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Figure 1.  Upland and lowland brushland sites in Minnesota. 
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Executive Summary 

 
Brushlands have the potential to provide biomass for energy particularly in northern regions where these 
land types are common.  A pilot project was proposed to assess shrubland density over a several county area 
using a combination of on-site biomass measurements and remote sensing techniques.  This project was 
done as two sections by different organizations. This first section of research was done cooperatively by the 
Minnesota Department of Natural Resources and the UM-Duluth, Natural Resources Research Institute and 
the second section was done exclusively by the Minnesota Department of Natural Resources, Forest 
Resource Assessment Unit.   
 
The goal of the first task, described in Section 1 of the report, is to conduct on-site biomass assessments and 
conduct interpretation of aerial photography to develop a dataset of brushland polygons where on-site 
biomass estimates were made.  Brushland areas within selected larger Permanent Sampling Units (PSUs) 
were delineated on aerial photographs and subsequently sampled to estimate standing biomass on these 
sites.  Plot data were used to estimate shrub biomass using existing biomass estimation equations that 
provide a means to convert stem dimensional data into estimates of oven-dry biomass.  These data were 
summed across plots within each polygon to arrive at biomass estimates within low, medium and high 
polygons as delineated through ocular interpretation of aerial photography.  The average oven-dry biomass 
of polygons classified as low, medium and high through photo-interpretation is 0.76, 5.3 and 8.3 tons per 
acre, respectively.   Delineation of poorly-stocked, low-biomass areas through photo-interpretation is 
potentially useful as a “first-cut” elimination of those areas that are likely to be too low in biomass to 
warrant further investigation.  Evaluation of polygon classification showed that average stand height has the 
greatest influence on ocular classification. 
 
In addition to analyses of shrub biomass within individual polygons, we digitized areas of each of the 
polygons present with the PSUs to estimate the average biomass on an area basis on each PSU.  Having the 
distribution of low, medium and high polygons in terms of area, a coarse estimate of the average biomass on 
brushland sites is possible.  Through this method, the weighted average biomass on brushland polygons is 
estimated to be 4.27 dry tons per acre.  Using estimates of the average biomass on brushland sites and 
applying the result to the statewide lowland brush acreage produces a resulting total statewide standing 
biomass estimate of 10,065,531 dry tons.  It should be noted that upland brushland acreage accounts for an 
additional 667,593 acres, or roughly 22 percent of the total brushland acreage statewide.  Assuming biomass 
density is the same as lowland brush types, this resource has the potential to account for an additional 2.8 
million dry tons.  If brushland types could be managed on a fifteen year rotation, annual estimated biomass 
availability is roughly 670,000 dry tons.  However, many of the sites that were measured have undergone 
significant mortality with cycles of dieback and regrowth occurring.  In order to adequately understand 
annual biomass production, long-term studies of growth rates after shearing are needed.  Estimates of 
biomass growth during the early stages of stand regeneration would provide a more complete picture of the 
potential growth rate of these lands due to the fact that younger stands are more vigorous and do not have 
significant biomass losses due to mortality.  A network of permanent plots with periodic biomass 
measurements would be needed to more accurately determine annual growth patterns on these regenerating 
sites. 
 
The data generated in the first research task was then used as a basis for analysis of satellite imagery 
classification, described in this report under Section 2.   Supervised and unsupervised classifications were 
performed using field-measured data from the summer of 2008 generated through on-site sampling 
described in Section 1 and existing inventory data.  Results were fair to poor for an early supervised attempt 
using an object oriented classifier and only the new field data, which was minimal to inadequate for the 
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purpose.  A limitation of this dataset is the relatively low prevalence of medium and high biomass area 
which limits the contrast among the three classifications; low, medium and high biomass areas.  Also, this 
analysis was done at the polygon-level whereas the Landsat TM data occur as multi-band data in 30 meter 
pixels.  Review of aerial photography of the areas used in this analysis showed the high inherent variability 
within brushland polygons.  Given the fact that 30 meter pixel Landsat TM data were used in this analysis, 
the variability among individual pixels within a given brushland polygon is problematic.  Classification and 
analysis of individual pixels would likely provide better agreement between on-site measurements and TM 
data but it is highly impractical and very expensive to produce a dataset of on-the-ground measurements that 
would correspond to TM data at a 30 meter resolution.  Also, greater restriction in selection of polygons 
based on uniformity would likely increase the accuracy of classification. 
  
Other attempts used existing inventory data for training and the new field data for accuracy assessment.  
This analysis was done using a larger dataset of DNR-FIM inventory data which provides ocular estimates 
of shrub biomass on 412 brushland sites; again in low, medium and high density classifications.  Similar 
supervised classifications using this expanded data set showed improved accuracies.  The best results were 
obtained using unsupervised methods with signature refinement.  These preliminary results show that 
remote sensing techniques hold promise for identifying high density shrub resources that would be eligible 
for management as biomass fuels statewide.  These techniques combined with follow up interpretation of 
aerial photography could provide a useful tool to determine the relative biomass density on a particular site.  
At a minimum, a combination of remote sensing techniques and subsequent review of aerial photography 
would be useful to eliminate sites likely to be too low in biomass density to facilitate economical harvest on 
these sites.   
 
Given the fact that brushland height is correlated to shrub biomass and high biomass density classifications 
were generally found to correspond to areas of greater height, other techniques such Light Detection and 
Ranging (LIDAR) may hold promise to provide more accurate estimates of biomass on these sites.  
However, LIDAR data are currently very expensive and are not available statewide or in large geographic 
zones at this time. 
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Introduction 

 
Development of new forms of alternate energy has the potential to greatly increase demand for all types of 
biomass including woody and herbaceous material.  An opportunity that has been identified in Minnesota is 
the potentially large biomass resource represented by brushland habitats.  These sites are typically 
comprised of shrub species such as willow, alder and hazel.  While these lands are significant in acreage in 
the state, estimates of biomass density and tonnages have not attracted attention in the past due to low price 
for biomass, expected high costs of harvesting and relatively low value of this small-diameter resource.  
 
In addition to value for biomass production, managers of public lands have expressed interest in improving 
brushlands for Sharptail Grouse, a species favoring open habitats.  Habitat improvement is accomplished on 
these sites by shearing shrub material using bulldozers fitted with shear blades.  Due to lack of markets, this 
material is typically burned on-site thereby producing no revenue through biomass sales.  The lack of 
revenue and high treatment costs have limited the amount of acreage that can be treated in a given year.  In 
light of budget constraints, habitat improvement will likely be dependent on increasing biomass sales from 
these lands. 
 
Up to this point, the lack of markets and lack of accurate data on biomass amounts has limited the options to 
sell brushland biomass.  The intent of this project is to develop techniques to assess biomass volumes using 
a combination of satellite imagery, aerial photography and on-site biomass measurements. 
 
This report is organized in two sections, the first describing on-site sampling that was done to develop 
estimates of biomass with the sampling sites.  The second section describes the process of using the 
information produced in on-site sampling to test the application of remote sensing techniques to brushland 
biomass estimation. 
 



 6 

SECTION I.  Sampling Procedure to Evaluate Brushland Biomass 

 

Methods 

 
The sampling procedure was developed using aerial photographs of randomly-selected Primary Sampling 
Units (PSU) as part of the Minnesota Comprehensive Wetland Assessment, Monitoring and Mapping 
strategy (CWAMMS) program.  Apparently stocked brushland areas within the square-mile PSU sites were 
photo-interpreted and typed according to an ocular estimate of density; low, medium and high.   Once these 
polygons were delineated, an on-site evaluation of biomass was done by selecting two polygons within each 
of the three density classes for a total of six polygons selected for sampling within each PSU.  A total of 44 
PSUs were selected for sampling out of a total of over 100 candidate PSUs across Minnesota.  The 44 PSUs 
contained a total of 128 individual polygons (Fig. 2).  Not all PSUs had all density classes present on site. 
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Plot Sampling 
 
Polygons were sampled by establishing two measurement plots on which shrub dimensional data were 
collected.  Plot size was determined by diameter of the shrubs on each plot.  In the case of shrubs less than 
one inch diameter-at-breast-height (DBH), a 1/100 acre plot was established.  All stems were tallied and the 
average diameter and height of the shrubs was estimated.  In the case of shrubs greater than one inch in 
diameter and less than 4.9 inches DBH, diameters were collected on all stems on the plot and an average 
height was estimated.  In the case of shrubs greater than five inches in DBH, diameter data were collected 
and the height of the tallest stem was measured.  Heights of all other stems in this size class were estimated.  
In this way, estimation of biomass across all diameter ranges was possible. 

 
 

 
Figure 2.  Example PSU with brushland delineations. 

 
Biomass Estimation 
 
All data were entered into computer files and allometric equations were used to estimate individual stem 
biomass.  Using pre-existing brushland biomass data collected from individual stems of brushland species, 
we evaluated a set of published and unpublished (NRRI previous project) equations for use in this project.  
These equations included biomasss estimation methods from a variety of sources.  We found a composite 
equation of the form:  oven-dry biomass in grams = e^(2.383*ln(diameter @ 15cms)+4.032) to exhibit the 
best fit across all diameter ranges.  This equation was applied to all stems which resulted in an estimate of 
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the biomass for each individual stem.  Individual stem biomass was summed for each plot and polygon to 
produce an estimate of biomass on an area basis, in this case, oven-dry tons per acre. 
 
Results 

 
The average oven-dry biomass of polygons classified as low, medium and high through photo-interpretation 
was 0.76, 5.3 and 8.3 tons per acre, respectively (Figure 3).   As is evident in the Figure 3, delineation of 
poorly-stocked, low-biomass areas through photo-interpretation is potentially useful as a “first-cut” 
elimination of those areas that are likely to be too low in biomass to warrant further investigation.  
Evaluation of polygon classification showed that average stand height has the greatest influence on ocular 
classification.   Polygons delineated as medium and high were characterized by a more rough appearance, 
likely related to larger crown sizes of individual stems in these areas. 
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Figure 3.  Average biomass of polygons within PSUs as determined by on-site measurement. 

 
Because the intent of this project was to test and develop methodologies for assessment of brushland 
biomass, the sampling scheme was designed to balance low, medium and high areas.  By virtue of this 
design, we did not, however, produce estimates of the total acreage within each of these classes on each 
PSU.  That is a different question that can only be addressed by more detailed evaluation of all polygons 
within each PSU across a sampling of PSUs.  In order to more accurately assess the average biomass on a 
given landscape, the distribution of biomass density classes must be known.  This requires photo-
interpretation of all brushland polygons within a given PSU and digitization of those polygons to arrive at 
estimates of the total biomass available on a site.  The initial phase of the project produced a dataset of all 
brushland polygons in the PSUs typed according to our brushland density classification.  Having this 
dataset, we digitized all polygons on aerial photographs on the 43 PSUs that have been sampled to produce 
estimates of total brushland biomass on each PSU.  We will use the resulting data describing the distribution 
of biomass density among polygons and apply this information to statewide brushland acreage as estimated 
using the GAP Level 3 data.  Statewide satellite data are briefly described below. 
 
Estimation of Statewide Brushland Acreage 
 
The Minnesota GAP satellite data was used to estimate the acreage of brushland in Minnesota.  The 
distribution of brushland is shown graphically in Figure 1 at the beginning of this report.  Satellite 
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classification of vegetative cover is not an exact science and misclassification of vegetation types is 
inevitable.  For example, separation of brushland from regenerating forest is very difficult and can lead to an 
overestimate of brushland acreage.  The Minnesota Department of Natural Resources has conducted an 
analysis of the accuracy of the Minnesota GAP data.  After completion of the accuracy assessment, the 
percent of land that was misclassified as upland and lowland brush are published by brushland type and 
management unit.  We used these adjustments by brushland type (upland vs. lowland) and management unit 
to arrive at a more conservative estimate of brushland acreage.  Brushland acreage adjusted according to the 
accuracy assessment for all units is shown in table 1. 
 
Table 1.  Cumulative brushland acreage by unit and brush type in Minnesota adjusted for accuracy assessment. 

Sub-Section Name 

Adjustment Adjusted Acres 

Upland 
Brush 

Lowland 
Brush 

Upland 
Brush 

Lowland 
Brush 

Agassiz Lowlands 65% 59% 14936 388858 

Red River Prairie 30% 58% 967 7583 

Aspen Parklands 30% 100% 11984 162575 

Border Lakes 45% 64% 61884 62080 

Littlefork-Vermillion Uplands 100% 100% 49434 171373 

North Shore Highlands 81% 100% 58492 166589 

Chippewa Plains 100% 100% 54818 208021 

Laurentian Uplands 100% 100% 26650 52661 

St. Louis Moraines 35% 75% 25707 118268 

Nashwauk Uplands 100% 100% 148260 78077 

Hardwood Hills 50% 60% 35432 57294 

Tamarack Lowlands 100% 100% 46131 282103 

Toimi Uplands 100% 100% 26202 60432 

Pine Moraines & Outwash Plains 41% 75% 61598 93522 

Mille Lacs Uplands 100% 100% 10670 326155 

Glacial Lake Superior Plain 100% 100% 983 8388 

Minnesota River Prairie 10% 100% 4923 17235 

Anoka Sand Plain 60% 80% 5545 57161 

St. Croix Moraine  80%  50 

Big Woods  80%  7923 

St. Paul-Baldwin Plains  80%  2263 

Coteau Moraines 100%  9629  

Oak Savanna 33% 100% 1417 12371 

The Blufflands 75% 100% 10836 10124 

Rochester Plateau 33% 100% 397 3817 

Inner Coteau 100%  700  

Total   667593 2354924 

 
As shown above, the total adjusted brushland acreage in Minnesota is 3,022,517 acres.   
 
As mentioned above, on-the-ground assessment of biomass by plot sampling on 43 PSUs was done.  Using 
biomass estimates from plot sampling in each polygon within the PSUs, we digitized the area of each 
polygon to provide an estimate of the weighted-average shrub biomass occurring on these sites.  A total of 
129 polygons were digitized from the 43 PSUs.  These data were taken in composite to evaluate the areal 
distribution of high, medium and low biomass polygons.  The distribution by acreage is 23, 53 and 24 
percent in low, medium and high-biomass polygons, respectively.  The weighted average biomass on 
brushland polygons is estimated to be 4.27 dry tons per acre.  Using estimates of the average biomass on 
brushland sites and applying the result to the statewide lowland brush acreage produces a resulting total 
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statewide biomass estimate of 10,065,531 dry tons.  It should be noted that upland brushland acreage 
accounts for an additional 667,593 acres, or roughly 22 percent of the total brushland acreage statewide.  
Assuming biomass density is the same as lowland, this resource has the potential to account for an 
additional 2.8 million dry tons. 
 
The biomass density on any particular site will affect the economics of production by virtue of the fact that 
higher brushland density will require less moving of equipment to individual sites and likely higher 
productivity of equipment in a given unit of time.  As mentioned above, approximately one fourth of the 
brushland polygons had 8 tons per acre, only a portion of sites will likely meet the criteria for economic 
production of biomass.  Therefore, the economically-accessible acreage is likely to be only a portion of the 
total brushland resource due to a large amount of the land base being too low in biomass to warrant moving 
of equipment and setup of the harvesting operation. 
 
Assuming that brushland types could be managed on a fifteen year rotation, annual estimated biomass 
availability is roughly 670,000 dry tons.  However, many of the sites that were measured have undergone 
significant mortality with cycles of dieback and regrowth occurring.  In order to adequately understand 
annual biomass production, long-term studies of growth rates after shearing are needed.  Estimates of 
biomass growth during the early stages of stand regeneration would provide a more complete picture of the 
potential growth rate of these lands due to the fact that younger stands are more vigorous and do not have 
significant biomass losses due to mortality.  A network of permanent plots with periodic biomass 
measurements would be needed to more accurately determine annual growth patterns on these sites. 
 
At this time, costs of shearing and grinding are known or can be estimated with reasonable certainty.  
However, the unknown cost factor in brushland harvesting is the cost of collecting sheared material.  Shrub 
biomass is left in windrows as a result of the shearing operation.    A mechanism is needed to collect this 
biomass and transport it to a chipper or grinder near a roadside.  As part of a cooperative project funded by 
the US Department of Energy and the Laurentian Energy Authority, we have modified a standard forestry 
forwarder and will begin field-testing of this equipment on sites that have been recently sheared.  We are 
cooperating with the Minnesota DNR and the U.S. Fish and Wildlife Service to identify sites where trials of 
this modified forwarder will be done. 
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Section II.  Remote Sensing Assessment of Shrub Lands in North-central MN 

 
Methods 

 
Using data collected from on-site measurements, biomass estimates of each of the polygons were used to 
test traditional remote sensing classification methods.  The polygons were subdivided and labeled as low, 
medium, and high shrub density classes based on visual inspection and the field measurements.  We took 
the lines and notes from the edited air photos and digitized them into a GIS format for further analysis.   
 
Landsat TM data with 30 meter pixel resolution offered the best possibility for an inexpensive large area 
analysis.  An initial selection of  a path 28, row 27 landsat “scene” covering multiple counties and 16 psu’s 
in North-central MN was made (Figure 1).   
The landsat scene selected for this analysis was dated August 3, 2006 and contained 6 bands of data 
including visual and infrared wavelengths at a 30 meter spatial resolution.  This was the latest cloud free 
scene in our collection for that scene location.  Shrub lands do not experience much change over time and 
this 2 year old image should represent current conditions for the most part.   
 
Figure 1.  Landsat scene footprint within a context of county boundaries and psu’s sampled. 

 
 
Image classification was only going to be applied to state owned lands identified as “lowland brush” in the 
current FIM database of forest inventory.  A set of these polygons was built from area tiles, selected and 
clipped for the footprint of path 28, row 27.   
 
There were a total of 38 polygons within the 16 psu’s encompassed by the scene boundary.  A random 
number was generated for each polygon and the group was separated into training and accuracy assessment 
polygons randomly.  The following table shows the distribution of shrub densities within the samples: 
 
Table 1:  Distribution of training and accuracy assessment samples within the field measured polygons. 
 

Density class Training samples Accuracy Assessment Samples Total 
Low 13 12 25 
Medium 3 3 6 
High 4 3 7 
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Field data collection is one of the largest expenses for any remote sensing project.  Splitting out half of this 
data as accuracy assessment limits the amount of training data.  More is usually better.  This study area 
contained too few field measured polygons with medium and high densities to adequately cover the 
variability of species and conditions for these classes.  This limitation will affect results seen later. 
 
Classification attempts 
 
One method of image classification (supervised) involves using the computer to label pixels or objects 
based on statistical similarity to a set of known quantities (the training samples in this case).  The first 
attempt used an object oriented approach implemented through Definiens Professional Earth software. 
Attempts to apply image segmentation for the purpose of building objects for the entire scene failed for lack 
of memory.  It was necessary to reduce the areal extent of the data.  An “area of interest” (aoi) was 
generated just outside the 16 psu’s containing sample data and the satellite data was clipped to that extent.  
An additional reduction in data was accomplished by subsetting the image data with an aoi of just the 
training (field-measured) data merged with all the state “lowland brush” areas.  This allowed the image 
segmentation routine to build objects (Figure 2) of fine enough detail to be useful for classification.  These 
objects were built using a relative  
scale of 7, color component of 0.8 (inverse shape of 0.2), and a compactness component of 0.6 (inverse 
smoothness of 0.4). 
 
Figure 2. Image segmentation of a subset of satellite imagery for “lowland brush”. 
 

 

 
 
A classification scheme was defined as 5 classes including low, medium and high shrub densities as well as 
cloud and non-shrub.  The nearest neighbor rule for classification used the mean of all 6 spectral bands as 
well as the standard deviation of band 4 as a hint of a texture measure.  Training samples were selected 
visually from the training polygons that were field measured.  The object oriented classification was run and 
results (Figure 3) exported to an Erdas Imagine “.img” format for accuracy assessment purposes.   
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Figure 3.  Classification results using object oriented classifier. 
 

 
 
The “zonal attributes” tool of Erdas Imagine was used to calculate the majority composition of classification 
values (excluding cloud and non-shrub) for the accuracy assessment polygons.  The results of the accuracy 
assessment are shown in Table 2.  The overall accuracy of 22% is low.  This could be due to a number of 
factors including too few field measured training/accuracy assessment polygons, a lack of homogeneity 
within the training polygons, high variability within density classes for different species of shrub, or a poor 
choice of imagery and/or classification technique.  Shrub is a tough target for a coarse resolution sensor and 
the low accuracy is not unexpected.   
 
Table 2.  Accuracy assessment for field-measured polygons split into Training/Accuracy Assessment. 
 

 

Classified Image 

Row Total Omission Error % Low Medium High 

Reference Low 3 7 2 12 75% 

Image Medium 2 1 0 3 67% 

 High 3 0 0 3 100% 

Col. Total 8 8 2 18  

Commission Error % 63% 88% 100%  22%Overall Accuracy 

 
Altering techniques may improve classification accuracy without acquiring more field data.  Another 
attempt was made using a filtered set of the FIM inventory “lowland brush” category as training data instead 
of the field-measured areas.  This also allows for using all the field-measured polygons for accuracy 
assessment.  The selection criteria for training samples was “survey year” > 1997 and a “recon” level of 3 to 
5 (ground checked with 1’ of snow or less).  This yielded 42, 191, and 179 training polygons of  “shrub 
density” low, medium and high respectively.  These density classes are from the FIM inventory and defined 
differently than for the current project, but hopefully are useful as a relative scale.   
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Sample objects were selected in Definiens Earth as before and a new classification was run using the same 
classification scheme and nearest neighbor criteria.  The zonal majority was again calculated for the now 
expanded set of accuracy assessment polygons that were field measured and the results appear in Table 3. 
 
Table 3.  Error matrix for classification using selected FIM data for training and field measured polygons as 
reference. 
 

 

Classified Image 

Row Total Omission Error % Low Medium High 

Reference Low 3 12 10 25 88% 

 Image Medium 0 6 0 6 0% 

 High 0 2 5 7 29% 

Col. Total 3 20 15 38  

Commission Error % 0% 70% 67%  37%Overall Accuracy 

 
 
An attempt was made at this point to improve the accuracy further by adjusting samples based on a visual 
interpretation of aerial photography.  Classification results were reviewed and those objects judged to be in 
error were identified as samples for the subjectively more appropriate class.  This procedure was continued 
iteratively until diminishing returns caused the analyst to stop.  The final classification was again  
exported and a zonal majority calculated.  The results are shown in the error matrix in Table 4.  Accuracy 
improved slightly over the unrefined samples above.   
 
Table 4.  Error matrix for classification using selected FIM data for training and field measured polygons as 
reference with visual interpretation for improved training samples. 
 

 

Classified Image 

Row Total Omission Error % Low Medium High 

Reference Low 7 14 4 25 72% 

 Image Medium 1 5 0 6 17% 

 High 2 2 3 7 57% 

Col. Total 10 21 7 38  

Commission Error % 30% 76% 57%  39%Overall Accuracy 

 
 
A second type of image classification was attempted to see how it compared to the object oriented approach 
used previously.  This approach uses individual pixels as the basis of classification instead of objects and 
lets the computer create the training signatures within each density class.  This is called unsupervised 
classification.  Resource Assessment used a form of pixel based classification earlier in the GAP analysis 
project.  These same iterative guided clustering techniques were applied to the current project.   
 
The same group of training polygons from the FIM “lowland brush” class was used.  AOI’s were built by 
density class and used as a mask to create a group of 11 signatures for each density class through the 
unsupervised classification tool in ERDAS “imagine” software.  The assumption is that the sub-signatures 
will adequately represent the  
variability in the training set.  This variability may include different shrub species, clouds, forest, and 
density classes other than the training set label.  Each signature was visually interpreted over aerial 
photography and labeled as one of the 6 classes (forest was added to the 5 used in previous analyses) or 
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some combination thereof if it seemed confused between multiple classes.  These confused classes can be 
deleted, merged, or further refined in continued analyses.   
 
All 33 signatures from the 3 density classes of shrub were merged into one signature file and a Jefferies-
Matusita seperability measure was calculated.  Signature pairs that were most similar were merged and 
labeled according to the most appropriate class or majority/minority classes derived from visual 
interpretation.  In most cases, the merged signatures had the same density class from visual interpretation, 
regardless of the training set of origin.  A final signature set of 22 individual signatures was used to classify 
the population of FIM “lowland brush” and field-measured pixels.  The final classification was recoded to 
the 6 class scheme (Figure 4).  Accuracy assessment was calculated as in previous attempts and results are 
shown in table 5.  Overall classification accuracy was  
again somewhat improved at 50%.  Further improvements in accuracy may be possible with a more precise 
breakdown of some confused signatures into finer sub-signatures. 
 
 
Figure 4.  Pixel based unsupervised classification within “Lowland Brush” polygons over satellite imagery. 
 

 
 
 
Table 5.  Guided clustering of CSA used for training with field measured used for Accuracy Assessment 
 

 

Classified Image 

Row Total Omission Error % Low Medium High 

Reference Low 13 7 5 25 48% 

 Image Medium 1 1 4 6 83% 

 High 2 0 5 7 29% 

Col. Total 16 8 14 38  

Commission Error % 19% 88% 64%  50% Overall Accuracy 
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Discussion 
 

The results indicate how problematic this kind of information is to obtain accurately with remote sensing 
capabilities over large areas.  Air photo interpretation would probably produce more promising results for 
small areas, but is prohibitively expensive in interpretation costs for such a low value product.  There are a 
number of issues worth exploring in order to understand what’s possible with available technology. 
 
Good sample or training data would help achieve a higher level of accuracy.  A combination of high 
homogeneity and large numbers of samples to cover the variability in the population is important.  Our 
training sample numbers for medium and high density for the first run of this pilot were only 3 and 4, which 
are probably contributing to our initial low accuracy in the first attempt at classification.  Figure 5 shows the 
variability that can be found in 4 examples from our training/accuracy assessment set over color infrared 
photography.  How this variability is seen at 30-meter satellite resolution is shown in Figure 6.  Displayed 
bands are near infrared (4), mid infrared (5), and red (3) that tends to allow good visual discrimination of 
vegetation types.  This high variability can have a significant effect on the average spectral values for 
objects based on the scale of the segmentation used. 
 
Figure 5.  Examples of training and accuracy assessment polygons derived from the wetland monitoring 
data. 
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Figure 6.  Training and accuracy assessment polygons over 30-meter resolution satellite imagery viewed as 
bands 4,5,3 (RGB). 
 

 
More homogeneous training and accuracy assessment polygons (Figure 7) would certainly help alleviate 
some of the confusion generated by having mixed types shifting average values away from a pure response.   
 
Figure 7.  Example of a more homogeneous training/accuracy assessment polygon. 
 

 
 
High variability within the training polygons will certainly affect the results in an object oriented approach 
because the classification is based on an average value for the entire polygon.  It is easy to see how an 
average for a polygon similar to Figure 8 would not give consistent accuracies. 
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Figure 8.  Two examples of “worst case” high variability in a training polygon from the existing inventory 
data of  “lowland brush”. 
 

 
It is easy to see how average spectral values from these 2 polygons, which include forest, various classes of 
shrub, wetland grass, and water may not be the best for developing a good signature for high density (above) 
or medium density (left).  One advantage to the guided clustering in a pixel approach is that this variability 
is broken out into numerous sub-signatures and not averaged for each polygon.  All pixels from a group or 
many polygons are considered together. 
 
This pilot only used one source of imagery.  It may be possible to improve results by using different 
imagery with higher spatial resolution or some combination of photography and satellite imagery to more 
effectively discriminate shrub densities.  We have employed this multi-image capability in the FIM re-
inventory project with some success from the segmentation perspective.  It would still need to be tested to 
see if classification accuracies would improve.  We could also use multi-season satellite imagery in some 
combination to better identify shrub species differences, which may improve our density classes as well.   
 
The down side to these approaches is the increased analysis time and consequent expense.  Most of the 
imagery necessary is already in DNR possession or available at no cost from USGS as of January 1, 2009.  
Higher spatial resolution would also lead to much greater data volumes per unit area.  This may necessitate 
smaller data chunks processed separately and combining of results after the fact.   
 
Overall the pilot shows the potential for segregating lowland shrub densities to some level of accuracy.  This 
process requires considerable expense in planning, field data acquisition, and image analyses.  Using 
existing state inventory data as a surrogate for field data collection would allow considerable savings if data 
differences could be resolved to some acceptable level.  This would facilitate expansion of the classification 
to a statewide effort, since we would have state inventory data as training for most of the state with a much 
reduced fieldwork expense.  It would be necessary to have a good shrub mask for all ownerships in an 
expanded effort.  This could be produced independently of the shrub density classification or borrowed from 
other federal or state efforts based on level of accuracy required.  The shrub/forest distinction can be very 
blurry in Minnesota where vegetation types can have a wide gradation based on moisture regimes on the 
western edge of many species ranges. 
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Appendix A    

Using the Data to Develop Brushland Volume Estimates 

 
Because biomass from brushlands is likely to be a low value product, it will be useful to 
have a method for appraising approximate volumes on a site with a minimum of field 
work.   Data in this report can be used to calculate estimates for brushland biomass 
volume on a given site.  Follow these steps.   
 

 Use aerial photos and local knowledge of shrub types to delineate areas and 
determine acreages of “high”, “medium” and “low” density brush on a site.  An 
example of sites delineated into density classes by aerial photo interpretation can 
be found on page 5. 

 Total the acreage for each density class. 
 Multiply the average dry ton volume for high density sites (8.3 tons per acre) 

times the total acreage of high shrub density for the site.  Then, do the same for 
medium (5.3 dry tons/ acre) and low density (0.76 dry tons/acre) sites. 

 Add the total volumes together.    
 A rough conversion can be made to green tons by doubling the dry ton figure. 

 

Availability Considerations 

 
The reader needs to use caution when using the information in this report to develop 
volume estimates.   Biomass volumes will only be partially recoverable.   Breakage, 
small size and other handling difficulties will limit how much brush biomass can be 
recovered from a site.  Additionally, guidelines for retaining some residue on site for soil 
nutrient maintenance, habitat and water quality concerns limit amount of brush biomass 
that should be utilized from a site.  The Minnesota Forest Resources Council (MFRC) 
brushlands harvesting guidelines can be found at: 
 http://www.frc.state.mn.us/FMgdline/Guidebook.html 

Estimate Accuracy 

 
The reader should be aware that brushland biomass volume estimates will have wide 
variability.  However they may prove acceptable considering the normally low product 
value of brush biomass vs. the expense of additional field time to derive more accurate 
estimates. 

 

http://www.frc.state.mn.us/FMgdline/Guidebook.html
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