No. CASA 3004

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast.
Depth ft	NO.	111.		As Received	Remolded	Content				Ratio %
PS-1	A	15.2	Empty							
1.5-3.5	в	8.8	Reddish-brown clay containing	stiff &	firm	24.0	44 6	19.5	25.1	18
			some pebbles up to 1.8" size.		1	21.0	11.0	19.5	23.1	10
				2110010						
			$q_{p} = 2.0 \text{ to } 2.2 \text{ tsf}$							
			$c_{y}^{-p} = 1.20 \text{ tsf}$							
			V							
	С	11.1	Top 8.8" is reddish-brown	soft to	soft	31.5		-		i ing
· · ·			clay containing some pebbles	firm						
a (1)			up to ½" size.							
			$q_p = 0.5$ to 1.0 tsf							
			$c_{v}^{T} = 0.28$ to 0.68 tsf							
			Remaining 2.3" is brown silty	stiff to	firm to	22.6	30.4	17.0	13.4	42
				v. stif:	1					
			pebbles up to 1.5" size.							
		х.	$q_{p} = 2.3 \text{ to } 2.9 \text{ tsf}$				- And			
1. A.			$c_v^P = 1.35 \text{ tsf}$							
ал. -		·								

TABLE 4 (cont'd)

Sheet No. 2

Depth to Water Level

Undisturbed Sample Boring No. CASA 3004

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast.
Depth ft	NO.	111.		As Received	Remolded	Content		Limit	Index	Ratio %
PS-2	A	12.0	Empty							
		*	والمعادية ومنفرات والمتعا							
4.0-6.0	В	11.9	Top 4.0" is reddish-brown	stiff	firm	24.0	46.0	16.8	29.2	29
		- 20 	clay containing some pebbles.		-					
	×									
			$q_p = 1.5$ to 1.8 tsf				s.			1. J. J.
	,		$c_v = 0.75 \text{ tsf}$							
· · ·			Remaining 7.9" is brown	stiff &	firm	23.8	34.2	15.8	18.4	43
			silty and sandy clay	brittle						
	-	8	containing pebbles (glacial		91				-	
			till).							
			$q_p = 1.9$ to 2.2 tsf							
			$c_v = 1.23$ tsf							
			Note: Below 6.5" tube cross-							
			section only half full due							
			to pebble or stone having					3		
an ²			been pushed down during	а. 						
			sloping.			-				
	C	10.4	(see next page)							

CASAGRANDE CONSULTANTS

States and Persons

TABLE 4 (cont'd)

Sheet No. 3

Depth to Water Level

١

Undisturbed Sample Boring No. CASA 3004

Project No. 755

Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring	No. CASA	3004	n anna an la se anna	Pro	oject No	0.755
Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit			
Depth ft				As Received	Remolded	Content %	-	¥ 		Ratio %
						20				
PS-2	С	10.4	Brown silty and sandy clay	stiff &	firm	21.7				
(cont'd)			containing numerous pebbles	brittle				12		
	×		(subrounded to angular) up to		T _a r-					
		*	2" size (glacial till).					ж.		
	· ·	ж. ¹⁰								
	an a	2° 1	$q_{p} = 1.8 \text{ to } 2.2 \text{ tsf}$							
			$c_v = 0.75 \text{ tsf}$							
		° È	Note: Cross-section of tube							
			only partially filled within							
		ж. ₁ . 1 ж.	upper 8". Cutting edge					2		
		E	dented.				5		-	
								2		
1		•								4 m
		-				٢				
				Sa tigan						
*									2 X 3	<i></i>
	8									

Ground El.		х с. ж	TABL	E 4 (con	it'd)			She	et No.	4
Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring	No. CASA	3004		Pro	oject No	. 755
Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid Limit	Plastic Limit		Water Plast.
Depth ft	110.			As Received	Remolded	Content %				Ratio %
т	14 26.									
PS-3	A	14.0	Empty							
5 - 1 - 1 ¹										
6.5-8.5	В	10.2	Brown silty to sandy clay	stiff &	firm	27.7	40.1	17.0	23.1	46
		a shi	containing numerous pebbles	brittle				8		
	•	hati i	(glacial till).	100 yr 100 100 yr 100						
		17	$q_p = 1.8$ to 2.2 tsf					8-1 1-1 1-1		
	C*	10.8	Top 3" is brown silty and	stiff &	firm	28.0				5 o
	8 A		sandy clay containing pebbles	brittle	· · · · ·					
			(glacial till).							
			$q_p = 1.7 \text{ tsf}$					с ^и в	-	
	×		Next 4" is a transition zone			×	u.			
		, U	between glacial till and lake				8			
			deposits.	а. а						
			Remaining 3.8" is reddish-	stiff &	firm	42.2				
	· · · ·	1 11	brown clay with several	brittle						
			pockets of brown silt; highly				8			
* *			fissured.							-
			$q_{p} = 1.5 \text{ to } 1.8 \text{ tsf}$ $c_{v}^{p} = 0.68 \text{ tsf}$					-		

* see Photo 15, App. III

TABLE 4 (cont'd)

Sheet No. 5

Depth to Water Level

Undisturbed Sample Boring No. CASA 3004

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	NO.		20	As Received	Remolded	Content				Ratic %
т						ан И				
PS-4	· A	10.9	Empty							
				an 1 Istoria						-
9.0-11.0	в*	13.0	Reddish-brown clay varved	firm &	soft	42.6				
		العراقين ا	with brown silt and fine	brittle						
l x x		Les Eller	sand. Clay is intensely					1 g.		l
			fissured (almost granular	а 1						
			structure). Disturbed.							
				1. 						
	°C*	10.7	Reddish-brown clay varved	stiff &	firm		· · · · -			
			with brown silt, and con-	brittle				, e		
<u>.</u>			taining one 2" pebble about							
			in the middle. Varves from							
			0.1" to 1" thick, and dipping			19 - 19 - 19				
	· · · ·		about 15 ⁰ . Total clay about							
			equal total silt. Clay							
			highly fissured.							
a:			$q_{p} = 1.6 \text{ to } 2.0 \text{ tsf}$							
			$c_v = 0.56 \text{ tsf}$							

* see Photo 16, App. III

Content Ratio As Depth % % Received Remolded ft 5.9 PS-5 Empty A 62 red Top 4" is reddish-brown clay. 24.0 43.4 12.0-14.0 B 5.8 soft soft to 50.7 67.4 v. soft 32.3 Remainder is brown clay. brown Entire section appears disturbed. $q_p = 0.2 \text{ tsf}$ $c_{v} = 0.40 \text{ tsf}$ C* 12.1 Reddish-brown clay varved firm to firm with brown silt and fine sand, stiff and containing some pebbles & brittle to 1" size. Layers up to 1.5" thick. Upper half of section is soft and appears disturbed. Clay in lower half is highly fissured. $q_p = 1.4$ to 2.2 tsf bottom $c_{y} = 0.60 \text{ tsf}$ D* 11.4 (see next page) CASAGRANDE CONSULTANTS * see Photo 17, App. III YEBENDIX III AI XIGNEARY

Depth to Water Level

Sample No. Section Length

No.

In.

Undisturbed Sample Boring No. CASA 3004

Description

Consistency

Project No. 755

Index

Water

Plast.

TABLE 4 (cont'd)

Ground El.

and

Sheet No. 6

Natural Liquid Plastic Plast.

Water

Limit | Limit |

TABLE 4 (cont'd)

Sheet No. 7

Depth to Water Level

Undisturbed Sample Boring No. CASA 3004

Project No. 755

. .

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit		Plast
Depth ft				As Received	Remolded	Content %				Ratio %
				· · · · · · · · · · · · · · · · · · ·	5 in					
PS-5	D*	11.4	Varved reddish-brown clay,	firm to	soft to					
(cont'd)			brown silt, and fine sand.	stiff &	firm					
	т. К. у	-1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Upper half of section is	brittle						
	1. 1. A.		primarily silt, and lower				3		~	
is, she	1 <u>.</u>		half is mainly clay. Clay is	5					*	
			highly fissured.							
			$q_p = 1.3$ to 1.6 tsf							
			$c_v^P = 0.59 \text{ tsf} \int^{top}$	A L ID					~	
			$q_{p} = 0.7 \text{ to } 0.9 \text{ tsf}$			40.4			·	•
		Strain State	$c_v^p = 0.59 \text{ tsf}$ } bottom			40.4				
		-	•					ч, ,		
	· *				a., 1 5		<i>.</i>			
				· . ·					*) •	1
							-			
					2 				-	
1.1						1.1			×	
								- 1 A	s.	
1 a 1 (2) 10								e.		

YEEKDIX

III

APPENDIX IV

TABLE 4 (cont'd)

Sheet No. 8

Depth to Water Level

Undisturbed Sample Boring No. CASA 3004

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit	Wate: Plast
Depth ft	Not			As Received	Remolded	Content			Ratio %
	· * _ · * *	es de se							
PS-6	A	9.4	Empty						,
14.5-16.5	в*	14.5	Top 6.5" is reddish-brown	soft	soft	26.9	. T		1. N. N.
14.0-10.0	Ъ.,	14.5		SOIT	SOIT	20.9	× .		
ні — — — — — — — — — — — — — — — — — — —	i i		clay mixed with a few thin layers of brown silt, and	а.					
		1.11	containing some pebbles.		×				
			$q_p = 0.5$ to 0.6 tsf						
			$c_v = 0.43 \text{ tsf}$			e, care d			
	2 ³ 2		Remaining 8.0" is brown silt	soft to	v. soft &				
1 X X X X X X X X X X X X X X X X X X X	8 C		mixed with some reddish-brown	v. soft	sticky				
·			clay.						
5,8 ° X	1 - 1 I	1. C. 1	$q_p = 0.2 \text{ tsf}$					~	
			$c_{V}^{P} = 0.18$ tsf				2° 4		
		4 ÷ 1	Note: Entire section badly						
	1		disturbed.						
	С	10.8	(see next page)	• • • • • •		en Na en Norre de	*, * 5,	2 m. 2	
							×		
a a a a a a a a a a a a a a a a a a a								198 - ¹	

AT XTONGAAN

Ground El. Depth to Wa	ter Leve	1	Undisturbed Samp	E 4 (con le Boring		004			et No. 9 oject No	
Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit			Water Plast
Depth ft	140.			As Received	Remolded	Content %		2	Index	Ratio %
		10.0								
PS-6 (cont'd)	С	10.8	Top 2.7" is brown clay marbled with some red clay;	soft	soft	37.4	46.9	23.8	23.1	59
			disturbed. q _p = 0.5 tsf				C.			
			Remaining 8.1" is brown	firm &	soft					
			sandy clay containing some pebbles (glacial till).	brittle						
			$q_p = 1.3$ to 1.5 tsf							
										2 2
								* * *		

and the second

Table 4 (cont'd)

Sheet 10

Exploratory Boring No. CASA 3004

Depth to Water Level:

Ground El.

Project No.755

Sample	Depth	No. of Blows		Consis	stency	Nat. Water	Plastic Limit	Plast. Index	
No.	ft	per ft	Description	As Received	Remolded	Cont.			Ratio %
SPT-1		5-8-10		soft	soft				
	to		gravel; angular to subangular			1 2 4	· · ·		
	18.0		particles (glacial till). Disturbed.						· · · .
SPT-2	18.5	7-8-15	Similar to SPT-1.	soft	soft	×			
	to 20.0								
SPT-3	20.0 to	13 -21-3 5	Brown clayey sand and gravel; angular to subangular particles		stiff to crumbly				
	21.5		(glacial till).			9 a.	* .		2
SPT-4	20.5 to	38-100	Similar to SPT-3.	hard &	stiff to crumbly	9.6			
	23.5			DITECIE	Crumbry				
SPT-5	25.0	18-42-58	Similar to SPT-3.	hard &	crumbly				
	to			brittle					
	26.5								

CASAGRANDE CONSULTANTS

And the second second second

Ground El.1162.5±

TABLE 5

Depth to Water Level : at surface

Undisturbed Sample Boring No. CASA 3037

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast.
Depth ft	140.			As Received	Remolded	Content				Ratio %
PS-1	A	20.6	Empty			•				
2.0-3.7	в	10.9	Reddish-brown clay containing	firm to	soft to	26.5	46.2	17.8	28.4	31 cla
	· · · · · · · · · · · · · · · · · · ·		numerous small pebbles and	stiff &	firm					
			with one 1.5" layer of brown	brittle		22.7	~			claye
		*	clayey sand.							sand
	с 		$\begin{array}{l} q_{p} = 1.0 \text{ to } 1.7 \text{ tsf} \\ c_{v} = 0.54 \text{ tsf} \end{array} \right\} \text{top}$, ×			
	4						. 1			- · ·
			$q_p = 2.0, 2.3 \text{ tsf}$ $c_v = 1.22 \text{ tsf}$ and middle				(e)			
									а 2	
								۰ ۲		
										a de la compañía de la

Ground El.

TABLE 5 (cont'd)

Sheet No.2

Depth to Water Level

S. 1

Undisturbed Sample Boring No. CASA 3037

Project No.755

Sample No.	Section	Length	Description	Consis	tency	Natural Water		Plastic Limit		
and Depth ft	No.	In.		As Received	Remolded	Content		Limit	Index	Ratio %
7										
PS-2	A	14.1	Empty	t itakul u						
. A gingri		artis y Victoria	· · · · · · · · · · · · · · · · · · ·	and the fire						
5.0-6.8	В	9.7	Top 4.5" is reddish-brown	firm to	soft to	22.8				
			clay containing some pebbles.	stiff &	firm					
·	300 8		$q_p = 1.5 tsf$	brittle			н. 			
v * *			$c_v^P = 0.88 \text{ tsf}$							
			Lower portion is brown clay	v stiff	stiff to	23.6	112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112 - 112			
т. Т.					e crumbly	1				
			$q_{p} = 3.7, 3.9 \text{ tsf}$					1.5		
			$c_v = 1.8 \text{ tsf}$				· · · · ·			
a a Se s ho			Note: Some sealing wax		8 10					
	* 8	n en si s	also found at the bottom of							
	2		this section.							·
		3			· · · · ·					1. C
1 a 1	C	10.5	(see next page)					-		
а, ж										×
		1		· · · · · · · · · · · · · · · · · · ·						,
		an 1								
	· · · · ·									

TABLE 5 (cont'd)

Sheet No. 3

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No. 755

1

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Plast.
Depth ft				As Received	Remolded	Content %				Ratio %
PS-2	С	10.5	Reddish-brown clay containing	y hard &	crumbly	27.2				
(cont'd)			some pebbles up to 2" size.	brittle						
.*	20 C		Also some voids caused by	er hegd ei he		;*				
			pushing stones during							
2 2	Т.		sampling.							ж.
	107 04 0		$q_p = 4.4 \text{ tsf}$							ā.
		5.14	Note: This section of	1. A.						a
			sample tube badly deformed							
			and cutting edge badly				-		~	·
			dented.							
			이 가지 않는 것이 가지 않는 것이 있다. 이 가지 않는 것이 있는 것이 가지 않는 것이 있다.							
1.0 ¹ .0									1. e	
		*								

TABLE 5 (cont'd)

Sheet No. 4

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No.755

The second

Sample No.	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid	Plastic Limit	Plast. Index	Water Plast.
and Depth ft	NO.	in.		As Received	Remolded	Content	13111111	Dimit	macx	Ratio %
PS-3	A	21.0	Empty			2	3			
7.5-9.0	В	14.0	Top 4.5" is reddish-brown	stiff &	firm	27.7	47.4	20.2	27.2	28
			clay containing some angular	1.	i jili èn i		*			
	** * 1* 1		to subangular pebbles up to				12 I	a Barta		
	e an e		l" size.				о 			
	1 (A)		$q_{p} = 1.5 \text{ to } 2.3 \text{ tsf}$						÷	
			$c_{\rm v}^{\rm P}$ = 0.80 tsf							
			그는 그는 것 같아요. 그는 것에는 것이 많이 많이 많이 있는 것이 없는 것이 없다. 것이 같이 많이 많이 없는 것이 없는 것 않는 것이 없는 것이 않는 것이 않 않이 않이 않이 않이 않이 않이 않이 않이 않이 않는 것이 않이	hard &	crumbly					
	$2 \lambda_{\rm eq}$			brittle						
			pebbles and pockets and							
			lenses of fine sand.	**.	÷	, * ¹			-	00
the 1			Contains shear planes.		·					
			$q_p = 4.0 \text{ tsf}$					8		
		* *	그는 것 같은 것 같은 것이 없는 것.			•		×		
			이 이 이 것 같은 것 같은 것 같아요.						0 0	
			이 이 이 가지 않는 것을 가지 않는 것 같아.							

TABLE 5 (cont'd)

Sheet No. 5

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit	Plast. Index	Water Plast
Depth ft	140.			As Received	Remolded	Content			macx	Ratic %
PS-4	A	15.9	Empty	1.5.2.2						
	C 1	1.251	AND THE REPORT OF THE REPORT OF THE							
10.0-12.0	В	8.0	Top 3.5" is reddish-brown	firm to	firm	26.9	46.3	19.1	27.2	29
		·	clay containing some pebbles.	stiff						
	* * *		$q_{p} = 1.0, 1.1 \text{ tsf}$							
		1943 - E	$c_{v} = 0.60, 0.73 \text{ tsf}$						् ज्या क	
		19 gar	Remainder is brown silt	hard &	crumbly				*	
	an an the second s		containing pockets and	brittle	_				* • •	
			lenses of fine sand.					р. 	10	
			q _p > 4.5 tsf						×.,	6
	C*	9.0	(see next page)						1	
		$c_{1} = c_{1}^{2}$	김 김 도마 영어 영업 문문			л 			*	
			이 집에 다는 것이 같아. 이 것이 같아.							6
						4			~	
					1 L e 1	* - * - s			* * * * * *	
						10 m.	5.			
3	. 2	13	방법이 있는 것이 같이 있는 것이 없습니다.							
		- 12 - I			8					
ч.										

VEFENDIX III

* see Photo 18, App. III

TABLE 5 (cont'd)

Sheet No. 6

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water			Plast. Index	Water Plast
Depth ft				As Received	Remolded	Content %				Ratic %
PS-4	C*	9.0	Top 5" is reddish-brown clay	stiff &	firm	34.9	50.9	19.0	31.9	50
(cont'd)			with some layers and lenses	brittle						
a the second			of brown silt; contains some							
		1.1	pebbles up to 1" size.							
	S. 21		$q_p = 1.7 tsf$							
			$c_v^F = 0.92$ tsf						2 - 2 - 2	
			Remainder is brown silt with	hard &	crumbly				× *	
A Second			some pockets of reddish-brown		1	-	x (×	
×		$\{ x_i \in \mathcal{A}_i \}$	clay and brown sand.				9			
			Note: Lower half of this	des en						1
· · · · · · · · · · · · · · · · · · ·	1. 18		section of sample tube badly	da en la c	· · · ·					
			deformed.							
	$\gamma \sim \gamma$		deronmed.					÷		
				e de ser					5	
					х * 1 1 1 ж. т					
			i na se na se na se na se							·
			أراج تهافا المتحيي إسراعي والمتعاد والرار					- 12 A		
								~		
					÷ ×			5 x >		
										1

TABLE 5 (cont'd)

Sheet No. 7

Depth to Water Level

VILTUNTY TA

Undisturbed Sample Boring No. CASA 3037

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		Water Plast.
Depth ft	1101			As Received	Remolded	Content				Ratio %
PS-5	A	10.5	Empty	*						
	1.1.1			1.1					2	
13.0-15.0	В	13.6	Top 6.5" is brown silt with							
			several pockets and lenses							
			of reddish-brown clay, and							
		100 M	containing some pebbles up to	b						
, <i>3</i>			1.5" size. (This portion							
		8.11	of sample obviously disturbed	1.)						
			Remainder is reddish-brown	firm to	soft to	48.7	79.2	25.2	54.0	43
		1.2.5	clay; highly fissured.	stiff &	firm					
			$q_p = 1.2$ to 1.6 tsf	brittle						
			$c_{v}^{P} = 0.70 \text{ tsf}$							
	С	11.3	Reddish-brown clay with a	firm to	soft to	25.8			ас — 1 - с	
			few zones containing pebbles,	stiff &	firm			5		
	1		and one 2" pocket or lense of							
	1. C. C.	· · · · ·	brown silt; clay is highly							
		11. A.	fissured.						15.	
			$q_p = 1.1$ to 1.6 tsf		* 7					
			$q_p = 1.1 \text{ to } 1.0 \text{ tsr}$ c = 0.73 tsf							3

TABLE 5 (cont'd)

Sheet No. 8

Depth to Water Level

VILITIATY IA

Undisturbed Sample Boring No. CASA 3037

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	110.			As Received	Remolded	Content %		222220	much	Ratic %
PS-6	A	10.0	Empty							
16.0-18.0	В	14.0	Top 9.0" is reddish-brown clay containing a few pebbles	firm •	soft	39.5	80.8	27.0	53.8	24
18 19 19			$q_p = 0.8 \text{ to } 0.9 \text{ tsf}$ $c_v = 0.62$							
			silt containing one 3" stone.	stiff to v. stiff	crumbly	25.8	36.5	19.2	17.3	38
			$q_{p} = 2.3 \text{ to } 3.3 \text{ tsf}$ $c_{v} = 0.83 \text{ tsf}$	& brittle	2				7.a.	
	C*	11.1	Brown varved silt with some layers of reddish-brown clay.	1. ¹					-	
			Sample disturbed.	DITCLE	Crumbry					
	*									

TABLE 5 (cont'd)

Sheet No. 9

Project No. 755

Depth to Wa	ter Leve	1	Undisturbed Samp	le Boring	No. CASA	3037		Pro	oject No	.755
Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		Water Plast.
Depth ft				As Received	Remolded	Content %				Ratio %
PS-7	A	23.3	Empty							
19.0-20:0	В	11.2	Top 5.3" is brown clay containing some pebbles. q _p = 0.6 tsf c _y = 0.29 tsf	soft	v. soft	30.0	48.1	17.9	30.2	40
			Remainder is brown silty and sandy clay containing some pebbles. $q_p = 2.3 \text{ to } 3.3 \text{ tsf}$ $c_y = 0.77 \text{ tsf}$	stiff to v. stiff & brittl		24.1	31.8	17.7	14.1	46
			Note: Cutting edge badly dented.							
										×

CASAGRANDE CONSULTANTS

YFPENDIX IV

APPENDIX III

TABLE 5 (cont'd)

Sheet No. 10

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid	Plastic Limit	Plast. Index	Water Plast.
Depth ft	NO.			As Received	Remolded	Content			muck	Ratio %
PS-8	A	27.7	Empty		· ·					- R
22.0-22.8	В	7.8	Brown silty clay, clay, silty fine sand, and silt. Sample badly disturbed.	silty clay & clay are soft	v. soft	24.1	32.9	17.0	15.9	45
9			Note: Cutting edge badly dented.	silt is hard & brittle	crumbly					

TABLE 5 (cont'd)

Sheet No. 11

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No. 755

Sample No. and	Section	Length In.	Description	Consis	tency	Natural Water	Liquid	Plastic Limit	Plast. Index	Water Plast
Depth ft	No.	In.		As Received	Remolded	Content		Linit	Index	Ratio %
ar i se	1997 - 19									
PS-9	A	25.0	Empty				н 1			
	1 - D							. A . 20		
24.0-24.5	В	7.5	Brown fine sandy silt	· · ·						с Х. ж
			containing several small							
			pebbles. Sample disturbed.		1 A.			2 ¹⁰ 1 2		
								8.9		
	C	3.5	Empty		2 - S ¹					
·					2 - A - 1					•
1		1.00	신문 영화 전문 영화 문화					29	-	
						· · ·				
		5. ⁶ 8.					7			
									2	
		e di se	그는 것을 관계할 수 있었다. 것 좋아							
une "						11.0				
	· · · ·									
	1	11211	다. 이 제가 가지 않는 것은 것은 것을 다. 같은 것 같은 것							
	1.1.1.1.1.1.1.1									
the second s										

TABLE 5 (cont'd)

Sheet No. 12

Depth to Water Level

Undisturbed Sample Boring No. CASA 3037

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	1101			As Received	Remolded	Content				Ratic %
1 20 1 3		1.		i Salar Talar	•					1 A 1
PS-10	A	16.5	Empty			·		а 2		
28.5-30.5	в	7.5	Brown clayey sand & gravel.		i sastat					
			Sample disturbed.				sty. s		3	
	С	9.3	Brown clayey sand & gravel.					5. 5		
			Sample disturbed.			1 m 1				ж. 17
			Note: Cutting edge damaged.							
		가 있는 것이 같이 있어?				л ж				
										· · ·
						:				
									4	
					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		

Table 5 (cont'd)

Sheet 13

Ground E1.

Exploratory Boring No. CASA 3037

Depth to Water Level:

Project No. 755

Sample	Depth	No. of Blows		Consis	stency		Liquid Limit	Plastic Limit	Plast Index	
No.	ft	per 6 in.	Description	As Received	Remolded	Cont. %				Ratio %
	- 22.50			a Providence		9	·	· · · ·		
SPT-1	26.0	5-16-22	Brown silt with several thin	firm	crumbly					
	to		layers of lenses of fine sand						6	
	27.5		and containing some angular			1.04		, t		
			pebbles; disturbed.							
SPT-2	30.5	42-45-11	0 Brown clayey sand and gravel;	hard &	crumbly	10.8			r. F	1.1
	to	10.844	angular to subangular particles			10.0				
	32.0		(glacial till).							
			집 등 이 이 관련이 가 봐야 한다. 영화 가 등							
SPT-3	34.0	5-32-48	Similar to SPT-2.	hard &	crumbly					
	to			brittle	-					
	35.5		말 집 그는 것 같은 것 같은 것 같은 것 같이 있는 것이다.	DITCLIE	1 - 1 - 1 - 1 					1
							· · · · ·		20	
SPT-4	38.0	11-36-10	Cimilar to CDM 2. distanted					, 10		· · · ·
511 4	to	11-20-10	O Similar to SPT-2; disturbed.	crumbly	crumbly					
	39.5									
	39.5		rie er iz Fall	1						
			그는 아니는 것은 것 같은 것 같이 것.							
		and the second		ા પ્રાથમિક						

Ground El. 1146.7⁺

TABLE 6

Sheet No. 1

Depth to Water Level: at surface

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No.	Section	Length	Description	Consis	tency	Natural Water	Liquid	Plastic Limit	Plast.	Water Plast.
and Depth ft	No.	In.		As Received	Remolded	Content	Limit	Dimit	muex	Ratio %
the second second										
PS-1	A	19.1	Empty	shafke -						
2.0-4.0	В	4.8	Top 0.5" dark gray organic				n.			
			silt with some pieces of		이 이 사람이 많다.	1.5				
			wood. Remaining 4.3" is	firm to	firm	19.5	35.5	18.6	16.9	5
			reddish-brown clay with one	stiff &						
			0.5" layer of brown fine to	brittle			, 4 , 11			
			medium sand, and containing							
			some pebbles; fissured.					э ^с		
			$q_p = 1.5$ to 1.7 tsf $c_v = 1.20$ tsf					-		
	С	11.2	(see next page)							2
										-
										4 8 - 1 10 10 10

TABLE 6 (cont'd)

Sheet No.2

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast
Depth ft				As Received	Remolded	Content %				Ratic %
PS-1	с	11.2	Reddish-brown clay containing	stiff to	firm to					
(cont'd)				v. stiff	stiff &					
			$q_{p} = 1.8 \text{ to } 2.1 \text{ tsf} \\ c_{v} = 1.20 \text{ tsf} $ $\left. \right\} top$		e crumbry	19.2				
			$q_{p} = 2.4 \text{ to } 3.4 \text{ tsf}$ $c_{v} = 1.63 \text{ tsf}$ $middle$			20.2	33.4	18.6	14.8	32
			$ \begin{array}{l} q_{p} = 1.5 \text{ to } 1.8 \text{ tsf} \\ c_{v} = 1.25 \text{ tsf} \end{array} \right\} \text{bottom} $							
			Note: Bottom appears disturbed by pebble during							
			sampling.							
								- E 		
			실험 날 것 같은 것 같은 것 같아.							

Ground El.			TABL	E 6 (con	t'd)			She	et No. 3	
Depth to Wa	ter Leve	-1	Undisturbed Samp	le Boring	No.CASA 3	056		Pro	oject No	. 755
Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water		Plastic Limit		Water Plast.
Depth ft				As Received	Remolded	Content			mack	Ratio %
PS-2	A	18.7	Empty							
5.0-6.7	Β		Reddish-brown clay containing numerous pebbles and stones up to 2.7" size; highly fissured. Most of section disturbed. q _p = 3.3 to 4.2 tsf c _v = 1.65 tsf	v. stiff to hard & brittl	crumbly					
	C		Reddish-brown and brown sandy clay containing numerous pebbles (glacial till); fissured. q _p = 3.8 to > 4.5 tsf c _v = 1.62 to 2.04 tsf Note: Cutting edge badly dented.	hard to v. hard & brittl		17,5	32.8	18.1	14.7	-4

1.11

CASAGRANDE CONSULTANTS

12° -

TABLE 6 (cont'd)

Sheet No. 4

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No.	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		Water Plast
and Depth ft	NO.			As Received	Remolded	Content		Dunit	macx	Ratio %
PS-3	A	16.4	Empty							
0 0 10 0				C 1	<i>c</i> :	01 0				÷.,
8.0-10.0	В	7.7	Top 5.2" is reddish-brown clay containing pebbles.	firm	firm	21.3				
			oray concurning persites.			t start i				· .
			$q_{p} = 1.0 \text{ to } 1.3 \text{ tsf}$							
			$c_v^P = 0.73 \text{ tsf}$				1			
			Remaining 2.5" is brown clay	stiff to	firm to	26.7				
			containing pebbles.							•
경험감사	1.200		$q_{p} = 2.5 \text{ to } 3.0 \text{ tsf}$						×	
			$c_v^F = 1.68 \text{ tsf}$					111 - 111 - 111 11 - 11		
	с	11.0	Prown alow containing	atiff	atiff	23.9	41.0	19.8	21.2	14
	C .	11.0	Brown clay containing numerous pebbles (glacial	& brittle		23.9	41.0	19.0	21.2	7.4
			till).	DITCCI						,
									· · · ·	
		1.00	Note: Cutting edge dented.							×
		1.1.1	한테니, 관심, 방법, 한 방법, 전 방법, 관					1.98		
	1.24.1	13 M I					· ·			5

CASAGRANDE CONSULTANTS

۰.

TABLE 6 (cont'd)

Sheet No. 5

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water		Plastic Limit		
Depth ft	Nor			As Received	Remolded	Content		1 		Ratic %
PS-4	A	14.9	Empty							
11.0-12.8	в*	9.3	Top 5.2" is brown clay con-	distu	rbed	24.5	52.6	26.0	26.6	-6
	usii Natio		taining numerous pebbles (glacial till).							
		장고가	Remaining 4.1" is brown silty	v. stiff	stiff	32.2				
	27 - L		clay with a few partings of	&						
			silt; fissured.	v. britt	le					
			$q_{p} = 2.5 \text{ to } 3.2 \text{ tsf}$							
			$c_v^F = 1.25 \text{ tsf}$							
	C*	11.3	(see next page)					с. 		
								* a		

* see Photo 20, App. III

WELENDIX IA

TABLE 6 (cont'd)

Sheet No. 6

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	stency	Natural Water	Plastic Limit		Water Plast.
Depth ft	NO.			As Received	Remolded	Content			Ratio %
	ra A	. 513				* * *			
PS-4	С	11.3	Top 6" to 10" is varved	v.stiff	stiff				
(cont'd)		1, 56	reddish-brown clay and brown	&		r			
	5.1	N 1995	silt. Varves are irregular	brittle		5. A.			
			pattern. Clay is fissured.						
	e Maria Maria Indonesia		Lower portion is varved silt						
	- <u>`</u>		and clay overlying 2.5" of						
		de e	brown fine sand at bottom				 		
	1. S.		of section. A shear plane						
			cuts diagonally across				rit e		
			sample at a 60° angle						
			(from horizontal) with				 8		×
	X A		indeterminable displacement						4 . 2
~			(not due to sampling).		8				×
		с. 	$q_p = 2.9$ to 3.4 tsf					·	
	· · · · ·		$c_v = 0.98$ tsf		* 1. ⁸ .				
			Note: Cutting edge dented.			- 7 - 2			
	1. A.								
	,								
						р. С. 16		8	

TABLE 6 (cont'd)

Sheet No. 7

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	nor			As Received	Remolded	Content				Ratic %
										K -
PS-5	A	16.8	Empty	1. g. (2.)				· · ·	×	2 ¹
		·	and the state of the state of the	ertag fil						ч.
14.0-16.0	в*	7.0	Top 6.5" is reddish-brown	firm	soft	28.7	44.3	21.2	23.1	32
			clay with one parting of						ė	
	a k		fine sand and containing some							
	1 (A)		pebbles up to l" size.							
			$q_p = 0.8 \text{ tsf}$	· · · · · · · · · · · · · · · · · · ·						× .
			$c_{\rm V}^{\rm P}$ = 0.58 tsf							
			Bottom 0.5" is varved brown							• •
			silt and fine sand.							
ъ.			$q_p = 1.7$ to 2.1 tsf							
			$c_v = 0.68 \text{ tsf}$							
			· · · · · · · · · · · · · · · · · · ·							
	C*	11.5	(see next page)							
¥ ž										
	× *							·		
· .	•	· · · · · · · · · · · · · · · · · · ·								

III

AFFENDIX

Sample No. Section Length Desc									
and No. In.	ription	Consist	ency	Natural Water			Plast. Index	Water Plast.	
Depth ft		As eceived	Remolded	Content %				Ratio %	
PS-5 C* 11.5 Top 3" to 6"	is brown varved v.	stiff	crumbly			=			
(cont'd) silt and fine	sand containingto	hard							
several thin	layers of	&							
reddish-brown	clay. br	rittle							
$q_{p} = 3.0 \text{ to } 4$.0 tsf								
$c_v = 1.10 \text{ tsf}$									
Remaining 5.5	' to 8.5" is v.	stiff	stiff	28.4	51.7	23.9	27.8	16	-
varved reddis	n-brown clay	&							
containing la	yers of silt br	rittle							
and fine sand	up to 0.5"								ALCONOM NO.
thick. Clay	is fissured.						8		
$q_{\rm p} = 2.7 \text{ to } 2$.8 tsf								
$c_v^r = 1.50 \text{ tsf}$				ч., н.					
Shear plane c	ts diagonally								
across entire	sample at an								
angle of 50 ⁰	(from horizontal)	2							
with indeterm	inable displace-								
ment (not due	to sampling).							· ,	

* see Photo 21, App. III

CASAGRANDE CONSULTANTS

Ground El.

TABLE 6 (cont'd)

Sheet No. 8

VEBENDIX TIT

As Content Depth % Received Remolded ft PS-6 11.3 Α Empty 17.0-19.0 B* 13.1 Upper 10.5" is reddish-brown clay marbled with brown silt. Top 5" primarily silt. Obviously disturbed. Remaining 2.6" is reddishstiff & firm 34.8 brown clay containing several brittle partings of silt; fissured. $q_{p} = 1.7 \text{ to } 2.2 \text{ tsf}$ $c_{11} = 0.70 \text{ tsf}$ С 11.0 Reddish-brown clay containing firm to 32.2 67.1 29.5 37.6 firm a few pebbles; highly to stiff fissured. 2 $\begin{array}{l} q_p = 2.2 \text{ to } 2.4 \text{ tsf} \\ c_v = 0.84 \text{ tsf} \end{array} \right\} top$ brittle q = 1.4 to 1.9 tsf bottom

Description

Ground El.

and

TABLE 6 (cont'd) Undisturbed Sample Boring No. CASA 3056

Consistency

Sheet No. 9

Limit | Index

Natural Liquid Plastic Plast.

Limit

Water

Project No.755

Water

Plast.

Ratio

%

7

Depth to Water Level

Sample No. Section Length

No.

In.

see Photo 19, App. III

TABLE 6 (cont'd)

Sheet No.10

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	110.			As Received	Remolded	Content		2		Ratio %
										-
PS-7	A	12.9	Empty							
20.0-22.0	в*	11.2	Top 7.3" is reddish-brown	firm	soft	35.4	70.9	25.0	45.9	23
	2 1		clay containing some pebbles;							
			fissured.					20		
			$q_p = 0.9 \text{ tsf}$							
			$c_v^F = 0.59 \text{ tsf}$							
			Remaining 3.9" is brown silt	v. stiff	crumbly			-		
			with several 0.1" layers of	æ				,		
14 ¹			reddish-brown clay, and	brittle	1					
			containing some pebbles up							
			l" size.							
			Upper ½ of section disturbed.							
· · · ·				÷ .						
	C*	11.1	(see next page)			· · ·				
÷										
	· · ·						[
			*			,				
					L		1			

* see Photo 22, App. III

CASAGRANDE CONSULTANTS

VEPENDIX III

TABLE 6 (cont'd)

Sheet No. 11

Depth to Water Level

WEFENDIX IV

Undisturbed Sample Boring No. CASA 3056

Project No. 755

Sample No.	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit			Water Plast
and Depth ft	INO.	m.		As Received	Remolded	Content			Index	Ratio %
u di si							7			
PS-7	C*	11.1	Brown silt varved with fine	stiff to	firm to					
(cont'd)			sand and reddish-brown clay,	v.stiff	crumbly					
			and containing some pebbles.	æ				~		
		•	Varves up to 1" thick. Clay	brittle			9 a.			
	** 10 je	÷.*	only about 20% of sample;				6			
			fissured.							
			$ \begin{array}{l} q_{p} = 2.5 \text{ to } 3.0 \text{ tsf} \\ c_{v} = 0.97 \text{ tsf} \end{array} \right\} top $							
		ŝ	$ \begin{array}{l} q_p = 2.3 \text{ to } 2.7 \text{ tsf} \\ c_v = 0.58 \text{ tsf} \end{array} $							
										* .
		6								
							la La La	×.		
										ŝ

APPENDIX III

TABLE 6 (cont'd)

Sheet No. 12

Depth to Water Level

0

Undisturbed Sample Boring No. CASA 3056

Project No.755

Sample No.			Description	Consis	tency	Natural Water		Plastic Limit		Water Plast
and Depth ft	No.	In.		As Received	Remolded	Content	Limit	Linit	Index	Ratic %
	and the second se									
PS-8	A	7.3	Empty	* **				Т.		
23.0-25.0	в*	4.5	Marbled brown silt and	soft	soft &					
		1. A	reddish-brown clay. Sample		sticky					A
έ			completely disturbed.							
			City Diff. 14							
	C*	12.2	Brown silt with some reddish-	v. soft	v. soft		1			
			brown clay marbling. Sample		& sticky					
		15	completely disturbed.							
	D**	8.5	Brown silt marbled with	soft	soft to					
			reddish-brown clay. Sample		v. soft					
			completely disturbed.		& sticky		8.			
	Е	3.2	Empty + about ½" of water					2		
			between wax plug and end cap.					ан с 2011 г. – С 2011 г. – С		
								× 1		

	· · ·	12 10								

** see Photo 24, App. III

TABLE 6 (cont'd)

Sheet No. 13

Depth to Water Level

Undisturbed Sample Boring No. CASA 3056

Project No.755

Sample No. and	Section No.	Length In.	Description	Consis	tency	Natural Water	Liquid Limit	Plastic Limit	Plast. Index	Water Plast
Depth ft	140.			As Received	Remolded	Content		23121146	mack	Ratic %
a An Eir	1.5									
PS-9	A	9.0	Empty + about $\frac{1}{2}$ " of free	an Angeliga		12 J. A.				1
		ne has	water + silt between wax						· .	
26.0-27.0	1 		plug and end cap.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			ч. - С			
				tratica.						
	В	4.0	Brown silt. Sample	soft	soft					м. К
	c r⇒ti i		completely disturbed.							
		h i		1.1						
	C*	11.0	Top 7.5" is brown silt.	firm to	crumbly	20.3				
				stiff						
	т. Х. Т. Х. ¹¹	ж ж ж	Remaining 3.5" is brown	firm	firm	19.4	25.3	15.1	10.2	42
	11 A A		sandy clay containing pebbles	interfection.	ň.					
			(glacial till). Entire		1 1 2 1					
			sample disturbed.	۰.						
a l'inde			Note: Cutting edge badly						4 - V 14	
	* * *		dented.							
									8 A. 1	
				1						

Table 6 (cont'd)

Sheet 14

Ground El.

Exploratory Boring No. CASA 3056

Depth to Water Level:

0

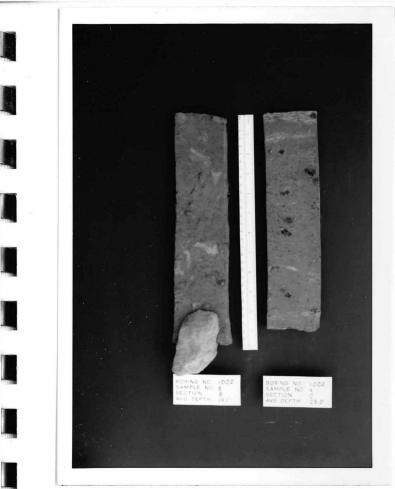
Project No. 755

Sample No.	Depth ft	No. of Blows per 6 in.	Description	Consistency		Nat. Water		Plastic Limit	Plast. Index	
				As Received	Remolded	Cont.				Ratio %
		• • • • • •					7			
SPT-1	28.0	10-25-30	Reddish-brown clayey silt with	hard &	crumbly	9.6				4
	to		some angular pebbles (glacial	brittle						
	29.5		till).							E I
SPT-2		13-17-26	Similar to SPT-1.	hard &	crumbly					
	to			brittle						
	33.5			-						
SPT-3	36.0	11-18-21	Similar to SPT-1.	hard &	crumbly					
	to	* 1. 5. 5. 1		brittle	or anity					
	37.5									
		м. 1911 г.								
					1 - A					
	1 - 1 - 1 - 1									

APPENDIX III

PHOTOGRAPHS OF REPRESENTATIVE SAMPLE-SECTIONS OF LACUSTRINE

STRATUM



ъросо 1

₽ одоца

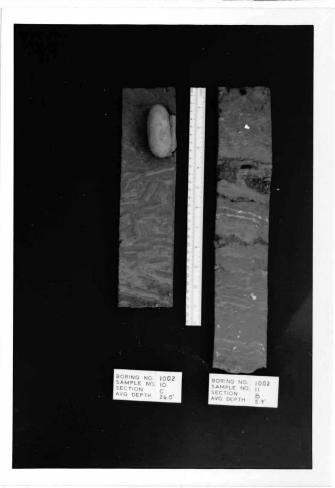
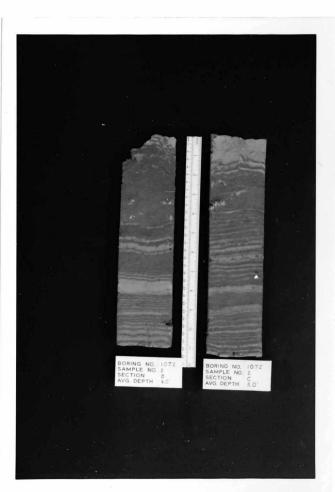



Photo 5

L

Photo 6

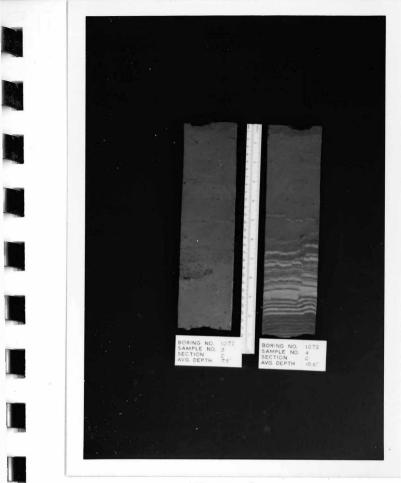
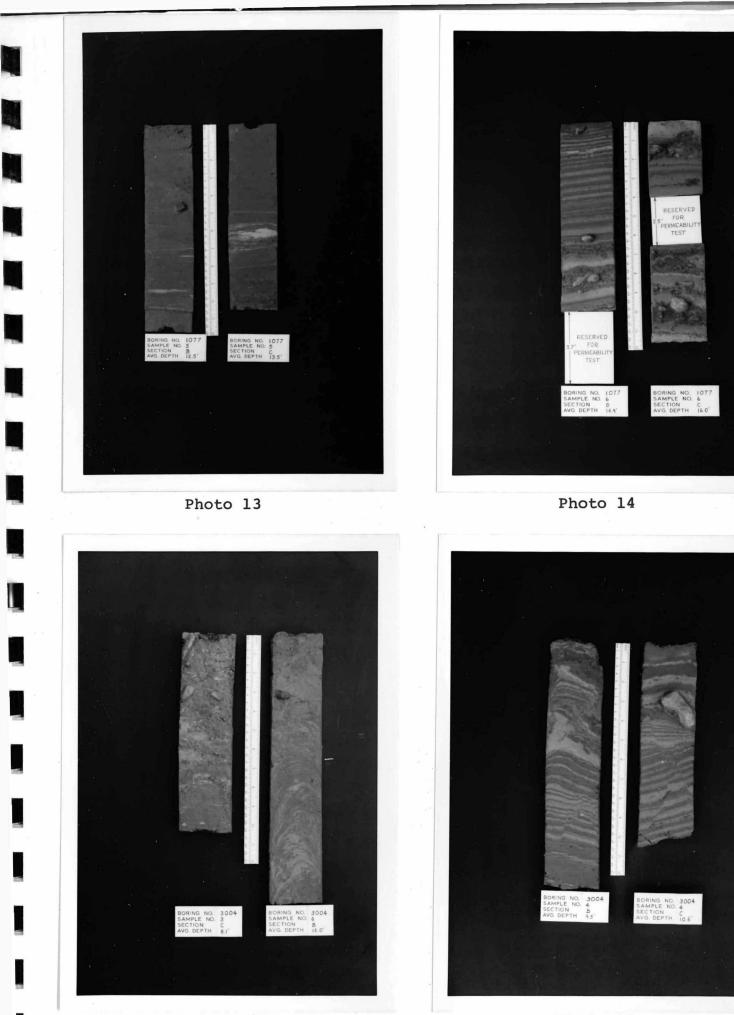


Photo 10

Photo 9


L

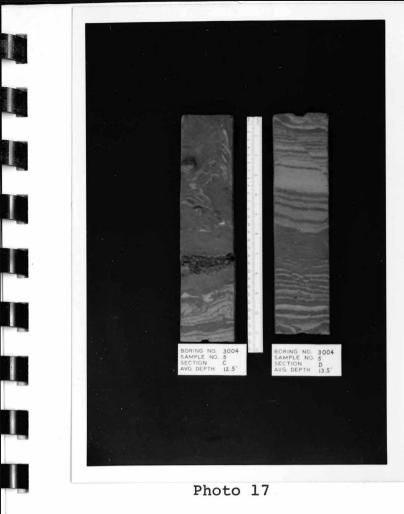
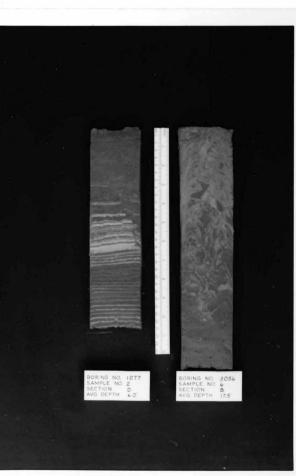



Photo 18

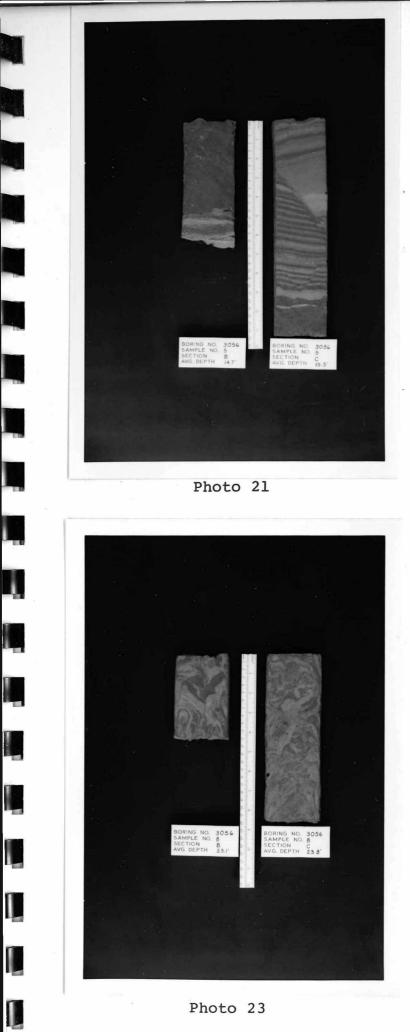


Photo 22

Photo 23

Photo 24

APPENDIX IV

L

L

LIST OF INFORMATION RECEIVED AND REVIEWED IN CONNECTION WITH THIS REPORT

List of Reports and Drawings

Γ

Γ

Γ

L

L

L

I

-1

1

ſ

L

L

DESIGN REPORT, ON-LAND TAILINGS DISPOSAL STUDY, MILEPOST NO. 7 SITE, APRIL 1975, by Klohn Leonoff Consultants Ltd.

FEASIBILITY REPORT, ON-LAND TAILINGS DISPOSAL STUDY, MILEPOST No. 7 SITE, by Klohn Leonoff Consultants Ltd.

FEASIBILITY REPORT, ON-LAND TAILINGS DISPOSAL STUDY, MILEPOST No. 7 SITE, APPENDIX A, VOLUME 1, by Klohn Leonoff Consultants Ltd.

FEASIBILITY REPORT, ON-LAND TAILINGS DISPOSAL STUDY, MILEPOST No. 7 SITE, APPENDIX A, VOLUME 2, by Klohn Leonoff Consultants Ltd.

MILE POST 7 ON-LAND TAILINGS DISPOSAL and AIR QUALITY PLAN, by Reserve Mining Company

CONSULTANT REPORTS ON MILE POST 7 SITE, by the Reserve Mining Company

PROGRESS REPORT, RESERVE MINING COMPANY, SILVER BAY, MINNESOTA: PERIOD ENDING MARCH 21, 1975, by Klohn Leonoff Consultants Ltd.

GENERAL GEOLOGY, MILE POST 7 SITE, January 1975, by Eugene A. Hickok and Associates

HYDROLOGICAL ANALYSIS, BEAVER RIVER WATERSHED, January 1975, by Eugene A. Hickok and Associates

Letter-Report by the Reserve Mining Company (signed by Mr. M. G. Woodle) to the State of Minnesota, dated March 7, 1975

Letter-Report by the Reserve Mining Company (signed by Mr. M. G. Woodle) to the State of Minnesota, dated February 1, 1975

ENVIRONMENTAL REPORT CONCERNING ON-LAND TAILINGS DISPOSAL AND AIR QUALITY PLAN FOR THE E. W. DAVIS WORKS, RESERVE MINING COMPANY, SILVER BAY, MINNESOTA, Volumes I, II, III, and Appendix, dated April 30, 1975, by Arthur D. Little, Inc.

EXECUTIVE SUMMARY of the Environmental Report, by Arthur D. Little, Inc.

GOVERNOR"S SITE INSPECTION TRIP, APRIL 1975, prepared by the State of Minnesota

TAILINGS DISPOSAL AND RESERVE MINING COMPANY, prepared by the State of Minnesota

FINAL DISPOSITION OF TAILINGS IN THE MILE POST 7 TAILINGS BASIN, FOR RESERVE MINING COMPANY, SILVER BAY, MINNESOTA, dated January 21, 1975, by Kaiser Engineers

RECLAMATION OF TAILINGS BASIN, dated January 21, 1975, by Reserve Mining Company

Letter from the Erie Mining Company to the Reserve Mining Company, dated January 21, 1975

Reserve Mining Company brochure titled "Mile Post 7 On-Land Tailings Disposal Plan"

Report by Reserve Mining Company titled MILE POST 7 ON-LAND TAILINGS DISPOSAL AND AIR QUALITY PLAN, revised May 26, 1975

Report by Reserve Mining Company titled ENVIRONMENTAL MONITORING PROGRAM, revised May 26, 1975

- 2 -

Report by Prof. Donald H. Gray titled PARTICLE SIZE ANALYSIS & RELATIVE DENSITY TESTS ON TACONITE TAILINGS FROM SILVER BAY, MINNESOTA, dated 9 May 1973

Report by Prof. Richard D. Woods titled FIELD DENSITY AND IOWA BORE HOLE SHEAR TESTS, dated May 10, 1973

Letter by Klohn Leonoff Consultants Ltd. to Reserve Mining Co., dated June 19, 1975, transmitting 29 grain size curves of Delta tailings samples

Report by Howard, Needles, Tammen & Bergendoff titled RED CLAY SETTLEMENT STUDIES, EMBANKMENTS AND STRUCTURES, 40th Avenue West to 27th Avenue West, Interstate Route 35, Duluth, Minnesota, dated May 27, 1964

Transcripts of first through fourth days of Hearings of the State of Minnesota vs Reserve Mining Co., held at Silver Bay, Minnesota, in June 1975, pages 229 to 840

Letter by W. A. Wahler & Associates to Morris M. Sherman, dated June 24, 1975, transmitting the field logs and location plans of recent borings

Letter by Michael Baker, Jr., Inc., to M. M. Sherman, dated June 30, 1975, transmitting field logs and location plans of recent borings

Letter by Michael Baker, Jr., Inc., to M. M. Sherman, dated July 3, 1975, transmitting Memoranda by John R. Rapp and by James V. Hamel on recent field observations and their implications on the proposed Milepost 7 project

"Note on Reserve Delta and Tailings Composition" by Dr. James R. Kramer, dated 17th July, 1975

- 3 -

Letter by W. A. Wahler & Associates to Morris M. Sherman, dated May 28, 1975, transmitting their compiled reference listing covering such subjects as shore protection facilities and health considerations of asbestos fibers

Letter by W. A. Wahler & Associates to Morris M. Sherman, dated July 3, 1975, transmitting ground surface elevations for the new borings

Letter report by Michael Baker, Jr., Inc., to Morris M. Sherman, dated May 30, 1975

Letter by the United States Department of Agriculture Soil Conservation Service to Rich Leonard, Oakdale, Minn., dated May 29, 1975, transmitting some strength values for "red clays"

PRELIMINARY OPEN FILE REPORT ON LAKE SUPERIOR RED CLAY, PROBLEM AND STUDY AREAS - MAY 1975, by Richard W. Leonard, Civil Engineer

WAVE ACTION AND BREAKWATER LOCATION, TACONITE HARBOR (Two Islands), LAKE SUPERIOR, MINNESOTA, Technical Memorandum No. 2-405, by the U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Miss., May 1955

Drawings (Reserve Mining Company):

L

Dr. No. 292-0003 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: GENERAL PLAN"

Dr. No. 292-0022 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE NO. 1 TEST HOLE LOCATION PLAN"

- 4 -

Drawings (Reserve Mining Company):

- Dr. No. 292-0023 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 2-3 TEST HOLE LOCATION PLAN"
- Dr. No. 292-0026 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: SCHEDULE, TAILING STORAGE STRUCTURE"
- Dr. No. 292-0027 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: VOLUMES-STORAGE, RESERVOIR"
- Dr. No. 292-0030 "MILE POST No. 7 SITE TAILING DISPOSAL AREA: SUMMARY OF TEST DATA"
- Dr. No. 292-0035 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 1 SUBSOIL PROFILE, SECTION A-A"
- Dr. No. 292-0036 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE NO. 1 SUBSOIL PROFILE, SECTION B-B, C-C, D-D"
- Dr. No. 292-0037 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE NO. 2-3 SUBSOIL PROFILE, SECTION A-A, B-B"
- Dr. No. 292-0038 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 2-3 SUBSOIL PROFILE, SECTION C-C"
- Dr. No. 292-0039 "MILE POST No. 7 SITE TAILING DISPOSAL AREA: BORROW PITS, LOCATIONS AND ESTIMATED VOLUMES"
- Dr. No. 292-0041 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE NO. 1 - GENERAL ARRANGEMENT"

Drawings (Reserve Minging Company):

- Dr. No. 292-0042 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 1 - STARTER DAM
- Dr. No. 292-0044 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: STARTER DAM - DAMSITE NO. 1, SAND DRAIN DETAILS"
- Dr. No. 292-0048 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: TYPICAL SEEPAGE RECOVERY PUMP STATION"
- Dr. No. 292-0050 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 2-3, GENERAL ARRANGEMENT"
- Dr. No. 292-0060 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE NO. 4 - GENERAL ARRANGEMENT"
- Dr. No. 292-0070 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DAMSITE No. 5 - GENERAL ARRANGEMENT"
- Dr. No. 292-0081 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DIVERSION STRUCTURE No. 1"
- Dr. No. 292-0083 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: DIVERSION STRUCTURE No. 2"
- Dr. No. 292-0090 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: TAILING STORAGE, FINE AND COARSE TAILINGS"
- Dr. No. 292-0092 "MILE POST NO. 7 SITE TAILING DISPOSAL AREA: TAILING STORAGE, DETAIL EAST SIDE"
- Dr. No. 294-0005 "MILE POST No. 7 DELTA STABILIZATION: SECTION FOR MODEL STUDIES

- 6 -

Drawings (Reserve Mining Company):

ľ

Í

I

Ī

L

I

Dr. No. A-118 "LAKE CONTOURS DELTA AREA"

Dr. No. WA-73 "SILVER BAY AREA BATHYMETRY"

Composite Dr. (no number) "PROFILE-LAKE BOTTOM & TAILINGS FILL AREA SEPT. 5, 6 and 18, 1956"

Dr. No. 294-0001 "DELTA STABILIZATION: TEST HOLE NO'S. LOCATION & ELEVATIONS"

Sheet 27 - Topographic Map of Existing Delta

Dr. No. 22-0010-1 - "Delta Area Launder System, General Arrangement"

"MAP OF PRELIMINARY GEOLOGIC RECONNAISSANCE", prepared by Michael Baker, Jr., Inc., and W. A. Wahler & Associates, dated June 1975, with use of Reserve Mining Co. Dr. 292-0003