Minnesota River Backwater Fish Communities

July 2019

Authors

Michael Vaske*, Anthony R. Sindt Minnesota Department of Natural Resources, Fish and Wildlife Division, 20596 Hwy 7, Hutchinson, MN 55350

Michael Wolf Minnesota Department of Natural Resources, Fish and Wildlife Division, 204 Main Street East, Baudette, MN 56623

Kayla Stampfle Minnesota Department of Natural Resources, Fish and Wildlife Division, 1200 Warner Road, St. Paul, MN 55106

Eric Katzenmeyer Minnesota Department of Natural Resources, Ecological & Water Resources Division, 20596 Hwy 7, Hutchinson, MN 55350

*Corresponding author: michael.vaske@state.mn.us

Acknowledgements

We thank many Minnesota Department of Natural Resources staff and interns for their contributions to fieldwork and data management.

Funding

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund M.L. 2016, Chp. 186, Sec. 2, Subd. 03ib

Common name	Scientific name	Common name	Scientific name
Bighead Carp	Hypophthalmichthys nobilis	Iowa Darter	Etheostoma exile
Bigmouth Buffalo	Ictiobus cyprinellus	Johnny Darter	Etheostoma nigrum
Bigmouth Shiner	Notropis dorsalis	Largemouth Bass	Micropterus salmoides
Black Buffalo	lctiobus niger	Logperch	Percina caprodes
Black Bullhead	Ameiurus melas	Longnose Gar	Lepisosteus osseus
Black Crappie	Pomoxis nigromaculatus	Mooneye	Hiodon tergisus
Blackchin Shiner	Notropis heterodon	Northern Pike	Esox lucius
Blacknose Dace	Rhinichthys obtusus	Northern Redbelly Dace	Phoxinus eos
Bluegill	Lepomis macrochirus	Orangespotted Sunfish	Lepomis humilis
Bluntnose Minnow	Pimephales notatus	Paddlefish	Polyodon spathula
Bowfin	Amia calva	Pumpkinseed	Lepomis gibbosus
Brassy Minnow	Hybognathus hankinsoni	Quillback	Carpiodes cyprinus
Brook Silverside	Labidesthes sicculus	River Carpsucker	Carpiodes carpio
Brook Stickleback	Culaea inconstans	Sand Shiner	Notropis stramineus
Brown Bullhead	Ameiurus nebulosus	Sauger	Sander canadensis
Bullhead Minnow	Pimephales vigilax	Shorthead Redhorse	Moxostoma macrolepidotur
Central Mudminnow	Umbra limi	Shortnose Gar	Lepisosteus platostomus
Channel Catfish	lctalurus punctatus	Silver Carp	Hypophthalmichthys molitriz
Common Carp	Cyprinus carpio	Silver Redhorse	Moxostoma anisurum
Common Shiner	Luxilus cornutus	Slenderhead Darter	Percina phoxoceoala
Creek Chub	Semotilus atromaculatus	Smallmouth Buffalo	Ictiobus bubalus
Emerald Shiner	Notropis atherinoides	Spotfin Shiner	Cyprinella spiloptera
Fathead Minnow	Pimephales promelas	Spottail Shiner	Notropis hudsonius
Flathead Catfish	Pylodictis olivaris	Stonecat	Noturus flavus
Freshwater Drum	Aplodinotus grunniens	Tadpole Madtom	Noturus gyrinus
Gizzard Shad	Dorosoma cepedianum	Walleye	Sander vitreus
Golden Redhorse	Notemigonus crysoleucas	Weed Shiner	Notropis texanus
Golden Shiner	Notemigonus crysoleucas	White Bass	Morone chrysops
Green Sunfish	Lepomis cyanellus	White Crappie	Pomoxis annularis
Highfin Carpsucker	Carpiodes velifer	White Sucker	Catostomus commersonii
Hornyhead Chub	Nocomis biguttatus	Yellow Bullhead	Ameiurus natalis
Hybrid Sunfish	Lepomis spp.	Yellow Perch	Perca flavescens

I. Common and scientific name of fish species referred to in this study.

Table of Contents

Executive Summary	5
Abstract	6
Introduction	6
Study Site	8
Methods	8
Results	11
Discussion	23
References	
Supplemental Materials	30
Appendices	

Executive Summary

Project activity 3: Inventory backwater fish communities of the Minnesota River.

Project Objectives

- Characterize fish communities in Minnesota River backwaters.
- Refine survey protocols for assessing Minnesota River backwater fish communities.

Significant Outcomes

- We characterized fish communities in 12 backwaters located along the Minnesota River that represent the diversity of backwater habitats within the floodplain.
- Surveyed backwaters varied in surface area (2–106 hectares), maximum depth (1.2–4.6 m), type (oxbow, wetland, floodplain lake), connectivity with the main channel (low, moderate, high), and associated river kilometer (32–433).
- Fish communities were sampled using a suite of sampling gears including boat electrofishing, gill nets, fyke nets, and seines.
- A total of 51 unique fish species representing 14 families were captured, and species richness varied 14–30 among surveyed backwaters.
- Non-metric multidimensional scaling ordinations (NMDS) revealed that river kilometer and surface area had a significant influence on fish community structure.
- Seining and boat electrofishing were the most effective methods for determining the presence of fish species in backwater habitats. Seines captured 40 of 51 total species while boat electrofishing captured 38 species. Overall, 98% of fish species were captured with a combination of the two gears.
- This study highlights the diversity of Minnesota River backwater habitats and their fish communities.
- Mean annual precipitation and the magnitude of large rainfall events is increasing throughout the Minnesota River Basin resulting in increased mean discharge, more severe flood events, and altered flow regimes. Altered hydrology can impact both the ecological function of backwaters and fish community composition.
- Future impacts caused by the establishment of invasive species are hypothesized. Bighead Carp and Silver Carp will likely utilize backwaters for foraging and nursery habitat if they become established in the Minnesota River. Invasive carps compete with other planktivorous fishes and can alter zooplankton communities.
- Collection of baseline fish community data along with continued monitoring will provide the ability to identify changes attributed to future perturbations such as altered hydrology, land use changes, or establishment of invasive species.

Abstract

Backwater habitats are a vital component of river ecosystems. Lateral connection between the main channel and backwater habitats allows for crucial ecosystem functions such as the exchange of nutrients, organic matter, and organisms. This exchange has been hypothesized as a primary process structuring riverine species communities that utilize backwater habitats for various purposes (e.g., reproduction, foraging, refuge). The Minnesota River floodplain contains hundreds of perennial and intermittent backwater habitats that provide valuable habitat for fish and other organisms. Despite their importance, very few studies have evaluated their ecosystem function and fish communities. The goals of this study include refining protocols for monitoring backwater fish communities, increasing understanding of fish communities inhabiting Minnesota River backwaters, and collecting baseline data for evaluating future impacts of altered hydrology and habitat or establishment of invasive species. During August 2016-September 2018 we conducted fisheries assessments in 12 backwaters using a suite of sampling gears including boat electrofishing, gill nets (standard and large mesh), fyke nets (19mm, 9.5mm, and 3.2 mm bar mesh), and seines. Surveyed backwaters varied in surface area 2-106 ha, maximum depth 1.2-4.6 m, connectivity low-high, and associated river km 32-433. Fish species richness captured in each backwater varied 14–30 for a total of 51 unique fish species that represented a diversity of feeding habits, spawning behaviors, pollution tolerances, and preferred habitat types. Seines captured the most species (40 of 51) while gill nets captured the fewest species (21 of 51). A combination of seining and boat electrofishing captured 98% of the fish species sampled during this study. Changes in climate and land use and establishment of invasive species will undoubtedly impact Minnesota River backwater ecosystems, but the extent is unknown. The results of this study provide increased understanding of Minnesota River backwater ecosystems and the ability to identify changes attributed to future perturbations.

Introduction

Floodplains are an important component of river ecosystems, and backwater habitats (e.g., oxbow lakes, floodplain wetlands, billabongs) within the floodplain serve vital ecosystem functions. The connection between the main channel and its floodplain during flood events allows for the exchange of nutrients, organic matter, and organisms (Ward 1989). Junk et al. (1989) proposed that lateral exchange between the floodplain and main channel is the primary process influencing riverine biota. Junk et al. (1989) also noted the correlation between timing and duration of flood-pulses with life cycles of biota that utilize the floodplain for various purposes (e.g., spawning, foraging, refuge). In addition to structuring the biota of river systems, backwater habitats can influence water quality and chemistry by acting as sinks for nitrates (James et al. 2008) and phosphorus (Thomaz et al. 2007). Uptake and utilization of nutrients in backwaters results in a bottom-up cascade of increased productivity of zooplankton (Ward 1989; Fisher 2011), macroinvertebrates (Eckblad et al. 1984; Murdock and Dodds 2007), and fishes (Stockner et al. 2000; Slipke et al. 2005).

All backwaters provide some form of habitat for aquatic organisms, but not all backwater habitats are alike. Size, depth, substrate, connectivity, distance from river channel, macrophyte cover, and other physical features influence the species that utilize the habitat (Ward et al. 1999; Zeug and Winemiller 2007; Shoup and Wahl 2009). We speculate that river kilometer (i.e., location along the longitudinal gradient of the river), surface area, and connectivity with the main channel are the most important factors influencing fish communities in Minnesota River backwaters. Changes in hydrologic characteristics resulting from climate change and land use practices can also greatly influence the functionality of backwater habitats (Bowen et al. 2003; Dembkowski and Miranda 2014). For example, timing, frequency, magnitude, and duration of flood events regulate connectivity of backwaters to the river channel and consequently access by fish (Junk et al. 1989; Ward 1989; Bayley 1995; King et al. 2003). Furthermore, increased sediment transport from uplands can deposit and fill in backwaters altering or eliminating important ecosystem functions (Cooper and Bacon 1980; Waters 1995).

The Minnesota River floodplain contains hundreds of perennial and intermittent backwater habitats that provide valuable habitat for fish and other organisms. For fish, these backwaters can serve multiple functions from providing spawning and nursery habitat (King et al. 2003; Zeug and Winemiller 2007; Shoup and Wahl 2009), to zooplankton rich areas for foraging (Wahl et al. 2008; Burdis and Hoxmeier 2011; Fisher 2011), and refuge from high-flow conditions (Schwartz and Herricks 2005). For example, many nest building centrarchids (e.g., Bluegill, Black Crappie) utilize the lentic environment of backwaters for spawning (Sabo and Kelso 1991; Shoup and Wahl 2009). Backwater habitats typically support greater zooplankton diversity and densities than main-channel habitats (Nickel 2014) and thus provide important foraging habitat for planktivorous riverine species such as Bigmouth Buffalo, Gizzard Shad, and Paddlefish (Lazzaro 1987; Hoxmeier and DeVries 1997; Jennings and Zigler 2000). Some Minnesota River fish species such as Bowfin, Central Mudminnow,

and Weed Shiner are almost exclusively found within backwater habitats (Shoup and Wahl 2009).

Backwater habitats are important for native fishes, but are also utilized by invasive species such as invasive carps (i.e., Bighead Carp, Silver Carp; Sampson et al. 2009). Invasive carps are known to extensively utilize backwater habitats for feeding and as nursery habitat for juveniles (Pegg et al. 2002; Kolar et al. 2007). Invasive carps are not established in the Minnesota River, but if they become established, they could compete with native fishes for space and food resources found in backwater habitats (Schrank et al. 2003; Sampson et al. 2009). Documenting fish communities found in Minnesota River backwaters prior to invasive carp establishment will provide the opportunity to understand how invasive carps impact backwater ecosystems if they do become established.

Despite the importance of the Minnesota River floodplain and backwaters, very few studies have evaluated their ecosystem function and fish communities. During 2006, the Minnesota Department of Natural Resources (DNR) conducted the first comprehensive evaluation of Minnesota River backwater fish communities, but efforts were focused along the lower 76 km of the Minnesota River. A more recent study by Nickel (2014) evaluated seasonal trends in biotic assemblages in three backwater lakes. However, these studies did not capture the spatial and physical diversity of backwater lakes found within the Minnesota River floodplain nor evaluate variability among years. During 2016-2018, funding from the **Environment and Natural Resource Trust Fund** (ENRTF; lccmr.org) provided the Minnesota Department of Natural Resources (DNR) with the capacity to further evaluate and inventory fish communities inhabiting a diversity of Minnesota River backwaters distributed throughout the floodplain. Outcomes of this project increase understanding of the ecological function of Minnesota River backwater habitats and utilization of backwater habitats by Minnesota River fishes. Additionally, outcomes provide the DNR and other agencies with refined protocols for monitoring backwater fish communities and the ability to identify changes in backwater fish communities attributed to altered hydrology and habitat or establishment of invasive species.

Study Site

The Minnesota River originates from Big Stone Lake on the border of Minnesota and South Dakota, and flows approximately 515 km (320 miles) to its confluence with the Mississippi River in St. Paul, Minnesota. Five dams alter the flow of the upper Minnesota River while the lower 386 km (240 miles) are free-flowing. Granite Falls Dam is the furthest downstream dam, and acts as a significant barrier to fish movement with at least 18 fewer fish species found upstream.

The Minnesota River Valley was formed during the Pleistocene by Glacial River Warren, which was created by a breach of Glacial Lake Agassiz (Teller et al. 2002; Lepper et al. 2007). This breach event created the present-day Minnesota River Valley, where the Minnesota River meanders along a 3-4 km wide valley containing highly erodible layers of glacial sediments (e.g., clay, silt, sand; Lepper et al. 2007; Belmont 2011; Gran et al. 2011). Over the past century, the Minnesota River has experienced an increase in discharge, resulting in a more erosive river (Schottler et al. 2014; Kelly et al. 2017). The highly erodible soils coupled with the erosive nature of the Minnesota River has resulted in the formation of a complex floodplain that contains many oxbow lakes and other unique backwater habitats.

The Minnesota River floodplain contains hundreds of backwaters of various shapes, sizes, connection types, and geomorphic histories. We used aerial imagery, ArcMap tools (Esri, Redlands, CA; v10.6), DNR staff knowledge, and other tools to identify a candidate set of Minnesota River backwaters for conducting fisheries assessments. Candidate backwaters were selected along the entire length of the Minnesota River (downstream of Lac qui Parle) and varied in size, depth, type (oxbow, wetland, floodplain), and connectivity (frequently, annually, infrequently, rarely). Our goal was to sample at least 12 backwater habitats including backwaters located upstream of Granite Falls Dam, and to re-visit some backwaters that were assessed during previous studies (i.e., Schmidt and Polomis 2007; Nickel 2014).

Methods

Fish sampling

We conducted fisheries assessments in backwaters during summer-fall 2016, springfall 2017, and spring-fall 2018. Surveys occurred at any time during the year, except during extreme high-water or low-water periods. Most surveys were conducted after spring flows connected backwaters to the main-channel and after most fish species concluded spawning.

Fish communities were sampled using a suite of gears including boat electrofishing, standard lake survey gill nets, large mesh gill nets, fyke nets (19.0 mm, 9.5 mm, and 3.2 mm bar mesh), and seines (15.2 m x 1.2 m x 3.2 mm). Daytime boat electrofishing was conducted with an ETS MBS-2DP Electrofishing Systems unit (Electrofishing Systems LLC, Madison, Wisconsin). Pulsed DC electricity was cycled at 60 Hz with voltage output adjusted

Gear	< 6 hectares	6–40 hectares	> 40 hectares
Boat electrofishing	Entire shoreline (10 minute runs)	Four 20 minute runs or entire shoreline	Four 20 minute runs
Standard gill nets	3	4	6
Large mesh gill nets	1	2	2
19.0 mm fyke net	3	3	4
9.5 mm fyke net	3	3	4
3.2 mm fyke net	3	3	4
Seine	4	6	8

Table 1. Target sample effort based on backwater lake surface area.

to achieve desired fish response. Two netters used 0.5 m diameter nets with 0.3 cm bar mesh and 3.0 m long handles to capture stunned fish. Standard 76.2 m long by 1.8 m deep gill nets constructed with five 15.4 m panels of 1.9 cm, 2.5 cm, 3.2 cm, 3.8 cm, and 5.1 cm bar mesh were used when adequate depth available. was Large mesh monofilament gill nets were used to sample large bodied fishes. Large mesh gill nets were 91.4 m long by 2.0 m deep, constructed of six panels of 6.4 cm, 7.6 cm, 8.9 cm, 10.2 cm, 11.4 cm, and 12.7 cm bar mesh. Three different size mesh (19.1 mm, 9.5 mm, and 3.2 mm bar mesh) single-frame modified-fyke nets were also used to sample backwater fishes. The two larger sized mesh fyke nets had 1.5 m x 0.8 m frames and 10. 7 m leads, while the smallest mesh fyke nets had 1.0 m x 0.9 m frames and a 7.6 m lead. Small bodied fishes and youngof-year fishes were sampled using a 15.2 m x 1.2 m seine with a 1.2-m³ bag made of 3.2 mm delta mesh. The desired sampling effort for each survey was dependent on backwater surface area (Table 1).

All large-bodied fish captured during surveys were measured for total length (nearest 1 mm) and weighed (g). Small bodied fishes were counted and weighed in batches for each species. A minimum and maximum length was recorded for all small-bodied fish species. Any unique or unidentified fish were preserved in ethanol and returned to the lab for identification. A typical backwater survey was conducted over three or four consecutive days depending upon weather conditions, habitat conditions (e.g., size), and catch rates.

Abiotic measurements

In addition to evaluating backwater fish communities, we also measured abiotic habitat characteristics associated with each backwater. We measured maximum water depth, Secchi depth, water conductivity, and a temperature and dissolved oxygen profile. Additionally, we visually estimated the dominant substrate types, percent coverage of submergent and emergent vegetation, dominant types of aquatic macrophytes, surrounding land cover types, and percent of surface area that was flooded terrestrial vegetation. We also documented the connectivity of the backwater with the main channel and estimated the ease of fish passage through the connection.

Along with recording surrounding land cover types for each backwater in the field, we also quantified land cover types at larger scales using Arc-GIS (Esri, Redlands, CA; v10.6). We evaluated land cover at various distances by drawing concentric bands (50-, 500-, 1,000-, and 5,000-m) around each backwater. The 50-m band was considered the riparian zone of the backwater and the 500-, 1,000-, and 5,000 Table 2. List of Minnesota River backwaters sampled during 2016–2018. Connectivity is a qualitative ranking of how frequently backwaters connect with the main channel (1 = rarely connected, 2 = infrequently connected, 3 = frequently connected). Backwaters surveyed by Schmidt and Polomis (2007) are denoted with * and backwaters surveyed by Nickel (2014) are denoted with **.

	Area	River	Max		Fish species
Backwater	(hectares)	kilometer	depth (m)	Connectivity	richness
Anderson Lake**	6	283	2.7	3	24
Beckendorf Lake	25	336	1.7	1	17
Belle Plaine Oxbow	4	82	4.7	1	14
Blue Lake*	106	32	1.4	2	23
Franklin Oxbow	3	290	1.4	3	25
Gifford Lake*	76	51	4.1	2	30
Hwy 14 Oxbow	2	433	2.4	3	24
Long Lake*	28	63	2.0	2	27
Mack Lake	6	275	2.0	3	22
Montevideo Oxbow	4	407	1.2	3	28
New Ulm Oxbow	8	219	3.2	3	23
Sulfur Lake	3	306	4.6	1	29

m bands were considered proxies for the landcover within each backwater watershed. Land cover data was provided by the Multi-Resolution Land Cover Consortium's (MRLC) 2011 National Land Cover Dataset (NLCD; Homer et. al 2015). Land cover classes within the riparian zone included agriculture, forestcover, wetlands, and human disturbance (e.g., urban development, and impervious surfaces). Land cover classes within the broader bands included agriculture, forest-cover, wetlands, human disturbance, and open water. Land cover class percentages were calculated for each band using spatial analyst tools in Arc-GIS. Summaries of land cover types are provided for each backwater in Appendices 1.3-12.3.

Fish assemblage descriptors

We used non-metric multidimensional scaling ordination (NMDS; Clarke 1993) to examine patterns in backwater fish communities and relationships with environmental parameters. Non-metric multidimensional scaling ordination is a nonparametric technique that uses rank order information to identify similarities within a data set (Kenkel and Orloci 1986). Rare taxa that occurred in less than 5% of the backwaters were excluded from NMDS analyses. Fish abundance (total catch) data were square root transformed to reduce the influence of dominant taxa. To test for significant relationships between backwater fish communities and environmental parameters we identified significant vectors with α =0.05.

We further described backwater fish communities by summarizing ecological niches of fish species present based on the Index of Biotic Integrity (IBI) metrics used by the Minnesota Pollution Control Agency (MPCA 2014). An IBI is a numerical way of characterizing biological integrity, utilizing attributes of the biological community that respond to disturbances in predictable ways to measure the effects of both natural and anthropogenic disturbances (Karr et al. 1981). We summarized ecological niches for

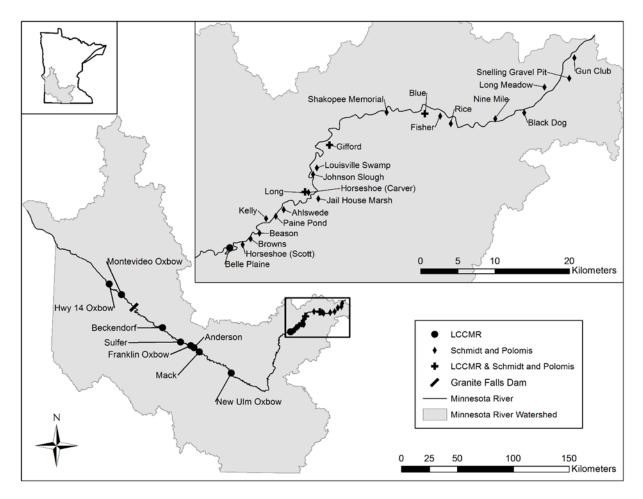


Figure 1. Location of 12 Minnesota River backwaters surveyed during 2016–2018 (i.e., LCCMR) and backwaters surveyed by Schmidt and Polomis (2007).

individual species present (Table S1) in each sampled backwater (Appendix 1.2-12.2).

Results

A total of 12 Minnesota River backwaters that represent the spatial and physical diversity of backwaters within the Minnesota River floodplain were sampled during August 2016–September 2018 (Figure 1; Table 2). Backwaters varied from 2 to 106 ha in surface area, from 1.2 to 4.6 m in maximum depth, and associated rkm from 32 to 433 (Table 2). Fish species richness varied 14–30 among backwaters, with a total of 51 unique species captured that represent 14 fish families. We compared the 51 species sampled during this study with species captured by Schmidt and Polomis (2007) and Nickel (2014) and found that Black Crappie, Common Carp, and Bluegill are captured in almost every (94– 97%) backwater fisheries survey (Table 3). We also captured several "rarer" backwater species during our surveys, including Blackchin Shiner, Longnose Gar, and Mooneye. The 51 species captured have a wide diversity of feeding habits, spawning behaviors, pollution tolerances, and preferred habitats and varied from small darter species, such as Johnny Darters, to large predators, such as Flathead Catfish (Table S1, Table 4). Table 3. Percent occurrence of 61 fish species sampled from Minnesota River backwaters during this study, Schmidt and Polomis (2007), Nickel (2014), and all surveys combined (including re-surveyed backwaters).

Creation	This	Schmidt &	Nickel	Combined
Species	study	Polomis (2007)	(2014)	
Bigmouth Buffalo	100	65	100	80
Black Crappie	100	90	100	94
Common Carp	100	95	100	97
Black Bullhead	92	80	100	86
Bluegill	92	95	100	94
Orangespotted Sunfish	92	90	100	91
Emerald Shiner	83	75	100	80
Walleye	83	70	100	77
White Crappie	83	65	100	74
Freshwater Drum	75	70	100	74
Gizzard Shad	75	85	100	83
Largemouth Bass	75	90	100	86
River Carpsucker	75	20	100	46
Spotfin Shiner	67	65	100	69
Yellow Perch	67	60	67	63
Bluntnose Minnow	58	35	100	49
Channel Catfish	58	40	33	46
Fathead Minnow	58	55	67	57
Golden Shiner	58	70	33	63
Green Sunfish	58	90	67	77
Northern Pike	58	70	100	69
Yellow Bullhead	58	50	100	57
Hybrid Sunfish	50	85	100	74
Shorthead Redhorse	50	35	100	46
Smallmouth Buffalo	50	60	33	54
White Sucker	50	40	100	49
Bowfin	33	80	33	60
Central Mudminnow	33	35	0	31
Johnny Darter	33	50	33	43
Sand Shiner	33	35	67	37
Shortnose Gar	33	35	67	37

The majority of species sampled (38 of 51) are generally considered to prefer pool habitats while species that prefer both pool and riffle habitats represented 24.5% of the total catch, and species that prefer riffle habitats accounted for less than 1% of the total catch (Table 4). Land cover within the riparian zone of all sampled backwaters primarily consists of wetlands and forests, with low amounts of agriculture and human disturbance. When expanding to the 500 m zone, the amount of wetlands and forests decreases and the

Table 3. Continued

.	This	Schmidt & Polomis	Nickel	a 1'
Species	study	(2007)	(2014)	Combine
White Bass	33	20	33	26
Common Shiner	25	0	33	11
Pumpkinseed	25	95	33	66
Silver Redhorse	25	0	100	17
Spottail Shiner	25	0	0	9
Weed Shiner	25	25	0	23
Brook Stickleback	17	5	0	9
Brown Bullhead	17	10	0	11
Flathead Catfish	17	10	0	11
Quillback	17	25	33	23
Sauger	17	5	33	11
Slenderhead Darter	17	10	0	11
Tadpole Madtom	17	40	33	31
Blackchin Shiner	8	0	0	3
Brassy Minnow	8	15	0	11
Bullhead Minnow	8	15	0	11
Creek Chub	8	20	33	17
Highfin Carpsucker	8	0	33	6
Longnose Gar	8	0	0	3
Mooneye	8	0	0	3
Bigmouth Shiner	0	5	0	3
Black Buffalo	0	5	0	3
Blacknose Dace	0	5	0	3
Brook Silverside	0	20	0	11
Golden Redhorse	0	0	100	9
Hornyhead Chub	0	20	0	11
Iowa Darter	0	60	0	34
Logperch	0	15	0	9
Northern Redbelly Dace	0	5	0	3
Stonecat	0	0	67	6

amount of agricultural land use increases. This trend continues at the 1,000 m and 5,000 m zones, where wetlands and forests represent a small proportion of land cover (Table 5).

The NMDS ordination reveals a significant influence of river kilometer (i.e.,

distance from the mouth of the Minnesota River) on fish communities found in Minnesota River backwater habitats during this study (R^2 = 0.17, *P* < 0.05; Figure 2). For instance, upstream backwaters are more often associated with greater abundances of

Niche	Total species	Total catch	Percent composition			
Feeding guild						
Filter Feeder	1	603	5.3			
Generalist	2	9	0.1			
Herbivore	2	111	1.0			
Insectivore	27	6,924	60.8			
Omnivore	7	1,401	12.3			
Piscivore	12	2,346	20.6			
Spav	wning behavi	or				
Complex/No Parental Care	2	9	0.1			
Complex/Parental Care	21	7,717	67.7			
Simple Lithophil	7	200	1.8			
Simple Miscellaneous	21	3,468	30.4			
Pollu	ution toleran	ce				
Intolerant	6	147	1.3			
Tolerant	9	2,524	22.2			
Pre	ferred habita	t				
Pools	38	8,604	75.5			
Pools and Riffles	12	2,788	24.5			
Riffles	1	2	0.02			
Headwaters	1	2	0.02			
Large Rivers	20	852	7.5			
Pioneer	5	1,089	9.6			

Table 4. Overview of ecological niches of fish sampled in 12 Minnesota River backwaters during 2016–2018.

minnow and darter species while downstream backwaters are associated with greater abundances of sucker and centrarchid species. The NMDS analysis did not identify significant relationships between sampled fish communities and connectivity to the main channel or surface area. However, when we included fish communities sampled in Minnesota River backwaters by Schmidt and Polomis (2007), the significant influence of river kilometer remained ($R^2 = 0.07$, P < 0.05) and the influence of backwater surface area was also identified as significant ($R^2 = 0.06$, P <0.05; Figure 3).

To help refine protocols for monitoring backwater fish communities, we visually compared fish species captured by each sample gear with a Venn diagram (Figure 4). We determined that seining and boat electrofishing are the most effective methods for sampling the greatest number of fish species in backwater habitats. For instance, 40 of the 51 species were captured with 3.2 mm delta mesh seines while 38 of the 51 species were captured by boat electrofishing. Overall, 98% of the fish species captured during this study were captured at least once with a combination of these two gears.

Anderson Lake

Anderson Lake is a 6 hectare flowthrough backwater located at rkm 283 with a maximum depth of 2.7 m at the time of the survey (Figure 1; Table 2). Connection with the main channel is frequent, with connecting channels located at the west (upstream) and

Land cover type	Mean %	CV	Min %	Max %
	Riparian Zo	ne		
Agriculture	16	94	0	46
Forest	25	93	0	61
Wetlands	49	65	0	97
Human disturbance	10	164	0	54
v	Vatershed - 500	m band		
Agriculture	26	53	2	54
Forest	16	50	0	26
Wetlands	29	48	9	60
Human disturbance	9	69	3	22
Open water	19	63	5	38
W	atershed - 1,00	0 m band		
Agriculture	33	37	13	54
Forest	14	52	1	26
Wetlands	25	38	8	43
Human disturbance	12	92	3	37
Open water	17	51	4	31
W	atershed - 5,00	0 m band		
Agriculture	58	30	13	74
Forest	11	46	2	19
Wetlands	10	37	4	16
Human disturbance	14	108	4	60
Open water	7	65	2	14

Table 5. Summary of landscape and riparian level land cover properties determined for twelve backwater lakes in the Minnesota River floodplain.

east (downstream) ends of the backwater. Anderson Lake was previously sampled in 2012 by Nickel (2014). We conducted a fisheries assessment of Anderson Lake during June 2018 using fyke nets, seines, and boat electrofishing. A total of 258 individual fish were sampled, representing 24 species and 9 families (Appendix 1.1). Spotfin Shiner represented 25% of the total catch and four of the five most abundant species were cyprinids (Spotfin Shiner, Bluntnose Minnow, Bullhead Minnow, and Fathead Minnow). Fifty-five percent of the species captured from Anderson Lake are considered lentic or "pool" species, including Central Mudminnow, Bluegill, and Crappie (Appendix 1.2). In fact, very few species captured from Anderson Lake

are strongly associated with flowing water (e.g., redhorse spp., Sauger, and Slenderhead Darter). This is surprising because we believe Anderson Lake frequently connects with the main channel of the Minnesota River. NMDS analysis indicated the Anderson Lake backwater fish community is most similar to Sulfur Lake and is one of the few backwaters where we captured Common Shiner (Figure 2). Nickel (2014) also frequently captured Bluntnose Minnow and Bigmouth Buffalo from Anderson Lake, but reported catching 15 other species throughout the year that we did not sample during our assessment. Riparian zone land cover of this backwater is dominated by wetlands (90%), which decreases to 12% at the

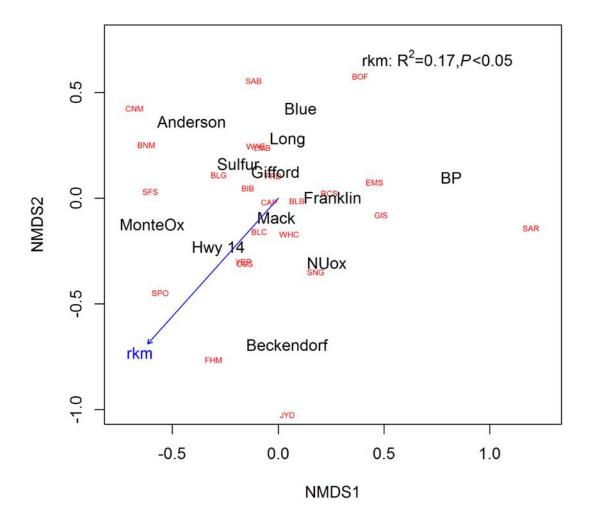


Figure 2. Non-metric multidimensional scaling ordination for fish communities sampled in 12 Minnesota River backwaters. Backwaters (black) further away in ordination space are more dissimilar than backwaters that are close to one another. Backwater sites near fish species (red) in ordination space are associated with greater catches while fish species further away from backwater sites are associated with lower catches. River kilometer (rkm; P < 0.05) is a significant vector associated with backwater fish communities.

5,000 m zone where agriculture represents 70% of the land cover (Appendix 1.3).

Beckendorf Lake

Beckendorf Lake is a 25 hectare floodplain lake located at rkm 336 with a maximum depth of 1.7 m at the time of the survey (Figure 1; Table 2). Connection with the Minnesota River is infrequent, with connection only occurring during flood events through a small intermittent channel located on the southeast end of the lake. We a fisheries conducted assessment of Beckendorf Lake during June 2017 using fyke nets, seines, and boat electrofishing. A Total of individual 1,306 fish were sampled,

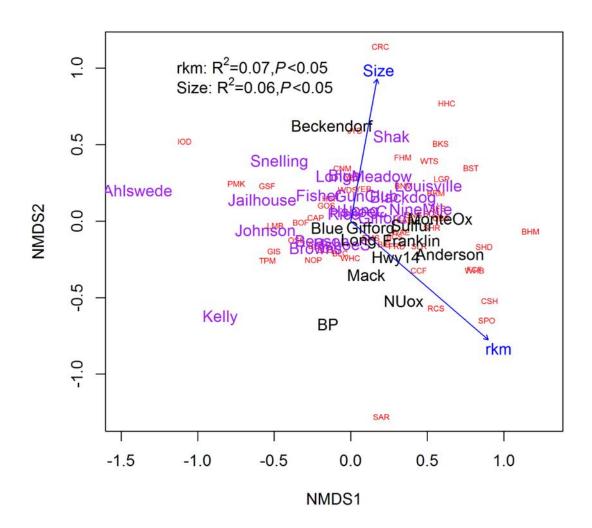


Figure 3. Non-metric multidimensional scaling ordination including 12 backwaters (black) surveyed during 2016–2018 for this study and 20 backwaters (purple) surveyed by Schmidt and Polomis (2007). River kilometer (rkm; P < 0.05) and size (P < 0.05) are significant vectors associated with backwaters fish communities.

representing 17 species and 8 families (Appendix 2.1). Fathead Minnows represented 52% of the total catch, and two of the five most abundant species were centrarchids (e.g., Black Crappie, and Orangespotted Sunfish). Beckendorf Lake is the only backwater where we sampled Creek Chubs, but Creek Chubs were present in 17% of previous Minnesota River backwater surveys (Table 3). Forty-six percent of the fish species sampled from Beckendorf Lake are considered lentic species, including Black Crappie, Orangespotted Sunfish, White Crappie and Yellow Perch (Appendix 2.2). NMDS analysis indicated that Beckendorf Lake is most similar to the New Ulm Oxbow and generally has a similar fish community as other upstream backwaters (Figure 2). Riparian zone land surrounding Beckendorf cover Lake is dominated by wetlands (69%), which

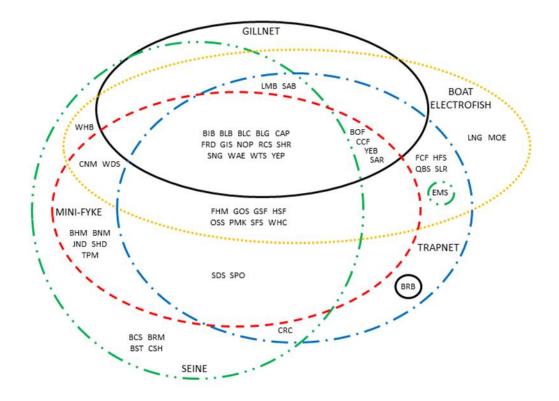


Figure 4. Venn diagram depicting which fish sampling gears (boat electrofishing, gill nets, mini-fyke nets, seines, and trap nets) captured each of 51 fish species from 12 Minnesota River backwaters surveyed during 2016–2018. Three letter fish species codes are defined in Table S2. Note that Emerald Shiners were captured with boat electrofishing, trap nets, and seines and Brown Bullheads were captured with gill nets and trap nets.

decreases to 8 percent at the 5,000 m zone where agriculture represents 72% of the land cover (Appendix 2.3).

Belle Plaine

The Belle Plaine backwater (rkm 82) is located along Hwy 25 north of Belle Plaine, MN (Figure 1; Table 2). It is a remnant oxbow lake that formed prior to 1938 (oldest aerial photo available) and has a surface area of 4 hectares and a maximum depth of 4.7 m at the time of the survey (Table 2). Connectivity with the main channel is low, only connecting during periods of high water via overland flow. We conducted a fisheries assessment of the Belle Plaine backwater during September 2016 using fyke nets, gillnets, and boat

electrofishing. A total of 103 individual fish were sampled, representing 14 species and 8 families (Appendix 3.1). Gizzard Shad, Emerald Shiner, and Black Crappie were the three most abundant species sampled. The fish community in the Belle Plaine backwater consists mostly of "lentic" fish species, with all 14 species preferring pool habitats. However, seven large river fish species (e.g., Bigmouth Buffalo, River Carpsucker, and Sauger) were also sampled (Appendix 3.2). Ordination analysis indicated that the Belle Plaine fish community is most similar to the Franklin Oxbow, and is associated with presence of Sauger (Figure 2). Human disturbance is high (54%) in the riparian zone surrounding the Belle Plaine backwater, while forest-cover

(15%) and wetland (31%) land cover types are low (Appendix 3.3).

Blue Lake

Blue Lake is a 106 hectare floodplain lake located at rkm 32 with a maximum depth of 1.4 m at the time of the survey (Figure 1; Table 2). A connection with the main channel exists on the west side of the lake, but due to the presence of a water control structure, connectivity is considered moderate (Table 2). Blue Lake also has connections to Fisher Lake and Rice Lake, which are located to the east. Blue Lake was previously sampled by Schmidt and Polomis (2007). We conducted a fisheries assessment of Blue Lake during September 2018 using fyke nets, seines, and gillnets. A total of 660 individual fish were sampled, representing 23 species and 9 families (Appendix 4.1). Blue Lake appears to be important habitat for centrarchid species which were one-third of the total species sampled. Bluegill (32%) and Black Crappie (18%) were the most abundant species. Interestingly, Weed Shiner were the third most abundant species, representing 16% of the total catch. Weed Shiners were surveyed in three of the twelve study backwaters, and 23 percent of all other Minnesota River backwater surveys (Table 3). Brown Bullheads were also sampled from Blue Lake which were only sampled from one other backwater during this study. Schmidt and Polomis (2006) sampled two Brown Bullhead during their survey on Blue Lake, and similarly only sampled them in one other backwater. Schmidt and Polomis (2007) also reported catching high numbers of Spotfin Shiners and Golden Shiners, however both species represented one percent or less of our total catch. Nearly all species (99.8%) sampled from Blue Lake are considered lentic or "pool" species (Appendix 4.2). The Blue Lake fish community was most similar to Long Lake, and

was most associated with high catches of Smallmouth Buffalo and Bowfin (Figure 2). Riparian zone land cover surrounding Blue Lake is primarily forest-cover (56%) and wetlands (41%), which decreases at larger scales out to the 5,000 m zone where human disturbance (60%) becomes the most common land cover type (Appendix 4.3).

Franklin Oxbow

Franklin Oxbow is a 3 hectare oxbow lake located at rkm 290, just upstream from the Franklin boat ramp (Figure 1; Table 2). The Franklin Oxbow maintains an almost constant connection with the main channel during normal water levels, and had a maximum depth of 1.4 m at the time of the survey (Table 2). We conducted a fisheries assessment of Franklin Oxbow during October 2016 using fyke nets, seines, and boat electrofishing. A total of 638 individual fish were sampled, representing 25 species and 8 families (Appendix 5.1). Gizzard Shad represented 32 percent of the total catch while Spotfin Shiner and Orangespotted Sunfish both represented 19 percent of the total catch. These species were commonly sampled in other backwater surveys, however several unique species were sampled from the Franklin Oxbow. The Franklin Oxbow is the only backwater where we sampled Highfin Carpsucker and Mooneye, and one of two backwaters where we sampled Quillback. These species are considered "riverine" species, and were sampled in few Minnesota River backwaters (Table 3). These species and seven other large river species are likely more common in the Franklin Oxbow than the other backwaters we sampled due to the high level of connectivity with the main channel (Appendix 5.2). Two pollution intolerant species (Highfin Carpsucker and Mooneye) were sampled during the survey. Wetlands are the dominant land cover type in

the riparian zone (97%) but agriculture land cover increases at larger scales (Appendix 5.3)

Gifford Lake

Gifford Lake is a 76 hectare floodplain lake located at rkm 51 and had a maximum depth of 4.1 m at the time of the survey (Figure 1; Table 2). Two channels connect Gifford Lake with the main channel, one at the south end and the other at the north end. Connectivity is considered moderate due to the presence of a water control structure located at the north end (and possibly the south end). Gifford Lake was previously sampled by Schmidt and Polomis (2007). We conducted a fisheries assessment of Gifford Lake using fyke nets and seines (May 2017) and boat electrofishing (June 2017). A total of 1,044 individual fish were sampled, representing 30 species and 9 families (Appendix 6.1). Black Bullhead were the most abundant species, representing 41% of the total catch, followed by Bluegill (18%) and Common Carp (7%). A wide variety of species were sampled including six catostomid species, eight centrarchid species, and eight cyprinid species. Schmidt and Polomis (2007) reported catching Logperch and Slenderhead Darter in Gifford Lake, which we did not capture during our survey and are seldom caught in other Minnesota River backwaters (Table 3). Gifford Lake is also one of three backwaters where we sampled Weed Shiners. Ninety-seven percent of the fish community sampled from Gifford Lake are considered lentic or "pool" species, but we also captured 10 large river species (Appendix 6.2). The fish community in Gifford Lake is most similar to Sulfur Lake and is associated with higher catches of Freshwater Drum (Figure 2). Riparian zone land cover is primarily wetlands (61%), but quickly decreases at larger scales to around 16-19% in the 500-5,000 m zones where agriculture (40%) becomes the

dominant land cover type at the 5,000 m zone (Appendix 6.3).

Highway 14 Oxbow

The Highway 14 Oxbow is a 2 hectare oxbow lake located at rkm 433 (38 rkm upstream of the Granite Falls Dam; Figure 1; Table 2). Connectivity with the main channel is high, remaining connected during normal water levels through a connection at the downstream end of the oxbow. However, the mouth of the backwater appears to be filling with sediment. The majority of the backwater was relatively deep, with a maximum depth of 2.4 m during the time of the survey (Table 2). We conducted a fisheries assessment of the Highway 14 Oxbow using fyke nets and seines during June 2018 and boat electrofishing during July 2018. A total of 1,514 individual fish were sampled, representing 24 species and 9 families (Appendix 7.1). Centrarchid species were very abundant in the Highway 14 Oxbow, with Black Crappie representing 84% of the total catch, and Bluegill (second most abundant species) representing 4% of the total catch. Based on the abundance of Black Crappie and Bluegill, it is apparent that centrarchid species utilize this backwater for spawning and nursery habitat. Several other centrarchid species were captured during the survey including Orangespotted Sunfish, Largemouth Bass, Hybrid Sunfish, and White Crappie. Seven large river species were captured during the survey, and represented 3% of the total catch (Appendix 7.2). The fish community inhabiting the Highway 14 Oxbow was most similar to the Montevideo Oxbow with uniquely high catches of Yellow Perch and Orangespotted Sunfish (Figure 2). Riparian zone land cover is primarily forest (48%) and wetlands (33%), with both types decreasing to 11% in the 5,000 m zone (Appendix 7.3).

Long Lake

Long Lake is a 28 hectare floodplain lake located at rkm 63 with a maximum depth of 2.0 m at the time of the survey (Figure 1; Table 2). Connectivity with the main channel is considered moderate, connecting during high water periods via overland flow. There are also several channels located along the northeast end of the backwater, but connection frequency of those channel is unknown. Long Lake also has a connection to Horseshoe Lake via a channel located at the north end. Long Lake was previously sampled in 2006 by Schmidt and Polomis (2007). We conducted a fisheries assessment of Long Lake during September 2018 using fyke nets, seines, and gillnets. A total of 1,202 individual fish were sampled, representing 27 species and 10 families (Appendix 8.1). Bluegill, Black Bullhead, and Sand Shiner were the three most abundant species, and combined represented 73% of the total catch. Sand Shiner were not sampled in Long Lake by Schmidt and Polomis (2007) but they represented 20% of our total catch. Other species that were sampled in Long Lake that were infrequently sampled in other backwaters surveyed include Bowfin, Silver Redhorse, Brown Bullhead, Tadpole Madtom, and Shortnose Gar (Table 3). Schmidt and Polomis (2007) reported catching three darter species that we did not sample including Iowa Darter, Johnny Darter, and Logperch. Although the majority of species in Long Lake are considered lentic, three species considered "riverine" represented 21% of the total catch (Appendix 8.2). The fish community in Long Lake was most similar to Blue Lake, the only other backwater where we captured Brown Bullheads which are infrequently sampled in Minnesota River backwaters. Riparian zone land cover contains high percentages of agriculture (46%) and forest-cover (46%), with

both types decreasing in the 500-1,000 m zones (Appendix 8.3).

Mack Lake

Mack Lake is a 6 hectare floodplain backwater located at rkm 275 and had a maximum depth of 2.0 m at the time of the survey (Figure 1; Table 2). Connectivity is considered high with numerous channels connecting to the main channel and other surrounding backwaters. We conducted a fisheries assessment of Mack Lake during September 2016 using fyke nets, seines, and boat electrofishing. A total of 698 individual fish were sampled, representing 22 species and 9 families (Appendix 9.1). Black Bullhead represented 31% of the total catch, and three of the five most abundant species are centrarchids including Bluegill, Orangespotted Sunfish, and Black Crappie. Centrarchid species are generally considered lentic species, and lentic species represented 99 percent of the total catch from Mack Lake (Appendix 9.2). The lack of riverine species is surprising due to the frequent connection with the main channel. The Mack Lake fish community was most similar to Franklin Oxbow and Highway 14 Oxbow which are all associated with higher catches of Black Crappie, White Crappie, and Common Carp (Figure 2). Land cover in the riparian zone of Mack Lake consists of moderate amounts of forest-cover (37%) and wetlands (29%), which decrease at the 5,000 m zone to 10% and 9%, respectively (Appendix 9.3).

Montevideo Oxbow

The Montevideo Oxbow is located at rkm 407 (12 rkm upstream of the Granite Falls Dam), and has a surface area of 4 hectares and a maximum depth of 1.2 m at the time of the survey (Figure 1; Table 2). Connectivity is high, maintaining an almost constant connection with the main channel at the downstream end of the oxbow. We conducted a fisheries assessment of the Montevideo Oxbow during August 2016 using fyke nets and seines. A total of 3,363 individual fish were sampled, representing 28 species and 9 families (Appendix 10.1). Bluegill and Spotfin Shiner were the two most abundant species, representing 48% and 36% of the total catch, respectively. Several species that were infrequently sampled in other backwater were surveyed in the Montevideo Oxbow including Central Mudminnow, Johnny Darter, Tadpole Madtom, Brook Stickleback, Spottail Shiner, Sand Shiner, and Brassy Minnow (Table 3; Appendix 10.1). Even though Bluegills and other centrarchid species were in high abundance, a mix of species classified as lentic (58%) and riverine (42%) were captured during the survey (Appendix 10.2). The NMDS analysis indicated that the Montevideo Oxbow fish community was most similar to the Highway 14 Oxbow (Figure 2). Land cover in the riparian zone is dominated by wetlands (69%), but decreases at larger scales to 10% in the 5,000 m zone where agriculture (74 %) is the dominant land cover type (Appendix 10.3).

New Ulm Oxbow

The New Ulm Oxbow is located at rkm 219, has a surface area of 8 hectares, and a maximum depth of 3.2 m at the time of the survey (Figure 1; Table 2). Connectivity is considered high, maintaining a constant connection with the main channel at both ends of the oxbow. We conducted a fisheries assessment of the New Ulm Oxbow using fyke nets (July 2017) and boat electrofishing (August 2017). A total of 303 individual fish were sampled, representing 23 species and 10 families (Appendix 11.1). Orangespotted Sunfish represented 20% of the total catch, while five of the six most abundant species are considered riverine species including Gizzard Shad, Bigmouth Buffalo, River Carpsucker,

Shortnose Gar, and Freshwater Drum. Spottail Shiner are typically only captured from oxbow lakes with frequent connections to the main channel (Table 3). Ten large river species were sampled from the New Ulm Oxbow, representing 33% of the total catch (Appendix 11.2). Both Sauger and Slenderhead Darter were sampled from the New Ulm Oxbow and were only sampled in one other backwater during this project. Both species are considered "riverine", and have been sampled infrequently captured during other Minnesota River backwater surveys. The fish community in the New Ulm Oxbow was most similar to the fish community in Mack Lake (Figure 2). Land cover in the riparian zone of the New Ulm Oxbow consists primarily of wetlands (69%), which quickly decrease at larger scales to 11% in the 5,000 m zone where agriculture (57%) becomes the dominant land cover type (Appendix 11.3).

Sulfur Lake

Sulfur Lake is located at rkm 306, and has a surface area of 3 hectares and a maximum depth of 4.6 m during the time of the survey (Figure 1; Table 2). Connectivity is considered low, only connecting with the main channel during high water periods via overland flow. We conducted a fisheries assessment of Sulfur Lake during May and June 2017 using fyke nets, gill nets, seines, and boat electrofishing. A total of 304 individual fish were sampled, representing 29 species and 7 families (Appendix 12.1). Spotfin Shiner were the most abundant species in Sulfur Lake, representing 18% of the total catch, followed by Bigmouth Buffalo (15%) and Bluegill (12%). Lentic or "pool" species represented 74% of the total catch while the remaining 26% are classified as "riverine" species (Appendix 12.2). Besides Sulfur Lake, we only sampled Quillback in one other backwater (Table 3). Land cover in the riparian zone of Sulfur Lake is primarily wetlands (55%), which decreases to 16% in the 5,000 m zone, where agriculture (65%) becomes the dominant land cover type (Appendix 12.3).

Discussion

Through funding provided by the ENRTF we evaluated fish communities inhabiting a diversity of Minnesota River backwaters distributed throughout the floodplain. This dataset will be useful for monitoring future changes in backwater fish communities and increasing understanding ecological function of Minnesota River backwater habitats. The results of this study highlight the diversity of habitat types and fish species present within the Minnesota River floodplain. Evaluated backwaters varied in surface area from 2 to 106 ha, maximum depth from 1.2 to 4.6 m, and in connectivity with the main channel from infrequently (e.g., Beckendorf, Belle Plaine) to almost always (e.g., Franklin Oxbow, New Ulm Oxbow). Fiftyone unique fish species representing 14 families were sampled from evaluated backwaters and represent a diversity of feeding habits, spawning behaviors, pollution tolerances, and preferred habitat types.

We utilized a suite of sampling gears to assess backwater fish communities including boat electrofishing, fyke nets, seines, and gill nets. Each sample gear is selective for certain species or sizes of fish (Murphy and Willis 1996), but we reduced overall sampling biases by using multiple methods to capture fish. To help refine backwater fish community sampling protocols, we compared fish species sampled by each gear type for all surveys combined. Seines captured the most species (40 of 51 species) while gillnets (standard and large mesh combined) captured the fewest species (21 of 51). Seining and boat electrofishing combined captured 98% of the unique fish species sampled during this study.

Thus, similar to Knight and Bain (1996) and Clement et al. (2014) we recommend using seines and boat electrofishing as the primary methods for assessing fish species diversity in Minnesota River backwaters. Knight and Bain (1996) reported that electrofishing was the most effective gear for assessing floodplain wetland fish communities and that electrofishing accounted for the most fish (total catch), almost all taxa, and a broad range of fish sizes. Clement et al. (2014) reported that fine mesh seines were responsible for the majority of fish captured in small Michigan lakes, and were effective at sampling small to medium sized fish. The use of boat electrofishing and seining targets both small and large bodied fishes, and will likely provide the most efficient assessment of backwater fish assemblages. Unfortunately, seining can be ineffective in steep sided or heavily vegetated backwaters while some backwaters may be inaccessible by a large electrofishing boat. In those instances, fyke nets, gill nets, and backpack electrofishing might be the best options for characterizing the fish community.

Physical features play an important role in structuring backwater fish communities, such as surface area, depth, substrate, macrophyte cover, location, and connectivity (Ward et al. 1999; Miranda 2005; Zeug and Winemiller 2007; Shoup and Wahl 2009). We hypothesized that river kilometer (i.e., distance from river mouth), surface area, and connectivity are among the most influential characteristics structuring fish communities in Minnesota River backwaters. Based on ordination analyses, we concluded that river kilometer and surface area significantly influence Minnesota River backwater fish communities, but not necessarily our subjective determination of connectivity. The insignificant influence of connectivity on backwater fish communities in the Minnesota River was unexpected based on

its well documented influence in other studies (Junk et al. 1989; Galat et al. 1998; Winemiller et al. 2000; Petry et al. 2003; Slipke et al. 2005). For instance, Dembkowski and Miranda (2011) highlighted the importance of connectivity in a study on two disjoined segments of an oxbow lake. They reported a more diverse fish community in the smaller frequently connected segment more compared to a larger isolated segment. Miranda (2005) also noted that more species were observed in oxbow lakes that connect to the Mississippi River than in lakes isolated from the river. Despite inconclusive results from our analyses, we suspect connectivity does play an important role in structuring fish communities in Minnesota River backwaters and a larger scale study may help reveal the importance of this influence.

Altered hydrology resulting from land use and climate change may impact Minnesota River backwater fish communities. Over the past century land use practices such as subsurface and surface drainage have increased, and annual precipitation and magnitude of single rain events have increased. These factors result in increased discharge, more flood events, and altered flood pulse timing and duration. It is well understood that these factors are important to the ecological function of backwaters and in structuring fish communities that inhabit them (Junk et al. 1989; Ward 1989; Bayley 1995; Bowen et al. 2003; King et al. 2003). Increased precipitation and discharge may also lead to increased runoff and erosion, leading to increased turbidity, sediment transport, and deposition (Lenhart et al. 2011; Lauer et al. 2017). Increased sediment deposition can accelerate sedimentation of backwaters, reduce primary productivity (Cooper and Bacon 1980), and can degrade critical habitats for spawning and foraging (Waters 1995; Henley et al. 2000). For example, Berkman and

Rabeni (1987) documented reduced spawning success of substrate and pelagic spawners from deposition of sediment over eggs, while fish that exhibit parental care (i.e., fin fanning and mouthing) were more successful in turbid habitats.

Climate change and altered hydrology are not the only factors threatening changes to Minnesota River backwater ecosystems and fish communities. Impacts from invasive carps such as Bighead Carp and Silver Carp are expected if they become established in the River. Invasive carps utilize Minnesota backwaters for feeding and nursery habitat (Pegg et al. 2002; Kolar et al. 2007) and could compete with native fishes for food and space resources (Schrank et al. 2003; Cooke et al. 2009). Sampson et al. (2009) documented diet overlap among Bighead Carp, Silver Carp, Paddlefish, Bigmouth Buffalo, and Gizzard Shad in backwater lakes along the Illinois River and Mississippi River and reported that invasive carps could have negative impacts on crustacean zooplankton communities. Sass et al. (2014) documented a reduction in cladoceran and copepod abundance associated with establishment of invasive carps in the Illinois River. Changes in the zooplankton community may have implications for the food web and native species that rely on zooplankton during various life stages. Increased competition and reduced availability of zooplankton resources may also reduce the growth and condition of native fishes. For example, Irons et al. (2007) reported significant declines in body condition of Gizzard Shad and Bigmouth Buffalo following the establishment of invasive carps in the Illinois River. The extent of the impact invasive carps may have on Minnesota River backwater fish communities is difficult to predict, but they will likely have measurable impacts.

The Minnesota River floodplain provides valuable habitat for fishes and other organisms and plays a critical role in the large river ecosystem. Unfortunately, the extent of impacts from climate change, land use alteration, and invasive species on Minnesota River backwater fish communities is unknown. Collection of fish community data from a diversity of Minnesota River backwaters increases understanding of Minnesota River backwater ecosystems and utilization by fishes. Outcomes of this project provide the DNR and other agencies with refined protocols for monitoring backwater fish communities and the ability to identify changes in backwater fish communities attributed to future perturbations such as altered hydrology, land use changes, or establishment of invasive species.

References

Bayley PB. 1995. Understanding large river-floodplain ecosystems. Bioscience 45:153-158.

Belmont P, Bran B, Schottler SP, Wilcock PR, Day SS, Jennings C, Lauer JW, Viparelli E, Willenbring JK, Engstrom DR, Parker G. 2011. Large shift in source of fine sediment in the Upper Mississippi river. Environmental Science and Technology 45:8804-8810.

Berkman HE, Rabeni CF. 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18:285-294.

Bowen ZH, Bovee KD, Waddle TJ. 2003. Effects of flow regulation on shallow-water habitat dynamics and floodplain connectivity. Transactions of the American Fisheries Society 132:809-823.

Burdis RM, Hoxmeier RJH. 2011. Seasonal zooplankton dynamics in main channel and backwater habitats of the upper Mississippi River. Hydrobiologia 667:69-87.

Clarke KR. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117-143.

Clement TA, Pangle K, Uzarski DG. 2014. Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems. Fisheries Management and Ecology 21:211-219.

- Cooke SL, Hill WR, Meyer KP. 2009. Feeding at different plankton densities alters invasive bighead carp (*Hypophthalmichthys nobilis*) growth and zooplankton species composition. Hydrobiologia 625:185-193.
- Cooper CM, Bacon EJ. 1980. Effects of suspended sediments on primary productivity in Lake Chicot, Arkansas. Proceedings of the Symposium on Surface Water Impoundments 2:1357-1367.
- Dembkowski DJ, Miranda LE. 2011. Comparison of fish assemblages in two disjoined segments of an oxbow lake in relation to connectivity. Transactions of the American Fisheries Society. 140:1060-1069.

Dembkowski DJ, Miranda LE. 2014. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes. Hydrobiologia 721:129-144.

Eckblad JW, Volden CS, Weilgart LS. 1984. Allochthonous drift from backwaters to the main channel of the Mississippi River. American Midland Naturalist 111:16-22.

Fisher SJ. 2011. Crustaceous zooplankton transfer between a floodplain wetland and the Missouri River. The Prairie Naturalist 43:14-22.

Galat DL, Fredrickson LH, Humburg DD, Bataille KJ, Bodie JR, Dahrenwend J, Gelwicks GT, Havel JE, Helmers DL, Hooker JB, Jones JR, Knowlton MF, Kubisiak J, Maxourek J, McColpin AC, Renken RB, Semlitsch RD. 1998. Flooding to restore connectivity of regulated, large-river wetlands. BioScience 48:721-733.

- Gran KB, Belmont P, Day SS, Finnegan N, Jennings C, Lauer JW, Wilcock PR. 2011. Landscape evolution in south-central Minnesota and the role of geomorphic history on modern erosional processes. GSA Today 21:7-9.
- Henley WF, Patterson MA, Neves RJ, Lemly DA. 2000. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science 8:125-139.

Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, and Megown K. 2015. Completion of the 2011 National Land Cover Database for the

conterminous United States-representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing 81:345-354.

- Hoxmeier, RJH, DeVries DR. 1997. Habitat use, diet, and population structure of adult and juvenile paddlefish in the lower Alabama River. Transactions of the American Fisheries Society 126:288-301.
- Irons KS, Sass GG, McClelland MA, Stafford JD. 2007. Reduced condition factor of two native fish species coincident with invasion of non-native Asian carps in the Illinois River, U.S.A. Is this evidence for competition and reduced fitness? Journal of Fish Biology 71:258-273.
- James WF, Richardson WB, Soballe DM. 2008. Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters. River Research and Applications 24:1206-1217.
- Jennings CA, Zigler SJ. 2000. Ecology and biology of Paddlefish in North America: historical perspectives, management approaches, and research priorities. Reviews in Fish Biology and Fisheries 10:167-181.
- Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in river flood-plain systems. Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries and Aquatic Sciences 106.
- Karr JR. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21-27.
- Kelly S, Takbiri Z, Belmont P, Foufoula-Georgiou E. 2017. Human amplified changes in precipitation-runoff patterns in large river basins of the Midwestern United States. Hydrology and Earth System Sciences <u>https://doi.org/10.5194/hess-2017-133</u>.
- Kenkel NC, Orloci L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67:919-928.
- King AJ, Humphries P, Lake PS. 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60:773-786.
- Knight JG, Bain MB. 1996. Sampling fish assemblages in forested floodplain wetlands. Ecology of Freshwater Fish 5:76-85.
- Kolar CS, Chapman DC, Courtenay WR, Housel CM, Williams JD. 2007. Bighead carps: a biological synopsis and risk assessment, American Fisheries Society, Bethesda, Maryland.
- Lauer JW, Echterling C, Lenhart C, Belmont P, Rausch R. 2017. Air-photo based change in channel width in the Minnesota River basin: Modes of adjustment and implications for sediment budget. Geomorphology 297:170-184.
- Lazzaro X. 1987. A review of planktivorous fishes: their evolution, feeding behaviours, selectivities, and impacts. Hydrobiologia 146:97-167.
- Lenhart CF, Verry ES, Brooks KN, Magner JA. 2011. Adjustment of prairie pothole streams to land-use, drainage, and climate changes and consequences for turbidity impairment. River Research and Applications 28:1609-1619.
- Lepper K, Fisher TG, Hajdas I, Lowell TV. 2007. Ages for the Big Stone Moraine and the oldest beaches of glacial Lake Agassiz: Implications for deglaciation chronology. Geology 35:667-670.
- Minnesota Pollution Control Agency. 2014. Development of a fish-based Index on Biotic Integrity for assessing Minnesota's rivers and streams. Document number wq-bsm2-03.

Minnesota Pollution Control Agency, Environmental Analysis and Outcomes Division, St. Paul, Minnesota.

- Miranda LE. 2005. Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River. Transactions of the American Fisheries Society 134:1480-1489.
- Murdock JN, Dodds WK. 2007. Large rivers and eutrophication. National Scientific Technical Exchange Partnership and Support.
- Murphy BR, Willis DW. 1996. Fisheries techniques, 2nd edition. American Fisheries Society, Bethesda, Maryland.
- Nickel AD. 2014. An investigation of connectivity relationships and abiotic conditions and community dynamics in Minnesota River backwater lakes. M.S. thesis, Minnesota State University, Mankato.
- Pegg MA, Lemke AM, Stoeckel JA. 2002. Establishment of bighead carp in an Illinois River floodplain lake: a potential source population for the Illinois River. Journal of Freshwater Ecology 17:161-163.
- Petry AC, Agostinho AA, Gomes LC. 2003. Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotropical Ichthyology 1:111-119.
- Sabo MJ, Kelso WE. 1991. Relationships between morphometry of excavated floodplain ponds along the Mississippi River and their use as fish nurseries. Transactions of the American Fisheries Society 120:552-561.
- Sampson SJ, Chick JH, Pegg MA. 2009. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi Rivers. Biological Invasions 11:483-496.
- Sass GG, Hinz C, Erickson AC, McClelland NN, McClelland MA, Epifanio JM. 2014. Invasive bighead and silver carp effects on zooplankton communities in the Illinois River, Illinois, USA. Journal of Great Lakes Research 40:911-921.
- Schmidt K, Polomis T. 2007. Fish communities of Minnesota River flood plain lakes. Minnesota Department of Natural Resources, Division of Fish and Wildlife, Section of Fisheries, Completion Report.
- Schottler SA, Ulrich J, Belmont P, Moore R, Lauer JW, Engstrom DR, Almendinger JE. 2014. Twentieth century agricultural drainage creates more erosive rivers. Hydrological Processes 28:1951-1961.
- Schrank SJ, Guy CS, Fairchild JF. 2003. Competitive interactions between age-0 Bighead Carp and Paddlefish. Transactions of the American Fisheries Society 132:1222-1228.
- Shoup DE, Wahl DH. 2009. Fish Diversity and abundance in relation to interannual and lakespecific variation in abiotic characteristics of floodplain lakes of the lower Kaskaskia River, Illinois. Transactions of the American Fisheries Society 138:1076-1092.
- Schwartz JS, Herricks EE. 2005. Fish use of stage-specific fluvial habitats as refuge patches during a flood in a low-gradient Illinois stream. Canadian Journal of Fisheries and Aquatic Sciences 62:1540-1552.
- Slipke JW, Sammons SM, Maceina MJ. 2005. Importance of the connectivity of backwater areas for fish production in Demopolis Reservoir, Alabama. Journal of Freshwater Ecology 20:479-485.
- Stockner JG, Rydin E, Hyenstrand P. 2000. Cultural oligotrophication: causes and consequences for fisheries resources. Fisheries 25:7-14.

- Teller JT, Leverington DW, Mann JD. 2002. Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews 21:879-887.
- Thomaz SM, Bini LM, Bozelli RL. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579:1-13.
- Wahl DH, Goodrich J, Nannini MA, Dettmers JM, Soluk DA. 2008. Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: where do they come from? Limnology and Oceanography 53:2583-2593.
- Ward JV. 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8:2-8.
- Ward JV, Tockner K, Schiemer F. 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15:125-139.
- Waters TF. 1995. Sediment in Streams: sources, biological effects and controls. American Fisheries Society Monograph 7. American Fisheries Society, Bethesda, MA.
- Winemiller KO, Tarim S, Shormann D, Cotner JB. 2000. Fish assemblage structure in relation to environmental variation among Brazos River oxbow lakes. Transactions of the American Fisheries Society 129:451-468.
- Zeug SC, Winemiller KO. 2007. Ecological correlates of fish reproductive activity in floodplain rivers: a life-history-based approach. Canadian Journal of Fisheries and Aquatic Sciences 64:1291-1301.

Supplemental Materials

Species	Feeding guild	Spawning behavior	Pollution tolerance	Preferred river habitat
Amiidae Family				
Bowfin	Piscivore	Complex/parental care		Pools, large rivers
Catostomidae Family				
Bigmouth Buffalo	Insectivore	Simple miscellaneous		Pools, large rivers
Highfin Carpsucker	Insectivore	Simple miscellaneous	Intolerant	Pools, large rivers
Quillback	Omnivore	Simple miscellaneous		Pools
River Carpsucker	Omnivore	Simple miscellaneous		Pools, large rivers
Shorthead Redhorse	Insectivore	Simple lithophil		Pools, large rivers
Silver Redhorse	Insectivore	Simple lithophil		Pools, large rivers
Smallmouth Buffalo	Insectivore	Simple miscellaneous		Pools, large rivers
White Sucker	Omnivore	Simple lithophil	Tolerant	Pools and riffles
Centrarchidae Family				
Black Crappie	Piscivore	Complex/parental care		Pools
Bluegill	Insectivore	Complex/parental care		Pools
Green Sunfish	Insectivore	Complex/parental care	Tolerant	Pools, pioneer
Largemouth Bass	Piscivore	Complex/parental care		Pools
Orangespotted Sunfish	Insectivore	Complex/parental care		Pools
Pumpkinseed	Insectivore	Complex/parental care		Pools
White Crappie	Piscivore	Complex/parental care		Pools
Clupeidae Family				
Gizzard Shad	Filter feeder	Simple miscellaneous		Pools

Table S 1. Ecological niches of fish sampled in Minnesota River backwaters during 2016–2018.

Species	Feeding guild	Spawning behavior	Pollution tolerance	Preferred river habitat
Cyprinidae Family				
Blackchin Shiner	Insectivore	Simple miscellaneous	Intolerant	Pools and riffles
Bluntnose Minnow	Omnivore	Complex/parental care	Tolerant	Pools and riffles, pioneer
Brassy Minnow	Herbivore	Simple miscellaneous		Pools
Bullhead Minnow	Omnivore	Complex/parental care		Pools, large rivers
Common Carp	Omnivore	Simple miscellaneous	Tolerant	Pools
Common Shiner	Generalist feeder	Complex/no parental care		Pools and riffles
Creek Chub	Generalist feeder	Complex/no parental care	Tolerant	Pools and riffles, pioneer
Emerald Shiner	Insectivore	Simple lithophil		Pools, large rivers
Fathead Minnow	Omnivore	Complex/parental care	Tolerant	Pools and riffles, pioneer
Golden Shiner	Insectivore	Simple miscellaneous	Tolerant	Pools
Sand Shiner	Insectivore	Simple miscellaneous		Pools and riffles
Spotfin Shiner	Insectivore	Simple miscellaneous		Pools and riffles
Spottail Shiner	Insectivore	Simple miscellaneous	Intolerant	Pools and riffles
Weed Shiner	Herbivore	Simple miscellaneous	Intolerant	Pools, large rivers
Esocidae Family				
Northern Pike	Piscivore	Simple miscellaneous		Pools
Gasterosteidae Family				
Brook Stickleback	Insectivore	Complex/parental care		Pools, headwaters
Hiodontidae Family				
Mooneye	Insectivore	Simple miscellaneous	Intolerant	Pools, large rivers

Species	Feeding guild	Spawning behavior	Pollution tolerance	Preferred river habitat
Ictaluridae Family				
Black Bullhead	Insectivore	Complex/parental care	Tolerant	Pools
Brown Bullhead	Insectivore	Complex/parental care		Pools
Channel Catfish	Piscivore	Complex/parental care		Pools, large rivers
Flathead Catfish	Piscivore	Complex/parental care		Pools and riffles, large rivers
Tadpole Madtom	Insectivore	Complex/parental care		Pools and riffles
Yellow Bullhead	Insectivore	Complex/parental care		Pools
Lepisosteidae Family				
Longnose Gar	Piscivore	Simple miscellaneous		Pools, large rivers
Shortnose Gar	Piscivore	Simple miscellaneous		Pools, large rivers
Moronidae Family				
White Bass	Piscivore	Simple miscellaneous		Pools, large rivers
Percidae Family				
Johnny Darter	Insectivore	Complex/parental care		Pools and riffles, pioneer
Sauger	Piscivore	Simple lithophil		Pools, large rivers
Slenderhead Darter	Insectivore	Simple lithophil	Intolerant	Riffles, large rivers
Walleye	Piscivore	Simple lithophil		Pools, large rivers
Yellow Perch	Insectivore	Simple miscellaneous		Pools
Sciaenidae Family				
Freshwater Drum	Insectivore	Simple miscellaneous		Pools, large rivers
Umbridae Family				
Central Mudminnow	Insectivore	Complex/parental care	Tolerant	Pools

Table S 2. List of the 51 fish species (and three letter species codes) sampled in twelve Minnesota River backwaters during 2016–2018.

	Sp	ecies	
Bigmouth Buffalo (BIB)	Common Carp (CAP)	Largemouth Bass (LMB)	Slenderhead Darter (SHD)
Black Bullhead (BLB)	Common Shiner (CSH)	Longnose Gar (LNG)	Smallmouth Buffalo (SAB)
Black Crappie (BLC)	Creek Chub (CRC)	Mooneye (MOE)	Spotfin Shiner (SFS)
Blackchin Shiner (BCS)	Emerald Shiner (EMS)	Northern Pike (NOP)	Spottail Shiner (SPO)
Bluegill (BLG)	Fathead Minnow (FHM)	Orangespotted Sunfish (OSS)	Tadpole Madtom (TPM)
Bluntnose Minnow (BNM)	Flathead Catfish (FCF)	Pumpkinseed (PMK)	Walleye (WAE)
Bowfin (BOF)	Freshwater Drum (FRD)	Quillback (QBS)	Weed Shiner (WDS)
Brassy Minnow (BRM)	Gizzard Shad (GIS)	River Carpsucker (RCS)	White Bass (WHB)
Brook Stickleback (BST)	Golden Shiner (GOS)	Sand Shiner (SDS)	White Crappie (WHC)
Brown Bullhead (BRB)	Green Sunfish (GSF)	Sauger (SAR)	White Sucker (WTS)
Bullhead Minnow (BHM)	Highfin Carpsucker (HFS)	Shorthead Redhorse (SHR)	Yellow Bullhead (YEB)
Central Mudminnow (CNM)	Hybrid Sunfish (HSF)	Shortnose Gar (SNG)	Yellow Perch (YEP)
Channel Catfish (CCF)	Johnny Darter (JND)	Silver Redhorse (SLR)	

Table S 3. (See attached file) Complete fish assessment data from 12 Minnesota River backwaters sampled during 2016–2018.

Appendices

Anderson Lake

Appendix 1.1. Summary of fish species sampled from Anderson Lake including total number captured, percent composition, and length range (mm).

Anderson Lake Fish Survey
Fyke net and seine: 6/13/2018
Electrofishing: 6/14/2018

				Length range
Common name	Scientific name	Number	Percent	(mm)
Spotfin Shiner	Cyprinella spiloptera	64	25%	-
Bigmouth Buffalo	lctiobus cyprinellus	48	19%	516 - 654
Bluntnose Minnow	Pimephales notatus	31	12%	-
Bullhead Minnow	Pimephales vigilax	23	9%	-
Fathead Minnow	Pimephales promelas	12	5%	-
Freshwater Drum	Aplodinotus grunniens	12	5%	173 - 408
Walleye	Sander vitreus	12	5%	402 - 597
Sand Shiner	Notropis stramineus	7	3%	-
Smallmouth Buffalo	Ictiobus bubalus	7	3%	391 - 567
Black Crappie	Pomoxis nigromaculatus	5	2%	175 - 199
Central Mudminnow	Umbra limi	5	2%	-
Orangespotted				
Sunfish	Lepomis humilis	5	2%	-
Bluegill	Lepomis macrochirus	4	2%	-
Common Carp	Cyprinus carpio	4	2%	469 - 640
Emerald Shiner	Notropis atherinoides	4	2%	-
River Carpsucker	Carpiodes carpio	4	2%	412 - 516
White Crappie	Pomoxis annularis	3	1%	196 - 260
Yellow Bullhead	Ameiurus natalis	2	1%	-
Black Bullhead	Ameiurus melas	1	0.4%	-
Common Shiner	Luxilus cornutus	1	0.4%	-
Largemouth Bass	Micropterus salmoides	1	0.4%	-
Longnose Gar	Lepisosteus osseus	1	0.4%	705
Shortnose Gar	Lepisosteus platostomus	1	0.4%	-
White Bass	Morone chrysops	1	0.4%	333
	Total	258		
	Species	24		
	Families	9		

Anderson Lake Ecological Niches						
Niche	Species Total	Total Catch	Percent Composition			
Feeding Levels						
Filter Feeder	-	-	-			
Generalist	1	1	0.4			
Herbivore	-	-	-			
Insectivore	11	159	61.6			
Omnivore	5	74	28.7			
Piscivore	7	24	9.3			
Spawning Behavior						
Complex/No Parental Care	1	1	0.4			
Complex/Parental Care	11	92	35.7			
Simple Lithophil	2	16	6.2			
Simple Miscellaneous	10	149	57.8			
Tolerance						
Intolerant	5	53	20.5			
Tolerant	-	-	-			
Preferred Habitat						
Pools	19	143	55.4			
Pools and Riffles	5	115	44.6			
Riffles	-	-	-			
Headwaters	-	-	-			
Large Rivers	10	113	43.8			
Pioneer	2	43	16.7			

Appendix 1.2. Overview of ecological niches of fish sampled from Anderson Lake.

Appendix 1.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Anderson Lake.

Anderson Lake						
Land cover type	Percent					
Riparian Zone						
Agriculture	4					
Forest-cover	4					
Wetlands	90					
Human Disturbance	2					
500 meter						
Agriculture	28					
Forest-cover	18					
Wetlands	39					
Human Disturbance	5					
Open Water	10					
1000 meter						
Agriculture	40					
Forest-cover	13					
Wetlands	31					
Human Disturbance	3					
Open Water	13					
5000 meter						
Agriculture	70					
Forest-cover	8					
Wetlands	12					
Human Disturbance	5					
Open Water	4					

Beckendorf Lake

Appendix 2.1. Summary of fish species sampled from Beckendorf Lake including total number captured, percent composition, and length range (mm).

Beckendorf Lake Fish Survey					
Fyke net and seine: 6/26/2017					
	Electrofishing: 6/29/2017				
				Length range	
Common name	Scientific name	Number	Percent	(mm)	
Fathead Minnow	Pimephales promelas	685	52%	63 - 64	
Gizzard Shad	Dorosoma cepedianum	142	11%	70 - 325	
Black Crappie	Pomoxis nigromaculatus	132	10%	106 - 331	
Orangespotted					
Sunfish	Lepomis humilis	105	8%	72 - 101	
Black Bullhead	Ameiurus melas	83	6%	93 - 305	
White Crappie	Pomoxis annularis	33	3%	151 - 302	
Yellow Perch	Perca flavescens	31	2%	-	
Common Carp	Cyprinus carpio	19	1%	178 - 854	
Johnny Darter	Etheostoma nigrum	18	1%	-	
Green Sunfish	Lepomis cyanellus	16	1%	100 - 155	
Bluegill	Lepomis macrochirus	11	1%	82 - 175	
Golden Shiner	Notemigonus crysoleucas	9	1%	73 - 153	
Bigmouth Buffalo	Ictiobus cyprinellus	8	1%	433 - 646	
Yellow Bullhead	Ameiurus natalis	6	0.5%	126 - 275	
Creek Chub	Semotilus atromaculatus	4	0.3%	60 - 89	
White Sucker	Catostomus commersonii	3	0.2%	215 - 450	
Shortnose Gar	Lepisosteus platostomus	1	0.1%	650	
	Total	1306			
	Species	17			
	Families	8			

Beckendorf Lake Ecological Niches						
Niche Species Percent Total Catch Composition						
Feeding Levels						
Filter Feeder	1	142	11			
Generalist	1	4	0.3			
Herbivore	-	-	-			
Insectivore	9	287	22			
Omnivore	3	707	54			
Piscivore	3	166	13			
Spawning Behavior						
Complex/No Parental Care	1	4	0.3			
Complex/Parental Care	9	1089	84			
Simple Lithophil	1	3	0.2			
Simple Miscellaneous	6	210	16			
Tolerance						
Intolerant	-	-	-			
Tolerant	7	819	63			
Preferred Habitat						
Pools	13	596	46			
Pools and Riffles	4	710	54			
Riffles	-	-	-			
Headwaters	-	-	-			
Large Rivers	2	9	1			
Pioneer	4	723	55			

Appendix 2.2. Overview of ecological niches of fish sampled from Beckendorf Lake.

Appendix 2.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Beckendorf Lake.

Beckendorf La	ke
Land cover type	Percent
Riparian Zone	e
Agriculture	8
Forest-cover	20
Wetlands	69
Human Disturbance	3
500 meter	
Agriculture	45
Forest-cover	23
Wetlands	24
Human Disturbance	3
Open Water	5
1000 meter	
Agriculture	44
Forest-cover	25
Wetlands	20
Human Disturbance	5
Open Water	7
5000 meter	
Agriculture	72
Forest-cover	14
Wetlands	8
Human Disturbance	4
Open Water	2

Belle Plaine

Appendix 3.1. Summary of fish species sampled from backwater near Belle Plaine, MN, including total number captured, percent composition, and length range (mm).

Belle Plaine Fish Survey

	Fyke net: 9/29/	2016		
Electrofishing and gill net: 9/30/2016				
Common name	Scientific name	Number	Percent	Length range (mm)
Gizzard Shad	Dorosoma cepedianum	40	39%	61 - 146
Emerald Shiner	Notropis atherinoides	27	26%	54 - 84
Black Crappie	Pomoxis nigromaculatus	14	14%	104 - 158
Black Bullhead	Ameiurus melas	8	8%	95 - 130
Bluegill	Lepomis macrochirus	2	2%	43 - 136
Common Carp	Cyprinus carpio	2	2%	182 - 336
Northern Pike	Esox lucius	2	2%	435 - 465
River Carpsucker	Carpiodes carpio	2	2%	134 - 149
Bigmouth Buffalo	Ictiobus cyprinellus	1	1%	142
Bowfin	Amia calva	1	1%	235
Channel Catfish	Ictalurus punctatus	1	1%	595
Golden Shiner	Notemigonus crysoleucas	1	1%	84
Sauger	Sander canadensis	1	1%	417
Walleye	Sander vitreus	1	1%	407
	Total	103		
	Species	14		
	Families	8		

Belle Pl	Belle Plaine Ecological Niches					
Niche	Species Total	Total Catch	Percent Composition			
Feeding Levels						
Filter Feeder	1	40	39			
Generalist	-	-	-			
Herbivore	-	-	-			
Insectivore	5	39	38			
Omnivore	2	4	4			
Piscivore	6	20	19			
Spawning Behavior						
Complex/No Parental Care	-	-	-			
Complex/Parental Care	5	26	25			
Simple Lithophil	3	29	28			
Simple Miscellaneous	6	48	47			
Tolerance						
Intolerant	-	-	-			
Tolerant	3	11	11			
Preferred Habitat						
Pools	14	103	100			
Pools and Riffles	-	-	-			
Riffles	-	-	-			
Headwaters	-	-	-			
Large Rivers	7	34	32			
Pioneer	-	-	-			

Appendix 3.2 Overview of ecological niches of fish sampled from backwater near Belle Plaine, MN.

near Belle Plaine, MN.	
Belle Plaine	
Land cover type	Percent
Riparian Zone	
Agriculture	0
Forest-cover	15
Wetlands	31
Human Disturbance	54
500 meter	
Agriculture	2
Forest-cover	19
Wetlands	33
Human Disturbance	7
Open Water	38
1000 meter	
Agriculture	13
Forest-cover	26
Wetlands	22
Human Disturbance	13
Open Water	25
5000 meter	
Agriculture	56
Forest-cover	19
Wetlands	5
Human Disturbance	14
Open Water	7

Appendix 3.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding backwater near Belle Plaine, MN.

Blue Lake

Appendix 4.1. Summary of fish species sampled from Blue Lake including total number captured, percent composition, and length range (mm).

Blue Lake Fish Survey				
Seine: 9/5/2018				
Fyke net and gill net: 9/6/2018				
			. .	Length range
Common name	Scientific name	Number	Percent	(mm)
Bluegill	Lepomis macrochirus	213	32%	82-214
Black Crappie	Pomoxis nigromaculatus	119	18%	124-367
Weed Shiner	Notropis texanus	108	16%	-
Gizzard Shad	Dorosoma cepedianum	59	9%	131-214
Northern Pike	Esox lucius	22	3%	549-884
Largemouth Bass	Micropterus salmoides	21	3%	-
Green Sunfish	Lepomis cyanellus	18	3%	153
Pumpkinseed	Lepomis gibbosus	18	3%	95-196
Common Carp	Cyprinus carpio	15	2%	496-805
Bowfin	Amia calva	12	2%	564-744
Hybrid Sunfish	Lepomis spp.	11	2%	61-176
Yellow Perch	Perca flavescens	10	2%	151-253
Golden Shiner	Notemigonus crysoleucas	8	1%	-
Freshwater Drum	Aplodinotus grunniens	7	1%	296-441
Brown Bullhead	Ameiurus nebulosus	4	0.6%	300-343
Smallmouth Buffalo	Ictiobus bubalus	4	0.6%	116-147
Walleye	Sander vitreus	3	0.5%	323-625
Black Bullhead	Ameiurus melas	3	0.5%	-
Spotfin Shiner	Cyprinella spiloptera	1	0.2%	-
Bigmouth Buffalo	Ictiobus cyprinellus	1	0.2%	440
	Moxostoma			
Shorthead Redhorse	macrolepidotum	1	0.2%	461
Orangespotted	-			
Sunfish	Lepomis humilis	1	0.2%	90
White Crappie	Pomoxis annularis	1	0.2%	99
	Total	660		
	Species	23		
	Families	9		

Blue Lake Ecological Niches					
Niche	Species	Total Catch	Percent		
	Total	Total catch	Composition		
Feeding Levels					
Filter Feeder	1	59	9		
Generalist	-	-	-		
Herbivore	1	108	16		
Insectivore	14	300	45		
Omnivore	1	15	2		
Piscivore	6	178	27		
Spawning Behavior					
Complex/No Parental Care	-	-	-		
Complex/Parental Care	11	421	64		
Simple Lithophil	2	4	1		
Simple Miscellaneous	10	235	36		
Tolerance					
Intolerant	1	108	16		
Tolerant	4	44	7		
Preferred Habitat					
Pools	22	659	99.8		
Pools and Riffles	1	1	0.2		
Riffles	-	-	-		
Headwaters	7	136	21		
Large Rivers	1	18	3		
Pioneer	-	-	-		

Appendix 4.2. Overview of ecological niches of fish sampled from Blue Lake.

Blue Lake				
Land cover type	Percent			
Riparian Zone				
Agriculture	4			
Forest-cover	56			
Wetlands	41			
Human Disturbance	0			
500 meter				
Agriculture	19			
Forest-cover	14			
Wetlands	16			
Human Disturbance	15			
Open Water	36			
1000 meter				
Agriculture	14			
Forest-cover	10			
Wetlands	8			
Human Disturbance	37			
Open Water	31			
5000 meter				
Agriculture	13			
Forest-cover	8			
Wetlands	4			
Human Disturbance	60			
Open Water	14			

Appendix 4.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Blue Lake.

Franklin Oxbow

Appendix 5.1. Summary of fish species sampled from the Franklin Oxbow including total number captured, percent composition, and length range (mm).

Franklin Oxbow Fish Survey					
Seine: 10/5/2016					
Fyke net: 10/6/2016					
Electrofishing: 10/7/2016					
				Length range	
Common name	Scientific name	Number	Percent	(mm)	
Gizzard Shad	Dorosoma cepedianum	205	32%	51 - 300	
Spotfin Shiner	Cyprinella spiloptera	123	19%	25 - 65	
Orangespotted					
Sunfish	Lepomis humilis	119	19%	31 - 80	
River Carpsucker	Carpiodes carpio	36	6%	356 - 558	
Emerald Shiner	Notropis atherinoides	33	5%	38 - 77	
Freshwater Drum	Aplodinotus grunniens	32	5%	92 - 299	
Bluegill	Lepomis macrochirus	25	4%	28 - 107	
White Crappie	Pomoxis annularis	19	3%	74 - 235	
Black Crappie	Pomoxis nigromaculatus	14	2%	60 - 249	
Highfin Carpsucker	Carpiodes velifer	4	1%	320 - 411	
	Moxostoma				
Shorthead Redhorse	macrolepidotum	4	1%	85 - 458	
Fathead Minnow	Pimephales promelas	3	0.5%	30 - 46	
Green Sunfish	Lepomis cyanellus	3	0.5%	51 - 57	
Smallmouth Buffalo	Ictiobus bubalus	3	0.5%	464 - 576	
Bluntnose Minnow	Pimephales notatus	2	0.3%	31 - 58	
Common Carp	Cyprinus carpio	2	0.3%	391 - 543	
Largemouth Bass	Micropterus salmoides	2	0.3%	101 - 244	
Walleye	Sander vitreus	2	0.3%	481 - 538	
Bigmouth Buffalo	Ictiobus cyprinellus	1	0.2%	558	
Channel Catfish	Ictalurus punctatus	1	0.2%	298	
Hybrid Sunfish	Lepomis spp.	1	0.2%	116	
Johnny Darter	Etheostoma nigrum	1	0.2%	68	
Mooneye	Hiodon tergisus	1	0.2%	258	
Quillback	Carpiodes cyprinus	1	0.2%	410	
White Sucker	Catostomus commersonii	1	0.2%	280	
	Total	638			
	Species	25			
	Families	8			

Franklin Oxbow Ecological Niches					
Niche Species Total Catch Percent Total Composition					
Feeding Levels					
Filter Feeder	1	205	32		
Generalist	-	-	-		
Herbivore	-	-	-		
Insectivore	13	350	55		
Omnivore	6	45	7		
Piscivore	5	38	6		
Spawning Behavior					
Complex/No Parental Care	-	-	-		
Complex/Parental Care	11	190	30		
Simple Lithophil	4	40	6		
Simple Miscellaneous	10	408	64		
Tolerance					
Intolerant	2	5	1		
Tolerant	5	11	2		
Preferred Habitat					
Pools	20	508	80		
Pools and Riffles	6	130	20		
Riffles	-	-	-		
Headwaters	-	-	-		
Large Rivers	10	117	18		
Pioneer	4	9	1		

Appendix 5.2. Overview of ecological niches of fish sampled from the Franklin Oxbow.

Appendix 5.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding the Franklin Oxbow.

Franklin Oxbow				
Land cover type	Percent			
Riparian Zon	е			
Agriculture	0			
Forest-cover	1			
Wetlands	97			
Human Disturbance	1			
500 meter				
Agriculture	22			
Forest-cover	4			
Wetlands	60			
Human Disturbance	4			
Open Water	9			
1000 meter				
Agriculture	37			
Forest-cover	5			
Wetlands	43			
Human Disturbance	5			
Open Water	10			
5000 meter				
Agriculture	70			
Forest-cover	7			
Wetlands	14			
Human Disturbance	6			
Open Water	3			

Gifford Lake

Appendix 6.1. Summary of fish species sampled from Gifford Lake including total number captured, percent composition, and length range (mm).

Gifford Lake Fish Survey
Seine: 5/22/2017
Fyke net: 5/23/2017
Electrofishing: 6/12/2017

				Length range
Common name	Scientific name	Number	Percent	(mm)
Black Bullhead	Ameiurus melas	432	41%	110 - 201
Bluegill	Lepomis macrochirus	193	18%	41 - 201
Common Carp	Cyprinus carpio	78	7%	167 - 720
Largemouth Bass	Micropterus salmoides	57	5%	91 - 380
Gizzard Shad	Dorosoma cepedianum	49	5%	25 - 371
Bigmouth Buffalo	Ictiobus cyprinellus	40	4%	321 - 645
White Crappie	Pomoxis annularis	38	4%	190 - 285
Orangespotted				
Sunfish	Lepomis humilis	37	4%	43 - 98
Spotfin Shiner	Cyprinella spiloptera	22	2%	36 - 73
Freshwater Drum	Aplodinotus grunniens	18	2%	144 - 597
Emerald Shiner	Notropis atherinoides	15	1%	71 - 85
Black Crappie	Pomoxis nigromaculatus	10	1%	107 - 279
Golden Shiner	Notemigonus crysoleucas	10	1%	80 - 111
Green Sunfish	Lepomis cyanellus	10	1%	65 - 152
Bowfin	Amia calva	9	1%	350 - 672
River Carpsucker	Carpiodes carpio	5	0.5%	175 - 496
Yellow Bullhead	Ameiurus natalis	4	0.4%	217 - 330
Bluntnose Minnow	Pimephales notatus	2	0.2%	-
Pumpkinseed	Lepomis gibbosus	2	0.2%	111 - 117
Smallmouth Buffalo	Ictiobus bubalus	2	0.2%	271 - 372
White Sucker	Catostomus commersonii	2	0.2%	294 - 368
Blackchin Shiner	Notropis heterodon	1	0.1%	63
Central Mudminnow	Umbra limi	1	0.1%	88
Hybrid Sunfish	Lepomis spp.	1	0.1%	135
Sand Shiner	Notropis stramineus	1	0.1%	-
	Moxostoma			
Shorthead Redhorse	macrolepidotum	1	0.1%	351
Silver Redhorse	Moxostoma anisurum	1	0.1%	380
Walleye	Sander vitreus	1	0.1%	374
Weed Shiner	Notropis texanus	1	0.1%	-
Yellow Perch	Perca flavescens	1	0.1%	115
	Total	1044		

Species	30
Families	9

Gifford Lake Ecological Niches						
Niche Species Percent Total Catch Compositi						
Feeding Levels						
Filter Feeder	1	49	5			
Generalist	-	-	-			
Herbivore	1	1	0.1			
Insectivore	19	792	76			
Omnivore	4	87	8			
Piscivore	5	115	11			
Spawning Behavior						
Complex/No Parental Care	-	-	-			
Complex/Parental Care	13	796	76			
Simple Lithophil	5	20	2			
Simple Miscellaneous	12	228	22			
Tolerance						
Intolerant	2	2	0.2			
Tolerant	7	535	51			
Preferred Habitat						
Pools	25	1016	97			
Pools and Riffles	5	28	3			
Riffles	-	-	-			
Headwaters	-	-	-			
Large Rivers	10	93	9			
Pioneer	2	12	1			

Appendix 6.2. Overview of ecological niches of fish sampled from Gifford Lake.

Gifford Lake				
Land cover type	Percent			
Riparian Zone				
Agriculture	23			
Forest-cover	61			
Wetlands	0			
Human Disturbance	16			
500 meter				
Agriculture	26			
Forest-cover	19			
Wetlands	9			
Human Disturbance	12			
Open Water	34			
1000 meter				
Agriculture	31			
Forest-cover	17			
Wetlands	19			
Human Disturbance	10			
Open Water	23			
5000 meter				
Agriculture	40			
Forest-cover	16			
Wetlands	6			
Human Disturbance	26			
Open Water	12			

Appendix 6.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Gifford Lake.

Hwy 14 Oxbow

Appendix 7.1. Summary of fish species sampled from the Highway 14 Oxbow including total number captured, percent composition, and length range (mm).

	Hwy 14 Oxbow Fish S					
Fyke net and seine: 6/27/2018						
Electrofishing: 7/2/2018						
Length rang						
Common name	Scientific name	Number	Percent	(mm)		
Black Crappie	Pomoxis nigromaculatus	1270	84%	124 - 282		
Bluegill	Lepomis macrochirus	55	4%	85 - 203		
Fathead Minnow	Pimephales promelas	49	3%	-		
Yellow Perch	Perca flavescens	23	2%	-		
Orangespotted						
Sunfish	Lepomis humilis	17	1%	-		
Bigmouth Buffalo	Ictiobus cyprinellus	13	1%	454 - 753		
Black Bullhead	Ameiurus melas	12	1%	66 - 318		
Common Carp	Cyprinus carpio	10	1%	438 - 731		
Largemouth Bass	Micropterus salmoides	10	1%	147 - 191		
Northern Pike	Esox lucius	10	1%	114 - 874		
Emerald Shiner	Notropis atherinoides	8	1%	-		
Walleye	Sander vitreus	7	0.5%	445 - 517		
Freshwater Drum	Aplodinotus grunniens	6	0.4%	227 - 470		
Spottail Shiner	Notropis hudsonius	6	0.4%	-		
	Moxostoma					
Shorthead Redhorse	macrolepidotum	4	0.3%	374 - 440		
Channel Catfish	Ictalurus punctatus	3	0.2%	453 - 555		
White Bass	Morone chrysops	3	0.2%	-		
White Sucker	Catostomus commersonii	2	0.1%	385 - 429		
Brook Stickleback	Culaea inconstans	1	0.1%	-		
Golden Shiner	Notemigonus crysoleucas	1	0.1%	-		
Hybrid Sunfish	Lepomis spp.	1	0.1%	-		
, Spotfin Shiner	Cyprinella spiloptera	1	0.1%	-		
White Crappie	Pomoxis annularis	1	0.1%	152		
Yellow Bullhead	Ameiurus natalis	1	0.1%	225		
	Total	1514				
	Species	24				
	Families	9				

Niche	Total Catch	Percent Compositior		
Feeding Levels				
Filter Feeder	-	-	-	
Generalist	-	-	-	
Herbivore	-	-	-	
Insectivore	14	149	10	
Omnivore	3	61	4	
Piscivore	7	1304	86	
Spawning Behavior				
Complex/No Parental Care	-	-	-	
Complex/Parental Care	11	1420	94	
Simple Lithophil	4	21	1	
Simple Miscellaneous	9	73	5	
Tolerance				
Intolerant	1	6	0.4	
Tolerant	5	74	5	
Preferred Habitat				
Pools	20	1456	96	
Pools and Riffles	4	58	4	
Riffles	-	-	-	
Headwaters	1	1	0.1	
Large Rivers	7	44	3	
Pioneer	1	49	3	

Appendix 7.2. Overview of ecological niches of fish sampled from the Highway 14 Oxbow.

14 Oxbow.				
Hwy 14 Oxbow				
Land cover type	Percent			
Riparian Zone				
Agriculture	12			
Forest-cover	48			
Wetlands	33			
Human Disturbance	8			
500 meter				
Agriculture	29			
Forest-cover	19			
Wetlands	29			
Human Disturbance	5			
Open Water	19			
1000 meter				
Agriculture	41			
Forest-cover	14			
Wetlands	24			
Human Disturbance	5			
Open Water	15			
5000 meter				
Agriculture	61			
Forest-cover	11			
Wetlands	11			
Human Disturbance	8			
Open Water	8			

Appendix 7.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding the Highway 14 Oxbow.

Long Lake

Appendix 8.1. Summary of fish species sampled from Long Lake including total number captured, percent composition, and length range (mm).

Long Lake Fish Survey Seine: 9/11/2018					
Fyke net and gill net: 9/12/2018					
Common name	Length range (mm)				
Bluegill	Lepomis macrochirus	333	28%	90-181	
Black Bullhead	Ameiurus melas	306	25%	22-301	
Sand Shiner	Notropis stramineus	241	20%		
Black Crappie	Pomoxis nigromaculatus	128	11%	126-359	
Northern Pike	Esox lucius	34	3%	349-972	
Bowfin	Amia calva	23	2%	302-653	
Yellow Bullhead	Ameiurus natalis	21	2%	202-341	
White Crappie	Pomoxis annularis	16	1%	160-356	
Common Carp	Cyprinus carpio	15	1%	240-595	
Gizzard Shad	Dorosoma cepedianum	10	1%	172-421	
Largemouth Bass	Micropterus salmoides	10	1%	155-440	
Pumpkinseed	Lepomis gibbosus	9	1%	102-156	
Freshwater Drum	Aplodinotus grunniens	9	1%	306-444	
Brown Bullhead	Ameiurus nebulosus	9	1%	177-260	
Bigmouth Buffalo	Ictiobus cyprinellus	9	1%	411-667	
Bluntnose Minnow	Pimephales notatus	7	0.6%		
Smallmouth Buffalo	Ictiobus bubalus	4	0.3%	143-264	
Hybrid Sunfish	Lepomis spp.	3	0.2%	165-171	
Yellow Perch	Perca flavescens	2	0.2%	202-212	
Emerald Shiner	Notropis atherinoides	2	0.2%		
River Carpsucker	Carpiodes carpio	2	0.2%	523-530	
Shortnose Gar	Lepisosteus platostomus	2	0.2%	390-446	
Tadpole Madtom	Noturus gyrinus	2	0.2%		
Silver Redhorse	Moxostoma anisurum	1	0.1%	367	
Orangespotted					
Sunfish	Lepomis humilis	2	0.2%		
Walleye	Sander vitreus	1	0.1%	176	
Channel Catfish	Ictalurus punctatus	1	0.1%	591	
	Total	1202			
	Species	27			
	Families	10			

Long Lake Ecological Niches					
Niche	Percent Composition				
Feeding Levels					
Filter Feeder	1	10	1		
Generalist	-	-	-		
Herbivore	-	-	-		
Insectivore	15	954	79		
Omnivore	3	24	2		
Piscivore	8	215	18		
Spawning Behavior					
Complex/No Parental Care	-	-	-		
Complex/Parental Care	14	870	72		
Simple Lithophil	3	5	0.4		
Simple Miscellaneous	10	328	27		
Tolerance					
Intolerant	-	-	-		
Tolerant	3	328	27		
Preferred Habitat					
Pools	24	953	79		
Pools and Riffles	3	250	21		
Riffles	-	-	-		
Headwaters	-	-	-		
Large Rivers	10	55	5		
Pioneer	1	7	1		

Appendix 8.2. Overview of ecological niches of fish sampled from Long Lake.

Percent
46
46
1
6
32
23
15
5
25
34
19
18
5
23
48
19
8
12
13

Appendix 8.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Long Lake.

Mack Lake

Appendix 9.1. Summary of fish species sampled from Mack Lake including total number captured, percent composition, and length range (mm).

	Mack Lake Fish S	-				
Electrofishing and seine: 9/7/2016						
	Fyke net: 9/8/2	2016				
•			_	Length range		
Common name	Scientific name	Number	Percent	(mm)		
Black Bullhead	Ameiurus melas	219	31%	109 - 310		
Bluegill	Lepomis macrochirus	91	13%	25 - 159		
Common Carp	Cyprinus carpio	87	12%	95 - 670		
Orangespotted						
Sunfish	Lepomis humilis	67	10%	40 - 96		
Black Crappie	Pomoxis nigromaculatus	48	7%	66 - 256		
Gizzard Shad	Dorosoma cepedianum	48	7%	96 - 254		
White Crappie	Pomoxis annularis	35	5%	95 - 321		
Bigmouth Buffalo	Ictiobus cyprinellus	16	2%	118 - 418		
Freshwater Drum	Aplodinotus grunniens	16	2%	104 - 405		
Yellow Bullhead	Ameiurus natalis	15	2%	183 - 247		
Largemouth Bass	Micropterus salmoides	14	2%	89 - 416		
Emerald Shiner	Notropis atherinoides	12	2%	44 - 96		
Golden Shiner	Notemigonus crysoleucas	9	1%	52 - 77		
Yellow Perch	Perca flavescens	8	1%	92 - 175		
River Carpsucker	Carpiodes carpio	5	1%	232 - 546		
Common Shiner	Luxilus cornutus	2	0.3%	41 - 43		
Bluntnose Minnow	Pimephales notatus	1	0.1%	62		
Fathead Minnow	Pimephales promelas	1	0.1%	51		
Northern Pike	Esox lucius	1	0.1%	625		
Spotfin Shiner	Cyprinella spiloptera	1	0.1%	36		
Walleye	Sander vitreus	1	0.1%	380		
White Bass	Morone chrysops	1	0.1%	265		
	Total	698				
	Species	22				
	Families	9				

Mack Lake Ecological Niches				
Niche	Species Total	Total Catch	Percent Composition	
Feeding Levels				
Filter Feeder	1	48	7	
Generalist	1	2	0.3	
Herbivore	-	-	-	
Insectivore	10	454	65	
Omnivore	4	94	13	
Piscivore	6	100	14	
Spawning Behavior				
Complex/No Parental Care	1	2	0.3	
Complex/Parental Care	9	491	70	
Simple Lithophil	2	13	2	
Simple Miscellaneous	10	192	28	
Tolerance				
Intolerant	-	-	-	
Tolerant	5	317	45	
Preferred Habitat				
Pools	18	693	99	
Pools and Riffles	4	5	1	
Riffles	-	-	-	
Headwaters	-	-	-	
Large Rivers	6	51	7	
Pioneer	2	2	0.3	

Appendix 9.2. Overview of ecological niches of fish sampled from Mack Lake.

Mack Lake				
Land cover type	Percent			
Riparian Zone				
Agriculture	34			
Forest-cover	37			
Wetlands	29			
Human Disturbance	0			
500 meter				
Agriculture	28			
Forest-cover	26			
Wetlands	21			
Human Disturbance	4			
Open Water	21			
1000 meter				
Agriculture	36			
Forest-cover	17			
Wetlands	21			
Human Disturbance	3			
Open Water	24			
5000 meter				
Agriculture	71			
Forest-cover	10			
Wetlands	9			
Human Disturbance	5			
Open Water	6			
	0			

Appendix 9.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Mack Lake.

Montevideo Oxbow

Appendix 10.1. Summary of fish species sampled from the Montevideo Oxbow including total number captured, percent composition, and length range (mm).

	Montevideo Oxbow Fish Survey			
	Seine: 8/24/2016			
	Fyke net: 8/25/20	16		
				Length range
Common name	Scientific name	Number	Percent	(mm)
Bluegill	Lepomis macrochirus	1608	48%	83 - 131
Spotfin Shiner	Cyprinella spiloptera	1199	36%	24 - 72
Orangespotted				
Sunfish	Lepomis humilis	189	6%	33 - 80
Fathead Minnow	Pimephales promelas	96	3%	33 - 66
Bluntnose Minnow	Pimephales notatus	59	2%	33 - 48
Black Crappie	Pomoxis nigromaculatus	40	1%	59 - 312
Common Carp	Cyprinus carpio	33	1%	32 - 612
Green Sunfish	Lepomis cyanellus	27	1%	29 - 114
Spottail Shiner	Notropis hudsonius	17	0.5%	51 - 112
Sand Shiner	Notropis stramineus	12	0.4%	32 - 42
Black Bullhead	Ameiurus melas	11	0.3%	90 - 155
Emerald Shiner	Notropis atherinoides	11	0.3%	41 - 52
White Sucker	Catostomus commersonii	11	0.3%	64 - 463
Moxostoma				
Shorthead Redhorse	macrolepidotum	9	0.3%	405 - 499
Northern Pike	Esox lucius	8	0.2%	495 - 834
Yellow Bullhead	Ameiurus natalis	6	0.2%	105 - 318
Bigmouth Buffalo	Ictiobus cyprinellus	5	0.1%	53 - 77
River Carpsucker	Carpiodes carpio	4	0.1%	84 - 633
Freshwater Drum	Aplodinotus grunniens	3	0.1%	106 - 370
Walleye	Sander vitreus	3	0.1%	353 - 383
Channel Catfish	Ictalurus punctatus	2	0.1%	276 - 386
Common Shiner	Luxilus cornutus	2	0.1%	51 - 59
Tadpole Madtom	Noturus gyrinus	2	0.1%	40 - 52
Yellow Perch	Perca flavescens	2	0.1%	91 - 100
Brassy Minnow	Hybognathus hankinsoni	1	0.03%	66
Brook Stickleback	Culaea inconstans	1	0.03%	50
Central Mudminnow	Umbra limi	1	0.03%	96
Johnny Darter	Etheostoma nigrum	1	0.03%	60
-	Total	3363		
	Species	28		
Families 9				

Montevideo Oxbow Ecological Niches				
Niche	Species Total	Total Catch	Percent Composition	
Feeding Levels				
Filter Feeder	-	-	-	
Generalist	1	2	0.06	
Herbivore	1	1	0.03	
Insectivore	17	3104	92	
Omnivore	5	203	6	
Piscivore	4	53	2	
Spawning Behavior				
Complex/No Parental Care	1	2	0.06	
Complex/Parental Care	13	2043	61	
Simple Lithophil	4	34	1	
Simple Miscellaneous	10	1284	38	
Tolerance				
Intolerant	1	17	1	
Tolerant	7	238	7	
Preferred Habitat				
Pools	19	1964	58	
Pools and Riffles	9	1399	42	
Riffles	-	-	-	
Headwaters	1	1	0.03	
Large Rivers	7	37	1	
Pioneer	4	183	5	

Appendix 10.2 Overview of ecological niches of fish sampled from the Montevideo.

Appendix 10.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding the Montevideo Oxbow.

Montevideo Oxbow.				
Montevideo Oxbo	w			
Land cover type	Percent			
Riparian Zone				
Agriculture	31			
Forest-cover	0			
Wetlands	69			
Human Disturbance	0			
500 meter				
Agriculture	54			
Forest-cover	0			
Wetlands	29			
Human Disturbance	11			
Open Water	6			
1000 meter				
Agriculture	54			
Forest-cover	1			
Wetlands	31			
Human Disturbance	10			
Open Water	4			
5000 meter				
Agriculture	74			
Forest-cover	2			
Wetlands	10			
Human Disturbance	10			
Open Water	3			

New Ulm Oxbow

Appendix 11.1. Summary of fish species sampled from the New Ulm Oxbow including total number captured, percent composition, and length range (mm).

	New Ulm Oxbow Fish Survey				
	Fyke net: 7/31/2017				
	Electrofishing: 8/	7/2017			
	Length range				
Common name	Scientific name	Number	Percent	(mm)	
Orangespotted					
Sunfish	Lepomis humilis	62	20%	33 - 85	
Gizzard Shad	Dorosoma cepedianum	38	13%	55 - 302	
Bigmouth Buffalo	Ictiobus cyprinellus	27	9%	313 - 600	
Black Crappie	Pomoxis nigromaculatus	26	9%	119 - 260	
River Carpsucker	Carpiodes carpio	25	8%	380 - 554	
Shortnose Gar	Lepisosteus platostomus	20	7%	305 - 662	
Freshwater Drum	Aplodinotus grunniens	19	6%	55 - 335	
White Crappie	Pomoxis annularis	19	6%	63 - 195	
Bluegill	Lepomis macrochirus	15	5%	34 - 184	
Common Carp	Cyprinus carpio	14	5%	318 - 715	
Green Sunfish	Lepomis cyanellus	7	2%	90 - 95	
Spottail Shiner	Notropis hudsonius	6	2%	63 - 73	
Largemouth Bass	Micropterus salmoides	5	2%	203 - 324	
Spotfin Shiner	Cyprinella spiloptera	5	2%	44 - 82	
Northern Pike	Esox lucius	4	1%	525 - 782	
Sauger	Sander canadensis	3	1%	376 - 432	
Channel Catfish	Ictalurus punctatus	2	1%	369 - 497	
Black Bullhead	Ameiurus melas	1	0.3%	96	
Emerald Shiner	Notropis atherinoides	1	0.3%	62	
Flathead Catfish	Pylodictis olivaris	1	0.3%	259	
Johnny Darter	Etheostoma nigrum	1	0.3%	-	
Slenderhead Darter	Percina phoxoceoala	1	0.3%	-	
White Bass	Morone chrysops	1	0.3%	100	
	Total	303			
	Species	23			
	Families	10			

New Ulm Oxbow Ecological Niches						
Niche	Niche Species Percent Total Catch Compositio					
Feeding Levels						
Filter Feeder	1	38	13			
Generalist	-	-	-			
Herbivore	-	-	-			
Insectivore	11	145	48			
Omnivore	2	39	13			
Piscivore	9	81	27			
Spawning Behavior						
Complex/No Parental Care	-	-	-			
Complex/Parental Care	10	139	46			
Simple Lithophil	3	5	2			
Simple Miscellaneous	10	159	52			
Tolerance						
Intolerant	2	7	2			
Tolerant	3	22	7			
Preferred Habitat						
Pools	19	289	95			
Pools and Riffles	4	13	4			
Riffles	1	1	0.3			
Headwaters	-	-	-			
Large Rivers	10	100	33			
Pioneer	2	8	3			

Appendix 11.2. Overview of ecological niches of fish sampled from the New Ulm Oxbow.

Appendix 11.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding the New Ulm
Oxbow.

New Ulm Oxbo	w			
Land cover type	Percent			
Riparian Zon	e			
Agriculture	16			
Forest-cover	8			
Wetlands	76			
Human Disturbance	0			
500 meter				
Agriculture	19			
Forest-cover	8			
Wetlands	34			
Human Disturbance	22			
Open Water	17			
1000 meter				
Agriculture	27			
Forest-cover	8			
Wetlands	25			
Human Disturbance	27			
Open Water	13			
5000 meter				
Agriculture	57			
Forest-cover	9			
Wetlands	11			
Human Disturbance	17			
Open Water	5			

Sulfur Lake

Appendix 12.1. Summary of fish species sampled from Sulfur Lake including total number captured, percent composition, and length range (mm).
Sulfur Lake Fish Survey

Sulfur Lake Fish Survey				
	Fyke net and gill net: 5/24/2017			
	Electrofishing and seine: 6/1/2017			
•		N I	D	Length range
Common name	Scientific name	Number	Percent	(mm)
Spotfin Shiner	Cyprinella spiloptera	55	18%	38 - 78
Bigmouth Buffalo	Ictiobus cyprinellus	46	15%	251 - 724
Bluegill	Lepomis macrochirus	36	12%	25 - 186
Largemouth Bass	Micropterus salmoides	28	9%	91 - 446
Common Carp	Cyprinus carpio	19	6%	399 - 644
Fathead Minnow	Pimephales promelas	17	6%	45 - 69
Black Crappie	Pomoxis nigromaculatus	15	5%	89 - 292
Green Sunfish	Lepomis cyanellus	15	5%	49 - 136
Orangespotted				
Sunfish	Lepomis humilis	15	5%	38 - 88
Gizzard Shad	Dorosoma cepedianum	12	4%	130 - 290
Golden Shiner	Notemigonus crysoleucas	12	4%	33 - 110
River Carpsucker	Carpiodes carpio	5	2%	451 - 525
White Crappie	Pomoxis annularis	5	2%	72 - 205
Bluntnose Minnow	Pimephales notatus	3	1%	40 - 55
White Sucker	Catostomus commersonii	3	1%	186 - 349
Black Bullhead	Ameiurus melas	2	1%	107 - 258
Emerald Shiner	Notropis atherinoides	2	1%	-
Smallmouth Buffalo	Ictiobus bubalus	2	1%	568 - 589
Walleye	Sander vitreus	2	1%	394 - 430
Channel Catfish	Ictalurus punctatus	1	0.3%	368
Central Mudminnow	Umbra limi	1	0.3%	79
Flathead Catfish	Pylodictis olivaris	1	0.3%	447
Hybrid Sunfish	Lepomis spp.	1	0.3%	155
Quillback	Carpiodes cyprinus	1	0.3%	365
Slenderhead Darter	Percina phoxoceoala	1	0.3%	58
	Moxostoma			
Shorthead Redhorse	macrolepidotum	1	0.3%	354
Silver Redhorse	Moxostoma anisurum	1	0.3%	410
Weed Shiner	Notropis texanus	1	0.3%	64
Yellow Perch	Perca flavescens	1	0.3%	115
	Total	304		
	Species	29		
	Families	7		

Sulfur I	Sulfur Lake Ecological Niches				
Niche	Species Total	Total Catch	Percent Composition		
Feeding Levels					
Filter Feeder	1	12	4		
Generalist	-	-	-		
Herbivore	1	1	0.3		
Insectivore	15	191	63		
Omnivore	6	48	16		
Piscivore	6	52	17		
Spawning Behavior					
Complex/No Parental Care	-	-	-		
Complex/Parental Care	13	140	46		
Simple Lithophil	6	10	3		
Simple Miscellaneous	10	154	51		
Tolerance					
Intolerant	2	2	1		
Tolerant	8	72	24		
Preferred Habitat					
Pools	23	224	74		
Pools and Riffles	5	79	26		
Riffles	1	1	0.3		
Headwaters	-	-	-		
Large Rivers	11	63	21		
Pioneer	3	35	12		

Appendix 12.2. Overview of ecological niches of fish sampled from Sulfur.

Sulfur Lake				
Land cover type	Percent			
Riparian Zone				
Agriculture	12			
Forest-cover	2			
Wetlands	55			
Human Disturbance	30			
500 meter				
Agriculture	10			
Forest-cover	23			
Wetlands	41			
Human Disturbance	18			
Open Water	7			
1000 meter				
Agriculture	22			
Forest-cover	14			
Wetlands	37			
Human Disturbance	17			
Open Water	10			
5000 meter				
Agriculture	65			
Forest-cover	9			
Wetlands	16			
Human Disturbance	7			
Open Water	3			

Appendix 12.3. Land cover within concentric bands (i.e., 50–5,000 m) surrounding Sulfur Lake.