Conserving Wooded Areas in Developing Communities

Best Management Practices in Minnesota
Conserving Wooded Areas in Developing Communities
Best Management Practices in Minnesota

2000 Revised

Northeastern Area,
State & Private Forestry

USDA Forest Service

Minnesota Department of Natural Resources
Prepared in cooperation with the following organizations:

American Society of Landscape Architects, Minnesota Chapter
Builders Association of Minnesota
City Foresters of Eagan and Plymouth
County Forester, Sherburne County
Hennepin Parks
Institute for Agriculture and Trade Policy
Izaak Walton League, Minnesota Chapter
Minnesota Association of Realtors
Minnesota Department of Agriculture, Division of Agronomy and Plant Protection
Minnesota Department of Natural Resources, Divisions of Forestry and Waters
Minnesota Department of Transportation, Office of Environmental Services
Minnesota Forestry Association
Minnesota Pollution Control Agency, Division of Water Quality
Minnesota Power
National Association of the Remodeling Industry
Northern States Power Company
Society of American Foresters
Tree Trust
University of Minnesota, College of Natural Resources, Department of Forest Resources
Westwood Professional Services, Inc.

Funding for this guidebook was provided in part by the Minnesota Legislature through the Minnesota Department of Natural Resources, Division of Forestry.

Reproduction of this guidebook is encouraged.

Editing: Mary Hoff
Design and Layout: Tami Glassel, DNR Graphic Design
Drawings: Debbie Sroka
Project Coordinator: Jean Mouelle, DNR Forestry

Cover photo courtesy of the city of Eagan.
STATEMENT OF PURPOSE

This best management practices (BMPs) guidebook for conserving wooded areas in developing communities of Minnesota was developed by an advisory committee composed of a wide representation of stakeholders from public, private, and nonprofit organizations. The goals of these BMPs are:

• to provide communities with a better understanding and appreciation of economic, social, and environmental benefits of wooded areas and individual trees,

• to provide decision makers, city planners, landowners, developers, and citizens with land-use approaches to conserve the ecological integrity and functions of wooded areas, including wildlife habitat and corridors throughout the landscape,

• to help builders, utility companies, contractors, machine operators, and crews minimize impacts of construction on wooded areas and trees, and

• to provide citizens with a better place to live and work.
CONTENTS

STATEMENT OF PURPOSE iii
FIGURES ix

INTRODUCTION 1

About the urban ecosystem 1
Current status of wooded areas in developing communities 4
About the BMP guidelines 6

BENEFITS OF WOODED AREAS AND TREES 9

Economic benefits 9
- Economic stability....9
- Increased property values....9
- Tax revenue....10
- Energy savings....11

Social benefits 12
- Health benefits....12
- Aesthetic values....12
- Recreational and educational opportunities....12
- Screening and privacy....12
- Noise and glare reduction....13

Environmental benefits 13
- Clean air....13
- Clean water....13
- Wildlife habitat....15
BMPs TO CONSERVE WOODED AREAS
AT THE LANDSCAPE LEVEL

Audience
Overview
Recommended approach and conservation options
 Define goals....18
 Inventory and assess resource....19
 Create a conservation plan....21
 Identify and select land protection options....25

Check list

BMPs TO CONSERVE WOODED AREAS
AT THE SUBDIVISION LEVEL

Audience
Overview
Recommended practices
 Define goals....32
 Inventory and assess resource....33
 Create a wooded area protection plan....39
 Select a protection method....42
 Monitor and evaluate the conservation plan....47

Check list
BMPs TO PROTECT TREES AT THE LOT LEVEL: NEW CONSTRUCTION, REMODELING, AND REDEVELOPMENT 51

** Audience 51
** Overview 51
** Recommended practices 52
 - Define goals....54
 - Inventory and assess trees....54
 - Select trees or groups of trees to protect....56
 - Select building site and construction zone....58
 - Create a tree protection plan....59
 - Select and implement tree protection method....64
 - Monitor and evaluate....71

** Check list 74

TRANSPORTATION SYSTEMS AND UTILITY INFRASTRUCTURE 77

** Audience 77
** Overview 77
** Transportation systems 77
 - Types of transportation systems....77
 - Planners of transportation systems....78
 - Funding for transportation systems....78
 - State road and highway design standards....79
 - Natural preservation routes....81
 - Reduce tree damage through subdivision transportation planning....85
Utility infrastructure

Types of utility infrastructure...85
Reduce tree damage through utility planning...86
Site readiness summary for utilities...90

APPENDICES

Appendix 1: Resources and Reference 91
Appendix 2: Financial Assistance Programs 97
Appendix 3: Tree Species and Tolerance 101
Appendix 4: Examples of Development Plans 105

Appendix 4 a: An example of a landscape-level inventory of natural resources, city of Burnsville...105
Appendix 4 b: An example of a city inventory of forest resources, city of Maple Grove...106
Appendix 4 c: An example of a landscape inventory and ranking of natural resources, city of Woodbury...107
Appendix 4 d: A series of comprehensive resource maps for a subdivision development plan...109
FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A balanced development approach includes the conservation of wooded areas and other natural resources as shown on the aerial view to the left but not their complete destruction as shown on the aerial view to the right.</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Complete loss and fragmentation of woodlands are demonstrated by comparing the area they once occupied, as shown in the presettlement vegetation map (a), to the areas they occupied in the vegetation map of 1977 (b). Note that the 1977 vegetation map is more than 20 years old and more forest land has since been converted to development.</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Successful conservation of wooded areas and individual trees requires active participation of all people involved in the land development.</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Properties surrounded with trees have higher market value than treeless properties because trees are part of the property infrastructure. In addition, trees provide a healthier and a more pleasant living environment.</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>A windbreak on the west and north of the building and shade trees on the east and west of the building significantly reduce the cost of heating and cooling.</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Trees clean the air by filtering dust particles, absorbing gases including carbon and nitrogen compounds, and releasing oxygen into the atmosphere.</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>A community forest provides recreational and educational opportunities as well as environmental benefits and wildlife habitat.</td>
<td>15</td>
</tr>
</tbody>
</table>
Infrared aerial photography is used by natural resource professionals to see patterns of water bodies, vegetation cover, and existing infrastructure.

A resource map such as this example of the city of Cottage Grove shows the location of important features of the landscape including tree stands, water bodies, historical sites, and existing land use.

People involved in subdivision development may have different priorities.

A comprehensive resource map of a subdivision such as this example from North Oaks shows location of wooded areas, individual trees, water bodies, proposed developable sites, and indicates conservancy areas.

Drawing different alternative development plans for the subdivision provides the opportunity to look at all possible options and optimize the land use and conservation effort.

Determining the construction danger zone between the protective fence and the building site assists with final site and building design and selection of equipment to be used. Note that the tree protective fence is placed in front to prevent access and disturbance to the protected root zone.

Highly visible ribbon identifies protected wooded areas and trees.

A combination of visual fences and silt fences prevent access to the protected root zone and construction damage to trees as well as runoff.

Using equipment near protected trees can cause severe mechanical injury to trees and compact soil in the protected root zone.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>56</td>
</tr>
<tr>
<td>18</td>
<td>60</td>
</tr>
<tr>
<td>19</td>
<td>62</td>
</tr>
<tr>
<td>20</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>66</td>
</tr>
<tr>
<td>22</td>
<td>68</td>
</tr>
<tr>
<td>23</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>72</td>
</tr>
<tr>
<td>25</td>
<td>80</td>
</tr>
<tr>
<td>26</td>
<td>84</td>
</tr>
</tbody>
</table>

17 A resource map at individual lot level shows the location of the wooded area and individual trees, the species composition, and diameter of trees at breast height.

18 On a wooded lot (a), selecting the center of the lot as the building site (b) conserves less trees than selecting the corner of the lot as the building site (c), which saves more trees.

19 The protected root zone of a mature tree may be determined by projecting the dripline.

20 A highly visible fence and “off limits” signs should be placed around the protected root zone of each conserved tree to prevent any site disturbance and mechanical injury.

21 Parking equipment (a) or storing soil (b) within the protected root zone cause soil compaction and affect tree growth and survival.

22 A temporary crossing bridge can be used near the protected root zone to minimize soil compaction and mechanical injury to the tree.

23 When roots are cut or severed during trenching or excavation, immediately protect roots with a bag (a) or tarp (b) to prevent drying.

24 After cutting a grade near trees (a or b), build a retaining wall to prevent soil erosion.

25 A roadway clear zone in a wooded area specifies standards for conserving trees and providing safe road.

26 Construction standards for natural preservation routes are used to preserve wooded areas and trees during road construction.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>A joint underground utility trench for electrical, gas, fiber optic, and cable television infrastructure is encouraged in wooded areas to minimize utility easements and enhance the conservation effort. 87</td>
</tr>
<tr>
<td>28</td>
<td>Tunneling below the root system is preferred over open trenching (on right) when installing the utility infrastructure near the protected root zone because tunneling impacts fewer roots and thereby increases tree survival. 88</td>
</tr>
<tr>
<td>29</td>
<td>Water under pressure can be used as an alternative method to remove soil near the protected root zone and prevent cutting roots. 89</td>
</tr>
</tbody>
</table>