Alternative Stockpile Location Analysis Report

U.S. Steel Keetac Expansion Project

Wenck File #1472-04

Prepared for:

MINNESOTA DEPARTMENT OF NATURAL RESOURCES AND UNITED STATES ARMY CORPS OF ENGINEERS

Prepared by:

WENCK ASSOCIATES, INC.

1800 Pioneer Creek Center P.O. Box 249 Maple Plain, Minnesota 55359-0249 (763) 479-4200 October 2010

Table of Contents

1.0	INTRO	ODUCTION
	1.1	Purpose1-1
	1.2	Regulatory Framework
	1.3	Chronology of Stockpile Alternatives Analysis
		1.3.1 Project Proposer's Preliminary Planning1-2
		1.3.2 Final Scoping Decision Document1-2
		1.3.3 Draft EIS (DEIS) Preparation and Issuance
		1.3.4 Stockpile Location Workshop1-3
	1.4	Report Contents
2.0	STOC	KPILING NEEDS2-1
	2.1	Background
	2.2	Existing Stockpiles
	2.3	Mine Sequencing and Stockpile Volumes
3.0	EXCL	USION AREAS
	3.1	Development of Information
	3.2	Factors Influencing Exclusion Areas
		3.2.1 Location of Iron Formation
		3.2.2 Land and Mineral Rights Ownership
		3.2.3 Safety
		3.2.4 Existing Infrastructure
	3.3	Exclusion Area Mapping
4.0	ANAL	YSIS METHODS AND ASSUMPTIONS 4-1
	4.1	Introduction
	4.2	Environmental Analysis - Natural Habitat
		4.2.1 Wetlands
		4.2.2 Upland
		4.2.3 Rare Species
	4.3	Environmental Analysis -Air Quality
		4.3.1 Particulate Matter (PM)
		4.3.2 Nitrogen Oxides (NOx)
		4.3.3 GHG
		4.3.4 Compliance Boundary
	4.4	Environmental Analysis -Noise

Table of Contents (Cont.)

	4.5 4.6 4.7	Environmental Analysis -Visual Impacts4-4Feasibility Analysis -Hauling4-44.6.1Haul Route Alignments4-44.6.2Haul Route Safety4-44.6.3Hauling Operation4-54.6.4Hauling Economics4-54.6.5Hauling Summary4-6Summary4-6
5.0		IMINARY SCREENING OF ALTERNATIVES
5.0	INEL	INIIVART SCREENING OF ALTERIVATIVES
	5.1	Introduction
	5.2	Project Proposer's Preliminary Concepts
	5.3	Development of Proposed South Stockpile
	5.4	Description and Comparison of Identified Alternative Stockpile Locations for the
		Proposed East Stockpile
		5.4.1 Proposed East Stockpile
		5.4.2 Concept A (Alternative Location)
		5.4.3 Concept B (Alternative Location)
		5.4.4 Concept C (Alternative Location)
		5.4.5 Concept D (Alternative Location)
		5.4.6 Concept E (Reconfiguration)
	5.5	Conclusions
6.0	DETA	ILED COMPARISON OF ALTERNATIVE STOCKPILE LOCATIONS 6-1
	6.1	Introduction
	6.2	Comparison of Concept B to Proposed East Stockpile
	6.3	Comparison of Concept D to Proposed East Stockpile
	6.4	Comparison of Concept E to Proposed East Stockpile
	6.5	Summary
7.0	CONC	CLUSIONS AND RECOMMENDATIONS7-1
	7.1	Decision Criteria Used In Analysis7-1
		7.1.1 Mitigation Measures
		7.1.2 Magnitude of Impacts
		7.1.3 Significance of Impacts
		7.1.4 Summary and Conclusions

Table of Contents (Cont.)

TABLES

TABLE 2.3.1	PERIOD 1 WASTE MATERIAL SCHEDULE	2-4
TABLE 2.3.2	PERIOD 2 WASTE MATERIAL SCHEDULE	2-5
TABLE 2.3.3	PERIOD 3 WASTE MATERIAL SCHEDULE	2-5
TABLE 2.3.4	PERIOD 4 WASTE MATERIAL SCHEDULE	2-6
TABLE 2.3.5	PROJECT WASTE MATERIAL SUMMARY	2-6
TABLE 2.3.6	WASTE MATERIAL SUMMARY	2-7
	1 PARTICULATE EMISSION FACTORS	
TABLE 5.3.1	PROPOSED SOUTH STOCKPILE COMPARISON	5-2
TABLE 6.2.1	PROPOSED EAST STOCKPILE/CONCEPT B COMPARISON	6-1
TABLE 6.3.1	PROPOSED EAST STOCKPILE/CONCEPT D COMPARISON	6-4
TABLE 6.4.1	PROPOSED EAST STOCKPILE/CONCEPT E COMPARISON	6-6
TABLE 7.1.2.1	1 WETLAND DISTURBANCE SUMMARY	7-3
TABLE 7.1.2.2	2 PARTICULATE EMISSION PROJECT SUMMARY	7-4
TABLE 7.1.2.3	3 NOx AND GHG EMISSION PROJECT SUMMARY	7-4
	1 SUMMARY OF FACTORS OF IMPORTANCE	
TABLE 7.1.3.2	2 STOCKPILE CONCEPTS AND FACTORS OF GREATER IMPORTANCE.	7-8

FIGURES

- Figure SA-1 Concept Stockpile Locations
- Figure SA-2 Exclusion Zones
- Figure SA-3 Period 1 Mine Plan
- Figure SA-4 Period 2 Mine Plan
- Figure SA-5 Period 3 Mine Plan
- Figure SA-6 Period 4 Mine Plan
- Figure SA-7 Concept P-1 and P-2
- Figure SA-8 Concept A-1
- Figure SA-9 Concept B-1 and B-2
- Figure SA-10 Concept C-1 and C-2
- Figure SA-11 Concept D-1 and D-2
- Figure SA-12 Concept E-1
- Figure SA-12 Concept E-1
- Figure SA-13 Rare Plant Survey Proposed Stockpile Location
- Figure SA-14 Rare Species Locations from NHIS Inventory
- Figure SA-15 Current Crusher Area Traffic Patterns
- Figure SA-16 Expected Future Crusher Area Traffic Patterns
- Figure SA-17 Mine Haul Truck Driver Visibility Chart

Table of Contents (Cont.)

APPENDICES

- Appendix A Project Proposers Preliminary Concepts
- Appendix B Caterpillar 793D Mining Truck Performance Specifications
- Appendix C Haulage Profiles and Cycle Times
 - C-1 Proposed East Stockpile Location Haulage Profiles and Cycle Times
 - C-2 Concept A Surface Material Haulage Profile and Cycle Times
 - C-3 Concept B Surface Material Haulage Profiles and Cycle Times
 - C-4 Concept C Surface Material Haulage Profiles and Cycle Times
 - C-5 Concept D Surface Material Haulage Profiles and Cycle Times
 - C-6 Concept E Surface Material Haulage Profiles and Cycle Times
 - C-7 Rock Stockpile R-1 Haulage Profiles and Cycle Times
- Appendix D Haulage Operational Data Summary
- Appendix E May 12, 2010 MNDNR Letter Regarding Area North of Proposed East Stockpile Location
- Appendix F Evaluation Criteria Matrix
- Appendix G March 21, 2008 Natural Heritage Information System Index Report
- Appendix H EPA Regulatory Announcement F-04-032, May 2004 Clean Air Non-Road Diesel Rule
- Appendix I Noise Assessment Documents
 - I-1 March 26, 2009 Proposed Stockpile Noise Assessment Supplemental Draft
 - I-2 June 23, 2010 Alternative Stockpile Noise Assessment
 - I-3 July 8, 2010 Memorandum Noise Reduction Benefit East Stockpile Alternative Location

1.1 PURPOSE

U.S. Steel Corporation's (Project Proposer) development of the Keetac Expansion Project (Proposed Project) includes new stockpile locations (Figure SA-1) for overburden which consists of waste rock and surface soil. The Project Proposer based the proposed stockpile locations on maximizing the efficiency of the mining operation while minimizing potential environmental impacts. This Alternative Stockpile Location Analysis Report (Report) was completed to focus on the potential impacts of alternative stockpile locations, in an effort to determine if a viable alternative stockpile location exists and should be further evaluated in the Keetac Mine Expansion Environmental Impact Statement (EIS).

The purpose of this Report is to determine if an alternative stockpile location exists that could still meet the underlying need and purpose of the Proposed Project while minimizing potential environmental impacts.

The process of developing and evaluating stockpile location concepts for consideration in this Report was developed through several meetings, workshops, and discussions with the Project Proposer, United States Environmental Protection Agency (USEPA), Minnesota Department of Natural Resources (MNDNR), Minnesota Pollution Control Agency (MPCA), Bois Forte Band, and the United States Army Corps of Engineers (USACE). Based on these discussions, alternative stockpile concepts were identified using an agreed to methodology and criteria. Alternative stockpile location concepts are identified on Figure SA-1 as Concepts A-E.

1.2 REGULATORY FRAMEWORK

Minnesota Rules, part 4410.2300, subpart G states that the EIS shall compare the potentially significant impacts of the proposal with those of other reasonable alternatives to the proposed project. The EIS must address one or more alternatives of each of the following types of alternatives or provide a concise explanation of why no alternative of a particular type is included in the EIS: 1) alternative sites, 2) alternative technologies, 3) modified designs or layouts, 4) modified scale or magnitude, and 5) alternatives incorporating reasonable mitigation measures identified through comments received during the comment periods for EIS scoping or for the EIS.

Minnesota Rules part 4410.2300, subpart G directs that, "an alternative may be excluded from analysis in the EIS if, it would not meet the underlying need for or purpose of the project, it would likely not have any significant environmental benefit compared to the project as proposed, or another alternative, of any type, that will be analyzed in the EIS would likely have similar environmental benefits but substantially less adverse economic, employment or sociological impacts."

1.3 CHRONOLOGY OF STOCKPILE ALTERNATIVES ANALYSIS

1.3.1 Project Proposer's Preliminary Planning

During initial project planning the Project Proposer evaluated several stockpile location concepts contiguous to current mining operations prior to preparation of their proposed stockpile locations. The various concept iterations were located in the approximate area of the current proposed east stockpile location (proposed stockpiles are described in Section 5). Initial concepts were refined when more information was gathered regarding the location of the ore deposit. Air dispersion modeling was completed establishing the ambient air quality boundary and associated setbacks, and wetland boundaries were determined to minimize wetland impacts within the general area. Concepts evaluated as part of the Project Proposer's planning are located in Appendix A of this Report.

1.3.2 Final Scoping Decision Document

The Final Scoping Decision Document (FSDD) requires the analysis of alternative stockpile locations as stated:

Positioning of stockpiles is crucial to minimizing impacts to wetlands and potentially other natural resources. The EIS will evaluate the potential environmental effects of the proposed stockpile locations as well as alternative stockpile locations. In addition, the EIS will evaluate inpit stockpile opportunities; in-pit stockpiles can help create future shallow-water habitat when pits are abandoned and reclaimed. This stockpile location analysis will consider not only potential wetland impacts, but also air emissions from haul truck and wind erosion, haul road location, lease fee-holder requirements, in-pit stockpile opportunities and other operational and environmental issues.

1.3.3 Draft EIS (DEIS) Preparation and Issuance

Once the Project Proposer presented their proposed stockpile plan, a preliminary concept development analysis was completed. The purpose of this effort was to identify other possible stockpile locations (i.e., concepts) and determine which concepts, if any, should be further analyzed. Meetings were held with the Project Proposer, MNDNR, MPCA, and USACE to discuss ideas for stockpiling concepts.

Several exclusion areas were explored and removed from further consideration. Some of these areas require hauling to areas that are not currently contiguous to existing stockpiles or would require hauling by rail. The reasons for eliminating these locations are threefold. First, there are the adverse environmental impacts associated with roadway or rail construction through undisturbed areas. Second, air emissions (particulates, NOx and Greenhouse Gases) associated with hauling are proportional to the hauling distance, meaning that stockpiles that are closer to the mining operation would have less air quality related impacts. Lastly, the expense of the additional roadway or rail construction and associated hauling costs would make recovery of the ore uneconomical. Most definitions of "ore" imply that it be economically viable to extract and process. For example, the following citation is taken from the Encyclopedia Columbia: "ore, metal-bearing mineral mass that can be profitably mined."

After this initial screening-level analysis, discussed further in Section 5 of this Report, four concepts, A, B, C and D, were identified and further evaluated in a memorandum. This memorandum was included in the Keetac Expansion Project Draft EIS (DEIS).

1.3.4 Stockpile Location Workshop

During the public comment period of the DEIS, several comments were received concerning the issue of wetland avoidance, minimization and mitigation. Also, additional information was requested regarding mine planning to reduce wetland impacts. In response to these comments the MNDNR, USACE, USEPA, MPCA, Bois Fort Band, and the Project Proposer convened for a two day workshop, held in April 2010, to ensure all possible sites were evaluated for out of pit stockpiling. The evaluation of all practicable sites for out of pit stockpiling, while maintaining the purpose of the project, assists the Project Proposer in demonstrating wetland avoidance and impact minimization.

During the April 2010 workshop, an additional concept was developed, Concept E. This concept is a reconfiguration of the proposed east stockpile. During this workshop, there was also considerable discussion regarding the proposed south stockpile and viable alternatives. Alternative locations for the proposed south stockpile were determined to be impracticable at this workshop. The reasoning behind this is discussed in Section 5.3 of this Report.

1.4 REPORT CONTENTS

The organization of the Report is as follows:

Section 1	Discusses the purpose this report, the regulatory requirements of stockpiling and the Keetac EIS stockpile location concept development process.
Section 2	Discusses the need for stockpiling including the material types, sequencing and volumes.
Section 3	Discusses exclusion areas for stockpiling
Section 4	Introduces the criteria used to evaluate stockpile locations and an explanation of the qualitative and quantitative analysis of each criterion, including the assumptions of the analysis.
Section 5	Presents the preliminary screening of the concepts using criterion explained in Section 4. Discusses why alternative locations for the south stockpile are deemed impracticable. Section 5 also recommends that Concept A and Concept C are excluded from further consideration.
Section 6	Compares remaining east stockpile concepts being considered, Concept B, Concept D, and Concept E.
Section 7	Discusses relative importance of criteria and recommends a concept to be carried forward in the EIS.

2.1 BACKGROUND

This section discusses the stockpiling need for the Proposed Project, and background information needed to comprehend the scale and magnitude of the need for stockpiles as an integral component of the Proposed Project.

To meet the need of the Proposed Project, (i.e. access the ore within the mine for beneficiation), removal and stockpiling of the overburden is necessary. The overburden is segregated into two basic types, surface soils and waste rock. Surface soils are the unconsolidated glacial till material extending from the existing ground surface to a depth varying between 15 and 150 feet. Waste rock is consolidated material extending from the bottom of the surface soil to the top of the ore body. Waste rock iron content is not high enough, or its silica content is too high, to be considered ore. A definition of the term "ore" was provided in Section 1.3.3 of this Report. The surface soils and waste rock are stockpiled in separate stockpiles as dictated by the Minnesota rules regarding mining. The relevant rules for stockpiling are presented in Section 2.2 and 2.3 of this Report.

An important concept to understand when considering the volume of overburden mined is "swelling". When overburden is mined it undergoes swelling because the density of the overburden is less than the insitu density. When intact rock is blasted into smaller fragments, the remaining pile is less dense than the original intact mass. The swelling factor the Project Proposer is using, based on historical mining data at this mine, is 1.25. As an example, 100 million bank cubic yards (Mbcy) of overburden removed requires a stockpile with 125 Million cubic yards (Mcy) of capacity. A bank cubic yard is one cubic yard in its insitu condition before excavating or blasting.

Surface soil and waste rock would need to be removed over 21.5 years to allow uninterrupted mining of taconite ore. The Project Proposer estimates that 118 Mbcy of surface soil needs to be stockpiled out of pit, even after maximizing in-pit stockpiles. There is also the need to place 92 Mbcy of waste rock in out of pit stockpiles. These estimates are based on the Project Proposer's incorporation of drilling data into mine development three dimensional modeling. The engineering methods used to calculate these volumes have been reviewed and approved by the MNDNR's Division of Lands and Minerals engineers. A summary of the stockpiling requirements is provided in Section 2.3 of this Report. The summary includes figures that show material types and proposed stockpile locations over four time periods.

2.2 EXISTING STOCKPILES

The Project Proposer intends to maximize in-pit stockpiling and existing out of pit stockpiles to the extent practicable. This would be done for several reasons that are required and beneficial to the Project Proposer and the surrounding environment. First, Minnesota Rules, part 6130.1400 requires maximization of in-pit stockpiling. Minnesota Rules, part 6130.1400 IN-MINE DISPOSAL Subpart 1 states:

Mining shall be conducted to maximize use of past, present, and future mining areas so as to minimize the amount of land disturbed by mining and reduce the loss of non-mineral resources.

Second, it would result in the disturbance of less acreage, including wetlands, needed for out of pit stockpiles. Third, it is the most economical for the Project Proposer, as in-pit stockpiling would result in shorter hauling distance and wetland mitigation costs. Lastly, there would be air quality benefits, as reduced hauling would result in less particulate matter (PM), NOx and GHG emissions, which are related to the hauling distances, and haul truck fuel consumption.

The Proposed Project would maximize the capacity of existing in-pit stockpiles. Expanding the footprint of existing in-pit stockpiles or constructing new in-pit stockpiles not identified on the proposed mine sequencing plan, would be evaluated near mid-life of the Proposed Project. Planning in-pit stockpiles is a complex evaluation limited by land ownership, stockpile ownership, type of waste rock in a stockpile, mineral rights, and mine sequencing¹. For example, due to economic and technological conditions, the Proposed Project cannot mine the entire known ore deposit because of depth. Future technological advances may allow for mining of the remaining deposit. For this reason, impediments (such as in-pit stockpiles) to future access of this potential ore are discouraged by mineral rights owners. The Project Proposer is only one of 4-6 owners of mineral rights.

2.3 MINE SEQUENCING AND STOCKPILE VOLUMES

In-pit stockpiling is preferred by the State and the Project Proposer as outlined in the previous section. Limitations exist to in-pit stockpiling related to the mine sequencing, mineral rights agreements, and stockpile geometry requirements which are discussed in Minnesota Rules, parts 6130.1400 through 6130.3000. Relevant rule quotations related to the Project Proposer's in-pit stockpiling are as follows.

Minnesota Rules, part 6130.1400. IN-MINE DISPOSAL, Subpart 2.D.

Mine waste which is placed within an open pit mine below the ultimate pit water elevation shall be exempted from the requirements of Minnesota Rules, parts 6130.2000 to 6130.3600. These shall be designed and constructed to prevent adverse environmental effects.

This means that the portions of the in-pit stockpiles above the ultimate pit water level elevation are not exempt from the requirements of Minnesota Rules, parts 6130.2000 to 6130.3600 and must comply with those rules.

Minnesota Rules, part 6130.2400. STANDARDS FOR ROCK, LEAN ORE, AND COARSE TAILINGS STOCKPILES,

Rock, lean ore, and coarse tailings stockpiles, unless they are an integral part of a tailings impoundment, shall be designed and constructed according to either of the following standards:

A. The final exterior slopes shall consist of benches and lifts as follows:

(1) No lift shall exceed 30 feet in height;

(2) No bench width shall be less than 30 feet wide, measured from the crest of the lower lift to the toe of the next lift;

(3) The sloped area between benches shall be no steeper than the angle of repose;

Minnesota Rules, part 6130.2700 STANDARDS FOR SURFACE OVERBURDEN STOCKPILE DESIGN AND CONSTRUCTION.

Surface overburden stockpiles shall be designed and constructed according to either of the following standards:

¹ Mine sequencing is used in this Report as the order of mining and is as follows: 1) removal of surface soils, 2) removal of waste rock, and 3) removal of taconite ore.

- A. The final exterior slopes shall consist of benches and lifts as follows:
 - (1) No lift shall exceed 40 feet in height.
 - (2) No bench width shall be less than 30 feet wide, measured from the crest of the lower lift to the toe of the next lift.
 - (3) The sloped area between benches shall be no steeper than 2.5:1.
 - (4) Benches shall be sloped toward the interior to control runoff. They shall be large enough to handle runoff water until it can be infiltrated into the stockpile, or a drainage control system shall be constructed to remove water consistent with Minnesota Rules, part 6130.2100, items B and C.
 - (5) Rock, lean ore, or coarse tailings shall not be used to cover surface overburden stockpiles in order to avoid compliance with sloping and vegetation requirements. This shall not preclude the abutting of rock, lean ore, or coarse tailings stockpiles with surface overburden stockpiles, or the placement of rock, lean ore, or coarse tailing lifts atop surface overburden pads or lifts.

Minnesota Rules, part 6130.2800 SEPARATION OF MATERIALS IN STOCKPILES

Iron Formation and Duluth Formation materials of varying grades and types shall be segregated within the same stockpile or placed in separate stockpiles. Materials which require different means of beneficiation shall not be co-mingled.

Mine sequencing impacts the use of in-pit stockpiles because the economic viability of mining depends on loading, hauling and placing the waste rock and surface soil one time into its final stockpile. Loading, hauling and placing overburden into a temporary stockpile and then adding another sequence of loading, hauling and placing the material into a final stockpile (double handling) is not only uneconomical, but also results in additional unneeded air and dust emissions. In-pit stockpiles are therefore restricted to areas of the mine that have already been mined to their planned limits. Mine sequencing and avoiding a double handling makes some areas of the mine unusable for in-pit stockpiles.

In addition, several entities have mineral rights to overburden within the mine. Each mineral rights owner has different requirements for setbacks from the mine pit walls based on overburden type. Typical mineral rights agreements state that the toe of an in-pit stockpile must remain 200 feet from the edge of a completed mine pit wall and that residual products of greater potential future value (waste rock and unexcavated ore) must be placed on top of residual products of lesser value (surface soils). Therefore, waste rock is only allowed in an in-pit stockpile where the Project Proposer does not control the mineral rights. This eliminates in-pit surface soil stockpiles.

There are also mineland reclamation rules the Project Proposer must follow. The pertinent Minnesota Rules the Project Proposer follows for stockpiling include:

- Minnesota Rules, part 6130.1400 applies to in-pit stockpiling
- Minnesota Rules, part 6130.2400 Rock, Lean Ore, and Coarse Tailings Stockpiles
- Minnesota Rules, part 6130.2700 outlines the requirements of Surface Overburden Stockpiles.
- Minnesota Rules, part 6130.2800 requires that Iron Formation and Duluth Formation materials of varying grades and types shall be segregated within the same stockpile or placed in separate stockpiles. Materials which require different means of beneficiation shall not be co-mingled.

The Project Proposer has a phased development plan for out of pit and in-pit stockpiling that correlates to mining activities broken into four time periods (Period 1 - Period 4).

Period 1 (2012-2016)

During this period there is an estimated 92 Mbcy of surface soils and 42.1 Mbcy of waste rock that would be stockpiled. The west zone of the mine pit would continue to expand and a small portion of the north edge of the east zone of the mine pit would be at final development, allowing additional placement of material in existing in-pit stockpiles. Additionally, 10.7 Mbcy of surface soils and 10.2 Mbcy of waste rock would be stockpiled in-pit. Figure SA-3 depicts the mining activities proposed and shows the areas unavailable to in-pit stockpiling. Table 2.3.1 summarizes the overburden movement proposed during Period 1.

Period 1 (2012-2016)								
	Wes	t Zone		East Zone				
		Surface	Waste Rock			Surface	Waste Rock	
Stockpile	Location	(MBCY)	(MBCY)	Stockpile	Location	(MBCY)	(MBCY)	
	Out of				Out of			
S-1	Pit	2.1		S-2	Pit	36.6		
S-3	In-Pit	10.7						
	Out of							
S-5	Pit	25.3						
					Out of			
R-3	In-Pit		6.3	R-1	Pit	7.1	26.7	
R-4	In-Pit		3.0					
R-5	In-Pit	10.2	4.7					
R-6	In-Pit		1.4					
TOTALS	FOR							
PERIOD		48.3	15.4			43.7	26.7	

TABLE 2.3.1 PERIOD 1 WASTE MATERIAL SCHEDULE

Period 2 (2017-2021)

During this period there is an estimated 51.3 Mbcy of surface soils and 67.3 Mbcy of waste rock to be stockpiled. A large portion of the south mine pit expansion would be at its final development, and 11.2 Mbcy of surface soils and 28.9 Mbcy of waste rock would be stockpiled in-pit. Figure SA-4 depicts the mining activities proposed and shows the areas unavailable to in-pit stockpiling. Table 2.3.2 summarizes the overburden movement proposed during this Period 2.

	Period 2 (2017-2021)									
	West	Zone		East Zone						
			Waste				Waste			
		Surface	Rock			Surface	Rock			
Stockpile	Location	(MBCY)	(MBCY)	Stockpile	Location	(MBCY)	(MBCY)			
S-5	Out of Pit	2.3		S-2	Out of Pit	37.8				
				S-4	In-Pit	11.2				
R-3	In-Pit		17.8	R-1	Out of Pit		38.4			
R-4	In-Pit		0.2							
R-5	In-Pit		9.8							
R-6	In-Pit		1.1							
TOTALS	TOTALS FOR									
PERIOD		2.3	28.9			49.0	38.4			

TABLE 2.3.2 PERIOD 2 WASTE MATERIAL SCHEDULE

Period 3 (2022-2026)

During this period there is an estimated 43.1 Mbcy of surface soils and 59.5 Mbcy of waste rock to be stockpiled. The west zone and the western half of the east zone of the mine would be nearly complete. All waste rock removed would be placed in-pit and the surface soils would be placed out of pit. Figure SA-5 depicts the mining activities proposed and shows the areas unavailable to in-pit stockpiling. Table 2.3.3 summarizes the overburden movement proposed during Period 3.

	Period 3 (2022-2026)								
	West	Zone		East Zone					
			Waste				Waste		
		Surface	Rock			Surface	Rock		
Stockpile	Location	(MBCY)	(MBCY)	Stockpile	Location	(MBCY)	(MBCY)		
				S-2	Out of Pit	43.1			
R-3	In-Pit		6.1	R-2	In-Pit		50.3		
R-5	In-Pit		0.9						
R-6	In-Pit		2.2						
TOTALS	TOTALS FOR								
PERIOD		0.0	9.2			43.1	50.3		

TABLE 2.3.3 PERIOD 3 WASTE MATERIAL SCHEDULE

Period 4 (2027-2037)

During this period there is an estimated 2.9 Mbcy of surface soils and 99.1 Mbcy of waste rock to be stockpiled. During the first few years of this period, the soil and rock removal would be complete, and the final ore removal and processing would be ongoing. All but 0.1 Mbcy of surface soils removed would be placed in-pit. Figure SA-6 depicts the mining activities proposed and shows the areas unavailable to in-pit stockpiling. Table 2.3.4 summarizes the overburden movement proposed during Period 4.

Period 4 (2027-2037)									
	West Zone				East Zone				
			Waste				Waste		
		Surface	Rock			Surface	Rock		
Stockpile	Location	(MBCY)	(MBCY)	Stockpile	Location	(MBCY)	(MBCY)		
S-5	Out of Pit	0.1		S-2	Out of Pit	2.8			
R-3	In-Pit		0.4	R-2	In-Pit		98.7		
TOTALS FOR									
PERIOD		0.1	0.4			2.8	98.7		

TABLE 2.3.4 PERIOD 4 WASTE MATERIAL SCHEDULE

Summary

Table 2.3.5 summarizes the total quantities of overburden that would be stockpiled in each in-pit and out of pit stockpile.

Stockpile	Surface Material	Rock	Total
	MBCY	MBCY	MBCY
	In Pit	Stockpile	
S-3	10.7		10.7
S-4	11.2		11.2
R-2		148.7	148.7
R-3		30.6	30.6
R-4		3.2	3.2
R-5	10.2	15.4	25.6
R-6		4.7	4.7
TOTALS	32.1	202.6	234.7
	Out of P	it Stockpile	
S-1	2.1		2.1
S-2	120.3		120.3
S-5	28.0		28.0
R-1	7.1	65.1	72.2
TOTALS	157.5	65.1	222.6

TABLE 2.3.5 PROJECT WASTE MATERIAL SUMMARY

The following Table 2.3.6 summarizes the total quantities that would be stockpiled and identifies the percentages that would be placed in-pit and out of pit.

		Waste			Surface	
	Surface	Rock			+ Waste	% by
	Stockpiles	Stockpiles		Waste	Rock	Stockpile
	(MBCY)	(MBCY)	Surface %	Rock %	(MBCY)	Location
Out of						
Pit	157.5	65.1	87.8%	24.3%	222.6	49.7%
In Pit	21.9	202.6	12.2%	75.7%	224.5	50.3%
Total	179.4	267.8	100%	100%	447.1	100%
Swelled	223.9	335.0			558.9	

 TABLE 2.3.6
 WASTE MATERIAL SUMMARY

Table 2.3.6 shows that approximately 50% of the overburden would be stockpiled in-pit. Due to mine sequencing, only 12% of the surface soils but 75% of the waste rock would be placed in-pit.

3.1 DEVELOPMENT OF INFORMATION

During the DEIS public comment period, several comments were received regarding the selection of certain areas and the exclusion of others for out of pit stockpiles. This section is intended to give explanations for the impracticability of the areas deemed "exclusion areas", all of which are depicted on the exclusion area map, Figure SA-2. The primary reasons for excluding out of pit stockpiles from some areas are: the location of the iron formation, land and mineral rights ownership, safety issues, and areas of existing infrastructure.

3.2 FACTORS INFLUENCING EXCLUSION AREAS

3.2.1 Location of Iron Formation

The Proposed Project does not intend to mine to the known extent of the ore deposit. However, future economic and technological conditions may allow additional mining. For this reason, impediments to future access are not generally allowed by mineral rights owners, including the MNDNR. Appendix E contains a letter from the MNDNR, dated May 12, 2010, stating that stockpiling on known mineral reserves in the area north of the proposed east stockpile area would not be allowed.

3.2.2 Land and Mineral Rights Ownership

The Proposed Project is only planned on property owned by the Project Proposer. An assumption that property could be acquired when needed add uncertainty and risk to the viability of the Proposed Project. For the purpose of this Report, the general assumption is that properties not owned by Project Proposer are excluded. One exception is Concept D that is located partially on land not owned by the Project Proposer. A review of available records indicates that the Project Proposer either owns or has leasing control of the surface property of all concepts with the exception of Concept D. The Project Proposer, Ontario Iron, and Hibbing Land Company all own a portion of the land in Concept D.

Concepts were selected to minimize infringing on mineral rights related to the existing ore body or the mineral rights related to the existing waste rock stockpiles. For this Report, mineral rights associated with stockpiling surface soils are negligible and not considered further.

3.2.3 Safety

Trunk Highway (TH) 169 is a major artery for the Iron Range area, located south of the mine. Within the vicinity of the project area TH 169 is a four lane divided highway. It is impractical to construct a safe crossing for the high volume of haul trucks over TH 169, as it would require a bridge with enough

capacity to carry a 450 ton mining truck. An at grade crossing was not considered due to the volume of haul traffic (approximately 1 truck every 5 to 10 minutes) that would have to cross the four lane divided highway. It is unlikely that the Minnesota Department of Transportation would allow such a crossing due to safety concerns and issues with the pavement design of the highway. Areas south of TH 169 are considered impracticable for the reasons discussed above.

There are also railroad tracks through the area south of the mine, and crossing those railroad tracks poses similar safety issues to those crossing TH 169, and are deemed impracticable. No proposed concepts were selected south of TH 169 or the railroad tracks.

3.2.4 Existing Infrastructure

Southwest of the mine are the City of Keewatin's wastewater ponds and these areas are considered impracticable for use as stockpiling areas. The residential areas of the City of Keewatin to the east are also considered impracticable.

3.3 EXCLUSION AREA MAPPING

Figure SA-2 presents the areas excluded from consideration for reasons such as avoidance of existing mining areas, known limits of iron formation, safety issues, existing infrastructure, and property not under the control of the Project Proposer. These areas on the exclusion map have been eliminated from further discussion as viable out of pit stockpiling locations. The remaining portions of this Report evaluate areas other than those excluded in Figure SA-2.

4.0 Analysis Methods and Assumptions

4.1 INTRODUCTION

This section introduces the criteria that were selected to compare the proposed stockpile locations to the concepts developed. The factors to be considered that were identified in the FSDD include:

- Wetland impacts
- Air emissions from haul trucks
- Wind erosion
- Haul road location
- Mineral rights ownership
- Lease fee-holder requirements
- In-Pit stockpile opportunities
- Other operational and environmental issues

During the initial meetings between the Project Proposer, MNDNR, MPCA, and the USACE, it was decided to divide the issues into two broad categories, environmental factors and feasibility factors. Each broad category is further subdivided. The factors are outlined below:

- Environmental
 - Natural habitat
 - Wetlands
 - Upland
 - Rare species
 - o Air quality
 - PM
 - NOx
 - GHG
 - Compliance boundary (compliance with particulate matter [PM] standards addresses the wind erosion issue identified in the FSDD)
 - o Noise
 - o Visual impacts

• Feasibility

- Exclusion areas (discussed in Section 3)
 - Land ownership
 - Fee holder ownership
- Sequencing/stockpile volumes (discussed in Section 2)
- Haul route alignments
- o Haul route safety
- o Hauling operations
- o Economics

The qualitative and quantitative means of measuring these criteria are discussed in detail in this section.

4.2 ENVIRONMENTAL ANALYSIS - NATURAL HABITAT

4.2.1 Wetlands

Figure SA-1 and Appendix F of this Report identifies the total low quality, moderate quality, and high quality wetlands that would be impacted within the proposed east stockpile and concept stockpile locations. The definitions of low quality, moderate quality, high quality and excellent quality are provided in Section 4.6 of the Final EIS (FEIS). Actual development of any concept would require wetland monitoring of the adjacent wetlands to monitor for degradation or impact and determine precise mitigation requirements during subsequent permitting. For the purposes of this Report, it was assumed that the acreage and cost of monitoring was equal for all concepts.

4.2.2 Upland

Figure SA-1 and Appendix F of this Report identify the amount of uplands impacted with the proposed east stockpile and concept stockpile locations. It is assumed that the function and value of all upland is equivalent.

4.2.3 Rare Species

The presence of state and federal Endangered, Threatened, Proposed Endangered, or Special Concern species have been identified in an Index Report from a review of the MNDNR Natural Heritage Information System database, (Appendix G). Figure SA-13 shows the location of identified rare plant species in the general vicinity of the proposed east stockpile, as identified in field survey completed by the Project Proposer. Figure SA-14 shows the location of rare species from the NHIS Database Detailed Report, but due to restrictions contained within the license from the MNDNR, the specific species at each location cannot be identified.

4.3 ENVIRONMENTAL ANALYSIS -AIR QUALITY

The air quality topic area considered the following: PM, PM_{10} , $PM_{2.5}$, NOx, and Greenhouse Gas (GHG) emissions in tons emitted over the life of the stockpiling activities (21.5 years). Estimates are described below.

4.3.1 Particulate Matter (PM)

Emission from haul trucks are proportional to the vehicle miles traveled (VMT). It is assumed that hauling would be done by a mix of trucks and therefore an average size was used for this comparison. The methodology used in estimating the VMT is discussed in Section 4.6.3.

The emission factors were provided by the Project Proposer and taken from their Air Quality Emissions Inventory, part of air permit application currently in progress. The factors used are summarized in Table 4.3.1.1.

Haul Vehicle	PM Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor
Cat 265 T Truck	23.590 lb/VMT	6.244 lb/VMT	0.624 lb/VMT
Cat 240 T Truck	23.572 lb/VMT	6.239 lb/VMT	0.624 lb/VMT*
Average	23.581 lb/VMT	6.242 lb/VMT	0.624 lb/VMT

TABLE 4.3.1.1 PARTICULATE EMISSION FACTORS

lb/VMT = pounds per Vehicle Mile Traveled

* Taken as 10% of the PM10 factor

4.3.2 Nitrogen Oxides (NOx)

NOx emissions in tons emitted was calculated using the emission standards that the mine truck engines will be required to meet in 2011 as recommended in Table 1 of the USEPA Regulatory Announcement F-04-032, May 2004, Clean Air Non-Road Diesel Rule, provided in Appendix H. The factor used is 2.6 g/hp-hr. The method of determining the operating hours is discussed in Section 4.6.3.

Trucks proposed to be used to haul the stockpiled materials are Caterpillar 793D mine trucks which have a gross power rating of 2,415 hp. This horsepower rating is multiplied by the hours of use and the emission factor to determine the tons of NOx emitted.

4.3.3 GHG

Greenhouse Gas (GHG) Emissions in tons were estimated from the following emission factors for a large mobile diesel engine, as provided by the Project Proposer in their Air Quality Emission Inventory.

- CO_2 22.38 lbs per gallon CO_2 equivalency factor = 1
- $CH_4 1.28 \ge 10^{-3}$ lbs per gallon CO_2 equivalency factor = 25
- N₂O 5.73 x 10^{-4} lbs per gallon CO₂ equivalency factor = 298

4.3.4 Compliance Boundary

Air dispersion modeling indicates that the applicable ambient air quality standards would be met along the ambient air quality boundary established for the Proposed Project for the proposed east stockpile and Concept E. For the four concepts (A-D) it is assumed that a revised ambient air quality boundary could be established within which ambient air quality standards could be met.

4.4 ENVIRONMENTAL ANALYSIS -NOISE

A noise assessment was completed for the proposed east stockpile and indicated that the night time standard would be exceeded. The Project Proposer evaluated mitigation measures such as a noise reduction package available from Caterpillar for the dozers used on the stockpile. The modeling indicates that the noise reduction package would still result in exceeding the night time noise standards. The Project Proposer would be required to monitor the actual noise emitted at the compliance boundary and stay an appropriate distance away from the edges of the stockpiles during the nighttime hours to meet the noise standards. Appendix I of this Report contains documents from the Project Proposer outlining the specific offset strategies.

4.5 ENVIRONMENTAL ANALYSIS -VISUAL IMPACTS

To identify visual impacts of the stockpile locations, three dimension analyst extension tools, Viewshed and Line of Sight, were used with each concept. The software can identify specific features seen along a specific line of sight. The software used a Digital Elevation Model (DEM) with base elevation data provided by MNDNR Division of Lands and Minerals. The resident view point (Kelly Lake) was set to have an elevation of 10 feet higher than the base elevation and the stockpile concepts were set to have an elevation of 200 feet higher than the base elevation. The software simulates the line of sight from the westernmost residence in Kelly Lake. This residence was chosen for the comparison baseline, as Kelly Lake is the area most likely to incur visual impacts of the proposed east stockpile. Concept A, Concept E and the proposed east stockpile are expected to be seen from the western edge of Kelly Lake.

4.6 FEASIBILITY ANALYSIS -HAULING

4.6.1 Haul Route Alignments

Potential haul routes were configured from the approximate geometric center of the proposed east mine expansion to the approximate geometric center of each of the concept stockpile locations, with the exception of the in-pit stockpile locations.

For each of the three concepts located northwest of the pit (Concepts B, C, and D), two potential haul routes were considered. One route (B-1, C-1 and D-1) passes through the existing crusher area and utilizes existing haul roads to the extent practical. A second route (B-2, C-2 and D-2) is more direct, avoiding the crusher area, and requiring additional new haul road construction. It is likely that these conceptual haul routes would require alteration prior to actual implementation and are used for comparison purposes only. Haul routes for the proposed east stockpile (P-1 and P-2) are shown on Figure SA-7, and the haul routes for Concepts A-E are shown on Figures SA-8 through SA-12 respectively.

4.6.2 Haul Route Safety

For open pit mining in a cold climate, the maximum slopes considered safe for downhill loaded travel are 8% percent. Given this constraint, a haul profile was developed for each potential haul route.

The Project Proposer is required to adhere to Mine Safety and Health Administration (MSHA) guidelines to protect workers. Due to the size and weight of the haul vehicles used, it is not practical to provide engineered solutions to some of the potential safety issues. For example, in steep terrain in the western states, runaway ramps are provided on long steep (> 6 percent) grades. Runaway ramps are a safety feature such that if a semi truck (usually 40-50 tons) experiences brake failure or the transmission disengages causing the truck to freewheel, the driver can direct the truck to the runaway ramp. Runaway ramps are sloped upward into a mountain/hill face and covered in loose gravel to provide a means of stopping the truck. The size and weight of a typical mine trucks (400-450 tons) and the area/grade required would make a runaway ramp in a mine pit infeasible.

Trafficking through the crusher area is also a safety concern. The amount of traffic in and around the crusher area would pose a significant safety concern due to the limited amount of space between buildings, adjacent pit walls, and the number of trucks passing. Haul trucks carrying overburden would be passing through at a rate of approximately one truck every 8-10 minutes. In addition trucks delivering ore to the crusher area would occur at a higher frequency (every 2-3 minutes) if the target ore production rate

is to be met. The addition of trucks passing through the crusher area poses safety issues for the Project Proposer that cannot be mitigated within the limits of the underlying need and purpose of the project. The only concept evaluated that would not have safety issues related to hauling either through the crusher area or because of steep grades without runaway ramps are the proposed east stockpile and Concept E.

4.6.3 Hauling Operation

Haul road profiles were used to estimate the round trip cycle time for each truck. Round trip cycle times for each haul road profile were estimated using the appropriate retarding performance (downhill) and gradeability/speed/rimpull (uphill) curves from the Caterpillar 793D Mining Truck performance specifications, provided in Appendix B. Round trip cycle times were all increased slightly to account for the large number of turns and grade changes which would be required.

Haul routes and the number of round trips required are also used to calculate the VMT and tabulated round trip cycle times, provided in Appendix C. All concepts require the construction of some new haul roads, either entirely new or an addition to an existing haul road.

Based on the proposed production rate, the number of round trips can be estimated. When taken over 21.5 years, and assuming a 365 day/year operation, a daily production rate can be calculated. Typical operations run three 8-hour shifts per day and it is assumed that each truck is hauling for 6 of the 8 hours. The remaining time is for fueling, safety inspections, and idling.

Daily production rate needed, operating hours/truck/day, and the capacity of each truck, are factored to determine the gross number of trucks required. Assuming that in a given year a truck would be operable for 80 percent of the time (i.e. it takes 5 trucks to have 4 running constantly) the gross number of trucks required is divided by 0.8 to establish the total number of trucks needed to move the overburden within the timeframe.

Based on information provided by the Project Proposer, an average daily fuel consumption rate of 670 gallons/day was used and is based on an hourly consumption rate of 31 gallons/hour for 21.6 hours/day (truck runs 90 percent of day). Fuel consumption and total running time are used in the estimation of GHG and NOx being emitted for each concept.

4.6.4 Hauling Economics

An operating cost/truck of \$250/hr was used, which includes fuel, maintenance, and labor. The capital expense of each truck would be \$2.8M in 2008 dollars, and the expected life is 6 years. Using straight line depreciation, the annual capital cost of each truck is estimated at \$470,000.

The Project Proposer incurs road maintenance costs that are directly proportional to the length of haul road maintained. The total annual road maintenance costs are estimated at \$193,410 per mile calculated below.

- Grade roads
 - Grade every other day
 - \circ Grader speed = ~ 5 mph
 - o 11 passes needed to grade 100 foot wide road
 - Grading totals ~ 390 hours per year at \$175/hour operating cost = \$68,250/year/mile

- Dress roads
 - Add 1 inch of fine crushed aggregate every 4 weeks (including wintertime "sanding")
 - Road dressing totals ~1,600 cy per mile every 4 weeks, which works out to be 20,800 cy/mile/year at \$5.20/cy = \$108,160/year/mile
- Water roads
 - 3 times/day for 7 months/year = 640 waterings/year
 - \circ 2 passes to water entire road = 1280 passes/year
 - 15 mph average speed includes filling, and empty return runs = 85 hours/year x \$200/hour = \$17,000/year/mile

The Project Proposer has estimated the costs of new haul road construction to be \$400,000 per mile which is based on the following assumptions.

- 4 foot thick base placed 150 feet wide
- 4-inch thick coarse crushed aggregate road base course placed 100 feet wide
- 4-inch thick fine crushed aggregate surfacing course placed 100 feet wide.

To verify the Project Proposer's haul road construction cost/mile estimate, itemized quantities were calculated and unit costs for processed and placed materials were estimated, and confirm the Project Proposer's estimate as shown below.

- 4-foot thick base (117,300 cy per mile) at 2.80/cy = 328,440 per mile
- 4-inch thick coarse crushed aggregate (6,500 cy pre mile) at 5.20/cy = 33,800
- 4-inch thick fine crushed aggregate (6,500 cy per mile) at \$5.20/cy = \$33,800

Total cost/mile using unit price estimates = \$396,040.

4.6.5 Hauling Summary

Appendix D of this Report contains tabulated data on VMT, life cycle operation costs, capital costs, and air quality emissions from mobile sources (mine trucks). Maintenance equipment and other minor vehicles were omitted to simplify this analysis.

4.7 SUMMARY

Section 5 discusses each concept relative to the criteria presented in this section. This is used as a preliminary screening tool to identify concepts that are not practicable.

5.0 Preliminary Screening of Alternatives

5.1 INTRODUCTION

This section presents the qualitative and quantitative analysis of the criteria presented in Section 4. This section is intended to provide preliminary screening and identify those concepts that should be carried forward for more detailed analysis. This more detailed analysis of concepts that are considered practicable after the preliminary screening is presented in Section 6.

The evaluation of alternatives to the proposed south stockpile is discussed in Section 5.3 and the evaluation of alternatives to the proposed east stockpile is discussed in Section 5.4. Figures SA-7 through SA-12 provide the visual interpretation of the discussion within this section.

5.2 PROJECT PROPOSER'S PRELIMINARY CONCEPTS

As discussed in Section 1.3, The Project Proposer evaluated several concepts contiguous to current mining operations to manage the volume of overburden resulting from the Proposed Project. These concepts are located in Appendix A. The proposed south stockpile and proposed east stockpile, as shown on Figure SA-1, is the outcome of the Project Proposer's evaluation.

5.3 DEVELOPMENT OF PROPOSED SOUTH STOCKPILE

The proposed south stockpile is a 40-acre area immediately south of the west pit expansion area. Potential alternative sites for the surface soils that would be placed in the proposed south stockpile include other areas in the vicinity of the south stockpile, the existing stockpile S-5 to the north of the west half of the mine and the proposed east stockpile.

The Stockpile Exclusion Zones, Figure SA-2, shows that all areas in the vicinity of the proposed south stockpile are not available as they either contain existing stockpiles that are at capacity, require the crossing of railroad tracks or Mesabi Trail, or are within the boundary of the ore deposit in areas that the Project Proposer does not control the mineral rights. The Project Proposer has proposed a location that is within the ore deposit boundary, but it is on a parcel where they control mineral rights.

Hauling to Stockpile S-5 or the proposed east stockpile would: result in a significant increase in air emissions related to this portion of hauling; raise safety issues with the required trucking through the crusher area; and place an economic burden on this part of the project. The only other location to place the surface soils that would otherwise be placed in the proposed south stockpile would be to haul north to Stockpile S-5.

Table 5.3.1 presents a comparison of the environmental, aesthetic, and fiscal consequences of this alternative.

CRITERIA			Proposed South Stockpile Location	Alternative (Haul to S-5)	Change	Change from Proposed as %
	Environmental Factors					
	Habitat					
Wetland Act	reage Disturbed	Acres	10.91	0	-10.91	-100%
	y Wetland Acreage	Acres	10.91	0	-10.91	-100%
Moderate Q	uality Wetland Acreage	Acres	0	0	0	0%
Upland		Acres	39.6	0	-39.6	-100%
Rare Species	s		None Identified	None Identified	-	-
	Air Quality					
Fugitive	PM	Tons	90	1,556	1,467	1636%
Dust	PM10	Tons	24	412	388	1636%
Emissions	PM2.5	Tons	2	41	39	1636%
NOx Emissi		Tons	17	62	45	273%
GHG Emiss		Tons	1,258	4,740	3,482	277%
Proximity to	Residence	Miles	4.0	4.0	-	-
	Noise					
Threshold E	xceedences	Y/N	NO	NO	-	-
Proximity to	Residence	Miles	4	4	-	-
	Visual					
Seen by Res	idences	Y/N	Yes	Yes	-	-
	Feasibility Factors					
Capacity Ba Consideration	sed on Spatial	%	2.00%	2.00%	0.00%	0%
Surface Ownership Control			US Steel	US Steel	-	-
Safety	•		-	See text	-	-
	Capital Expense	\$M	\$0.6	\$1.2	\$0.6	100%
	Operational Expenses	\$M	\$0.9	\$6.6	\$5.7	633%
Economics	Mitigation Expenses	\$M	\$0.3	\$0.0	-\$0.3	-100%
	Total	\$M	\$1.8	\$7.8	\$6.0	343%

TABLE 5.3.1 PROPOSED SOUTH STOCKPILE COMPARISON

During the April 2010 stockpile location workshop, the MNDNR and USACE determined that the increase in air pollutant emissions and excessive cost did not outweigh the reduction of 10.91 acres of wetland impact and 39.6 acres of upland impact in this area. Hauling to Stockpile S-5 to eliminate the proposed south stockpile was not deemed to be an improvement over the proposed south stockpile.

5.4 DESCRIPTION AND COMPARISON OF IDENTIFIED ALTERNATIVE STOCKPILE LOCATIONS FOR THE PROPOSED EAST STOCKPILE

The Project Proposer identified the area of the proposed east stockpile to meet future out of pit stockpiling needs. The identification of this area assumed that the existing southeast stockpile, which is within the current permit to mine facility limit, would also be utilized to the fullest extent of the boundary. The evaluation of the various environmental and feasibility factors described within the remainder of this

Report assume that the proposed east stockpile and Concepts A-D would utilize the existing southeast stockpile to the extent of the boundary in the current permit to mine. Concept E includes a reconfiguration of both the proposed east stockpile and the existing southeast stockpile. The existing southeast stockpile would first receive surface soil to create a base on which multiple waste rock stockpiles would be placed.

5.4.1 Proposed East Stockpile

The proposed east stockpile is a 1243.2 acre area encompassing the existing southeast stockpile immediately north. This stockpile would receive surface soils from the east mine pit expansion area.

5.4.2 Concept A (Alternative Location)

This is an area of approximately 160 acres located south of the railroad and existing southeast stockpile bordered by TH 169 on the south. This concept does not contain adequate area alone to accommodate the Proposed Project stockpile needs.

Concept A would provide no net environmental benefit when compared to the proposed east stockpile. Due to the shape of this concept, spatial inefficiencies occur creating a need for more acreage in other locations. In addition, the railroad crossing would pose operational and construction issues. Concept A is estimated to result in an additional cost to the Project Proposer of \$7 million to \$136 million than for the proposed east stockpile. Based on these considerations, Concept A is not a viable alternative that would provide significant environmental benefit over the proposed east stockpile.

5.4.3 Concept B (Alternative Location)

These are two distinct areas totaling 1210 acres. An area of approximately 487 acres located north of the east end of the current northwest stockpile and the existing southeast stockpile (723 acres). Concept B is bound by the existing permit to mine area on the north and east and O'Brien Creek on the west. This concept has approximately equivalent area to the proposed east stockpile.

Environmental Factors

- Concept B would disturb fewer overall wetland acres than the proposed location, but more high quality wetlands than the proposed east stockpile.
- The air emissions related to hauling to the stockpiles make Concept B less favorable than the proposed location.
- From a noise and visual impact standpoint, Concept B is preferred to the proposed east stockpile due to an increased distance from the residents of Kelly Lake.

Feasibility Factors

- Concept B would provide nearly enough stockpile capacity and is under the control of the Project Proposer.
- Concept B does pose additional safety issues related to hauling vehicles.
- Concept B is estimated to result in an additional cost to the Project Proposer of \$90 million to \$106 million than for the proposed east stockpile.

Summary

Concept B would have less of a visual impact, would disturb fewer overall wetlands, but it would have a greater environmental impact to high quality wetlands, air quality, safety, and to project economics. Based upon this initial screening analysis alone, Concept B cannot be eliminated and is analyzed further in Section 6.

5.4.4 Concept C (Alternative Location)

This is an area of equivalent acreage to the proposed east stockpile located northwest of the current northwest stockpile area.

Environmental Factors

- Concept C would result in the disturbance of approximately 323 additional acres of high quality wetland when compared to the proposed east stockpile location, while disturbing approximately 12 additional acres of wetlands in total.
- The air emissions related to hauling to the stockpiles make Concept C a less favorable option than the proposed location.
- From a noise and visual impact standpoint Concept C is preferred to the proposed east stockpile location due to an increased distance from the residents of Kelly Lake.

Feasibility Factors

- Concept C would provide enough stockpile capacity and is under the control of the Project Proposer.
- Concept C would pose additional safety issues related to hauling vehicles either passing through the crusher area or due to extended traveling distances, and longer, steeper slopes.
- Concept C is estimated to result in an additional cost to the Project Proposer of \$117 million to \$137 million than for the proposed east stockpile.

Summary

Concept C would have less of a visual impact, but it would have a greater environmental impact to high quality wetlands, air quality, safety, and to project economics. Therefore it appears Concept C would not provide significant environmental benefit compared to the proposed east stockpile and is not analyzed further in Section 6.

5.4.5 Concept D (Alternative Location)

This is an area equivalent to the proposed east stockpile located north and east of the current northwest stockpile area.

Environmental Factors

- Concept D would disturb approximately 160 fewer total wetland acreage, however it would disturb 132 more acres of high quality wetland when compared to the proposed east stockpile location.
- The air emissions related to hauling to the stockpiles make Concept D a less favorable option than the proposed location.
- From a noise and visual impact standpoint Concept D is preferred to the proposed east stockpile location due to an increased distance from the residents of Kelly Lake.

Feasibility Factors

- Concept D would provide enough stockpile capacity, but a portion is not under the control of the Project Proposer, and would require additional land acquisition.
- Concept D would pose additional safety issues related to hauling vehicles.
- Concept D is estimated to result in an additional cost to the Project Proposer of \$67 million to \$102 million than for the proposed east stockpile.

Summary

Concept D has fewer visual impacts, but greater impacts to high quality wetlands, air quality, threatened and endangered species, and safety. This concept is also more expensive than the proposed east stockpile. Based upon this initial screening analysis alone, Concept D cannot be eliminated and is analyzed further in Section 6.

5.4.6 Concept E (Reconfiguration)

This concept was developed during the stockpile location workshop in April, 2010, and encompasses approximately 75% of the proposed east stockpile and 85% of the existing southeast stockpile.

Environmental Factors

- Concept E would disturb approximately 100 fewer total acres of wetlands when compared to the proposed east stockpile. In addition, approximately 40 acres of high quality wetland would not be impacted in the existing southeast stockpile when reconfigured to accommodate this layout.
- The air emissions from hauling to the stockpiles would make Concept E a slightly less favorable option than the proposed east stockpile.
- Concept E and the proposed east stockpile have similar noise and visual impacts because their distance from the residents of Kelly Lake and location are similar.

Feasibility Factors

- Concept E would provide enough stockpile capacity, and the land is under the control of the Project Proposer.
- This would require the reconfiguration of the southeast rock stockpile and successful negotiations
 with the current fee owners to be able to place additional waste rock over the existing segregated
 grades of waste rock.
- Economic differences due to the increased hauling are minor compared to the other concepts being considered.

Summary

Concept E has fewer impacts to wetlands and a slightly higher impact to air quality, but all other impacts are similar to the proposed east stockpile. Concept E cannot be eliminated from consideration at this stage of the screening process. It is further analyzed in Section 6.

5.5 CONCLUSIONS

Based on the preliminary screening in this section and discussion between USEPA, MNDNR, and the USACE that occurred at the April 2010 workshop, there was no need to further explore an alternative to the proposed south stockpile. The proposed south stockpile is the preferred location to meet surface soil stockpiling needs adjacent to the proposed south mine pit expansion.

The preliminary screening of Concepts A and C yield that an environmental benefit is not apparent when compared to the proposed east stockpile and they are eliminated from further consideration as a viable alternative. The preliminary screening of Concepts B, D, and E and their comparison to the proposed east stockpile yield that additional in-depth analysis should occur. This analysis is presented in Section 6.

6.0 Detailed Comparison of Alternative Stockpile Locations

6.1 INTRODUCTION

This section presents a detailed comparison of those concepts that passed the preliminary screening performed and discussed in Section 5. This section compares the proposed east stockpile to Concept B, Concept D and Concept E.

6.2 COMPARISON OF CONCEPT B TO PROPOSED EAST STOCKPILE

Table 6.2.1 presents the impacts of the proposed east stockpile and Concept B, and quantifies their differences for the criteria evaluated.

CRITERIA (all values represent in over the stockpiling dura	-	Stoc	ed East kpile ation	Conc	ept B	Cha	ange	Propo	e from sed as %
21.5 years)		Haul	Route	Haul	Route	Haul	Route	Haul	Route
•		1 2		1	1 2		1 2		2
Environmental Fact	ors								
Habitat									
Wetland Acreage Disturbed	Acres	44	6.8	33	8.4	-10	08.4	-24	4%
Low Quality Wetland Acreage	Acres	6	1.5	55	5.4	-6	5.1	-10)%
Moderate Quality Wetland Acreage	Acres	34	6.4	12	8.5	-21	7.9	-63	3%
High Quality Wetland Acreage	Acres	38	3.9	15	4.5	11	5.6	29	7%
Exceptional Quality Wetland Acreage	Acres	0	.0	0	.0	0	.0	0	%
Upland	Acres	79	6.7	87	1.8	75	5.1	9	%
Rare Species		None Io	lentified	None Id	lentified				

TABLE 6.2.1 PROPOSED EAST STOCKPILE/CONCEPT B COMPARISON

CRITERIA (all values represent impacts over the stockpiling duration of		Proposed East Stockpile Location Haul Route		Concept B Haul Route		Change Haul Route		Change from Proposed as % Haul Route		
2	21.5 years)			2	1	2	1	2	1	2
Environmental Factors			1		-		-			
А	ir Quality									
Fugitive	PM	Tons	74,374	94,017	97,064	106,713	22,690	12,696	31%	14%
Dust	PM10	Tons	19,687	24,887	33,808	28,247	14,121	3,360	72%	14%
Emissions	PM2.5	Tons	1,969	2,489	3,381	2,825	1,412	336	72%	14%
NOx Emissio	ons	Tons	2,990	3,311	4,642	5,448	1,652	2,137	55%	65%
GHG Emissi	ons	Tons	227,807	251,276	352,976	421,428	125,169	170,152	55%	68%
Proximity to	Residence	Miles	1	.2	4	.0		-	-	
	Noise									
Threshold Ex	Threshold Exceedences		No (w/ Mitigation)		No		-		-	
Proximity to	Residence	Miles	1.2		4.0		-		-	
	Visual									
Seen by Resi	dences	Y/N	Y	es	N	0		_		-
Feas	ibility Factors									
Capacity Bas Spatial Cons		%	26.	2%	25.	7%	-0.	5%	-2	2%
Surface Own Control	ership		US Steel		US Steel		-		-	
Safety			-	-	See text	See text	-	-	-	-
	Capital Expense	\$M	\$22.8	\$27.2	\$45.1	\$56.4	\$22.3	\$29.2	98%	107%
Economics	Operational Expenses	\$M	\$70.1	\$85.7	\$140.6	\$165.4	\$70.5	\$79.7	101%	93%
	Mitigation Expenses	\$M	\$11.2	\$11.2	\$8.5	\$8.5	-\$2.7	-\$2.7	-24%	-24%
	Total	\$M	\$104.1	\$124.0	\$194.2	\$230.3	\$90.1	\$106.2	72% 72% 55% 55% - - - 98% 101%	86%

Environmental Factors

<u>Wetlands</u> Concept B would disturb approximately 115 additional acres of high quality wetland and 75 acres of upland forested habitat. It would disturb approximately 108 fewer acres of wetland.

Air Quality

Concept B, Route 1 would result in a 30-70% increase in PM emissions and a 55% increase in the amount of particulate, NOx, and GHG emissions. Concept B, Route 2 would result in a 14% increase in PM emissions and a 65-68% increase in NOx and GHG emissions.

Noise

Concept B would not offer a substantial improvement in noise, as the noise standards would be met during the day and with mitigation at night with the proposed east stockpile.

Visibility

Concept B would be less visible, as it is three to four times farther away than the proposed east stockpile, however the regional landscape is dotted with stockpiles from previous and currently active mining activities.

Feasibility Factors

Capacity

Concept B could be configured to provide the anticipated necessary capacity.

Surface Ownership

The land within Concept B is owned by the Project Proposer.

<u>Safety</u>

Concept B would pose safety issues related to hauling vehicles, due to the need to either pass through the crusher area (Route 1) or the length and grade of the roads if the alternate route identified (Route 2) was used.

Economics

Concept B is estimated to result in an additional cost to the Project Proposer of \$90 - \$106 million in comparison to the proposed east stockpile. This results in approximately an 87% increase to the economic impact of the stockpile and related hauling costs.

6.3 COMPARISON OF CONCEPT D TO PROPOSED EAST STOCKPILE

Table 6.3.1 presents the impacts of the proposed east stockpile and Concept D, and quantifies their differences for the criteria evaluated.

CRITERIA (all values represent impacts over the stockpiling duration of 21.5 years)		Proposed East Stockpile Location Haul Route		Concept D Haul Route		Change Haul Route		Change from Proposed as % Haul Route		
				2	1	2	1	2	1	2
Enviro	nmental Fact	ors								
	Habitat								-	
Wetland Acr Disturbed	C	Acres	44	6.8	28	5.4	-16	1.4	-3	5%
Low Quality Acreage	Wetland	Acres	61	.5	55	5.4	-6	.1	-1	0%
	Moderate Quality Wetland Acreage		34	6.4	59.4		-287.0		-83%	
High Quality Acreage	High Quality Wetland		38.9		170.6		131.7		339%	
	Exceptional Quality Wetland Acreage		0.0		0.0		0.0		0%	
Upland		Acres	796.7		977.5		180.8		23%	
Rare Species			None Identified		Peregrine Falcon		-		-	
A	ir Quality	-								1
Fugitive	PM	Tons	74,374	94,017	116,095	97,331	41,721	3,314	56%	4%
Dust	PM10	Tons	19,687	24,887	30,731	25,764	11,044	877	56%	4%
Emissions	PM2.5	Tons	1,969	2,489	3,073	2,576	1,104	87	56%	4%
NOx Emissio	ons	Tons	2,990	3,311	4,977	4,730	1,987	1,419	66%	43%
GHG Emissi	ons	Tons	227,807	251,276	378,401	360,922	150,594	109,646	66%	44%
Proximity to	Residence	Miles	1	.2	3	.6				-
	Noise									
Threshold Ex	ceedences	Y/N		(w/ ation)	No		-		-	
Proximity to	Residence	Miles	1	.2	3	.6	-	-		-
	Visual									
Seen by Resi	dences	Y/N	Y	es	Ň	[0	-	-		-

TABLE 6.3.1 PROPOSED EAST STOCKPILE/CONCEPT D COMPARISON

CRITERIA (all values represent impacts over the stockpiling duration of 21.5 years)		Proposed East Stockpile Location		Conc	ept D	Cha	nge	Change from Proposed as %		
		Haul Route		Haul	Haul Route		Route	Haul Route		
	-		1	2	1	2	1	2	1	2
Feas	ibility Factors									
Capacity Bas Consideration	ed on Spatial ns	%	26.	2%	25.	7%	-0.5%		-2%	
Surface Own Control	ership		US S	Steel	GNIOP and Hibtac		-			-
Safety			-	-	See text	See text	-	-	-	-
	Capital Expense	\$M	\$22.8	\$27.2	\$49.2	\$45.9	\$26.4	\$18.7	116%	69%
Economics	Operational Expenses	\$M	\$70.1	\$85.7	\$150.3	\$137.6	\$80.2	\$51.9	114%	61%
Leonomies	Mitigation Expenses	\$M	\$11.2	\$11.2	\$7.1	\$7.1	-\$4.1	-\$4.1	-37%	-37%
	Total	\$M	\$104.1	\$124.0	\$206.7	\$190.6	\$102.6	\$66.6	98%	54%

Environmental Factors

Wetlands

Concept D would disturb approximately 131 additional acres of high quality wetland and an additional 181 acres of upland forested habitat when compared to the proposed east stockpile. It would disturb approximately 161 fewer acres of wetlands.

Air Quality

Concept D, Route 1 would result in a 56-66% increase in the PM, NOx, and GHG emissions. Concept D, Route 2 would result in approximately equal PM emissions and approximately a 44% increase to the NOx and GHG emissions.

Noise

Concept D would not offer a substantial improvement in noise, as the noise standards would be met during the day and with mitigation at night with the proposed east stockpile.

Visibility

Concept D would be less visible, as it is approximately three times farther away than the proposed east stockpile; however, the regional landscape is dotted with stockpiles from previous and currently active mining activities.

Feasibility Factors

Capacity

Concept D would provide enough stockpile capacity, but a portion of the Concept D area is not under the control of the Project Proposer.

Surface Ownership

The land within Concept D is not entirely owned by the Project Proposer. There are parcels of land in this area that would need to be acquired. It is unknown if this land could be acquired. Given this uncertainty, it is difficult for the Project Proposer to proceed with the assumption that this land would be available when needed.

Safety

Concept D would pose safety issues related to hauling vehicles due to the need to either pass through the crusher area (Route 1) or the length and grade of the roads if the alternate route identified (Route 2) was used.

Economics

Concept D is estimated to result in an additional cost to the Project Proposer of \$66 - \$102 million in comparison to the proposed east stockpile. This results in a greater than 50% increase to the economic impact of the stockpile and related hauling costs.

6.4 COMPARISON OF CONCEPT E TO PROPOSED EAST STOCKPILE

Table 6.4.1 presents a side by side summary of the impacts of the proposed east stockpile and Concept E, and quantifies their differences for the criteria evaluated.

TABLE 6.4.1 PROPOSED EAST STOCKPILE/CONCEPT E COMPARISON

CRITERIA (all values represent imp over the stockpiling durat 21.5 years)	•	Propose Stockpile Haul I	Location		cept E Route 2	Change Haul Route		Change from Proposed as % Haul Route 1 2	
Environmental Facto	rs	-		-		-			_
Habitat									
Wetland Acreage Disturbed	Acres	446.8		345.9		-100.9		-23%	
Low Quality Wetland Acreage	Acres	61.5		58.3		-3.2		-5%	
Moderate Quality Wetland Acreage	Acres	346	5.4	287.6		-58.8		-17%	
High Quality Wetland Acreage	Acres	38	.9	0.0		-38.9		-100%	
Exceptional Quality Wetland Acreage	Acres	0.0		0.0		0.0		0%	
Upland	Acres	796	5.7	64	647.9		-148.8		%
Rare Species		None Id	entified	None I	dentified		-	-	

CRITERIA (all values represent impacts over the stockpiling duration of		Proposed East Stockpile Location		Concept E		Change		Change from Proposed as %			
2	21.5 years)		Haul	Route	Haul	Route	Haul	Route	Haul	Haul Route	
			1	2	1	2	1	2	1	2	
Enviro	nmental Facto	rs									
A	Air Quality								-		
Fugitive	PM	Tons	74,374	94,017	84,	978	10,604	-9,039	14%	-10%	
Dust	PM10	Tons	19,687	24,887	22,4	494	2,807	-2,393	14%	-10%	
Emissions	PM2.5	Tons	1,969	2,489	2,2	.49	280	-240	14%	-10%	
NOx Emissio	ons	Tons	2,990	3,311	3,9	984	994	673	33%	20%	
GHG Emissi	ons	Tons	227,807	251,276	304	,629	76,822	53,353	34%	21%	
Proximity to	Residence	Miles	1	.2	1	.2			-		
	Noise										
Threshold Ex	ceedences	Y/N	No (w/ M	litigation)	No (w/ M	litigation)	-	-	-		
Proximity to	Residence	Miles	1	.2	1	.2	-	-		-	
	Visual										
Seen by Resi	dences	Y/N	Y	es	Y	es		-		-	
Feas	sibility Factors		_								
Capacity Bas	sed on Spatial	%	26	20/	25	70/	5	0/		0/	
Consideratio	ns	%	20.	2%	25.	/%	-5	%	-2	/%0	
Surface Own	ership			Steel	US S	Stool					
Control			055		0.5 1	SILLI					
Safety	•		-	-	-	-	-	-	-	-	
	Capital Expense	\$M	\$22.8	\$27.2	\$32	2.1	\$9.3	\$4.9	41%	18%	
Economics	Operational Expenses	\$M	\$70.1	\$85.7	\$9′	7.1	\$27.0	\$11.4	Propos % Haul I 1 1 1 1 1 1 1 1 1 1 1 1 1	13%	
	Mitigation Expenses	\$M	\$11.2	\$11.2	\$8	3.6	-\$2.6	-\$2.6		-23%	
	Total	\$M	\$104.1	\$124.0	\$13	57.8	\$33.7	\$13.8	32%	11%	

Environmental Factors

<u>Wetlands</u>

Concept E is approximately 250 acres smaller than the proposed east stockpile and would disturb approximately 100 fewer acres of wetland including the avoidance of 39 acres of high quality wetland.

Air Quality

The haul routes for overburden are similar and the PM emissions would be similar. Concept E would increase NOx, and GHG emissions by approximately 20-30% because of the increased height requires additional VMT.

Noise

Concept E and the proposed east stockpile both exceed state noise standards during nighttime operation of mining equipment; however mitigation can be implemented to eliminate this potential impact.

Visibility

Concept E is in the same general location as the proposed east stockpile; however it would be 200 feet higher and potentially seen from further distances.

Feasibility Factors

Capacity

Concept E would provide enough stockpile capacity, but requires a reconfiguration of waste rock stockpiles in the existing southeast stockpile. This is a barrier to implementing Concept E as one of the mineral rights owners of the waste rock and the Project Proposer need to agree to the conditions of the reconfiguration.

Surface Ownership

The land within Concept E is owned or controlled by the Project Proposer.

Safety

Concept E poses no additional hauling safety issues when compared to the proposed east stockpile, other than those inherent to hauling with mine trucks.

Economics

Since the location is the same as the proposed east stockpile, the economics are expected to be nearly the same. Concept E has a lower wetland mitigation cost requirement, but is offset by a higher capital expense due to hauling to increased heights. The costs with Concept E are estimated to be \$13 - \$33 million higher or an increase of 10-30%.

6.5 SUMMARY

The detailed comparison of Concept B, Concept D, and Concept E to the proposed east stockpile in this section provides the data to draw conclusions for including one or more of the concepts in the FEIS. Section 7 concludes with making a recommendation for the inclusion of an alternative stockpile configuration analysis in the FEIS.

7.0 Conclusions and Recommendations

7.1 DECISION CRITERIA USED IN ANALYSIS

In determining if an alternative is practicable requires an evaluation of criteria to assess one impact to another. The criteria include: a determination of the magnitude of the impact; the adversity and significance of the impact; and the potential for the impact to be mitigated with reasonable assurance to achieve measurable compensation.

7.1.1 Mitigation Measures

A factor in weighing the relative importance of the criteria discussed within this Report is the potential mitigation of impacts. Assumptions regarding potential mitigation measures and associated costs have been included in the economic analysis for those items that mitigation is viable and within the economic limitations of the Proposed Project. Mitigation strategies that would pose a financial burden so as to make the mining of ore unprofitable have not been considered, because the underlying need and purpose of the project would not be met. Possible mitigation strategies for each criteria considered within this Report are discussed below.

Surface and Mineral Rights Ownership

There are no mitigation measures available for land or mineral rights ownership. These agreements have historically taken years, even decades to negotiate and execute, and the terms and costs associated with them are unpredictable.

Safety

There are two potential measures to mitigate safety concerns with some of the traffic routes. The first would require the relocation of the crushers and ancillary equipment to accommodate additional traffic flow that would occur with Concept B, Route 1 and Concept D, Route 1. The second would require re-configuration of the alternate haul roads associated with Concept B, Route 2 and Concept D, Route 2, to add either switchbacks or level plateaus to avoid the long straight downhill stretches. Figures SA-15 and SA-16 depict the current and anticipated traffic patterns in and around the crusher area. Steep pit walls exist and are identified on the figures. The trucks moving into this area hauling ore would be at a frequency of 1 truck every 2-3 minutes, and the addition of the trucks hauling to the stockpiles would result in additional trucks every 8 to 10 minutes.

It should be noted that even if the fueling station were moved, this would not allow more space for truck traffic, as current safety procedures preclude trucks from trafficking in this area, due to the potential issues related to traveling adjacent to the steep pit walls. To further complicate matters of excessive traffic in the crusher area, truck drivers have a much smaller field of vision than the driver of a typical passenger vehicle, even with mirrors. Figure SA-17 presents a depiction of the mine haul truck driver's field of vision, and identifies areas with no visibility (blind zones) or reduced visibility (inability to see passenger vehicle sized objects).

The addition of switchbacks would not necessarily be a safety enhancement, as even with the outer safety berm that is constructed on haul roads, there are safety concerns with a loaded truck going downhill and navigating multiple switchback turns. The addition of switchbacks or plateaus would ultimately lengthen the road, and it has been demonstrated earlier in this Report that the additional air quality concerns related to PM, NOx and GHG emissions are directly proportional to the length of the haul roads.

Environmental Factors

Wetlands

Wetland mitigation costs have been estimated at \$25,000 per acre. The mitigation replacement ratio has been assumed to be 1:1.

Threatened, Endangered and Protected Species

Mitigation measures for threatened and endangered species are not considered, as the only species potentially impacted in any of the concepts is the peregrine falcon. Based on discussions with a wildlife biologist, peregrine falcon habitat near the site is not natural habitat, but it is the cliffs created from previous open pit mining activities and adjacent stockpile areas. Ultimately the development of the pit would provide even more manmade habitat as the peregrine falcon's natural habitat consists of areas with high steep bluffs.

Air Emissions

Potential mitigation measures for air emissions are reducing NOx and GHG emissions related to fuel consumption of the hauling vehicles and reducing particulate emissions.

Noise

Noise mitigation costs are not considered, as the Project Proposer intends to ensure the noise standards are met by monitoring and then restricting operations as necessary.

Visual

There is no visual mitigation cost considered, as the visibility is related to the stockpile locations themselves. Potential visual screening methods, such as barrier walls would add another impediment to current sightlines and are not practical.

7.1.2 Magnitude of Impacts

There are several potential impacts of the various stockpile locations discussed within this Report. Concepts could have a greater impact in one area and a lesser impact in another. For this reason, the relative importance of the factors discussed is key to the decision making process.

Environmental Factors

Two environmental issues that change most significantly, due to the selection of the stockpiling location, are wetlands and air quality related impacts.

To gain perspective of the relative impact of the stockpiling activities, within the context of the overall Proposed Project², Tables 7.1.2.1, 7.1.2.2, and 7.1.2.3 were created that summarize impacts. These tables provide information on the proposed east stockpile, Concept B, Concept D and Concept E, comparing them to all anticipated impacts, not just stockpiling, of the Proposed Project wetland and air quality impacts.

Wetlands

When considering the function and value of impacted wetlands, two important factors are total acreage impacted and quality of wetlands (including low quality, moderate quality, high quality and exceptional quality). High and exceptional quality wetland impacts must be considered in comparing total acreage and could arguably be considered of greater importance. Table 7.1.2.1 summarizes the relative wetland impacts within the scope of the Proposed Project.

Project	Total Wetlands Disturbed		Wet	Quality Qu lands Wet		erate ality lands ırbed	High Quality Wetlands Disturbed	
	% of Entire Acres Project		Acres	% of Entire Project	Acres	% of Entire Project	Acres	% of Entire Project
Proposed Project	761.31	100%	162.4	100%	550.41	100%	48.4	100%
Proposed east stockpile location	446.8	59%	61.5	38%	346.4	63%	38.9	80%
Concept B	338.4	44%	55.4	34%	128.5	23%	154.5	318%
Concept D	285.4	37%	55.4	34%	59.4	11%	170.6	352%
Concept E	345.9	45%	58.3	36%	287.6	52%	0	0%

Table 7.1.2.1 illustrates that the proposed east stockpile would disturb 59% of the Proposed Project's wetland disturbance. The proposed east stockpile location would disturb 38%, 63%, and 80% of the Proposed Project anticipated disturbance to low quality, moderate quality, and high quality wetlands, respectively. Reconfiguring the existing southeast stockpile for Concept E allows for the avoidance of approximately 100 acres of wetland impacts including approximately 39 high quality acres.

² Proposed Project includes all aspects of the Keetac Expansion Project including: mining; pellet production; transportation; tailings disposal; and related operations.

Air Quality

While the Proposed Project has other air quality considerations, this Report has focused on PM, NOx and GHG emissions. Table 7.1.2.2 summarizes the relative impacts of changes to PM emissions. Table 7.1.2.3 summarizes the relative impacts of changes to NOx and GHG emissions.

Project	Route	Emissions					
		P	PM		M_{10}	PM _{2.5}	
			% of	Tons	% of	Tons	% of
		Tons	Entire	per	Entire	per	Entire
		per Year	Project	Year	Project	Year	Project
Proposed Project		9,706	100%	3,358	100%	812	100%
Proposed east	1	6,198	64%	1,641	49%	164	20%
stockpile location	2	7,835	81%	2,074	62%	207	26%
Concept B	1	8,089	83%	2,817	84%	282	35%
Сонсерт В	2	8,893	92%	2,354	70%	235	29%
Concept D	1	9,675	100%	2,561	76%	256	32%
	2	8,111	84%	2,147	64%	215	26%
Concept E	1	7,082	73%	1,875	56%	188	23%

 TABLE 7.1.2.2 PARTICULATE EMISSION PROJECT SUMMARY

Table 7.1.2.2 shows the relative contributions of the PM emissions for the stockpile locations result in approximately 10 to 45 percent of the total particulate emissions of the Proposed Project. This table also illustrates that a greater percentage is realized when considering Concept B or D in relation to the proposed east stockpile and a slightly greater percentage is realized when considering Concept E in relation to the proposed east stockpile.

Project	Route	Emissions						
		NOx		、 、	irect Only) Reductions)	GHG (Direct Only) Alt 2 (With Reductions)		
		Tons per% of EntireYearProject		Tons per Year	% of Entire Project	Tons per Year	% of Entire Project	
Proposed Project		9,923	100%	264,700	100%	188,500	100%	
Proposed	Route 1	249	3%	18,984	7%	18,984	10%	
east stockpile location	Route 2 270 370		3%	20,940	8%	20,940	11%	
Concept B	Route 1	387	4%	29,415	11%	29,415	16%	
Сопсерт в	Route 2	454	5%	35,119	13%	35,119	19%	
Concert D	Route 1	415	4%	31,533	12%	31,533	17%	
Concept D	Route 2	394	4%	30,077	11%	30,077	16%	
Concept E		332	3%	25,386	10%	25,386	13%	

TABLE 7.1.2.3 NOx AND GHG EMISSION PROJECT SUMMARY

Table 7.1.2.3 shows that the relative contributions of NOx and GHG emissions are minor in relation to the Proposed Project, but do increase when comparing Concept B, Concept D, and Concept E to the proposed east stockpile.

Air Quality

Noise and visibility factors do not appear to have a substantial bearing on the results of comparing the different concepts. Noise standards would be met and any noise impacts can be mitigated. Visually, the regional landscape is dotted with stockpiles from previous and current mining activities.

Feasibility Factors

Land/Mineral rights ownership, safety, and economics are factors that should be considered in comparing the magnitude of impact.

Land/Mineral Rights Ownership

The land for Concept B is under the ownership of the Project Proposer.

Land would need to be acquired in order to implement Concept D. The feasibility of acquiring this land is unknown, since it is owned by another mining entity.

Concept E has a mineral rights ownership issues that may be a barrier to implementation. All mineral rights owners need to approve the reconfiguration of existing waste rock stockpiles in the existing southeast stockpile to make Concept E viable.

Safety

The relative importance of safety must be considered, since feasible mitigation in relation to haul road design and congestion of trucks within the fueling island and around the crusher are not easily implemented or reasonably viable.

Economics

Relative economic impacts must be considered. If the economic impacts are too great the beneficiation of ore is no longer economically feasible and therefore the underlying purpose and need of the project is no longer met.

7.1.3 Significance of Impacts

Table 7.1.3.1 below presents a summary of the factors of greater and lesser importance based on the ability to mitigate the impact and the relative magnitude of the impact within the overall project.

		Factors of Greater Importance	Factors of Lesser Importance	Comment
	Total Wetland Acreage Disturbed	X		Viable mitigation strategy available
Habitat	Low and Moderate Quality Wetland Acreage Disturbed		X	Viable mitigation strategy available
	High Quality Wetland Acreage Disturbed	X		Viable mitigation strategy available
	Threatened, Endangered and Protected Species		X	All concepts are deemed equivalent
	Particulate Emissions	X		No viable mitigation strategy available
Air Quality	NOx Emissions		X	No viable mitigation strategy available
An Quanty	GHG Emissions		X	No viable mitigation strategy available
	Proximity to Residence		X	AAQ Standards can be met in all concepts
Noise			X	Noise Standards can be met in all concepts
Ownership		X		No dependable mitigation strategy available
Safety		X		No viable mitigation strategy available
Economics		X		Mitigation can be excessive to not meet the purpose of the project

TABLE 7.1.3.1 SUMMARY OF FACTORS OF IMPORTANCE

The identified factors of relative greater importance, total wetland disturbance, high quality wetlands disturbance, particulate emissions, surface ownership, safety, and economics are carried forward for additional consideration. The preferred order of the proposed east stockpile location and Concepts B, D and E are illustrated below for each of these factors, mitigation opportunities for each factor are also discussed.

Total Wetlands Disturbed

The preferred order of concept selection based solely on disturbed total wetland acreage would be:

1. Concept D	285.4 Disturbed Acres	
2. Concept B	338.4 Disturbed Acres	
3. Concept E	345.9 Disturbed Acres	
4. Proposed east stockpile	446.8 Disturbed Acres	

High Quality Wetlands Disturbed

The preferred order of concept selection based solely on high quality wetland total acreage would be:

1.Concept E0Disturbed High Quality Wetland Acres2.Proposed east stockpile38.9Disturbed High Quality Wetland Acres3.Concept B154.5Disturbed High Quality Wetland Acres4.Concept D170.6Disturbed High Quality Wetland Acres

Particulate Emissions

The preferred order of concept selection based solely on particulate emissions would be:

1/2. Proposed east stockpile and Concept E	6,200 – 7,800 tpy (PM),
	1,600 - 2,100 tpy (PM10),
	160 - 210 tpy (PM2.5)
3/4. Concepts B and D	8,100 – 9,700 tpy (PM),
-	2,150 – 2,800 tpy (PM10),
	215 - 280 tpy (PM2.5)

Ownership

The preferred order of concept selection based solely on surface ownership would be:

1/2. Proposed east stockpile and Concept B	Entirely under ownership control
3/4. Concept D and Concept E	Not entirely under ownership or
	mineral rights control

Safety

The preferred order of concept selection based solely on safety would be:

1/2. The Proposed east stockpile and Concept E	Fewer safety concerns
3/4. Concept B and Concept D	Additional safety concerns due to hauling
	location and routes

Economics

The preferred order of concept selection based solely on economics would be:

1.	Proposed east stockpile	\$104M-\$124M
2.	Concept E	\$138M
3.	Concept D	\$191M-\$207M
4.	Concept B	\$194M-\$230M

Proposed East Stockpile vs. Concept B

Of the factors of greatest importance, the proposed east stockpile is preferable over Concept B in the following areas: amount of high quality wetlands disturbed; PM emissions; safety; and economics. Concept B is preferred over the proposed east stockpile in total wetlands disturbed. The proposed east stockpile and Concept B are preferred equally under the factor of surface ownership since land related to these alternatives is under the control of the Project Proposer.

Proposed East Stockpile vs. Concept D

Of the factors of greatest importance, the proposed east stockpile is preferable over Concept D in the following areas: amount of high quality wetlands disturbed; PM emissions; surface ownership; safety; and economics. Concept D is preferred over the proposed east stockpile in total wetlands disturbed.

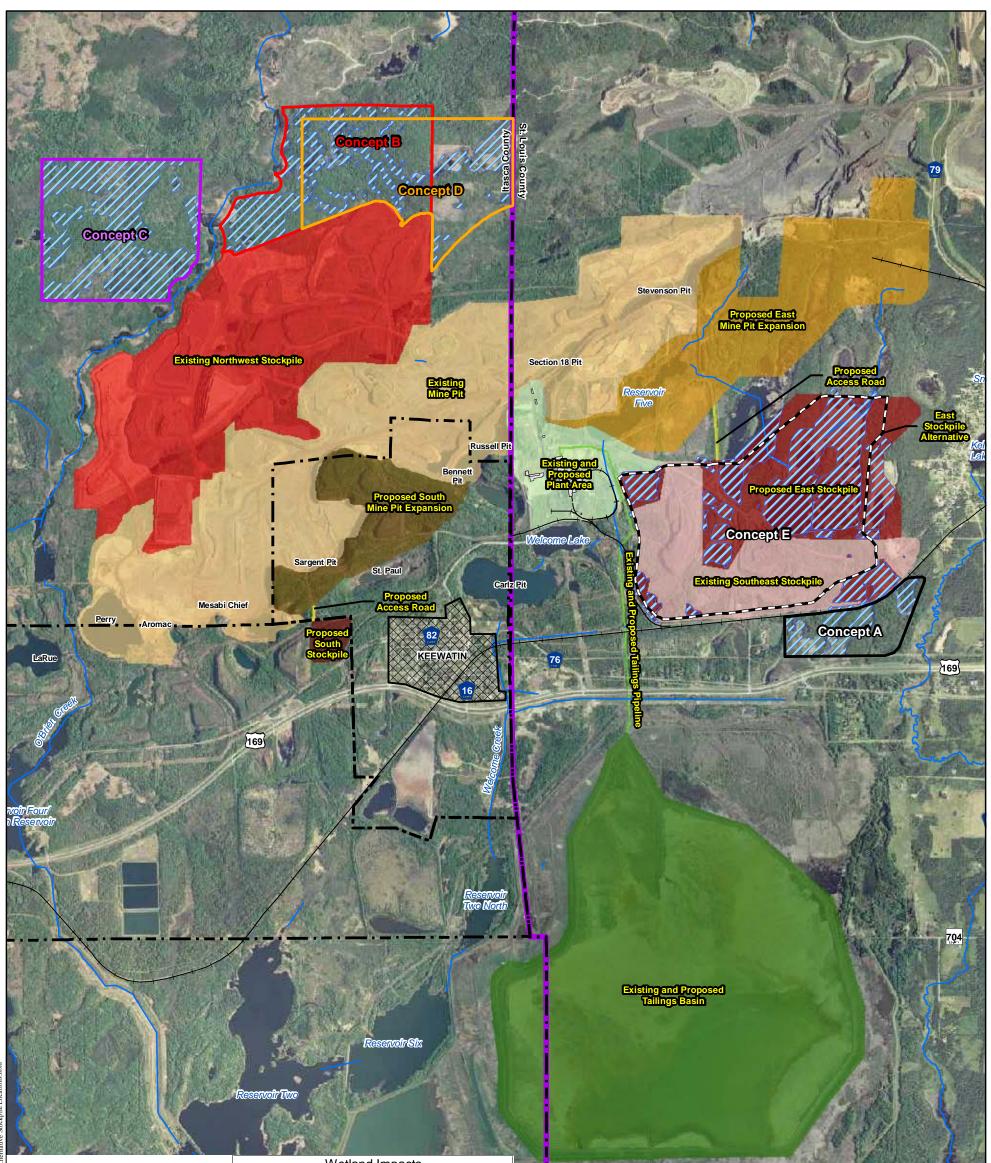
Proposed East Stockpile vs. Concept E

Of the factors of greatest importance, the proposed east stockpile is preferred to Concept E in ownership and economics, while Concept E is preferred in high quality wetland impacts.

Table 7.1.3.2 illustrates the different stockpile concepts in relation to each other and the factors of greater importance.

Concepts	Total Wetlands Disturbed	High Quality Wetlands Disturbed	Particulate Emissions	Ownership	Safety	Economics
Proposed east stockpile			Least Emitted	No Issues	Fewest Concerns	Lowest Cost
Concept B				No Issues		
Concept D	Least Disturbed					
Concept E		Least Disturbed	Least Emitted		Fewest Concerns	

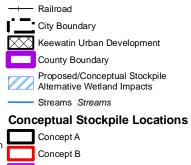
TABLE 7.1.3.2 STOCKPILE CONCEPTS AND FACTORS OF GREATER IMPORTANCE

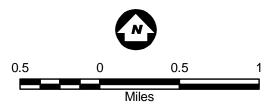

7.1.4 Summary and Conclusions

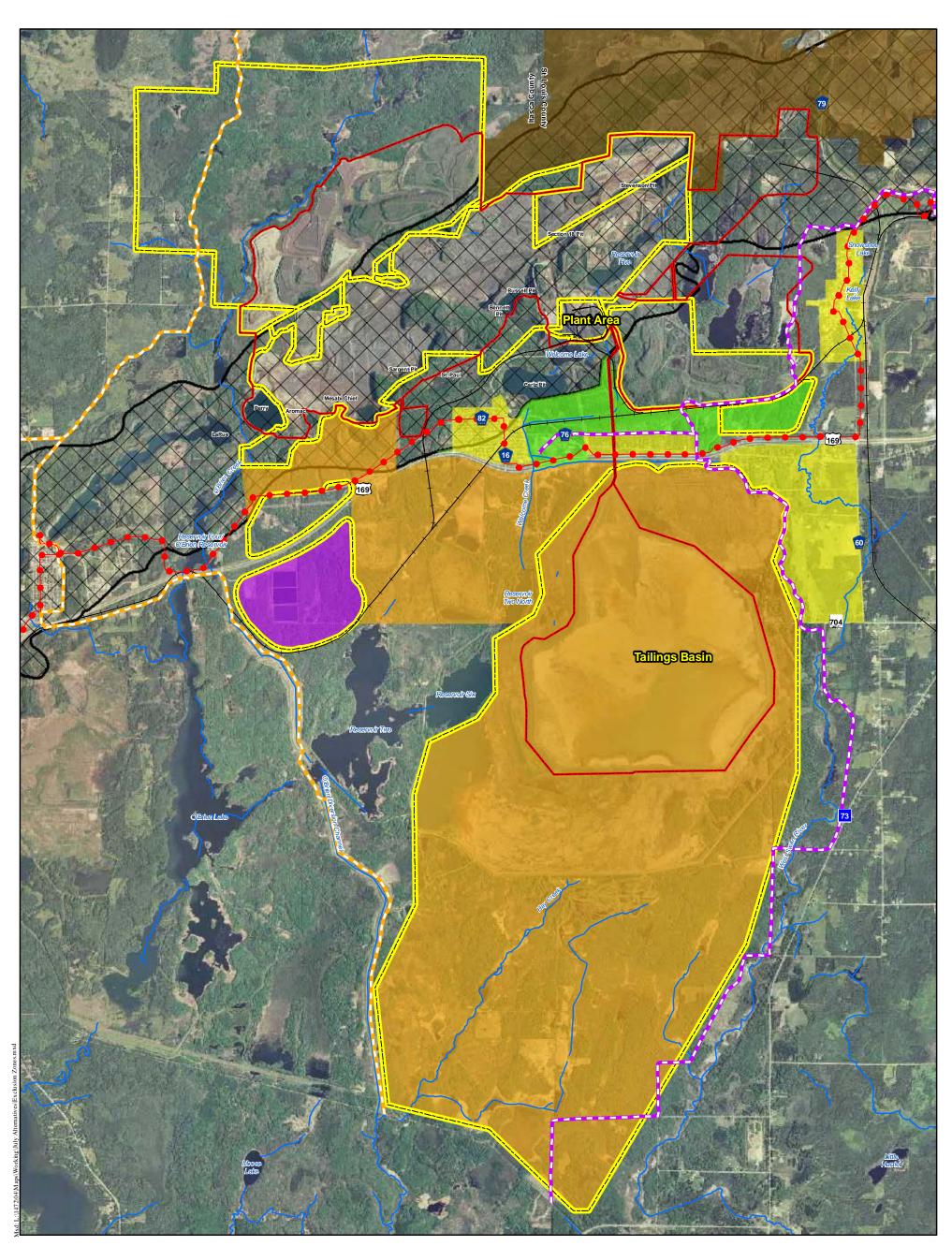
Concept B or D would not provide an environmental benefit over the proposed east stockpile based on the analysis provided in this section. The USACE determined that Concept B and D are also not practicable because of the excessive cost to implement. The conclusion of this Report is that Concepts B and D are not a practicable alternative to the proposed east stockpile.

Concept E appears to provide a similar effect on the environment to the proposed east stockpile with the exception of a benefit due to the smaller total impacted wetland acreage. Based on these results it is the conclusion of this Report that Concept E may provide an overall benefit compared to the proposed east stockpile and should be included in the FEIS as a viable stockpile alternative.

Figures


This page left blank intentionally.


\$\Y	Vvetland Impacts						
ative			Low	Moderate			
Alteri	Total Area	Total Upland	Quality	Quality	High Quality	Total	
Stockpile	(Acres)	(Acres)	(Acres)	(Acres)	(Acres)	(Acres)	
Proposed	1,243.2	796.4	61.48	346.37	38.87	446.7	
Concept A	884.5	674.8	55.35	39.44	114.94	209.7	
Concept B	1,210.1	871.8	55.35	128.46	154.54	338.3	
Concept C	1,262.8	803.8	55.35	41.65	362.02	459.0	
Concept D	1,262.8	977.5	55.35	59.38	170.61	285.3	
Concept E	993.8	647.9	58.28	287.61	0.00	345.9	


- Concept C
- Concept D

Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph

Figure SA-1 Concept Stockpile Locations U.S. Steel Keetac Keewatin, MN

Exclusion Zones

Existing Mine Features and/or Safety Concerns with Crossing of Hwy 169

Existing Municipal Waste Water Ponds

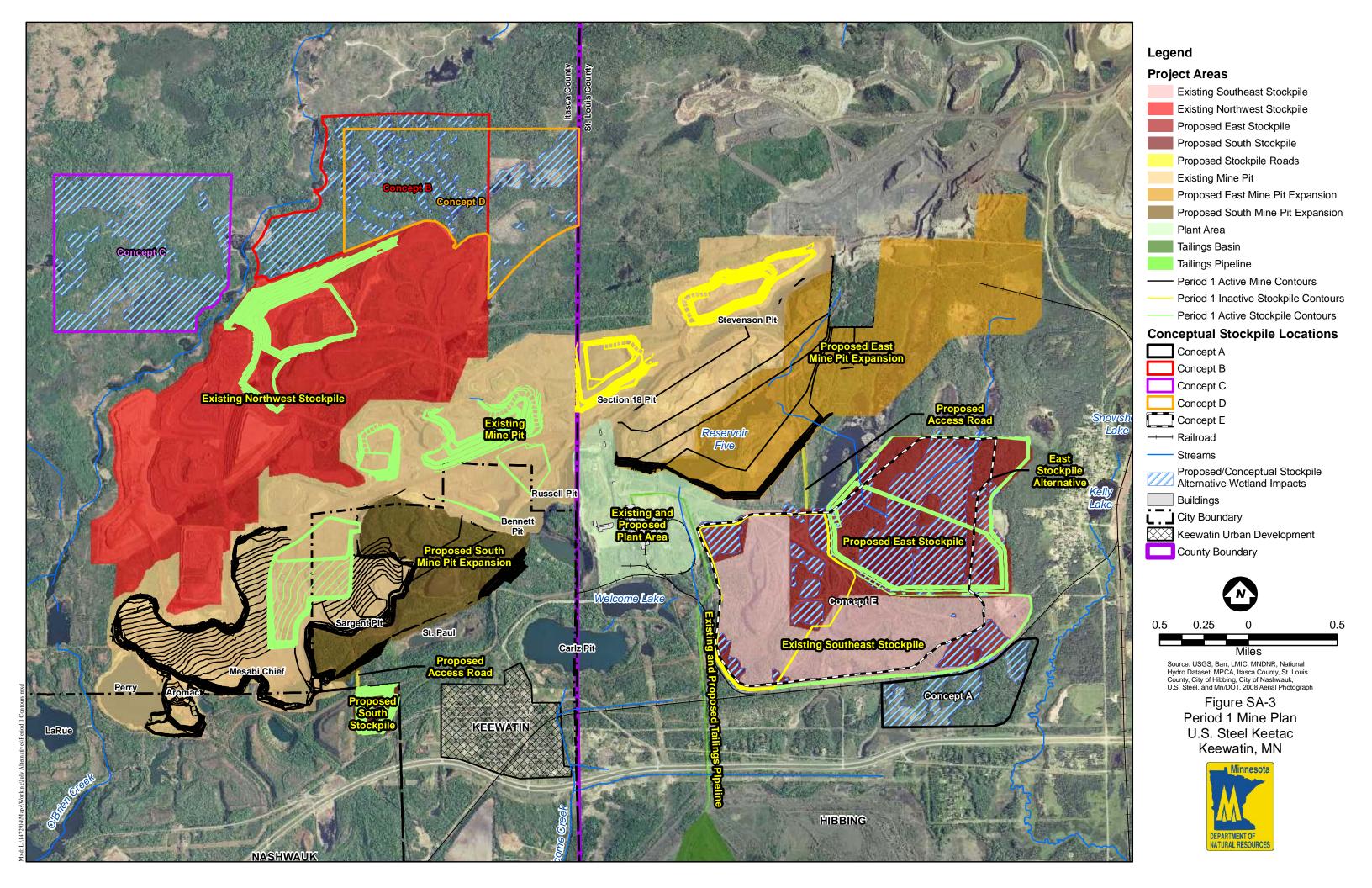
Hibbtac

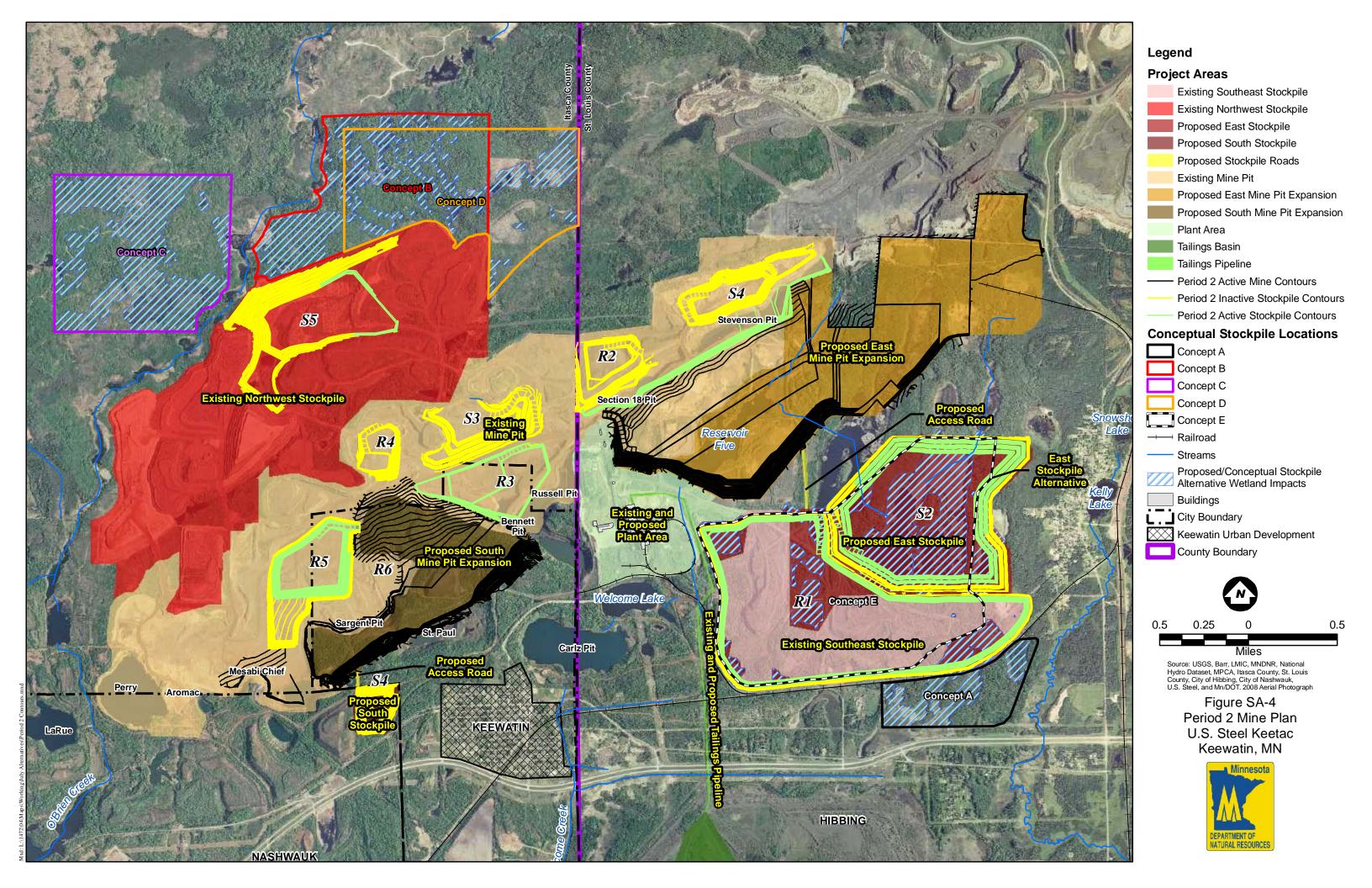
Residential Development

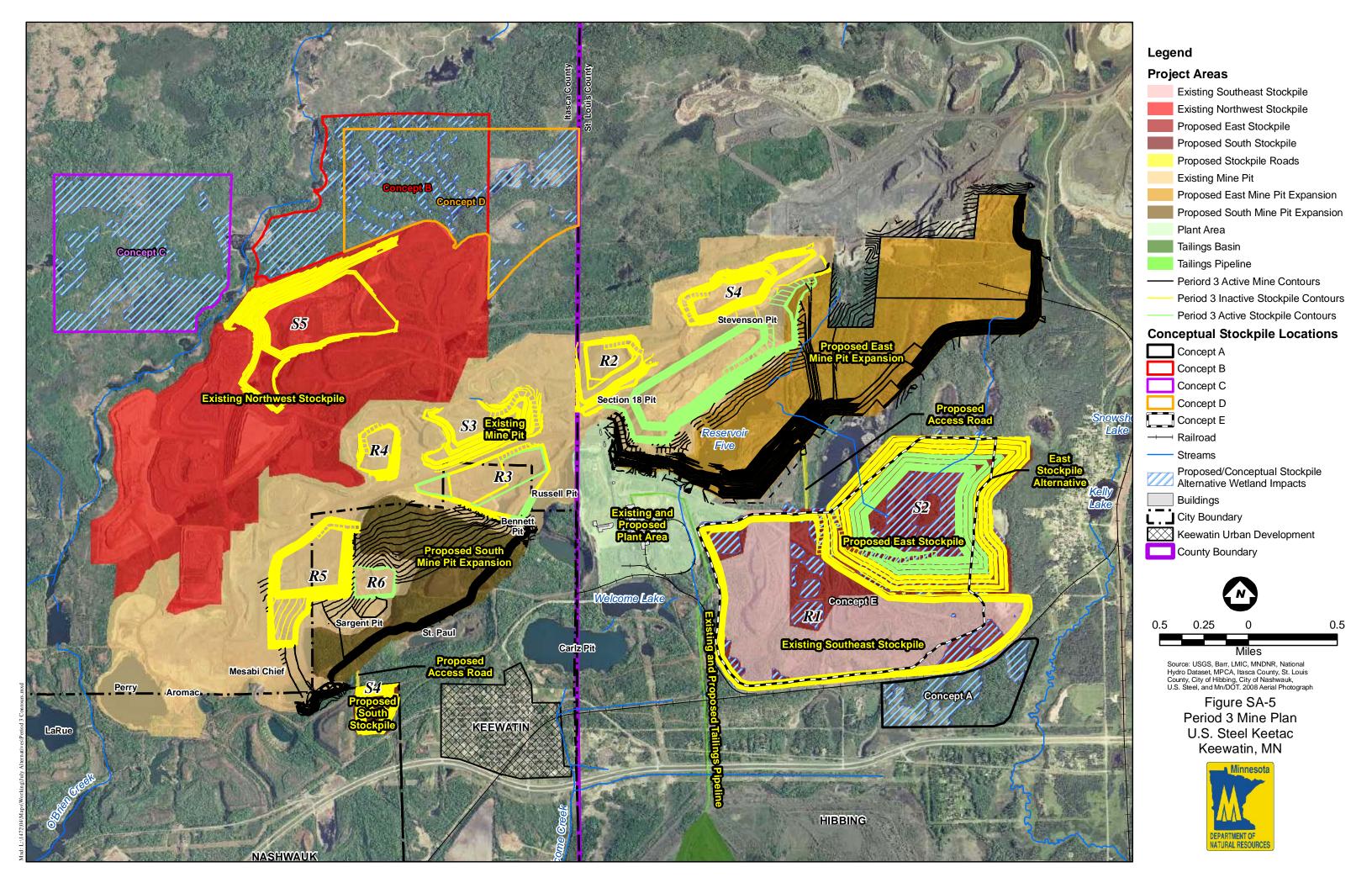
Safety- Crossing RR Tracks

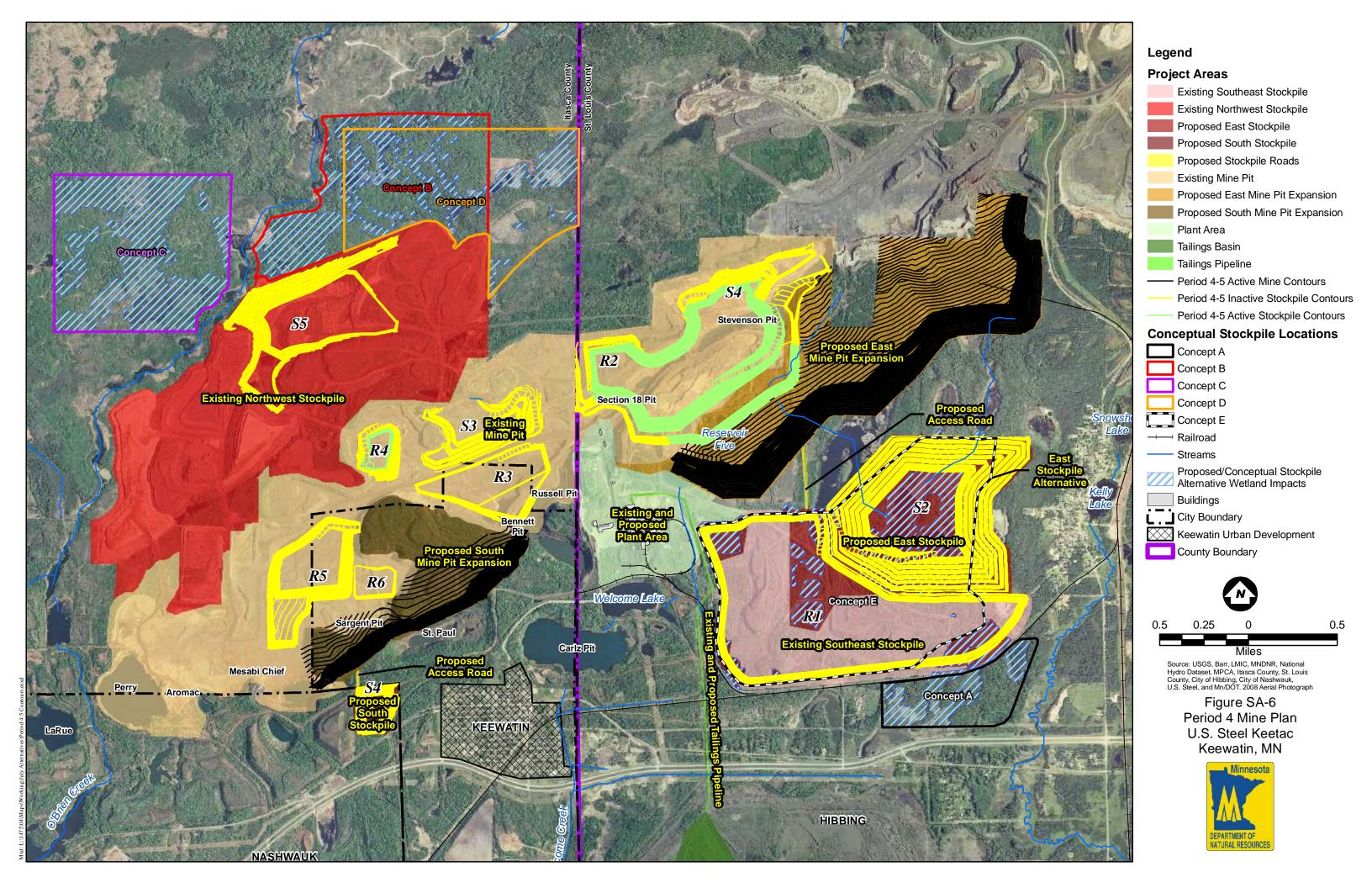
Chisholm, Side Lake, Hibbing, Spur Trails Iron Formation Current MNDNR Permit to Mine Facilities Limit Current and Proposed Keetac Footprint

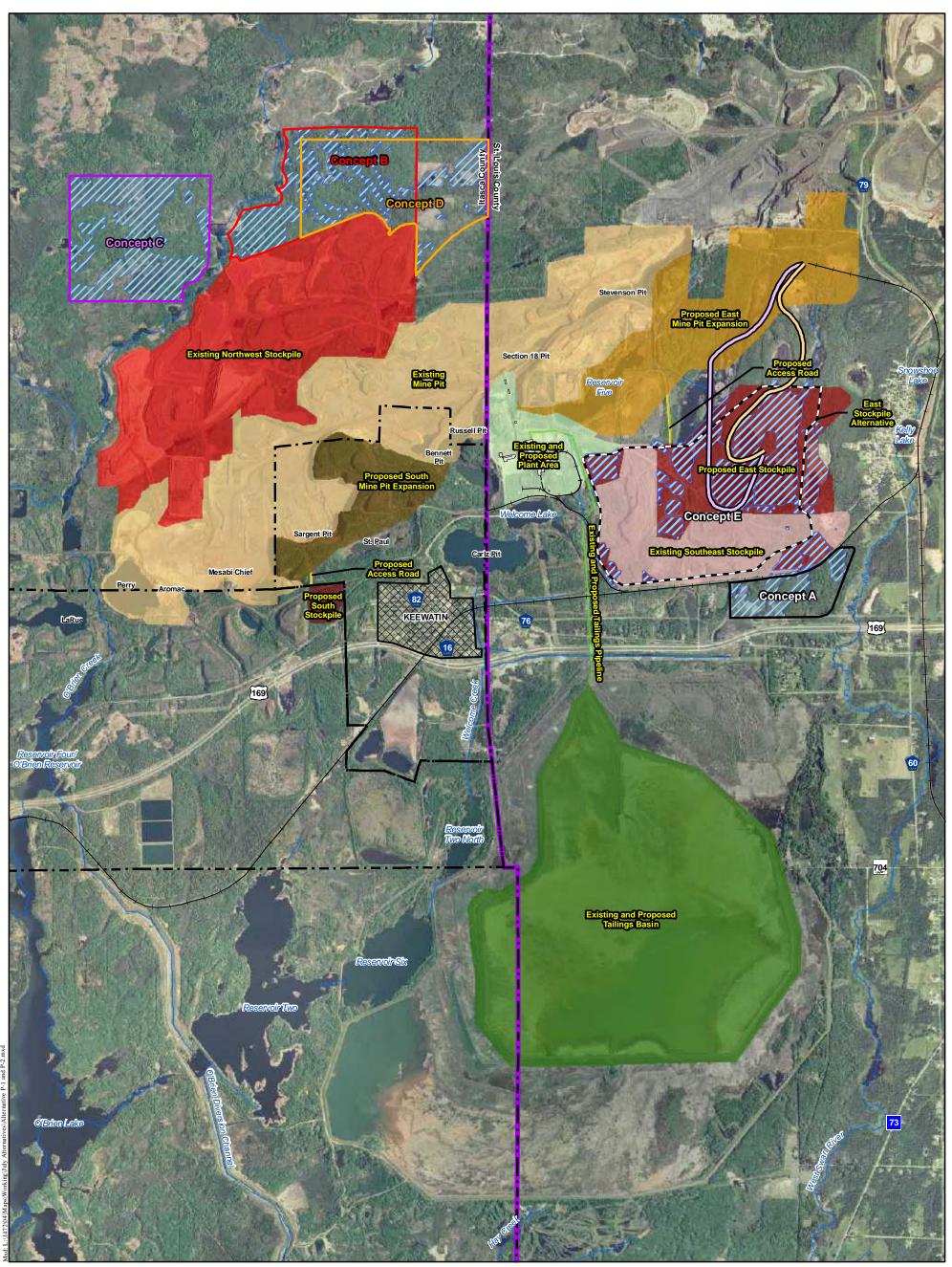
---- Mesabi Trail


- Streams
- Hilroad
- Permit ₋imit




Source: USGS, Barr, LMIC, MNDNR, National Hydro Dataset, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-2 Stockpile Exclusion Zones U.S. Steel Keetac Keewatin, MN




Lawron Trail

- Existing Southeast Stockpile
 Image: Conceptual Stockpile

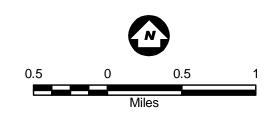
 Proposed East Stockpile
 Proposed/C

 Proposed South Stockpile
 Image: Conceptual Stockpile

 Proposed Stockpile Roads
 Image: Conceptual Stockpile

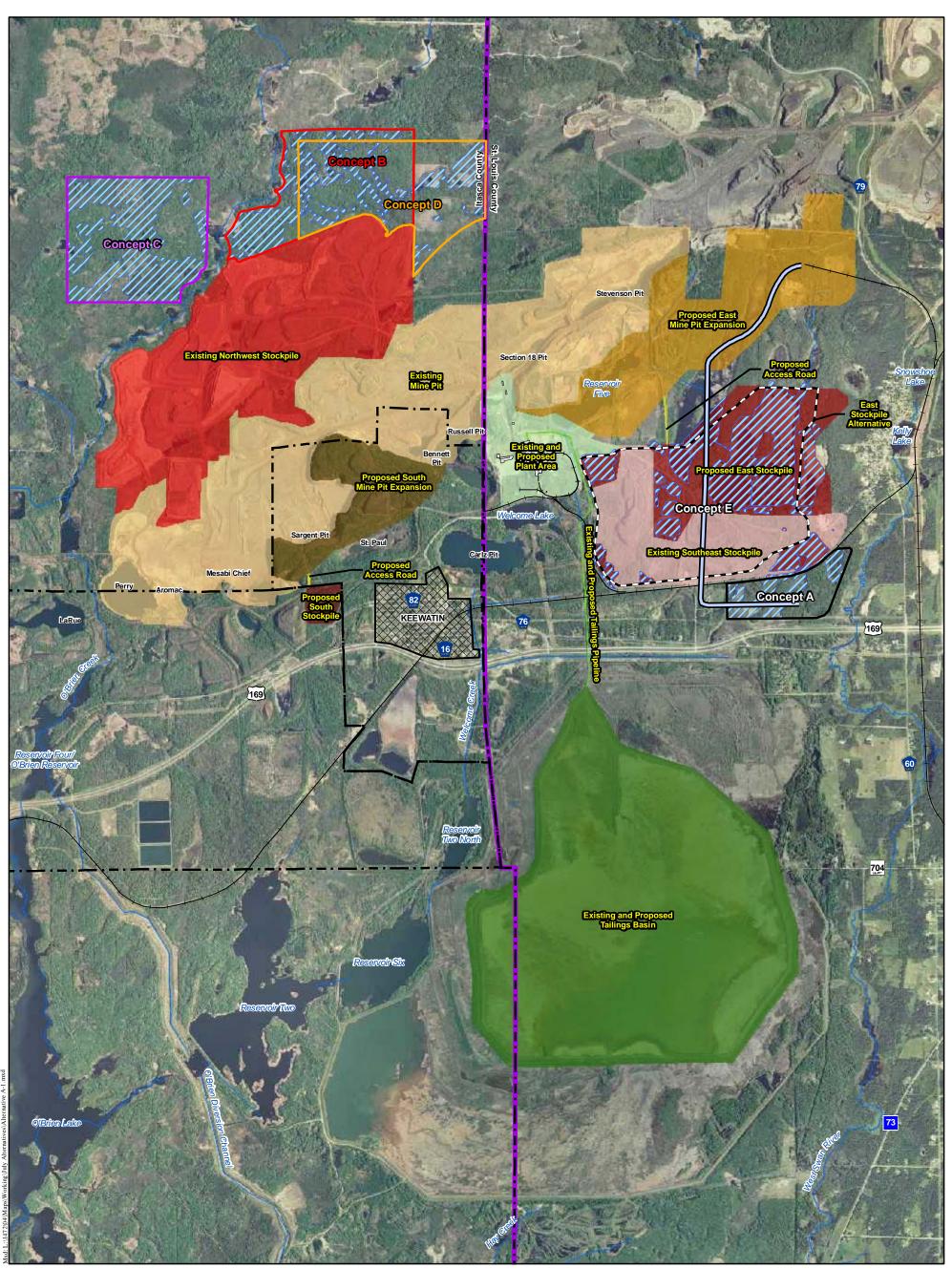
 Proposed East Mine Pit Expansion
 Image: Concept D

 Plant Area
 Image: Concept D


 Image: Tailings Basin
 Image: Concept E

 Alternative Stockpile
 Alternative Stockpile

 Image: Totype Stockpile
 Image: Concept D


 Image: Totype Stockpile
 Image: Concept D</t
- Streams
 Keewatin Urban Development
 Proposed/Conceptual Stockpile Alternative Wetland Impacts
 County Boundary
 Conceptual Stockpile Locations
 Concept A
 Concept B
 Concept C
 Concept D
 Concept E
 Alternative Stockpile Haul Route Options
 Option
 P-1

P-2

Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-7 Concept P-1 and P-2 U.S. Steel Keetac Keewatin, MN

Project Areas

- Existing Southeast Stockpile
 City Boundation

 Existing Northwest Stockpile
 Streams

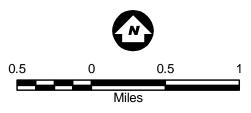
 Proposed East Stockpile
 Keewatin U

 Proposed South Stockpile
 County Bou

 Proposed Stockpile Roads
 Conceptual Stoce

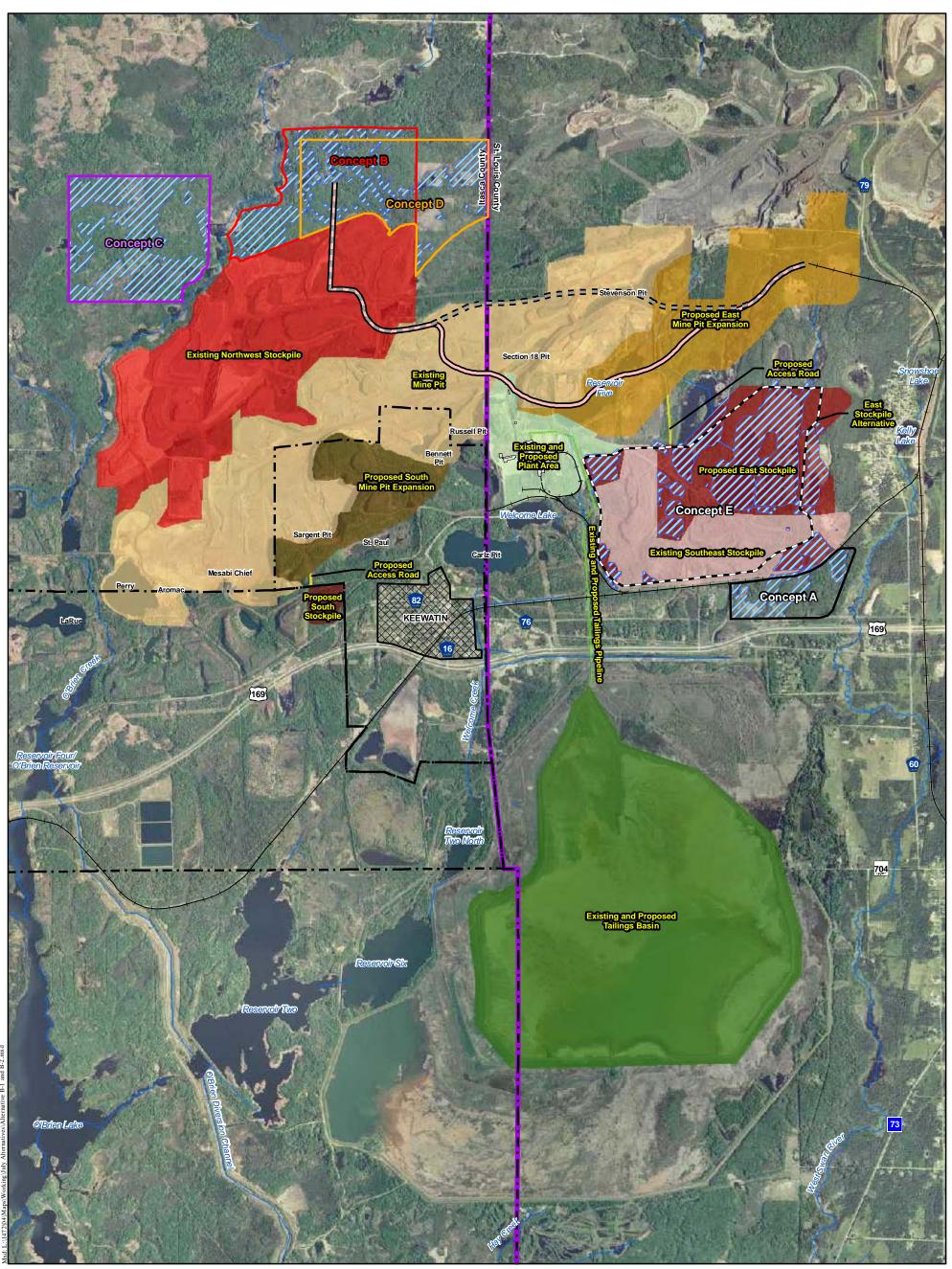
 Existing Mine Pit
 Concept A

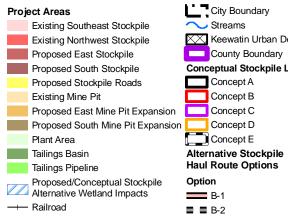
 Proposed South Mine Pit Expansion
 Concept D


 Proposed South Mine Pit Expansion
 Concept D

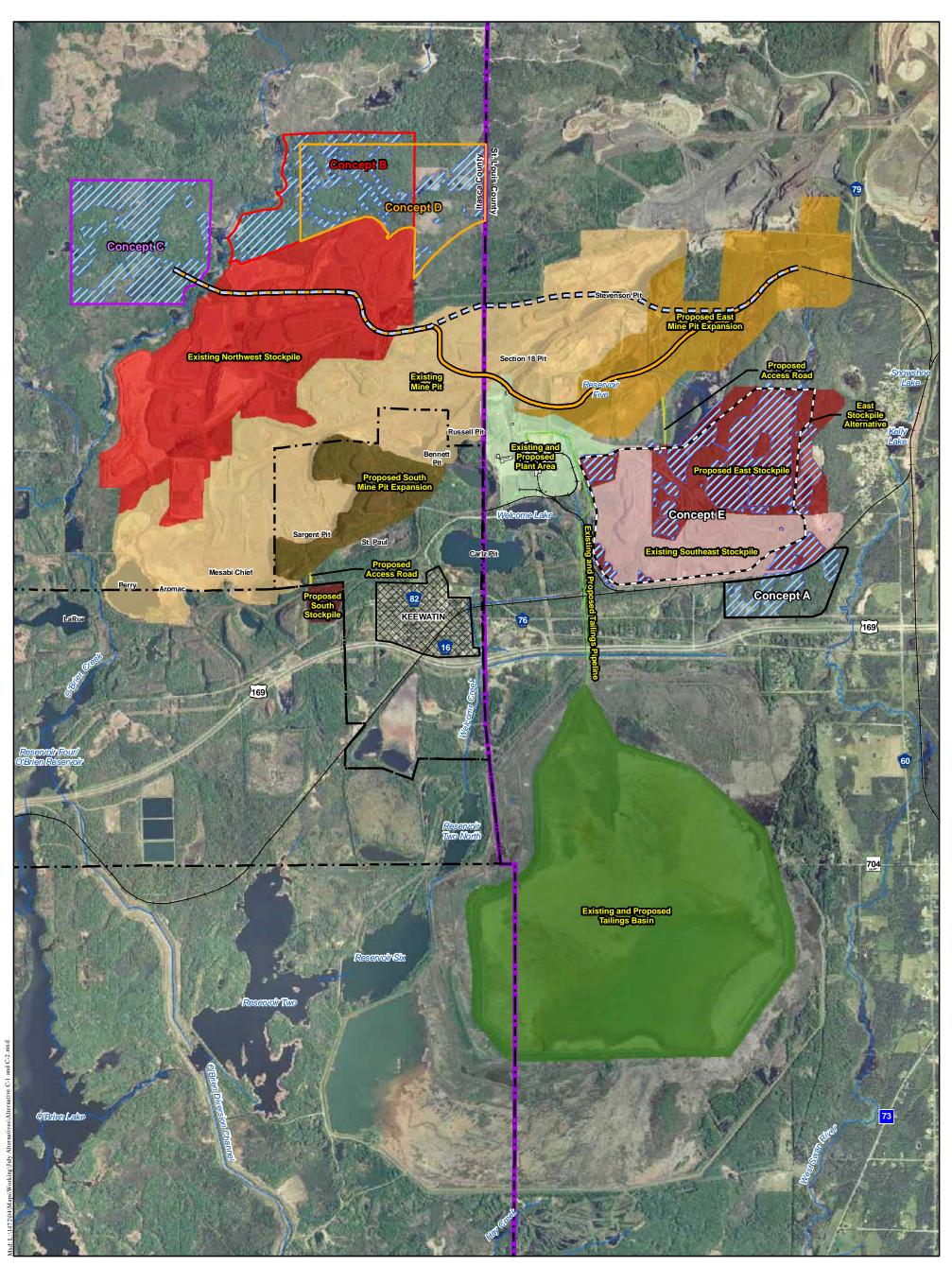
 Plant Area
 Concept D

 Tailings Basin
 Alternative Stoce


 Proposed/Conceptual Stockpile
 Alternative Wetland Impacts


 Option
 Option
- Railroad
 City Boundary
 Streams
 Keewatin Urban Development
 County Boundary
 Conceptual Stockpile Locations
 Concept A
 Concept B
 Concept C
 Concept C
 Concept E
 Alternative Stockpile
 Haul Route Options
 Option
 A-1

Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-8 Concept A-1 U.S. Steel Keetac Keewatin, MN



- City Boundary Keewatin Urban Development County Boundary Conceptual Stockpile Locations Concept A Concept B Concept C Option **B**-1 🔳 🔳 B-2
- 0.5 0.5 0 1 Miles

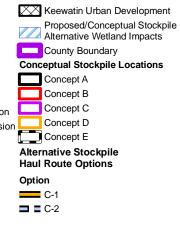
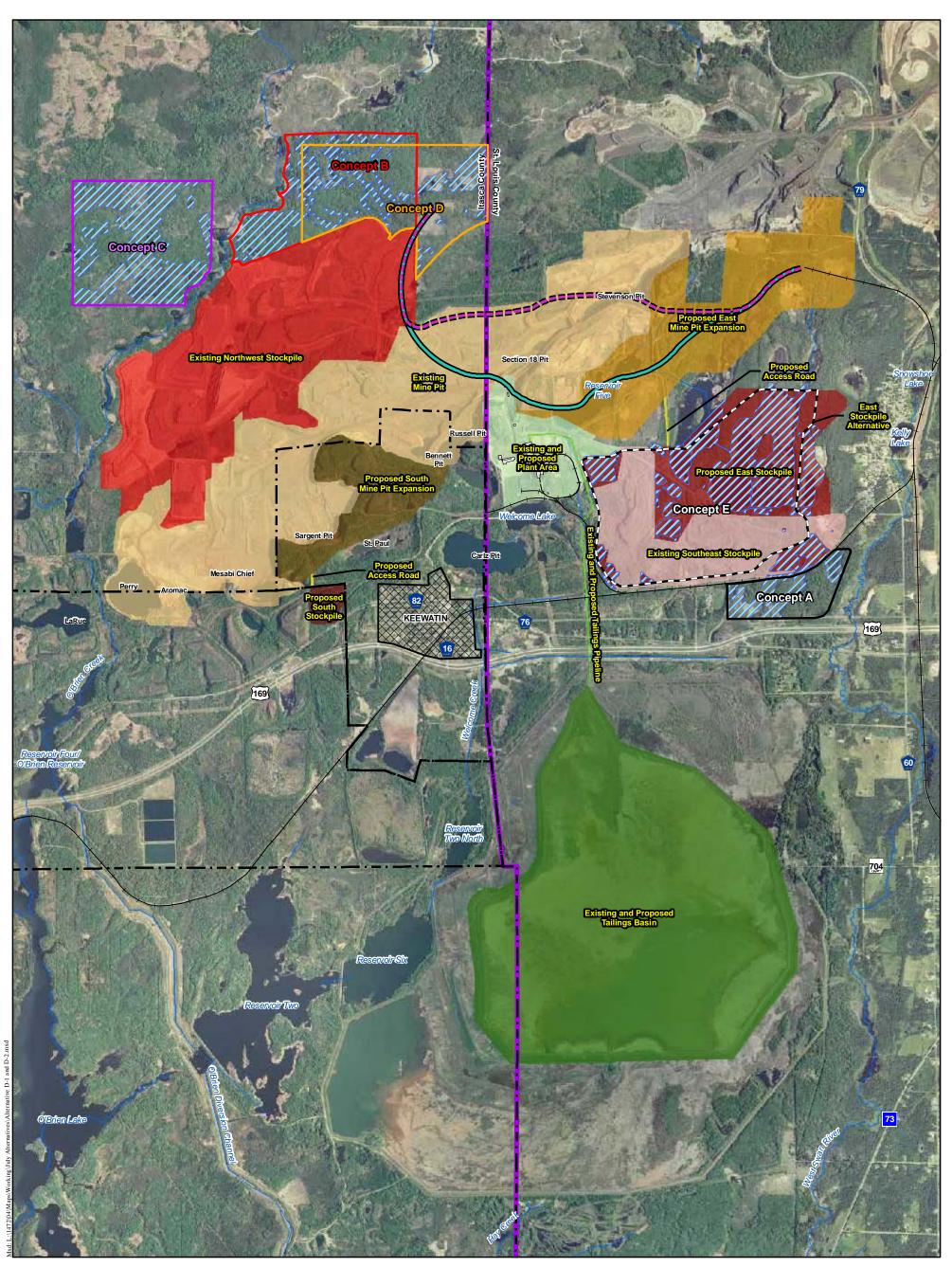
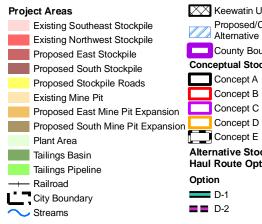
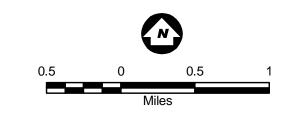
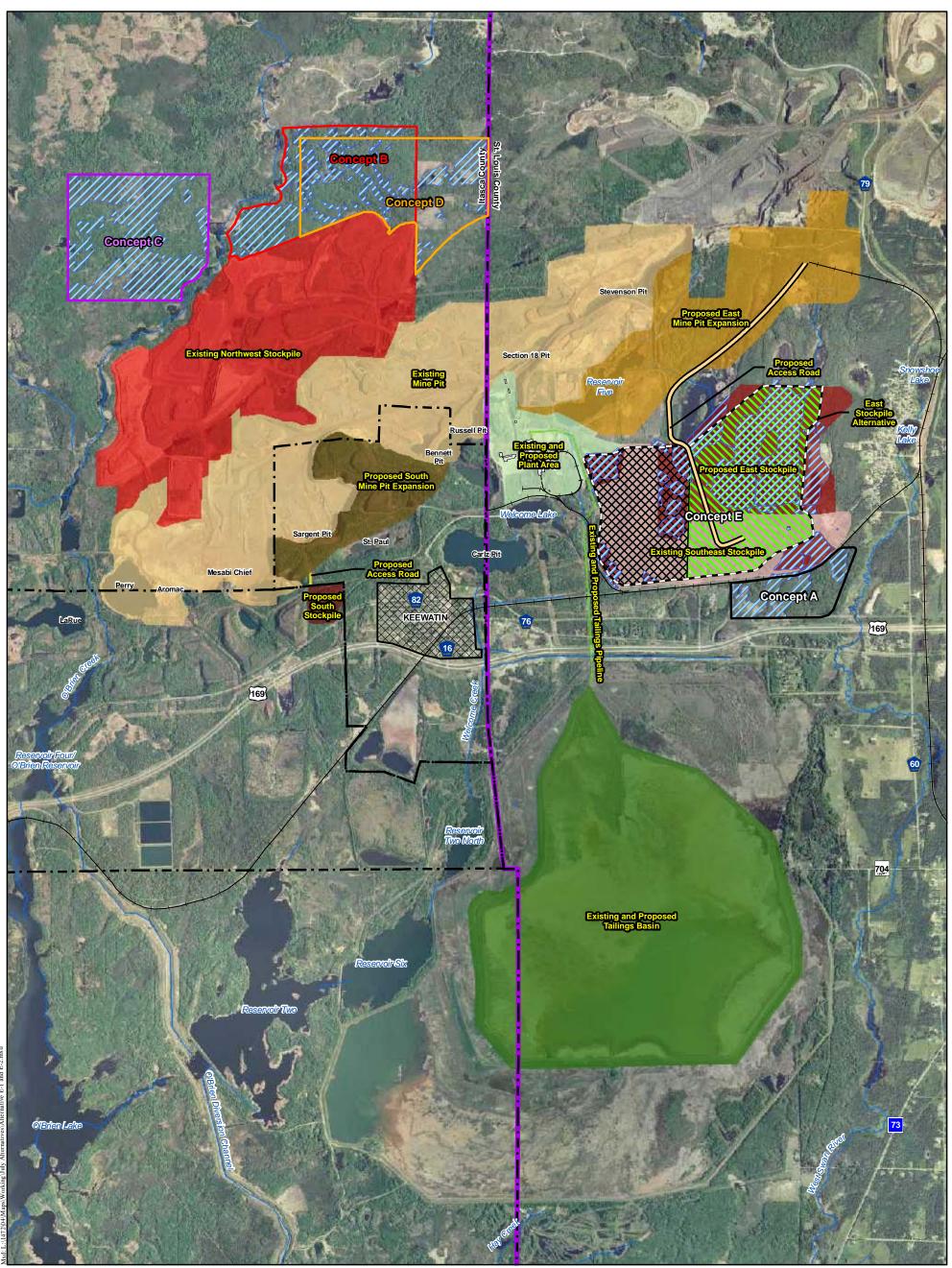

Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph

Figure SA-9 Concept B-1 and B-2 U.S. Steel Keetac Keewatin, MN

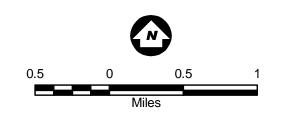


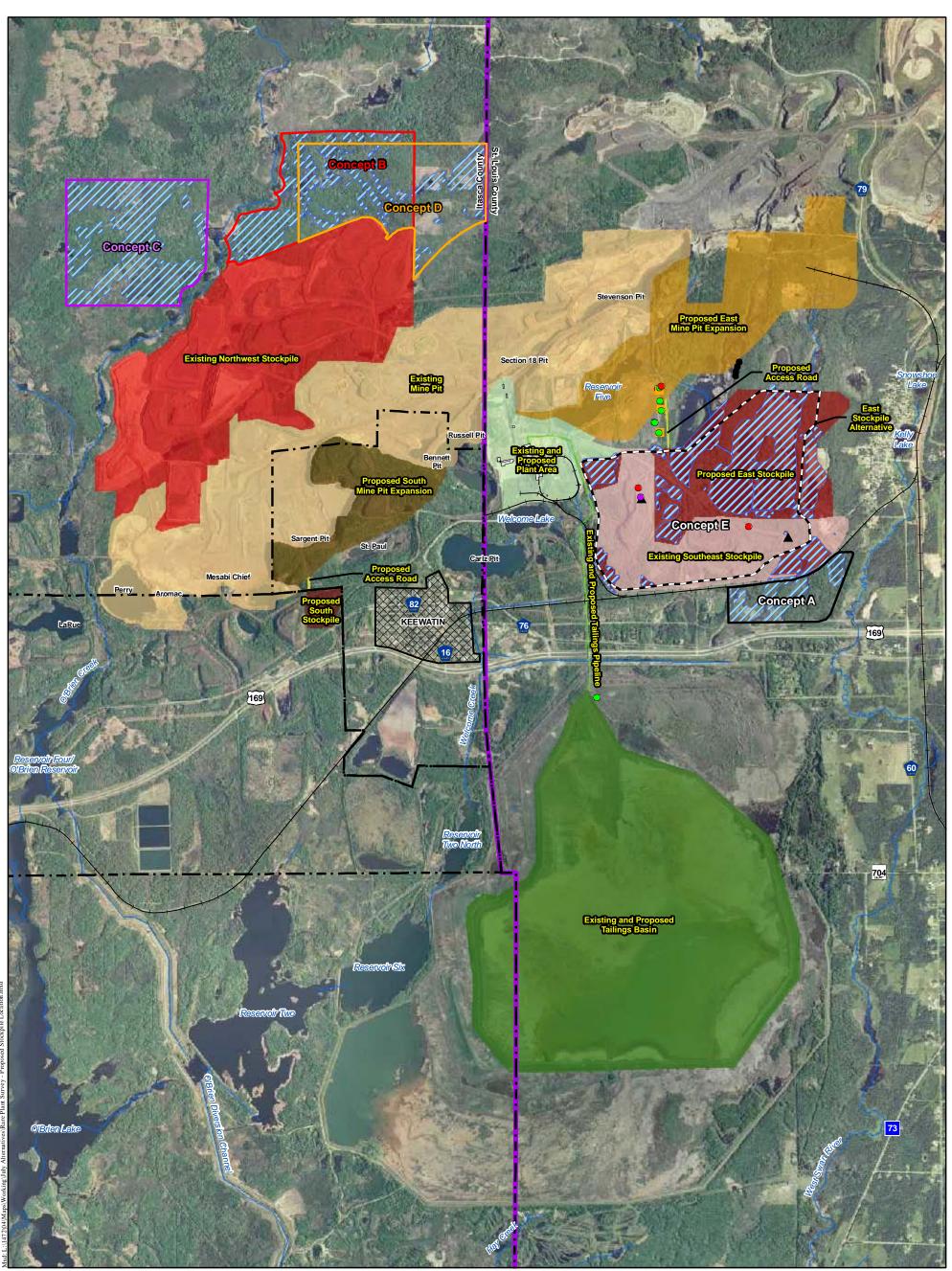



Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-10 Concept C-1 and C-2 U.S. Steel Keetac Keewatin, MN



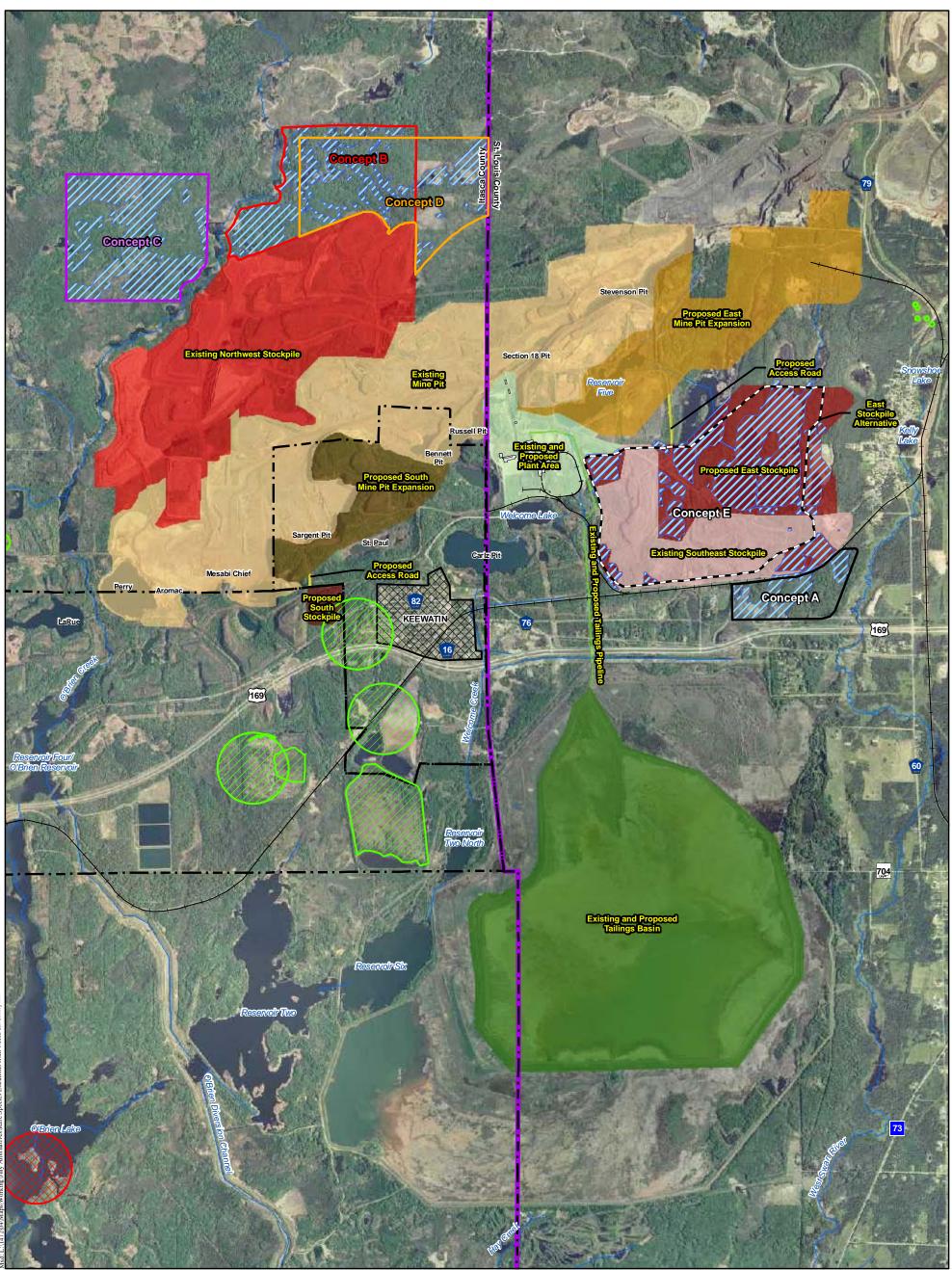
 Keewatin Urban Development
 Proposed/Conceptual Stockpile Alternative Wetland Impacts
 County Boundary
 Concept al Stockpile Locations
 Concept A
 Concept B
 Concept B
 Concept C
 Concept D
 Concept E
 Alternative Stockpile Haul Route Options
 Option
 D-1
 D-2


Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-11 Concept D-1 and D-2 U.S. Steel Keetac Keewatin, MN

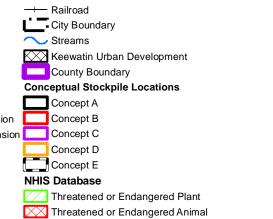


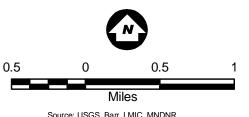
Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-12 Concept E-1 U.S. Steel Keetac Keewatin, MN

Project Areas		
	Existing Southeast Stockpile	
	Existing Northwest Stockpile	Co
	Proposed East Stockpile	
	Proposed South Stockpile	
	Proposed Stockpile Roads	
	Existing Mine Pit	
	Proposed East Mine Pit Expansion	
	Proposed South Mine Pit Expansion	Lis
	Plant Area	Sp
	Tailings Basin	0
	Tailings Pipeline	•
	Railroad	
\sim	Streams	
Ľ?	City Boundary	C
$\overline{\times}$	Keewatin Urban Development	•
	County Boundary	

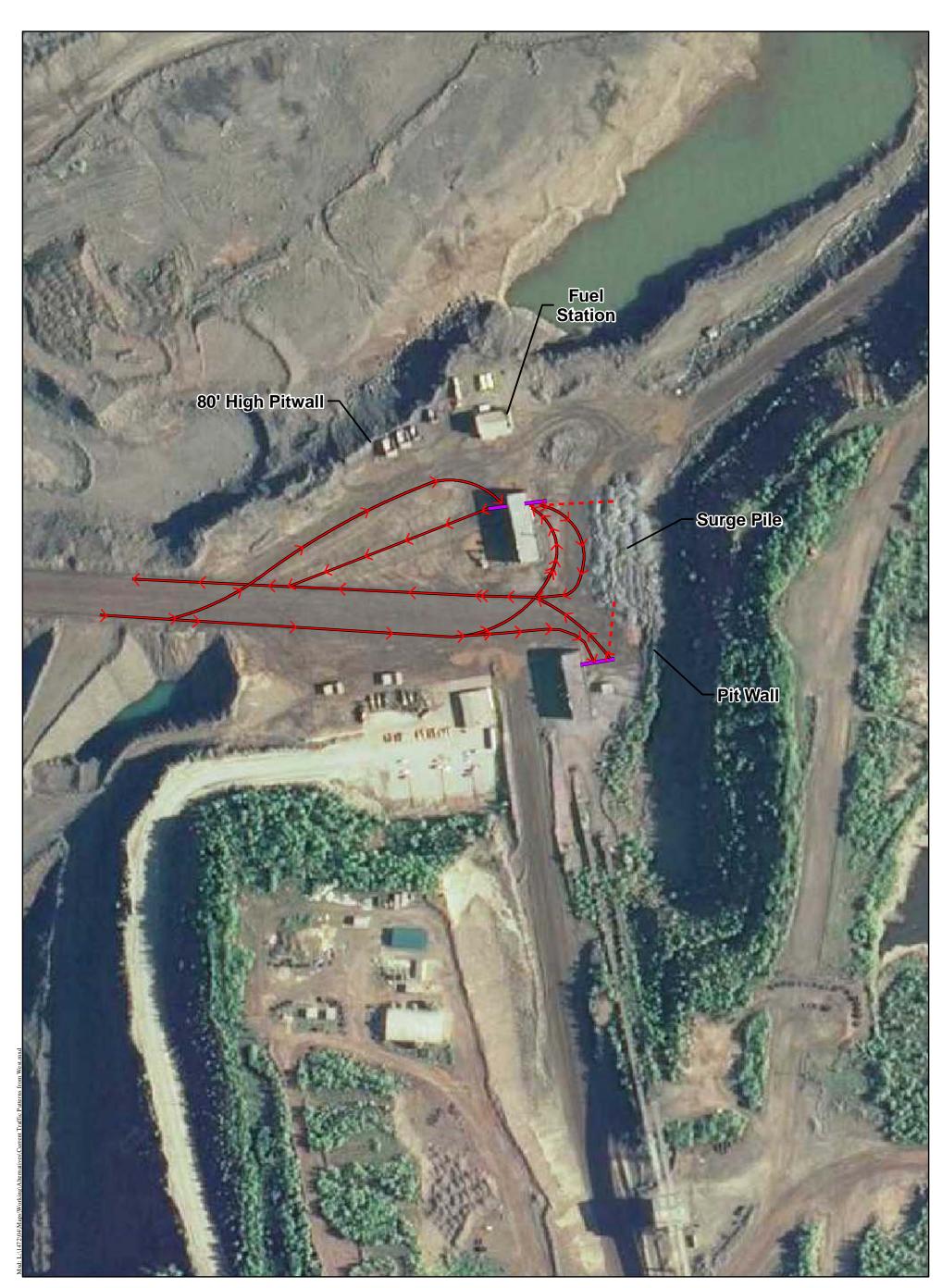

Proposed/Conceptual Stockpile Alternative Wetland Impacts Conceptual Stockpile Locations Concept A Concept A Concept B Concept C Concept D Concept E Listed Species Locations Species Botrychium ascendens Botrychium multifidum Botrychium pallidum Botrychium rugulosum Botrychium spp.

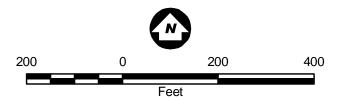
Sparganium glomeratum


Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-13 Rare Plant Survey - Proposed Stockpile Location U.S. Steel Keetac Keewatin, MN

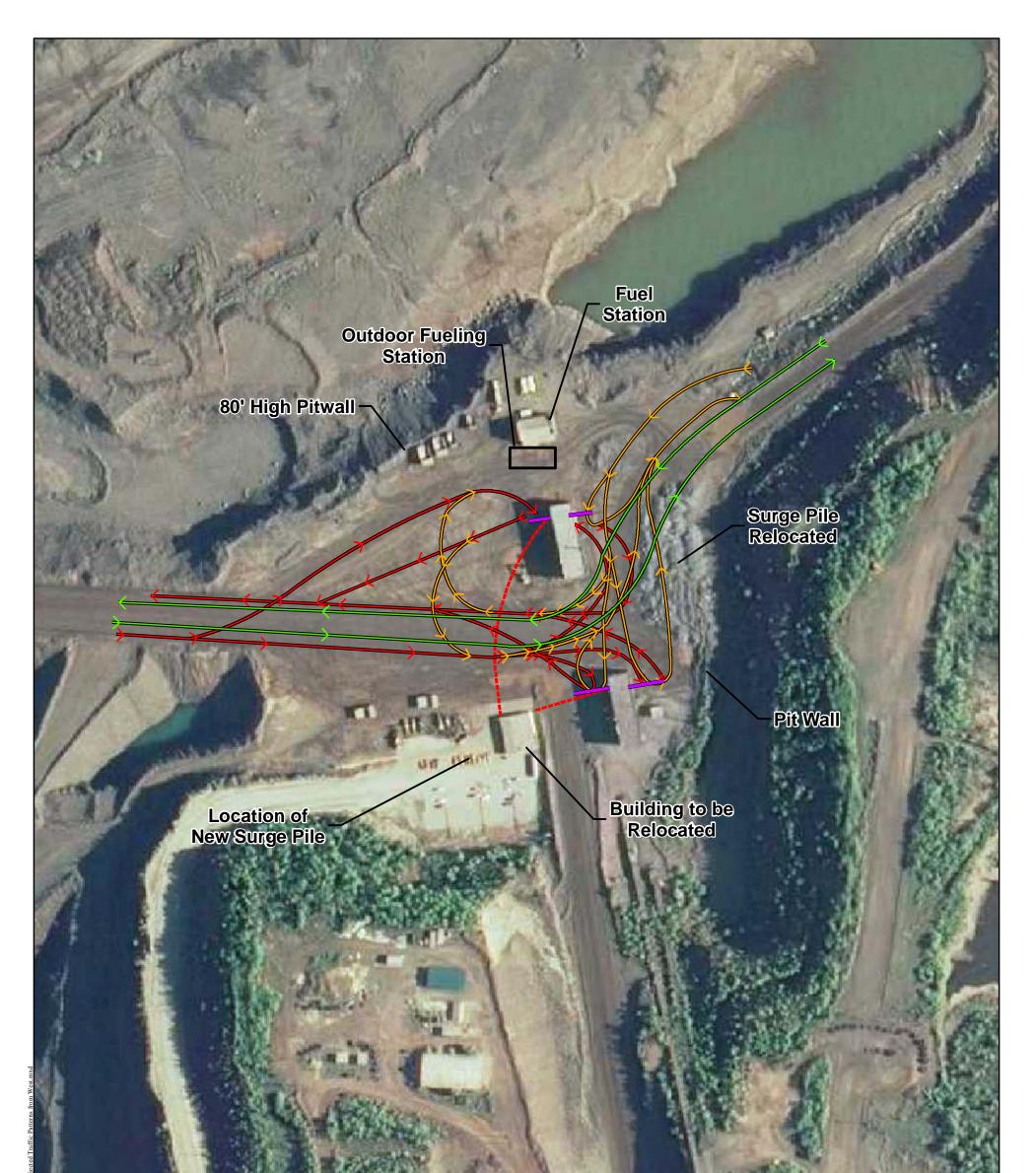


Project Areas

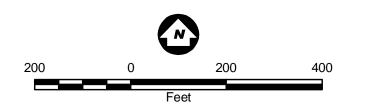


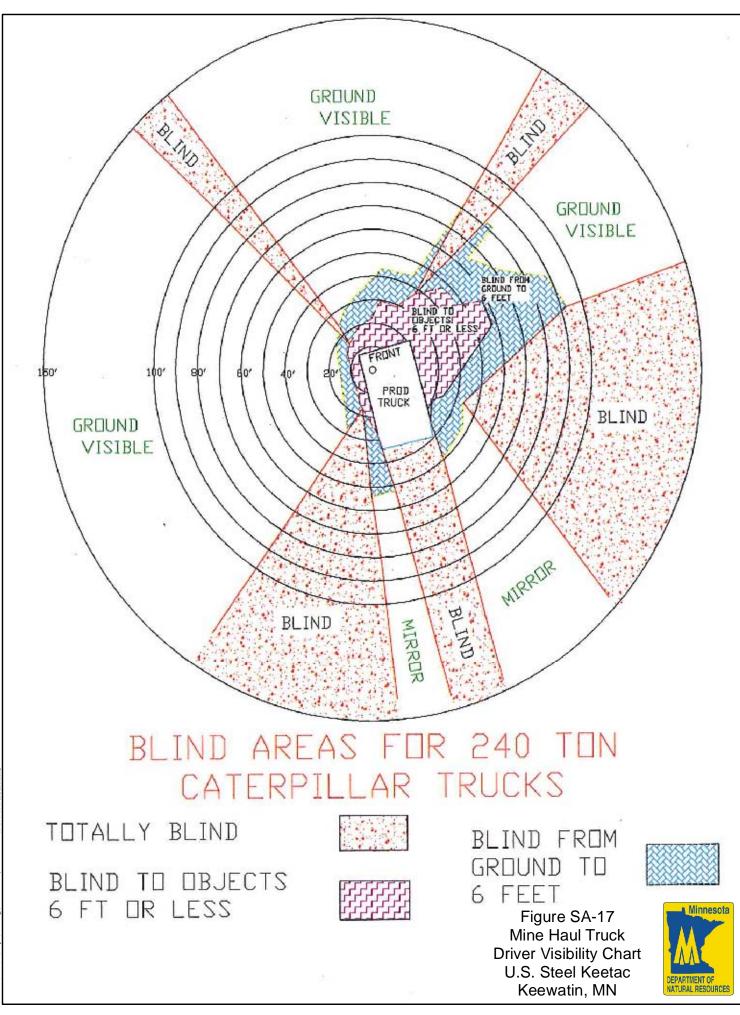


Source: USGS, Barr, LMIC, MNDNR, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-14 Rare Species Locations from NHIS Inventory U.S. Steel Keetac Keewatin, MN



- Loader Traffic Pattern
 Truck Traffic Pattern
- Truck Back-Up Pattern


Source: USGS, Barr, LMIC, MNDNR, National Hydro Dataset, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-15 Current Crusher Area Traffic Patterns U.S. Steel Keetac Keewatin, MN



 Loader Traffic Pattern
 Future Truck Back-Up Pattern
 Future Truck Traffic
 Associated with Concepts B-1, C-1 and D-1
 Future Truck Traffic
 Pattern (From East)
 Future Truck Traffic
 Pattern (From West)

Source: USGS, Barr, LMIC, MNDNR, National Hydro Dataset, MPCA, Itasca County, St. Louis County, City of Hibbing, City of Nashwauk, U.S. Steel, and Mn/DOT. 2008 Aerial Photograph Figure SA-16 Expected Future Crusher Area Traffic Patterns U.S. Steel Keetac Keewatin, MN

This page left blank intentionally.

Project Proposers Preliminary Concepts

This page left blank intentionally.

ITEMS AFFECTING POSITION OF WASTE DUMPS

- 1.) WETLANDS
- 2.) AMBIENT AIR BOUNDARY
- 3.) OWNERSHIP OF WASTE
- 4.) OWNERSHIP OF WASTE DUMP LOCATION
- 5.) VOLUME OF WASTE
- 6.) TYPE OF WASTE
- 7.) TIMING OF MINED OUT BOTTOM OF PIT
- 8.) ACCESS
- 9.) ECONOMICS
- 10.) LOCATION OF IRON FORMATION OUTCROP

1

11.) RECLAMATION OF DUMP

OBJECTIVES OF STOCKPILE DESIGN

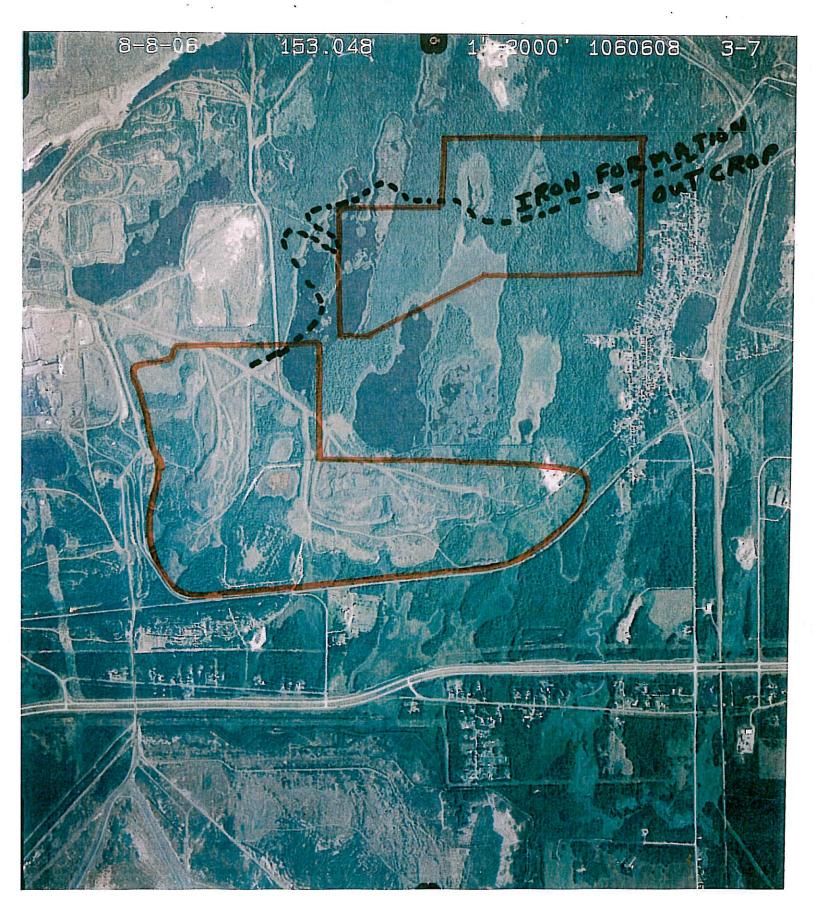
1.) REDUCE WETLAND DISRUPTION

2.) REDUCE EFFECT OF AMBIENT AIR BOUNDARY

3.) ACCESS / HAUL DISTANCE

4.) RECLAMATION

5.) KEEP OFF IRON FORMATION

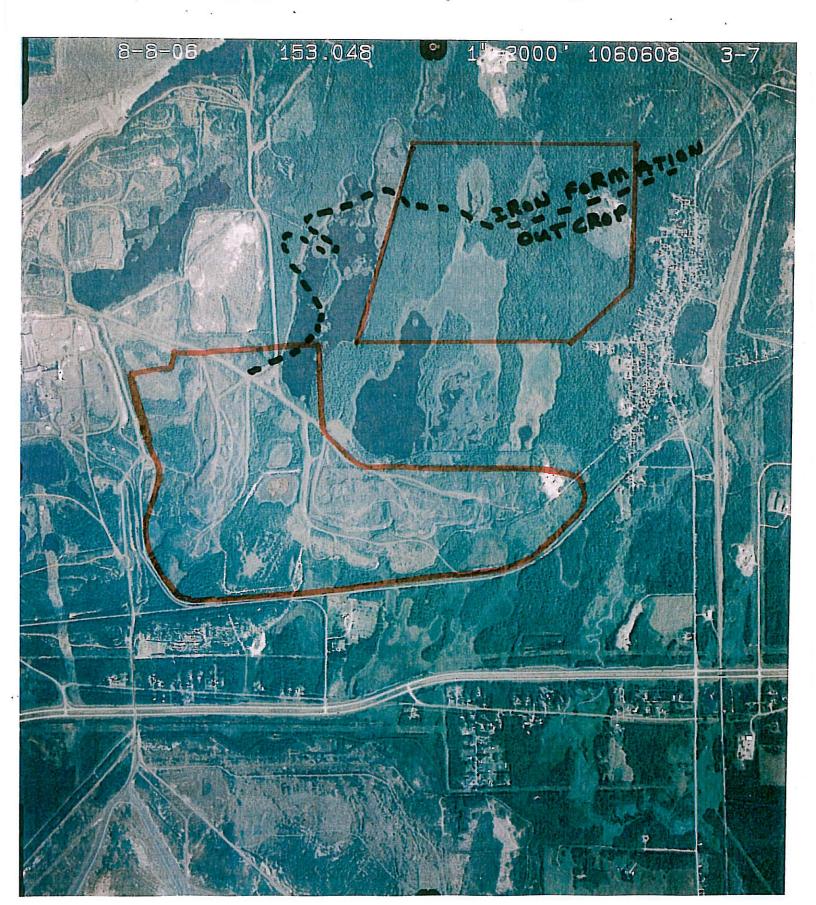

6.) CONSERVE FOOTPRINT

7.) PLACE ON SAME OWNERSHIP

8.) DEVELOP BY TYPE OF WASTE

9.) MAXIMIZE IN-PIT STOCKPILING

FEB. 29, 2008



MARCH 20, 2008

٠.

MARCH 26, 2008


APRIL 21,2008 ALT 1

APRIL 21, 2008 ALT. 2

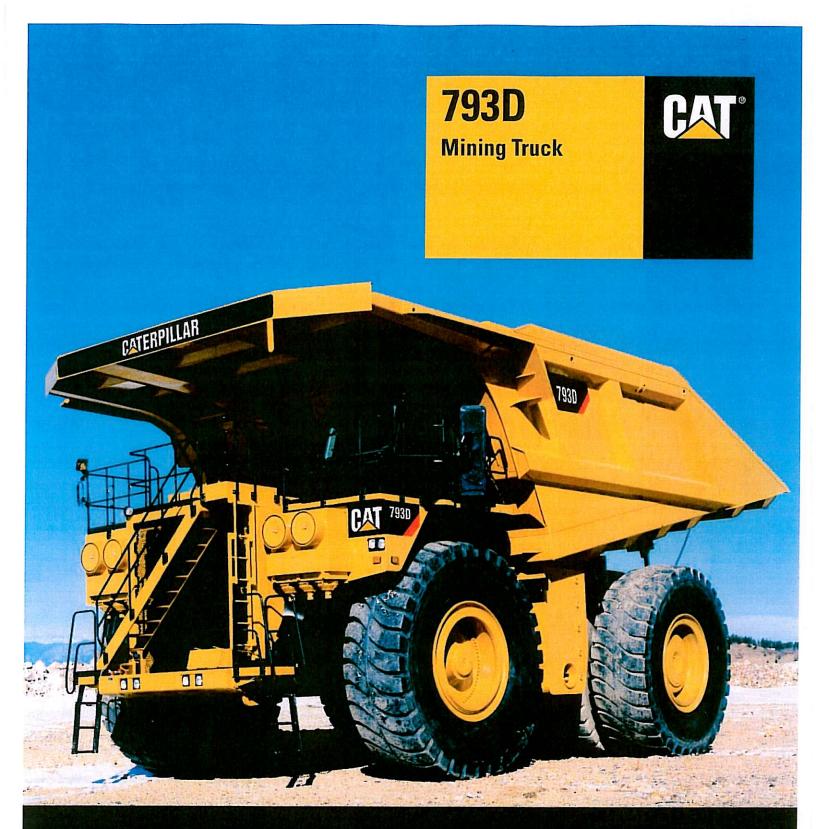
APRIL 21,2008 ALT 3

~ APRIL 22,2008 ALT 1


~ APRIL 22,2008 ALT. Z

APRIL 23, 2008 ALT. 1

~ APRIL 22,2008 ALT 2



APRIL 23,2008 ALT 3

Caterpillar 793D Mining Truck Specifications

This page left blank intentionally.

Engine		
Engine Model	Cat [®] 3516B HI) EUI
Gross Power – SAE J1995	1801 kW	2,415 hp
Net Power – SAE J1349	1743 kW	2,337 hp
Weights – Approximate		
Gross Machine Operating Weight	383 749 kg	846,000 lb

Nominal Payload Capacity	218 tonnes	240 tons
Body Capacity – Dual Slope		
Struck	96 m ³	126 yd ³
Heaped (SAE 2:1)	129 m ³	169 yd ³

793D Mining Truck

Engineered for performance, designed for comfort, built to last.

Power Train - Engine

The Cat[®] 3516B High Displacement EUI engine delivers the power and reliability necessary to perform in the most demanding applications. Designed for efficient operation, the 3516B offers excellent fuel efficiency, lower emissions, reduced engine noise and lower operating costs. **pg. 4**

Operator's Station

The ergonomic cab is designed for operator comfort and ease of operation to allow the operator to focus on production. Controls and gauges are positioned within easy reach for optimum efficiency and superior control. **pg. 12**

Power Train – Merchandising Arrangements

The 793D is available in four different normal altitude configurations and one arrangement for high altitude operations. All configurations include key components matched to performance requirements in specific applications and conditions. **pg. 5**

Serviceability

The 793D is designed for quick and easy servicing. Simplified service and maintenance features reduce downtime, allowing the machine to spend less time being serviced and more time on the haul roads. **pg. 13**

Power Train - Transmission

The Cat six-speed power shift transmission and mechanical power train, matched with the electronic unit injection 3516B high displacement engine, provides consistent power and efficiency for peak power train performance. **pg. 6**

Monitoring System

VIMS[®] monitoring system provides operators, service technicians and mine personnel with vital machine health and payload data to keep the 793D performing at peak efficiency and top production levels while lowering costper-ton. **pg. 14**

The 793D Mining Truck is available in five merchandising arrangements:

- Standard for balanced all-around performance
- Extended Life Wheel Groups for long, uphill hauls
- Extra Top Speed for long, flat hauls
- Extra Retarding for long, downhill loaded hauls
- *High Altitude Arrangement* for operations above 2750 m (9,000 ft)

Structures

Caterpillar[®] truck frames are built to optimize torsional load displacement. Mild steel provides flexibility, durability and resistance to impact loads. Castings and forgings in high stress areas provide exceptional strength and durability for long life. **pg. 7**

Truck Body Systems

A variety of Caterpillar designed and built truck bodies ensure optimal performance and reliability in tough mining applications. Cat dealers can help build an optimum hauling system to maximize truck payloads and extend body and truck wear life. **pg. 16**

Engine/Power Train Integration

The Cat Data Link electronically combines engine, transmission, brake and operational information to optimize overall truck performance. Stored diagnostic data can be accessed via the Electronic Technician (Cat ET) to improve troubleshooting and reduce downtime. **pg. 8**

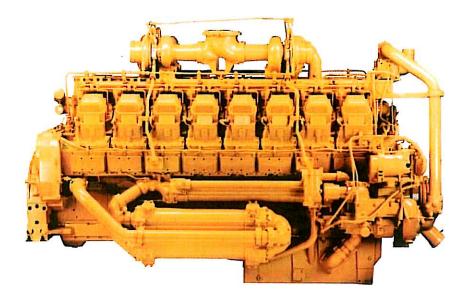
Customer Support

Caterpillar dealers provide unmatched product support, anywhere in the world. With industry-best parts availability and a wide range of maintenance and service options, Cat dealers have what it takes to keep your mining machines productive. **pg. 18**

Caterpillar Brake System

Cat oil-cooled, multiple disc brakes offer exceptional, fade-resistant braking and retarding for maximum performance and productivity in all haul road conditions. Integrated Braking Control combines retarding and traction control into one system for optimum braking efficiency. **pg. 10**

Safety


Caterpillar sets the standard when it comes to safety in the design and manufacturing of heavy equipment for the mining industry. Safety is not an afterthought at Caterpillar, but an integral part of all machine and systems designs. **pg. 19**

3

Power Train – Engine

The Cat 3516B High Displacement engine is built for power, reliability and efficiency for superior performance in the toughest applications.

Engine. The Cat 3516B High Displacement EUI quad turbocharged and aftercooled diesel engine produces 5% greater power with enhanced power management capability for maximum hauling performance in the most demanding mining applications.

Design. The 3516B is a 16-cylinder, four-stroke design that uses long, effective power strokes for more complete fuel combustion and optimum efficiency.

EPA Compliant. The Cat 3516B High Displacement engine is compliant with U.S. Environmental Protection Agency Tier I emissions standards.

Altitude Compensation. Designed for maximum operating efficiencies at altitudes under 2750 m (9,000 ft).

High Altitude Arrangement (HAA). The optional Cat 3516B quad and series turbocharged aftercooled short stroke engine provides full power with no deration at altitudes greater than 2750 m (9,000 ft). **High Torque Rise.** The 23% net torque rise provides unequalled lugging force during acceleration, on steep grades and in rough underfoot conditions. Torque rise effectively matches transmission shift points for maximum efficiency and fast cycle times.

Enhanced Life. High displacement, low rpm rating and conservative horsepower ratings mean more time on the haul roads and less time in the shop.

Single-Piece Piston Design.

New single-piece forged steel pistons with integrated forged steel skirt are more robust to withstand high engine heat and pressure and enable enhanced combustion efficiency, improved fuel efficiency and lower emissions. Corrosion resistant, stainless steel top ring reduces ring, groove and liner wear for greater reliability and longer life.

Electronic Unit Injection (EUI).

The electronically controlled unit injection fuel system senses operating conditions and regulates fuel delivery for optimum fuel efficiency. The proven high-pressure fuel system provides improved response times and more efficient fuel burn with lower emissions and less smoke.

Electronic Control Module (ECM).

ECM utilizes advanced engine management software to monitor, control and protect the engine utilizing self-diagnosing electronic sensors. The computerized system senses operating conditions and power requirements and adjusts engine for peak performance and most efficient operation and at all times.

Separate Circuit Aftercooler.

Allows the aftercooler circuit to operate cooler than jacket water temperature for a denser air charge and greater combustion efficiency.

Cooling System. The new modular higher density cooling system with larger fans is hydraulically driven for more efficient cooling with lower fuel consumption and noise levels.

Oil Renewal System. Optional oil renewal system extends engine oil change intervals from 500 hours to 4,000 hours or more to increase machine availability and reduces costs.

Engine Protection. Computerized system electronically protects the engine during cold starts, high altitude operation, air filter plugging, and high exhaust temperature.

Power Train – Merchandising Arrangements

Five configurations are performance matched to meet specific applications and conditions.

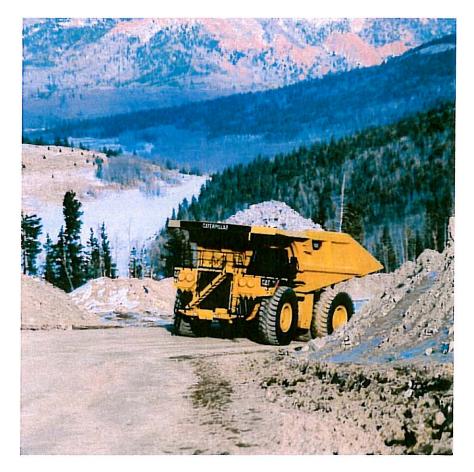
Merchandising Arrangements.

The 793D is available in four different normal altitude configurations, and a high altitude arrangement. All configurations deliver increased speed on grade and include key components that are performance matched to the hauling application and site conditions.

0=0

Standard Arrangement.

The standard arrangement is designed for exceptional, all-around performance. Three factors combine to produce up to 9% more power at the wheels than the 793C, including: 5% more engine horsepower; a common rail hydraulic system for greater power train efficiency; and a hydraulically driven demand fan that reduces parasitic load by operating only when needed. More power at the wheels reduces cycle times and lowers cost-per-ton.



Extended Life Wheel Groups. Developed for uphill

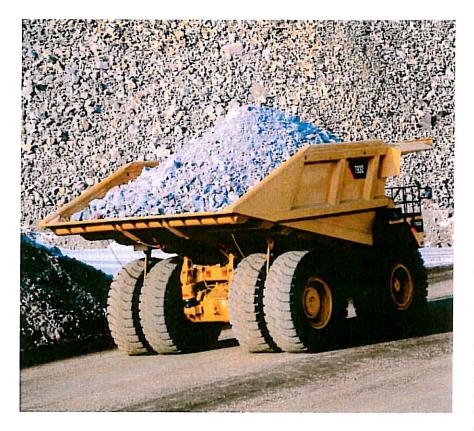
hauling applications, this arrangement is designed to extend wheel life and hauling performance on long uphill hauls. Extended life wheel groups are built with larger, more durable components, including larger spindles, wider wheel bearing spacing, a larger braking surface, and extended life friction disc material for longer brake life and more time between overhauls.

Extra Top Speed. Developed for long, flat haul applications,

the extra top speed configuration delivers a 10% increase in maximum speed to 60 km/h (37 mph) via a new input transfer gear group. This arrangement also includes Extended Life Wheel Groups.

Extra Retarding. Developed for downhill loaded applications, this configuration typically

delivers an extra gear of retarding capability of 35% more speed on downhill grades. Extra retarding is achieved by adding more robust wheel groups, larger brakes, extended life friction material, and additional cooling capacity.



High Altitude Arrangement.

Developed for high altitude applications, the 3516B short stroke engine delivers enhanced power management at higher altitudes - from 2750 to 1600 m (9,000 to 12,000 ft). This arrangement also includes Extra Retarding.

Power Train – Transmission

Cat mechanical power train delivers more power to the ground for greater productivity and lower operating costs.

Mechanical Power Train. The Cat mechanical drive power train and power shift transmission provides unmatched operating efficiency and control on steep grades, in poor underfoot conditions, and on haul roads with high rolling resistance.

1) Transmission. The Cat six-speed planetary power shift transmission is matched with the direct-injection 3516B HD diesel engine to deliver constant power over a wide range of operating speeds.

• **Robust Design.** Designed for the higher horsepower of the 3516B HD engine, the proven planetary power shift transmission is built tough for long life between overhauls.

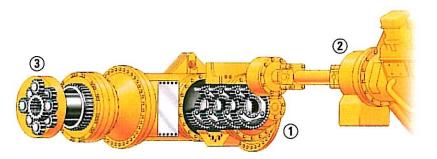
• **Long Life.** A dedicated oil tank and circuit provides cooler, cleaner oil for maximum performance and longer component life.

• Transmission Chassis Control (TCC).

TCC uses electronically transferred engine rpm data to execute shifts at preset points for optimum performance, efficiency and clutch life.

2) Lock-Up Torque Converter. Combines maximum rimpull and cushioned shifting of torque converter drive with the efficiency and performance of direct drive. The lock-up torque converter engages at approximately 8 km/h (5 mph), delivering more power to the wheels. • Lock-Up Clutch. Quickly releases and re-engages to reduce power train torque loads for smoother shifting, long life and a more comfortable ride.

• Smooth Shifting. Individual clutch modulation provides smooth clutch engagements to optimize performance and extend clutch life.

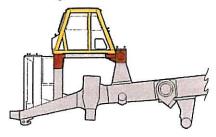

3) Final Drives. Cat final drives work as a system with the planetary power shift transmission to deliver maximum power to the ground. Built to withstand the forces of high torque and impact loads, double reduction final drives provide high torque multiplication to further reduce drive train stress.

• Rear Axle Filtration. A new filtration system provides cooler, cleaner oil for longer component life.

• Steering System. Hydraulic steering control system is designed for exceptional smoothness and precise control. A separate circuit prevents cross contamination for long life.

• Supplemental Steering. Supplemental steering system uses pressure accumulators and allows up to three 90 degree turns in case of engine failure.

• Wheels and Rims. Cast rear wheels and Cat center-mount rims are mounted using studs and nuts to minimize maintenance and maximize durability.


Structures

Rugged Cat structures are the backbone of the 793D mining truck's durability.

Box-Section Design. The 793D frame uses a box-section design, incorporating two forgings and 24 castings in high stress areas with deep penetrating and continuous wrap-around welds to resist damage from twisting loads without adding extra weight.

• Steel Structures. Mild steel used throughout frame provides flexibility, durability and resistance to impact loads, even in cold climates, and allows for easy field repairs.

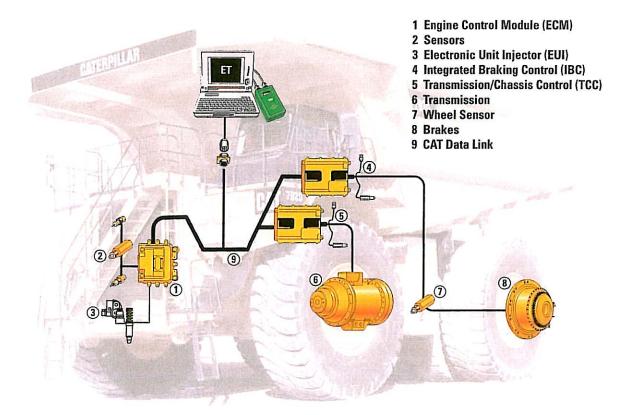
• **Castings.** Castings have large radii with internal reinforcing ribs to dissipate stress in areas of high stress concentration. Castings move welds to lower stress areas for greater frame life.

Integral Four-Post ROPS Cab.

Resiliently mounted to the main frame to reduce vibration and sound, the integral ROPS is designed as an extension of the truck frame. The ROPS/FOPS structure provides "five sided protection" for the operator.

Suspension System. Designed to dissipate haul road and loading impacts for longer frame life and a more comfortable ride.

• **Cylinders.** Four independent selfcontained, oil pneumatic, variablerebound suspension cylinders are designed to absorb shocks in the most severe applications.


• **Durable Design.** Rugged cylinders utilize large diameter bore and low pressure nitrogen/oil design for long life with minimal maintenance.

- Front. Front cylinders with preset caster and camber are mounted to the frame and serve as steering kingpins for a tight turning radius with excellent maneuverability and low maintenance.

- **Rear.** Rear cylinders allow axle oscillation and absorb bending and twisting stresses caused by uneven and rough haul roads rather than transmitting them to the main frame.

Engine/Power Train Integration

Electronically combines critical power train components to work more intelligently and optimize overall truck performance.

Cat Data Link. Electronically integrates machine computer systems to optimize overall power train performance, increase reliability and component life, and reduce operating costs.

Controlled Throttle Shifting. Regulates engine rpm during shifting to reduce power train stress and clutch wear by controlling engine speed, torque converter lock-up and transmission clutch engagement for smoother shifts and longer component life.

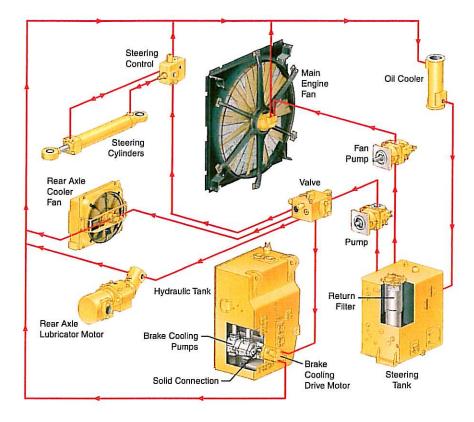
Directional Shift Management.

Regulates engine speed during directional shifts to prevent damage caused by high speed directional changes.

Neutral Coast Inhibitor. Prevents transmission from shifting to neutral at speeds above 6.5 km/h (4 mph) to protect the transmission from operating with insufficient lubrication.

Body-up Reverse Neutralizer. Automatically shifts the transmission to neutral if the hoist lever is activated while transmission is shifted in reverse. **Body-up Shift Inhibitor.** Prevents the transmission from shifting above the pre-programmed gear without the body fully lowered.

Overspeed Protection. The transmission control electronically senses engine conditions and automatically up-shifts one gear to prevent overspeeding. If overspeeding occurs in top gear, the lock-up clutch is disengaged. **Programmable Top Gear.** Transmission top gear maximum can be set using the Cat ET service tool to help the operator maintain speed limits.


Anti-Hunt Function. Minimizes shifting by not allowing the transmission to up or down shift immediately after a shift has occurred. This prevents gear hunting when operating near a shift point and minimizes transmission shifting for increased component life.

Downshift Inhibitor. Prevents engine overspeeding by keeping the transmission from downshifting until engine speed reaches the downshift point.

Electronic Technician (Cat ET). Cat ET service tool provides service technicians with easy access to stored diagnostic data through the Cat Data Link to simplify problem diagnosis and increase machine availability.

Diagnostic Capability. Critical data from the electronic engine and transmission controls, including transmission shifting, engine speed and fuel consumption, provides service technicians with enhanced diagnostic capability to reduce downtime and operating costs.

Integrated Braking Control (IBC). IBC integrates Hydraulic Automatic Retarder Control and Traction Control into one system for optimum performance and efficiency.



Hydraulic Power Management System

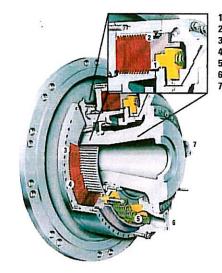
Hydraulic Power Management System. The system, also known as common rail hydraulics, reduces parasitic (unused, wasted) losses in the power management system components and the new hydraulic fan drive system. The system is operated by two new variable displacement piston pumps. These pumps primarily provide for the steering and cooling functions, and are independent of the brake and hoist circuit. One pump is dedicated to a new on-demand hydraulic fan drive system. The other pump feeds a new priority valve and provides hydraulic pressure and flow to feed steering, brake cooling, rear axle filtration (RAX), and the optional RAX cooler systems. The system continues to allow priority for the steering system while using an improved power management scheme for brake cooling and RAX functions. By reducing the losses, the system is able to provide more horsepower to the ground.

Caterpillar Brake System

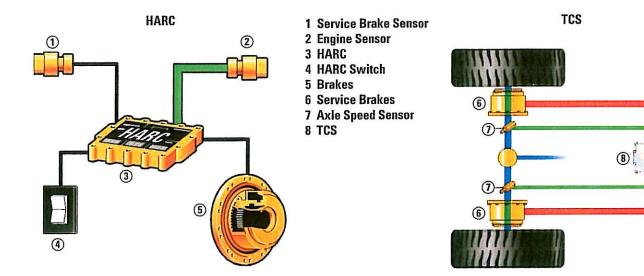
Reliable braking with superior control gives the operator the confidence to focus on productivity.

Integrated Braking System. The Cat oil-cooled braking system delivers reliable performance and control in the most extreme haul road conditions. The integrated system combines the service, secondary, parking brake and retarding functions in the same robust system for optimum braking efficiency.

Cat Data Link. All control modules communicate via the Cat Data Link and work together as an integrated system to maximize production efficiency and extend component life.

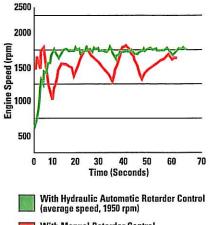

Dil-Cooled Multiple Disc Brakes. Caterpillar four-wheel, forced oil-cooled, multiple disc service brakes are continuously cooled by water-to-oil heat exchangers for exceptional, nonfade braking and retarding performance.

Extended Life Disc Brakes. Extended life friction material has double the wear life of standard brakes and is twice as resistant to glazing for more consistent braking power with less noise. **Brake Design.** Cat oil-cooled disc brakes are designed with large discs and plates for reliable, adjustment-free operation and performance. Brakes are completely enclosed and sealed to prevent contamination and reduce maintenance. **Long Life.** An oil film prevents direct contact between the discs. This design absorbs the braking forces by shearing the oil molecules and carrying heat away to extend brake life.


Pistons. The Caterpillar two-piece piston design combines the service, secondary, parking brake and retarding functions in the same system. The primary piston hydraulically actuates both service and retarding functions. The secondary piston is spring-applied and held in the disengaged position by hydraulic pressure. If hydraulic system pressure drops below a specified level, the spring-applied secondary piston automatically applies the brakes.

Parking Brake. Oil-cooled, springapplied, hydraulically released parking brake is applied to all four wheels for superior parking capability on all grades up to 15 percent.

Hydraulic Automatic Retarder Control (HARC). Hydraulically activated automatic retarder control system electronically controls retarding on grade to maintain optimum engine rpm and oil cooling. Additional braking may be applied using the manual retarder or the brake pedal. HARC is deactivated when the operator applies the brake or accelerator controls.


1 Parking/Secondary Piston 2 Service/Retarding Piston -3 Friction Discs 4 Steel Plates 5 Actuating Springs 6 Cooling Oil In 7 Cooling Oil Out

HARC vs. ARC.

- · Less chance for engine overspeed
- · Smoother engagement
- No loping
- Less air system demand
- Reduces operating costs

HARC Production Advantages.

With Manual Retarder Control (average speed, 1730 rpm)

Faster Speeds. HARC allows the operator to maintain optimum engine speeds for faster downhill hauls and greater productivity.

Superior Control. Automatic brake modulation offers a smoother ride and better control in slippery conditions, allowing the operator to concentrate on driving.

Ease of Operation. HARC increases operating ease, resulting in greater operator confidence with less fatigue.

Engine Overspeed Protection.

Automatically activates HARC when engine speed exceeds factory preset levels, regardless of operator inputs, to avoid potentially damaging engine overspeeds.

Four Corner Retarding. Four corner retarding with 60/40 percent split (rear/front) in braking effort provides superior control in slippery conditions. Balanced front to rear brake torque provides exceptional braking performance and minimizes wheel lock-up, especially during retarding.

Traction Control System (TCS).

Electronically monitors and controls rear wheel slippage for greater traction and enhanced truck performance in poor underfoot conditions. If slippage exceeds a set limit, the oil-cooled disc brakes engage to slow the spinning wheel. Torque is then automatically transferred to the wheel with better traction.

Differential Action. Normal differential action provides superior maneuvering and control in slippery conditions.

Integrated Braking Control (IBC).

Combines Hydraulic Automatic Retarder Control (HARC) and Traction Control System (TCS) into one integrated brake control system for optimum efficiency, performance and reliability.

Fuel Efficiency. The engine provides additional retarding by running against compression on downhill hauls. During retarding applications the engine ECM does not inject fuel into the cylinders for exceptional fuel economy.

Operator's Station

Ergonomically designed for operator comfort, superior control and high productivity.

Ergonomic Layout. The 793D operator station is ergonomically designed for total machine control in a comfortable, productive and safe environment. All controls, levers, switches and gauges are positioned to maximize productivity and minimize operator fatigue.

Quiet Cab. Integral, sound-suppressed ROPS/FOPS cab is resiliently mounted to the mainframe to isolate the operator from sound and vibration for a quiet, secure and comfortable ride.

Viewing Area. Designed for excellent all-around visibility and clear sight lines to the haul road, the large viewing area enables the operator to maneuver with confidence for high productivity.

1) Air Suspension Seat w/ Three-Point Operator Restraint. Ergonomically designed, fully adjustable air suspension seat with adjustable armrests provides optimal driving comfort. A wide, retractable 3-point seat/shoulder belt provides a secure, comfortable restraint.

2) Hoist Lever. Four-position, low effort electronic hoist control system with fingertip control is mounted next to the operator's seat for ease of operation.

3) Secondary Brake Pedal.

Conveniently located on the floor for easy operator control.

4) Monitoring System. The VIMS system features an easy-to-read display and easy-to-use operator input keypad for precise machine status information.

5) Steering Column. Comfort wheel with tilt and telescoping steering provides a comfortable driving position.

6) Transmission Console. Ergonomic gear shift lever with backlit gear indicators optimize efficiency.

7) Parking Brake Reset Valve.

Parking brake cannot be released when air system is drained until valve button is reset.

8) Storage Compartment. Located under the trainer seat for a safe, uncluttered working environment.

9) Trainer Seat. Full-size, fully padded trainer seat features a backrest, wide hip and shoulder room, and seat belt for secure travel. Air suspension, optional.

10) Operator Window. Powered operator window and sliding trainer seat window offer simple operation and an unobstructed view.

11) Operator Controls. Easy to reach turn signal, high beam, intermittent windshield wiper and windshield washer controls are designed for optimum efficiency and comfort.

12) Heating/Air Conditioning.

Electronically controlled four-speed fan and eleven vents deliver temperaturecontrolled air circulation for-a comfortable working environment in any climate. More robust air compressor offers greater durability and longer life.

Communication Systems Ready.

Cab is prewired with power converter, speakers, wiring harness, antenna and mounting locations for add-on radio, closed circuit TV, and MineStar[®] systems.

Serviceability

Less time spent on maintenance means more time on the haul roads.

Servicing Ease. Easy access to daily service points simplifies servicing and reduces time spent on regular maintenance procedures. Enhanced serviceability and 500-hour service intervals are designed to increase machine availability and productivity.

Maintenance Platform. Provides access to engine, air filters, steering hydraulic tank and battery compartment.

In-Frame Access. Permits easy access to major components for easy servicing and removal.

Ground-Level Access. Allows convenient servicing to tanks, filters, drains, and engine shutdown. Ground-level VIMS data port permits easier downloading of information.

Transmission Lockout Switch.

Ground level transmission lockout switch allows the truck to be serviced with the engine running, without the risk of accidental motion.

Autolube. Automatic lubrication system reduces maintenance time by automatically lubricating necessary components on a regular basis.

Fast Fill Service Center. Optional Wiggins fast fill service center features high speed fuel and oil exchange.

Oil Renewal System (ORS). Optional on-board engine oil management system is designed to increase availability and productivity by extending oil change intervals and reduce oil disposal labor and costs. ORS meters and injects used engine oil from the crankcase into the engine's fuel return line. New oil is manually added as a part of daily maintenance.

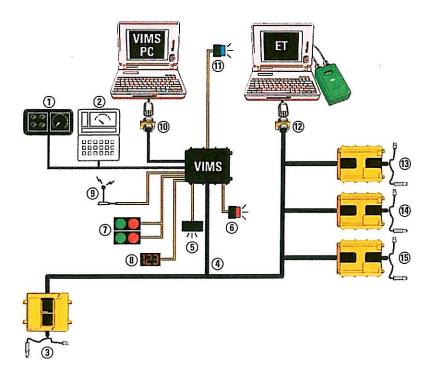
Scheduled Oil Sampling. S•O•S[™] sampling valves speed sampling and analysis reliability.

Pressure Test Points. Disconnect valves are conveniently located throughout the hydraulic systems for easy pressure testing.

Air Filters. Radial seal air filters are easy to change, reducing time required for air filter maintenance.

Sealed Electrical Connectors. Electrical connectors are sealed to lock out dust and moisture. Harnesses are braided for protection. Wires are color coded for easy diagnosis and repair.

Cylinder Heads. Individual cylinder heads are interchangeable for easy removal and visual inspection of internal parts.


On-Board Diagnostic Systems.

The VIMS system continuously checks all critical machine functions and components, and helps locate faults quickly for faster repair. Electronic control system enables quick diagnosis of engine conditions and effective maintenance and repairs utilizing the Electronic Technician (Cat ET) service tool.

Mirrors. The left side mirror mounting bracket is more robust and allows mirror glass to be easily replaced, without the need for a new mirror assembly. New mirror glass slides in and out of the carrier, reducing downtime and maintenance costs.

Monitoring System

Vital machine health and payload data keeps the 793D performing at peak production levels.

- 1 Gauge Cluster
- 2 Message Center and Keypad
- **3 ADEM III Engine Control Module**
- 4 CAT Data Link
- 5 Action Alarm
- 6 Action Lamp
- 7 Payload Lamps
- 8 Payload Display (optional)
- 9 Radio System (optional)
- 10 Data Port (VIMS-PC)
- 11 Service Lamp
- 12 Diagnostic Connector (ET)
- 13 Integrated Brake Control (IBC)
- and Cooling Fan Control Module 14 Transmission/Chassis Control (TCC) Module
- 15 Road Analysis Control (RAC) Module (optional)

VIMS[®] Monitoring System. Intelligent Caterpillar designed machine monitoring system provides critical machine health and payload data in real-time to keep the 793D performing at top production levels.

Integrated System Monitoring. Sensors located throughout the machine systems enable the VIMS system to quickly exchange and monitor information from all machine systems for efficient, high performance operation.

Advanced Diagnostics. VIMS system simplifies troubleshooting, reduces downtime and lowers operating costs by identifying abnormal conditions before they cause extensive damage.

Data Access. Monitoring and diagnostic information is stored on-board until it can be downloaded for analysis. Data can be accessed through the message center, transmitted via optional radio or downloaded onto a computer for detailed analysis.

Machine Management. Service technicians or mine personnel can download data and generate reports for better machine management. Data can be used to improve effectiveness of scheduled maintenance programs, maximize component life, improve machine availability, and lower operating costs.

Speedometer/Tachometer Module. Monitors three systems: engine speed, ground speed and gear indicator.

Gauge Cluster. Conveniently located gauge cluster maintains a constant display of vital machine functions, including:

- engine coolant temperature
- brake oil temperature
- air system pressure
- fuel level

Keypad. Provides operator or service technician immediate access to current machine information, gauge values and stored data through the message center display.

Message Center. Displays messages requested by operator and advises operator of abnormal machine conditions.

Alert System. Three-category warning system alerts operator of abnormal machine health conditions.

• Category I. Machine or system needs attention.

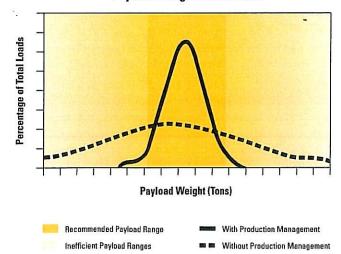
• **Category II.** Requires operator to evaluate and correct situation before continuing work.

• **Category III.** Immediate shutdown required to prevent serious damage to machine or system.

Production Management. Production Management enhances truck/loading tool effectiveness, improves fleet productivity and helps extend the life of truck frames, tires, rims and power train components, while lowering operating and maintenance cost. **Payload Management.** Max Payload Speed Manager is a feature that aids in managing the Caterpillar 10/10/20 Overload Policy. Based on target payload weight and overload settings, the VIMS system logs and warns the operator when the truck reaches overload after 2nd gear reweigh. The truck will be limited to 2nd gear at 1,750 rpm, and the automatic retarder speed setting is reduced to 1,750 rpm until the load is dumped.

Payload management enables the manager to enhance truck/loading tool effectiveness and productivity levels by preventing overloads that can cause damage to component life and affect operator safety.

The Payload Weight Distribution chart illustrates the benefit of managing payloads with VIMS production management tools.


Data Storage. The VIMS system stores payload information, which is used to manage production. The system stores up to 2,400 production cycles for a complete record of payload weight, cycle times, distances and actual dates/times. It also allows storage of maintenance data such as Events, Trends, Histograms, Cumulatives, Snapshot and Dataloggers. This data allows the user to identify potential problems before they occur, utilizing the efficiency of Preventative Maintenance.

External Payload Indicators. External lights on both sides of the truck signals loading tool operator when to cease loading for optimum payloads without overloading. Optional external payload display with digital numeric monitor are available to replace the standard red/green indicator lamps.

Road Analysis Control (RAC). Optional system monitors haul road conditions by measuring frame rack and pitch to improve haul road maintenance, cycle times, tire life and fuel efficiency.

VIMS-PC. VIMS-PC, the off-board reporting software program, allows service personnel to download a complete record of machine health and productivity data to a laptop computer for diagnosis and analysis. Easy-to-use software enables service technicians and mine personnel to generate health and payload reports for more effective machine management.

VIMS Supervisor. Optional software allows mine personnel to easily manage and interpret VIMS data for optimum fleet management and productivity.

Payload Weight Distribution

Truck Body Systems

Cat designed and built for rugged performance and reliability in the toughest mining applications.

Cat Truck Bodies. Caterpillar offers three specific body styles and custom body options to help customers obtain the lowest cost-per-ton hauling solution.

- Dual-Slope
- Flat Floor
- Mine Specific Design (MSD II)

Body Selection. Selection of the right body depends on material and haul road conditions. The better the match of body to application, the greater the efficiency. Your Cat dealer can help you select the right body system for your site specific applications. **Body/Chassis Integration.** Caterpillar truck bodies are designed and matched with the integrated chassis system for optimum structural reliability, durability and long life.

Electronic Hoist Control. Provides the operator with better control of the load when dumping, including over-center load control and modulated control throughout the operating range. The automatic body snubbing feature reduces impact on the frame, hoist cylinders and operator.

Fast Hoist Cycle Times. Two-stage hoist cylinders provide fast dump cycle times of 20.25 seconds for raise and 17.5 seconds for lower. **Body Liners.** A variety of liner options are available to save weight and extend the body system's life. Wear surfaces and liners are equipped to handle tough impact loads while resisting abrasion. Wear plates deliver long life in high wear areas. Modular liner plate packages:

- · Smooth plate
- Rock box
- · Zipper grid
- Mechanically Attached Wear Plate System (MAWPS)

Custom Body Options. Tail extensions, sideboards, tumblebars, rock boxes and rock shedders are available to maintain rated payload, reduce spillage, and improve hauling efficiencies.

- Sideboards are designed to maximize or attain gross machine weight.
- Tail extensions are used to help retain the rear portion of the pile and limit load spillage on haul roads, extending tire life.

Body Design. Cat truck bodies are designed for optimal strength, capacity and durability. Wear surfaces are equipped to handle even the toughest impact and abrasion over the long haul without diminishing capacity.

- Five-Sided Beams tie in the sidewall and floor junctions add increased body rigidity and strength.
- Wide Ribs in body floor provide increased durability and impact support.
- Full-Length Stringers create strength and rigidity throughout the bed.
- Box Section Beams offer increased durability in the floor, sidewall, top rail, corner, and cab canopy areas.

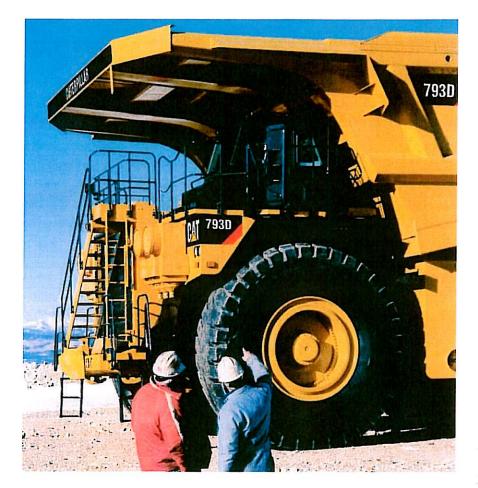
1) Dual-Slope Body. The dual-slope body design with V-shaped floor provides excellent load retention, maintains a low center of gravity, reduces shock loading, and maintains optimum load distribution on steep inclines and in challenging haul road conditions.

- Reinforced, rolled steel top rail increases body strength and protects the body from damage caused by the loading tool or falling material
- 8 degree "V" reduces shock loading and centers the load.
- 7.5 degree forward body slope and 16 degree ducktail slope helps retain loads on steep grades.

2) Flat Floor Body. The flat floor design with slight incline delivers excellent payload capacity, high dump clearances and smooth, controlled dumping.

- Flat floor design provides consistent wear characteristics on body tail.
- 12 degree forward body slope provides good load retention on better maintained haul roads.
- 400 Brinell steel on surfaces provides excellent wear.

3) Mine Specific Design (MSD II) Body. The lightweight MSD II body is based on the flat floor design and is customized to maximize payload potential and minimize cost-per-ton. Each MSD II body design begins with a detailed mine site profile to develop a body suitable for a mine's individual needs.



Target Payload Strategy. Your Caterpillar Dealer can help you manage to target payload to maximize equipment utilization, ensure safe operation, increase productivity and lower cost-per-ton.

- Underloading increases costs due to lost payloads, underutilizes equipment, and drives cost-per-ton.
- Overloading or surpassing maximum gross machine weight, causes excessive wear on vehicle components such as brakes, tires and drivetrain, reducing component life and increasing maintenance costs and repairs.

Customer Support

Caterpillar dealers have what it takes to keep mining haul trucks productive.

Commitment Makes the Difference. Cat dealers offer a wide range of solutions, services and products that help you lower costs, enhance productivity and manage your operation more efficiently. Support goes far beyond parts and service. From the time you select a piece of Cat equipment until the day you rebuild, trade or sell it, the support you get from your Cat dealer makes the difference that counts.

Dealer Capability. Cat dealers will provide the level of support you need, on a global scale. Dealer expert technicians have the knowledge, experience, training and tooling necessary to handle your repair and maintenance needs, when and where you need them. **Product Support.** Cat dealers believe superior products deserve superior support. When Cat products reach the field, they are supported by a worldwide network of parts distribution facilities, dealer service centers, and technical training facilities to keep your equipment up and running. Cat customers rely on prompt, dependable parts availability and expertise through our global dealer network, ready to meet your needs 24/7.

Service Support. Every piece of Cat equipment is designed and built to provide maximum productivity and operating economy throughout its working life. Cat dealers offer a wide range of service plans that will maximize uptime and return on your investment, including:

- · Preventive Maintenance Programs
- Diagnostic Programs, such as Scheduled Oil Sampling and Technical Analysis
- · Rebuild and Reman Options
- Customer Support Agreements

Application Awareness. Operating and maintenance costs are influenced by many application and site-specific factors, such as: material density, loading position, payload, grades, speeds, haul road design, and maintenance. To optimize total cost of ownership and productivity, your Cat dealer can provide you with a fundamental understanding of the effects application characteristics and operating techniques have on maintenance and operating costs.

Operation. With today's complex products, equipment operators must have a thorough understanding of machine systems and operating techniques to maximize efficiency and profitability. Your Cat dealer can arrange training programs to help operator's improve productivity, decrease downtime, reduce operating costs, enhance safety, and improve return on the investment you make in Cat products.

Technology Products. Cat dealers offer a range of advanced technology products such as VIMS[®] monitoring system and MineStar[®] information management system. These products include radio data communications, machine monitoring and diagnostics, fleet management, and haul road maintenance software – all designed to improve fleet efficiency, increase productivity, and lower costs.

www.cat.com. For more complete information on Cat products, dealer services, and industry solutions, visit us on the web at www.cat.com.

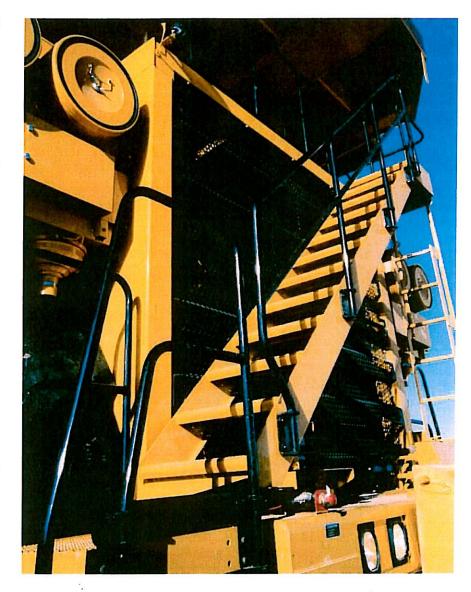
Safety

Caterpillar mining machines and systems are designed with safety as the first priority.

Product Safety. Caterpillar has been and continues to be proactive in developing mining machines that meet or exceed safety standards. Safety is an integral part of all machine and systems designs.

SAE and ISO Standards. The 793D is designed to many national and international standards.

Integral ROPS Cab. Resiliently mounted to the main frame to reduce vibration and sound, the integral ROPS structure is designed as an extension of the truck frame. The ROPS/FOPS structure provides "five sided protection" for the operator.


Ladder/Secondary Egress. A wide, stationary stairway allows easy access to and from the machine. The ladder on the left side of the machine permits secondary access or emergency egress.

Brake Systems. Four corner oil-cooled braking system provides excellent control in slippery conditions. The service brakes and retarding system are actuated by modulated hydraulic pressure, while secondary and parking brake functions are spring applied and hydraulic released. This system assures braking in the event of complete hydraulic failure.

Steering System. A twin double-acting cylinder steering system is designed to deliver precise control under all loading and underfoot conditions. The steering hydraulic system is separate from the main hydraulic system to prevent crosscontamination and overheating from other sources.

Engine Shutoff Switch. A secondary engine shutoff switch is located at ground level.

Electrical System Disconnect. A battery disconnect switch, located directly above the front bumper provides ground level lockout of the electrical system.

Overload Policy. Safety is integral to maintaining the highest productivity in mining machine operation. The Caterpillar 10/10/20 Overload Policy assures that steering and braking systems have sufficient capacity to perform, even at 20% overload.

Standard Safety Features.

- Slip resistant surfaces
- 75 mm (3 in) wide orange three-point operator restraint
- Wide-angle mirrors
- Body raised indicator
- Body retaining cable
- Guard rails
- · Reverse neutralizer when dumping
- · Low interior sound level

SAFETY.CAT.COM™.

Engine

Engine Model	Cat 3516B HD EUI	
Rated Power	1,750 rpm	
Gross Power – SAE J1995	1801 kW	2,415 hp
Net Power – SAE J1349	1743 kW	2,337 hp
Net Power – ISO 9249	1743 kW	2,337 hp
Net Power – 80/1269/EEC	1743 kW	2,337 hp
Torque Rise	23%	
Bore	170 mm	6.7 in
Stroke	215 mm	8.5 in
Displacement	78 L	4,760 in ³

 Power ratings apply at 1,750 rpm when tested under the specified condition for the specified standard.

- Ratings based on SAE J1995 standard air conditions of 25° C (77° F) and 99 kPa (29.61 Hg) dry barometer. Power based on fuel having API gravity of 35 at 16° C (60° F) and an LHV of 42 780 kJ/kg (18,390 Btu/lb) when engine used at 30° C (86° F).
- No engine derating required up to 2750 m (9,000 ft) altitude.
- Compliant with U.S. Environmental Protection Agency Tier I emissions standards.

Weights - Approximate

Gross Machine Operating Weight	383 749 kg	846,000 lb
Chassis Weight	116 707 kg	257,294 lb
Body Weight Range	21 795 - 54 4	131 kg /
	48,050 - 120	,000 lb

- Chassis weight with 100% fuel, hoist, body mounting group, rims and tires.
- Body weight varies depending on how body is equipped.

Operating Specifications

Nominal Payload Capacity	218 tonnes	240 tons
Body Capacity (SAE 2:1)	129 m³	169 yd ³
Maximum Capacity	Custom	
Top Speed – Loaded	54.3 km/h	33.7 mph
Steer Angle	36°	
Turning Diameter – Front	28.42 m	93 ft 3 in
Turning Circle Clearance Diameter	32.66 m	107 ft 2 in

· Body Capacity (SAE 2:1) with Dual Slope Body.

 Refer to the Caterpillar Mining Truck 10/10/20 Overload Policy for maximum gross machine weight limitations.

Transmission

Forward 1	11.8 km/h	7.3 mph
Forward 2	15.9 km/h	9.9 mph
Forward 3	21.5 km/h	13.4 mph
Forward 4	29 km/h	18.1 mph
Forward 5	39.4 km/h	24.5 mph
Forward 6	54.3 km/h	33.7 mph
Reverse	10.9 km/h	6.8 mph

• Maximum travel speeds with standard 40.00-R57 tires.

Final Drives

Differential Ratio	1:8:1	
Planetary Ratio	16:1	
Total Reduction Ratio	28.8:1	

Planetary, full-floating.

Suspension

Effective Cylinder Stroke – Front	130.5 mm	5.2 in
Effective Cylinder Stroke – Rear	105.5 mm	4.2 in
Rear Axle Oscillation	±4.9°	

Brakes

Outside Diameter	874.5 mm	34.5 in
Brake Surface – Front	89 817 cm²	13,921 in ²
Brake Surface – Rear	134 500 cm ²	20,847 in ²
Standards	J-ISO 3450 JAN88,	
	ISO 3450:199	6

• Gross Machine Operating Weight is 383 749 kg (846,000 lb).

Body Hoists

Pump Flow – High Idle	846 L/min	224 gal/min
Relief Valve Setting – Raise	20 370 kPa	2,955 psi
Body Raise Time – High Idle	20.25 Seconds	
Body Lower Time – Float	19.26 Seconds	
Body Power Down – High Idle	17.51 Seconds	

- Twin, two-stage hydraulic cylinders mounted inside main frame; double-acting cylinders in second stage.
- Power raise in both stages; power down in second stage.
- Automatic body-lower modulation reduces impact on frame.

Weight Distributions – Approximate

Front Axle – Empty	46%	
Rear Axle – Empty	54%	
Front Axle – Loaded	33%	
Rear Axle – Loaded	67%	

Capacity - Dual Slope - 100% fill factor

Struck	96 m ³	126 yd ³
Heaped (SAE 2:1)	129 m³	169 yd ³

Service Refill Capacities

Fuel Tank	4354 L	1,150 gal
Fuel Tank (optional)	4922 L	1,300 gal
Cooling System	973 L	257 gal
Crankcase	265 L	70 gal
Rear Axle Housing	1022 L	270 gal
Steering Tank	227 L	60 gal
Steering System (Includes Tank)	341 L	90 gal
Brake/Hoist Hydraulic Tank	769 L	203 gal
Brake/Hoist System (Includes Tank)	1375 L	363 gal
Torque Converter/ Transmission Sump	102 L	27 gal
Torque Converter/Transmission System (Includes Sump)	189 L	50 gal

ROPS

ROPS Standards

- ROPS (Rollover Protective Structure) for cab offered by Caterpillar meets ISO 3471:1994 ROPS criteria.
- FOPS (Falling Objects Protective Structure) meets ISO 3449:1992 Level II FOPS criteria.

Sound

Sound Standards

- The operator sound pressure level measured according to work cycle procedures specified in ANSI/SAE J1166 MAY90 is 76 dB(A) for cab offered by Caterpillar, when properly installed and maintained and tested with doors and windows closed.
- The exterior sound pressure level for the standard machine measured at a distance of 15 m (49 ft) according to the test procedures specified in SAE J88 APR95, mid-gear moving operation is 89 dB(A).
- Hearing protection may be needed when operating with an open operator station and cab (when not properly maintained or doors/windows open) for extended periods or in a noisy environment.

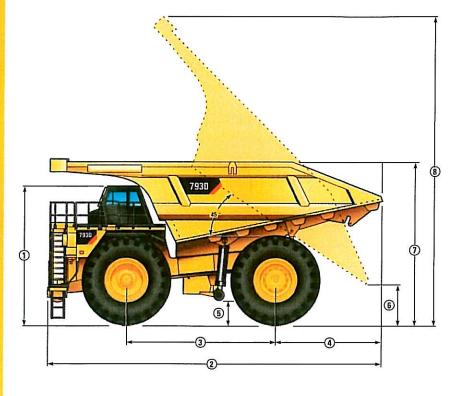
Steering

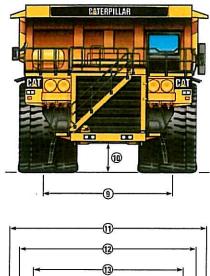
Steering Standards

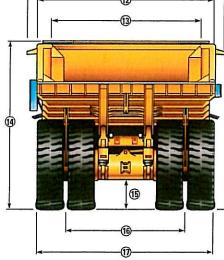
SAE J15111 OCT90, ISO 5010:1992

Gross Machine Operating Weight is 383 749 kg (846,000 lb).

Tires


Standard Tire


40.00R57


- Productive capabilities of the 793D truck are such that, under certain job conditions, TKPH (TMPH) capabilities of standard or optional tires could be exceeded and, therefore, limit production.
- Caterpillar recommends the customer evaluate all job conditions and consult the tire manufacturer for proper tire selection.

Dimensions

All dimensions are approximate. Shown with MSD II Body. Dimensions are with Dual Slope Body.

1	Height to Top of ROPS	5584 mm	18 ft 4 in
2	Overall Length	12 862 mm	42 ft 3 in
3	Wheelbase	5905 mm	19 ft 5 in
4	Rear Axle to Tail	3772 mm	12 ft 5 in
5	Ground Clearance	1005 mm	3 ft 4 in
6	Dump Clearance	1364 mm	4 ft 6 in
7	Loading Height – Empty	5871 mm	19 ft 4 in
8	Overall Height – Body Raised	13 113 mm	43 ft 1 in
9	Centerline Front Tire Width	5610 mm	18 ft 5 in
10	Engine Guard Clearance	1294 mm	4 ft 3 in
11	Overall Canopy Width	7680 mm	25 ft 3 in
12	Outside Body Width	6940 mm	22 ft 10 in
13	Inside Body Width	6500 mm	21 ft 4 in

14	Front Canopy Height	6494 mm	21 ft 4 in
15	Rear Axle Clearance	1128 mm	3 ft 8 in
16	Centerline Rear Dual Tire Width	4963 mm	16 ft 3 in -
17	Overall Tire Width	7605 mm	24 ft 11 ir

Standard Equipment

Standard equipment may vary. Consult your Caterpillar dealer for details.

Air Line Dryer (2) Air Starter, Vane-type Alarm, Back-up Alternator (105-amp) Automatic Lubrication System (Lincoln) Automatic Retarder Control Batteries, 93-amp-hour, Low-maintenance, 12-volt (2) **Body Mounting Group** Brake Release Motor for Towing Brake System Oil-cooled, Multiple-disc, Front and Rear Parking Secondary, Emergency Cab, ROPS Air Cleaner Service Indicator Air Conditioner Ashtray Cigarette Lighter Coat Hook **Diagnostic Connector** Electric Engine Control Fault Indicator Electric Window (Operator Only) Entertainment Radio Ready Glass, Tinted Heater/defroster: 11 070 kCal (43,930 Btu) Horn Insulated and Sound Suppressed Dome Courtesy Light Mirrors, Right and Left **Quad-Gauge** Panel Air Pressure Brake Oil Temperature **Coolant Temperature** Fuel Level Seat, Air Suspension w/3-piece compartment Seat, Passenger, Non-suspension Seat Belts, 75 mm (3 in) wide retractable Speedometer Steering, Automatic Supplemental Steering Wheel, Tilt, Padded, Telescopic Storage Compartment Sun Visor Tachometer Transmission Gear Indicator VIMS Keypad VIMS Message Center with Universal Gauge Windshield Wiper and Washer

Driveline Guard Dumping, Auxiliary Quick Connect for "Buddy Dumping" Electrical System, 12-volt to 24-volt Engine - Caterpillar 3516B HD EUI Diesel Engine Air Cleaner with Precleaner (2) Elevated Low Idle Control Ether Starting Aid, Automatic Multi-Point Oil Pressure Sensing Turbocharger (4)/Aftercooler Fast-fill Fuel System, Wiggins Ground Level **Battery Disconnect** Engine Shutdown VIMS Dataports (2) Lighting System Back-up Lights, Halogen Direction Signals and Hazard Warning (Rear Halogen) Headlights, Halogen, With Dimmer LH Ladder Light and Service Deck Lights Stop and Tail Lights (LED) Under-hood Light Oil Change System, Quick Service Reservoirs (Separate) Brake/Hoist Steering/Fan Transmission/Converter Rims, Center Mounted for 40.00-R57 Tires Rock Ejectors Steering, Auxiliary Quick Connect for Towing Tie Down Eyes Tow Hooks, Front Tow Pin, Rear Traction Control System Transmission 6-speed, Automatic Power Shift Body-up Shift Inhibitor Controlled Throttle Shifting **Directional Shift Management** Electronic Control and Downshift Inhibitor Lock-up Torque Converter Neutral Coast Inhibitor Neutral Start Switch, Reverse Shift Inhibitor Programmable Top Gear Reverse Neutralizer during Dumping Vandalism Protection Locks VIMS® Monitoring System with Max Payload Speed Manager

Optional Equipment

With approximate changes in operating weights. Optional equipment may vary. Consult your Caterpillar Dealer for specifics.

	kg	lb
Air suspension companion seat	12	27
Catwalk and handrail assemblies rear of cab	83	183
External payload display	54	119
Fuel tank (4921 L/1,300 gal)	139	306
Heated mirrors	5	10
Heater, engine coolant and oil		
240-volt external power	15	33
Heater, fuel recirculation type, non-electric	17	37
HID lights	14	31
Hub odometer (km or miles)	6	13

	kg	lb
Oil Renewal System (ORS)	8	17
Prelubrication system	30	66
Rear axle filtration cooler	75	165
Retractable visor	1	2
Road Analysis Control (RAC)	6	13
Starting systems:		
Air (IR turbine)	-15	-33
Air (TDI turbine)	-31	-68
Transmission lockout – ground level switch	5	11
Wheel chocks	26	57
Wiggins service center	137	302

Weight/Payload Calculation*

	kg	lb
Chassis**	64 061	141,230
Body Mounting Group	735	1,620
Tires (6) 40.00R57	21 364	47,100
Wheel Arrangement – Standard with 29" Rims	30 547	67,344
TOTAL EMPTY CHASSIS WEIGHT (CLEAN)	116 707	257,294
	2	
4% Debris	4668	10,292
Body Weight*	32 129	70,832
Full Liner	11 025	24,306
Tail Extension	1005	2,215
Side Boards	1332	2,936
Gross Machine Weight (empty)	166 866	367,875

* With Dual Slope Body.

** Includes standard arrangement, 100% fuel, starting system, seats, fan arrangement, exhaust system, tires, and all mandatory attachments less wheel group.

31

793D Mining Truck

For more complete information on Cat products, dealer services, and industry solutions, visit us on the web at www.cat.com

> © 2007 Caterpillar All Rights Reserved Printed in U.S.A.

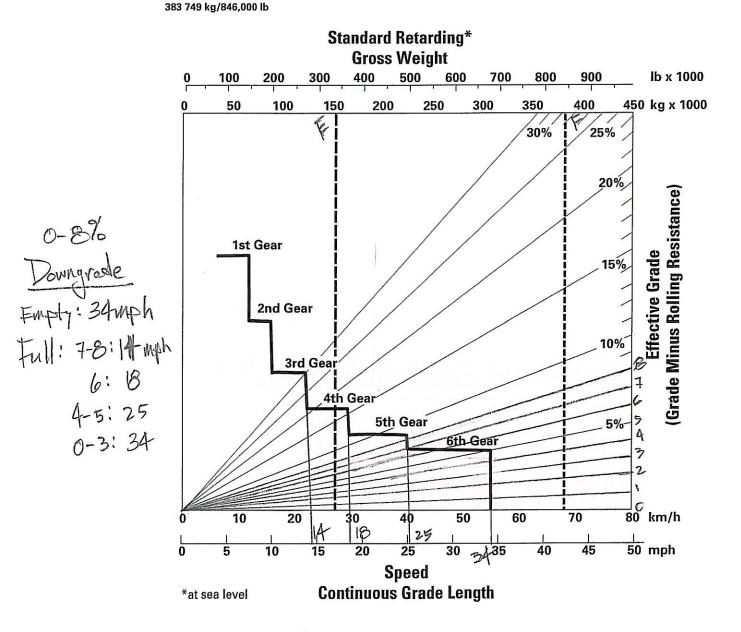
Materials and specifications are subject to change without notice. Featured machines in photos may include additional equipment. See your Caterpiller dealer for available options.

CAT, CATERPILLAR, SAFETY.CAT.COM, their respective logos, S-O-S, VIMS, and Minestar, "Caterpillar Yellow" and the POWER EDGE trade dress, as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

۰.

AEHQ5600-01 (11-07) Replaces AEHQ5600

Retarding Performance – Standard

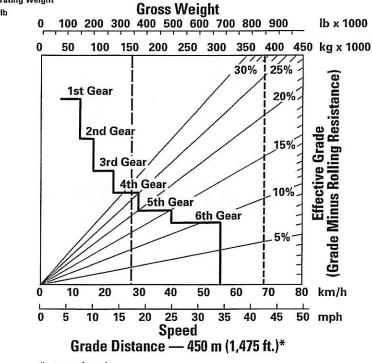

To determine retarding performance: Add lengths of all downhill segments and, using this total, refer to proper retarding chart. Read from gross weight down to the percent effective grade. Effective grade equals actual % grade minus 1% for each 10 kg/t (20 lb/ton) of rolling resistance. From this weight-effective grade point, read horizontally to the curve with the highest obtainable gear, then down to maximum descent speed brakes can properly handle without exceeding

> Typical Field Empty Weight Gross Machine Operating Weight

cooling capacity. The following charts are based on these conditions: 32° C (90° F) ambient temperature, at sea level, with 40.00R57 tires.

NOTE: Select the proper gear to maintain engine rpm at the highest possible level, without overspeeding the engine. If cooling oil overheats, reduce ground speed to allow transmission to shift to the next lower speed range.

425 K E. BULL LOAND.


23

Retarding Performance – Standard

Typical Field Empty Weight

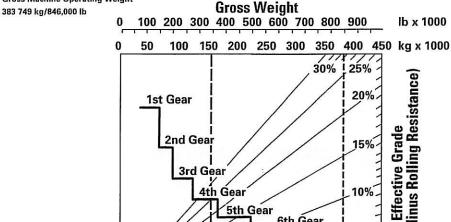
- Gross Machine Operating Weight

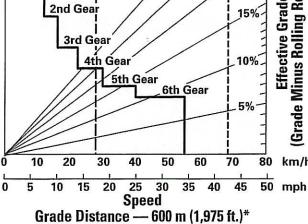
lb x 1000

Grade Minus Rolling Resistance)

km/h

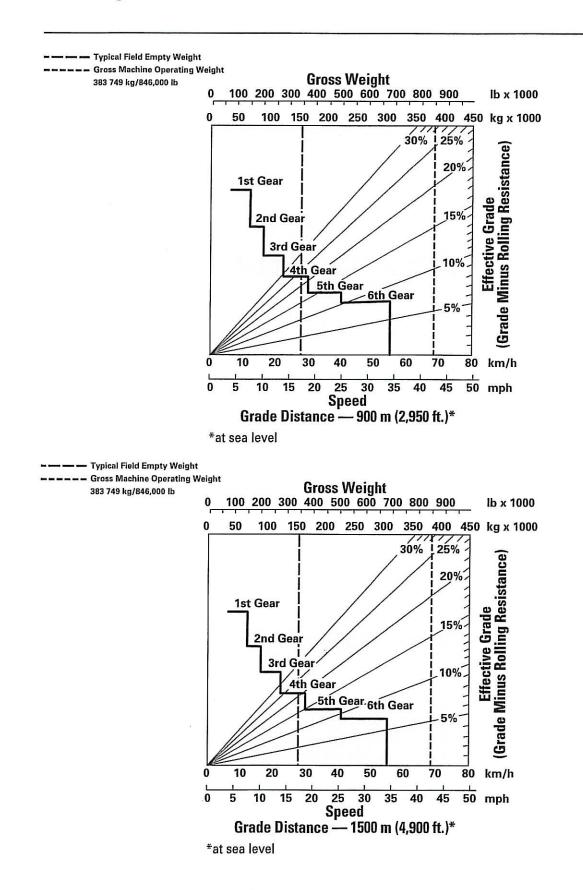
25%


20%


15%

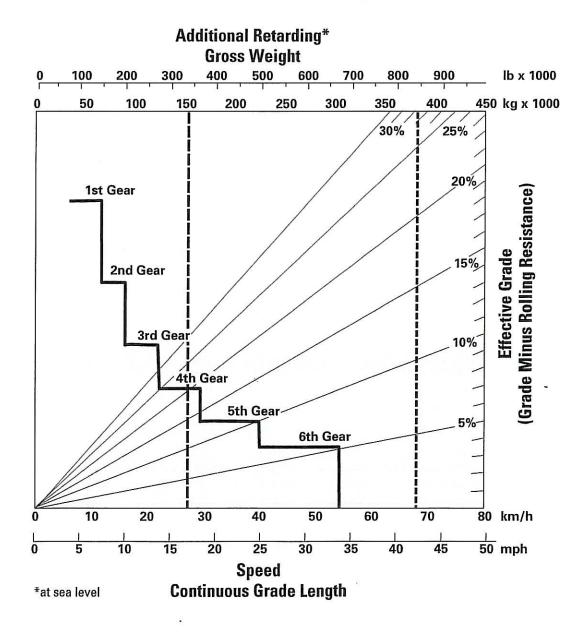
*at sea level

Typical Field Empty Weight

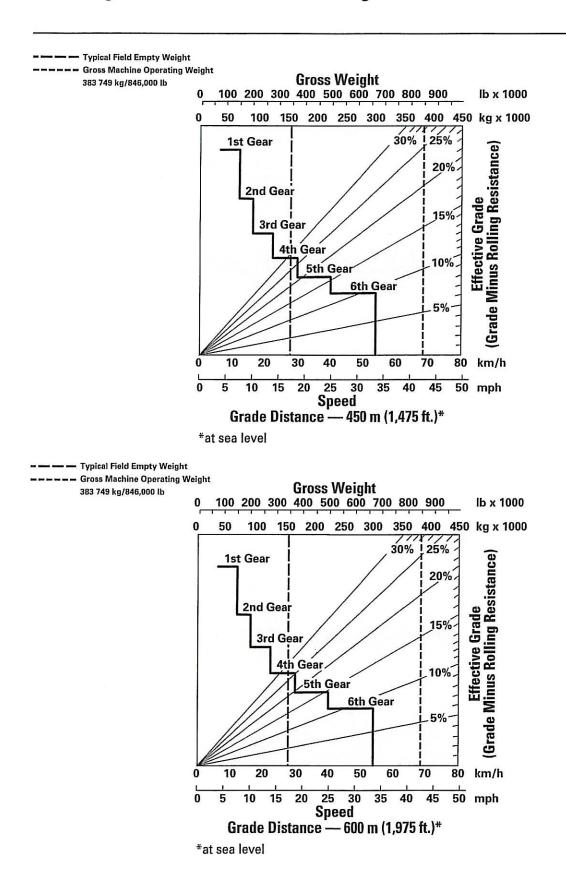

- Gross Machine Operating Weight

*at sea level

Retarding Performance – Standard



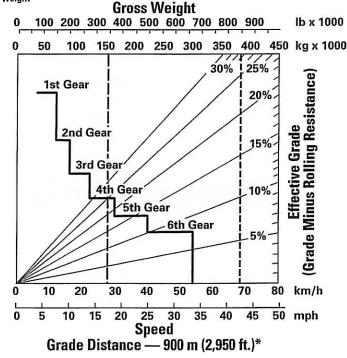
Retarding Performance – Extra Retarding


To determine retarding performance: Add lengths of all downhill segments and, using this total, refer to proper retarding chart. Read from gross weight down to the percent effective grade. Effective grade equals actual % grade minus 1% for each 10 kg/t (20 lb/ton) of rolling resistance. From this weight-effective grade point, read horizontally to the curve with the highest obtainable gear, then down to maximum descent speed brakes can properly handle without exceeding cooling capacity. The following charts are based on these conditions: 32° C (90° F) ambient temperature, at sea level, with 40.00R57 tires.

NOTE: Select the proper gear to maintain engine rpm at the highest possible level, without overspeeding the engine. If cooling oil overheats, reduce ground speed to allow transmission to shift to the next lower speed range.

Typical Field Empty Weight
 Gross Machine Operating Weight
 383 749 kg/846,000 lb

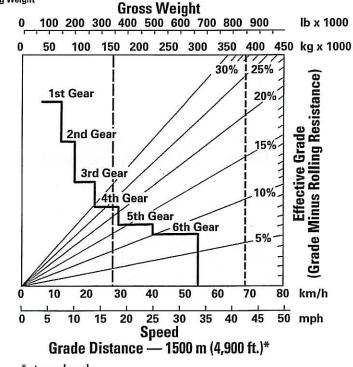
Retarding Performance – Extra Retarding



27

Retarding Performance – Extra Retarding

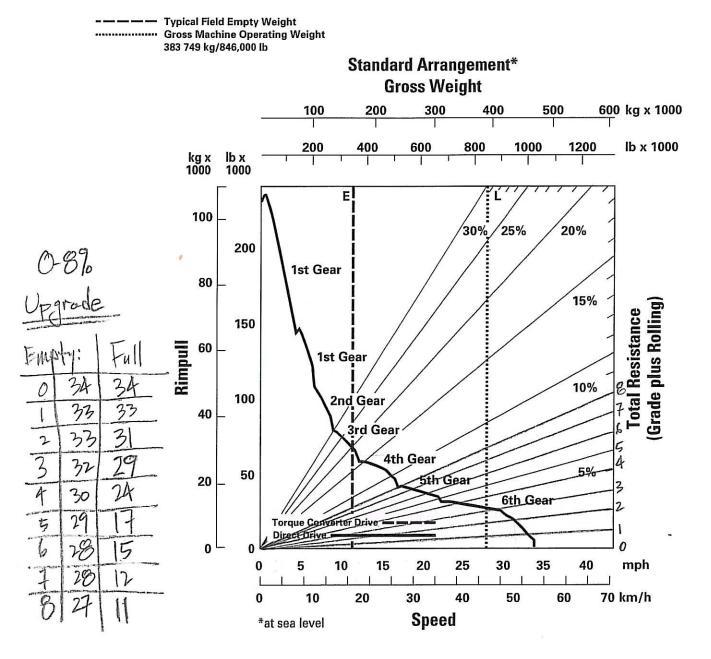
- Typical Field Empty Weight



*at sea level

Typical Field Empty Weight

- Gross Machine Operating Weight


383 749 kg/846,000 lb

*at sea level

Gradeability/Speed/Rimpull

To determine gradeability performance: Read from gross weight down to the percent of total resistance. Total resistance equals actual percent grade plus 1% for each 10 kg/t (20 lb/ton) of rolling resistance. From this weight-resistance point, read horizontally to the curve with the highest obtainable gear, then down to maximum speed. Usable rimpull will depend upon traction available and weight on drive wheels.

Appendix C

Haulage Profiles and Cycle Times

Appendix C-1

Proposed East Stockpile Location Haulage Profiles and Cycle Times

Concept: P-1

LOADED

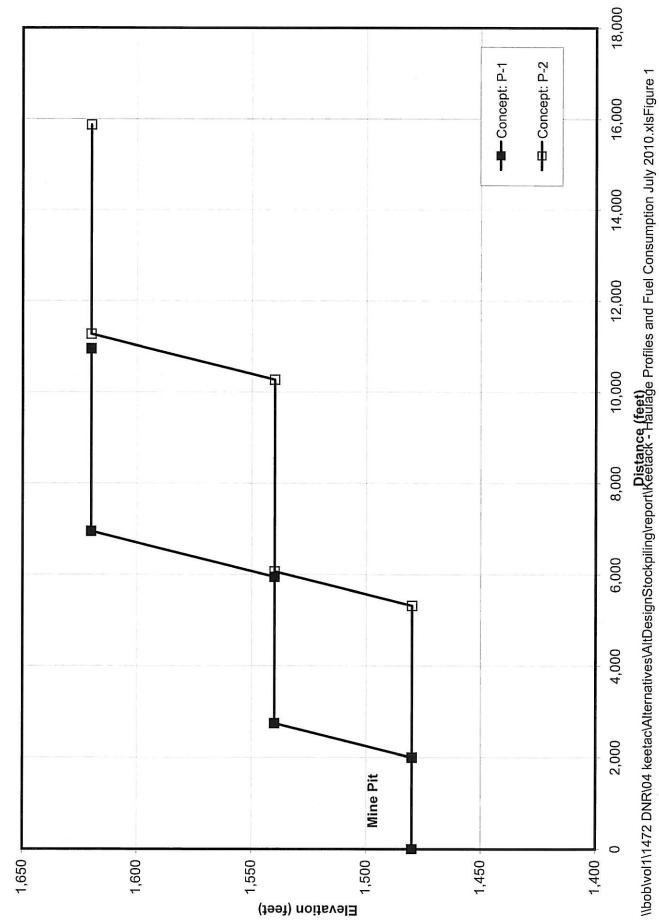
Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
2,000	2,000	1,480	0.00%	2,992	0.67
750	2,750	1,540	8.00%	968	0.77
3,200	5,950	1,540	0.00%	2,992	1.07
1,000	6,950	1,620	8.00%	968	1.03
4,000	10,950	1,620	0.00%	2,992	1.34
fannar de constante			Loaded Deliv	ery Time:	4.88

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
2,000	0.00%	2,992	0.67
750	-8.00%	2,992	0.25
3,200	0.00%	2,992	1.07
1,000	-8.00%	2,992	0.33
4,000	0.00%	2,992	1.34
	Retu	ırn Time:	3.66
		oad time: np Time:	5.00 1.50
Total Time: Actual Time (accounting for cuves in road):			15.04 18.80

.

•


Concept: P-2

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,320	5,320	1,480	0.00%	2,992	1.78
750	6,070	1,540	8.00%	968	0.77
4,200	10,270	1,540	0.00%	2,992	1.40
1,000	11,270	1,620	8.00%	968	1.03
4,600	15,870	1,620	0.00%	2,992	1.54
4-11-			Loaded Deliv	ery Time:	6.53

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,320	0.00%	2,992	1.78
750	-8.00%	2,992	0.25
4,200	0.00%	2,992	1.40
1,000	-8.00%	2,992	0.33
4,600	0.00%	2,992	1.54
	Retu	Irn Time:	5.30
		ĩ.	
	Le	oad time:	5.00
	Du	np Time:	1.50
Total Time:			18.33
Actual Time (accounting for cuves in road):			22.91

Concept A Surface Material Haulage Profiles and Cycle Times

Concept: A-1

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,320	5,320	1,480	0.00%	2,992	1.78
750	6,070	1,540	8.00%	968	0.77
4,200	10,270	1,540	0.00%	2,992	1.40
1,000	11,270	1,620	8.00%	968	1.03
2,200	13,470	1,620	0.00%	2,992	0.74
500	13,970	1,520	-20.00%	1,232	0.41
1,300	15,270	1,520	0.00%	2,992	0.43
625	15,895	1,570	8.00%	968	0.65
500	16,395	1,570	0.00%	2,992	0.17
625	17,020	1,620	8.00%	968	0.65
4			Loaded Deliv	ery Time:	8.02

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,320	0.00%	2,992	1.78
750	-8.00%	2,992	0.25
4,200	0.00%	2,992	1.40
1,000	-8.00%	2,992	0.33
2,200	0.00%	2,992	0.74
500	20.00%	2,376	0.21
1,300	0.00%	2,992	0.43
625	-8.00%	2,992	0.21
500	0.00%	2,992	0.17
625	-8.00%	2,992	0.21
	Retu	rn Time:	5.73
	Lo	ad time:	5.00
Dump Time:			1.50
Total Time:			20.26
	25.32		

э

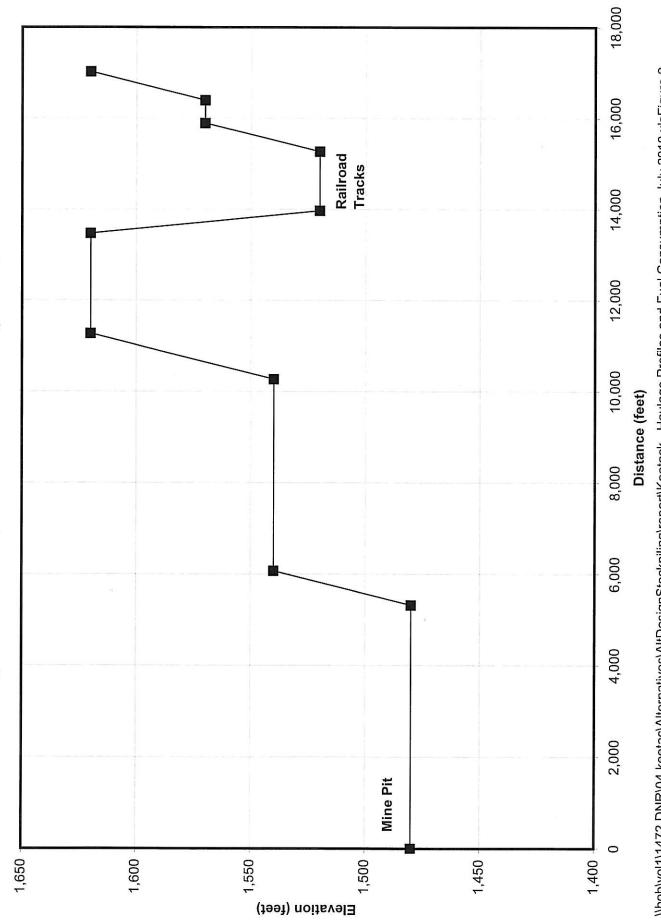


Figure 2. East Stockpile Surface Material Haulage Profile A-1

\\bob\vol1\1472 DNR\04 keetac\Alternatives\AltDesignStockpiling\report\Keetack - Haulage Profiles and Fuel Consumption July 2010.xlsFigure 2

Concept B Surface Material Haulage Profiles and Cycle Times

Concept: B-1

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	1,232	4.36
1,125	6,500	1,050	0.00%	2,992	0.38
4,312	10,812	1,392	7.93%	1,056	4.08
2,938	13,750	1,392	0.00%	2,992	0.98
250	14,000	1,400	3.20%	2,552	0.10
812	14,812	1,458	7.14%	1,056	0.77
188	15,000	1,468	5.32%	1,496	0.13
1,312	16,312	1,555	6.63%	1,320	0.99
1,250	17,562	1,623	5.44%	1,496	0.84
1,563	19,125	1,631	0.51%	2,992	0.52
1,187	20,312	1,650	1.60%	2,904	0.41
500	20,812	1,690	8.00%	968	0.52
1,000	21,812	1,690	0.00%	2,992	0.33
500	22,312	1,730	8.00%	968	0.52
2,000	24,312	1,730	0.00%	2,992	0.67
			Loaded Deliv	ery Time:	10.85

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,375	8.00%	2,376	2.26
1,125	0.00%	2,992	0.38
4,312	-7.93%	2,992	1.44
2,938	0.00%	2,992	0.98
250	-3.20%	2,992	0.08
812	-7.14%	2,992	0.27
188	-5.32%	2,992	0.06
1,312	-6.63%	2,992	0.44
1,250	-5.44%	2,992	0.42
1,563	-0.51%	2,992	0.52
1,187	-1.60%	2,992	0.40
500	-8.00%	2,992	0.17
1,000	0.00%	2,992	0.33
500	-8.00%	2,992	0.17
2,000	0.00%	2,992	0.67
	Return Time: Load time:		8.59
			5.00
	Dump Time:		1.50
	Total Time:		25.95

Actual Time (accounting for cuves in road): 32.43

Concept: B-2

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	2,586	2.08
1,125	6,500	1,050	0.00%	2,012	0.56
7,175	13,675	1,624	8.00%	607	11.83
1,000	14,675	1,624	0.00%	2,012	0.50
500	15,175	1,664	8.00%	607	0.82
1,000	16,175	1,664	0.00%	2,012	0.50
500	16,675	1,704	8.00%	607	0.82
1,000	17,675	1,704	0.00%	2,012	0.50
500	18,175	1,744	8.00%	607	0.82
875	19,050	1,744	0.00%	2,012	0.43
			Loaded Deliv	ery Time:	18.87

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			- X-10
5,375	8.00%	2,376	2.26
1,125	0.00%	2,992	0.38
7,175	-8.00%	2,992	2.40
1,000	0.00%	2,992	0.33
500	-8.00%	2,992	0.17
1,000	0.00%	2,992	0.33
500	-8.00%	2,992	0.17
1,000	0.00%	2,992	0.33
500	-8.00%	2,992	0.17
875	0.00%	2,992	0.29
	R	eturn Time:	6.83
		Load time:	5.00
Dump Time:			1.50
Total Time:			32.20
	40.25		

•

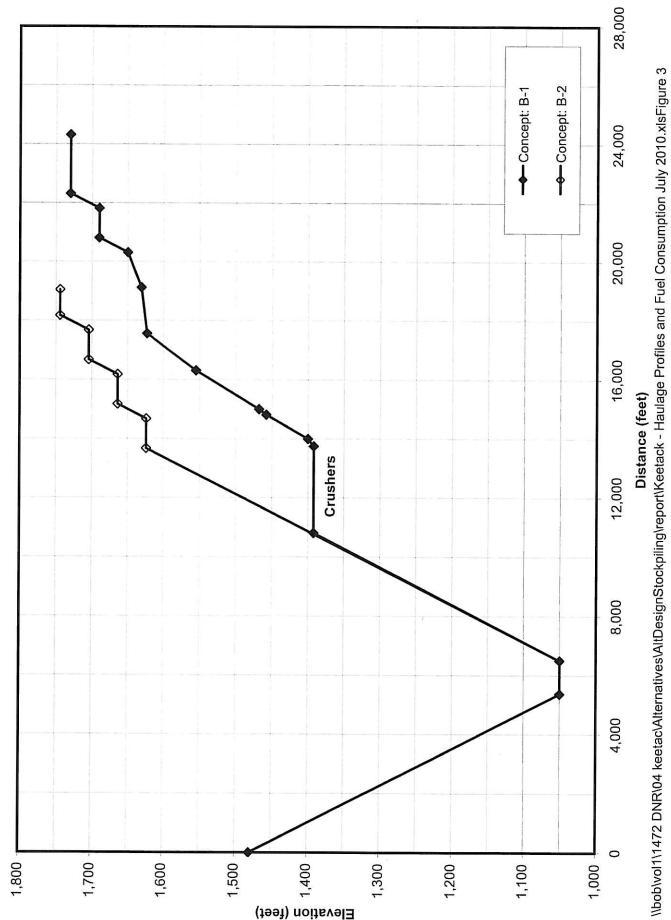


Figure 3. East Stockpile Surface Material Haulage Profiles B-1 and B-2

Concept C Surface Material Haulage Profiles and Cycle Times

Concept: C-1

LOADED

.

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	1,232	4.36
1,100	6,475	1,050	0.00%	2,992	0.37
4,250	10,725	1,390	8.00%	968	4.39
2,925	13,650	1,390	0.00%	2,992	0.98
280	13,930	1,403	4.64%	2,112	0.13
800	14,730	1,457	6.75%	1,320	0.61
200	14,930	1,466	4.50%	2,112	0.09
1,300	16,230	1,555	6.85%	1,320	0.98
1,200	17,430	1,622	5.58%	1,496	0.80
1,600	19,030	1,630	0.50%	2,992	0.53
1,200	20,230	1,650	1.67%	2,904	0.41
1,560	21,790	1,690	2.56%	2,728	0.57
5,640	27,430	1,690	0.00%	2,992	1.89
			Loaded Delive	ery Time:	16.12

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,375	8.00%	2,376	2.26
1,100	0.00%	2,992	0.37
4,250	-8.00%	2,992	1.42
2,925	0.00%	2,992	0.98
280	-4.64%	2,992	0.09
800	-6.75%	2,992	0.27
200	-4.50%	2,992	0.07
1,300	-6.85%	2,992	0.43
1,200	-5.58%	2,992	0.40
1,600	-0.50%	2,992	0.53
1,200	-1.67%	2,992	0.40
1,560	-2.56%	2,992	0.52
5,640	0.00%	2,992	1.89
	Retu	Irn Time:	9.63
	Load time:		5.00
	Dump Time:		1.50
	То	tal Time:	32.26

Actual Time (accounting for cuves in road): 40.32

Concept: C-2

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	2,586	2.08
1,125	6,500	1,050	0.00%	2,012	0.56
6,500	13,000	1,508	7.05%	818	7.95
4,900	17,900	1,650	2.90%	1,599	3.06
1,626	19,526	1,690	2.46%	1,669	0.97
5,687	25,213	1,690	0.00%	2,012	2.83
			I a sala di Dalla		47 45

Loaded Delivery Time: 17.45

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,375	8.00%	2,376	2.26
1,125	0.00%	2,992	0.38
6,500	-7.05%	2,992	2.17
4,900	-2.90%	2,992	1.64
1,626	-2.46%	2,992	0.54
5,687	0.00%	2,992	1.90
	Retu	Return Time: Load time: Dump Time:	
	Lo		
	Dun		
	Tot	Total Time:	
Actual Time (accounting for cuves in road):			41.05

•

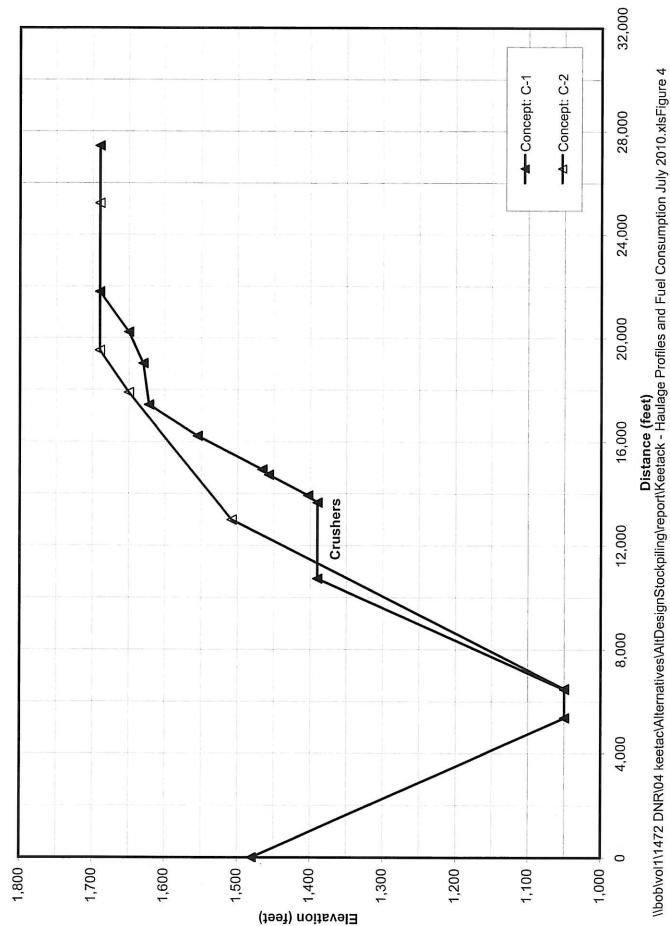


Figure 4. East Stockpile Surface Material Haulage Profiles C-1 and C-2

Appendix C-5

Concept D Surface Material Haulage Profiles and Cycle Times

Concept: D-1

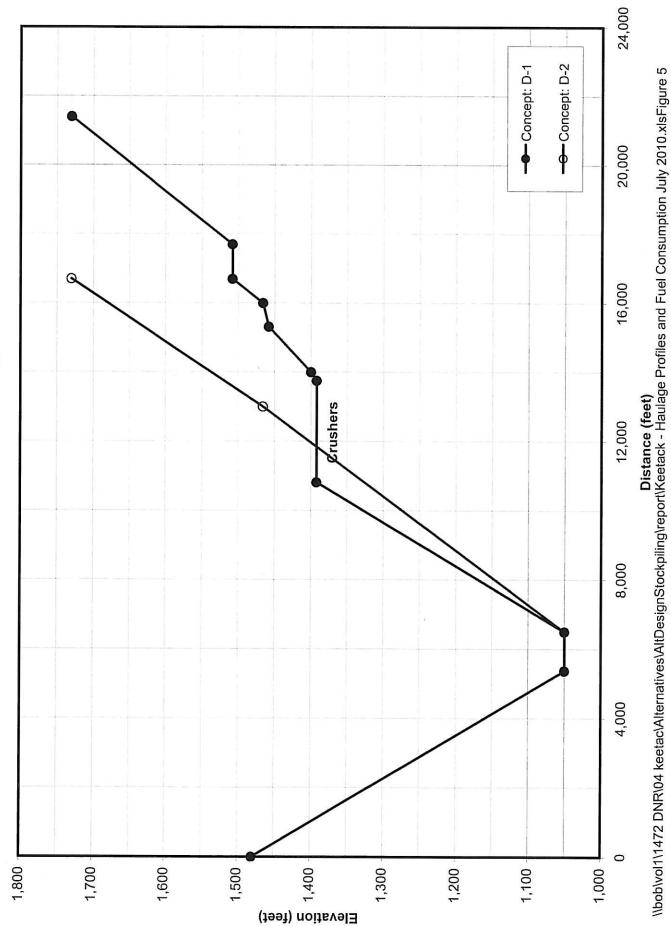
LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	1,232	4.36
1,125	6,500	1,050	0.00%	2,992	0.38
4,312	10,812	1,392	7.93%	1,056	4.08
2,938	13,750	1,392	0.00%	2,992	0.98
250	14,000	1,400	3.20%	2,552	0.10
1,312	15,312	1,458	4.42%	2,112	0.62
688	16,000	1,466	1.16%	2,904	0.24
700	16,700	1,508	6.00%	1,320	0.53
1,000	17,700	1,508	0.00%	2,992	0.33
3,700	21,400	1,730	6.00%	1,320	2.80
			oaded Deliv	ery Time.	14 43

Loaded Delivery Time: 14.43

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,375	8.00%	2,376	2.26
1,125	0.00%	2,992	0.38
4,312	-7.93%	2,992	1.44
2,938	0.00%	2,992	0.98
250	-3.20%	2,992	0.08
1,312	-4.42%	2,992	0.44
688	-1.16%	2,992	0.23
700	-6.00%	2,992	0.23
1,000	0.00%	2,992	0.33
3,700	-6.00%	2,992	1.24
	R	eturn Time:	7.62
		Load time:	
	Dump Time:		1.50
	Total Time:		28.55
Actual Time (accounting for cuves in road):			35.68


Concept: D-2

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
5,375	5,375	1,050	-8.00%	2,586	2.08
1,125	6,500	1,050	0.00%	2,012	0.56
6,500	13,000	1,466	6.40%	954	6.81
3,700	16,700	1,730	7.14%	799	4.63
			Loaded Delivery Time:		14.08

UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
5,375	8.00%	2,376	2.26
1,125	0.00%	2,992	0.38
6,500	-6.40%	2,992	2.17
3,700	-7.14%	2,992	1.24
	Retu	Return Time: Load time: Dump Time: Total Time:	
	Lo		
	Dur		
	То		
Actual Time (accounting for cuves in road):			33.29

Appendix C-6

Concept E Surface Material Haulage Profiles and Cycle Times

Concept: E-1

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
6,300	6,300	1,480	0.00%	2,992	2.11
750	7,050	1,540	8.00%	968	0.77
2,000	9,050	1,540	0.00%	2,992	0.67
3,750	12,800	1,840	8.00%	968	3.87
500	13,300	1,840	0.00%	2,992	0.17
			Loaded Deliv	ery Time:	7.59

UNLOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,840	1989 C.899		
500	500	1,840	0.00%	2,992	0.17
3,750	4,250	1,540	-8.00%	2,992	1.25
2,000	6,250	1,540	0.00%	2,992	0.67
750	7,000	1,480	-8.00%	2,992	0.25
6,300	13,300	1,480	0.00%	2,992	2.11
			Ret	urn Time:	4.45
			L	oad time:	5.00
			Du	mp Time:	1.50
	A . 4 1 7		7.007	otal Time:	18.54
	Actual	Time (account	ing for cuves	in road):	23.17

1 . e

 $\mathbf{\hat{y}}$

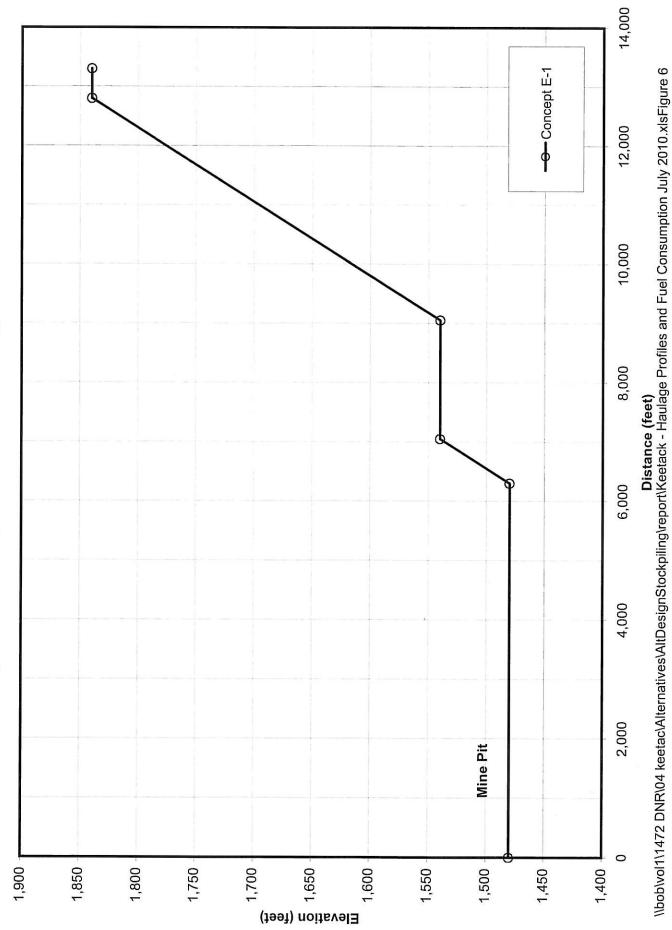


Figure 6. East Stockpile Surface Material Haulage Profile E-1

Rock Stockpile R-1 Haulage Profiles and Cycle Times

Concept: Proposed & A-D

LOADED

Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
6,300	6,300	1,480	0.00%	2,992	2.11
750	7,050	1,540	8.00%	968	0.77
2,000	9,050	1,540	0.00%	2,992	0.67
1,000	10,050	1,620	8.00%	968	1.03
2,500	12,550	1,620	0.00%	2,992	0.84
			Loaded Deliv	ery Time:	5.42

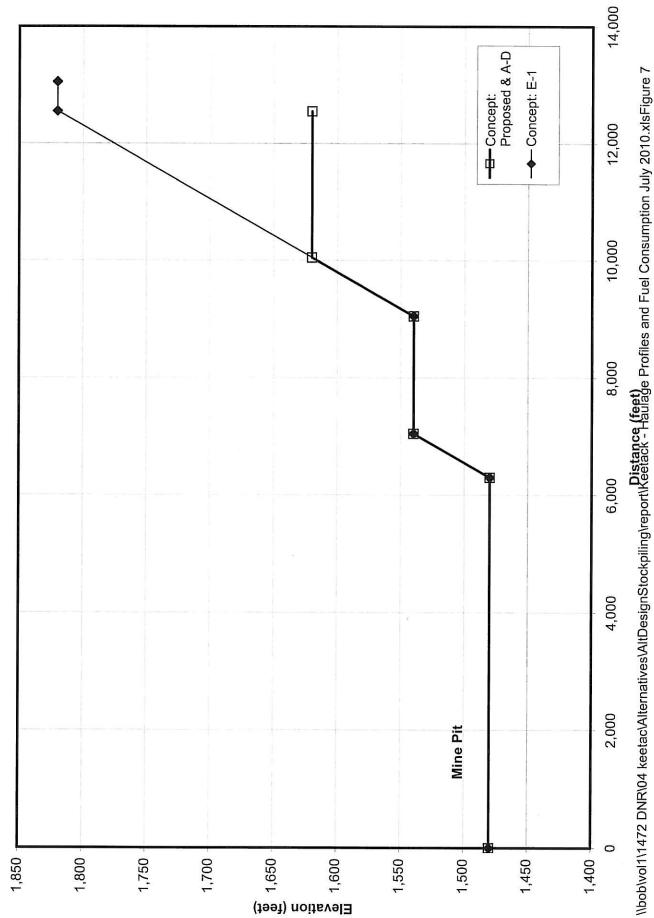
UNLOADED

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
6,300	0.00%	2,992	2.11
750	-8.00%	1,232	0.61
2,000	0.00%	2,992	0.67
1,000	-8.00%	1,232	0.81
1,000	0.00%	2,992	0.33
	Retu	rn Time:	4.53
	Lo	ad time:	5.00
	Dun	np Time:	1.50
	То	tal Time:	16.45
	Actual Time (accounting for cuves	in road):	20.56

5

Concept: E-1

LOADED


Incremental Distance	Total Distance	Elevation	Slope	Speed (fpm)	Time (minutes)
0	0	1,480			
6,300	6,300	1,480	0.00%	2,992	2.11
750	7,050	1,540	8.00%	968	0.77
2,000	9,050	1,540	0.00%	2,992	0.67
3,500	12,550	1,820	8.00%	968	3.62
500	13,050	1,820	0.00%	2,992	0.17
			Loaded Deliv	ery Time:	7.33

UNLOADED

1

Incremental Distance	Slope	Speed (fpm)	Time (minutes)
0			
6,300	0.00%	2,992	2.11
750	-8.00%	1,232	0.61
2,000	0.00%	2,992	0.67
3,500	-8.00%	1,232	2.84
500	0.00%	2,992	0.17
	Retu	ırn Time:	6.39
	Lo	oad time:	5.00
	Dur	np Time:	1.50
	То	tal Time:	20.22
	Actual Time (accounting for cuves	in road):	25.28

•

Appendix D

Haulage Operational Data Summary

Bank Cubic Yards Required: 118,000,000

Capacity in CY per Load: 132

Total Loads Required: 893,939

В	D	E	F	G	н	I	J	к	L	М	Ν	0	Р	Q	R	S	Т	U	V
Site	One-Way Trip Mileage	Round Trip Distance in feet	Round Trip Mileage	Round Trip Time in minutes	Round Trips in 18 hour Day			Operating Trucks	Total Number of Trucks (assuming 80% Operability)	Total Hours of Operation	Annual Capital (\$470k/truck)	Total Additional Capital (over 21.5 Years)	Total Operating Costs (at \$250/hr)	Total Cost	Vehicle Miles Traveled	Total Gallons of Fuel (31 gal/hr x 21.6 hours/day)	New Haul Road Distance in Miles	Haul Road Maintenance Cost	New Road Construction Cost
Constant											\$466,667	21.5 years	\$250			670Gal/Day/Truck		\$200,000	\$400,000
Formula			E / 5280		(24 x 75% x 60) / G	H x 365	l x 21.5	Total Loads / J	K / 0.80	(G x J x K) / 60	K x Constant	N x Constant	M x Constant	0 + P	Total Loads x F	L x 21.5yrs x 365 days/year * Constant	D - 2.8 (where applicable)	D x 21.5 x Constant	D x Constant
A-1	3.22	34,040	6.45	25.32	42	15,330	329,595	2.7	3.4	377,234	\$1,582,138	\$34,015,959	\$94,308,568	\$128,324,527	5,763,200	17,825,577	3.22	\$13,860,985	\$1,289,394
P-1	2.07	21,900	4.15	16.42	65	23,725	510,088	1.8	2.2	244,641	\$1,022,304	\$21,979,543	\$61,160,354	\$83,139,896	3,707,817	11,518,065	2.07	\$8,917,614	\$829,545
P-2	3.01	31,740	6.01	19.53	55	20,075	431,613	2.1	2.6	290,977	\$1,208,178	\$25,975,823	\$72,744,318	\$98,720,141	5,373,795	13,612,259	3.01	\$12,924,432	\$1,202,273
B-1	4.60	48,624	9.21	32.43	33	12,045	258,968	3.5	4.3	483,205	\$2,013,630	\$43,293,038	\$120,801,216	\$164,094,254	8,232,369	22,687,098	1.80	\$19,799,545	\$1,841,818
B-2	3.61	38,100	7.22	40.25	26	9,490	204,035	4.4	5.5	599,667	\$2,555,761	\$54,948,856	\$149,916,706	\$204,865,562	6,450,585	28,795,163	3.61	\$15,514,205	\$1,443,182
C-1	5.20	54,860	10.39	40.32	26	9,490	204,035	4.4	5.5	600,751	\$2,555,761	\$54,948,856	\$150,187,783	\$205,136,639	9,288,166	28,795,163	2.40	\$22,338,826	\$2,078,030
C-2	4.78	50,426	9.55	41.05	26	9,490	204,035	4.4	5.5	611,654	\$2,555,761	\$54,948,856	\$152,913,454	\$207,862,310	8,537,460	28,795,163	4.78	\$20,533,314	\$1,910,076
														•				•	
D-1	4.05	42,800	8.11	35.68	30	10,950	235,425	3.8	4.7	531,632	\$2,214,993	\$47,622,342	\$132,907,902	\$180,530,244	7,246,327	24,955,808	1.25	\$17,428,030	\$1,621,212
D-2	3.16	33,400	6.33	33.29	32	11,680	251,120	3.6	4.4	495,942	\$2,076,556	\$44,645,946	\$123,985,526	\$168,631,471	5,654,844	23,396,070	3.16	\$13,600,379	\$1,265,152

		Remainder Used in
	Concept A	Proposed and
		Concepts B-D
Bank Cubic Yards Required:	13,000,000	105,000,000

Capacity in CY per Load: 132 132

Total Loads Required: 98,485 795,455

В		D	E	F	G	Н	Ι	J	к	L	М	Ν	0	Р	Q	R	S	Т	U	v
Site	One-Way Trip Mileage in feet	One-Way Trip Mileage	Round Trip Distance in feet	Round Trip Mileage	Round Trip Time in minutes	Round Trips in 18 hour Day			Operating Trucks	Total Number of Trucks (assuming 80% Operability)	Total Hours of Operation	Annual Capital (\$470k/truck)	Total Additional Capital (over 21.5 Years)	Total Operating Costs (at \$250/hr)	Total Operating and Capital Cost	Vehicle Miles Traveled	Total Gallons of Fuel (31 gal/hr x 21.6 hours/day)	New Haul Road Distance in Miles	Haul Road Maintenance Cost	New Road Construction Cost
Constant												\$466,667	21.5 years	\$250			670Gal/Day/Truck		\$200,000	\$400,000
Formula				E / 5280		(24 x 75% x 60) / G	H x 365	l x 21.5	Total Loads / J	K / 0.80	(G x J x K) / 60	K x Constant	N x Constant	M x Constant	O + P	Total Loads x F	L x 21.5yrs x 365 days/year * Constant	D - 2.8 (where applicable)	D x 21.5 x Constant	D x Constant
					• •			Individual C	components of Tota	I Requirements f	or Entire 118,000	0,000 CY Move	d							
A-1	17,020	3.22	34,040	6.45	25.32	42	15,330	329,595	0.3	0.4	41,560	\$174,303	\$3,747,521	\$10,389,927	\$14,137,448	634,929	1,963,835	3.22	\$13,860,985	\$1,289,394
P-1	10,950	2.07	21,900	4.15	16.42	65	23,725	510,088	1.6	1.9	217,689	\$909,678	\$19,558,068	\$54,422,348	\$73,980,416	3,299,329	10,249,126	2.07	\$8,917,614	\$829,545
P-2	15,870	3.01	31,740	6.01	19.53	55	20,075	431,613	1.8	2.3	258,920	\$1,075,073	\$23,114,080	\$64,730,114	\$87,844,193	4,781,767	12,112,603	3.01	\$12,924,432	\$1,202,273
B-1	24,312	4.60	48,624	9.21	32.43	33	12,045	258,968	3.1	3.8	429,970	\$1,791,789	\$38,523,466	\$107,492,607	\$146,016,074	7,325,413	20,187,672	1.80	\$19,799,545	\$721,818
B-2	19,050	3.61	38,100	7.22	40.25	26	9,490	204,035	3.9	4.9	533,602	\$2,274,194	\$48,895,169	\$133,400,459	\$182,295,628	5,739,928	25,622,815	3.61	\$15,514,205	\$1,443,182
C-1	27,430	5.20	54,860	10.39	40.32	26	9,490	204,035	3.9	4.9	534,567	\$2,274,194	\$48,895,169	\$133,641,671	\$182,536,840	8,264,893	25,622,815	2.40	\$22,338,826	\$958,030
C-2	25,213	4.78	50,426	9.55	41.05	26	9,490	204,035	3.9	4.9	544,268	\$2,274,194	\$48,895,169	\$136,067,056	\$184,962,225	7,596,892	25,622,815	4.78	\$20,533,314	\$1,910,076
D-1	21,400	4.05	42,800	8.11	35.68	30	10,950	235,425	3.4	4.2	473,062	\$1,970,968	\$42,375,813	\$118,265,506	\$160,641,319	6,448,003	22,206,439	1.25	\$17,428,030	\$501,212
D-2	16,700	3.16	33,400	6.33	33.29	32	11,680	251,120	3.2	4.0	441,304	\$1,847,783	\$39,727,325	\$110,326,103	\$150,053,428	5,031,853	20,818,537	3.16	\$13,600,379	\$1,265,152

Appendix E

May 12, 2010 MNDNR Letter Regarding Area North of Proposed East Stockpile Location

Minnesota Department of Natural Resources

500 Lafayette Road • St. Paul, MN • 55155-40

May 12, 2010

Mr. Erik Carlson Division of Ecological Resources Minnesota Department of Natural Resources 500 Lafayette Road St Paul, MN 55155

Dear Mr. Carlson:

This letter is to inform you that the Minnesota Department of Natural Resources (DNR) will not allow United States Steel Corporation (USS), Keewatin Taconite to locate a stockpile on the north 3300 feet of Section 16 Township 57 North Range 21 West. Section 16 is School Trust land. The DNR will allow stockpiles to be located on the south 1980 feet of Section 16.

The State of Minnesota was granted School Trust lands by the federal government. School Trust lands include school, swamp and indemnity school lands. Proceeds from School Trust lands are used to support Minnesota schools. The Minnesota Constitution states: "All funds arising from the sale or other disposition of the lands, or income accruing in any way before the sale or disposition thereof, shall be credited to the permanent school fund." (Constitution of the State of Minnesota, Article 11 Section 8). The Minnesota Department of Natural Resources (DNR) administers Minnesota School Trust lands per Minnesota Statutes 84.027 and 127A.31. (Note: State Constitution Article 11 Section 8, MS 84.027 and MS127A.31 are attached).

Section 16 Township 57 North, Range 21 West is School Trust land that is administered by the Minnesota Department of Natural Resources. During the environmental review process to expand United States Steel Corporation, Keewatin Taconite mine, the DNR requested that USS perform exploration diamond drilling within Section 16 T57N R21W. USS drilled 20 exploration holes in 5 parcels of Section 16. The USS drilling only extended 2000 feet south into Section 16 and taconite ore was still being intersected at that point. The drill core analyses from these diamond drill holes indicate that more than 81,000,000 long tons of high quality taconite ore (Lower Cherty) is present in the area of Section 16 encompassed by the diamond drilling. There is also 61,000,000 long tons of low quality taconite ore (Upper Cherty and Slaty) present in the area encompassed by the drilling. If the drilling analyses are interpolated an additional 1500 feet south into Section 16, there would be an additional 65,000,000 long tons of high quality taconite ore (Lower Cherty) and an additional 48,000,000 long tons of low quality taconite ore (Upper Cherty and Slaty). Placing a stockpile on the northern 3300 feet of Section 16 will create additional mining costs when Section 16 is mined. The increased mining costs would be due to the movement and relocation of the proposed stockpile prior to mining Section 16 taconite. Placement of a stockpile in this area would

Mr. Erik Carlson May 12th, 2010 Page 2

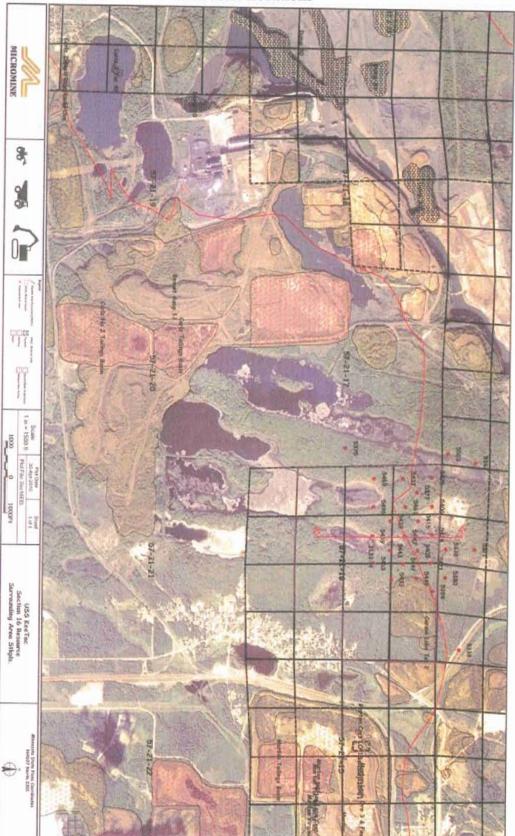
ultimately result in the loss of income to the School Trust and an encumbrance of a know resource. Thus, the DNR would not be fulfilling its statutory obligation to the trust to "secure the maximum long-term economic return from the school trust lands consistent with the fiduciary responsibilities imposed by the trust relationship established in the Minnesota Constitution, with sound natural resource conservation and management principles." (MS127A.31)

Therefore, the Minnesota Department of Natural Resources will not allow United States Steel Corporation, Keewatin Taconite to place stockpiles on the north 3300 feet of Section 16 T57N R21W. The DNR will allow stockpiles to be located on the south 1980 feet of Section 16.

The following tables, diagrams, and maps include summary data and locations for the 20 drill holes that USS drilled in Section 16 T57N R21W. If you have any questions, please contact me.

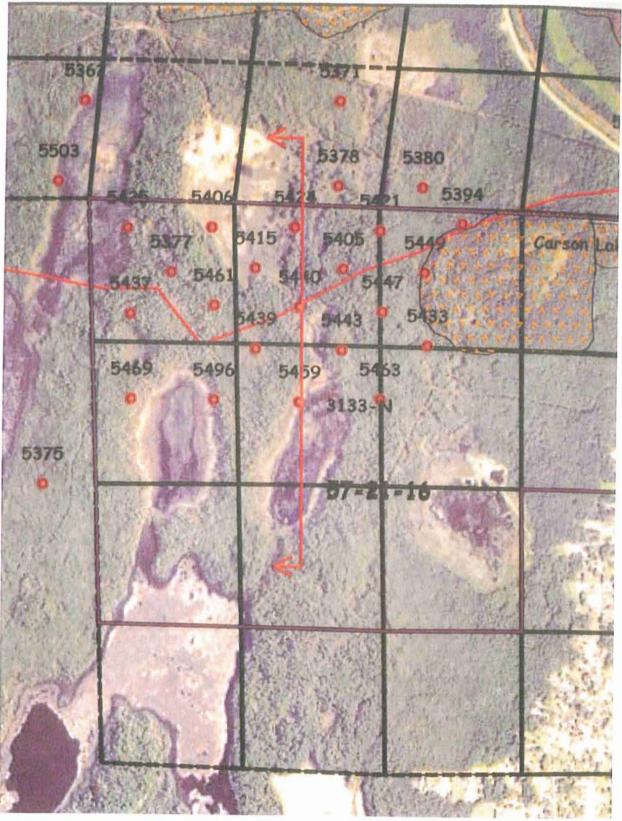
Sincerely,

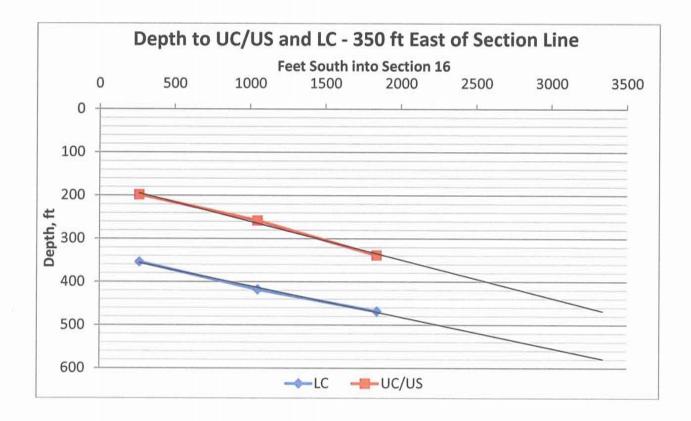
Marty Vadis, P.E., P.G. Director

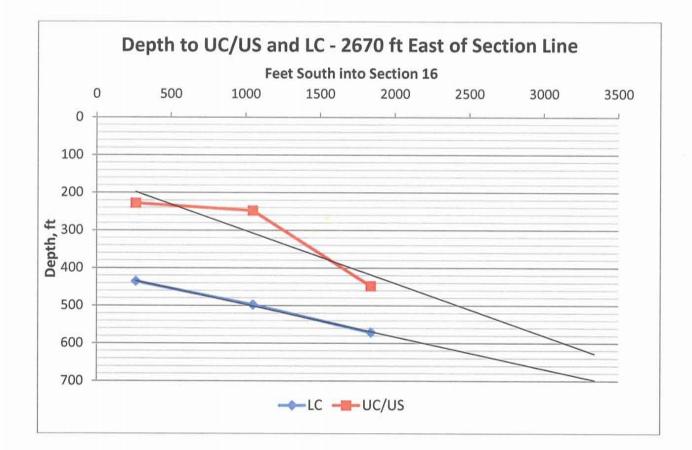

Attachment

Drill Hole ID	Ore thick, ft	Ore depth, ft	Ore Type	Wt. Rec. %	Fe %	MagFe %	SiO2 %
5377	ND	ND	ND	ND	ND	ND	ND
5394	40.0	350.0	UC/US	22.6	64.8	14.6	8.6
5405	184.5	214.0	UC/US	16.8	61.7	10.3	12.9
5415	ND	ND	ND	ND	ND	ND	ND
5421	150.0	228.0	UC/US	18.3	64.1	11.8	8.5
5424	119.5	209.0	UC/US	21.9	62.2	13.5	13.5
5425	114.0	198.0	UC/US	23.1	55.8	12.6	18.9
5433	132.0	348.0	UC/US	17.1	64.8	11.0	7.9
5437	113.0	258.0	UC/US	16.9	64.5	10.9	8.0
5439	118.0	318.0	UC/US	17.8	64.4	11.4	8.7
5443	117.0	327.0	UC/US	15.7	64.9	10.3	8.1
5447	197.0	248.0	UC/US	16.5	63.7	10.5	8.2
5406	184.0	144.0	UC/US	18.6	58.8	10.7	15.3
5440	89.0	298.0	UC/US	17.1	64.7	11.1	7.4
5449	20.0	388.0	UC/US	16.5	62.6	16.1	9.0
5459	188.0	278.0	UC/US	15.1	63.7	9.6	7.9
5461	106.0	275.0	UC/US	17.1	64.4	11.0	7.6
5463	20.0	448.0	UC/US	22.1	66.0	14.6	6.7
5469	80.0	338.0	UC/US	19.1	67.4	12.9	5.3
5496	186.5	265.0	UC/US	15.1	64.9	9.7	7.6

Upper Cherty and Slaty Average Analyses Average depth to UC/US 285 feet


Lower Cherty Taconite Average Analyses Average depth to Lower Cherty 459 feet


Drill Hole	Ore thick,	Ore depth,	Ore	Wt. Rec.	Fe	MagFe	SiO2
ID	ft	ft.	Туре	%	%	%	%
5377	186.0	409.0	LC	26.1	69.5	18.2	2.5
5394	159.5	460.0	LC	29.7	69.4	20.2	2.4
5405	148.0	455.0	LC	27.5	68.7	18.9	3.3
5415	154.0	414.0	LC	28.9	69.0	19.9	3.4
5421	155.0	436.0	LC	28.3	70.4	20.0	2.2
5424	150.0	418.0	LC	29.2	68.1	19.9	3.4
5425	162.0	354.0	LC	29.3	68.0	20.0	4.0
5433	142.0	536.0	LC	27.1	70.4	19.1	2.0
5437	158.5	417.5	LC	28.8	70.4	20.2	2.0
5439	163.0	481.0	LC	28.3	70.9	20.1	1.9
5443	152.5	497.5	LC	28.3	70.8	20.0	1.9
5447	141.0	498.0	LC	27.3	70.2	19.1	2.0
5406	133.0	393.0	LC	27.8	69.8	19.4	2.7
5440	156.5	462.0	LC	27.2	70.1	19.0	2.2
5449	154.0	500.0	LC	29.5	68.3	20.2	3.4
5459	160.5	518.0	LC	26.8	70.5	18.9	1.9
5461	144.5	436.0	LC	28.9	70.1	20.3	1.9
5463	148.5	571.0	LC	26.5	69.2	18.3	2.7
5469	149.0	468.0	LC	26.9	70.5	19.0	2.0
5496	148.0	496.0	LC	28.2	71.1	20.1	2.0



Drill Hole Locations

Drill Hole Locations

	07.0	500Z.C	10000LL	ction	1500ZC		20002.0
MICROMINE							c
*			Inferred Resource			State Lease 3133-N NE-SW T67R21516	
Lagend Scale Phc Date Stend Star Round bet bits Indexed knowne Tin a '300 R DisMup-2010 Tin 1' Star Round bet bits Nulsic task having furty task 200 Pinc Fair Starting task 300 R			11 H9 H600	161 7.5 195	1998 Surface DTM 5459 5443	State Lease 3133-N SE-NW T57R21516	
Stote Lease 3133-N to USS KeeToc Sterion 16 Resource YS 2 010 oron 16 Resource VS 2 010 oron 16 VS 2 000 VS 2 0000 VS 2 000 VS 2 0000 VS 2 000 VS 2 000 VS 2 00			14 15 15 16 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 16 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 17 18 18 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 18 13 13 18 13 <th13< th=""> 13 13 13<!--</td--><td>Sector Sector Se</td><td>soz wines 5440 5405 5405 5424</td><td>State Lease 3133-N NE-NW T57R21516</td><td></td></th13<>	Sector Se	soz wines 5440 5405 5405 5424	State Lease 3133-N NE-NW T57R21516	
Harts Shate Forer Coardinater MuD27 North 2201			200 E	10.1 10.1	5378		

Excerpts from the Constitution of the State of Minnesota, Minnesota Statute 84.027 Minnesota Statute 127A.31

<u>Constitution of the State of Minnesota Article 11 Section 8</u> Permanent school fund; source; investment; board of investment. The permanent school fund of the state consists of (a) the proceeds of lands granted by the United States for the use of schools within each township, (b) the proceeds derived from swamp lands granted to the state, (c) all cash and investments credited to the permanent school fund and to the swamp land fund, and (d) all cash and investments credited to the internal improvement land fund and the lands therein. No portion of these lands shall be sold otherwise than at public sale, and in the manner provided by law. All funds arising from the sale or other disposition of the lands, or income accruing in any way before the sale or disposition thereof, shall be credited to the permanent school fund. Within limitations prescribed by law, the fund shall be invested to secure the maximum return consistent with the maintenance of the perpetuity of the fund. The principal of the permanent school fund shall be perpetual and inviolate forever. This does not prevent the sale of investments at less than the cost to the fund; however, all losses not offset by gains shall be repaid to the fund from the interest and dividends earned thereafter. The net interest and dividends arising from the fund shall be distributed to the different school districts of the state in a manner prescribed by law.

<u>Minnesota Statute 84.027 Subd.</u> 18 The commissioner of natural resources has the authority and responsibility for the administration of school trust lands under sections 92.121 and 127A.31. The commissioner shall biannually report to the Permanent School Fund Advisory Committee and the legislature on the management of the school trust lands that shows how the commissioner has and will continue to achieve the following goals:

(1) manage the school trust lands efficiently;

(2) reduce the management expenditures of school trust lands and maximize the revenues deposited in the permanent school trust fund;

(3) manage the sale, exchange, and commercial leasing of school trust lands to maximize the revenues deposited in the permanent school trust fund and retain the value from the long-term appreciation of the school trust lands; and

(4) manage the school trust lands to maximize the long-term economic return for the permanent school trust fund while maintaining sound natural resource conservation and management principles.

<u>Minnesota Statute 127A.31</u> The legislature intends that it is the goal of the permanent school fund to secure the maximum long-term economic return from the school trust lands consistent with the fiduciary responsibilities imposed by the trust relationship established in the Minnesota Constitution, with sound natural resource conservation and management principles, and with other specific policy provided in state law.

Appendix F

Evaluation Criteria Matrix

Keetac Expansion Project Analysis of Stockpile Location Concepts **Evaluation Criteria Matrix** Table F-1 Summary of Concepts B-E and Proposed Location

										Gammary	y of Concepts		riopose		•									
			Environmental Factors								munity Fac	ctors	Feasibility Factors											
			Habitat					Air Quality Fugitive Dust Emissions ⁵					Noise Visual						Economics					
Concept	Haul Route	Total Wetland Acreage Disturbed ¹	Low Quality Wetland Acreage Disturbed ²	Moderate Quality Wetland Acreage Disturbed ²	Acreage Disturbed ²	Upland ³	Rare Species ⁴	РМ	PM10	PM2.5	NOx Emissions ⁶	GHG Emissions ⁷		Threshold Exceedences ⁹	Proximity to Residence ¹⁰	Seen by Residences ¹¹	Capacity Based on Spatial Considerations ¹²	Surface Ownership Control ¹³	Safety ¹⁴	Capital Expense ¹⁵	Operational Expenses ¹⁶	Mitigation Expenses ¹⁷	Total	
		Acres	Acres	Acres	Acres	Acres		Tons	Tons	Tons	Tons	Tons	Miles	Y/N	Miles	Y/N	%			\$M	\$M	\$M	\$M	
Α	A See Table F-2 for Evaluation of Concept A w/ Fractional Remainder of Other Concepts, Such That Stockpile Storage Requirements Are Met																							
в	1	338.4 55.4		4 128.5	454.5	871.8	None	97,064	33,808	3,381	4,642	352,976	4.0	Ne			25.7%	US Steel	Traffic Through Crusher Area	\$45.1	\$140.6	\$8.5	\$194.2	
в	2		55.4		154.5	871.8	Identified	106,713	28,247	2,825	5,448	421,428	4.0	No	4.0	No			Steep Downhill Grades w Loaded Trucks	\$56.4	\$165.4	\$8.5	\$230.3	
	1	459.1	459.1 55.4	4 41.7					140,170	37,104	3,710	5,455	421,428				T			Traffic Through Crusher	\$57.0	\$172.5	\$11.5	\$241.0
с					362.0	803.8	None Identified	140,170	37,104	3,710	5,455	421,420	5.2	No 5.	5.2	No	26.2%	US Steel	Area	φ57.0	\$172.5	φ11.5	φ241.0	
	2							131,318	34,761	3,476	5,531	421,428							Steep Downhill Grades w Loaded Trucks	\$56.9	\$173.4	\$11.5	\$241.8	
D	1	285.4	55.4	59.4	170.6	977.5	Peregrine Falcon	116,095	30,731	3,073	4,977	378,401	3.6	No	No 3.6	No 25.7	25.7%	GNIOP and Hibbing Taconite	Traffic Through Crusher Area	\$49.2	\$150.3	\$7.1	\$206.7	
	2	203.4	33.4	33.4	170.0	511.5		97,331	25,764	2,576	4,730	360,922	3.0	NU			20.170		Steep Downhill Grades w/ Loaded Trucks	\$45.9	\$137.6	\$7.1	\$190.6	
E	1	345.9	58.3	287.6	0.0	647.9	None Identified	84,978	22,494	2,249	3,984	304,629	1.2 and Meets AAQ Standards	No (w/ Mitigation)	1.2	Yes	25.7%	US Steel	_	\$32.1	\$97.1	\$8.6	\$137.8	
Proposed			61.5	346.4	38.9	796.7	None	74,374	19,687	1,969	2,990	227,807	1.2 and Meets AAQ	No (w/	1.2	Vec	26.2%	US Steel	_	\$22.8	\$70.1	\$11.2	\$104.1	
Location	2	446.8	6.10	340.4	30.9	/ 90.7	Identified	94,017	24,887	2,489	3,311	251,276	Standards	Mitigation)	1.2	Yes	20.270		_	\$27.2	\$85.7	\$11.2	\$124.0	
Maximize In-Pit Stockpiles							None Identified						Meets AAQ Standards				52.0%	US Steel	_					

total wetland acreage impacted requiring mitigation 1

wetlands by acreage with estimated function and value 2

non-wetland related cover types impacted by acreage and category 3

acreage of impacted critical habitat for T & E species and other rare species per DNR Rare Species Guide 4

quantity of various particulates generated by haulage in tons 5

quantity of NOx generated by haulage in Megagrams 6

7 quantity of GHG generated by haulage in tons

closest distance from stockpile or haul road to a residence 8

9 day or night standard exceedance anticipated 10 distance from center of stockpile area to closest residence

directly seen by residences (yes/no) percentage of total in pit and out of pit stockpiling needs 11 12

13 listing of known surface owners

known safety issues 14

15 capital costs for truck replacement and road construction

16 17 truck operational and road maintenance costs

noise and wetland mitigation costs

This Page Left Blank Intentionally.

Appendix G

March 21, 2008 Natural Heritage Information System Index Report

Minnesota Department of Natural Resources

Division of Ecological Resources, Box 25

500 Lafayette Road

St. Paul, Minnesota 55155-4025

Phone: (651) 259-5109

Fax: (651) 296-1811 E-mail: lisa.joyal@dnr.state.mn.us

March 21, 2008

Mr. Daniel Jones Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

Re: Request for Natural Heritage information for vicinity of proposed US Steel Keetac Line 1 Restart,

Itasca and St. Louis Counties NHNRP Contact #: ERDB 20080589

County	Township (N)	Range (W)	Sections
Itasca	55	22	4
Itasca	56	22	1-3, 10-15, 23-26, 32-36
Itasca	57	22	1-3, 9-16, 21-28, 33-36
St. Louis	56	21	4-9, 16-21, 29-32
St. Louis	57	21	7-11, 15-21, 28-33

Dear Mr. Jones,

The Minnesota Natural Heritage Information System has been queried to determine if any rare species or other significant natural features are known to occur within an approximate one-mile radius of the proposed project. Based on this query, there are 17 database records in the area searched (for details, please see the enclosed database reports and the explanation of selected fields). Per the Data Request Form that you submitted, I am providing the database reports only and have not evaluated the potential for the proposed project to negatively impact these rare features. Please note that any environmental assessment should address whether the proposed project has the potential to negatively impact these rare features and, if so, any avoidance or mitigation measures that will be implemented.

The Natural Heritage Information System (NHIS), a collection of databases that contain information about Minnesota's rare natural features, is maintained by the Division of Ecological Resources, Department of Natural Resources. The NHIS is continually updated as new information becomes available, and is the most complete source of data on Minnesota's rare or otherwise significant species, native plant communities, and other natural features. However, the NHIS is not a comprehensive inventory and thus does not represent all of the occurrences of rare features within the state. Therefore, ecologically significant features for which we have no records may exist on the project area.

The enclosed results include an Index Report and a Detail Report of records in the Rare Features Database, the main database of the NHIS. To control the release of specific location information, which might result in the destruction of a rare feature, both reports are copyrighted.

The <u>Index Report</u> provides rare feature locations only to the nearest section, and may be reprinted, unaltered, in an environmental review document (e.g., EAW or EIS), municipal natural resource plan, or report compiled by your company for the project listed above. If you wish to reproduce the index report for any other purpose, please contact me to request written permission. The <u>Detail Report</u> may include specific location information, and is for your personal use only. If you wish to reprint or publish the detail report for any purpose, please contact me to request written permission.

Please be aware that this letter focuses only on potential effects to *rare natural features*; there may be other natural resource concerns associated with the proposed project. This letter does not constitute review or approval by the Department of Natural Resources as a whole. If you would like further information on the environmental review process, please contact your Regional Environmental Assessment Ecologist, Dave Holmbeck, at (218) 999-7805.

An invoice in the amount of \$140.50 will be mailed to you under separate cover within two weeks of the date of this letter. You are being billed for the database search and printouts, and staff scientist review. Thank you for consulting us on this matter, and for your interest in preserving Minnesota's rare natural resources.

Sincerely,

disa Joyal

Lisa Joyal Endangered Species Environmental Review Coordinator

۰.

encl: Rare Features Database: Index Report Rare Features Database: Detail Report Rare Features Database Reports: An Explanation of Fields

•

Printed March 2008 Data valid for one year	Index Report of records within 1 mile a US Steel Keetac Line 1 Restart Multiple TRS Itasca and St. Louis Counties	radius of:	Jutabuse			
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
Itasca County, MN						
Botrychium minganense (Mingan Moonwort) #40 Location Description: T56N R22W S5		SPC	S3	G4	2005-07-15	32634
Botrychium oneidense (Blunt-lobed Grapefern) #35 Location Description: T57N R22W S21		END	S1	G4Q	1999-08-10	28535
<u>Botrychium pallidum</u> (Pale Moonwort) #36 Location Description: T57N R22W S35, T57N R22W S26		END	S1	G3	1999-06-09	24078
Botrychium rugulosum (St. Lawrence Grapefern) #37 Location Description: T57N R22W S21		THR	S2	G3	2003-10-22	28515
Botrychium rugulosum (St. Lawrence Grapefern) #55 Location Description: T56N R22W S5		THR	S2	G3	2005-07-15	32633
Botrychium simplex (Least Moonwort) #36 Location Description: T57N R22W S25, T57N R22W S26		SPC	S3	G5	1998-06-10	23698
Botrychium simplex (Least Moonwort) #37 Location Description: T57N R22W S35, T57N R22W S26		SPC	S3	G5	1998-06-10	23702
Botrychium simplex (Least Moonwort) #72 Location Description: T57N R22W S25, T57N R22W S36		SPC	S3	G5	1999-06-09	24102
Botrychium simplex (Least Moonwort) #74 Location Description: T56N R22W S5		SPC	S3	G5	1999-06-16	24083
Botrychium simplex (Least Moonwort) #82 Location Description: T57N R22W S29, T57N R22W S28		SPC	S3	G5	2001-06-13	28639
Haliaeetus leucocephalus (Bald Eagle) #1062 Location Description: T56N R22W S9, T56N R22W S16		SPC	S3B,S3N	G5	2005-04-21	14007
Platanthera flava var. herbiola (Tubercled Rein-orchid) #32 Location Description: T57N R22W S36, T57N R22W S35		END	S1	G4T4Q	2003-07-08	25109
Platanthera flava var. herbiola (Tubercled Rein-orchid) #37 Location Description: T56N R22W S6, T56N R22W ₂ S5		END	S1	G4T4Q	2005-07-15	28510
Torreyochloa pallida (Torrey's Manna-grass) #36		SPC	S3	G5	1999-08-10	28514

Minnesota Natural Heritage Information System: Rare Features Database

Page 1 of 2

a⁹

;

Location Description: T57N R22W S29

St. Louis County, MN

Printed March 2008 Data valid for one year Minnesota Natural Heritage Information US Steel Keetac Multiple Itasca and St. L	Database		F	Page 2 of 2		
Element Name and Occurrence Number	Federal Status	MN Status	State Rank	Global Rank	Last Observed Date	EO ID #
St. Louis County, MN						
Botrychium pallidum (Pale Moonwort) #20 A Kalo Location Description: T57N R21W S14		END	S1	G3	1998-06-15	23753
Botrychium simplex (Least Moonwort) #41 Location Description: T57N R21W S15, T57N R21W S14		SPC	\$3	G5	1998-06-15	23747
Falco peregrinus (Peregrine Falcon) #61 Location Description: T57N R21W S1, T57N R20W S7 Records Printed = 17	No Status	THR	S2B	G4	2004	19107

.

1

;

Appendix H

EPA Regulatory Announcement F-04-032, May 2004 Clean Air Non-Road Diesel Rule

Office of Transportation and Air quality EPA420-F-04-032 May 2004

Regulatory Announcement

Clean Air Nonroad Diesel Rule

On May 11, 2004, the U.S. Environmental Protection Agency (EPA) announced a comprehensive rule to reduce emissions from nonroad diesel engines by integrating engine and fuel controls as a system to gain the greatest emission reductions. Engine manufacturers will produce engines with advanced emission-control technologies similar to those upcoming for highway trucks and buses. Exhaust emissions from these engines will decrease by more than 90 percent.

Closely linked to these engine provisions are new fuel requirements that will decrease the allowable levels of sulfur in fuel used in nonroad diesel engines, locomotives, and marine vessels by more than 99 percent. These fuel improvements will create immediate and significant environmental and public health benefits and will enable the use of new, high-efficiency emission-control devices on nonroad engines. At the same time, the Agency is taking the first step toward proposing more stringent emission standards for engines used in locomotives and marine vessels.

By greatly reducing diesel emissions, this rule will result in large benefits to public health that will be even greater than EPA projected at the time the rule was proposed. These benefits include about 12,000 fewer premature deaths and hundreds of thousands fewer incidences of respiratory problems. The overall benefits of the program in dollars significantly outweigh the costs by a factor of about 40 to 1.

This rule culminates a multi-year collaborative process to reduce nonroad diesel emissions. EPA worked closely with stakeholders from industry, state and local governments, environmental and public health organizations, and others in the design of this program.

The Need to Reduce Emissions from Nonroad Diesel Engines

Nonroad diesel engines contribute greatly to air pollution in many of our nation's cities and towns. Nonroad engines currently meet relatively modest emission requirements and therefore continue to emit large amounts of nitrogen oxides (NOx) and particulate matter (PM), both of which contribute to serious public health problems. Nonroad diesel engines that are affected by the new standards currently account for about 47 percent of diesel PM emissions and about 25 percent of total NOx emissions from mobile sources nationwide. These proportions are even higher in some urban areas.

Health Effects

Ozone can aggravate asthma and other respiratory diseases, leading to more asthma attacks, use of additional medication, and more severe symptoms that require a doctor's attention, more visits to the emergency room, and increased hospitalizations. Ozone can inflame and damage the lining of the lungs, which may lead to permanent changes in lung tissue, irreversible reductions in lung function if the inflammation occurs repeatedly over a long time period and may lead to a lower quality of life. Children, people with heart and lung disease, and the elderly are most at risk.

Fine particles (PM 2.5) have been associated with an increased risk of premature mortality, hospital admissions for heart and lung disease, and increased respiratory symptoms. Long-term exposure to diesel exhaust is likely to pose a lung cancer hazard. In addition, PM, NOx, and ozone adversely affect the environment in various ways including visibility impairment, crop damage, and acid rain.

Description of Nonroad Engines Covered by this Final Rule

The new emission standards apply to diesel engines used in most construction, agricultural, industrial, and airport equipment. The standards will take effect for new engines beginning in 2008 and be fully phased in for most engines by 2014. Larger mobile engines (greater than 750 horsepower) have one year of additional flexibility to meet their emission standards. These emission standards do not apply to diesel engines used in locomotives and marine vessels. However, fuel requirements for these categories are covered in this rule. The Agency is concurrently issuing an Advance Notice of Proposed Rulemaking announcing the intent to propose more stringent emission standards for engines used in locomotives and marine vessels.

Exhaust Emission Standards

This rule sets emission standards for different sizes of nonroad engines. These standards are similar in stringency to the standards adopted for 2007 and later diesel-powered trucks and buses. The rule also includes new provisions to help ensure that emission-control systems perform as well when operating in actual use as they do in the laboratory. The standards are phased-in over several years to provide adequate lead time to engine and equipment manufacturers. Table 1 shows the new emissions standards.

Rated Power	First Year that Standards Apply	РМ	NOx
hp < 25	2008	0.30	-
25 ≤ hp < 75	2013	0.02	3.5*
75 ≤ hp < 175	2012-2013	0.01	0.30
175 ≤ hp < 750	2011-2013	0.01	0.30
hp ≥ 750	2011-2014 2015	0.075 0.02/0.03**	2.6/0.50† 0.50††

Table 1
Final Emission Standards in grams per horsepower-hour (g/hp-hr)

The 3.5 g/hp-hr standard includes both NOx and nonmethane hydrocarbons.

† The 0.50 g/hp-hr standard applies to gensets over 1200 hp.

** The 0.02 g/hp-hr standard applies to geneets; the 0.03 g/hp-hr standard applies to other engines.

tt Applies to all gensets only.

Benefits of the Program

Reducing NOx and PM emissions from nonroad diesel engines by more than 90 percent will provide a wide range of public health benefits. Controlling these emissions will, by 2030, prevent every year about: 12,000 premature deaths, 8,900 hospitalizations, one million work days lost, 15,000 heart attacks, 6,000 children's asthma-related emergency room visits, 280,000 cases of respiratory problems in children, 200,000 cases of asthma symptoms in children, and 5.8 million days of restricted adult activity due to respiratory symptoms.

In dollars, the health benefits of this rule are estimated to be \$80 billion annually once essentially all older engines are replaced. Estimated costs for the engine and fuel requirements are many times less, amounting to about \$2 billion annually in that time frame. Thus, the cost-benefit ratio of this program at that time will be approximately 40-to-1.

For More Information

You can access the final rule and related documents on EPA's web site at:

www.epa.gov/nonroad-diesel

You can also contact EPA at:

U.S. Environmental Protection Agency Assessment and Standards Division 2000 Traverwood Drive Ann Arbor, MI 48105 Voice-mail: (734) 214-4636 E-mail: asdinfo@epa.gov

Nonroad Diesel Fuel

Just as lead was phased out of gasoline to prevent damage to catalytic converters, decreasing sulfur levels in nonroad diesel fuel will prevent damage to the emission-control systems. In addition, reducing sulfur levels will provide immediate public health benefits by reducing particulate matter from engines in the existing fleet of nonroad equipment, while reducing engine maintenance cost. This rule will reduce current sulfur levels from about 3,000 parts per million (ppm) to 15 ppm when fully implemented (a reduction of greater than 99 percent).

This rule will reduce nonroad diesel fuel sulfur levels in two steps. First, starting in 2007, fuel sulfur levels in nonroad diesel fuel will be limited to a maximum of 500 ppm, the same as for current highway diesel fuel. This limit also covers fuels used in locomotive and marine applications (though not to the marine residual fuel used by very large engines on ocean-going vessels).

Second, starting in 2010, fuel sulfur levels in most nonroad diesel fuel will be reduced to 15 ppm. This ultra-low sulfur fuel will create immediate public health benefits and will make it possible for engine manufacturers to use advanced emission-control systems that will dramatically reduce both PM and NOx emissions. In the case of locomotive and marine diesel fuel, this second step will occur in 2012.

Estimated Costs

The cost of producing 15 ppm sulfur for this program is expected to total seven cents per gallon. Because the use of ultra-low sulfur fuel will significantly reduce engine maintenance expenses, we estimate that this net cost will average about four cents per gallon.

The estimated costs for a nonroad equipment manufacturer to comply with this program vary depending on size and complexity of the equipment. As an example, we estimate that for a typical 175-horsepower bulldozer, the modifications will cost approximately \$2,600, compared to the overall price of such a bulldozer of approximately \$240,000. The anticipated costs for most categories of nonroad diesel equipment are in the range of 1-3 percent of the total purchase price.

To reduce the economic impact of meeting new emission standards and requirements for low sulfur fuels, the final rule includes a number of flexibility provisions that are primarily aimed at helping small engine manufacturers and refiners meet the requirements. This page left blank intentionally.

Noise Assessment Documents

- I-1 March 26, 2009 Proposed Stockpile Noise Assessment Supplemental Draft
- I-2 June 23, 2010 Alternative Stockpile Noise Assessment
- I-3 July 8, 2010 Memorandum Noise Reduction Benefit East Stockpile Alternative Location

This page left blank intentionally.

I-1 March 26, 2009 Proposed Stockpile Noise Assessment Supplemental Draft

This page left blank intentionally.

Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803 Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com An EEO Employer

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND

March 26, 2009

Erik Carlson Minnesota Department of Natural Resources 500 Lafayette Road St. Paul, MN 55155-4029

Re: Proposed Stockpile Noise Assessment Supplement Draft U.S. Steel – Keetac Expansion Project Keewatin, Minnesota

Dear Mr. Carlson,

On behalf of U.S. Steel enclosed is the draft Proposed Stockpile Noise Assessment Supplement for the Keetac Expansion project. This supplement evaluates potential mitigation options for noise impacts on residential areas in the vicinity of the proposed new stockpile area for the Keetac Expansion Project near Keewatin, Minnesota. The study compares projected noise levels with the Minnesota daytime and nighttime noise standards and with the estimated ambient or background sound level at the residential areas.

The supplemental modeling represents a quieting package fitted to the bulldozers used on the stockpile. Under these conditions, some impacts above state noise standards are still modeled at the receptors nearest the proposed stockpile. Because worst case operational assumptions were used it is unlikely that these conditions would actually occur. In addition there are many factors that reduce noise impacts such as ground effect, vegetative shielding, ambient noise generated by wind, and other factors that are not included in the modeled predictions.

Based on these results U.S. Steel proposes to utilize operating offsets to fully mitigate exceedance of the nighttime L10 and L50 standards. U.S. Steel proposes to conduct daytime sound measurements once the stockpile is operational to determine actual noise levels at nearby residences. If these actual measurements demonstrate impacts below state nighttime noise standards, U.S. Steel proposes to eliminate the nighttime operating offset.

Please review the Draft Proposed Stockpile Noise Assessment Supplement and contact myself or Andrew Skoglund from Barr or Mike Rhoads from U.S. Steel with any questions or comments.

Sincerely,

Loui L'Stegink

Lori L. Stegink Vice President Barr Engineering Company

Mr. Erik Carlson March 26, 2009 Page 2

Enclosure

c: Mike Rhoads, USS Chrissy Bartovich, USS Tischie Woodwell, USS Scott Vagle, USS Dave Smiga, USS Peder Larson, Larkin Hoffman Daly and Lindgren, Ltd. Jon Ahlness, USACE electronic only Sherry Kampke, USEPA *electronic only* Darren Vogt, 1854 Treaty Authority *electronic only* Darin Steen, Bois Forte Reservation electronic only Rose Berens, Bois Fort Reservation electronic only Bill Latady, Bois Fort Reservation electronic only Nick Axtell, 1854 Treaty Authority electronic only Tim Colliton, Wenck Peter Miller, Wenck electronic only Steve Menden, Wenck electronic only Jennifer Engstrom, DNR electronic only David Braslau, David Braslau Associates Anne Claflin, MPCA Ann Foss, MPCA electronic only Brian Timerson, MPCA electronic only

Keetac Expansion Project U.S. Steel

Keewatin, Minnesota

PROPOSED STOCKPILE NOISE ASSESSMENT

✦SUPPLEMENT✦

Prepared for

U.S. Steel

by

David Braslau Associates, Inc. and Barr Engineering Company

20 March 2009

EXECUTIVE SUMMARY TO THE SUPPLEMENT

Study Objectives

This supplemental study evaluates several mitigation methods to achieve compliance with the Minnesota nighttime noise standards at the nearest residences taking into account the benefits of a quieting package on the dozer since the dozer was identified as a major contributor to the overall sound level associated with stockpile operations.

Quieted Dozer Sound Level

The objective for quieting the dozer is to eliminate the large time history peak associated with the dozer there by reducing both the L10 and L50 levels. In addition to evaluation of a "quieting package", a re-evaluation of the un-quieted level estimated earlier was made, due to clarification of assumptions in deriving the earlier level. Based upon this analysis, an un-quieted dozer source level of 89dBA has been assumed in this supplemental assessment.

Extensive sound level measurements on a Cat D9 at the Werris Creek Coal Mine in New South Wales with and without a quieting package have provided the basis for estimating a source sound level for a "quieted" dozer. Sound level reductions from a static test were significant although reductions from a moving passby test with the dozer reversing in 2nd gear showed much lower benefits. For this supplemental assessment, the combined reduction in dozer sound level with a quieting package assumes 50% static reduction and 50% 2nd gear reverse reduction.

Prediction of L10 and L50 with a quieted dozer

At the Kelly Lake residences with the quieted dozer, the maximum L10 exceedance at Residence #3 dropped from 60 dBA to 59 dBA although the predicted L10 exceedances at Receptor 6 have been reduced to only 1 dBA. However, no changes in the L50 exceedances are predicted although these remain at 3 dBA or less for Residence #3 only.

At the south residences with the quieted dozer, the number of L10 exceedances at Residence #6 dropped from six to four, with one exceedance of 2 dBA and the remaining three only 1 dBA. Compliance with the L50 standard is still predicted for all dump/residence pairs.

Prediction of L10 and L50 at Kelly Lake Residence #3 without dozer operation

The L10 level does not change when dozer operations are completely eliminated and is still predicted to exceed the Minnesota nighttime L10 standard by 4 dBA. However, the L50 level is lower with no dozer operations and would comply with the Minnesota nighttime L50 standard. The primary sources contributing to the L10 exceedance are the bed lift and dumping process. Remaining sources contributing to the L50 level are truck movement: approach when loaded and departure when empty.

Noise Contours with Quieted Dozer

There is a small reduction in contour distances with the quieted dozer. Predicted contour distances from the stockpile perimeter for nighttime standards are L10 of 55 dBA at 1610 feet and L50 of 50 dBA at 1370 feet.

Offsets to Comply with Nighttime Standards

The objective of this analysis is to estimate the distance from the stockpile perimeter that nighttime activity would need to be offset to achieve compliance with the nighttime noise standards. These will naturally be larger for those dump locations closest to residential receptor sites, smaller for those further away, and not needed at all where compliance is already predicted.

The offset distances are based on the distance from the residence to each dump perimeter and the predicted L10 and L50 levels from each dump at the residence. Using this information, it is possible to calculate the additional distance from the perimeter at which the L10 and L50 standards will be met

The maximum offsets would be about 650 feet at for Dump 5 and 6 at Kelly Lake and 350 feet for Dump 12 at the south residences. Actual monitoring of stockpile noise will provide a more accurate basis for determining if offsets are needed and if so, what these offset distances should be.

As the stockpile increases in height, the necessary offset distance may be decreased due to additional shielding from the edge of the stockpile. Revised offset distances could be calculated based upon stockpile heights.

Table of Contents

1.0	SUPPLEMENTAL STUDY OBJECTIVES 1
1.1. 1.2. 1.3.	Purpose of the Study
2.0	ESTIMATED QUIETED DOZER SOUND LEVELS
2.1.2.2.2.3.2.4.	Revaluation of Monitored Dozer Level.2Review of Caterpillar D9 and D10 Sound Levels2Benefits of Dozer Quieting Package3Establish Quieted Dozer Level for Simulation Model Analysis3
3.0	ESTIMATED NOISE AT KELLY LAKE WITH QUIETED DOZER 4
3.1. 3.2. 3.3.	Kelly Lake residential area and noise sources and residences
4.0	ESTIMATED NOISE AT SOUTH RESIDENCES WITH QUITED DOZER5
4.1. 4.2. 4.3.	South residential area and noise sources and residences5Projected sound levels at residences5Compliance with Minnesota Noise Standards5
5.0	L10 AND L50 LEVEL AT KELLEY LAKE RESIDENCE #3 WITH NO DOZER 6
5.1. 5.2.	Estimated L10 and L50 at Residence #3 with No Dozer
6.0	SOUND CONTOURS WITH QUIETED DOZER
6.1. 6.2.	Sound contours from single truck operation
7.0	OFFSETS FROM PERIMETER TO COMPLY WITH STANDARDS 8
7.1. 7.2. 7.3.	Kelly Lake Area8South Residence Area9Effectiveness of Stockpile Height in Reducing Needed Offset Distance9

LIST OF FIGURES

Figure 2.1	Relative Contribution of Dozer in Simulation
Figure 2.2	Estimated Dozer Source Level Based upon Revised Dozer Track
Figure 2.3	Comparison of Monitored Dozer Source Levels
Figure 2.4	Dozer Quiet Package Benefit – Static Walk-Around Test at 16 m
Figure 2.5	Dozer Quiet Package Benefit - Reverse in 2 nd Gear at 10 m
Figure 2.6	Selected Octave Band Source Levels for Cat D10 Dozer
Figure 3.1	Kelly Lake Dump Locations and Residential Receptors
Figure 3.2	Estimated L10 Levels at Kelly Lake Residences
Figure 3.3	Estimated L50 Levels at Kelly Lake Residences
Figure 4.1	South Residence Dump Locations and Residential Receptors
Figure 4.2	Estimated L10 Levels at South Residences
Figure 4.3	Estimated L50 Levels at South Residences
Figure 5.1	Contributing Sources with No Dozer Activity
Figure 6.1	L10 Contours with Quiet Dozer
Figure 6.2	L50 Contours with Quiet Dozer
Figure 7.1	Offsets at Kelly Lake Needed to Comply with Nighttime Standards
Figure 7.2	Offsets at South Residences Needed to Comply with Nighttime Standards
Figure 7.3	Reduced Offsets with Increasing Stockpile Height

1.0 SUPPLEMENTAL STUDY OBJECTIVES

1.1. Purpose of the Study

This supplemental study evaluates several mitigation methods to achieve compliance with the Minnesota nighttime noise standards at the nearest residences taking into account the benefits of a quieting package on the dozer which was identified as a major contributor to the overall sound level associated with stockpile operations.

1.2. Study Objectives

The study objectives were as follows:

- Establish a sound source level for a quieted CAT D10 dozer
- Evaluate the benefits to the L10 and L50 levels at the nearest residences.
- Evaluate the L10 and L50 levels at the closest residence (Kelly Lake Receptor #3) without any dozer operations
- Estimate an offset distance from the proposed stockpile perimeter at which quieted dozer operations can comply with the L10 and L50 nighttime standards.

1.3. Report Structure

This report is structured as follows:

- Section 2 Establish Quieted Dozer Source Level
- Section 3 Estimate L10 and L50 Levels at Kelly Lake with a Quieted Dozer
- Section 4 Estimate L10 and L50 Levels at the South residences with a Quieted Dozer
- Section 5 Estimate the L10 and L50 Level at Kelly Lake Receptor #3 with no Dozer
- Section 5 Stockpile Noise Contours with a Quieted Dozer
- Section 6 Offsets from Stockpile Perimeter needed to Comply with Nighttime Standards

2.0 ESTIMATED QUIETED DOZER SOUND LEVELS

2.1. Revaluation of Monitored Dozer Level

The original contribution of the dozer to the time history at receptor #3 from Dump 8 can be seen in **Figure 2.1.** The high level and duration at this level made a relatively large contribution to both the L10 (length of time over 60 dBA) and the L50 (length of time over 53 dBA). The objective for quieting the dozer is to eliminate this large peak and thereby reducing both the L10 and L50 levels.

The dozer source level assumed in the original report was based upon the assumption that all dozer activity took place in a relatively small zone near the perimeter dump site. Further clarification of dozer movement during sound level measurements with both the Larson-Davis Model 824 and the Casella CEL Model 593 meter indicated that the dozer followed a longer track along with departing trucks.

In a simple theoretical world, the sound levels in **Figure 2.2** representing consecutive points along the dozer track and adjusted to a common distance of 50 feet would be identical. However, factors such as air absorption and ground effect play a role in reducing the level more as distance from the monitoring site increases. Since measurements at the closest approach are not greatly affected by these other factors, they tend to be more representative of the source level. For purposes of this supplemental assessment, an average of the first seven readings has been assumed as the overall dozer sound level at 50 feet (89 dBA). This compares with a level of 94.6 dBA assumed in the original study.

2.2. Review of Caterpillar D9 and D10 Sound Levels

To determine the reasonableness of this assumption, a literature and web search of sound levels reported for Caterpillar D9 and D10 dozers was undertaken. The results of this extensive review are summarized by the bar chart in **Figure 2.3**,

Based upon data contained in the Transport Infrastructure (New South Wales) Construction Noise Strategy for Rail Projects, the maximum allowable A-weighted sound power level for a D10 equivalent dozer is 1 dBA higher than an equivalent D9 Dozer. Thus, extensive sound level measurements on a Cat D9 at the Werris Creek Coal Mine in New South Wales, Australia¹, can be applied to a Cat D10 by adding 1 dB to these data. Those overall dBA levels are shown in **Figure 2.3** by the bars labeled "D9+1".

Since the dozer observed and measured on the existing Keetac stockpile was backing during the entire measurement, the assumed dozer source level of 89 dBA compares favorably with the 2nd gear reverse level of 88 dBA shown on **Figure 2.3**. The 89 dBA (at 50 ft) Cat D10 source level is used here because it also represents actual activity at an existing Keetac stockpile and compares favorably with the extensive data upon which a "quiet dozer" level can be based.

¹ "Statement of Environmental Effects for Minor Modifications to Werris Creek Coal Mine"; Werris Creek Coal Pty Limited; Werris Creek, New South Wales. Report No. 623/07, June 2008. App. 2-4.

2.3. Benefits of Dozer Quieting Package

The sound measurements from the Werris Creek Coal Mine in New South Wales included both before and after measurements on a "quieting package" installed on the D9 dozer. These data provide a basis for estimating the benefits of a "quieting package" on the D10 dozer used at the Keetac stockpile.

The sound reduction benefits of the quieting package were measured from a static test walk around at a distance of 16 meters (shown in **Figure 2.4**) and a moving passby test at a distance of 10 meters of a dozer reversing in 2^{nd} gear (shown in **Figure 2.5**). The bar charts represent A-weighted spectral levels.

Sound level reductions from the static test (**Figure 2.4**) are significant from the lowest reported frequency (80 Hz) all the way up to 2500 Hz. However, sound level reductions from the moving passby test with the dozer reversing in 2^{nd} gear (**Figure 2.5**) shows much lower benefits, in most cases only one or two dB. Therefore, the level of benefit to be derived from a quieting package will depend heavily upon the mode in which the dozer is operated.

2.4. Establish Quieted Dozer Level for Simulation Model Analysis

A preliminary evaluation of alternative mode combinations were evaluated to help determine the level of sound level reduction that could be expected Keetac with a quieted Cat D10 dozer. The results of two alternative modal mixes at the Kelly Dump 8/Receptor #3 location (closest residence to stockpile activity) are shown in **Table 2.1**. The 50/50 split refers to the assumption of 50% static reduction/50% 2nd reverse reduction while the 70/30 split refers to 70% static reduction/30% 2nd reverse reduction

Table 2.1	Comparison of Sound Level	at Kelly Lake Dump 8/ Receptor #3
-----------	---------------------------	-----------------------------------

Metric	Previous Level	50/50 Split	70/30 Split
Leq	57.5	55.5	55.3
L10	60	59	59
L50	53	53	53
L90	53	49	49

It can be seen from this preliminary simulation that, while the Leq (or equivalent sound level) shows a 2 dBA benefit from the originally assumed dozer level, the L10 level shows only 1 dBA benefit wile the L50 shows no change. The L90, however, shows a 4 dBA benefit although this is not used for compliance purposes. What the table does show, however, is that if 50% or more of the dozer operation is backing, the quieting package provides a benefit more similar to the 2nd gear reverse than to the static test. Therefore, the 50/50 split quieting package effectiveness has been assumed in the supplemental simulations.

This small difference between the 50/50 and 70/30 static/2nd gear reverse reductions is also reflected in the octave band spectra for the dozer shown in **Figure 2.6**.

3.0 ESTIMATED NOISE AT KELLY LAKE WITH QUIETED DOZER

3.1. Kelly Lake residential area and noise sources and residences

For the supplemental simulation of stockpile noise levels at Kelly Lake, the previous dump and residences have been assumed. These are included again for reference as **Figure 3.1** in this report

3.2. Projected sound levels at residences

Projected L10 levels with a quieted dozer for the dump and residence pairs are presented in **Figure 3.2**. While there is a slight decrease in the L10 level for Residence #3, the L10 levels are generally above the L10 nighttime standard. There is also a small decrease in L10 levels for Residence #6.

Projected L50 levels with a quieted dozer for the dump and residence pairs are presented in **Figure 3.3**. These show little if any benefit from the quieted dozer.

3.3. Compliance with Minnesota Noise Standards

The maximum L10 exceedance dropped from 60 dBA to 59 dBA at Residence #3.although the predicted L10 exceedances at Receptor 6 have been reduced to only 1 dBA. However, no changes in the L50 exceedances are predicted although these remain at 3 dBA or less for Residence #3 only.

4.0 ESTIMATED NOISE AT SOUTH RESIDENCES WITH QUIETED DOZER

4.1. South residential area and noise sources and residences

For the supplemental simulation of stockpile noise levels at the south residences, the previous dump and residences have been assumed. These are included again for reference as **Figure 4.1** in this report

4.2. Projected sound levels at residences

Projected L10 levels with a quieted dozer for the dump and residence pairs are presented in **Figure 4.2**. There are some significant benefits with the quieted dozer at Residence #6 with exceedances dropping to only 1 dBA for three dump locations and to 2 dBA for Dump 12. Levels from some other dump/residence pairs are also predicted to decrease.

Projected L50 levels with a quieted dozer for the dump and residence pairs are presented in **Figure 4.3**. These are essentially unchanged from the original simulation.

4.3. Compliance with Minnesota Noise Standards

With the quieted dozer, operations at only four dump locations are predicted to exceed the L10 nighttime standard at Residence #6 compared with six dump locations with the previous simulation. Three of these are only 1 dBA with one exceedance of 2 dBA. Compliance with the L50 standard is still predicted for all dump/residence pairs.

5.0 L10 AND L50 LEVEL AT KELLY LAKE RESIDENCE #3 WITH NO DOZER

5.1. Estimated L10 and L50 at Residence #3 with No Dozer

Since the Kelly Lake Residence #3 is predicted to experience the highest sound levels from stockpile operation, an evaluation of what would happen to the highest predicted level at this receptor (due to operations at Dump 8) has been made. The results of the analysis are presented in **Table 5.1**.

Sound Level Metric	Quieted Dozer	No Dozer
L10	59	59
L50	53	50
L90	49	48

The L10 level, which is due primarily to the actual dumping operation, does not change when dozer operations are eliminated and is still predicted to exceed the Minnesota nighttime L10 standard by 9 dBA. However, the L50 level is lower with no dozer operations and would comply with the Minnesota nighttime L50 standard.

5.2. Evaluation of Time History and Identification of Remaining Contributing Sources

The time history for the Dump 8 and Residence #3 in **Figure 5.1** shows why the L10 level does not change when dozer activity is eliminated. The primary sources contributing to the L10 exceedance are the bed lift and dumping process. Remaining sources contributing to the L50 level are truck movement: approach when loaded and departure when empty.

6.0 SOUND CONTOURS WITH QUIETED DOZER

6.1. Sound contours from single track operation

As in the original report, contour distances perpendicular to the stockpile perimeter have been calculated for both daytime and nighttime periods. The approximate distances of contours from the dump location are listed in **Table 6.1**.

Daytime Contours	Standard (dBA)	Contour Distance (feet)
L10	65	600
L50	60	420
Nighttime Contours	Standard (dBA)	Contour Distance (feet)
L10	55	1610
L50	50	1370

Table 6.1 Daytime and Nighttime Contour Distances

A home would have to be as close as 600 feet to the stockpile perimeter to be exposed to an L10 level of 65 dBA. It would have to be only 420 feet from the perimeter to be exposed to an L50 level of 60 dBA.

For almost continuous or randomly time-varying sound sources, the L50 contour extends further from a source than the L10 contour. However, because the L10 level is well above the L50 level for the assumed operational cycle and time history, the L10 contour is slightly larger in this case than the L50 contour.

6.2. Sound contours for multiple truck operation

Sound contours for multiple truck operation around the perimeter of the proposed stockpile can be developed assuming that the dumping points are continuous along the perimeter. Barr Engineering has developed contours for L10 and L50 with the quiet dozer to show the extent of potential noise impacts from the stockpile. The daytime and nighttime L10 contours are shown in **Figure 6.1**. The daytime and nighttime L50 contours are shown in **Figure 6.2**.

7.0 OFFSETS FROM PERIMETER TO COMPLY WITH STANDARDS

7.1. Kelly Lake Area

The objective of this analysis is to estimate the distance from the stockpile perimeter that nighttime activity would need to be offset to achieve compliance with the nighttime noise standards. These will naturally be larger for those dump locations closest to residential receptor sites, smaller for those further away, and not needed at all where compliance is already predicted.

From **Figure 3.2** (L10 levels at Kelly Lake residences), it can be seen that Residence #1, Residence #3, and Residence #6 are predicted to exceed the nighttime L10 55 dBA standard. Receptor #3 is predicted to have the largest exceedances of the nighttime L10 standard and is the only one at Kelly Lake to exceed the L50 standard. The needed L10 and L50 offsets for this residence are shown in **Figure 7.1**. A maximum offset of about 650 feet is predicted for Dump 5 and Dump 5.

The offset distances are based on the distance from the residence to each dump perimeter and the predicted L10 and L50 levels from each dump at the residence. Using this information, it is possible to calculate the additional distance from the perimeter at which the L10 and L50 standards will be met.

If any residences were located close to or adjacent to the stockpile perimeter, the offset would have to equal the contour distance from the perimeter. However, since the residences are located 1000 feet or more from the stockpile perimeter, the needed offset distances are always smaller than the contour distances.

From **Figure 3.2**, it can be seen that Residence #1 is predicted to exceed the L10 level by 2 dBA only for Dump 1. Residence #6 is predicted to exceed the L10 level by only 1 dBA for Dump 13, Dump 14, and Dump 15.

For completeness the offsets to comply with the L10 standard for all dump/residence pairs are presented in **Table 7.1**.

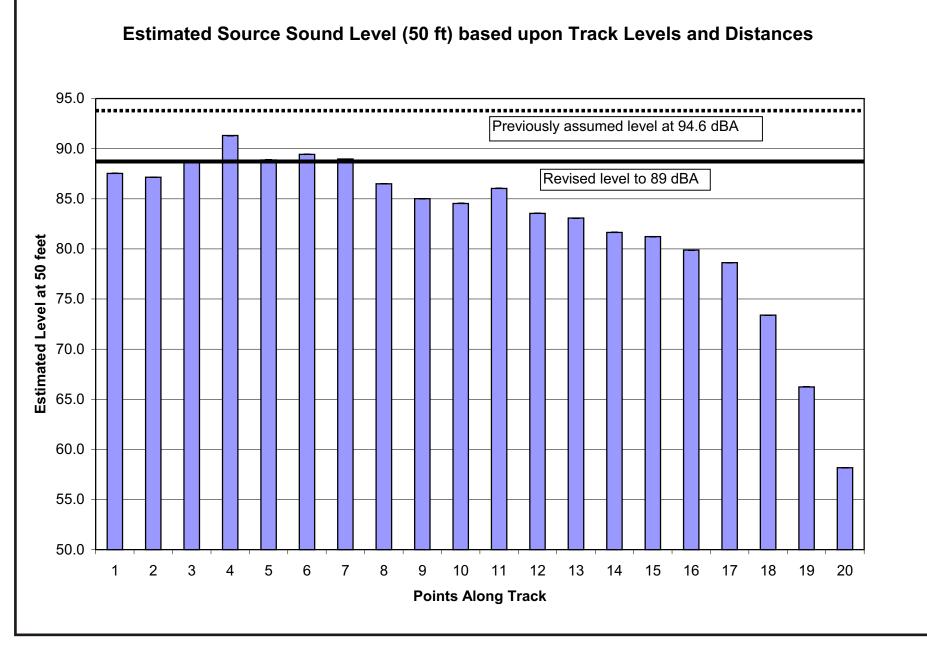
	Offset from Stockpile Perimeter (feet)			
Dump	Home 1	Home 3	Home 5	Home 6
1	350	0	0	0
2	0	176	0	0
3	0	333	0	0
4	0	459	0	0
5	0	645	0	0
6	0	651	0	0
7	0	459	0	0
8	0	595	0	0
9	0	615	0	0
10	0	485	0	0
11	0	353	0	0
12	0	168	181	0
13	0	0	0	180
14	0	0	0	173
15	0	0	0	175
16	0	0	0	0

Table 7.1 Offsets for Dump/Residence Pairs to Comply with Nighttime L10 Standard

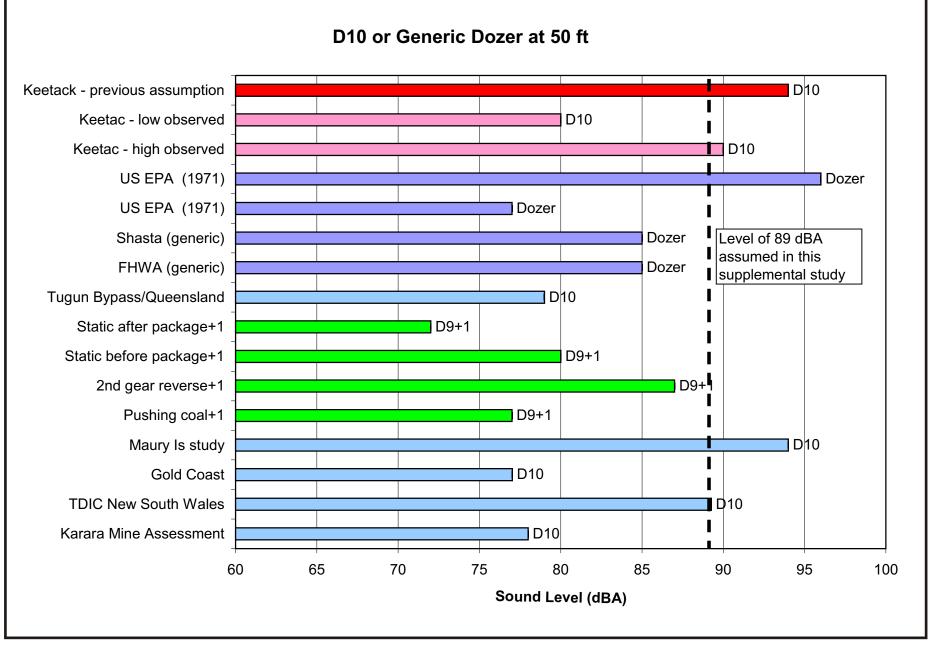
7.2. South Residence Area

From **Figure 4.2** (L10 levels at South Residence receptors), it can be seen that Residence #6 is predicted to exceed the nighttime L10 standard for four of the nearest dump locations and by a maximum of 3 dBA. From **Figure 3.4** (L50 levels at South Residence) receptors) it can be seen none of the receptor sites are predicted to exceed the nighttime L50 standard.

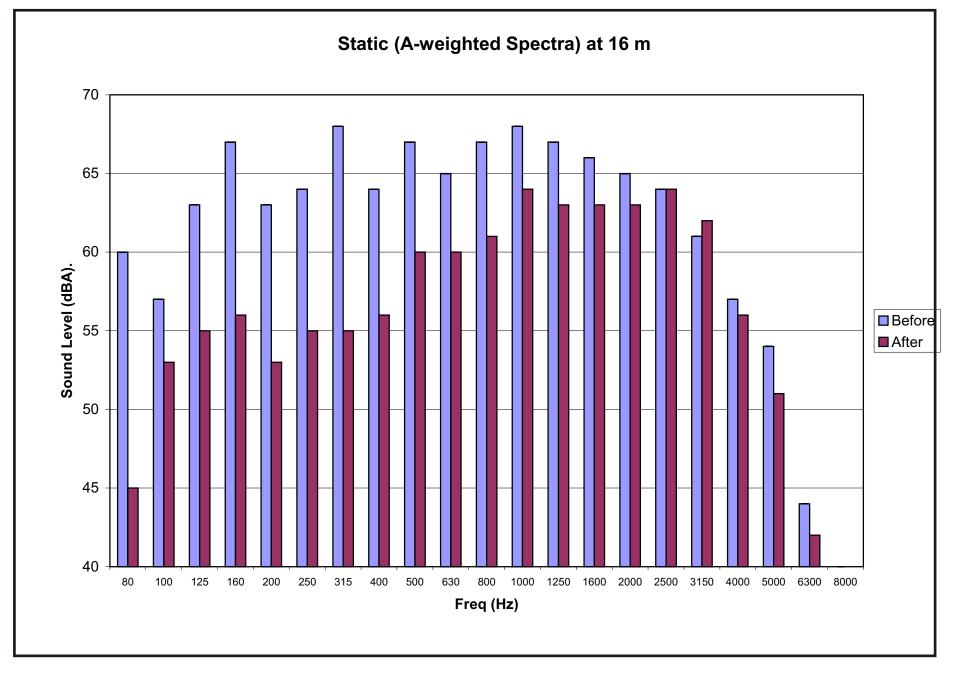
Based upon the distance from receptor #6 to each of the dump location perimeters and the predicted L10 levels from each, the additional distances have been estimated from the perimeter at which the L10 standard will be met. These distances are shown in **Figure 7.2.** A maximum predicted offset of 350 feet is predicted for Dump 12. As expected, these offsets are considerably smaller than for Residence #3 at Kelly Lake. An offset of only 150 feet could be within modeling error. Actual monitoring of stockpile noise will provide a more accurate basis for determining if offsets are needed and if so, what these offset distances should be.

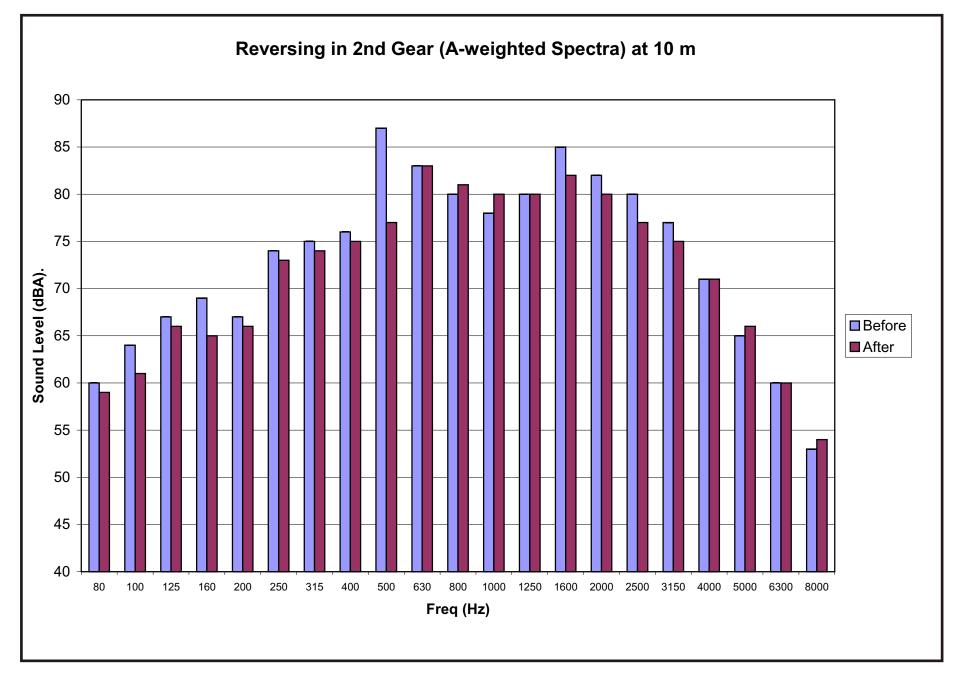

7.3. Effectiveness of Stockpile Height in Reducing Needed Offset Distance

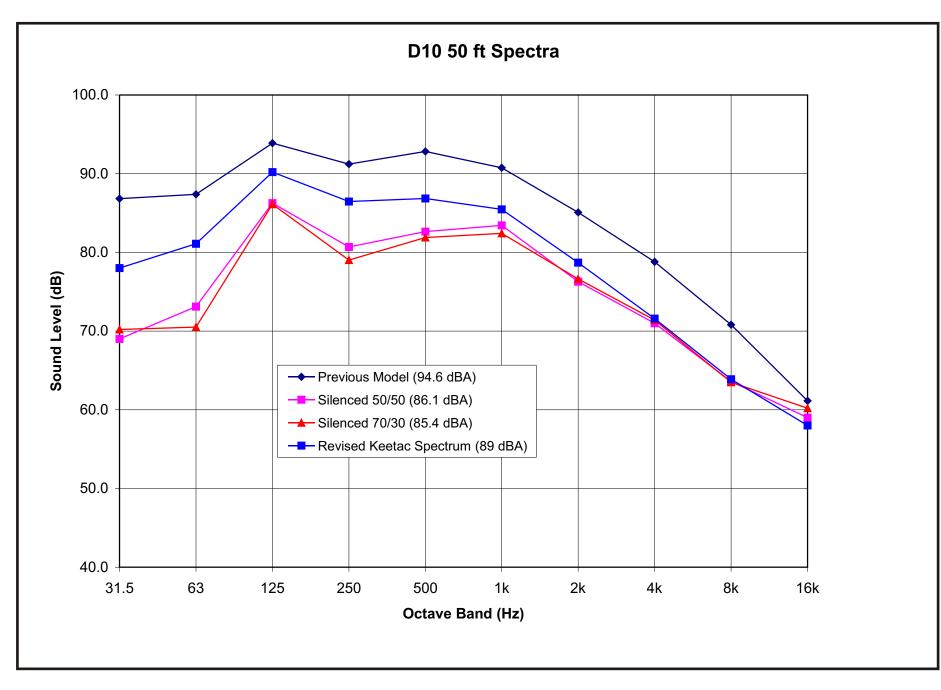
All of the predictions in the original report and this supplement, including the offsets presented above, have assumed a relatively low stockpile height so that no shielding of sound from the operation is provided by the edge of the stockpile itself, which in effect may act as a noise berm.

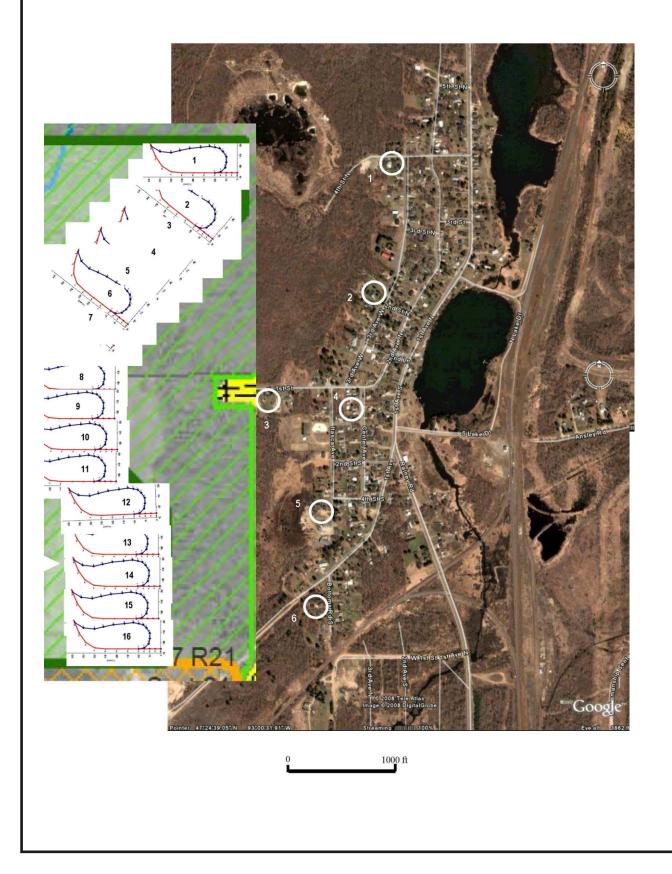

However, as the stockpile increases in height, this offset distance may be decreased due to this additional shielding which is shown schematically in **Figure 7.3.** Given assumed stockpile heights above ground or at elevations relative to the impacted residences, revised offset distances could be calculated.

Receptor R-3 Dump 8 -Simulation East Rev 80 75 Original dozer level contribution to L10 70 60 **Sound Level (dBA)** 90 22 22 LI10 60 ٠ L50 53 50 45 40 50 100 150 0 200 250 **Time around Circuit**

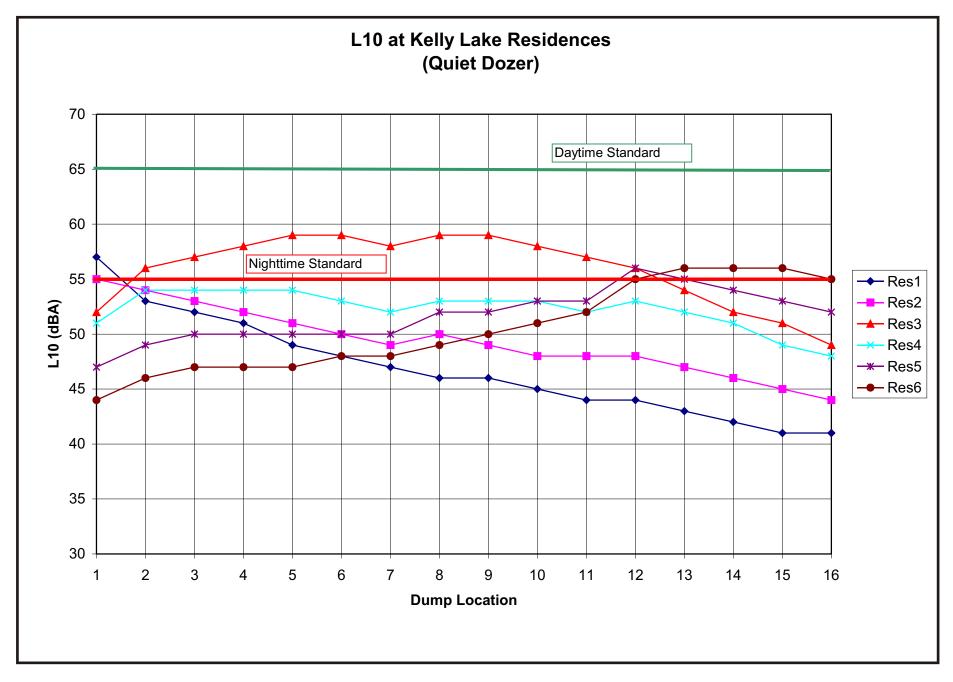

Relative Contribution of Dozer in Simulation


Estimated Dozer Source Level Based upon Revised Dozer Track


Comparison of Monitored Dozer Source Levels


Dozer Quiet Package Benefit - Static Walk-Around Test at 16 m

Dozer Quiet Package Benefit - Reverse in 2nd Gear at 10 m



Selected Octave Band Source Levels for Cat D10 Dozer

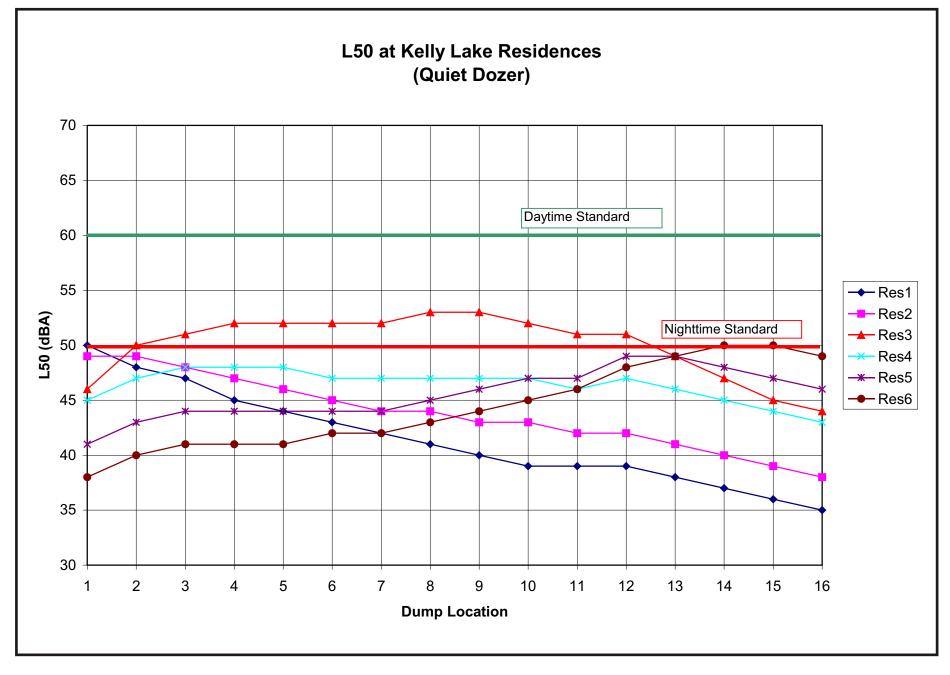


FIGURE 3.1

Kelly Lake Dump Locations and Residential Receptors

FIGURE 3.3

Estimated L50 Levels at Kelly Lake Residences

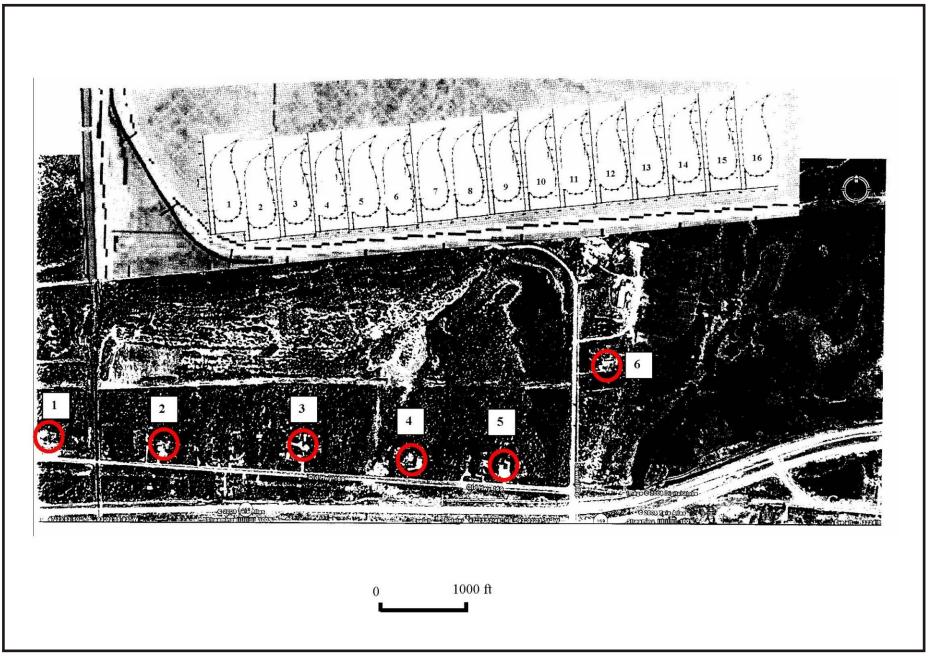


FIGURE 4.1

South Residence Dump Locations and Residential Receptors

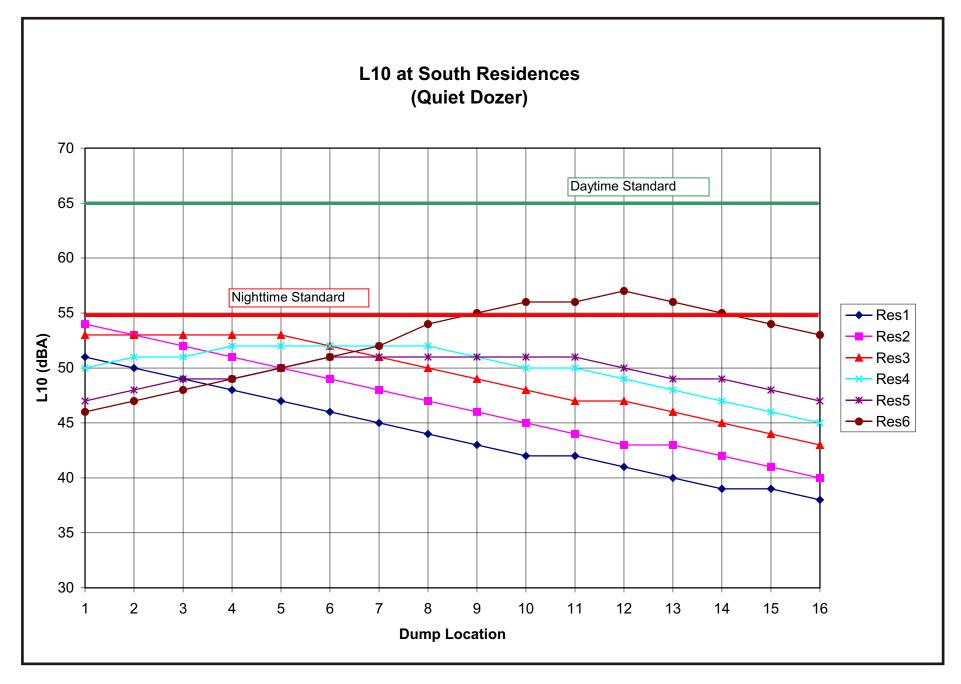


FIGURE 4.2

Estimated L10 Levels at South Residences

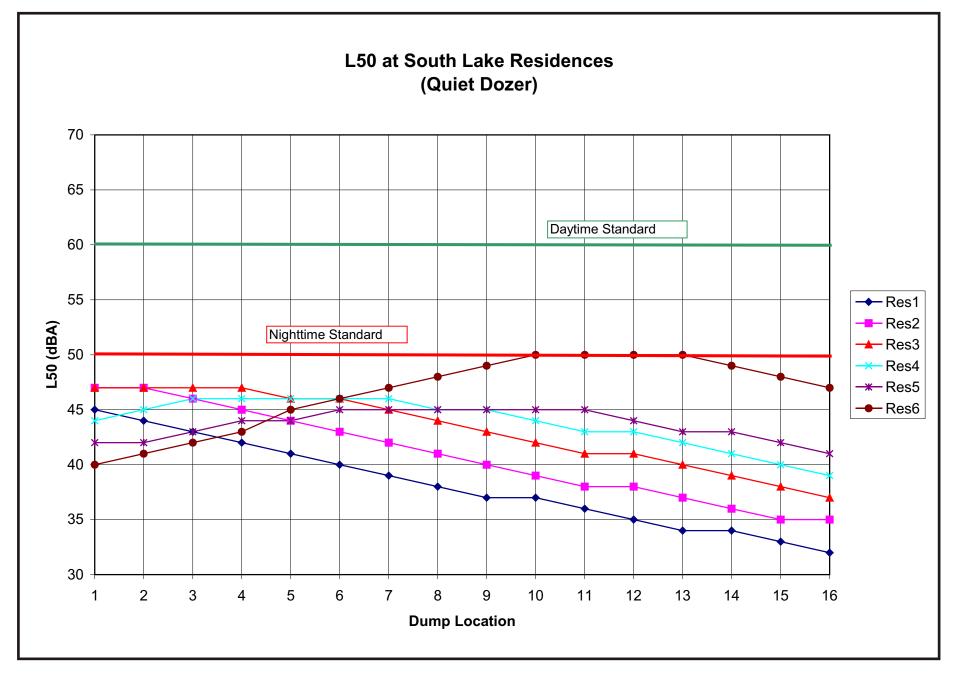
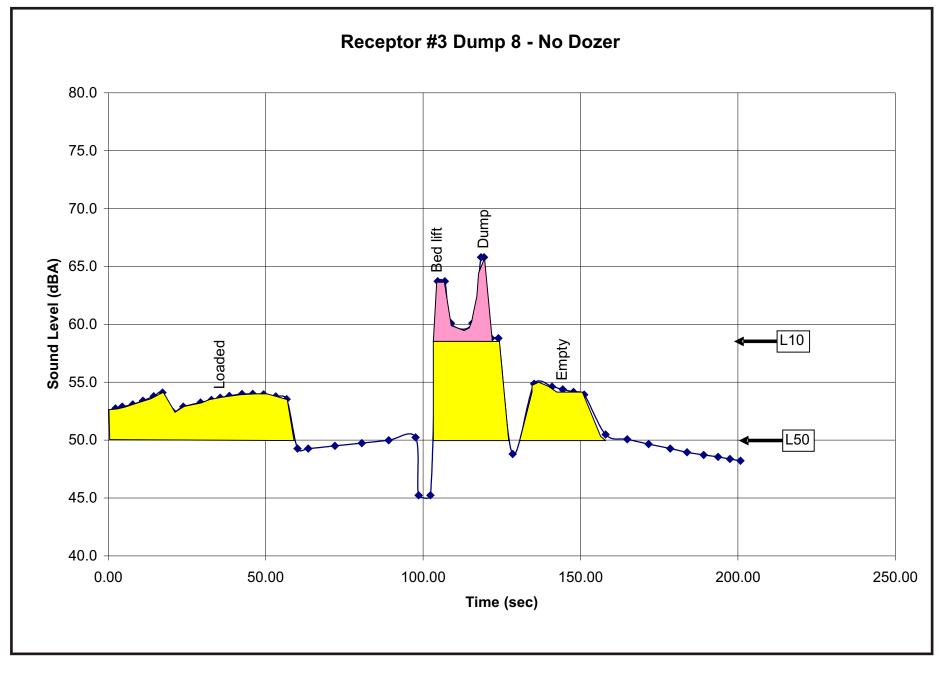



FIGURE 4.3

Estimated L50 Levels at South Residences

FIGURE 5.1

Contributing Sources with Dozer Activity

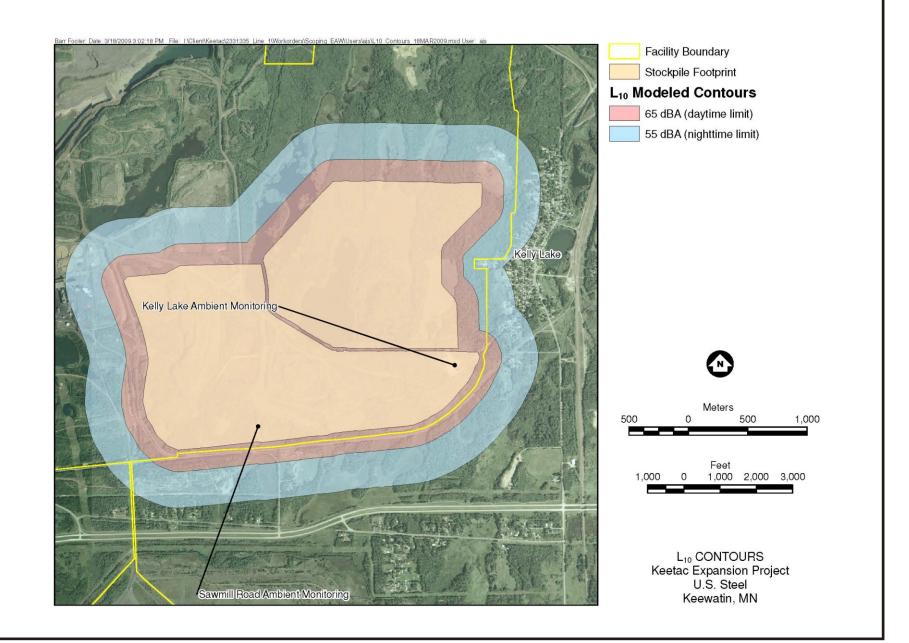


FIGURE 6.1

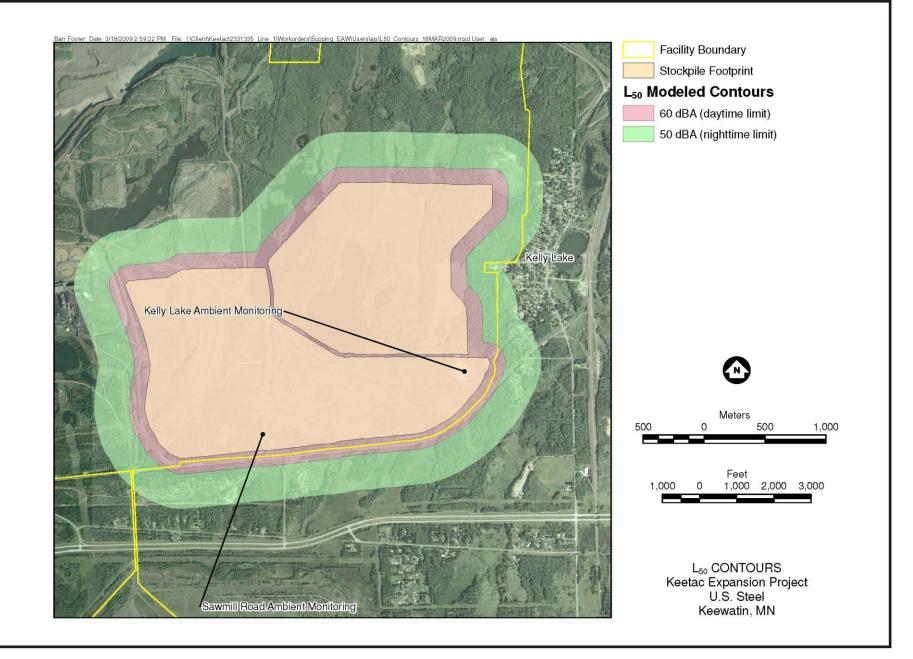
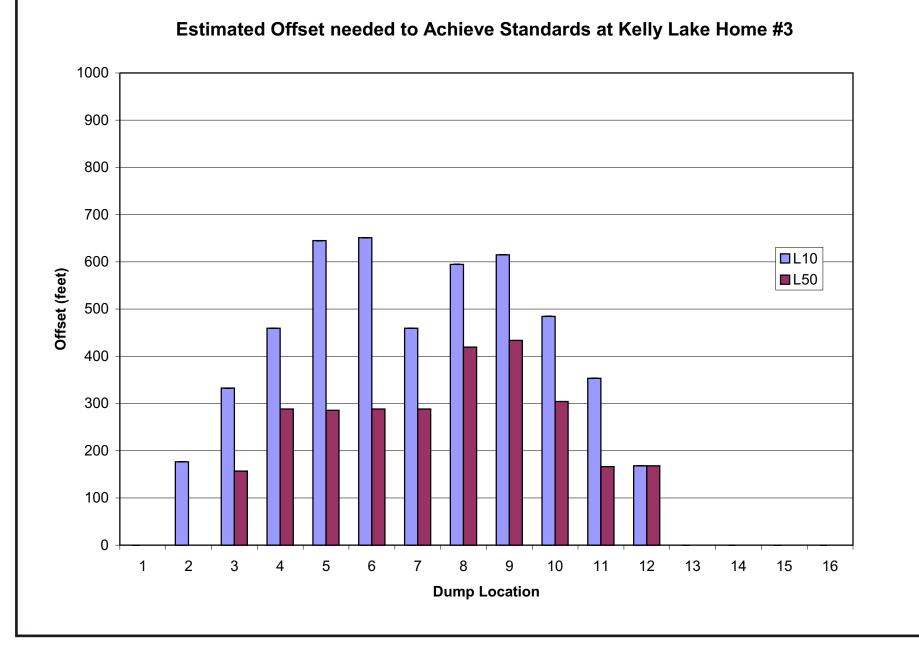
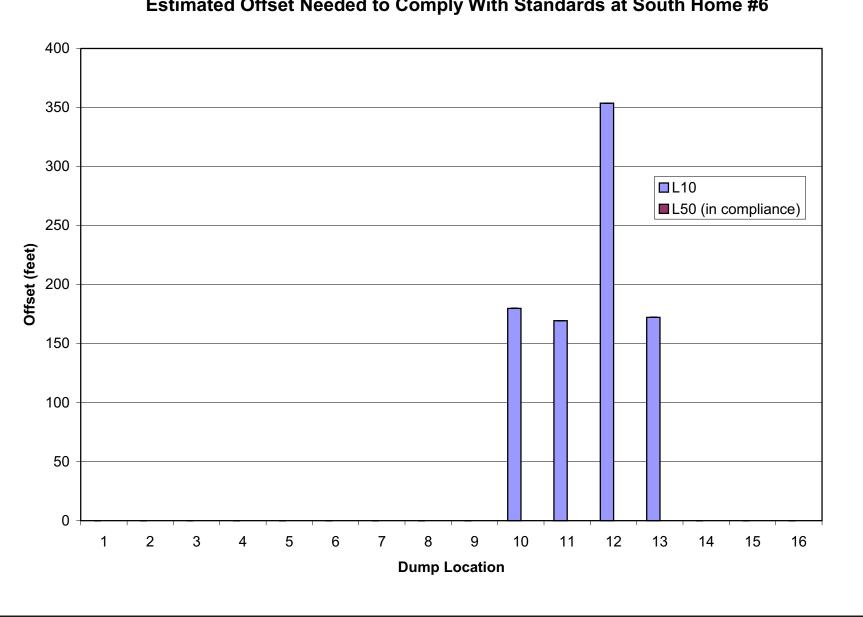
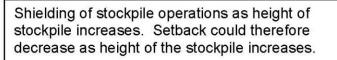




FIGURE 6.2


FIGURE 7.1

Offsets at Kelly Lake Needed to Comply with Nighttime Standards

Estimated Offset Needed to Comply With Standards at South Home #6

FIGURE 7.2

Original Setback

FIGURE 7.3

I-2 June 23, 2010 Alternative Stockpile Noise Assessment

This page left blank intentionally.

Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803 Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com *An EEO Employer*

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND

Technical Memorandum

Subject:Alternative Stockpile Noise AssessmentDate:6/23/2010

Projected noise impacts associated with the Alternative Stockpile Location are less than those associated with the Proposed Stockpile Location, but remain over the state standard for some receptors. This requires the proposed nighttime offset to remain in place, though the effect on stockpile operations would be reduced under the Alternative Stockpile Location.

Potential distances at which state noise levels would be reached were calculated in the Proposed Stockpile Noise Assessment Supplement. The modeled impact distances are unaffected by the stockpile layout, only the starting point for projecting the impact contour is altered. The outermost impact contour projected was 1610 feet, for the nighttime L10 standard (Table 6.1 of the Supplement – included below). From a single operational location, the contours would be similar to those shown in Figure 8.1 of the original noise analysis (attached – note that original analysis had an 1820 foot L10 contour). Sound contours for multiple truck operation around the perimeter of the proposed stockpile were developed assuming that the dumping points are continuous along the perimeter.

Daytime Contours	Standard (dBA)	Contour Distance (feet)
L10	65	600
L50	60	420
Nighttime Contours	Standard (dBA)	Contour Distance (feet)
L10	55	1610
L50	50	1370

Table 6.1 Daytime and Nighttime Contour Distances (from Proposed Stockpile Noise AssessmentSupplement)

Figures showing L10 and L50 contours from the proposed and alternative stockpile locations are provided. For both layouts, some impacts above state noise standards are projected at the receptors nearest the stockpile. Based on these results U. S. Steel proposes to utilize operating offsets to fully mitigate exceedance of the nighttime L10 and L50 standards. The proposed nighttime offset remains 1610 feet from the nearest NAC-1 receptor. Less stockpile area is influenced by the proposed offset for the Alternative Stockpile Location since the edge is generally farther away. Because worst case operational assumptions were used it is unlikely that these conditions would actually occur. In addition there are many factors that reduce noise impacts such as ground effect, vegetative shielding, ambient noise generated by wind, and other factors that are not included in the modeled predictions.

U. S. Steel proposes to conduct daytime sound measurements once the stockpile is operational to determine actual noise levels at nearby residences. If these actual measurements demonstrate impacts below state nighttime noise standards, U. S. Steel proposes to eliminate the nighttime operating offset.

I-3 July 8, 2010 Memorandum – Noise Reduction Benefit East Stockpile Alternative Location

This page left blank intentionally.

TECHNICAL MEMORANDUM

Wenck Associates, Inc. 1800 Pioneer Creek Ctr. P.O. Box 249 Maple Plain, MN 55359-0249

(763) 479-4200 Fax (763) 479-4242 E-mail: wenckmp@wenck.com

То:	Peter Miller Amy Denz Wenck Associates, Inc.
From:	Tim Colliton, PE, CIH Wenck Associates, Inc.
Re:	Keetac EIS Noise Reduction Benefit East Stockpile Alternative Location Wenck Project No. 1472-04

Date: July 8, 2010

The noise reduction benefit to the residents from the east stockpile alternative has been estimated using the predicted residential noise levels in the *Proposed Stockpile Noise Assessment – Supplement*, dated March 20, 2009. The levels were modified (reduced) for the additional distances from stockpile operations to the residential receivers. The distance calculation used a sound level drop off rate of 6 dBA per doubling of the distance. The difference in distance was determined using GIS to measure the distance from residences to the east stockpile alternative boundary.

The results are summarized below:

Kelly Lake Area

In the March 20, 2009 report, four residences (Nos. 1, 3, 5 & 6) were identified that would exceed the nighttime L10 noise limit of 55 dBA. With the east stockpile alternative, residences 1, 5 & 6 are calculated to meet the nighttime limit. Residence 3 will see a reduction from 59 dBA to 56 dBA and remain just greater than the limit.

South Area

In the March 20, 2009 report, one residence (No. 6) was identified as exceeding the nighttime L10 noise limit of 55 dBA. With the east stockpile alternative, residence 6 will see a reduction from 57 dBA to 56 dBA and remain just greater than the limit.

This page left blank intentionally.