MDNR ID No. 29: MP 946; LaSalle Creek (M-163)

LaSalle Creek Construction and Restoration Plan

Enbridge Energy, Limited Partnership • Line 3 Replacement Project

October 2020

TABLE OF CONTENTS

INTRO	DUCTI	ON	1
1.0	SUMM	ARY OF DATA COLLECTED	2
2.0	CONS	TRUCTION PLAN	3
	2.1	SITE PREPARATION	3
	2.2	PIPELINE INSTALLATION	5
		2.2.1 LaSalle Creek and Adjacent Fresh (Wet) Meadow Wetlands Crossing	6
		2.2.2 Adjacent Hillslope Construction	9
3.0	REST	ORATION MEASURES	10
	3.1	STABILIZATION	10
	3.2	REVEGETATION	11
	3.3	MONITORING	12
4.0	REFE	RENCES	12

APPENDICES

- Appendix A Site-Specific Crossing Plan
- Appendix B Site-Specific Restoration Plan
- Appendix C Geotechnical Data Report, Line 3 Replacement, LaSalle Creek Crossing; Clearwater and Hubbard County, Minnesota
- Appendix D LaSalle Creek Groundwater Monitoring Locations

ACRONYMS AND ABBREVIATIONS

ATWS	additional temporary workspace
Barr	Barr Engineering Company
bgs	below ground surface
BMPs	best management practices
BWSR	Minnesota Board of Water & Soil Resources
ECDs	erosion control devices
El	Environmental Inspector
Enbridge	Enbridge Energy, Limited Partnership
EPP	Environmental Protection Plan
HA	hand-auger
L3R or Project	Line 3 Replacement Project
MDNR	Minnesota Department of Natural Resources
MP	milepost
MPCA	Minnesota Pollution Control Agency
OHWM	ordinary high-water mark
PCMP	Post-Construction Wetland and Waterbody Monitoring Plan
Plan	LaSalle Creek Construction and Restoration Plan
SSCP	Site-Specific Crossing Plan
SSRP	Site-Specific Restoration Plan
SWPPP	Stormwater Pollution Prevention Plan

INTRODUCTION

Enbridge Energy, Limited Partnership ("Enbridge") has coordinated with the Minnesota Department of Natural Resources ("MDNR") and Minnesota Pollution Control Agency ("MPCA") regarding the Line 3 Replacement Project ("L3R" or "Project") and the crossing of LaSalle Creek. Enbridge has applied for a License to Cross Public Waters and a Work in Public Waters Permit from the MDNR for the passage of utilities¹ under public waters² related to the construction and operation of the Project. Enbridge has prepared this LaSalle Creek Construction and Restoration Plan ("Plan") to address the crossing of LaSalle Creek, a Minnesota public water watercourse.

L3R crosses LaSalle Creek near milepost ("MP") 946.0 in Hubbard County in a general west to south/southeast alignment approximately 0.5 mile south of Big LaSalle Lake. LaSalle Creek is located within a tunnel valley. From approximately MP 945.9, the pipeline crosses a black spruce (*Picea marinana*)-Balsam fir (*Abies balsamea*)-tamarack (*Larix larcina*) dominated coniferous swamp forested wetland located on the western hillslope, which transitions to a fresh (wet) meadow wetland dominated by tussock sedge (*Carex stricta*), lake sedge (*Carex lacustris*), and Canada blue joint grass (*Calamagrostis canadensis*) at the bottom of the valley on either side of LaSalle Creek, extending until approximately MP 946.0. From there, wetlands moving up the eastern slope transition to Balsam popular (*Populus balsamifera*)-black ash (*Fraxinus negra*) and speckled alder (*Alnus incana*) shrub-carr communities, and then to a black ash-dominated hardwood swamp forested wetland.

Enbridge will cross the western hillslope relatively perpendicular to the slope to avoid paralleling LaSalle Creek, ensure sufficient workspace, and provide a shorter crossing of the waterbody. Enbridge is proposing to cross LaSalle Creek using the dry crossing method, following prior consultation with the MDNR that revealed past issues with use of the horizontal directional drill method. The crossing is located on county-administered land. LaSalle Creek is a coldwater trout stream that is approximately 15 feet wide from top-of-bank to top-of-bank. The stream is low-gradient, with nearly vertical banks and features a sinuous channel with sand-dominated bottom. The average flow velocity is approximately 0.8 foot per second. The Site-Specific Crossing Plan ("SSCP") is contained within Appendix A and the Site-Specific Restoration Plan ("SSRP") is contained within Appendix B).

Enbridge and MDNR met to discuss the LaSalle Creek crossing on April 2, 2020. MDNR was concerned about potential artesian conditions and water management in the vicinity of LaSalle Creek, and how these conditions might impact construction and operation of the Project. Following that meeting, Enbridge provided MDNR with results of a 2014 geotechnical evaluation on April 6, 2020³ and then notified MDNR that it would gather additional hydrogeologic data at LaSalle Creek on April 14, 2020.⁴ Enbridge provided MDNR with a Geotechnical Data Report for the LaSalle Creek crossing on May 13, 2020 that summarized the results of the fieldwork (the "2020 geotechnical investigation;" Barr Engineering Company ("Barr"), 2020; see Appendix C).⁵

¹ Utilities means lines, cables, and conduits for telephone, telegraph, or electric power, and pipelines for gases, liquids, or solids in suspension, and any other such item covered by the licensing requirements of Minnesota Statues, section 84.415 (Minnesota Rules 6135.0200, Subp. 3).

² Public water or public waters means those waters of the state identified under Minnesota Statutes, section 103G.005, subdivision 15 or 15a, or 103G.201, as shown on the public water inventory maps.

³ Email from J. Motis to V. Perry on April 6, 2020 ("LaSalle Creek Data Request") at 12:57pm.

⁴ Email from J. Motis to V. Perry and M. Walker on April 14, 2020 ("LaSalle Creek Crossing") at 10:29am.

⁵ Email from J. Motis to M. Walker and V. Perry on May 13, 2020 ("LaSalle Creek Report") at 10:24am.

On June 8, 2020 MDNR provided feedback regarding its review of the LaSalle Creek hydrogeologic data⁶. Notably, MDNR found that no additional data collection was needed but that Enbridge should prepare dewatering estimates and be prepared to encounter a water table near the land surface during construction. MDNR submitted the first version of this Plan to MDNR in August 2020. This version was prepared following discussions with MDNR and MPCA in October 2020.

In addition, this Plan contains techniques to manage water encountered during pipeline construction and operation within MPs 945.9 to 946.5, or approximately between the hand-auger ("HA") locations LS-20-HA-3 to LS-20-HA-11 from the 2020 geotechnical investigation (see Appendix C). Section 1.0 provides a summary of data collected during Enbridge's 2020 geotechnical investigation at LaSalle Creek. Section 2.0 of the Plan addresses site preparation and pipeline installation activities as well as post-construction restoration measures, considering the data presented in Section 1.0.

To summarize, field data supports that Enbridge can successfully complete the crossing and manage groundwater flow using sheet piling at the crossing location and planning for additional pumping capacity for use as needed. Enbridge has also planned for additional trench breakers and scattered woody vegetation "slope breakers" to manage post-construction groundwater flow.

1.0 SUMMARY OF DATA COLLECTED

Enbridge engaged its environmental consultant, Barr, to conduct a geotechnical analysis in April 2020. Barr advanced 2 borings and 12 HA borings proximal to the L3R pipeline alignment for the LaSalle Creek crossing and collected soil samples for laboratory testing. One vibrating wire piezometer was installed in four HA borings prior to abandonment.

As determined from field and laboratory data, the existing soil conditions generally consist of topsoil/organic deposits overlying glacial outwash silt and sand deposits to a depth of at least 91.9 feet below ground surface ("bgs") (elevation 1338.9 feet), which was the approximate termination depth of the deepest boring (MP 407-North). Bedrock was not encountered within the depths of exploration of the borings. Artesian groundwater conditions were observed at boring MP 407-South upon reaching a depth of approximately 57 feet bgs (elevation 1376.6 feet). Water levels were measured in HA borings LS-20-HA-3 through LS-20-HA-11 during drilling at depths ranging from at the ground surface to approximately 2.5 feet bgs, which ranges in elevation from 1412.6 to 1441.0 feet. Results of the vibrating wire piezometer data indicate that groundwater is at the ground surface in elevations ranging from 1413.6 to 1431.2 feet. The range of horizontal hydraulic conductivity values were characteristic of a fine silt to clayey sand and are representative of deposits with moderately low permeability. This suggests that seepage inflows during construction will not be significant.

The sand and silty sand materials observed are considered to be moderately permeable; however, these higher permeability soils were generally encountered above the water-table elevation and are not expected to be a factor in the rate of groundwater seepage during construction. The organics, silt, and clay soils encountered lower in the valley (at the crossing location) are considered to have low permeability. Excavations through the lower permeability soils should have low seepage inflow rates. Moderately permeable sandy soils were encountered in LS-20-HA-7 through LS-20-HA-10, on the east side of the crossing. Higher rates of groundwater

⁶ Email from V. Perry to J. Motis on June 8, 2020 ("Re: La Salle Creek Crossing") at 11:20am.

inflow through the permeable sand soils and unstable excavations should be anticipated, which could require higher dewatering pumping rates and/or shoring.

2.0 CONSTRUCTION PLAN

Appendix A presents a SSCP prepared for the LaSalle Creek crossing and the surrounding areas that were subject to the 2020 geotechnical investigation. Enbridge is proposing to cross LaSalle Creek using the dry crossing, dam-and-pump method. All work will be subject to applicable Enbridge construction plans, including the Environmental Protection Plan ("EPP"). However, where material within this Plan exceeds standard construction measures presented in the EPP, this Plan supersedes the EPP.

2.1 SITE PREPARATION

Prior to construction, the boundaries of the construction right-of-way and additional temporary workspace ("ATWS") will be clearly marked with flagging by professional surveyors. The construction workspace and ATWS will then be cleared of woody vegetation. Clearing will occur prior to Enbridge's work in this area consistent with mainline clearing operations. Enbridge will grind tree stumps to the ground surface, leaving the existing root systems intact to promote soil stability. Stumps will be removed from only the trenchline for pipeline installation. Merchantable timber will not be encountered within the scope of this Plan. Brush will be ground or chipped and scattered outside of the ordinary high-water mark ("OHWM"). Clearing equipment will not be allowed to ford LaSalle Creek at any time.

Enbridge will install a construction mat travel lane on the working side (the north side of the construction workspace) on both the east and west sides of the waterbody. These mats will be left in place until restoration is complete. Construction mats help avoid rutting,⁷ minimize disturbance to soils and vegetation, and ensure safe and stable working surfaces for construction equipment and personnel. The construction mat travel lane will be approximately 18 feet wide and will be installed through the adjacent wetlands. The construction mat travel lane will likely be a single layer (see Figure 30 of the EPP); however, Enbridge may need to use more than one layer of mats if saturated conditions are encountered so as to provide a stable working surface (see Figure 32 of the EPP). If a flume must be installed anywhere under the mat road to convey flow, it will be installed as outlined in Figure 49 of the EPP based on site-specific conditions.

Enbridge will install a span bridge with an in-stream support at the LaSalle Creek crossing during the installation of the construction mat travel lane. The in-stream support will be a flume pipe to allow for fish passage. The flume will be slightly offset from the thalweg so that the main flow path of the waterbody is not funneled through the flume. This will support bridge and bank stability. The span bridge will be left in place until restoration is complete. As stated in the Bridge Memo provided to MDNR on July 2, 2020, bank migration potential is low at LaSalle Creek and the primary flow is located in the center of the channel. Enbridge is planning to place the construction mats directly on top of existing vegetation to avoid or minimize disturbance of vegetation on the channel banks and at the top of the banks. The bridge setting is shown on the bridge cross-section

⁷ Rutting is defined as creation of linear depressions made by tire tracks of machinery 6 inches or greater in depth that results in the mixing of topsoil and subsoil per MDNR State Land Rutting Guidelines and Erosion and Sediment Control Decision Tree.

in Appendix A. Bridge headers have been placed perpendicular to the construction mat travel lane for equipment travel safety.

Enbridge will install erosion and sediment best management practices ("BMPs") prior to or at the same time as ground-disturbing activities (e.g., grading) in accordance with the requirements of the MPCA Construction Stormwater General Permit.⁸ Enbridge Environmental Inspectors ("EIs") will maintain erosion and sediment control BMPs as required in the Project construction documents and as required by all applicable permits, including the Stormwater Pollution Prevention Plan ("SWPPP"). Enbridge requires inspections of temporary erosion control devices ("ECDs") at least once every 7 calendar days and within 24 hours after a rainfall event of 0.5 inch. Non-functional ECDs will be repaired, replaced, or supplemented with functional materials within 24 hours after discovery, or as otherwise specified in project permits. The following bullet list presents the proposed erosion and sediment control BMPs for this site:

- Redundant erosion prevention and sediment control BMPs consisting of two courses of silt fence or a combination of strawbale-reinforced or filter log-reinforced silt fence will be installed at the edge of LaSalle Creek once construction activities encroaches within 100 feet of LaSalle Creek to prevent construction-related sediment from entering the waterbody. The 100-foot-wide buffer will be identified in Enbridge's Environmental Plan Sheets prepared as part of Enbridge's SWPPP, which is currently in preparation in coordination with the MPCA. Redundant and reinforced (as necessary) BMPs will also be installed at the toe of the slope on either side of LaSalle Creek to prevent sediment discharge to the waterbody (see Section 2.2.2 of the EPP).
- The temporary bridge across LaSalle Creek will be maintained to prevent soil from entering the waterbody (refer to Figure 4 of the EPP). Soil that accumulates on the bridge decking will be removed daily, or as deemed necessary by the EI.
- Temporary ECDs will also be installed at the edge of the construction workspace, and/or in other areas determined by the EI to slow water leaving the site and prevent siltation of waterbodies and wetlands downslope or outside of the construction workspace (e.g., swales and side slopes).
- Temporary erosion and sediment control BMPs will be placed across the entire construction workspace at the base of slopes greater than 3 percent and at site-specific locations identified in the SWPPP until permanent cover⁹ is established and there is no potential scouring of, or sediment transport to surface waters.
- Temporary erosion and sediment control BMPs installed across the travel lane may be removed during active daytime construction; however, ECDs will be properly reinstalled after equipment passage, or activities in the area are completed for the day.

⁸ LaSalle Creek is a trout stream, which is a considered a "Special or Impaired Water" in the MPCA Construction Stormwater General Permit.

⁹ Permanent cover means surface types that will prevent soil failure under erosive conditions. Examples include: gravel, concrete, perennial cover, or other landscaped material that will permanently arrest soil erosion. Permittees must establish a uniform perennial vegetative cover (i.e., evenly distributed, without large bare areas) with a density of 70 percent of the native background vegetative cover on all areas not covered by permanent structures, or equivalent permanent stabilization measures. Permanent cover does not include temporary BMPs such as wood fiber blanket, mulch, and rolled erosion control products (Minnesota Rules 7090).

- Temporary erosion and sediment control BMPs will also be installed within the wetlands to prevent sedimentation off the construction workspace into the adjacent wetlands in accordance with the Section 401 Water Quality Certification.
- Temporary slope breakers also will be installed across the construction workspace after grading to minimize the potential for sediment runoff, prevent erosion, and maintain slope stability, as described in Section 1.9.4 of the EPP. The outfall of temporary slope breakers will be directed off the construction workspace into a stable well-vegetated upland area or into an appropriate energy-dissipating sediment control device (e.g., filter sock, silt fence, straw bales, rock aprons, sumps) to prevent the discharge of sediments (refer to EPP, Figure 11) and the area will be inspected to ensure stabilization. J-hook sediment traps will be installed at the perimeter of the erosion control zones on the downslope side of the construction workspace.

Enbridge is planning to remove an approximately 300-foot-long beaver dam located near MP 946.5, about 0.5 mile away from the Project's crossing of LaSalle Creek. The beaver dam is not located within LaSalle Creek. The location of the beaver dam is shown in Appendix A. Removal of the beaver dam will occur prior to, and separately from, construction at LaSalle Creek so as to allow water to drain from the construction workspace near that location prior to construction. Enbridge will conduct dam removal activities carefully to prevent downstream sedimentation and scouring impacts. The following BMPs will be implemented during removal of beaver dams:

- Enbridge will obtain landowner permission and will contact downstream landowners prior to removal activities;
- Enbridge will monitor weather conditions prior to removal;
- Removal will be limited to the removal of the debris that comprises the dam structure;
- Waterbody bed and bank material will not be removed or disturbed during debris removal;
- Materials will be removed incrementally by hand using hand tools to minimize the adverse effects of sudden water release on downstream waters/landowners;
- Ponded water will be released slowly to minimize potential downstream sedimentation. After each drop in dam height, Enbridge will allow the water level and sediment plume to stabilize;
- Downstream conditions will be monitored by construction staff to ensure incremental release of water; and
- Work will be halted, and the situation reassessed should removal result in unexpected conditions (e.g. ponding).

2.2 PIPELINE INSTALLATION

This section generally introduces the order in which the pipeline will be installed. These procedures are based on pipeline installation during non-frozen conditions. It is preferable to construct during non-frozen conditions within the LaSalle Creek Valley as Enbridge will be able to more effectively manage trench dewatering efforts associated with the crossing. However,

MDNR has waived a portion of its trout stream fisheries restriction at this crossing so as to allow for winter work between November 1 to March 31 should Enbridge's construction schedule allow. The standard trout stream restriction would normally prohibit in-water work between September 15 to April 15; Section 2.1 of the EPP extends these timing restrictions between September 1 and June 30.

Enbridge's construction contractor and Els will monitor upcoming weather forecasts to determine if significant rainfall (greater than 0.5 inch) is predicted during installation of the crossing. Enbridge will appropriately plan work considering for the potential for wet conditions and will be prepared to implement mitigation measures in the event of wet weather conditions and/or excessive waterbody flow.

2.2.1 LaSalle Creek and Adjacent Fresh (Wet) Meadow Wetlands Crossing

Enbridge will use a specialized and experienced waterbody crossing crew to install the waterbody crossing; this crew will work independently from the mainline crews. By using a crew specifically devoted to the crossing location, Enbridge will minimize the total construction time in the area, allowing restoration to commence as soon as all construction activity is completed.

All pipe for the waterbody crossing and the adjacent wetland segments will be staged prior to excavating across LaSalle Creek so that it may be installed efficiently. Based on the results of the 2020 geotechnical investigation (see Appendix C), Enbridge expects that groundwater will be encountered within 0 to 2.5 feet bgs and will accumulate in the trench. Enbridge utilized the information gathered during the 2020 geotechnical investigations to estimate the amount of water which might be encountered during the crossing. Enbridge calculated seepage rates into the proposed pipeline excavation assuming that sheet piling/steel plate is used, assuming a conservative trench depth of 10 feet bgs. The estimated maximum volume of water seepage, based on an average seepage rate of 0.025 gallon per minute per linear foot of open trench, is 3,600 gallons of water. This volume is based on 200 feet of linear open trench excavated to a depth of 10 feet requiring dewatering for pipe installation over a 12-hour period at the LaSalle Creek crossing. Seepage rates were estimated based on in-situ slug test results collected at hand auger locations, actual flow into the trench may be marginally higher due to variations in stratigraphy or other conditions not encountered during the investigation. The use of sheet piling/ steel plate will reduce seepage into the pipeline trench excavation by approximately one-half, as compared to the use of no sheet piling/steel plate. External factors, such as water entering the excavation on the open ends of the sheet-piled ditch may impact this estimate. Enbridge may also install horseshoe-shaped steel plate perpendicular to the trench and over the pipe at either end of the pipe segment and sheet piling/steel plate to prevent water from laterally flowing along the trench during installation. The use of sheet piling/steel plate will allow Enbridge to adequately manage the volume of water using the pumps and equipment that Enbridge will have on-hand as part of the specialty crossing crew.

The LaSalle Creek crossing will be completed first, and pipe segments will be progressively welded to either side of the creek crossing at a rate and in a manner that allows effective water management. Acknowledging that site-specific conditions may differ from than 3,600 gallons of water per minute anticipated, Enbridge will modify the length of open trench that will excavated at the stream and the adjacent wetland crossings to be responsive to the water conditions observed at the time of construction. Prior to excavation, Enbridge will dig small test pits along the trenchline near the LaSalle Creek crossing and adjacent wetlands; this will help determine the length of pipe segments to be pre-fabricated and installed while managing water levels. If water levels are high,

Enbridge will excavate smaller segments, which will require less open trench at a time. After installation is complete, creek and adjacent wetland crossings will then be tied into the mainline segments on either side.

After the site is prepared as described in Section 2.1. Enbridge will then install sheet piling or steel plates (as ground conditions allow) to an estimated depth of 20 feet bgs flush to the stream bed surface. The sheet piling/steel plate will be supported by anchors to support structural integrity. The estimated extent of sheet piling/steel plate is shown in Appendix A; however, site-specific conditions at the time of construction will dictate the amount of sheet piling/steel plate needed to successfully complete the crossing. Sheet piling/steel plates creates a secure and effective water dam, which reduces the potential for surface and ground water flowing into the excavation. Reducing water inflow into the excavation area then reduces the need to dewater the excavation and potential for sediment loss off-site. Sheet piling/steel plates also provides stability to the excavated trench, resulting in a smaller excavation size and limited ground disturbance. Sheet piling/steel plate is advantageous in this specific situation as less trench spoil (the soil excavated from the pipeline ditch) will need to be excavated and the potential for ditch wall collapse is eliminated. Additionally, excavating less material will reduce erosion and sediment loss concerns as the temporary spoil piles will be smaller. Smaller spoil piles reduce the potential for equipment congestion and the potential for materials to leave the construction workspace. The portions of the sheet piling/steel plates within the waterbody will be driven down to allow for flow to continue until the waterbody crossing can be completed.

Enbridge will cross LaSalle Creek using a dry crossing, dam-and-pump method, which reduces potential sediment and erosion concerns and associated potential impacts on aquatic organisms. Due to the size of LaSalle Creek, Enbridge anticipates that it will complete this stream crossing within 48 hours. Completing the crossing in 48 hours or less reduces the amount of time that stream flow will be diverted as part of the crossing. Once the waterbody crossing crew is ready to execute the crossing, Enbridge will set up pumps and hoses to move flowing water around the upstream and downstream sheet piling/steel plate dams. The positioning of the creek pumparound pumps and hose are shown on the SSCP in Appendix A. This will allow LaSalle Creek to continue flowing around the work area and will prevent upstream water from mixing with water at the construction site, minimizing the potential for sedimentation. Pump hoses will connect to a discharge structure on the downstream side.

Enbridge will then pull up the sections of the sheet piling/steel plate within the waterbody that was previously driven down, creating a dam on either side of the crossing. Pumping will begin before the sheet piling is pulled back up or the plate is installed to serve as dams in order to maintain constant downstream flow throughout the process. Energy dissipation devices, such as plywood boards and/or plastic sheeting, will be placed under the discharge hose on the downstream side to prevent streambed scour and sediment discharge. Pump intake hoses will be fitted with 3/16-inch screens to prevent entrainment of fish and other aquatic organisms. Backup pumps, hoses, and fittings will be available on site at all times, in the event a primary pump or any other pumping components fail, for immediate deployment to maintain consistent streamflow.

The pre-fabricated crossing section of pipe for installation at the waterbody will be staged in a nearby ATWS and will have been designed to accommodate the ground contours and maintain the prescribed depth-of-cover over the pipeline at the crossing location. Installing a pre-fabricated section of pipe allows for a more efficient waterbody installation with less potential variables which could delay or prolong the installation effort.

To complete the waterbody crossing, excavators will then excavate a trench across the dry stream section between the dams for placement of the pre-fabricated stream crossing segment. Trench width excavation will vary depending on topography and soil conditions. The trench will be excavated to approximately 8.5 to 9 feet bgs to provide for 5.2 feet of cover over the top of the pipe at the LaSalle Creek crossing location as shown on Appendix A and as requested by the MDNR. Equipment will separate the upper 12 inches of the stream bed material and store it separately from the subsoil (below the 12 inches of stream bed material). All spoil will be stored outside of the stream bed and within the construction workspace.

Earthen (hard) trench plugs will be maintained undisturbed between the waterbody and adjacent wetland trench to prevent stream flow from flowing into the trench, and also to prevent water that may have accumulated in the adjacent trench from flowing into the waterbody. These plugs will be removed immediately prior to the installation of the pipe. Water that accumulates in the working trench will need to be periodically pumped out. The bottom of the trench must be able to be inspected for rocks, debris, and other items that could dent the pipe or otherwise compromise the protective pipe coating. Trench water will be pumped out of the trench using hoses and pumps placed near the pipeline trench. Additional pumps will be available on-site to ensure adequate pumping capacity. Trench water will then be discharged into one of two energy dissipating sediment filtration devices located away from the water's edge. Appendix A shows the two anticipated dewatering locations, one on each side of the crossing. The western location is positioned within an upland, and the eastern location is positioned within an ATWS located away from LaSalle Creek. Enbridge will use one or both of these discharge locations depending on site conditions. At no time will trench water be discharged to or mix with water from LaSalle Creek.

Spoil excavated from the trench will be stored within the ATWS on either side of the crossing. MDNR requested that Enbridge store sod from the banks of LaSalle Creek to aid in restoration efforts. Therefore, Enbridge will maintain the sod layer along with 9 to 12 inches of topsoil within the trench line from the bank (approximately 10 to 20 feet in width). Depending on the level of saturation at the time of removal, it may be difficult to obtain intact consolidated material, but generally the native vegetation will be retained and captured. The sod layer will be placed along the trenchline on the spoil side so that it is not covered up by subsoil and can be replaced last.

Once the trench is suitably excavated and inspected, the welded pipe segment will be lowered-in to the excavation. The trench breakers adjacent to the stream crossing segment will be installed. Trench breakers are permanent devices installed to prevent subsurface water flow along the installed pipeline. Preventing subsurface water flow is important for the structural integrity of the pipeline as well as preventing alteration of the existing environmental hydrologic conditions. The number and location of trench breakers adjacent to the waterbody crossing are depicted on the SSCP in Appendix A. Trench breakers will also be identified on construction alignment sheets with a note to "Field Verify." The precise location of trench breakers will be determined through coordination between Enbridge's Els, Enbridge's Craft Inspectors, and the Contractor's Foreman. The trench breakers may be moved short distances in either direction from the location shown on Appendix A to find more stable soils, or to avoid other site-specific conditions. The excavation at the stream crossing will then be backfilled and the streambed contours restored, starting with the subsoil material and then the top 12 inches of parent streambed material.

Once waterbody crossing activities are complete, Enbridge will begin to remove all installed sheet piling/steel plate. The pumps will continue to divert water around the work area as Enbridge removes the portion of the sheet piling/steel plate within the waterbody to re-establish flow. After the flow is re-established, Enbridge will shut off the pumps to allow normal flow to resume.

Materials and equipment used specifically for the operation (e.g., pumps, hoses, dissipation devices) will be removed from the streambank and approaches. Enbridge will remove all remaining sheet piling/steel plate outside of the waterbody crossing and temporary bank stabilization¹⁰ efforts will begin.

2.2.2 Adjacent Hillslope Construction

The pace and progress of construction will dictate the sequencing of the stream crossing segment tie-ins to the mainline pipe on either side of the stream crossing within the scrub-shrub and forested wetland communities on the valley hillslopes. Enbridge and its construction contractor will confirm the need for sheet piling/steel plate in the wetland areas to the west and east of the LaSalle Creek crossing generally between LS-20-HA-3 and LS-20-HA-11 (see Figure 1 in Appendix C) during construction activities, depending on site-specific conditions. Surficial groundwater is expected to be encountered during excavation of the trench in these areas. Based on the results of the 2020 geotechnical investigation and groundwater analysis Enbridge can adequately manage water encountered in the pipeline trench on either side of the stream crossing using the pumps and equipment that Enbridge will have on-hand as part of the mainline construction crews.

If the mainline pipeline has been installed up to the stream crossing on the eastern side, a tie-in crew will weld the stream crossing segment to the mainline before the stream is backfilled. This operation may require the tie-in excavations to be dewatered to provide a dry and safe working area. If water seeps into the tie-in excavation, it will be pumped out of the excavation to a sediment containment structure at one of two trench dewatering locations as shown in Appendix A. At no time will tie-in excavation water be discharged to or mix with water from LaSalle Creek. If the mainline pipeline has not been installed on the eastern side of the stream, the crossing segment will not be tied into the eastern mainline pipeline until a later date. If that situation occurs, tie-in excavations located outside of the bank of the stream feature will remain open until the tie-in has been completed. Temporary erosion and sediment BMPs will be maintained at the waterbody crossing to prevent sediment discharge to the stream until the tie-in is complete and permanent stabilization measures are completed.

The western side of the valley may be constructed before or after the stream crossing by the mainline or the tie-in crew. Based on environmental site conditions present at the time of the installation, Enbridge could install the pipe in one or multiple segments. The method selected would be based on the site-specific conditions encountered at the time of the construction, while taking into consideration environmental and construction feasibility concerns. The amount of water and/or saturated conditions will be the primary conditions that would drive decisions around construction methods.

At this time, Enbridge is proposing to install the pipe on the eastern and western hillslope wetlands in one segment; however, this is dependent upon site conditions and water levels at the time of the crossing. This will require that the excavation of the trench on the hillslopes be completed before lowering the pre-welded pipe into position, but it would result in a shorter duration of time for completion, thereby reducing the time the hillslopes will be disturbed. The erosion and sediment control BMPs described in Section 2.1 will also be installed. Alternatively, Enbridge

Stabilization means that the exposed ground surface has been covered by appropriate materials such as mulch, staked sod, erosion control blanket, mats or other material that prevents erosion from occurring. Grass seeding, agricultural crop seeding or other seeding alone is not stabilization. Mulch materials must achieve approximately 90 percent ground coverage (Minnesota Rules 7090).

could excavate the hillslope in shorter segments and weld the segments as backfilling progresses. This method would reduce the amount of excavated trench, and overall area of exposed soil and spoil storage necessary; however, this method would require more time and would increase the duration of construction activity and slope disturbance.

Excavated trench spoils from upland areas will remain segregated from wetland soils and will be stored within the construction workspace. Once trenching is complete, the joined section of pipe will be lowered-in to the trench and trench breakers will be installed by an individual crew as shown on Appendix A. Trench breakers will be the most effective measure for preventing subsurface draining effects along the pipeline trench. Enbridge reviewed the location of trench breakers following completion of the 2020 geotechnical study and added additional trench breakers to address MDNR water management concerns. Backfilling will follow installation of the trench breakers but may not occur immediately after the trench breakers are installed. Backfilling may not occur immediately due to pending tie-in with the adjoining mainline segments of pipe, depending on the progress of construction. Any sheet piling that was installed will be removed. Enbridge will scatter woody debris along the forested and scrub-shrub hillslope wetlands on the western hillslope as described in Section 3.2.

3.0 **RESTORATION MEASURES**

3.1 STABILIZATION

Restoration of the stream bank and bed contours will be initiated prior to restoring flow at the waterbody crossing after the installation of the dam and pump method is complete, unless site and permit conditions delay permanent installation (see Section 2.6 of the EPP). Cleanup and rough grading of the hillslope construction area will begin as soon as practicable after the pipe sections are tied in and the trench is backfilled.

As required by the MPCA National Pollutant Discharge Elimination System/State Disposal System Construction Stormwater General Permit, stabilization will be initiated immediately¹¹ and completed within 7 calendar days whenever construction activity has permanently or temporarily ceased on any portion of this site, as this site is within 1 mile of and drains to a trout stream, which is defined as a special water. The process to install the western hillslope will take approximately 3 to 7 days to install. In addition, all exposed soil areas within 200 feet of the water's edge of LaSalle Creek, and that drain to that water, will be stabilized within 24 hours during the applicable "work in water restrictions" for Public Waters. Stabilization of all exposed soils within 200 feet of the public water's edge, and that drain to that water, will be initiated immediately and completed within 7 calendar days whenever construction activity has permanently or temporarily ceased on any portion of the site outside of the restriction period. Upon completion, Enbridge will stabilize the upland hillslope using hydro-mulch or erosion control blankets. Enbridge will install permanent slope breakers lined with erosion blankets as shown on in Appendix B. Although permanent slope breakers are not typically installed in wetlands. Enbridge, will scatter coarse woody debris not to exceed 2 feet deep to act as a natural "slope breaker" on the western hillslope, where the pipeline will cross the slope at a more perpendicular angle. The coarse woody debris would mimic the

¹¹ Initiated immediately means taking an action to commence soil stabilization as soon as practicable, but no later than the end of the work day, following the day when the land-disturbing activities temporarily or permanently cease (Minnesota Rules 7090).

roughness of the area and would help to hold water on the western hillslope (see locations on the SSRP in Appendix B).

The travel lane portion of the construction workspace and the temporary bridge will remain in place until final cleanup activities have occurred on both sides of LaSalle Creek. Construction mats will be removed from wetlands during final cleanup operations. The temporary bridge will be removed after final cleanup, seeding, mulching, and other construction workspace restoration activities have been completed. Appropriate temporary erosion and sediment BMPs will remain installed until permanent cover is achieved.

3.2 **REVEGETATION**

Enbridge will conduct permanent site restoration efforts at the LaSalle Creek crossing in accordance with the SSRP presented as Appendix B. Enbridge's restoration approach to-date has been informed by data collected during its wetland and waterbody field surveys and the SSRP site visits conducted in June 2020. Enbridge and MDNR will complete a site visit to confirm the restoration methodology as presented on the SSRP. No groundwater springs were located as part of the 2020 geotechnical survey; therefore, remediation will not be required. Enbridge is working with MPCA and MDNR to plan for long-term groundwater monitoring as described in Section 3.3.

As outlined in the SSRP in Appendix B, regardless of season of construction, Enbridge will also replace the top layer of soil with the sod mat that was removed from the trenchline as the last step when backfilling the trench. If construction occurs during winter conditions, Enbridge will attempt to fill voids between frozen segments with topsoil. A restoration specialist will be on-site during construction of the pipeline to ensure effective implementation of construction-related restoration methods.

Enbridge is proposing to restore the stream banks using a natural fiber erosion control blanket¹² (no ultraviolet biodegradable polyester materials). The adjacent fresh (wet) meadow is saturated with standing water (levels likely vary throughout the year). Remnant seed banks can sometimes be relied upon for some species in these communities. The natural revegetation process will be encouraged by the seeds and rhizomes in the topsoil spread back over the construction workspace after pipe installation. If there is no standing water at the time of restoration, Enbridge will seed the permanent right-of-way with the Minnesota Board of Water & Soil Resources ("BWSR") Wetland Rehabilitation (34-171) seed mix where native vegetation is expected to come back from the seedbank as outlined in the SSRP and will also consider the use of Wet Meadow Northeast (34-371). Enbridge proposes to allow natural reforestation of the construction workspace through the forested and scrub-shrub wetland communities via stump sprouting, root sprouting, and natural recruitment. The upland western hillslope area to the west of LaSalle Creek will be seeded with BWSR Woodland Edge Northeast (36-311) or Native Construction (32-241). This information will also be incorporated into the Planting Plan as part of the Post-Construction Vegetation Management Plan for Public Lands and Waters. Mulch will be applied as needed on approaches. No fertilizer, lime, or mulch will be applied in wetlands. Appropriate temporary

¹² Category 3N or 4N as described in Table 3885-2 (3885.2A Erosion Control Blanket Requirements) in Minnesota Department of Transportation Standard Specifications for Construction, 2018 Edition (<u>http://www.dot.state.mn.us/pre-letting/spec/2018/2018-spec-book-final.pdf</u>).

erosion and sediment BMPs described in Section 2.1 will remain installed until permanent cover¹³ is achieved.

3.3 MONITORING

Enbridge has developed a Post-Construction Wetland and Waterbody Monitoring Plan ("PCMP") for aquatic resources affected by the Project, including the LaSalle Creek crossing. The PCMP was developed with input from the U.S. Army Corps of Engineers, MPCA, and MDNR. Section 2.4 of the PCMP contains information on post-construction monitoring for topography and stabilization of all wetland crossings. Section 3.0 of the PCMP contains performance standards for hydrology and wetland and riparian vegetation, including invasive and noxious species, compared to the baseline conditions observed during pre-construction surveys. Currently, Enbridge is proposing to conduct post-construction monitoring of the LaSalle Creek crossing immediately after restoration work is complete. Follow-up monitoring will occur in years 1, 2, 3, and 5 following construction.

A formal Monitoring Report will be submitted to applicable agencies, including the MDNR, by December 31 of each monitoring year. Enbridge will meet with the applicable agencies at the end of each monitoring year to review the results of the Monitoring Report and to determine if additional actions are required to complete restoration.

Enbridge has worked with the MDNR and MPCA to develop a long-term groundwater data collection effort around the LaSalle Creek crossing. Prior to construction, Enbridge will complete two hand auger borings adjacent to the construction workspace, one on each side of the LaSalle Creek crossing. Enbridge will install two nested vibrating wire piezometers in each boring. One of the vibrating wire piezometers will be installed in the surficial organic deposits and one in the deeper mineral deposits. These piezometers will be monitored with data loggers with built in telemetry systems to transmit data back from the field. The long-term monitoring locations were determined in coordination with MPCA and MDNR and will be completed as shown in Appendix D. Enbridge will report data back to MDNR and MPCA on a bi-annual basis.

4.0 REFERENCES

Barr Engineering Company. 2020. Geotechnical Data Report, Line 3 Replacement, LaSalle Creek Crossing; Clearwater and Hubbard County, Minnesota. May 2020.

¹³ Permanent cover means surface types that will prevent soil failure under erosive conditions. Examples include: gravel, concrete, perennial cover, or other landscaped material that will permanently arrest soil erosion. Permittees must establish a uniform perennial vegetative cover (i.e., evenly distributed, without large bare areas) with a density of 70 percent of the native background vegetative cover on all areas not covered by permanent structures, or equivalent permanent stabilization measures. Permanent cover does not include temporary BMPs such as wood fiber blanket, mulch, and rolled erosion control products (Minnesota Rules 7090).

Appendix A

Site-Specific Crossing Plan

Appendix B

Site-Specific Restoration Plan

	SCALE	DWG. NO.	PAGE NO.
	NOTED	SSRP-946.0-001	1/6
-		PLOTTED SIZE: ANSI F	ULL BLEED B (17x11)

RESTORATION NOTES:

GENERAL

1. REFER TO RESTORATION DETAIL SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED RESTORATION MEASURES.

2. REFER TO SITE PHOTOS FOR INFORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO PROVIDE ADDITIONAL GUIDANCE FOR RESTORATION EFFORTS. 3. TRENCH IS LOCATED WITHIN AN EXISTING RIFFLE, AS SUCH. THE BED MATERIAL SHALL BE EXCAVATED AND TEMPORARILY STOCKPILED TO BE REINSTALLED AS PART OF CHANNEL BED AND TOE OF

BANK RESTORATION EFFORTS, REFER TO RESTORATION CROSS SECTION AND BED PROFILE SHEET 2 TO MAINTAIN THE EXISTING BED FEATURE GRADE CONTROL.

4. RIFFLE MATERIAL IS NATURALLY COMMINGLED WITH A VARIETY OF PARTICLE SIZES TO PROMOTE CHANNEL SURFACE FLOWS. MATERIAL THICKNESS GENERALLY EXTENDS TO A DEPTH OF 1.5 TO 2 TIMES THE LARGEST SURFACE PARTICLE. RESTORED CHANNEL RIFFLE SECTION SHALL INCLUDE RANDOMLY SORTED MATERIALS.

SOD MATTING

1. REMOVE 10 LINEAR FEET OF VEGETATED MATS ON EITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT WHICH CAN UNDERCUT THE VEGETATION FOR REMOVAL. SMALL SHRUBS AND/ OR TREES WITHIN THE SOD MATS ARE ACCEPTABLE AND SHOULD NOT BE REMOVED.

2. DEPENDING ON THE LEVEL OF SATURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO OBTAIN INTACT CONSOLIDATED MATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED AND CAPTURED FOR PLACEMENT.

3. SOD MATS CAN BE TRANSPLANTED DURING ANY SEASON.

4. SOD MAT WILL BE PLACED ON CLEAR GROUND OR MATS WITHIN THE WORKSPACE.

5. MONITOR MATS TO SUPPORT SURVIVABILITY; WATERING MAY BE NEEDED.

6. PRIOR TO PLACEMENT OF SOD MATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN APPLICATION AREA TO PROVIDE A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD ALLOW FOR THE FINISHED SOD SURFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS UPSTREAM AND DOWNSTREAM OF THE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE. 7. RETURN THE VEGETATED MATS

a. SURFACE APPLIED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PERPENDICULAR TO THE CHANNEL / FLOW.

b. STACKED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE CHANNEL / FLOW.

8. WHEN PLACING SOD MATS, DO NOT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE VEGETATION WILL QUICKLY ATTEMPT TO COLONIZE THESE VOIDS.

9. WATER SOD MATS AFTER REPLACEMENT IF CONDITIONS ARE HOT AND DRY, DAMP AND/OR FROZEN SOD MATS DO NOT REQUIRE WATERING.

THE TOP MAT AND/OR OTHER MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE TO ENSURE THAT IT DOES NOT MOBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE 10. ESTABLISHED.

11. THE VEGETATED MATS WILL BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF THE TRENCH AND STABILIZED PER THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF

THE EPP

	ND MAJOR N x - x - x - x - x - x - x - x - x - x -		ENBRIDGE L3R PI PERMANENT RIGH TEMPORARY WOR WATERBODY – R WATERBODY – P WATERBODY – G CONTOUR (1' INT TOP OF BANK ORDINARY HIGH N FIELD DELINEATED TRAVEL LANE/CC TRENCH – 10' TRENCH – 20'	PELINE KSPACE IFFLE (F OOL (R UN (RO LIDE (R ERVAL) WATER D WETL)	VAY COSGEN SI SGEN SU SGEN SU OSGEN S MARK AND CTION MA	SURVEY) URVEY) URVEY) URVEY))
в	ISSUED	FOR PERMI	TTING		10/2020		
А	ISSUE	D FOR REVI	EW	MJT	08/2020		
NO.	REVISION-DESCRIPTION		ON	BY	DATE	снк'р	APP'D
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN LASALLE CREEK - MP 946.0 - MDNR ID 29 STABILIZATION PLAN						
SCAL	E	DWG. NO.	SRP-946.0-002			PAGE NO	o. 3/6

DIMENSION ¹	NAME	TYPICAL UNIT	VALUE	DESCRIPTION
А	sod mat width	FEET	3-4	WIDTH OF INDIVIDUAL SOD MAT.
В	sod mat length	FEET	3-6	LENGTH OF INDIVIDUAL SOD MAT.
С	SOD MAT THICKNESS	INCHES	12(min)	THICKNESS OF INDIVIDUAL SOD MAT.
D	STACKED SOD MAT SETBACK	FEET, INCHES	N/A	THE DISTANCE BETWEEN THE EDGES OF SOD MATS STACKED TO FORM A SLOPE
E	WIDTH OF STACKED SOD MATS	FEET, INCHES	N/A	WIDTH OF A BANK CREATED BY STACKED SOD MATS
F	HEIGHT OF STACKED SOD MATS	FEET, INCHES	N/A	HEIGHT OF A SLOPE CREATED BY STACKED SOD MATS
G	WIDTH OF SURFACE- APPLIED SOD MATS	FEET	10-20	WIDTH OF A SLOPE STABILIZED WITH SURFACE-APPLIED SOD MATS
Н	TOP OF BANK SOD MATTING DISTANCE	FEET	10	DISTANCE SOD MATTING IS INSTALLED ON THE TOP OF BANK

SOD MATTING DETAIL

SOD MAT DETAIL

SOD MAT EXAMPLES

B ISSUED FOR PERMITTING				10/2020		
A ISSUED FOR REVIEW				08/2020		
NO. REVISION-DESCRIPTION				DATE	снк'р	APP'D
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN LASALLE CREEK – MP 946.0 – MDNR ID 29 SITE SPECIFIC DETAILS						
SCAL	e NOTED	dwg. no. SSRP-946.0-004			PAGE NO 4/6).)
		B				(47.44)

PLOTTED SIZE: ANSI FULL BLEED

DIMENSION ²	NAME	TYPICAL UNIT	VALUE	
А	PLANTING DEPTH	VARIES	N/A	PLANTING DEPTH OF THE TRANSPLANT.
В	HEIGHT OF MOUNDED SOIL BACKFILL	INCHES	N/A	HEIGHT OF MOUNDED LOOSE SOIL PLACED
С	DEPTH OF PLANTING PIT	VARIES	N/A	DEPTH OF THE PLANTING PIT; ACCOMMOE SOIL AT BOTTOM OF PIT.
D	WIDTH OF PLANTING PIT	VARIES	N/A	OVER-EXCAVATED WIDTH OF THE PLANTIN
E	HEIGHT OF MOUNDED SOIL PERIMETER	INCHES	N/A	HEIGHT OF SOIL BERM CONSTRUCTED ALO
F	WIDTH OF MOUNDED SOIL PERIMETER	INCHES	N/A	WIDTH OF SOIL BERM CONSTRUCTED ALON
G	WIDTH OF WEED BARRIER FABRIC (OPTIONAL)	INCHES	N/A	WIDTH OF FABRIC PLACED ON SURFACE TO HAVE GRASSES, LEAF MATTER, ETC. ATTAC
Н	FABRIC STAKE LENGTH (OPTIONAL)	INCHES	N/A	LENGTH OF STAPLES/SPIKES USED TO SECU
I	THICKNESS OF MULCH (OPTIONAL)	INCHES	N/A	THICKNESS OF MULCH, IF NECESSARY. TRAI REQUIRE MULCH.
J	GAP BETWEEN MULCH AND PLANT STEM/TRUNK (OPTIONAL)	INCHES	N/A	ROOM BETWEEN PLANT STEM/TRUNK AND
NOTES:	1 <i>I</i>			1

DATA ARE FOR TRANSPLANTED VEGETATION.

DIMENSION LABELS ARE REFERENCED IN THE DETAIL DRAWINGS.

TRANSPLANTS EXAMPLES

TRANSPLANTING DETAIL

					1		
DIMENSION ¹	NAME	TYPICAL UNIT	VALUE	DESCRIPTION			
A	MATTING STAKE SPACING	FEET	3.0.C	SPACING BETWEEN EROSION CONTROL MATTING STAKES USED TO FASTEN THE MATTING TO THE SOIL	B		
В	MATTING OVERLAP	INCHES	18	AMOUNT OF EROSION CONTROL MATTING OVERLAP IF MULTIPLE PIECES AND/OR ROLLS OF MATTING ARE USED. OVERLAP VARIES DEPENDING ON THE LOCATION OF THE OVERLAP WITH RESPECT TO POSITION ON THE SLOPE, LOCATION OF THE MATTING (EDGE OR END), AND PRODUCT SPECIFICATIONS.			
С	MATTING ANCHOR TRENCH DEPTH	INCHES	6(MIN)	DEPTH OF TRENCH INTO WHICH EDGE OF EROSION CONTROL MATTING IS ANCHORED AT THE TOP AND/OR TOE OF A SLOPE.			
D	MATTING ANCHOR TRENCH WIDTH	INCHES	12	WIDTH OF TRENCH INTO WHICH EDGE OF EROSION CONTROL MATTING IS ANCHORED AT THE TOP AND/OR TOE OF A SLOPE.			
E	top of slope anchor trench setback	INCHES	12	TOP OF SLOPE ANCHOR TRENCH DISTANCE FROM THE TOP OF SLOPE. TOP OF SLOPE REFERS TO TOP OF SIDE SLOPE, BANK SLOPE, TERRACE SLOPE, BANKFULL, ETC.	N		
F	MATTING STAKE LENGTH	INCHES	12	LENGTH OF EROSION CONTROL MATTING STAKES USED TO FASTEN THE MATTING TO THE SOIL			
NOTES:							
1. DIMENSION LABELS ARE REFERENCED IN THE DETAIL DRAWINGS.							
2. O.C ON CENT	TER.						
3. STAKES ARE N	OT PERMITTED.						

EROSION CONTROL MATTING DETAIL

D INTO OVER-EXCAVATED PLANTING PIT.

DATES DIMENSION OF SOIL AND EXCAVATED ROOTS AS WELL AS MOUNDED LOOSE

IG PIT; ACCOMMODATES THE WIDTH OF THE EXCAVATED SOIL AND ROOTS.

ONG THE PERIMETER OF THE PLANTING PIT; HELPS RETAIN WATER.

NG THE PERIMETER OF THE PLANTING PIT; HELPS RETAIN WATER.

O CONTROL WEEDS WITHIN THE MOUNDED SOIL PERIMETER; TRANSPLANTS TYPICALLY HED AND DO NOT REQUIRE WEED BARRIER FABRIC.

RE WEED BARRIER FABRIC

NSPLANTS TYPICALLY HAVE GRASSES, LEAF MATTER, ETC. ATTACHED AND DO NOT

MULCH. TRANSPLANTS TYPICALLY HAVE GRASSES, LEAF MATTER, ETC. ATTACHED

PLOTTED SIZE: ANSI FULL BLEED B (17x1

3. PRE-CONSTRUCTION PHOTOS WILL BE USED TO AID IN RESTORATION.

- CONSTRUCTION AT MDNR REQUEST.

В	ISSUED FOR PERMITTING	MJT	10/2020			
A	ISSUED FOR REVIEW	MJT	08/2020			
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D	
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN LASALLE CREEK – MP 946.0 – MDNR ID 29 PHOTO PAGE					
SCAL	e dwg. no. SSRP-946.0-005			PAGE NO	о. 3	

PLOTTED SIZE: ANSI FULL BLEED B (17x11)

GENERAL

- 1. THE SPECIFICATIONS WITHIN THIS SSRP MAY MODIFY OR REPLACE PROJECT-WIDE STANDARDS PRESENTED IN THE EPP. WHERE MATERIAL WITHIN THESE SSRPS EXCEEDS STANDARD CONSTRUCTION MEASURES IN THE EPP. THESE SSRPS SUPERSEDE THE EPP.
- 2. CONSTRUCTION AND RESTORATION OF WATERBODY CROSSINGS WILL FOLLOW THESE GENERAL STEPS:
 - A. SITE CLEARING
 - B. INSTALLATION OF TEMPORARY EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES ("BMPS")
 - C. BRIDGE INSTALLATION
 - D. EXCAVATION/BACKFILLING OF THE WATERBODY INCLUDING:
 - SOD SAVING TOPSOIL SEGREGATION AT NON-WOODED SITES
 - STREAMBED MATERIAL SEGREGATION
 - PIPE INSTALLATION
 - BACKFILL, INCLUDING IMPLEMENTATION OF CONSTRUCTION-RELATED RESTORATION METHODS (I.E., TOE WOOD)
 - E. REPLACEMENT OF STREAMBED MATERIAL AND TOPSOIL/SOD LAYER
 - F. RESTORATION OF STREAM BANKS TO PRE-CONSTRUCTION CONTOURS
 - G. IF FINAL GRADING NOT POSSIBLE AT THE TIME, TEMPORARY STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - H. AFTER FINAL GRADING, PERMANENT SEEDING AND/OR WOODY VEGETATION RESTORATION, STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - 1. BRIDGE REMOVAL DURING FINAL RESTORATION AFTER STABILIZATION AND PERMANENT SEEDING
 - J. POST-CONSTRUCTION MONITORING

CROSSING METHODS

- 1. ALL WATERBODY AND WETLAND CROSSINGS WILL BE CONDUCTED IN COMPLIANCE WITH SECTION 2.0 AND SECTION 3.0 OF THE ENVIRONMENTAL PROTECTION PLAN ("EPP"), RESPECTIVELY, SECTION 2.0 AND 3.0 OF THE WINTER CONSTRUCTION PLAN PRESENTS MODIFICATIONS FOR WATERBODY AND WETLAND CONSTRUCTION METHODS, RESPECTIVELY, IN WINTER CONDITIONS.
- 2. ENBRIDGE'S SUMMARY OF CONSTRUCTION METHODS AND PROCEDURES (THE 'PROCEDURES," APPENDIX A OF THE EPP) OUTLINES THE VARIOUS CONSTRUCTION METHODS THAT ENBRIDGE MAY UTILIZE TO CONSTRUCT THROUGH WATERBODIES AND WETLANDS/BASINS AS PRESENTED ON THESE SITE-SPECIFIC RESTORATION PLANS ("SSRPS").
 - A. DRY CROSSING (ISOLATED) METHODS (INCLUDING THE DRY CROSSING AND MODIFIED DRY CROSSING METHOD) ARE DESCRIBED SECTIONS 4.3 OF THE PROCEDURES, AND IN SECTIONS 2.5.2 AND 2.5.3 AND FIGURES 23 AND 24 OF THE EPP.
 - B. THE BORE METHOD (NON-PRESSURIZED) IS DESCRIBED IN SECTION 3.5 OF THE PROCEDURES, AND SECTION 4.0 OF THE EPP.
 - C. THE MODIFIED UPLAND CONSTRUCTION (WETLAND) METHOD IS DESCRIBED IN SECTION 3.3 OF THE PROCEDURES, AND SECTION 3.0 AND FIGURES 30 TO 34 OF THE EPP.
 - D. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE OPEN CUT (NON-ISOLATED) WATERBODY CROSSING METHOD IS DESCRIBED IN SECTION 4.1 OF THE PROCEDURES. AND SECTION 2.5.1 AND FIGURE 24 OF THE FPP
 - E. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE PUSH-PULL METHOD IS DESCRIBED IN SECTION 3.4 OF THE PROCEDURES, AND SECTION 3.7.1 AND FIGURES 35 AND 36 OF THE EPP.

CLEARING/VEGETATION REMOVAL

- 1. STUMPS WITHIN THE TRENCH LINE WILL BE COMPLETELY REMOVED, GROUND, AND/OR HAULED OFF-SITE TO AN APPROVED LOCATION. TREE STUMPS OUTSIDE THE TRENCH LINE WILL BE GROUND BELOW NORMAL GROUND SURFACE TO FACILITATE A SAFE WORK AREA AND TO ALLOW TOPSOIL REMOVAL, IF NECESSARY. IN SOME CIRCUMSTANCES, TREE STUMPS OUTSIDE THE TRENCH LINE MAY BE COMPLETELY REMOVED TO ALLOW FOR A SAFE WORK AREA AND HAULED OFF-SITE TO AN APPROVED LOCATION AS OUTLINED IN SECTION 1.8.3 OF THE EPP.
- 2. CLEARING WILL BE CONDUCTED IN WATERBODIES AND WETLANDS AS OUTLINED IN SECTION 2.2 AND 3.2 OF THE EPP, RESPECTIVELY. CHIPS, MULCH, OR MECHANICALLY CUT WOODY DEBRIS SHALL NOT BE STOCKPILED IN A WETLAND. HYDRO-AX DEBRIS, OR SIMILAR CAN BE LEFT IN THE WETLAND IF SPREAD EVENLY IN THE CONSTRUCTION WORKSPACE TO A DEPTH THAT WILL ALLOW FOR NORMAL REVEGETATION, AS DETERMINED BY THE EI. CHIPPING IS NOT ALLOWED ON PUBLIC LANDS. ON PUBLIC LANDS, MULCH AND MECHANICALLY CUT WOODY DEBRIS MUST BE UNIFORMLY BROADCAST TO LESS THAN 2-INCH THICKNESS AND IN A MANNER THAT MAINTAINS VISIBLE GROUND.
- 3. ENBRIDGE WILL PROPERLY INSTALL AND MAINTAIN REDUNDANT SEDIMENT CONTROL MEASURES IMMEDIATELY AFTER CLEARING AND PRIOR TO INITIAL GROUND DISTURBANCE AT SURFACE WATERS LOCATED WITHIN 50 FEET OF THE PROJECT AND WHERE STORMWATER FLOWS TO THE SURFACE WATER (REFER TO THE ENVIRONMENTAL PLAN SHEETS IN THE SWPPP), AND WITHIN 100 FEET OF SPECIAL AND IMPAIRED WATERS, INCLUDING TROUT STREAMS.
- 4. ON PUBLIC LANDS AND WHEREVER PRACTICABLE AT WATERBODY CROSSINGS, ENBRIDGE WILL USE WILDLIFE-FRIENDLY EROSION AND SEDIMENT CONTROL BMPS THAT CONTAIN BIODEGRADABLE NETTING (CATEGORY 3N OR 4N NATURAL FIBER) AND WILL AVOID THE USE OF PLASTIC MESH (SECTIONS 1.17.1 AND 2.6.1 OF THE EPP).

TEMPORARY STABILIZATION

- SWPPP.
- 2. HYDRO-MULCH AND LIQUID TACKIFIER CAN BE USED IN PLACE OF CERTIFIED WEED-FREE STRAW OR HAY MULCH WITH PRIOR RECOMMENDED RATE. ENBRIDGE WILL AVOID THE USE OF HYDROMULCH ON PUBLIC LANDS; HOWEVER, ENBRIDGE MAY USE 1.8.3 OF THE EPP.

RESTORATION AND STABILIZATION

- WILL CONSULT WITH THE MDNR BEFORE PROCEEDING FURTHER AS OUTLINED IN SECTION 2.6 OF THE EPP.
- 2. UNSTABLE SOILS AND/OR SITE-SPECIFIC FACTORS SUCH AS STREAM VELOCITY AND FLOW DIRECTION MAY REQUIRE ADDITIONAL RESTRICTIONS.
- DISPOSED OF AT AN APPROVED OFF-SITE LOCATION AS NEEDED TO ENSURE CONTOURS ARE RESTORED TO AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS.
- 4. REVEGETATION ACTIVITIES WILL OCCUR AS OUTLINED IN SECTION 7.0 OF THE EPP. SEED MIXES AT PUBLIC WATERS WILL BE FOLLOWS

-			
A	EMERGENT (34-181)	G	DRY PRAIRIE GENERAL (35–221)
В	RIPARIAN NE (34-361)	н	MESIC PRAIRIE GENERAL (35–241)
С	RIPARIAN S&W (34-261)	1	MESIC PRAIRIE NW (35-441)
D	WET MEADOW NE (34-371)	J	DRY PRAIRIE NORTHWEST (35-421)
E	WET MEADOW S&W (34-271)	к	WOODLAND EDGE NE (36-311)
F	WETLAND REHABILITATION (34-171)	L	NATURAL REVEGETATION

- PLACE FROM EXISTING PLANT MATERIAL AND ROOT STOCK IN THESE COMMUNITIES.
- 6. ALL MATERIALS USED FOR CONSTRUCTION OF THE PROJECT MUST BE REMOVED FROM THE SITE.
- 7. ENBRIDGE WILL CONDUCT POST-CONSTRUCTION MONITORING IN ACCORDANCE WITH THE POST-CONSTRUCTION MONITORING PLA FOR WETLANDS AND WATERBODIES. AND IN ACCORDANCE WITH THE VMP FOR THE UPLAND PORTIONS OF THE PROJECT ON PUBLIC LANDS.

1. ON PORTIONS OF THE PROJECT WHERE WORK WILL BE OCCURRING DURING APPLICABLE "WORK IN WATER RESTRICTIONS" FOR PUBLIC WATERS (REFER TO SECTION 2.1), ALL EXPOSED SOIL AREAS WITHIN 200 FEET OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE STABILIZED WITHIN 24 HOURS DURING THE RESTRICTION PERIOD. STABILIZATION OF ALL EXPOSED SOILS WITHIN 200 FEET OF THE PUBLIC WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD. THESE AREAS WILL BE IDENTIFIED ON THE ENVIRONMENTAL PLAN SHEETS ACCOMPANYING THE

APPROVAL FROM ENBRIDGE. ALL HYDROMULCH AND LIQUID TACKIFIER PRODUCTS USED WILL BE ON THE APPLICABLE STATE DOT PRODUCT LIST. HYDRO-MULCH AND LIQUID TACKIFIER PRODUCTS CONTAINING PLASTIC/POLYPROPYLENE FIBER ADDITIVES AND MALACHITE GREEN (COLORANT) WILL NOT BE UTILIZED ON THIS PROJECT. APPLICATION RATES WILL BE AT THE MANUFACTURER'S HYDROMULCH ON STEEP SLOPES TO PREVENT EROSION UNTIL PERMANENT COVER HAS BEEN ESTABLISHED AS OUTLINED IN SECTION

1. ENBRIDGE WILL RESTORE THE STREAM BANKS AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS UNLESS THAT SLOPE IS DETERMINED TO BE UNSTABLE. IF THE SLOPE IS CONSIDERED UNSTABLE, ENBRIDGE WILL RESHAPE THE BANKS TO PREVENT SLUMPING. FOR PUBLIC WATERS, ENBRIDGE WILL RETURN THE BANK TO PRE-CONSTRUCTION CONTOURS, UNLESS OTHERWISE DIRECTED BY THE SITE-SPECIFIC RESTORATION PLAN. IF ENBRIDGE CANNOT RESTORE TO PRE-CONSTRUCTION CONTOURS AT A PUBLIC WATER, ENBRIDGE

RESTORATION EFFORTS, SUCH AS INSTALLATION OF WOODY VEGETATION, GEOTEXTILE FABRIC, OR TREE, LOG, ROOTWAD, OR BOULDER REVETMENTS TO STABILIZE DISTURBED STREAM BANKS (SEE FIGURE 29) AS OUTLINED IN SECTION 2.6.2 OF THE EPP. ENBRIDGE WILL WORK WITH THE MDNR TO ENSURE ALL WORK/ADJUSTMENTS ARE APPROVED AND ARE CONDUCTED WITHIN APPLICABLE TIMING

3. IN UPLAND AND WETLAND AREAS, CLEANUP AND ROUGH GRADING WILL OCCUR AS OUTLINED IN SECTIONS 1.16 AND 3.9 OF THE EPP. ENBRIDGE WILL BACKFILL THE TRENCH TO AN ELEVATION SIMILAR TO THE ADJACENT AREAS OUTSIDE THE TRENCH LINE AND WILL ADD A SLIGHT CROWN OF APPROXIMATELY 3 TO 6 INCHES (DEPENDING ON SOIL TYPE) OVER THE BACKFILLED TRENCH TO ALLOW FOR SUBSIDENCE. GENERALLY, EXCESS SUBSOIL DISPLACED BY THE PIPE INSTALLATION WILL BE SPREAD ACROSS THE PORTION OF THE CONSTRUCTION WORKSPACE WHERE TOPSOIL REMOVAL HAS OCCURRED. ANY REMAINING EXCESS SUBSOIL WILL BE REMOVED AND

SELECTED AND APPLIED AS INDICATED IN THE PLANTING PLAN, WHICH IS APPENDIX A OF THE POST-CONSTRUCTION VEGETATION MANAGEMENT PLAN FOR PUBLIC LANDS AND WATERS ("VMP"). SEED MIXES RELATIVE TO THESE SSRP CROSSINGS ARE CODED AS

5. ENBRIDGE WILL NOT SEED STANDING WATER OR WOODED (PSS AND PFO) WETLAND COMMUNITIES. NATURAL REVEGETATION WILL TAKE

	в	ISSUED FOR PERMITTING	MJT	10/2020		
N	NO. REVISION-DESCRIPTION BY DA				снк'р	APP'D
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN					
	CONSTRUCTION NOTES					
•	SCALE DWG. NO. SSRP-NOTES PAGE N				Э.	

PLOTTED SIZE: ANSI FULL BLEED B (17x11)

Appendix C

Geotechnical Data Report, Line 3 Replacement, LaSalle Creek Crossing; Clearwater and Hubbard County, Minnesota

Geotechnical Data Report

Line 3 Replacement LaSalle Creek Crossing

Clearwater and Hubbard County, Minnesota

Prepared for Enbridge Energy, Limited Partnership

May 2020

Geotechnical Data Report

Line 3 Replacement LaSalle Creek Crossing

Clearwater and Hubbard County, Minnesota

Prepared for Enbridge Energy, Limited Partnership

May 2020

Geotechnical Data Report Line 3 Replacement LaSalle Creek Crossing May 2020

Contents

1.0	Introduction1
1.1	Project Information1
1.2	Site Geology1
1.3	Surface Observations1
1.4	Previous Investigations2
2.0	Geotechnical Investigation Methods
2.1	Geotechnical Investigation3
2.2	Soil Testing4
3.0	Results
3.1	Soil Lithology
3.7	1.1 Topsoil/Organics
3.2	1.2 Glacial Outwash
3.7	1.3 Bedrock
3.2	Soil Corrosivity9
3.3	Groundwater Conditions9
4.0	Results
4.1	Soil Parameters11
4.2	Permeability and Dewatering12
5.0	Limitations13
6.0	Standard of Care14
7.0	References15

List of Tables

Table 2-1	Soil Boring Locations	3
Table 2-2	Laboratory Test Results	6
Table 4-1	Estimated Unit Weight and Strength Parameters	11
Table 4-2	Estimated Poisson's Ratio and Modulus of Elasticity Parameters	11
Table 4-3	Lateral Earth Pressure Coefficients	12

List of Figures

Figure 1	Soil Boring Locations
----------	-----------------------

- Figure 2 Surficial Geology
- Figure 3 Bedrock Geology
- Figure 4 Geologic Cross Section
- Figure 5 LaSalle Creek West Total Head vs Time
- Figure 6 LaSalle Creek East Total Head vs Time

List of Appendices

- Appendix A Soil Boring Logs
- Appendix B Laboratory Test Results
- Appendix C Drawdown Test Results

Certifications

I hereby certify that this engineering document was prepared by me or under my direct personal supervision and that I am a duly licensed Professional Engineer under the laws of the State of Minnesota.

Hu M. Demsh

Peter M. Demshar, P.E. Minnesota License No. 57139 5/7/2020

Date

Reviewed by:

Robert W. Olah, P.E. Minnesota License No. 50619 5/7/2020

Date

1.0 Introduction

Barr Engineering Company (Barr), under contract with Enbridge Energy, Limited Partnership (Enbridge), completed a geotechnical evaluation for a section of the proposed Line 3 Replacement (L3R) Pipeline crossing LaSalle Creek, located approximately 26 miles southwest of Bemidji, Minnesota.

Barr performed two geotechnical investigations to evaluate site conditions. A subsurface investigation was completed in July and August 2014 which consisted of two standard penetration test borings. An additional investigation was completed in April 2020 that consisted of hand auger borings to evaluate the near surface soil conditions. This report describes the investigations and testing performed, presents the results of this work, and provides geotechnical analyses and conclusions to aid in the design of the pipeline alignment and prepare for pipeline construction.

1.1 Project Information

The planned L3R pipeline will cross LaSalle Creek and adjacent wetlands (defined by others) at this site. The LaSalle Creek pipeline crossing is to be located approximately 26 miles southwest of Bemidji, Minnesota in southeast Clearwater County, in Section 24 of Township 144 North, Range 36 West, and in northwest Hubbard County, in Section 19 of Township 144 North, Range 35 West as shown on Figure 1. The L3R project design and permitting is ongoing, but the pipeline is anticipated to be a 36-inch diameter carbon steel pipe for transmission of crude oil.

1.2 Site Geology

A review of the regional geology indicates that the underlying site conditions consist of topsoil and/or organic deposits over glacial outwash that is underlain by Late Archean rock. The upper bedrock unit at the site is mapped as granite and granodiorite of the Vermillion Granitic Complex, although bedrock was not encountered in subsurface exploration. The glacial outwash generally consists of a mixture of clay, silt, sand, and gravel with some cobbles and boulders and was deposited and/or sorted by glacial meltwater. Surficial and bedrock site geology maps are provided as Figure 2 and Figure 3. A geologic cross-section is also provided in Figure 4.

1.3 Surface Observations

The following observations were made during an initial site visit in October 2013, as well as during drilling in July and August 2014 and during hand auger drilling in April 2020. The proposed crossing site is located adjacent to the east side of an existing Koch Pipeline ROW. Test boring MP 407-North was advanced west of LaSalle Creek. The ground surface was relative flat in the immediate vicinity of the boring, then slopes gradually down towards LaSalle Creek. Test boring MP 407-South was advanced east of LaSalle Creek. Test borings LS-20-HA-1 through LS-20-HA-5 were performed west of LaSalle Creek. Test borings LS-20-HA-3 were advanced at the edge of the existing ROW, LS-20-HA-4 and LS-20-HA-5 were advanced in a wooded area between the existing ROW and the creek, and LS-20-HA-5-A was advanced in a wetland area in close proximity to the creek. Test borings LS-20-HA-6 through LS-20-HA-11 were performed east of LaSalle Creek. Test boring LS-20-HA-6 was advanced in a

wetland that is in close proximity to the creek and LS-20-HA-7 through LS-20-HA-11 were advanced in wooded areas between the creek and the existing pipeline ROW.

1.4 **Previous Investigations**

As discussed above, a geotechnical investigation was completed by Barr in July and August 2014. Two standard penetration test (SPT) borings were completed in the immediate vicinity of the site. Test boring MP 407-North was completed to a termination depth of 91.9 feet below existing grade (elevation 1338.9 feet) and test boring MP 407-South was completed to a termination depth of 57.0 feet below existing grade (elevation 1376.6 feet). The results of this geotechnical investigation are included in this report.

2.0 Geotechnical Investigation Methods

2.1 Geotechnical Investigation

Two SPT borings and twelve (12) hand auger (HA) borings were performed proximal to the L3R pipeline alignment for the LaSalle Creek crossing. The boring locations were selected by Enbridge, field adjusted by Barr, and are indicated on Figure 1. The coordinates and elevations for the boring locations are shown in Table 2-1. These coordinates and elevations were obtained using a hand-held GPS, unless otherwise noted.

Borehole ID	Northing⁴	E asting ⁴	Elevation [ft] ³
MP 407-North	618321.6	2110843.4	1430.8 ¹
MP 407-South	616036.2	2112030.6	1433.6 ¹
LS-20-HA-1	619673.5	2110082.1	1432.0 ¹
LS-20-HA-2	619020.6	2110488.7	1433.0 ¹
LS-20-HA-3	618354.2	2110895.8	1425.9 ¹
LS-20-HA-4	618294.9	2111086.8	1420.9 ¹
LS-20-HA-5	618235.6	2111277.8	1417.1 ¹
LS-20-HA-5-A	618212.3	2111374.3	1413.6 ²
LS-20-HA-6	618176.3	2111468.8	1414.2 ¹
LS-20-HA-7	618117.0	2111659.8	1418.5 ¹
LS-20-HA-8	618057.7	2111850.8	1424.0 ¹
LS-20-HA-9	617965.3	2112006.7	1431.2 ¹
LS-20-HA-10	617165.9	2112036.7	1431.6 ¹
LS-20-HA-11	616366.4	2112066.7	1441.0 ¹

Table 2-1 Soil Boring Locations

1. Elevations reference Northwestern Survey from 4-way sweeps

2. Elevations reference Barr Handheld GPS Data

3. Elevations reference NAVD88

4. Minnesota State Plane North, Coordinate System FIPS 2201 NAD83 (US feet)

The two (2) SPT borings were performed under subcontract to Barr by Coleman Engineering Company (CEC) of Iron Mountain, Michigan. Test borings were performed with a tracked Diedrich D-120 all-terrain drill rig using 4-1/4 inch inside-diameter hollow-stem-auger (HSA) and mud-rotary drilling techniques with a tricone roller bit with diameter of 3-7/8 inches. The drill rig was equipped with an automatic drop hammer for collection of split spoon samples.

To document the relative density of the formation and collect soil samples for laboratory testing, sampling with a standard split-spoon sampler was performed at 5-foot intervals. The SPT borings were
performed in general accordance with ASTM D1586 "Standard Methods for Penetration Test and Split-Barrel Sampling of Soils". The boreholes were backfilled with neat cement grout and bentonite slurry upon completion of drilling.

Samples were reviewed by Barr field staff during collection and were then sealed and labeled in glass jars. The samples were again reviewed by a Barr geotechnical engineer in Duluth and then delivered to American Engineering Testing, Inc. (AET) of Duluth, Minnesota for laboratory testing.

The twelve (12) hand auger borings were completed using a 3-1/4 inch diameter bucket auger and a 2-1/2 inch diameter bucket auger by both Barr and Coleman. The borings were sampled continuously and bulk samples were retrieved for laboratory testing.

One vibrating wire piezometer was installed in hand augers LS-20-HA-4, LS-20-HA-5-A, LS-20-HA-7, and LS-20-HA-9 prior to abandonment. All boreholes were backfilled with neat cement grout and bentonite slurry upon completion of drilling. Samples were reviewed by Barr field staff during collection and were then sealed in labeled zip top plastic bags. The samples were again reviewed by a Barr geotechnical engineer in Duluth, and then delivered to Twin Ports Testing II, Inc. (TPT) of Superior, Wisconsin for laboratory testing. Soil boring logs are in Appendix A.

2.2 Soil Testing

Laboratory testing was performed to document soil properties for the LaSalle Creek crossing site. Soil samples that were not submitted to TPT have been retained to allow the contractor(s) to perform additional testing as they require. Soil testing results, in combination with boring logs and site observations, may assist the contractor with installation. The soil samples will be stored for 12 months after the issuance of this report until they are discarded, unless written direction is otherwise provided.

Laboratory test results are provided in Appendix B.

- Moisture content was determined in accordance with ASTM D2216, "Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass"
- Unit weight of soil samples was determined in accordance with ASTM D7263, "Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimens"
- The soil particle size distribution was determined in accordance with ASTM D422, "Standard Test Method for Particle Size Analysis of Soils"
- Finer than No. 200 Sieve was determined in accordance with ASTM D1140, "Standard Test Method for Amount of Material in Soils Finer than No. 200 (75μm) Sieve"
- Atterberg Limits tests were performed in accordance with ASTM D-4318, "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils" "Standard Test Methods for Determining the Amount of Material Finer than 75-μm (No. 200) Sieve in Soils by Washing"

- Visual soil classification was conducted in accordance with ASTM D-2488, "Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)."
- Unconfined compressive strength was determined in accordance with ASTM D2166, "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil"
- Organic content was determined in accordance with ASTM D2974 "Standard Test Methods For Moisture, Ash, And Organic Matter Of Peat And Other Organic Soils"
- Soil pH was determined according to ASTM D4972, "Standard Test Method for pH of Soils" or per EPA method 9045D
- Sulfate and chloride content were determined in accordance with EPA method 300 Rev. 2.1 or 9056MOD
- The results of moisture content, Atterberg Limits, dry unit weight, unconfined compressive strength, and grain size distribution tests of the soils, are included on the test boring logs adjacent to the tested sample. Table 2-2 provides a summary of the laboratory test results for the site.

Table 2-2Laboratory Test Results

			А	tterberg Lir	nits	Unc			Grain	Size Analyses								
Boring ID	Top of Sample Depth (ft)	USCS Soil Type	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Comp. Strength (tsf)	Moisture Content (%)	Gravel Content (%)	Sand Content (%)	% Passing #200 Sieve	Silt Content (%)	Clay Content (%)	Organic Content (%)	рН	Chloride (mg/kg)	Sulfate (mg/kg)	Dry Density (pcf)	Moist Density (pcf)
	9.5	SP-SM	-	-	-	-	22.9	-	-	11.5	-	-	-	-	-	-	-	-
	19.9	SP-SM	-	-	-	-	24.5	-	-	3.7	-	-	-	-	-	-	-	-
	31.4	SM	-	-	-	-	13.6	-	-	-	-	-	-				110.8	125.9
	39.9	SM	-	-	-	-	22.8	-	-	44.4	-	-	-	-	-	-	-	-
MP 407-North	44.9	-	-	-	-	-	-	-	-	-	-	-	-	9.5	<2	39	-	-
	49.9	SM	-	-	-	-	21.6	-	-	18.1	-	-	-	-	-	-	-	-
	56.4	SM	-	-	-	-	16.2	-	-	-	-	-	-	-	-	-	102.0	118.5
	71.4	SM	-	-	-	-	18.2	-	-	-	-	-	-	-	-	-	112.6	133.1
	79.9	SM	-	-	-	-	22.2	-	-	20.0	-	-	-	-	-	-	-	-
	15	SP-SM	-	-	-	-	13.9	48.9	44.8	6.3	-	-	-	-	-	-	-	-
	30	ML	-	-	-	-	19.9	0.0	12.6	87.4	73.7	13.7	-	-	-	-	112.5	134.9
MP 407-South	35	CL	25	17	8	-	22.7	-	-	-	-	-	-	-	-	-	-	-
WF 407-300th	40	SM	-	-	-	0.45	23.0	-	-	-	-	-	-				109.2	134.3
	45	-	-	-	-	-	-	-	-	-	-	-	-	9.5	<2	340	-	-
	55	SM	-	-	-	-	10.2	10.3	72.0	17.7	-	-	-	-	-	-	-	-
IS-20-HA-1	1.5	SP-SM	-	-	-	-	5.8	8.0	84.4	7.6	-	-	-	-	-	-	-	-
L3-20-11A-1	7.0	SP-SM	-	-	-	-	10.3	3.7	88.8	7.5	-	-	-	-	-	-	-	-
15-20-44-2	3.0	SP-SM	-	-	-	-	5.3	3.1	90.8	6.1	-	-	-	-	-	-	-	-
L3 20 HA 2	7.5	SP-SM	-	-	-	-	5.6	7.9	86.2	5.9	-	-	-	-	-	-	-	-
15-20-44-3	1.5	SP	-	-	-	-	10.1	0.0	95.1	4.9	-	-	-	-	-	-	-	-
	8.5	SP	-	-	-	-	22.4	0.0	96.8	3.2	-	-	-	-	-	-	-	-
15-20-44-4	2.5	PT	-	-	-	-	595.8	-	-	-	-	-	82.5	-	-	-	-	-
	11.5	ОН	179	107	66	-	158.8	0.0	18.5	81.5	62.4	19.1	36.0	-	-	-	-	-
15-20-44-5	5.5	PT	-	-	-	-	564.9	-	-	-	-	-	56.8	-	-	-	-	-
L3-20-11A-3	8.5	ОН	181	103	78	-	185.2	0.0	21.7	78.3	59.8	18.5	42.4	-	-	-	-	-
	7.0	ОН	173	101	72	-	182.1	0.0	13.7	86.3	68.5	17.8	26.4	-	-	-	-	-
LS-20-HA-5-A	11.0	ОН	-	-	-	-	159.0	-	-	-	-	-	27.8	-	-	-	-	-
	13.5	ОН	-	-	-	-	137.4	-	-	-	-	-	22.4	-	-	-	-	-
15-20-44-6	10.0	MH	63	50	13	-	41.9	0.0	27.1	72.9	58.9	14.0	9.7	-	-	-	-	-
L3-20-11A-0	13.0	ML	20	18	2	-	27.5	0.0	27.0	73.0	55.4	17.6	6.9	-	-	-	-	-

			A	tterberg Li	mits	line			Grain	Size Analyses								
Boring ID	Top of Sample Depth (ft)	USCS Soil Type	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Comp. Strength (tsf)	Moisture Content (%)	Gravel Content (%)	Sand Content (%)	% Passing #200 Sieve	Silt Content (%)	Clay Content (%)	Organic Content (%)	рН	Chloride (mg/kg)	Sulfate (mg/kg)	Dry Density (pcf)	Moist Density (pcf)
	1.5	PT	-	-	-	-	429.6	-	-	-	-	-	76.3	-	-	-	-	-
LS-20-HA-7	7.5	ОН	120	93	27	-	110.2	-	-	-	-	-	30.7	-	-	-	-	-
	14	CL-ML	23	17	6	-	26.4	0.0	12.5	87.5	63.8	23.7	8.3	-	-	-	-	-
	5.5	ML	21	19	2	-	27.0	0.0	22.1	77.8	62.6	15.2	-	-	-	-	-	-
LS-20-HA-8	10.0	SM	-	-	-	-	17.6	0.0	72.4	27.6	20.7	6.9	-	-	-	-	-	-
	3.0	ML	-	-	-	-	24.3	0.0	47.4	52.6	40.5	12.1	-	-	-	-	-	-
LS-20-HA-9	8.5	SM	-	-	-	-	16.1	0.0	52.9	47.1	-	-	-	-	-	-	-	-
	5.0	SM	-	-	-	-	25.0	0.2	63.1	36.8	-	-	-	-	-	-	-	-
LS-20-HA-10	9.0	ML	-	-	-	-	25.8	0.0	27.1	72.9	64.8	8.1	-	-	-	-	-	-
	1.5	PT	-	-	-	-	520.3	-	-	-	-	-	80.7	-	-	-	-	-
LS-20-HA-11	11.0	PT	-	-	-	-	292.9	-	-	-	-	-	32.8	-	-	-	-	-

3.0 Results

3.1 Soil Lithology

The results of the geotechnical soil borings and laboratory tests were compiled to obtain an understanding of the lithology of the study area. As determined from field and laboratory data, the existing soil conditions generally consist of topsoil/organic deposits overlying glacial outwash silt and sand deposits to a depth of at least 91.9 feet below ground surface (bgs) (elevation 1338.9 feet), which was the approximate termination depth of the deepest boring (MP 407-North).

Detailed information for soil strata and groundwater conditions are contained in the following sections. Complete laboratory testing results for samples from the recently performed test borings are in Appendix B. A cross section for the crossing is provided in Figure 4.

3.1.1 Topsoil/Organics

Topsoil or organics was encountered in all test borings except LS-20-HA-3 at the ground surface extending to depths ranging from 2 inches (LS-20-HA-2) to at least 14.9 feet (LS-20-HA-11) bgs. The topsoil encountered in the 2 SPT borings and LS-20-HA-1 through LS-20-HA-3 is primarily composed of organic clays and silts (OH) and silty sand (SM). Topsoil and organics thickness should be expected to vary across the site with differing vegetation cover, topography, and depositional environment.

The remaining hand augers indicate that organic-rich soils at the ground surface extends to depths ranging from 2 (LS-20-HA-9) feet to at least 14.9 (LS-20-HA-11) feet bgs. The organics consisted of fibric, hemic, and sapric peat (PT) and organic silts and clays (OH). A total of three grain size distribution analyses were performed on the samples of the organic plastic silt. The results of the testing indicated that gravel is not present. Sand contents ranged from 13.7 to 21.7 percent and percent fines (passing the #200 sieve) ranged from 78.3 to 86.3. Atterberg limits testing on the organic plastic silts indicated liquid limits ranging from 120 to 181 and plastic limits ranging from 93 to 107. Laboratory testing indicated moisture content in the organic plastic silts ranging from 101.2 to 185.2 percent, and moisture content in the peat ranging from 292.9 to 595.8 percent.

3.1.2 Glacial Outwash

Glacial outwash soils were encountered below the topsoil and organic deposits and extended to the termination depths of the SPT borings. The outwash is composed mainly of poorly graded sand (SP), gravely sand with silt (SP-SM), sandy silt (ML), and silty sand (SM). An 8-foot thick layer of lean clay was encountered in MP 407-South at a depth of 32 feet.

Grain-size distribution analyses were completed on samples obtained from the SPT and HA borings at various depths. The laboratory results for the granular outwash soils indicated gravel contents ranging from 0.0 to 48.9 percent, sand contents ranging from 12.6 to 44.8 percent, and percent fines (passing the #200 sieve) ranging from 3.2 to 47.1 percent. Moisture contents for the granular outwash soils ranged from 5.3 to 24.5 percent. The laboratory results for the cohesive outwash soils indicated no gravel content, sand contents ranging from 12.5 to 47.4, and percent fines (passing the #200 sieve) ranging from 52.6 to

87.5 percent. Moisture contents for the cohesive outwash soils ranged from 19.9 to 41.9 percent. Atterberg limits testing on the cohesive outwash soils indicated liquid limits ranging from 20 to 63 and plastic limits ranging from 17 to 50.

N-values in the outwash were generally between 1 and 42 blows per foot (bpf) with the majority between 5 to 15 bpf. The SPT results indicate that the granular soils vary in relative density between loose and medium dense. Cohesive samples of the outwash deposit generally have a soft to stiff consistency.

3.1.3 Bedrock

Bedrock was not encountered within the depths of exploration of the borings. Based on publicly available published data by the U.S. Geologic Survey (USGS), the bedrock at the site consists of granite and granodiorite of the Vermillion Granitic Complex. The USGS data indicates the depth to bedrock in this area is generally over 400 feet below the ground surface.

3.2 Soil Corrosivity

Soil electrical resistivity, pH, and soluble sulfates and chlorides are some of the primary factors in evaluating the rate and amount of corrosion of buried structures. It should be noted that soil corrosivity is also influenced by other variables including the amount of moisture, drainage, and soil particle size/oxygen content. Laboratory pH, soluble sulfates, and chloride testing was performed on samples taken from both SPT test borings and indicated a pH of 9.5, or mildly basic. Chloride was less than 2 mg/kg and sulfate ranged from 39 to 340 mg/kg.

3.3 Groundwater Conditions

Water levels in the SPT borings were measured while drilling MP 407-North and MP 407-South at 8 feet bgs (elevation 1422.8 feet) and 3.7 feet bgs (elevation 1429.9 feet), respectively. Upon reaching a depth of approximately 57 feet, artesian groundwater conditions were observed at boring MP 407-South at which point the boring was abandoned with cement grout and the flowing conditions were stopped.

Water levels were measured in HA borings LS-20-HA-3 through LS-20-HA-11 during drilling at depths ranging from at the ground surface to approximately 2.5 feet bgs, which ranges in elevation from 1412.6 to 1441.0 feet. Results of the vibrating wire piezometer data indicate that groundwater is at the ground surface in elevations ranging from 1413.6 to 1431.2 feet, shown in Figure 5 and Figure 6. Due to variations in barometric pressure and resolution of instruments, total head is fluctuating around the ground surface which is consistent with conditions observed during drilling.

Additional water-level readings and cave-in depths upon completion of the boreholes could not be obtained due to the addition of drilling fluid for borehole stability during advancement with mud rotary drilling methods. Many factors, such as heavy rainfall events, dry periods, and differences in soil permeability contribute to water level fluctuations. Groundwater levels should be expected to fluctuate over time. Groundwater levels encountered during the investigation are shown on Figure 5 and Figure 6.

Pump-down tests were conducted on LS-20-HA-3 through LS-20-HA-11. Pump-down tests were treated as slug tests and the results were analyzed using the program AQTESOLV. Relatively slow water-level recovery rates indicate that the pump-down process evacuated the borehole without substantially inducing instantaneous drawdown in the surrounding soils – a condition which permits analyzing the tests using conventional slug-out analytical methods. The results and analyses for the ten borings are included in Appendix C. The analyses were performed using the Bouwer and Rice (1976) method for slug tests, which accounts for partial penetration of the aquifer and unconfined conditions with the phreatic surface intersecting the screen. An anisotropy ratio of 0.1 was assumed. The range of horizontal hydraulic conductivity values calculated for the 10 borings is 0.0087 ft/day (LS-20-HA-8) to 0.3611 ft/day (LS-20-HA-3), with a mean value of 0.100 ft/day. These values are characteristic of a fine silt to clayey sand and are representative of deposits with moderately low permeability. This suggests that seepage inflows during construction will not be very significant along this stretch.

4.0 Results

Results of the field and laboratory investigation have been presented in Section 3.0. Based on these results, Section 4.0 provides design and construction considerations for the project.

4.1 Soil Parameters

The soil parameters presented in Table 4-1, Table 4-2, and Table 4-3 can be considered for design of the crossing as well as other contractor-designed excavations. These parameters are applicable to undisturbed soils.

Soil Type Ŧ	N-Value Range *	Moist Unit Weight [pcf]	Submerged Unit Weight [pcf]	Angle of Internal Friction, Undrained ** [degrees]	Cohesion, Undrained [psf]
Organic Soils	All	90	28	0	250 - 500
Lean Clay	4	105 - 120	42 - 56	0	250 - 500
Sand	1 - 42	115 - 135	51 - 71	28 - 34	0

Table 4-1 Estimated Unit Weight and Strength Parameters

Note(s):

*N-Values not likely influenced by the presence of cobbles and boulders

**Estimate from Peck, et al, 1974

F Sand refers to poorly graded sand, poorly graded sand with silt, and silty sand.

Table 4-2 Estimated Poisson's Ratio and Modulus of Elasticity Parameters

		Pois	son's Rat	tio, ν*	Modulus of
Soil Type Ŧ	N-Value Range	Drained**		Undrained**	Elasticity, E _s * [psi]
Organic Soils	All	0.15 - 0.25		0.5	250 - 500
Lean Clay	4	0.15 - 0.25		0.5	250 - 500
Sand	1 - 42		0.25 - 0.4	10	2,000 - 5,000

Note(s):

F Sand refers to poorly graded sand, poorly graded sand with silt, and silty sand.

* Estimate from Das (1997) and (1998

** Undrained applies to short-term construction conditions and drained applies to long-term conditions.

Table 4-3	Lateral Far	th Pressure	Coefficients
	Lateral Lai	unnessure	Coencients

	N-Value	Coeffici	ents of Lateral Earth Press	sure*
Soil Type Ŧ	Range	Active [K _a]	At Rest [K ₀]**	Passive [K _p]
Organic Soils	All	1	1	1
Lean Clay	4	1	1	1
Sand	1 - 42	0.28 - 0.36	0.44 - 0.53	2.77 - 3.53

Note(s):

F Sand refers to poorly graded sand, poorly graded sand with silt, and silty sand.

* Ultimate Values

** Estimation of at-rest coefficients of lateral earth pressure is very difficult due to the unknown overconsolidation ratios of the soil unit. The values provided in the table are based on estimation of the undrained friction angle and the assumption that the overconsolidation ratio is no less than 1 (the soil is normally consolidated), and is less than 3 to 5, and that pore pressures in the estimated soil are not in excess of the earth pressure. If this soil parameter value is required with more certainty, additional in-situ testing is required.

4.2 Permeability and Dewatering

Field measurements of surface soil permeability completed during the investigation indicated that the average permeability was moderately low. The sand and silty sand materials are considered to be moderately permeable, however these higher permeability soils were generally encountered above the water-table elevation and are not expected to be a factor in the rate of groundwater seepage during construction. The organics, silt, and clay soils encountered lower in the valley are considered to have low permeability and could even be considered impermeable for engineering purposes. Excavations through the lower permeability soils should have low seepage inflow rates. Moderately permeable sandy soils were encountered in LS-20-HA-7 through LS-20-HA-10. Higher rates of groundwater inflow through the permeable sand soils and unstable excavations should be anticipated, which may require higher dewatering pumping rates and/or shoring. Side sloping and shoring of excavations should meet OSHA guidelines.

5.0 Limitations

The recommendations provided in this report are based on the results of fieldwork which focused on investigation of the area near the proposed pipeline alignment. Barr's evaluation, analyses, and recommendations were developed from limited site and subsurface information. It is not standard engineering practice to retrieve material samples from borings continuously with depth, and therefore strata boundaries and thicknesses must be inferred to some extent. Strata boundaries may also be gradual transitions, and can be expected to vary in depth, elevation, and thickness away from the boring locations. Boulders and cobbles also cannot be recovered with typical geotechnical drilling equipment.

Variations in subsurface conditions between boring locations may not be revealed until additional exploration work is completed, or construction commences. If any such variations are revealed, our recommendations should be re-evaluated. Such variations could increase construction costs, and a contingency should be provided to accommodate them.

The analysis and conclusions provided are based on the results of fieldwork from recent investigations. Using generally accepted engineering methods and practices, the investigations performed have made every reasonable effort to characterize the site. However, the likelihood that conditions may vary from any specific location tested is still possible, and careful attention to soil conditions should be undertaken during the time of construction by qualified personnel.

6.0 Standard of Care

This report is for the exclusive use of the parties to which it has been addressed. Without written approval, Barr assumes no responsibility to other parties regarding this report. The evaluation, analyses, and recommendations may not be appropriate for other parties or projects.

Barr Engineering Company's services for this project were performed in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in this area under similar budget and time restraints. No warranty, expressed or implied, is made.

7.0 References

- 1. Ralph B. Peck, Walter E. Hanson, Thomas H. Thornburn (1974). Foundation Engineering, 2nd Edition. John Wiley & Sons.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.Braja M. Das (1997). Advanced Soil Mechanics, 2nd Edition. Taylor & Francis
- 3. Braja M. Das (1998). Principles of Geotechnical Engineering, 4th Edition. PWS Publishing Company
- 4. Donald P. Coduto (1994). Foundation Design: Principles and Practices. Prentice-Hall, Inc.
- 5. Howard C. Hobbs and Joseph E. Goebel (1982). *Geologic Map of Minnesota, Quaternary Geology*. Minnesota Geological Survey State Map Series S-1
- 6. U.S Geological Survey, Minnesota Geologic Map Data. Retrieved April 23, 2020 from <u>http://mrdata.usgs.gov/geology/state/state.php?state=MN</u>.
- 7. U.S Geological Survey, Minnesota Depth to Bedrock Map. Retrieved November 8, 2017, from http://usgeologymorphology.com/MN-archean-p1.html
- 8. ASTM International. Volume 04.08 Soil and Rock (I) D429 to D5876; Volume 4.09 Soil and Rock (II) D5877 Latest (2010).
- 9. Roberge, P.R. (2006). Corrosion Basics: An Introduction, 2nd Edition. NACE Press Book.

Figures

Barr Footer: ArcGIS 10.7.1, 2020-05-01 10:38 File: I:\Client\Enbridge_Energy\Work_Orders\Mainline_Permitting\49161244\Maps\Report_Maps\MP_407_2020\Report\Figure1_LaSalleCreek_SiteLocation.mxd User: MAC2

Barr Footer: ArcGIS 10.7.1, 2020-04-29 13:27 File: 1:\Client\Enbridge_Energy\Work_Orders\Mainline_Permitting!49161244\Maps\Report_Maps\MP_407_2020\Report\Figure2_LaSalleCreek_SurficialGeology.mxd User: MAC2

Barr Footer: ArcGIS 10.7.1, 2020-04-29 13:27 File: 1:\Client\Enbridge_Energy\Work_Orders\Mainline_Permittingl49161244\Maps\Report_Maps\MP_407_2020\Report\Figure3_LaSalleCreek_BedrockGeology.mxd User: MAC2

Approximate Ground Surface

----- Interpreted Surface Water Table

Proposed L3R Estimated Trench Depth

Completed Geotechnical Exploration Location (by Barr)

Topographic information depicted based on MnTOPO LiDAR elevation data.

Barr Footer: ArcGIS 10.7.1, 2020-05-06 10:50 File: 1: Client/Enbridge_Energy/Work_Orders/Mainline_Permitting/49161244/Maps/Report_Maps/MP_407_2020/Report/Figure4_1_LaSalleCreek_CrossSection.mxd User: MAC2

NOTE:

Figure 4-1 **CROSS SECTION** LaSalle Creek Line 3 Mainline Replacement Clearwater & Hubbard Counties, MN

Feet

- ---- Approximate Ground Surface
- ----- Interpreted Surface Water Table
 - Proposed L3R Estimated Trench Depth
 - Completed Geotechnical Exploration Location (by Barr)

Topographic information depicted based on MnTOPO LiDAR elevation data.

Barr Footer: ArcGIS 10.7.1, 2020-05-11 14:32 File: I:\Client\Enbridge_Energy\Work_Orders\Mainline_Permitting149161244\Maps\Report_Maps\MP_407_2020\ReportFigure4_2_LaSalleCreek_CrossSection.mxd User: MAC2

NOTE:

Figure 4-2 CROSS SECTION LaSalle Creek Line 3 Mainline Replacement Clearwater & Hubbard Counties, MN

Appendices

Appendix A

Soil Boring Logs

	BAI	RR	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200								L	og of	BOI	RING	i Sanc	qiqt	er N	NP Shee	407 et 1	7-N of 2	2
F	Projec	t: S	Sandpiper Mainline Geotech Survey	Location:	Sand	dpip	per Ma	ainline	9			Clie	ent: No	orth Da	kota Pip	eline	Co.,	LLC			
			Barr Project Number: 49/16-1244			ec.											Phys	ical	Prop	ertie	es
KIZUNIAL LUG KEPUP	Elevation, feet	Depth, feet	MATERIAL DESCRIPTIO (ASTM D2488)	DN	Graphic Log	Sample Type & R	STANE	DARD PI TEST N in bl	ENETRA DATA ows/ft	TION	PL	ER ENT LL	GRAVEL		SILT CLAY FINES	WC %	γ d	¢ °	Q _u C tsf t	Ω _p C	Ss RQD %
	100	0 -	Surface Elev.: 1430.8 ft		1.17		10	20	30	40	20 40	60	20	40 0	60 80					_	
	430	5 - 5 -	1430 Dark brown; moist; organic sand with silt. POORLY GRADED SAND WITH SILT (SI fine to medium grained; light brown to ligh wet; very loose to loose; dark brown to rec brown mottling between 10 and 21 feet.	P-SM): t gray; ldish		X	© ⁵ 									_					
ם 14 פרי עבי	420	10 -				X	0 ³				×		<mark></mark>	• <u>*•</u> *•****	88.5	22.9					
	415- - -	15 -		:		X	\ @ ⁶ 														
14 14	410-	20 -				X	© ⁶				×		••••••••••••••••••••••••••••••••••••••	• <mark></mark> •	99 • • • • • • • • • • • • •	5.3 24.5					
14 14	405	25 -	20 gallon mud loss between 0 and 37 feet			X	© ⁶														
	400	30	1399.8 SILTY SAND (SM): light gray to gray; wet; to medium dense.	loose 31.0		X	©6				×					13.6	110.8				
	395	35 - - -				X)9 /														
	390	40 -				X	©\ ⁵				×		••••••••••••••••••••••••••••••••••••••			22.8					
2 2 1	385-	45 -	Continued Next Page	•		X	Q.	11													
	ompletio ate Bori ate Bori	on Dep ng Sta ng Cor	oth: 91.9 rted: 7/23/14 mpleted: 7/24/14	Remarks: 4-1/4 inch Borehole was backfille	HSA (ed wit	0 to h ne	14.5 fe eat cem	et. Mu ient gro	d rotary out and	with 3 bentor	8-7/8 inch trico nite slurry	ne from 14	.5 to 89.	9 feet.	·	-	·	- ·			
Lo	gged E	y:	ТТВ	SAMPLE	TYPE	S			V	ATE	R LEVELS (f	ft)				EGE	ND				
	illing C illing M ound S oordina	ontract ethod: urface tes:	tor: Coleman HSA Elevation: 1430.8 N 618,321.6 ft E 2,110,845.8 ft MN State Plane Noth NAD23: NAV228	SPLIT BRASS	5			Ţ	At Time	of Drilli	ing 8.0		MC M Y D ∳ F	loisture C ry Unit W riction An	ontent leight gle		Q _u Un Q _p Ha Gs Sp	confin nd Pe ecific	ed Con netrom Gravity	npress eter U	ion C

H

BA BA	RF	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200								LC)G C)F B	ORIN	IG S	and	pip	er N	/P Shee	407 et 2	′-N of 2	2
D Projec	ct:	Sandpiper Mainline Geotech Survey	Location:	Sano	dpip	per Mainl	ine				C	lient:	North I	Dakota	a Pipe	line	Co., I	LLC			
AT BARF		Barr Project Number: 49/16-1244			ec.												Phys	ical	Prop	ertie	es
ORIZONTAL LOG REPOR	Depth, feet	MATERIAL DESCRIPTIC (ASTM D2488)	ON	Graphic Log	Sample Type & R	STANDARI TE N i	D PEN ST DA	ETRATION TA s/ft 0 40	PL F	WATEI CONTEI %	R NT L 60	GR	SI ANA AVEL SAND	SILT	CLAY	wc %	γ d pcf	ф °	Q _u C	Q _p C	Gs RQD
ייש ד ק פרף אאא 1380– ק 1380– ייש אאג פרף	50	SILTY SAND (SM): light gray to gray; wet; to medium dense. <i>(Continued)</i>	loose		X				>	<		* * * * *			81.9	21.6					
- - - - - - - - - - - - - - -	55				X		18		×							16.2	102				
	60						7														
- - - - - - - -	65						18														
IdH - - - - - - - - - - - - - - - - - - -	70				X		₎₂₀		×							18.2	112.6				
- - - - - - - - - - - - - - - - - - -	75				X		18														
- - - 	80						₎ 20			<		****		••••••••••••••••••••••••••••••••••••••	80	22.2					
	85				X		7														
- - - - - - - - - - - - - - - - - - -	90	1338.9 Bottom of Boring at 91.9 feet	91.9				₎ 19														
6 Complet	ion De	Deth: 91.9	Remarks: 4-1/4 inch	HSA	1 0 to	14.5 feet.	Mud r	otary with 3	1 8-7/8 inc	ch tricon	le from	14.5 to	89.9 fee	t.							
Date Bo	ring Sta ring Co	mpleted: 7/24/14	Borenole was backfil	ea wi	in ne	eat cement	grout	and pento	nite siui	rry.											
	By:	tor: Coleman	SAMPLE	TYPE	ES			WATE	R LEV	ELS (ft)				L	EGE	ND				
Drilling M Drilling M Ground S Coordina	Method Surface ates:	HSA Elevation: 1430.8 N 618,321.6 ft E 2,110,845.8 ft MN State Plane North NAD83; NAVD8₿	Coleman HSA ion: 1430.8 N 618,321.6 ft E 2,110,845.8 ft MN State Plane North NAD83; NAVD88				⊥ A	t Time of Drill	ing 8.⊓	0		Μ Υ •	C Moistur Dry Uni Friction	e Content t Weight Angle	t	((R	Q _u Un Q _p Ha Gs Sp QD Ro	confin nd Pei ecific (ck Qu	ed Con netrom Gravity ality De	npress eter U signa	sion IC tion

BA BA	RR	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200	Lession Sandaina	r Maialina	LOG	OF BORING Sand	Sheet 1 of 2
o Proje 0 m	CI:	Sandpiper Mainine Geotech Survey					
T BAR		Barr Project Number: 49/16-1244	0				Physical Properties
IZONTAL LOG REPOR Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)	Graphic Log Sample Type & R	STANDARD PENETRATIO TEST DATA N in blows/ft	N WATER CONTENT % PL L	SIEVE ANALYSIS	WC \mathbf{Y}_{d} $\mathbf{\phi}$ \mathbf{Q}_{u} \mathbf{Q}_{p} Gs RQD % pcf ° tsf tsf %
TOR Z	¥ o -	Surface Elev.: 1433.6 ft		10 20 30 40	20 40 60	20 40 60 80	
9 9 9 9 1430 1430 1430		1438, Dark brown; moist; organic sandy clay. POORLY GRADED SAND WITH SILT (SP-SM) fine to medium grained; gray; wet; loose.	0.5	3			
- 		2" thick lean clay layer at 6.5 feet.					
- ASALLE CREF	10 -		X	β			-
1420- -	- - 	1418.6					
- - - - - - - - - - - - - - - - - - -	15 · 	GRAVELLY SAND WITH SILT (SP-SM): mediu to coarse grained; gray; wet; medium dense to dense.	n 15.0	e ²⁷	×	48.9 93.	7 13.9
	20 -				42		
-1410 UEV - WEWI - WEWI	25						_
- ELACE - 3 REPLACE - 1402 - E							
Comple	tion Dep	th: 57.0 Continued Next Page	rks: 4-1/4 inch HSA 0 to 25	5 feet. Mud rotary with	3-7/8 inch tricone from 2	25 to 57 feet.	
Date Bo	oring State oring Co	Inted: 8/4/14 Boreh mpleted: 8/5/14	ole was backfilled with neat	cement grout slurry.			
	By:	IGM	SAMPLE TYPES	WA	TER LEVELS (ft)	l	EGEND
Drilling Ord Ground Coordin	Method: Surface ates:	HSA Elevation: 1433.6 N 616,036.2 ft E 2,112,030.6 ft MN State Plane North NAD83; NAVD88	3-inch DN Shelby Tube	⊥ At Time of ⊥ After Drillin Pressurized	Drilling 3.7 g 0.0 I groundwater	MCMoisture ContentγDry Unit Weight♦Friction Angle	Q _u Unconfined Compression Q _p Hand Penetrometer UC Gs Specific Gravity RQD Rock Quality Designation

BA	RR	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200										L	.OG	OF	BOF	RING	i Sa	ndp	oip	er l	MP She	40	7-S	5 2	
Projec	st:	Sandpiper Mainline Geotech Survey		Location:	San	dpip	oer N	lainline	•					Clie	nt: No	rth Da	ikota F	Pipelii	ne (Co.,	LLC	;		2	
set	t	Barr Project Number: 49/16-1244	I		D D	Rec.	STA					WA	TER			SIEVE	=			Phy	sical	Pro	pert	ies	
Elevation, fe	Depth, fee	MATERIAL DESCRIPTI (ASTM D2488)	ON		Graphic Lo	Sample Type &	1	N in blo	DATA	40	PL ┣─	CON^{-}	TENT ~ 0 6(GRAVEL	ANALYS	SIS SILT CL FINES		VC %	γ d pcf	∳ ∘	Q _u tsf	Q _p tsf	Gs I	RQD %
	30 -	Transition to sandy silt (ML) from 30 to 3 1401.6 LEAN CLAY (CL): gray; moist; soft; inter fine sand laminations.	2 feet. mittent	32.0				©18			>	×		(12.6		8	6.3	9.9	112.5					
	35 -						/ @4				17 F	25 M						2	2.7				0.25		
1395– - -	40 -	1393.6 SILTY SAND (SM): fine to coarse graine wet: very loose to loose: pressurized law	d; gray;	40.0								×							23	109.2		0.45			
- 1390– -	45 -	blow counts likely due to pressurized gro with a little gravel.	oundwater,				 																		
- - 1385-	50 -						ү 																		
- - - 1380-	-	-				Ŕ	1 \ \ \																		
	55 -	Little gravel at 55 feet. 1376.6 Bottom of Boring at 57.0 feet		57.0			©	3			×				10.3	••••••••••••••••••••••••••••••••••••••	82 ••••••	3 	0.2						
	- 60 -	Boring terminated at a depth of 57 feet of presence of pressurized groundwa	due to the ater																						
Complet Date Bo	ion Dep ing Sta ing Co	oth: 57.0 Inted: 8/4/14 Impleted: 8/5/14	Remarks Borehole	s: 4-1/4 inch e was backfill	HSA led wi	0 to th ne	25 fe eat ce	et. Mud r ment gro	otary v ut slur	vith 3-7 ry.	/8 incl	n tricor	ne fron	n 25 to	o 57 feet										
	By:	IGM		SAMPLE	TYPE	ES			V	VATE	R LE\	/ELS	(ft)					LE	GEN	ND					
Drilling (lethod	tor: Coleman HSA		3-inch Shelby	Tube			Ţ	At Tim	e of Drilli	ng 3	3.7 			MC M	oisture C	ontent		C	⊋ _u Ur	nconfir	ned Co	ompres	ssion	
Ground Coordina	surface ates:	Elevation: 1433.6 N 616,036.2 ft E 2,112,030.6 ft MN State Plane North NAD83 [,] NA\/D8	3					<u> ⊻</u>	After D Pressu	rilling irized gro	0 undwat	ier			φ Fi	iction An	gle		С С Р(א _ף ⊓≊ Ss Sp רו⊂ פי	Decific	Gravit	inerei ty Design	ation	

GDT

_

BA	RF	Barr E 325 So Duluth Teleph	ngineering Company buth Lake Avenue, Suite 700 , MN 55802 hone: 218-529-8200									I	LOG	g of	BO	RINC	G LS	5-20)-H	A-1	She	eet ⁷	1 of	1	
Proje	ct:	Line 3 Re	placement LaSalle Creek	Location	Hub	obai	rd and	Clea	arwa	ter Co	ounty,	MN		Clie	nt: Er	nbridge	e Enei	rgy							
		Barr Proje	ect Number: 49/16-1299.11			ec.														Phy	/sica	l Pro	oper	ties	
Elevation, feet	Depth, feet		MATERIAL DESCRIPT (ASTM D2488)	ION	Graphic Log	Sample Type & R	STAN	DARD TES N in	PENE T DAT	etratic ΓΑ s/ft	DN PL	COI	ATER NTENT %	LL — I	GRAVEL	SIE\ ANALY SAND			wc %	γ d pcf	\$	Q _u tsf	Q _p tsf	Gs	RQD %
	0.0	Surface E	Elev.: 1432.0 ft		2.50	1.	10	20	30) 40		20	40 (60	20	40	<u>60</u> 8	30							
1430.0-	2.5	- to co trace	RLY GRADED SAND WITH SILT (S arse grained; brown; moist to wet; 2" e roots, trace gravel, some black mottl le at 2 feet.	e, and		T					×				0 ⁸	<u></u>	· · · · · · · · · · · · · · · · · · ·	<mark></mark> 92.4	5.8						
1427.5	- 5.0	-																							
	7.5	- - - <u>1423.5</u> - SILT	Y SAND (SM): fine to coarse grained	; light	8.5	B					×				4	••••	••••••	92.5	10.3						
1422.5 NOT	10.0	1422.0 ^{prow}	n; wet; trace gravel and some black r Bottom of Boring at 10.0 feet	1 nottie.	0.0	<u></u>																			1
	12.5																								1
	15.0	-																							
	17.5	- - -																							
ц 	20.0	+		1																					
Complet Date Bo Date Bo	tion Dep ring Sta ring Cor	oth: irted: mpleted:	10.0 4/20/20 4/20/20	Remarks: Boring grout.	was com	plete	ed in a g	rassy f	field u	using a 2	2-1/2 inc	h buck	et auge	er from	a depth	of 0 to 1	0 feet. I	Boring	was	backfi	lled w	/ith ne	eat ce	ement	
Drilling (By: Contract	tor:	MLH2 Barr/Coleman	SAMP	LE TYP	ES			_	WA	TER LE	EVELS	S (ft)					L	EGE	ND					
Ground Coordina	Vethod: Surface ates:	Elevation:	Hand Auger 1432.0 N 61,973.5 ft E 2,110,082.1 ft MN State Plane NAD83; NAVD88	In Gruenan Ind Auger 32.0 51,973.5 ft E 2,110,082.1 ft N State Plane NAD83; NAVD88						Time of E y	Drilling				ΜC Ν Υ [φ F	Noisture Dry Unit \ Friction A	Content Neight Ingle		F	Q _u U Q _p H Gs S XQD R	Inconfi Iand P Specific Rock Q	ined C Penetro c Grav Qualitv	Compr omete vity Desig	essio er UC gnatio	ו ז

BA	RR	Barr Ei 325 Sc Duluth Teleph	ngineering Company outh Lake Avenue, Suite 700 , MN 55802 oone: 218-529-8200	I										L	. O G	g of	F BC	DRI	NG	LS	-20)-H/	A-2	She	et ²	1 of	1	
Projec	xt: L	_ine 3 Re	placement LaSalle Creek		Location:	Hub	bar	d and	l Cle	arwa	ater C	oun	ty, N	1N		Clie	nt: I	Enbr	idge	Energ	gy							
		Barr Proje	ect Number: 49/16-1299.11				ec.																Phy	sical	l Pro	per	ties	
Elevation, feet	Depth, feet		MATERIAL DESCRIPT (ASTM D2488)	ION		Graphic Log	Sample Type & R	STAN	DARD TES N in) PENE ST DA	ETRATI(TA s/ft	ON	PL		TER TENT %		GRAV	Al /el sa			AY	WC %	γ d	\$	Q _u tsf	Q _p tsf	Gs	RQD %
<u></u>	0.0-	Surface E	ilev.: 1433.0 ft			1.172		10	20) 3(0 40		2	20 4	0 6	60	2	04	0 6	0 80)							
1432.5 	2.5	1432.51 OP mois POO to me wet; belov	SOL: fine to medium grained; dark t t; 2" topsoil, trace roots, trace gravel. RLY GRADED SAND WITH SILT (S edium grained; brown to light brown; trace gravel, trace roots and fibers to v 9.5 feet.	Prown; P-SM): fine moist to 2 feet, wet	0.5		Ra Na						×				3 <mark></mark>	• • • • •	••••••	0 0 0 0 0 0 0 0 0 0	9 3.9	5.3						
	5.0-																											
- - - -	7.5						. T						×				<mark>0 8</mark>	••••••	<mark></mark>	<mark></mark>	94.1	5.6						
	10.0-	1423.0	Bottom of Boring at 10.0 feet		10.0	<u></u> '																						
	12.5																											
	- 15.0- -																											
VIIAED.GFJ	17.5 _																											
	20.0-																											
Completi Date Bor Date Bor	ion Depti ing Start ing Com	h: ied: ipleted:	10.0 4/20/20 4/20/20	Remark grout.	s: Boring was	comp	oleteo	d in a g	rassy	field u	using a	2-1/2	2 inch	bucke	t auge	er from	a dept	h of 0	to 10	feet. B	oring	was b	backfi	lled wi	ith ne	eat ce	ment	
Logged E	By: Contracto	or:	MLH2 Barr/Coleman		SAMPLE	TYP	ES				WA	TEF	R LE	VELS	(ft)						L	EGE	ND					
Drilling N Ground S Coordina	lethod: Surface E ites:	Elevation:	Hand Auger 1433.0 N 619,020.6 ft E 2,110,488.7 ft MN State Plane NAD83; NAVD88	GRAB	E				-	⊥ At Di	t Time of⊺ ry	Drillinç	g				MC γ φ	Mois Dry I Frict	ture Co Unit W ion Ang	ontent eight gle		(((R	Q _u U Q _p H GsS QDR	nconfi and Po pecific ock Qi	ined C enetro c Grav uality	Compro comete /ity Desig	essior r UC Ination	1

BA	R	Barr Er 325 So Duluth, Teleph	ngineering Company uth Lake Avenue, Suite 700 MN 55802 one: 218-529-8200									L	OG	OF	BO	RING	i LS	-20	-H/	4- 3	She	et 1	of	1
Proje	ect:	Line 3 Rep	blacement LaSalle Creek	Location:	Hub	bar	d and	Clear	water	Cour	nty, M	N		Clie	nt: Er	nbridge	Energ	ду						
		Barr Proje	ct Number: 49/16-1299.11	I	-	ec.								I						Phys	sical	Pro	pert	ies
Elevation, feet	Depth, feet		MATERIAL DESCRIPTI (ASTM D2488)	ON	Graphic Log	ample Type & R	STANE	ARD P TEST N in bl	ENETRA DATA lows/ft	ATION	PL	WAT CONT %	TER TENT 6	LL	GRAVEL	SIEV ANALY SAND			NC %	γ d	¢ °	Q _u tsf	Q _p tsf	Gs RQD
F		Surface E	ev.: 1425.9 ft			S	10	20	30	40	2	0 4	0 6	0	20	40	60 80							
	0.0	SILT	(SAND (SM): fine to medium grained	l; brown;																				
ITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	_	POOL	RLY GRADED SAND WITH SILT (SF	P-SM): fine 1.0	9	B					×			() <mark></mark>	····	••••••••••••••••••••••••••••••••••••••	••95.1	10.1					
비 H J J J J J J J J J J J J J J J J J J	¥ ^{2.5} -	POOI graine	dum grained; brown; moist; trace gra RLY GRADED SAND (SP): fine to me i, light brown; wet to saturated; cavir	edium 2.5 ng hole at)) 																			
030 84 8 1420.0	- 5.0) - -																						
ยัง ยา 1417.5	7.5					- -						×		(· · · · · · · · · · · · · · · · · · ·	• • • • • • •	•••96.8;	22.4					
RIZONTAL L	- 10.	0_ <u>1415.9</u> _	Bottom of Boring at 10.0 feet	10.0)																			
3Y.GLB HOI	12.	5																						
3ARRLIBRAF	15.	- 0- _																						
(FIXED).GPJ E	17.	_ 5																						
CREEK	20.	- 0-																						
Comple Date B Date B	etion De oring Sta	pth: arted: pmpleted:	10.0 4/20/20 4/20/20	Remarks: Boring was to 9 feet, 4 feet of blo	s comp wup in	leteo the	d in a grace di indi in a grace di indi indi indi indi indi indi indi	assy fie Boring	eld using was bao	g a 2-1/ ckfilled	2 inch with ne	bucket eat cen	t auger nent gr	r from rout.	a depth	of 0 to 10) feet. 3-	-inch d	iame	ter P\	/C ca	sing a	advan	ced
m Logged	By: Contrac	tor	MLH2 Barr/Coleman	SAMPLE	TYPE	ΞS			٧	VATE	R LEV	/ELS	(ft)					LE	GEN	ND				
Drilling 6621 Ground Coordir Datum:	Method Surface ates:	: e Elevation:	Hand Auger 1425.9 N 618,354.2 ft E 2,110,895.8 ft MN State Plane NAD83; NAVD88	GRAB SAMPLE				Ţ	At Time	e of Drillin	ig 3	.0			MC I γ Ι ∳ Ι	Moisture (Dry Unit W Friction Ar	Content / eight ngle		0 0 0 <u>R</u> 0	Qູ Ur Q _p Ha ⊖s Sp Q <u>D R</u> o	nconfir and Pe becific <u>bck Q</u> u	ned Co enetro Gravi uality [ompre meter ity <u>Desig</u> r	ssion UC nation

BA	RF	Barr Engineering Company 325 South Lake Avenue, Suite 70 Duluth, MN 55802 Telephone: 218-529-8200	0								LO	ig of	= BOI	RING	LS-	-20-H	IA-4	l She	eet ´	1 of	1
Projec	et:	Line 3 Replacement LaSalle Creek	Location:	Hub	bar	rd and	d Clea	arwat	er Cou	nty, M	N	Clie	ent: Er	ıbridge	Energ	У					
		Barr Project Number: 49/16-1299.1	1		ů.												Phy	/sica	l Pro	opert	ies
Elevation, feet	Depth, feet	MATERIAL DESCRIP (ASTM D2488)	TION	Graphic Log	ample Type & R	STAN	IDARD TES ⁻ N in	PENET T DATA blows/f	RATION	PL	WATEF CONTEN %	R NT LL	GRAVEL			v WC	γ _d	\$	Q _u tsf	Q _p tsf	Gs RQD %
7		Surface Elev.: 1420.9 ft			S	10) 20	30	40	20	0 40	60	20	40	60 80						
9 4 1420.0-	-0.0	PEAT (PT): black; saturated; fibric.																			
- - - - - - - - - - - - - - - - - - -	2.5				B							59	¥ 95.8			595.8	3				
- 5 ¥ 1415.0−	5.0)- 1414.9																			
- - - - - - - - - - - - - - - - - - -	7.5	PEAT (PT): dark brown; saturated; hem	с. б	.0																	
- 1410.0 -	10.0	ORGANIC SILT WITH SAND (OH): gra saturated; with shells.	/ to brown; 9	5									0		80.9	9					
	12.5	- 5																			
	15.0	Bottom of Boring at 14.0 fee	st 14	.0																	
KEEK(FIXEU).Gr	17.5	5 - - 0-																			
Complet Date Bor	ion Dep	pth: 14.0 arted: 4/21/20	Remarks: Boring wa and bentonite grout.	as com See Ta	plete able 2	ed in a w 2-2 in re	vooded eport fo	area u or resul	sing a 2- ts of Atte	1/2 inch rberg L	n bucket a imits and	auger fror water co	n a depth ntent test	of 0 to 7 ing for th	14 feet. E ne grab s	Boring wa ample co	l Is back Illected	filled at 11	with a l.5 fee	a cemo et.	ent
	ing Cor By:	MLH2	SAMPI	= TYP	FS				WATE	RIF	FIS (ft))				I FGF	=ND				
Drilling C Drilling N Ground S	Contract Nethod: Gurface	ctor: Barr/Coleman Hand Auger e Elevation: 1420.9 Net8 204 0 ft E 2.114 086 0 ft	GRAB SAMPLE				Ī	🚺 At Ti	me of Drilli	ng 0.	.0	1		Noisture (Dry Unit W	Content / eight			Jnconf land P	ined C Penetro	ompre ometei	ession ∙UC
Datum:	iles:	M 018,294.9 ft E 2,111,086.8 ft MN State Plane NAD83; NAVD88											ଦ ା	Incuori Ar	igle	F	RQD F	Rock Q	Quality	ny Desig	nation

BA	RR	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200										L	OG	OF	BO	RING	G L	S-20)-H/	A-5	; She	et '	1 of	1	
Projec	ct: I	Line 3 Replacement LaSalle Creek	Location:	Hubb	bar	d and	l Clea	arwa	ter Co	ounty	/, MI	N		Client	t: Er	ıbridg	e Ene	rgy							
		Barr Project Number: 49/16-1299.11		-	ec.															Phy	/sica	l Pro	perl	ties	
Elevation, feet	Depth, feet	MATERIAL DESCRIPT (ASTM D2488)	ON	Graphic Log	ample Type & R	STAN	IDARD TEST	PENE T DAT blows/	TRATIC A	NC	PL	WATI CONTI %	ER ENT		GRAVEL	SIE ANAL		CLAY	wc %	γ d	ф °	Q _u tsf	Q _p tsf	Gs	RQD %
LO	0.0-	Surface Elev.: 1417.1 ft			0,	10) 20	30	40		20) 40	60		20	40	60	80							
станов 	2.5	PEAT (PT): black; saturated; tibric.			-																				
- 1412.5 - - - -	- 5.0 - 	PEAT (PT): brown; saturated; hemic.	4.5	-	8 2									564.	.9				564.9						
1410.0- 	7.5	ORGANIC SILT WITH SAND (OH): gray; with shells.	saturated; 7.3		5									0	21.7		8	31.5							
1407.5 - 	- 10.0-	-																							
HOH 1405.0- 1910-	12.5	Interbedded with brown hemic peat.																							
BARRLIBR	15.0-	Bottom of Boring at 14.5 feet	14.5																						
(FIXED).GPJ	17.5	-																							
CREK	20.0	-																							
Date Boi	ion Dept ring Star ring Con	th: 14.5 ted: 4/21/20 npleted: 4/21/20	Remarks: Boring was cement grout. See Tal	compl ble 2-2	etec in r	d in a w eport fo	vooded or resu	area Its of	using a Atterbe	a 3-1/4 erg Lin	l inch nits ai	bucke nd wate	t auger er conte	from ent tes	a depth sting for	of 0 to the gra	14.9 fe ab samp	et. Bori ble colle	ng wa	as bao at 8.5	ckfille feet.	d with	i a ne	at	
m Logged I	- By: Contract	DAP Barr/Coleman	SAMPLE	TYPE	S				WA	TER	LEV	ELS (1	ft)					LI	EGE	ND					
Drilling 0 Drilling N Ground S Coordina	Aethod: Surface	Hand Auger Elevation: 1417.1 N 618,235.6 ft E 2,111,277.8 ft MN State Plane NAD83; NAVD88	GRAB SAMPLE				Ī	L At	Time of [Drilling	1.0	0			MC Μ Υ [Φ F	Noisture Dry Unit Friction /	Content Weight Angle	I	(((R	Q _u U Q _p H GsS QDR	nconfi and P pecific tock Q	ined C enetro c Grav uality	ompre ometer ity Desig	∍ssior r UC ∣natior	ו ו

BA	RR	Barr Engineering Comp 325 South Lake Avenue Duluth, MN 55802 Telephone: 218-529-8	oany e, Suite 700 200									L	og () F	BOR	RING	LS	-20-H	IA-{	5-A She	eet 1	1 of	1	
Projec	ct: L	Line 3 Replacement LaSal	lle Creek	Location:	Hub	bar	d and	Clea	rwate	r Cou	nty, M	IN	(Client:	Ent	oridge	Energ	јУ						
		Barr Project Number: 49/	16-1299.11			ec.													Ph	ysica	l Pro	operl	ies	
Elevation, feet	Depth, feet	MATERIAL (AST	DESCRIPTION M D2488)		Graphic Log	Sample Type & R	STANE	NARD F TEST	PENETF DATA	RATION	PL	WATI CONTI %	ER ENT		GRAVEL	SIEVI ANALY		wc	; γ _d pcf	¢ °	Q _u tsf	Q _p tsf	Gs F	م ۲QD %
5	0.0-	Surface Elev.: 1414.2 ft					10	20	30	40	2	0 40	60		20	40	60 80	_				⊢––		
	2.5	PEAT (PT): black; saturate - 2.5 feet.	ed; fibric, no recovery 2 to																					
1410.0-	5.0-	1409.7 ORGANIC SILT (OH): gra wood in sample at 13 and	4.5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									_										
1407.5	7.5													0	13.7		82.	.2						
	10.0-													159				159						
- - - - - - - - - - - - - - - - - - -	12.5													137.4	L			137.4	4					
	15.0- -	Bottom of Bori	ing at 14.9 feet	14.9) 																			
AEEN LIAEU.	17.5																							
Complet	ion Dept	h: 14.9 ted: 4/22/20	Remark feet. Bo	ks: Boring was	comp filled w	leteo /ith a	d in a we	etland at t and b	area im entoni	mediate te grout.	ly adja See Ta	cent to L able 2-2	_aSalle (in repor	Creek	using a esults o	3-1/4 i of Atterb	nch buck berg Limi	ket auger ts and wa	from ater co	a dept	h of C testin) to 14	.9 the	-
Date Bor	ring Com	npleted: 4/22/20	grab sa	mple collected	at 7.0	feet	t.										U							
Drilling C	ву: Contracto	DAP br: Barr/Coleman		SAMPLE	TYPE	ES			A . T	WATE	R LE	/ELS (1	ft)					LEG	END					
Drilling N Ground S Coordina	/lethod: Surface E ates:	Hand Auger Elevation: 1414.2 N 618,212.3 ft E 2,11	1,374.3 ft	LE					At Tin	ne of Drilli	ng 1	1.0			MC Mo γ Dr ∳ Fri	oisture C y Unit W iction Ar	Content / eight ngle		Q _u U Q _p H Gs S	Jnconf Hand P Specific	ined C Penetro c Grav	Compre ometer vity	∍ssion ⁻ UC	
Datum:		MN State Plane NAD8	33; NAVD88																RQD F	Rock Q	Quality	Desig	nation	

BA	RF	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200									L	.OG	OF I	BOR	ING	LS-2	2 0- H	IA-6	5 She	eet ^r	l of	1
Projec	xt:	Line 3 Replacement LaSalle Creek	Location:	Hub	bar	d and	Clea	irwate	er Cour	nty, M	N		Client:	Enb	ridge I	Energy						
		Barr Project Number: 49/16-1299.11			ю.													Ph	ysica	l Pro	pert	ies
Elevation, feet	Depth, feet	MATERIAL DESCRIPT (ASTM D2488)	ION	Graphic Log	ample Type & R€	STANE	DARD F TEST	PENETF F DATA blows/ft	RATION	PL	WA CON %	TER TENT 6		GRAVEL S		S T CLAY FINES	wc %	γ _d	ф •	Q _u tsf	Q _p tsf	Gs RQD
- 7		Surface Elev.: 1414.2 ft			ŝ	10	20	30	40	2	0 4	、 0 6	0	20	40 60							
	¥-0.0	PEAT (PT): dark brown; saturated; fibric.									<u> </u>											
- 	2.5																_					
291410.0- 1410.0- -	5.0	- 1410.0 ORGANIC SILT (OH): gray; saturated; tra harder drilling at 6 feet.	ace shells, 4.2		,,,,,,,,,												_					
1407.5 	7.5	-			,,,,,,,,,,,,,												_					
1405.0- 	10.0	1404.2 1403.7PLASTIC SILT (MH): gray; moist; hard dr roots and fibers.	illing, trace10.0 10.5									50 × ┣	0	27.1		86	41.9					
21402.5 	12.5	ORGANIC SILT (OH): gray; wet; sand ler	ise at 12																			
		1400.2 SILT (ML): gray; wet.	13.0		3					18	20 X		0 <mark></mark>	27		82.4	27.5					
DARKLIDR	15.0	Bottom of Boring at 14.0 feet	14.0																			
ri AEU).GFJ	17.5	5 																				
CKEEN	20.0	- 																				
Completi Date Bor Date Bor	ion Dep ing Sta ing Cor	pth: 14.0 arted: 4/21/20 mpleted: 4/21/20	Remarks: Boring was feet. Boring was back	comp illed u	lete	d in a we a neat o	etland cemen	area in nt grout	nmediate	ly adja	cent to	LaSal	le Creek	using a	2-1/2 ind	ch bucke	auger	from a	a dept	h of C	to 14	
	By:	MLH2 Barr/Coleman	SAMPLE	TYPE	ΞS				WATE	R LE\	/ELS	(ft)					LEGE	END				
Drilling C Drilling N Ground S	ontract lethod: Surface	tor: Barr/Coleman : Hand Auger ≥ Elevation: 1414.2 Note 140 420 0 5 5 0 111 100 5 5	GRAB SAMPLE				Ī	At Tin	ne of Drillin	ng C	0.0			MC Moi	sture Co Unit We	entent eight		Q _u U Q _p H	Jnconf Hand P	ined C Penetro	Compre ometer	ession · UC
Coordina	ites:	N 618,176.3 ft E 2,111,468.8 ft MN State Plane NAD83; NAVD88												¶ ⊢rio	uon Ang	le	F	GS S RQD F	Specific Rock C	uality	nty Desig	nation

325 South Lake Avenue, Suite 700 LOG OF BORING LS-20-HA-7 Duluth, MN 55802 BARR Telephone: 218-529-8200 Sheet 1 of 1 Line 3 Replacement LaSalle Creek Hubbard and Clearwater County, MN Enbridge Energy Location: Project: Client: 49/16-1299.11 Barr Project Number: **Physical Properties** Rec. WATER feet STANDARD PENETRATION Depth, feet SIEVE Graphic Log Sample Type & CONTENT ANALYSIS TEST DATA Elevation, % MATERIAL DESCRIPTION (ASTM D2488) Q_{p} Gs RQD WC γd φ Q_{u} GRAVEL SAND SILT CLAY PL ******* LL 0 % tsf % pcf tsf N in blows/ft H. FINES ł 1418.5 ft Surface Elev .: 10 20 30 40 20 40 60 20 40 60 80 PEAT (PT): black; saturated; fibric. ₩1417.5 1417.0 BARR GEOTECH TEMPLA BARR G B 429.5 PEAT (PT): black; saturated; hemic. 1.5 429.5 2.5 5.0 REPOR 1411.0 7.5 3 ORGANIC SILT (OH): gray; saturated. 7.5 ဗ<mark>္</mark>ဗ**1**410.0-1409.3 10.0 1408.5SILTY SAND (SM): very fine to fine grained; gray; 9.2 THORIZONTAL 1407.5 wet. 10.0 ORGANIC SILT (OH): gray; saturated. 1406.5 12.5 CLAYEY SAND (SC): fine grained; greenish blue; wet; hard drilling. 12.0 GLB 13.0 405.0-<u>-IBRARY.</u> SILTY CLAY (CL-ML): gray; saturated. 17 23 HHX 0<mark>,</mark>12.5 26.4 1403.6 15.0 14.9 Bottom of Boring at 14.9 feet 17.5 20.0-Completion Depth: 14.9 Remarks: Boring was completed in a wooded area using a 3-1/4 inch bucket auger from a depth of 0 to 14.9 feet. Boring was backfilled with a Date Boring Started: 4/21/20 cement and bentonite grout. See Table 2-2 in report for results of Atterberg Limits and water content testing for the grab sample collected at 7.5 feet. Date Boring Completed: 4/21/20 Logged By: DAP SAMPLE TYPES WATER LEVELS (ft) LEGEND Drilling Contractor: Barr/Coleman At Time of Drilling 0.0 MC Moisture Content Q. Unconfined Compression GRAB SAMPLE Drilling Method: Hand Auger Q_n Hand Penetrometer UC Dry Unit Weight Ground Surface Elevation: 1418.5 Friction Angle Gs Specific Gravity N 618,177.0 ft E 2,111,659.8 ft Coordinates: Datum: MN State Plane NAD83; NAVD88 RQD Rock Quality Designation

The stratification lines represent approximate boundaries. The transition may be gradual.

Barr Engineering Company

BA	RF	Barr E 325 Se Duluth Telepl	ngineering Company outh Lake Avenue, Suite 700 n, MN 55802 hone: 218-529-8200									L	OG	OF E	BOR	ING	i LS	-20-	ΗA	8 S	heet	1 o	f 1	
Proje	ct:	Line 3 Re	placement LaSalle Creek	Location:	Hub	bar	d and	Clear	wate	r Cour	nty, N	1N		Client:	Enb	oridge	Energ	јУ						
		Barr Proj	ect Number: 49/16-1299.11	1		ec.							<u> </u>						F	Physi	cal F	rope	rties	
Elevation, feet	Depth, feet		MATERIAL DESCRIPT (ASTM D2488)	ION	Graphic Log	ample Type & R	STAN	DARD PE TEST I N in blo	ENETR DATA ows/ft	ATION	PL	WATI CONTI %	ER ENT		GRAVEL		E SIS SILT CLA FINES	.v V	/C '	Yd ¢	Q ts	, Q _p f tsf	Gs	RQD %
ц,		Surface I	Elev.: 1424.0 ft			S	10	20	30	40	2	20 40	60	-	20	40	60 80							
ЦÜ.	-0.0	PEA	T (PT): black; saturated; fibric.																					
41422.5																								
CH TEN	2.5	1420.8					-+																	
Ĕ1420.0-	-		GANIC SILT (OH): gray; saturated.	3.2																				
BARR GE	- 5.0		[⊂] WITH SAND (ML): gray; wet; hard d ey at 7 feet with easier drilling.	rilling, 5.0		2 1 10 10					19	21 • X		0	22.1		84	1.7	27					
1417.5 NO	7.5	_																						
20 1415.0-																								
ONTAL	- 10.0	- POC 1413.2 _{vet}	ORLY GRADED SAND (SP): fine grain	ned; gray; 9.7							×			0 <mark></mark>	<mark></mark>	• <mark>•••••••</mark> ••••••••••••••••••••••••••••	72.4	93.1 1	7.6					
01412.5		SILT	TY SAND (SM): very fine to fine graine	ed; gray; 10.8																				
	12.5	- satu	rated.																					
× 1410 0-		1410.0																						
SLIBR	15.0	Н	Bottom of Boring at 14.0 feet	14.0																				
BAR		-																						
).GPJ	17 6	_																						
FIXED		-																						
REEK		1																						
Сотрен	20.0 tion Der	거 oth:	14.0	Remarks: Boring was			d in a w	noded a	reaus	 ing a ?-'	 1/2 inc	h bucket	t auger	from a	depth c	of 0 to 1	 14 feet F	Boring	Nas P	ackfill	ed wit		 at	
Date Bo	ring Sta	arted:	4/22/20 4/22/20	cement grout.		protot		00000	54 45	ng a Z-	., 2 110		augor	noma	aopurt	. 0 10		Jonny		CONTIN		1 4 110		
	By:		MLH2	SAMPLE	TYP	ES			1	WATE	R LE	VELS (1	ft)					LE	GEN	D				
	Contrac Method:	tor:	Barr/Coleman Hand Auger	GRAB				Ţ	At Tim	e of Drillin	ng (0.0	,	1	MC Mo	isture C	Content		Q	, Unc	onfine	l Comp	oressio	on
Ground	Surface	e Elevation:	1424.0 N 618 057 7 ft E 2 111 850 8 ft	SAMPLE											γ Dry Fride	/ Unit W ction Ar	/eight nale		Q	, Han Spei	d Pene cific G	tromet avitv	er UC	
Datum:			MN State Plane NAD83; NAVD88												¥		J		RQ	D Roc	k Qual	ty Des	ignatic	n

BA	RR	Barr Er 325 So Duluth, Teleph	ngineering Company uth Lake Avenue, Suite 700 MN 55802 one: 218-529-8200											L	.00	g of	F BC	ORI	NG	LS-2	2 0- H	A-9) She	eet ´	l of	1	
Proje	ct:	Line 3 Rep	blacement LaSalle Creek	Lo	ocation:	Hubb	oard	d and	Clea	arwa	iter C	Coun	ty, N	IN		Clie	ent: E	Enbr	idge	Energy							
		Barr Proje	ct Number: 49/16-1299.11				ů.									-						Ph	ysica	l Pro	pert	ies	
Elevation, feet	Depth, feet		MATERIAL DESCRIPT (ASTM D2488)	ON		Graphic Log	Sample Type & Re	STAN	DARD TES N in	PENE T DAT	ETRAT ΓΑ s/ft	ION	PL	WA CON	TER TENT %	LL 1	GRAV	Al /el sa			wc %	γ _d	ф °	Q _u tsf	Q _p tsf	Gs F	 RQD %
Ц	- 0.0-	Surface El	lev.: 1431.2 ft				•,	10	20	30) 4()	2	20 4	10	60	2	0 4	0 6	0 80	<u> </u>						
0.01 1430.0-	¥ .	1430.5PEAT ORG/ 1429.2trace	(PT): dark brown; saturated; fibric. ANIC SILT (OH): gray; wet; some sat roots.	nd and	0.7																						
비 번 번 1427.5	2.5	SANE	OY SILT (ML): gray; wet.		2.0		3							×			0 <mark></mark>	••••••	47.4	87.	9 24.3						
0 9 8 9 8 8 8 8 1425.0-	5.0	1426.2 SILTY wet; S	/ SAND (SM): fine to medium graine SP sand lense 5.5 to 6.0 feet, with irc	d; gray; n staining.	5.0		-																				
юдан 901422.5	7.5	-					- -						×				0	* * * * *	••• 5 3		16.1						
RIZONTAL	10.0	1421.2	Bottom of Boring at 10.0 feet		10.0																						
RY.GLB HOI	12.5	-																									
BARRLIBRA	15.0	-																									
(FIXED).GPJ	17.5	_																									
CREEK	20.0	-																									
Understanding Complexity Date Bo Date Bo	tion Dep ring Star ring Con	ıth: rted: npleted:	10.0 4/22/20 4/22/20	Remarks: E and bentoni	Boring was te grout.	compl	eted	in a w	ooded	l area	using	a 2-1	/2 inc	h buck	ket aug	ger fror	n a dep	oth of	0 to 10) feet. Bo	ring wa	is bacl	kfilled	with a	a cem	ent	
C Logged	By: Contract	or	DAP Barr/Coleman	S	SAMPLE ⁻	TYPE	S				W	ATEF	R LEV	/ELS	(ft)						LEG	END					
Drilling I 662 Ground Coordina	Vethod: Surface ates:	Elevation:	Hand Auger 1431.2 N 617,965.3 ft E 2,112,006.7 ft	GRAB					-	Ţ At	Time o	f Drilling	g 1	1.0			MC γ φ	Mois Dry l Fricti	ture Co Jnit We ion Ang	ontent eight gle		Q _u l Q _p H Gs S	Jnconf Hand P Specific	ined C Penetro c Grav	Compre ometer vity	∍ssion ∙UC	
Datum:			IVIN STATE PLANE INAD83; INAVD88																			KQD F	kock Q	luality	Desig	nation	
BA	RF	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200									L	OG	OF	BC	ORI	NG	LS	S-2()-H	A-1	0 She	et '	1 of	[;] 1			
----------------------------------	----------------	---	---------------	-------------	----------------	-------	-----------------------------------	--------------------------	-------	----------	------------------	--------	---------	-------	---------------------------------------	--------	-----------------------	-----------	---------	------------	-----------------	-----------------------	-----------------------	----------------			
Proje	ect:	Line 3 Replacement LaSalle Creek	Location:	Hub	bai	rd an	d Clearw	ater Co	oun	ity, Ml	N		Clie	nt: I	Enbr	idge	Enei	ſġy									
		Barr Project Number: 49/16-1299.11			ы С															Phy	/sica	l Prc	oper	ties			
Elevation, feet	Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)		Graphic Log	ample Type & R	STA	NDARD PEN TEST D/ N in blov	IETRATIO ATA /s/ft	ЛС	PL	WAT CONT %			GRAN	AI VEL SA				wc %	γ d	\$	Q _u tsf	Q _p tsf	Gs			
5	0	Surface Elev.: 1431.6 ft			00		0 20	<u>30 40</u>		20	0 40	0 6	0	2	20 4	10 6	<u>111111</u> 30 8	<u>80</u>									
LATE G	- 0.0	PEAT (PT): black; moist; fibric with roots.																									
	¥ - 2.5	ORGANIC SILT (OH): black; wet.	2.0																-								
1427.5	5.0	1426.6 1425.6 1425.6 SILTY SAND (SM): fine grained; gray; wet.	5.0								×		(· · · · · · · · · · · · · · · · · · ·	******	63		25								
a 1425.0 ₽ 2004 2004	- 7.5	POORLY GRADED SAND (SP): fine grained; browr 1424. faturated. SILTY SAND (SM): fine grained; gray; saturated.	n; 6.0 7.5																								
1422.5	- - 10.0	1422.6 1421.6 Bottom of Boring at 10.0 feet	9.0		: •						×		(0	27.1			91.9	25.8								
RY.GLB HOF	12.5																										
BARRLIBRA	15.0																										
EK(FIXED).GPJ	17.5	-																									
CREE	20.0	-																									
Ш Compl	tion Der	th: 10.0 Pomark	c: Boring was	comp	loto	dina	woodod org		- 2 1	1/2 inch		at aug	or fron		nth of	0 to 1	0 foot	Dorin		book	filled	with a					

RQD %

Completion Depth:	10.0	Remarks: Boring was completed in a wood	ed area using a 2-1/2 inch bucket auger fron	a depth of 0 to 10 feet. Boring v	vas backfilled with a neat
Date Boring Started:	4/23/20	cement grout.	c c		
Date Boring Completed:	4/23/20	_			
Logged By:	MLH2	SAMPLE TYPES	WATER EVELS (ft)	L FC	GEND
Drilling Contractor:	Barr/Coleman				
Drilling Method:	Hand Auger	GRAB	$\underline{\Psi}$ At time of Drilling 2.0	MC Moisture Content	Q _u Unconfined Compression
Ground Surface Elevation:	1431.6	SAMPLE		Υ Dry Unit Weight	Q _p Hand Penetrometer UC

Dry Unit Weight

Friction Angle

γ

 Q_p Hand Penetrometer UC

RQD Rock Quality Designation

Gs Specific Gravity

MN State Plane NAD83; NAVD88 Datum: The stratification lines represent approximate boundaries. The transition may be gradual.

Coordinates:

Ground Surface Elevation:

N 617,165.9 ft E 2,112,036.7 ft

1431.6

B	٩R	R	Barr Engineering Company 325 South Lake Avenue, Suite 700 Duluth, MN 55802 Telephone: 218-529-8200									LC	DG (of B	OR	ING	LS-2	20-H	 A -1	1 1 She	eet ^r	1 of	⁷ 1	
Pro	ject:	Li	ne 3 Replacement LaSalle Creek	Location:	Hub	bar	d and	Clear	wate	r Coui	nty, M	N		Client:	Enb	ridge	Energy	,						
			Barr Project Number: 49/16-1299.11			ų.													Phy	vsica	l Pro	oper	ties	
Elevation, feet		Depth, feet	MATERIAL DESCRIPTION (ASTM D2488)	١	Graphic Log	ample Type & Re	STANI	OARD P TEST N in b	ENETR DATA	ATION	PL	WATE CONTE %	R NT		A RAVEL S	SIEVE ANALYS		WC	Υ ^d pcf	¢ •	Q _u tsf	Q _p tsf	Gs F	م م الم الم
_			Surface Elev.: 1441.0 ft			S	10	20	30	40	2	0 40	60		20	40 E	60 80							
1440		0.0 +	PEAT (PT): black to brown; saturated; fibric.																					
1440.	, _					6 2								- × 2				520.3	3					
	_ 2	2.5	1438.0											520.3	_									
1437.	5	_	PEAT (PT): black to dark brown; saturated; he	emic. 3.0																				
	- 5	5.0-								_					_									
1435.)—		1434 5																					
1432.	- - 5	7.5 _	PEAT (PT): dark gray; saturated; with shells, interbedded sand and shells starting at 13.5 fe black mottling.	6.5 eet,	5																			
	-																							
	_ 1(0.0-																						
1430.0)_					G								292.9				292.9						
	12	2.5													_									
1427.	5																							
	1:	5.0-	1426.1 Bottom of Boring at 14.9 feet	14.9)																			
		-	5																					
	1	7.5																						
		-																						
Comr	20 letion l	U.U- Depth	14.9	emarks: Boring was			 d in 2 \\			ing a 3-	1/4 incl	h hucket	auder	from a c	lenth d	f 0 to 1	4 9 feet 1	Boring	 vas ha		d with	n a ne		-
Date	Boring	Starte	d: 4/22/20 c	ement grout.	JUII	JICLE	unaw		aca us	y a 3-		DUCKEL	augel						vas Da			and	, cit	
Logge	oring d By:	Comp	DAP	SAMPI F	TYP	FS			,	WATE	RIF\	/FLS (ff	t)					LEGE						
Drillin	g Conti	ractor:	Barr/Coleman	GRAB		20		J	At Tim	e of Drilli	ng 0	.0	·)	N	1C Moi	sture C	ontent		Q l	Jnconf	ined (Compr	ression	
Grour	d Surfa	ace El	evation: 1441.0	SAMPLE											γ Dry	Unit W	eight		Q _p ⊦	land F	Penetro	omete	r UC	
Coord	inates:	:	N 616,366.4 ft E 2,112,066.7 ft												Fric	tion An	gle	-	Gs S	Specifi	c Grav	vity		

The stratification lines represent approximate boundaries. The transition may be gradual.

Barr Engineering Company 325 South Lake Avenue, So	uite 7	00			LOG	OF BORING LS-20-HA-4
BARR Duluth, Mix 55802 Telephone: 218-529-8200						Sheet 1 of
Project: Line 3 Replacement LaSalle Creek	Loca	ation: Hubbard ar	nd Clear	water C	County, MN	Client: Enbridge Energy
Barr Project Number: 49/16-1299.11	Surf	ace Elevation:	142	0.9 ft		Top of Casing Elevation:
STRATA DESCRIPTION	SYMBOL	WELL OR PIEZOMETER CONSTRUCTION DETAILS	DEPTH, ft		ELEVATION, ft	PIEZOMETER CONSTRUCTION DETAILS FOR FULLY GROUTED VIBRATING-WIRE SENSOR
PEAT (PT): black; saturated; fibric. 2.5 1414.9 ft PEAT (PT): dark brown; saturated; hemic. 7.5 1411.4 ft ORGANIC SILT WITH SAND (OH): gray to brown; saturated; with shells. 10.0 10.0			0.0	GS	1420.9	PROTECTIVE CASING Diameter: None Type: Interval: GROUT Type: Bentonite Cement Grout Mix: Interval: 0-14' VIBRATING-WIRE TIP Diameter: 0.75" Type: Geokon 170 kPa Serial No.: 2009097
1406 9 ft			13.7	TVT	1407.2	
Bottom of Boring at 14.0 feet				~BVT	1406.9-	
Completion Depth: 14.0 ft Date Started: 4/21/20 Date Completed: 4/21/20 Logged By: MLH2 Drilling Contractor: Barr/Coleman Drilling Method: Hand Auger	GE FILT BEN	ND TER PACK ITONITE	TPC TRC GS TVI BV	C TOF C TOF C BAS GRT TOF T BOT	P OF PROTE P OF RISER SE PROTEC DUND SURF VIBRATING TIOM VIBRATING	Remarks: CTIVE CASING CASING TIVE CASING ACE 3-WIRE TIP TING-WIRE TIP
Datum: MN State Plane NAD83; NAVD88 Coordinates: N 618,294.9 ft E 2,111,086.8 ft The stratification lines represent approximate bour	CUT	TINGS / BACKFI	LL	radual		

	,					Sheet 1
Project: Line 3 Replacement LaSalle Creek	Loca	tion: Hubbard ar	nd Clear	water C	County, MN	Client: Enbridge Energy
3arr Project Number: 49/16-1299.11	Surf	ace Elevation:	1414	1.2 ft		Top of Casing Elevation:
DESCRIPTION	DEPTH, #	WELL OR PIEZOMETER CONSTRUCTION DETAILS	DEPTH, ft		ELEVATION, ft	PIEZOMETER CONSTRUCTION DETAILS FOR FULLY GROUTED VIBRATING-WIRE SENSOR
PEAT (PT): black; saturated; fibric, no recovery 2 o 2.5 feet. 2 409.7 ft DRGANIC SILT (OH): gray; saturated; with hells, wood in sample at 13 and 14.5 feet. 7 10 10			0.0 13.0	GS TVT BVT	1414.2 1401.2	PROTECTIVE CASING Diameter: None Type: Interval: GROUT Type: Bentonite Cement Grout Mix: Interval: 0-14.9' VIBRATING-WIRE TIP Diameter: 0.75" Type: Geokon 170 kPa Serial No.: 2009096
399.3 ft Rottom of Boring at 14.9 foot			14.9		1399.3	
Bottom of Borning at 14.9 leet						
					F	Remarks:
Completion Depth: 14.9 ft Date Started: 4/22/20 Date Completed: 4/22/20 Logged By: DAP Drilling Contractor: Barr/Coleman Drilling Method: Hand Auger Datum: MN State Plane NAD83; NAVD88 Coordinates: N 618,212.3 ft E 2,111,374.3		ND ER PACK TONITE IENT GROUT TINGS / BACKFI	TPC TRC BPC GS TVT BVT TD	C TOF TOF BAS GRO TOF BO1 TO1	P OF PROTE P OF RISER SE PROTEC DUND SURF P VIBRATINO TAL DEPTH	CTIVE CASING CASING TIVE CASING ACE 3-WIRE TIP TING-WIRE TIP

					Sneet
Project: Line 3 Replacement LaSalle Creek	Location: Hubbard an	d Clearw	ater C	ounty, MN	I Client: Enbridge Energy
Barr Project Number: 49/16-1299.11	Surface Elevation:	1418.	5 ft		Top of Casing Elevation:
STRATA	WELL OR PIEZOMETER CONSTRUCTION DETAILS	DEPTH, ft		ELEVATION, f	PIEZOMETER CONSTRUCTION DETAILS FOR FULLY GROUTED VIBRATING-WIRE SENSOR
PEAT (PT): black; saturated; fibric. 1417.0 ft PEAT (PT): black; saturated; hemic. 2.5 5.0 1411.0 ft DRGANIC SILT (OH): gray; saturated. 1400.2 ft		0.0	GS	1418.5	PROTECTIVE CASING Diameter: None Type: Interval: GROUT Type: Bentonite Cement Grout Mix: Interval: 0-14.9' VIBRATING-WIRE TIP Diameter: 0.75'' Type: Geokon 170 kPa Serial No.: 2009098
409.3 ft		9.2	TVT	1409.3	
Aray: wet. 408.5 ft DRGANIC SILT (OH): gray; saturated. 406.5 ft CLAYEY SAND (SC): fine grained; greenish plue; wet; hard drilling. 405.5 ft SILTY CLAY (CL-ML): gray; saturated. 403.6 ft Bottom of Boring at 14.9 feet		14.9		1403.6	Remarks:
Completion Depth: 14.9 ft Date Started: 4/21/20 Date Completed: 4/21/20 Logged By: DAP Drilling Contractor: Barr/Coleman Drilling Method: Hand Auger Datum: MN State Plane NAD83; NAVD88 Coordinates: N 618,177.0 ft E 2,111,659.8	GEND FILTER PACK BENTONITE CEMENT GROUT CUTTINGS / BACKFII	TPC TRC BPC GS TVT BVT TD	TOP TOP BAS GRC TOP BOT TOT	OF PROTE OF RISER E PROTEC JUND SURF VIBRATINO TOM VIBRA AL DEPTH	ECTIVE CASING CASING TIVE CASING ACE 3-WIRE TIP ATING-WIRE TIP

						Sneet
Project: Line 3 Replacement LaSalle Creek	Location	1: Hubbard ar		water C	ounty, MN	
Barr Project Number: 49/16-1299.11	Surface	Elevation:	143	1.2 ft	۲	Top of Casing Elevation:
STRATA	SYMBOL SYMBOL	WELL OR EZOMETER NSTRUCTION DETAILS	DEPTH, ft		ELEVATION, 1	PIEZOMETER CONSTRUCTION DETAILS FOR FULLY GROUTED VIBRATING-WIRE SENSOR
PEAT (PT): dark brown; saturated; fibric. 430.5 ft DRGANIC SILT (OH): gray; wet; some sand and race roots. 429.2 ft SANDY SILT (ML): gray; wet. 2.5 426.2 ft 5ILTY SAND (SM): fine to medium grained; gray; vet; SP sand lense 5.5 to 6.0 feet, with iron taining. 7.5			0.0 9.0 9.5	GS TVT BVT	1431.2 1422.2 1421.7	PROTECTIVE CASING Diameter: None Type: Interval: GROUT Type: Bentonite Cement Grout Mix: Interval: 0-10' VIBRATING-WIRE TIP Diameter: 0.75'' Type: Geokon 170 kPa Serial No.: 2009094
Bottom of Boring at 10.0 feet Completion Depth: 10.0 ft Date Started: 4/22/20 Date Completed: 4/20/20 Date Completed:	EGENE FILTER BENTO CEMEN) PACK NITE T GROUT	TPC TRC BPPC GS TVI BVI TD	C TOP C TOP C BASS GRO TOP BOT TOT	P OF PROTE P OF RISER E PROTEC DUND SURF VIBRATING TOM VIBRA TAL DEPTH	Remarks: ECTIVE CASING CASING CASING FACE G-WIRE TIP ATING-WIRE TIP

Appendix B

Laboratory Test Results

Content Twin Ports Testing Material Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0145-S1 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample DetailsSample ID:W320-0145-S1Field Sample:1.5'-2'Date Sampled:4/20/2020Source:LS-20-HA-1Material:(SP-SM) Poorly graded sand with siltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP-SM) Poorly graded sand with silt
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven Sieve Size % Passing
	5/8in 100 ½in 99 3/8in 97 No.4 92 No.10 85 No.20 74 No.40 55 0.008in 20 No.100 16 No.200 7.6
FINES (7.6%)SANDGRAVELCOBBIClaySiltFine (47.4%)Medium (30.3%)Coarse (6.7%)Fine (8.0%)Coarse (0.0%)(0.0%)	LES D85: 1.9525 D60: 0.5086 D50: 0.3818 (%) D30: 0.2481 D15: 0.1355 D10: 0.0907 Cu: 5.60 Cc: 1.33

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0145-S1 Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0145-S1'.

AASHTO.

This laboratory is accredited in accordance with

ve Berger

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0145-S1
Field Sample:	1.5'-2'
Date Sampled:	4/20/2020
Source:	LS-20-HA-1
Material:	(SP-SM) Poorly graded sand with silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	5.8	
Method		Method B	

Comments

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0145-S2 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample DetailsSample ID:W320-0145-S2Field Sample:7'-7.5'Date Sampled:4/20/2020Source:LS-20-HA-1Material:(SP-SM) Poorly graded sand with siltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP-SM) Poorly graded sand with silt
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven
% Passing 100 90 90 90 90 90 90 90 90 90	Sieve Size % Passing ½in 100 3/8in 99 No.4 96 No.10 90 No.20 79 No.40 58 0.008in 20 No.100 16 No.200 7.5
FINES (7.5%)SANDGRAVELCOBBIClaySiltFine (50.3%)Medium (32.4%)Coarse (6.2%)Fine (3.7%)Coarse (0.0%)(0.0%)	LES D85: 1.3528 D60: 0.4573 D50: 0.3638 D30: 0.2438 D15: 0.1342 D10: 0.0911 Cu: 5.02 Cc: 1.43

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0145-S2

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0145-S2'.
This laboratory is accredited in accordance with

AASHTO.

ve Berger

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0145-S2
Field Sample:	7'-7.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-1
Material:	(SP-SM) Poorly graded sand with silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	10.3	
Method		Method B	

Comments

Conternal Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0146-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0146-S1'.	
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL	
Sample ID:W320-0146-S1Field Sample:3'-3.5'Date Sampled:4/20/2020Source:LS-20-HA-2Material:(SP-SM) Poorly graded sand with siltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP-SM) Poorly graded sand with silt	
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven	
Notice of the second se	Sieve Size % Passing ½in 100 3/8in 99 No.4 97 No.10 92 No.20 80 No.40 56 0.008in 19 No.100 15 No.200 6.1	
FINES (6.1%) SAND GRAVEL COBBI Clay Silt Fine (49.6%) Medium (36.4%) Coarse (4.8%) Fine (3.1%) Coarse (0.0%) Coarse (0.0%) Coarse (0.0%)	LES D85: 1.2059 D60: 0.4797 D50: 0.3777 D30: 0.2505 D15: 0.1500 D10: 0.1015 Cu: 4.73 Cc: 1.29	

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0146-S1

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0146-S1'.
This laboratory is accredited in accordance with

AASHTO.

ve Berger

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020

THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0146-S1
Field Sample:	3'-3.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-2
Material:	(SP-SM) Poorly graded sand with silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	5.3
Method		Method B

Comments

Material Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0146-S2 Issue No: 1	
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0146-S2'. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL	
Sample DetailsSample ID:W320-0146-S2Field Sample:7.5'-8'Date Sampled:4/20/2020Source:LS-20-HA-2Material:(SP-SM) Poorly graded sand with siltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP-SM) Poorly graded sand with silt	
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven	
% Passing	Sieve Size % Passing 5/8in 100 ½in 98 3/8in 95 No.4 92 No.10 87 No.20 75 No.40 51 0.008in 16 No.100 13 No.200 5.9	
FINES (5.9%)SANDGRAVELCOBBIClaySiltFine (45.4%)Medium (35.5%)Coarse (5.2%)Fine (7.9%)Coarse (0.0%)(0.0%)	ES D85: 1.7492 D60: 0.5487 D50: 0.4130 D30: 0.2689 D15: 0.1804 D10: 0.1126 Cu: 4.87 Cc: 1.17	

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0146-S2

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0146-S2'.
This laboratory is accredited in accordance with

AASHTO.

ve Berger

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0146-S2
Field Ormales	7 51 01
Field Sample:	7.5-8
Date Sampled:	4/20/2020
Source:	LS-20-HA-2
Material:	(SP-SM) Poorly graded sand with silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	5.6	
Method		Method B	

Comments

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0147-S1 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0147-S1'. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample DetailsSample ID:W320-0147-S1Field Sample:1.5'-2'Date Sampled:4/20/2020Source:LS-20-HA-3Material:(SP) Poorly graded sandSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP) Poorly graded sand
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven
va Passing	Sieve Size % Passing 3/8in 100 No.4 100 No.10 100 No.20 98 No.40 80 0.008in 22 No.100 17 No.200 4.9
FINES (4.9%)SANDGRAVELCOBBClaySiltFine (74.6%)Medium (20.1%)Coarse (0.3%)Fine (0.0%)Coarse (0.0%)(0.0%)	LES (b) D85: 0.5239 D60: 0.3283 D50: 0.2878 D30: 0.2211 D15: 0.1317 D10: 0.0995 Cu: 3.30 Cc: 1.50

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Client:

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0147-S1

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0147-S1'.
This laboratory is accredited in accordance with

AASHTO.

or Berger

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample DetailsSample ID:W320-0147-S1Field Sample:1.5'-2'

Date Sampled:4/Source:LSMaterial:(SSpecification:InSampling Method:H

4/20/2020 LS-20-HA-3 (SP) Poorly graded sand Informational Hand Auger

Other Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	10.1
Method		Method B

Comments

Material Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0147-S2 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0147-S2'. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample DetailsSample ID:W320-0147-S2Field Sample:8.5'-9'Date Sampled:4/20/2020Source:LS-20-HA-3Material:(SP) Poorly graded sandSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SP) Poorly graded sand
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven
% Passing 10 90 90 90 90 90 90 90 90 90 9	Sieve Size % Passing No.4 100 No.10 100 No.20 93 No.40 59 0.008in 13 No.100 10 No.200 3.2
FINES (3.2%)SANDGRAVELCOBBIClaySiltFine (55.9%)Medium (40.6%)Coarse (0.4%)Fine (0.0%)Coarse (0.0%)Coarse (0.0%)	LES (b) D85: 0.7167 D60: 0.4335 D50: 0.3661 D30: 0.2629 D15: 0.2052 D10: 0.1466 Cu: 2.96 Cc: 1.09

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0147-S2 Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0147-S2'.

ve Berris

AASHTO.

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

This laboratory is accredited in accordance with

Sample Details

Client:

W320-0147-S2
8.5'-9'
4/20/2020
LS-20-HA-3
(SP) Poorly graded sand
Informational
Hand Auger

Other Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	22.4
Method		Method B

Comments

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0148-S1 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0148-S1'. This laboratory is accredited in accordance with AASHTO. WWW MACHTON Approved Signatory: Joe Berger (Laboratory Supervisor) Data of Lecure: 4/27/2020
	THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample ID: W320-0148-S1 Field Sample: 8.5'-9' Date Sampled: 4/20/2020 Source: LS-20-HA-9 Material: (SM) Silty sand Specification: Informational Sampling Method: Hand Auger Particle Size Distribution % Passing	Sample Description: (SM) Silty sand Grading: ASTM D 422 - 07 Drying by: Oven
100 90 80 70 60 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	Sieve Size % Passing No.4 100 No.10 100 No.20 99 No.40 92 0.008in 72 No.100 68 No.200 47
FINES (47.1%)SANDGRAVELCOBBClaySiltFine (45.2%)Medium (7.7%)Coarse (0.0%)Fine (0.0%)Coarse (0.0%)Coarse (0.0%)	BLES D85: 0.3260 D60: 0.1160 D50: 0.0828 (%) D30: 0.0421 D15: 0.0254 D10: 0.0215

Barr Engineering Company

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0148-S1

This laboratory is accredited in accordance with

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0148-S1'.

AASHTO.

ve Berryes

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0148-S1
Field Sample:	8.5'-9'
Date Sampled:	4/20/2020
Source:	LS-20-HA-9
Material:	(SM) Silty sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	16.1	
Method		Method B	

Comments

Twin PortsTesting Material Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0148-S2 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project:	This report replaces all previous issues of report no 'MAT:W320-0148-S2'. This laboratory is accredited in accordance with AASHTO. Max Margan Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020
	THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample ID: W320-0148-S2 Field Sample: 5'-5.5' Date Sampled: 4/20/2020 Source: LS-20-HA-10 Material: (SM) Silty sand Specification: Informational Sampling Method: Hand Auger	Sample Description: (SM) Silty sand Grading: ASTM D 422 - 07 Drying by: Oven
% Passing	
Sieve	Sieve Size % Passing No.4 100 No.10 99 No.20 97 No.40 86 0.008in 48 No.100 46 No.200 37
Clay Silt Fine (49.5%) Medium (13.0%) Coarse (0.6%) Fine (0.2%) Coarse (0.0%)	OBBLES D85: 0.4143 D60: 0.2526 D50: 0.2072 (0.0%) D30: 0.0442 D15: 0.0137 D10: 0.0093

Barr Engineering Company

325 South Lake Avenue Duluth MN 55802

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0148-S2

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0148-S2'.

AASHTO.

or Berger

This laboratory is accredited in accordance with

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Project:

Sample ID:W320-0148-S2Field Sample:5'-5.5'Date Sampled:4/20/2020Source:LS-20-HA-10Material:(SM) Silty sandSpecification:InformationalSampling Method:Hand Auger

Other Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	25.0
Method		Method B

Comments

Barr Engineering Company

325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0149-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0149-S1'. This laboratory is accredited in accordance with AASHTO.

Approved Signatory: Joe Berger (Laboratory Supervisor)

Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

Sample ID:	W320-0149-S1
Field Sample:	2.5'-3'
Date Sampled:	4/20/2020
Source:	LS-20-HA-4
Material:	(PT) Peat
Specification:	Moisture Content
Sampling Method:	Hand Auger

Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	595.8
Method		Method B

Content Twin Ports Testing Material Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0149-S2 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0149-S2'
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO.
Sample Details Sample ID: W320-0149-S2	Atterberg Limit: Liquid Limit: 173
Field Sample:11.5'-12'Date Sampled:4/20/2020Source:LS-20-HA-4Material:(OH) Organic silt with sandSpecification:Informational	Plastic Limit: 107 Plasticity Index: 66 Linear Shrinkage (%): N/A
Sampling Method: Hand Auger	Sample Description: (OH) Organic silt with sand
Particle Size Distribution	Grading: ASTM D 422 - 07
% Passing 100 00	Sieve Size % Passing No.10 100 No.20 100 No.40 96 0.008in 89 No.100 88 No.200 81 29.5 µm 67.5 19.3 µm 59.6 11.6 µm 46.6 8.6 µm 34.7 6.3 µm 23.7 3.2 µm 12.7 1.3 µm 9.8
FINES SAND GRAVEL COBB	LES D85: 0.1103 D60: 0.0197 D50: 0.0133
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D30: 0.0075 D15: 0.0037 D10: 0.0014 Cu: 14.25 Cc: 2.08

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0149-S2
Field Sample:	11.5'-12'
Date Sampled:	4/20/2020
Source:	LS-20-HA-4
Material:	(OH) Organic silt with sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	158.8	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	173	
Method		Method A	
Plastic Limit		107	
Plasticity Index		66	
Sample history		Natural state	
Material retained on 425µm (No. 40) (%)		4.0	

Comments

Organic Content per ASTM D2974 = 36.0% Ovendried LL (79) / In-Situ LL (173) = .46

Page 2 of 2

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0149-S2'. This laboratory is accredited in accordance with

Report No: MAT:W320-0149-S2

AASHTO. de Berres

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163

www.twinportstesting.com Report No: MAT:W320-0150-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0150-S1'. This laboratory is accredited in accordance with Barr Engineering Company HIGH WAY AND AASHTO. 325 South Lake Avenue Duluth MN 55802 de Berres Approved Signatory: Joe Berger (Laboratory Project: 20M8580 L3R LaSalle Creek Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL W320-0150-S1 5.5'-6' 4/20/2020 LS-20-HA-5 (PT) Peat **Moisture Content** Hand Auger

Test Results

Sample Details

Sample ID:

Source:

Material:

Field Sample:

Date Sampled:

Specification: Sampling Method:

Client:

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	564.9
Method		Method B

Conternal Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0150-S2 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0150-S2'
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO.
Sample ID: W320-0150-S2	Liquid Limit: 181
Field Sample:8.5'-9'Date Sampled:4/20/2020Source:LS-20-HA-5Material:(OH) Organic silt with sandSpecification:Informational	Plastic Limit: 103 Plasticity Index: 78 Linear Shrinkage (%): N/A
Sampling Method: Hand Auger	Sample Description: (OH) Organic silt with sand
Particle Size Distribution	Grading: ASTM D 422 - 07
% Passing 100 100 100 100 100 100 100 10	Sieve Size % Passing No.10 100 No.20 98 No.40 94 0.008in 86 No.100 84 No.200 78 28.8 µm 70.6 18.9 µm 62.0 11.5 µm 49.6 8.6 µm 34.3 6.3 µm 20.9 3.2 µm 15.1 1.3 µm 10.3
FINES SAND GRAVEL COBB	
Clay (18.5%) Silt (59.8%) Fine (15.7%) Medium (6.0%) Coarse (0.0%) Fine (0.0%) Coarse (0.0%) Coarse (0.0%)	Biol Biol <th< td=""></th<>

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0150-S2
Field Sample:	8.5'-9'
Date Sampled:	4/20/2020
Source:	LS-20-HA-5
Material:	(OH) Organic silt with sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	185.2	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	181	
Method		Method A	
Plastic Limit		103	
Plasticity Index		78	
Sample history		Natural state	
Material retained on 425µm (No. 40) (%)		6.0	

Comments

Organic Content per ASTM D2974 = 42.4 Ovendried LL (86) / In-Situ LL (181) = .48

Page 2 of 2

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

HIGH WAY AND

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No: MAT:W320-0150-S2

Issue No: 1

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0151-S1 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO.
Sample Details	Atterberg Limit:
Sample ID:W320-0151-S1Field Sample:7'-7.5'Date Sampled:4/20/2020Source:LS-20-HA-5AMaterial:(OH) Organic siltSpecification:InformationalSampling Method:Hand Auger	Liquid Limit: 173 Plastic Limit: 101 Plasticity Index: 72 Linear Shrinkage (%): N/A Sample Description: (OH) Organic silt
	Grading: ASTM D 422 - 07
% Passing $10^{$	Drying by: Oven Sieve Size % Passing No.10 100 No.20 100 No.40 97 0.008in 92 No.100 91 No.200 86 28.0 μm 74.7 18.5 μm 65.3 11.4 μm 50.4 8.6 μm 33.5 6.3 μm 21.3 3.2 μm 12.9 1.3 μm 6.4
Clay (17.8%) Silt (68.5%) Fine (10.3%) Medium (3.4%) Coarse (0.0%) Fine (0.0%) Coarse (0.0%) Coarse (0.0%)	D85: 0.0672 D60: 0.0156 D50: 0.0113 Model D30: 0.0079 D15: 0.0038 D10: 0.0021 Cu: 7.27 Cc: 1.86 0.0021

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0151-S1
Field Sample:	7'-7.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-5A
Material:	(OH) Organic silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	182.1	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard to Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	173	
Method		Method A	
Plastic Limit		101	
Plasticity Index		72	
Sample history		Natural state	
Material retained on 425µm (No. 40) (%)		0.0	

Comments

Organic Content per ASTM D2974 = 26.4% Ovendried LL (89) / In-situ LL (173) = .51 Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0151-S1'.
This laboratory is accredited in accordance with

AASHTO. We Berries

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No: MAT:W320-0151-S1

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163

www.twinportstesting.com Report No: MAT:W320-0151-S2 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0151-S2'. This laboratory is accredited in accordance with Client: Barr Engineering Company AIGHWAY AND AASHTO. 325 South Lake Avenue ve Berres Duluth MN 55802 Approved Signatory: Joe Berger (Laboratory Project: 20M8580 L3R LaSalle Creek Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL Sample Details Sample ID: W320-0151-S2 Field Sample: 11'-11.5' Date Sampled: 4/20/2020 Source: LS-20-HA-5A Material: (OH) Organic silt Specification: **Moisture Content** Sampling Method: Hand Auger Test Results Description Method Result Moisture content (%) ASTM D 2216 - 05 159.0 Method Method B

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163

www.twinportstesting.com Report No: MAT:W320-0151-S3 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0151-S3'. This laboratory is accredited in accordance with Client: Barr Engineering Company AIGHWAY AND AASHTO. 325 South Lake Avenue ve Berres Duluth MN 55802 Approved Signatory: Joe Berger (Laboratory Project: 20M8580 L3R LaSalle Creek Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL Sample Details W320-0151-S3 Sample ID: Field Sample: 13.5'-14 Date Sampled: 4/20/2020 Source: LS-20-HA-5A Material: (OH) Organic silt Specification: **Moisture Content** Sampling Method: Hand Auger Test Results Description Method Result Moisture content (%) ASTM D 2216 - 05 137.4 Method Method B

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0152-S1 Issue No: 1 This report replaces all previous issues of report to 'MAT:W320-0152-S1'
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. MARTON Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample Details	Atterberg Limit:
Sample ID:W320-0152-S1Field Sample:10'-10.5'Date Sampled:4/20/2020Source:LS-20-HA-6Material:(MH) Elastic silt with sandSpecification:Informational	Liquid Limit: 63 Plastic Limit: 50 Plasticity Index: 13 Linear Shrinkage (%): N/A
Sampling Method: Hand Auger	Sample Description: (MH) Elastic silt with sand
Particle Size Distribution	Grading: ASTM D 422 - 07
% Passing 100 100 100 100 100 100 100 10	Sieve Size % Passing No.10 100 No.20 99 No.40 98 0.008in 95 No.100 93 No.200 73 32.4 µm 41.3 21.3 µm 30.0 12.6 µm 22.4 9.0 µm 18.7 6.5 µm 14.9 3.2 µm 13.0 1.3 µm 12.1
FINES SAND GRAVEL COBBI	
Clay (14.0%) Silt (58.9%) Fine (25.3%) Medium (1.8%) Coarse (0.0%) Fine (0.0%) Coarse (0.0%) Coarse (0.0%)	D30: 0.0213 D15: 0.0066 D10: 0.0002

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0152-S1
Field Sample:	10'-10.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-6
Material:	(MH) Elastic silt with sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	41.9	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	63	
Method		Method A	
Plastic Limit		50	
Plasticity Index		13	
Sample history		Natural state	
Material retained on 425µm (No. 40) (%)		1.8	

Comments

Organic Content per ASTM D2974 = 9.7% Ovendried LL (76) / In-situ LL (63) = 1.21 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0152-S1

This report replaces all previous issues of report no 'MAT:W320-0152-S1'.
This laboratory is accredited in accordance with

de Berres

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114

AASHTO.

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0152-S2 Issue No: 1
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0152-S2'. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample Details W320-0152-S2	Atterberg Limit:
Sample ID.W320-0132-32Field Sample:13'-13.5'Date Sampled:4/20/2020Source:LS-20-HA-6Material:(ML) Silt with SandSpecification:Informational	Liquid Limit: 20 Plastic Limit: 18 Plasticity Index: 2 Linear Shrinkage (%): N/A
Sampling Method: Hand Auger	Sample Description: (ML) Silt with Sand
Particle Size Distribution	Grading: ASTM D 422 - 07
% Passing 100 100 100 100 100 100 100 10	Sieve Size % Passing No.10 100 No.20 100 No.40 99 0.008in 97 No.100 95 No.200 73 31.4 µm 44.4 20.7 µm 33.9 12.4 µm 26.0 8.8 µm 22.5 6.3 µm 19.0 3.1 µm 15.5 1.3 µm 12.0
FINES SAND GRAVEL COBBI	
Clay (17.6%) Silt (55.4%) Fine (26.4%) Medium (0.6%) Coarse (0.0%) Fine (0.0%) Coarse (0.0%) Coarse (0.0%)	D30: 0.0168 D60: 0.0505 D50: 0.0372 D30: 0.0161 D15: 0.0027 D10: 0.0008 Cu: 63.81 Cc: 6.47

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0152-S2
Field Sample:	13'-13.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-6
Material:	(ML) Silt with Sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	27.5	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	20	
Method		Method A	
Plastic Limit		18	
Plasticity Index		2	
Sample history		Oven-dried	
Material retained on 425µm (No. 40) (%)		0.0	

Comments

Organic Content per ASTM D2974 = 6.9%

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0152-S2'.

1914

AASHTO. We Berrie

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Report No: MAT:W320-0152-S2

This laboratory is accredited in accordance with

Barr Engineering Company

325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0153-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0153-S1'. This laboratory is accredited in accordance with AASHTO. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Sample Details

Client:

W320-0153-S1
1.5'-2'
4/20/2020
LS-20-HA-7
(PT) Peat
Moisture Content
Hand Auger

Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	429.6
Method		Method B

Barr Engineering Company

325 South Lake Avenue Duluth MN 55802

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0153-S2

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0153-S2'.

AASHTO.

ve Berres

This laboratory is accredited in accordance with

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 5/4/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Project: 20M8580 L3R LaSalle Creek

Sample Details

Client:

Sample ID:	W320-0153-S2
Field Sample:	7.5'-8'
Date Sampled:	4/20/2020
Source:	LS-20-HA-7
Material:	(OH) Organic silt
Specification:	Informational Atterberg
Sampling Method:	Hand Auger

Test Results

Description	Method	Result
Moisture content (%)	ASTM D 2216 - 05	110.2
Method		Method B
Liquid Limit	ASTM D 4318 - 05	120
Method		Method A
Plastic Limit		93
Plasticity Index		27
Sample history		Natural state
Material retained on 425µm (No. 40) (%)		0.0

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0153-S3
Field Sample:	14'-14.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-7
Material:	(CL-ML) Silty clay
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	26.4	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	23	
Method		Method A	
Plastic Limit		17	
Plasticity Index		6	
Sample history		Oven-dried	
Material retained on 425µm (No. 40) (%)		0.0	

Comments

Organic Content per ASTM D2974 = 8.3%

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Issue No: 1

This report replaces all previous issues of report no 'MAT:W320-0153-S3'.
This laboratory is accredited in accordance with

Report No: MAT:W320-0153-S3

AASHTO. We Berres

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0154-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0154-S1'.
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO.
Sample Details	Atterberg Limit:
Sample ID:W320-0154-S1Field Sample:5.5'-6'Date Sampled:4/20/2020Source:LS-20-HA-8Material:(ML) Silt with SandSpecification:InformationalSampling Method:Hand Auger	Liquid Limit: 21 Plastic Limit: 19 Plasticity Index: 2 Linear Shrinkage (%): N/A Sample Description: (ML) Silt with Sand
	Grading: ASTM D 422 - 07
% Passing 100 90 80 70 60 70 70 60 70 70 70 70 70 70 70 70 70 7	Sieve Size % Passing No.10 100 No.20 100 No.40 99 0.008in 94 No.100 93 No.200 78 31.7 µm 43.8 21.2 µm 30.4 12.5 µm 22.3 9.0 µm 18.7 6.4 µm 16.0 3.2 µm 14.2 1.3 µm 10.6
FINESSANDGRAVELCOBBIClay (15.2%)Silt (62.6%)Fine (21.0%)Medium (1.1%)Coarse (0.0%)Fine (0.0%)Coarse (0.0%)Coarse (0.0%)	LES D85: 0.1034 D60: 0.0478 D50: 0.0371 D30: 0.0207 D15: 0.0044 D10: 0.0011 Cu: 42.68 Cc: 7.98

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0154-S1
Field Sample:	5.5'-6'
Date Sampled:	4/20/2020
Source:	LS-20-HA-8
Material:	(ML) Silt with Sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	27.0	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	
Liquid Limit	ASTM D 4318 - 05	21	
Method		Method A	
Plastic Limit		19	
Plasticity Index		2	
Sample history		Oven-dried	
Material retained on 425µm (No. 40) (%)		0.0	

Comments

N/A

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0154-S1

This report replaces all previous issues of report no 'MAT:W320-0154-S1'. This laboratory is accredited in accordance with

AASHTO. de Bernes

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Issue No: 1

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0154-S2 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0154-S2'
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL
Sample DetailsSample ID:W320-0154-S2Field Sample:10'-10.5'Date Sampled:4/20/2020Source:LS-20-HA-8Material:(SM) Silty sandSpecification:InformationalSampling Method:Hand Auger	Sample Description: (SM) Silty sand
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven Sieve Size % Passing No.10 100 No.20 95 No.40 76 0.008in 36 No.200 28 33.1 μm 18.7 21.4 μm 14.7 12.7 μm 10.8 9.0 μm 9.3 6.5 μm 7.8 3.2 μm 5.8 1.3 μm 3.8
FINESSANDGRAVELCOBBLClay (6.9%)Silt (20.7%)Fine (48.1%)Medium (24.1%)Coarse (0.2%)Fine (0.2%)Coarse (0.0%)Coarse (0.0%)	ES D85: 0.5896 D60: 0.3159 D50: 0.2613 (a) D30: 0.1031 D15: 0.0221 D10: 0.0106 Cu: 29.89 Cc: 3.18

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0154-S2
Field Sample:	10'-10.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-8
Material:	(SM) Silty sand
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	17.6	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to coarse	

Comments

N/A

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

This laboratory is accredited in accordance with

This report replaces all previous issues of report no 'MAT:W320-0154-S2'.

AASHTO.

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0155-ST Issue No:				
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/28/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL				
Sample DetailsSample ID:W320-0155-S1Field Sample:3'-3.5'Date Sampled:4/20/2020Source:LS-20-HA-9Material:(ML) Sandy SiltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (ML) Sandy Silt				
Particle Size Distribution	Grading: ASTM D 422 - 07 Drying by: Oven Sieve Size % Passing No.10 99 No.20 98 No.40 91 0.008in 73 No.100 70 No.200 53 30.6 μm 30.0 20.5 μm 21.5 12.2 μm 16.5 8.7 μm 15.0 6.3 μm 13.0 3.1 μm 10.9 1.3 μm 8.9				
FINESSANDGRAVELCOBBIClaySiltFineMediumCoarseFineCoarse(12.1%)(40.5%)(38.3%)(8.5%)(0.6%)(0.0%)(0.0%)(0.0%)	LES (%) D85: 0.3334 D60: 0.1012 D50: 0.0676 D30: 0.0306 D15: 0.0087 D10: 0.0021 Cu: 48.26 Cc: 4.41				

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0155-S1
Field Sample:	3'-3.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-9
Material:	(ML) Sandy Silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	24.3	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine to Coarse	

Comments

N/A

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

This report replaces all previous issues of report no 'MAT:W320-0155-S1'.
This laboratory is accredited in accordance with

Report No: MAT:W320-0155-S1

AASHTO. We Berry

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/28/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Waterial Test Report	Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com Report No: MAT:W320-0155-S2 Issue No:				
Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802 Project: 20M8580 L3R LaSalle Creek	This report replaces all previous issues of report no 'MAT:W320-0155-S2'. This laboratory is accredited in accordance with AASHTO. Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/28/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL				
Sample DetailsSample ID:W320-0155-S2Field Sample:9'-9.5'Date Sampled:4/20/2020Source:LS-20-HA-10Material:(ML) Sandy SiltSpecification:InformationalSampling Method:Hand Auger	Sample Description: (ML) Sandy Silt				
Particle Size Distribution	Sieve Size % Passing No.10 100 No.20 99 No.40 96 0.008in 87 No.100 85 No.200 73 33.1 µm 33.6 22.0 µm 19.9 13.0 µm 12.6 9.2 µm 10.8 6.6 µm 8.9 3.2 µm 7.1 1.3 µm 7.1				
FINESSANDGRAVELCOBBClay (8.1%)Silt (64.8%)Fine (23.0%)Medium (3.8%)Coarse (0.3%)Fine (0.0%)Coarse (0.0%)Coarse (0.0%)	LES D85: 0.1471 D60: 0.0574 D50: 0.0466 D30: 0.0297 D15: 0.0155 D10: 0.0080 Cu: 7.17 Cc: 1.93				

Client: Barr Engineering Company 325 South Lake Avenue Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Sample Details

Sample ID:	W320-0155-S2
Field Sample:	9'-9.5'
Date Sampled:	4/20/2020
Source:	LS-20-HA-10
Material:	(ML) Sandy Silt
Specification:	Informational
Sampling Method:	Hand Auger

Other Test Results

Description	Method	Result	
Moisture content (%)	ASTM D 2216 - 05	25.8	
Method		Method B	
Dispersion device	ASTM D 422 - 07	Mechanical	
Dispersion time (min)		1	
Shape		Angular	
Hardness		Hard and Durable	
Sand/gravel description		Fine To Coarse	

Comments

N/A

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0155-S2

AASHTO.

Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/28/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL

Barr Engineering Company

W320-0156-S1

1.5'-2'

4/20/2020

(PT) Peat

Hand Auger

LS-20-HA-11

325 South Lake Avenue

Duluth MN 55802

Project: 20M8580 L3R LaSalle Creek

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163 www.twinportstesting.com

Report No: MAT:W320-0156-S1 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0156-S1'. This laboratory is accredited in accordance with AIGHWAY AND AASHTO. ve Bernes Approved Signatory: Joe Berger (Laboratory Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL **Moisture Content**

Sample Details

Sample ID:

Source:

Material:

Field Sample:

Date Sampled:

Specification:

Sampling Method:

Client:

Test Results Description Method Result Moisture content (%) ASTM D 2216 - 05 520.3 Method Method B

Twin Ports Testing, Inc. 1301 North 3rd Street Superior, WI 54880 p: 715-392-7114 p: 800-373-2562 f: 715-392-7163

www.twinportstesting.com Report No: MAT:W320-0156-S2 Issue No: 1 This report replaces all previous issues of report no 'MAT:W320-0156-S2'. This laboratory is accredited in accordance with Client: Barr Engineering Company AIGHWAY AND AASHTO. 325 South Lake Avenue ve Bernes Duluth MN 55802 Approved Signatory: Joe Berger (Laboratory Project: 20M8580 L3R LaSalle Creek Supervisor) Date of Issue: 4/27/2020 THIS DOCUMENT SHALL NOT BE REPRODUCED EXCEPT IN FULL Sample Details Sample ID: W320-0156-S2 Field Sample: 11'-11.5' Date Sampled: 4/20/2020 Source: LS-20-HA-11 Material: (PT) Peat Specification: **Moisture Content** Sampling Method: Hand Auger Test Results Description Method Result Moisture content (%) ASTM D 2216 - 05 292.9 Method Method B

Report of Moisture Content, Dry Density, and P200

SANDPIPER MAINLINE PHASE II BARR PROJECT NO. 49/16-1244 ND, MN, WI BARR ENGINEERING ATTN: ROB OLAH

AET FIELDWORK NO: 01-05986 **AET LABORATORY NO:** 07-05937

SEPTEMBER 25, 2014

Boring	Depth	Moisture	Dry	Hand	P200	Classification
Number	(feet)	Content	Density	Penetrometer		
MP 407N	9.5-11.5	22.9			11.5	SP-SM
MP 407N	19.9-21.9	24.5			3.7	SP
MP 407N	31.4-31.9	13.6	110.8			SM
MP 407N	39.9-41.9	22.8			44.4	SM
MP 407N	49.9-51.9	21.6			18.1	SM
MP 407N	56.4-56.9	16.2	102.0			SM
MP 407N	59.9-61.9	23.5			26.4	SM
MP 407N	71.4-71.9	18.2	112.6			SM
MP 407N	79.9-81.9	22.2			20.0	SM
MP 407S	15-17	13.9			6.2	SP-SM
MP 407S	30-32	19.9	112.5		87.4	Sandy ML
MP 407S	35-37	22.7				CL
MP 407S	40-42	23.0	109.2	1.25		SM
MP 407S	55-57	10.2			17.7	SM

<i>c</i> 0 Г										
60					CL	CH				
50—									\nearrow	
40										
40										
30—										
20—										
10—										
С	L-ML			(1	ML	MH				
	2	20		40			60	80		100
	Specimen Identifu	cation	LL	PL.	LIQU PI	JID LIMIT	(LL)			
•	MP 407S	35.0	25	17	8	23	Lean Clay (C	L)		
OJECT	Sandpiper M	ainline Ph	ase II	; Barr	Proje	ct No.		JOB NO	. <u>01</u> -05	<u>986/07-05937</u>
- A 3 / T	49/16-1244; N	lorth Dak	ota, M	linnes	ota, W	isconsi	n	DATE		9/5/14
	KIUAN									

Summary of Laboratory Chemical Analysis

SANDPIPER MAINLINE BARR PROJECT NO. 49/16-1244 ND, MN, WI BARR ENGINEERING ATTN: ROB OLAH

AET FIELDWORK NO: 01-5986 **AET LABORATOY NO:** 07-05937

SEPTEMBER 19, 2014

The following test results for pH, sulfate, and chloride were provided to AET by ERA Laboratory for the requested soil samples. The ERA Laboratory report has been attached for your reference.

Boring Number	Depth (ft)	рН	Sulfate (mg/Kg)	Chloride (mg/Kg)	
MP 407N	44.9-46.9	9.5	39	<2	
MP 407S	45-47	9.5	340	<2	

Laboratory Report

807 Telephone: (218)727-6380 Fax: (218)727-3049

Client: JONATHAN GABRIEL AMERICAN ENGINEERING TESTING, INC P O BOX 16008 DULUTH MN 55816

Sample ID:	SANDPIPER 07-05937 MP 4	07 N 4	4.9'-46.9'	Gra	o	Sample Date:	8/27/2014	SampleTime:	13:40	Matrix: So	olids
Era Project Nur	nber: 081504-1										
Parameter			Results:	Units:	Analysis Da	ate/Time:	Method:	<u>DF:</u>	LOD:	LOQ:	QC Comments:
Chloride		<	2	mg/Kg DWB	9/16/2014	17:28	EPA 300.0 Rev. 2.	1 10	2	6	
pH - Lab			9.5	SU	9/2/2014	15:25	EPA 9045D	1			
Sulfate			39	mg/Kg DWB	9/16/2014	17:28	EPA 300.0 Rev 2.	1 10	5	15	
Sample ID:	SANDPIPER 07-05937 MP 4	07 S 4	5'-47'	Gra	c	Sample Date:	8/27/2014	SampleTime:	13:40	Matrix: So	olids
Era Project Nur	nber: 081504-2										
Parameter	1		Results:	Units:	Analysis Da	ate/Time:	Method:	DF:	LOD:	LOQ:	QC Comments:
Chloride		<	2	mg/Kg DWB	9/16/2014	18:54	EPA 300.0 Rev. 2.	1 10	2	6	
pH - Lab			9.5	SU	9/2/2014	15:25	EPA 9045D	1			

18:54

mg/Kg DWB 9/16/2014

DWB = Dry weight basis.

Sulfate

< Not detected. Less than LOD.

10

5

15

EPA 300.0 Rev 2.1

Report Approved By: For Robert D. Magnuson

Lab Director

-fml

340

MN Certification # 027-137-152

Temperature upon arrival (°C): 24.5

Page 1 of 1

Test results in this report relate only to the samples received on the dates indicated. This report must not be reproduced, except in full, without the written approval from Era Laboratories, Inc. All tests were performed in-house by Era Labs.

Appendix C

Drawdown Test Results

Appendix D

LaSalle Creek Groundwater Monitoring Locations

Barr Footer: ArcGIS 10.7.1, 2020-10-12 11:46 File: I:\Client\Enbridge_Energy\Work_Orders\Mainline_Permitting\49161244\Maps\Report_Maps\MP_407_2020\Report\Figure1_LaSalleCreek_SiteLocation_20201005.mxd User: MAC2

MDNR ID No. 30: MP 962.2; Unnamed Creek (M-096-035-002-004-000.5)

T141N, R35W, S8, NWNE, Forty - 12, Govt. Lot - 0 Survey No. HUC5074aWB MDNR Kittle No. - M-096-035-002-004-000.5 Crossing Method - Dry Crossing Bridge Type - Span

Notes:

- 1. Bridge location approximate.
- 2. Bridge will be constructed in accordance with the EPP.
 3. Construction mats will be installed in wetlands as
- described in the EPP.
- . ECDs will be installed as described in the EPP.
- 5. Timing Restriction: March 15 June 30.
- 6. Streambed and bank restoration will be completed as described in the EPP.
- 7. Operational right-of-way width at crossing will be 50 feet.
 8. Enbridge will install the pipeline so as to provide for 4 feet of cover over the top of the pipe at the waterbody crossing.
- . SOBS (Outstanding/High) or NPC (S1-S3) : NA

Top of Bank

962.1

962.2

962.3

962.4

HUC5074aW

For Environmental Review Purposes Only

MDNR ID No. 31: MP 963.7; Hay Creek (M-096-035-002)

PERCENTAGE OF GRAVEL BY WEIGHT FOR SAMPLES CONTAINING GRAVEL

CHARACTERIZATIONS TO BE ACCURATE. CONTRACTOR MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- 2. DRILLED PATH COORDINATES REFER TO CENTERLINE OF PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- DESIGNED ALIGNMENT
- 5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JDINT AVERAGE (ASSUMING RANGE 2 DRILL PIPE)

SHALL BE EXPOSED.

LINE 3 PIPELINE PROJECT	PLAN AND PROFILE	36-INCH PIPELINE CROSSING OF HAY CREEK	JSP JSP JSP	JSP JSP LOCATION: HUBBARD COUNTY, MINNESOTA	MP JSP DRAWN DATE CHECKED APPROVED DRAWING NUMBER REV	HK'D APP. ACM 07/25/17 DMP JSP D-03-5.84-22564-C-1352
			Г ММХ	LKB	ACM D	BY CF
			UPDATE WETLAND BOUNDARIES AND WORKSPACE	, UPDATE WORKSPACE AND ESA LABEL	SUE FOR CONSTRUCTION	REVISION DESCRIPTION
			; 10/27/1	3 09/29/1	1 07/25/1	0. DATE
					×	ŊŊ
	L.D.Hair&Associates.Inc	Consulting Engineers			2424 East 21st Street	Suite 510 Tulsa, Oklahoma 74114
		PR 1hr	oje	CTN 0e\	10.	04

В	ISSUED FOR PERMIT	AJM	12/13/19	KEH	KD
А	ISSUED FOR REVIEW	AJM	12/10/19	KEH	KD
NO.	REVISION -DESCRIPTION	BY	DATE	снк'р	APP'D

MDNR ID No. 32: MP 967.7; Portage Lake - Public Water Basin

NOTES

- 1. NO FEMA DIGITAL FLOODPLAIN DATA AVAILABLE
- 2. NO ROSGEN DATA AVAILABLE
- 3. SOBS (0/H) OR NPC (S1-3): PARTIAL OVERLAP OF S1-S3
- 4. MDNR FISHERIES EXEMPTION (GRANTED 8/27/2020)

LEGEND

MN-XX-XX-XXX.XXX

PROPOSED ENBRIDGE LJR PIPELINE OTHER PIPELINE PERMANENT RIGHT OF WAY TEMPORARY WORKSPACE WATERBODY TRACT BOUNDARY TEMPORARY MAT ROAD WETLAND ADDITIONAL TEMPORARY WORKSPACE TRACT ID

TRENCH BREAKER (LOCATIONS ARE APPROXIMATE)

CHANNEL CROSS SECTION NOTE:
CHANNEL LOCATIONS, DIMENSIONS, AND/OR ELEVATIONS ARE BASED ON 2020 TOPOGRAPHIC/BATHYMETRIC SURVEY(S), AND AS SUCH DO NOT REFLECT CHANGES TO THE CHANNEL THAT MAY HAVE OCCURRED SINCE THAT TIME.
DEPTH OF COVER AT CENTERLINE WAS DEVELOPED USING THE BOTTOM ELEVATION OF THE DEEPEST UPSTREAM OR DOWNSTREAM POOL WITHIN THE SURVEYED REACH, UNLESS OTHERWISE NOTED IN APPLICATION MATERIALS.
MEAN MEANDER BELT WIDTH: N/A
MEANDER WIDTH RATIO: N/A

0	ISSUED FOR PERMIT APPLICATION	AJJ	10/2020	BAB	BAB
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D

EENBRIDGE

DWN. BY: AJJ	DATE 10/2020	PROPOSED	D ENBRIDGE L3R PIPELINE					
CHK.		CROSSI	'RIMARY METHOD - WETLAND OPEN CU' CROSSING OF PORTAGE LAKE					
PROJ. ENGR.		EN	IBRIDGE MP 967.7					
PROJ. MGR.		NUDDAR	COUNTE, MINNESUTA					
		SCALE	DWG. NO.					
CLIENT APP.		NOTED	B-93-5.84-MDNR-32-0					

5. TRENCH BREAKER LOCATION IS APPROXIMATE PENDING FIELD VERIFICATION (EPP SECTION 1.13)

TED SIZE: ANSI FULL BLEED B (

BIEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. ITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT ETATION FOR REMOVAL. SMALL SHRUBS AND/OR TREES WITHIN THE D SHOULD NOT BE REMOVED. ITURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO TATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED. ISD URING ANY SEASON. EAR GROUND OR MATS WITHIN THE WORKSPACE. XIVABILITY, WATERING MAY BE NEEDED. ATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD URFACE TO TRANSITION EVENLY WITH THE CHANGES IN GRADE. RNED/SET IN PLACE WITH ONSITE EQUIPMENT. WATTING SHOULD BE PLACED WITH THE LONG SIDE E CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE MOT COLONIZE THESE VOIDS. CEMENT IF CONDITIONS ARE HOT AND DRY. DAMP AND/OR FROZEN LERING. MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE OBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF R THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE	INUMDATED AREAS 5 10 ⁴ STATUS 5 10 ⁴ INUNDATED AREAS 5 10 ⁴ Status 5 10 ⁴ INUNDATED AREAS 5 10 ⁴ Status 5 10 ⁴ INUNDATED AREAS 5 10 ⁴ Status 5 10 ⁴ INUNDATED AREAS 5 10 ⁴ Intervention 10 ⁴ 10 ⁴ Intervention 10 ⁴ 10 ⁴ Intervention 10 ⁴ 10 ⁴ Intervention	NO. I			1			
BIEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. ITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT ETATION FOR REMOVAL, SMALL SHRUBS AND/OR TREES WITHIN THE > SHOULD NOT BE REMOVED. ATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED . . D DURING ANY SEASON. EAR GROUND OR MATS WITHIN THE WORKSPACE. RYVABILITY; WATERING MAY BE NEEDED. ATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD URFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS FTHE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE. RNEDISET IN PLACE WITH ONSITE EQUIPMENT. WATTING SHOULD BE PLACED WITH THE LONG SIDE CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE OBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF R THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE BE REPLACED AS PRACTICAL FOLLOWING BACKFILLING OF <td< th=""><th>SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED SOLE SOL</th><th>A</th><th>ISSUE</th><th>U FOR REVIEW</th><th>MJ BY</th><th>08/20</th><th></th><th>APP'D</th></td<>	SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED SOLE SOL	A	ISSUE	U FOR REVIEW	MJ BY	08/20		APP'D
SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. ITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT ETATION FOR REMOVAL. SMALL SHRUBS AND/OR TREES WITHIN THE D SHOULD NOT BE REMOVED. ITURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO MATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED 20 DURING ANY SEASON. EAR GROUND OR MATS WITHIN THE WORKSPACE. RVIVABILITY; WATERING MAY BE NEEDED. ATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD URFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS 9 THE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE. RNED/SET IN PLACE WITH ONSITE EQUIPMENT. WATTING SHOULD BE PLACED WITH THE LONG SIDE : CHANNEL/ FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE CHANNEL/ FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE CHANNEL/ FLOW. SHOULD BE PLACED WITH A LIVE AND/OR FROZEN IERING. NATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE OBILZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF R THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE	SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED THE INST CONSTRUCTION CROSSING CONDITIONS AND TO VERTICAL SCALE 5 10 10 10 10 10 10 10 10 10 10	В	ISSUED			10/202	20	
SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. ITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT ETATION FOR REMOVAL. SMALL SHRUBS AND/OR TREES WITHIN THE D SHOULD NOT BE REMOVED. ITURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO MATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED DURING ANY SEASON. EAR GROUND OR MATS WITHIN THE WORKSPACE. RVIVABILITY; WATERING MAY BE NEEDED. ATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD URFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS OF THE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE. RNED/SET IN PLACE WITH ONSITE EQUIPMENT. WATTING SHOULD BE PLACED WITH THE LONG SIDE CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE MPT TO COLONIZE THESE VOIDS. CEMENT IF CONDITIONS ARE HOT AND DRY. DAMP AND/OR FROZEN TERING. MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE OBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF R THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE	SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED ORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO FOR RESTORATION EFFORTS. ITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT ETTATION FOR REMOVAL, SMALL SHRUBS AND/OR TREES WITHIN THE D SHOULD NOT BE REMOVED. ITURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO MATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED L. D DURING ANY SEASON. EAR GROUND OR MATS WITHIN THE WORKSPACE. RVIVABILITY; WATERING MAY BE NEEDED. ASTS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD SUFFACE TO TRANSITION EVEN UTHIN THE LONG SIDE CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG SIDE CHANNEL / FLOW. SHOULD BE READE CHANGED BARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE MATTING SHOULD BE THESE WITH THE LONG SIDE CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE OT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE MOT LANGE CAPS BETWEEN EACH SOD MAT AS NON-NATIVE MOT LOCUNZE THESE VOIDS. CEMENT IC CONDITIONS ARE HOT AND DRY. DAMP AND/OR FROZEN CHANSE / FLOOD EVENT WITH THE LONG SIDE CHANNEL / FLOW. SHOULD BE PLACED WITH THE LONG DEAD STOUT STAKE IOBLIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF R THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE							
	9 9+20 9+40 9+60 9+80 10+00 10+20 10+40 10+60 10+80 11+00 11+20 11+40 11+ R INUNDATED AREAS 5' 10' HORIZONTAL SCALE 5' 10' VERTICAL SCALE	SHEE ORMA FOR I ETATI D SHO ATURA MATS, C. ED DU ECHAI SHOU OT LE CEMEN CCHAI SHOU OT LE CEMEN CCHAI SHOU OT LE CCHAI SHOU OT LE CCHAI SHOU SHOU OT LE CCHAI SHOU SHOU SHOU SHOU SHOU SHOU SHOU SHOU	ITS FOR ADDITIONAL ITION ON PRE-CONS RESTORATION EFFO ON FOR REMOVAL. S JULD NOT BE REMOVAL. S JULD SENSITION A SHOULD OR MATS W JULD SHOULD BE PLACE IN FLACE WITH AVE LARGE GAPS BE TO COLONIZE THESE NT IF CONDITIONS A G. S CAN BE ANCHORE ZE DURING A FLOOD EPLACED AS SOON A E TIMING REQUIREME	INFORMATION RELAT TRUCTION CROSSING RTS. AM CROSSING USING EMALL SHRUBS AND/C ED. F REMOVAL, IT MAY E E NATIVE VEGETATIO ITHIN THE WORKSPAC AY BE NEEDED. NEL BANK AND ADJAC FRECE. SUBGRADE EL EVENLY WITH THE CAL ONSITE EQUIPMENT. CED WITH THE LONG S THE LONG SIDE PAR. TWEEN EACH SOD M VOIDS. RE HOT AND DRY. DAI D WITH A LIVE AND/OF EVENT BEFORE THE S PRACTICAL FOLLOV ENTS DESCRIBED IN S	ED TO PRC CONDITION ONSITE EQ R TREES W E DIFFICUL N WILL BE F CE. ENT FLOOD EVATION SI ANNEL BAN ANGES IN G SIDE ALLEL TO TI AT AS NON- MP AND/OR R DEAD STC ROOTS HAN VING BACKF ECTION 1.9	POSED IS AND T JIPMENT ITHIN TH T TO RETAINED PLAIN HOULD KS RADE. HE NATIVE FROZEN PUT STAP E SILLING C 1 OF TH	TO TIE D D	
INONDATED AREAS		 0 9+: 7 INU	20 9+40 9+60 9+8 JNDATED AREAS	0 10+00 10+20 10+40	10+60 10+80	11+00	11 +20 11+	C2

CROSS SECTION

DIMENSION	NAME	TYPICAL UNIT	VALUE	DESCRIPTION
А	sod mat width	FEET	3 - 4	WIDTH OF INDIVIDUAL SOD MAT.
В	sod mat length	FEET	3 - 6	length of individual sod mat.
С	SOD MAT THICKNESS	INCHES	12	THICKNESS OF INDIVIDUAL SOD MAT.
D	STACKED SOD MAT SETBACK	FEET	N/A	THE DISTANCE BETWEEN THE EDGES OF SOD MATS STACKED TO FORM A SLOPE
E	WIDTH OF STACKED SOD MATS	FEET	N/A	width of a bank created by stacked sod mats
F	HEIGHT OF STACKED SOD MATS	FEET	N/A	HEIGHT OF A SLOPE CREATED BY STACKED SOD MATS
G	WIDTH OF SURFACE- APPLIED SOD MATS	FEET	10 - 20	WIDTH OF A SLOPE STABILIZED WITH SURFACE-APPLIED SOD MATS
Н	TOP OF BANK SOD MATTING DISTANCE	FEET	10	DISTANCE SOD MATTING IS INSTALLED ON THE TOP OF BANK
IOTES:	· · · · ·			

SOD MATTING DETAIL

SOD MAT DETAIL

SOD MAT EXAMPLES

A ISSUED FOR REVIEW MJT 08/2020 NO. REVISION-DESCRIPTION BY DATE CHK'D ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN PORTAGE LAKE - MP 967.7- MDNR ID 32 SITE SPECIFIC DETAILS SCALE	Γ	В	ISSUED		10/2020			
NO. REVISION-DESCRIPTION BY DATE CHK'D APP'E ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN PORTAGE LAKE - MP 967.7- MDNR ID 32 SITE SPECIFIC DETAILS 32 SCALE DWG. NO. PAGE NO. 4/5		A	ISSUE	MJT	08/2020			
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN PORTAGE LAKE - MP 967.7- MDNR ID 32 SITE SPECIFIC DETAILS SCALE DWG. NO. PAGE NO. SSRP-967.7-004 4/5	1	۷0.	REVISI	ON-DESCRIPTION	BY	DATE	снк'р	APP'D
SCALE DWG. NO. PAGE NO.			ENBRIDG SITE- PORTAGE	E LINE 3 REPLACEMEN -SPECIFIC RESTORATION LAKE – MP 967.7– N SITE SPECIFIC DETAIL	T PRC N PLA MDNR S)JECT N ID 32		
		SCAL		PAGE NO	р. /5			

В	ISSUED	FOR PERMITTING	MJT	10/2020		
A	ISSUE	MJT	08/2020			
NO.	REVISIO	N-DESCRIPTION	BY	DATE	снк'р	APP'D
POR	ENBRIDGE SITE- TAGE LAKE-PUBL	E LINE 3 REPLACEMEN SPECIFIC RESTORATION IC WATER BASIN – MF PHOTO PAGE	T PRO N PLA P 976.)JECT N .7 — M	idnr i	D 32
SCAL	E	dwg. no. SSRP-976.7-005			page n 5,	э. /5

GENERAL

- 1. THE SPECIFICATIONS WITHIN THIS SSRP MAY MODIFY OR REPLACE PROJECT-WIDE STANDARDS PRESENTED IN THE EPP. WHERE MATERIAL WITHIN THESE SSRPS EXCEEDS STANDARD CONSTRUCTION MEASURES IN THE EPP. THESE SSRPS SUPERSEDE THE EPP.
- 2. CONSTRUCTION AND RESTORATION OF WATERBODY CROSSINGS WILL FOLLOW THESE GENERAL STEPS:
 - A. SITE CLEARING
 - B. INSTALLATION OF TEMPORARY EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES ("BMPS")
 - C. BRIDGE INSTALLATION
 - D. EXCAVATION/BACKFILLING OF THE WATERBODY INCLUDING:
 - SOD SAVING TOPSOIL SEGREGATION AT NON-WOODED SITES
 - STREAMBED MATERIAL SEGREGATION
 - PIPE INSTALLATION
 - BACKFILL, INCLUDING IMPLEMENTATION OF CONSTRUCTION-RELATED RESTORATION METHODS (I.E., TOE WOOD)
 - E. REPLACEMENT OF STREAMBED MATERIAL AND TOPSOIL/SOD LAYER
 - F. RESTORATION OF STREAM BANKS TO PRE-CONSTRUCTION CONTOURS
 - G. IF FINAL GRADING NOT POSSIBLE AT THE TIME, TEMPORARY STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - H. AFTER FINAL GRADING, PERMANENT SEEDING AND/OR WOODY VEGETATION RESTORATION, STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - 1. BRIDGE REMOVAL DURING FINAL RESTORATION AFTER STABILIZATION AND PERMANENT SEEDING
 - J. POST-CONSTRUCTION MONITORING

CROSSING METHODS

- 1. ALL WATERBODY AND WETLAND CROSSINGS WILL BE CONDUCTED IN COMPLIANCE WITH SECTION 2.0 AND SECTION 3.0 OF THE ENVIRONMENTAL PROTECTION PLAN ("EPP"), RESPECTIVELY, SECTION 2.0 AND 3.0 OF THE WINTER CONSTRUCTION PLAN PRESENTS MODIFICATIONS FOR WATERBODY AND WETLAND CONSTRUCTION METHODS, RESPECTIVELY, IN WINTER CONDITIONS.
- 2. ENBRIDGE'S SUMMARY OF CONSTRUCTION METHODS AND PROCEDURES (THE 'PROCEDURES," APPENDIX A OF THE EPP) OUTLINES THE VARIOUS CONSTRUCTION METHODS THAT ENBRIDGE MAY UTILIZE TO CONSTRUCT THROUGH WATERBODIES AND WETLANDS/BASINS AS PRESENTED ON THESE SITE-SPECIFIC RESTORATION PLANS ("SSRPS").
 - A. DRY CROSSING (ISOLATED) METHODS (INCLUDING THE DRY CROSSING AND MODIFIED DRY CROSSING METHOD) ARE DESCRIBED SECTIONS 4.3 OF THE PROCEDURES, AND IN SECTIONS 2.5.2 AND 2.5.3 AND FIGURES 23 AND 24 OF THE EPP.
 - B. THE BORE METHOD (NON-PRESSURIZED) IS DESCRIBED IN SECTION 3.5 OF THE PROCEDURES, AND SECTION 4.0 OF THE EPP.
 - C. THE MODIFIED UPLAND CONSTRUCTION (WETLAND) METHOD IS DESCRIBED IN SECTION 3.3 OF THE PROCEDURES, AND SECTION 3.0 AND FIGURES 30 TO 34 OF THE EPP.
 - D. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE OPEN CUT (NON-ISOLATED) WATERBODY CROSSING METHOD IS DESCRIBED IN SECTION 4.1 OF THE PROCEDURES. AND SECTION 2.5.1 AND FIGURE 24 OF THE FPP
 - E. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE PUSH-PULL METHOD IS DESCRIBED IN SECTION 3.4 OF THE PROCEDURES, AND SECTION 3.7.1 AND FIGURES 35 AND 36 OF THE EPP.

CLEARING/VEGETATION REMOVAL

- 1. STUMPS WITHIN THE TRENCH LINE WILL BE COMPLETELY REMOVED, GROUND, AND/OR HAULED OFF-SITE TO AN APPROVED LOCATION. TREE STUMPS OUTSIDE THE TRENCH LINE WILL BE GROUND BELOW NORMAL GROUND SURFACE TO FACILITATE A SAFE WORK AREA AND TO ALLOW TOPSOIL REMOVAL, IF NECESSARY. IN SOME CIRCUMSTANCES, TREE STUMPS OUTSIDE THE TRENCH LINE MAY BE COMPLETELY REMOVED TO ALLOW FOR A SAFE WORK AREA AND HAULED OFF-SITE TO AN APPROVED LOCATION AS OUTLINED IN SECTION 1.8.3 OF THE EPP.
- 2. CLEARING WILL BE CONDUCTED IN WATERBODIES AND WETLANDS AS OUTLINED IN SECTION 2.2 AND 3.2 OF THE EPP, RESPECTIVELY. CHIPS, MULCH, OR MECHANICALLY CUT WOODY DEBRIS SHALL NOT BE STOCKPILED IN A WETLAND. HYDRO-AX DEBRIS, OR SIMILAR CAN BE LEFT IN THE WETLAND IF SPREAD EVENLY IN THE CONSTRUCTION WORKSPACE TO A DEPTH THAT WILL ALLOW FOR NORMAL REVEGETATION, AS DETERMINED BY THE EI. CHIPPING IS NOT ALLOWED ON PUBLIC LANDS. ON PUBLIC LANDS, MULCH AND MECHANICALLY CUT WOODY DEBRIS MUST BE UNIFORMLY BROADCAST TO LESS THAN 2-INCH THICKNESS AND IN A MANNER THAT MAINTAINS VISIBLE GROUND.
- 3. ENBRIDGE WILL PROPERLY INSTALL AND MAINTAIN REDUNDANT SEDIMENT CONTROL MEASURES IMMEDIATELY AFTER CLEARING AND PRIOR TO INITIAL GROUND DISTURBANCE AT SURFACE WATERS LOCATED WITHIN 50 FEET OF THE PROJECT AND WHERE STORMWATER FLOWS TO THE SURFACE WATER (REFER TO THE ENVIRONMENTAL PLAN SHEETS IN THE SWPPP), AND WITHIN 100 FEET OF SPECIAL AND IMPAIRED WATERS, INCLUDING TROUT STREAMS.
- 4. ON PUBLIC LANDS AND WHEREVER PRACTICABLE AT WATERBODY CROSSINGS, ENBRIDGE WILL USE WILDLIFE-FRIENDLY EROSION AND SEDIMENT CONTROL BMPS THAT CONTAIN BIODEGRADABLE NETTING (CATEGORY 3N OR 4N NATURAL FIBER) AND WILL AVOID THE USE OF PLASTIC MESH (SECTIONS 1.17.1 AND 2.6.1 OF THE EPP).

TEMPORARY STABILIZATION

- SWPPP.
- 2. HYDRO-MULCH AND LIQUID TACKIFIER CAN BE USED IN PLACE OF CERTIFIED WEED-FREE STRAW OR HAY MULCH WITH PRIOR RECOMMENDED RATE. ENBRIDGE WILL AVOID THE USE OF HYDROMULCH ON PUBLIC LANDS; HOWEVER, ENBRIDGE MAY USE 1.8.3 OF THE EPP.

RESTORATION AND STABILIZATION

- WILL CONSULT WITH THE MDNR BEFORE PROCEEDING FURTHER AS OUTLINED IN SECTION 2.6 OF THE EPP.
- 2. UNSTABLE SOILS AND/OR SITE-SPECIFIC FACTORS SUCH AS STREAM VELOCITY AND FLOW DIRECTION MAY REQUIRE ADDITIONAL RESTRICTIONS.
- DISPOSED OF AT AN APPROVED OFF-SITE LOCATION AS NEEDED TO ENSURE CONTOURS ARE RESTORED TO AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS.
- 4. REVEGETATION ACTIVITIES WILL OCCUR AS OUTLINED IN SECTION 7.0 OF THE EPP. SEED MIXES AT PUBLIC WATERS WILL BE FOLLOWS:

А	EMERGENT (34-181)	G	DRY PRAIRIE GENERAL (35–221)
В	RIPARIAN NE (34–361)	н	MESIC PRAIRIE GENERAL (35–241)
С	RIPARIAN S&W (34-261)	I	MESIC PRAIRIE NW (35-441)
D	WET MEADOW NE (34-371)	J	DRY PRAIRIE NORTHWEST (35-421)
E	WET MEADOW S&W (34-271)	к	WOODLAND EDGE NE (36-311)
F	WETLAND REHABILITATION (34–171)	L	NATURAL REVEGETATION

- PLACE FROM EXISTING PLANT MATERIAL AND ROOT STOCK IN THESE COMMUNITIES.
- 6. ALL MATERIALS USED FOR CONSTRUCTION OF THE PROJECT MUST BE REMOVED FROM THE SITE.
- 7. ENBRIDGE WILL CONDUCT POST-CONSTRUCTION MONITORING IN ACCORDANCE WITH THE POST-CONSTRUCTION MONITORING PLA FOR WETLANDS AND WATERBODIES. AND IN ACCORDANCE WITH THE VMP FOR THE UPLAND PORTIONS OF THE PROJECT ON PUBLIC LANDS.

1. ON PORTIONS OF THE PROJECT WHERE WORK WILL BE OCCURRING DURING APPLICABLE "WORK IN WATER RESTRICTIONS" FOR PUBLIC WATERS (REFER TO SECTION 2.1), ALL EXPOSED SOIL AREAS WITHIN 200 FEET OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE STABILIZED WITHIN 24 HOURS DURING THE RESTRICTION PERIOD. STABILIZATION OF ALL EXPOSED SOILS WITHIN 200 FEET OF THE PUBLIC WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD. THESE AREAS WILL BE IDENTIFIED ON THE ENVIRONMENTAL PLAN SHEETS ACCOMPANYING THE

APPROVAL FROM ENBRIDGE. ALL HYDROMULCH AND LIQUID TACKIFIER PRODUCTS USED WILL BE ON THE APPLICABLE STATE DOT PRODUCT LIST. HYDRO-MULCH AND LIQUID TACKIFIER PRODUCTS CONTAINING PLASTIC/POLYPROPYLENE FIBER ADDITIVES AND MALACHITE GREEN (COLORANT) WILL NOT BE UTILIZED ON THIS PROJECT. APPLICATION RATES WILL BE AT THE MANUFACTURER'S HYDROMULCH ON STEEP SLOPES TO PREVENT EROSION UNTIL PERMANENT COVER HAS BEEN ESTABLISHED AS OUTLINED IN SECTION

1. ENBRIDGE WILL RESTORE THE STREAM BANKS AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS UNLESS THAT SLOPE IS DETERMINED TO BE UNSTABLE. IF THE SLOPE IS CONSIDERED UNSTABLE, ENBRIDGE WILL RESHAPE THE BANKS TO PREVENT SLUMPING. FOR PUBLIC WATERS, ENBRIDGE WILL RETURN THE BANK TO PRE-CONSTRUCTION CONTOURS, UNLESS OTHERWISE DIRECTED BY THE SITE-SPECIFIC RESTORATION PLAN. IF ENBRIDGE CANNOT RESTORE TO PRE-CONSTRUCTION CONTOURS AT A PUBLIC WATER, ENBRIDGE

RESTORATION EFFORTS, SUCH AS INSTALLATION OF WOODY VEGETATION, GEOTEXTILE FABRIC, OR TREE, LOG, ROOTWAD, OR BOULDER REVETMENTS TO STABILIZE DISTURBED STREAM BANKS (SEE FIGURE 29) AS OUTLINED IN SECTION 2.6.2 OF THE EPP. ENBRIDGE WILL WORK WITH THE MDNR TO ENSURE ALL WORK/ADJUSTMENTS ARE APPROVED AND ARE CONDUCTED WITHIN APPLICABLE TIMING

3. IN UPLAND AND WETLAND AREAS, CLEANUP AND ROUGH GRADING WILL OCCUR AS OUTLINED IN SECTIONS 1.16 AND 3.9 OF THE EPP. ENBRIDGE WILL BACKFILL THE TRENCH TO AN ELEVATION SIMILAR TO THE ADJACENT AREAS OUTSIDE THE TRENCH LINE AND WILL ADD A SLIGHT CROWN OF APPROXIMATELY 3 TO 6 INCHES (DEPENDING ON SOIL TYPE) OVER THE BACKFILLED TRENCH TO ALLOW FOR SUBSIDENCE. GENERALLY, EXCESS SUBSOIL DISPLACED BY THE PIPE INSTALLATION WILL BE SPREAD ACROSS THE PORTION OF THE CONSTRUCTION WORKSPACE WHERE TOPSOIL REMOVAL HAS OCCURRED. ANY REMAINING EXCESS SUBSOIL WILL BE REMOVED AND

SELECTED AND APPLIED AS INDICATED IN THE PLANTING PLAN, WHICH IS APPENDIX A OF THE POST-CONSTRUCTION VEGETATION MANAGEMENT PLAN FOR PUBLIC LANDS AND WATERS ("VMP"). SEED MIXES RELATIVE TO THESE SSRP CROSSINGS ARE CODED AS

5. ENBRIDGE WILL NOT SEED STANDING WATER OR WOODED (PSS AND PFO) WETLAND COMMUNITIES. NATURAL REVEGETATION WILL TAKE

	в	ISSUED FOR PERMITTING	MJT	10/2020		
N	NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D
		ENBRIDGE LINE 3 REPLACEME SITE-SPECIFIC RESTORATI	NT PF ON PL	ROJECT AN		
		CONSTRUCTION NOTE				
•	SCALE DWG. NO. SSRP-NOTES					Э.

MDNR ID No. 33: MP 974.2; Straight River (M-096-035-002-002)

- 2. SOBS (0/H) OR NPC (51-3): N/A 3. MDNR REGION 1 PWI COLDWATER FISHERY: SEPTEMBER 1 JUNE 30. 24-HOUR SOIL STABILIZATION REQUIRED
- WITHIN 200 FEET DURING RESTRICTION. 4. MDNR LAND SEE UTILITY LICENSE FOR PUBLIC LANDS. NO CLEARING: JUNE-JULY.

OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WITHIN 24 HOURS. STABILIZATION WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY/ TEMPORARILY CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD.

CHANNEL LOCATIONS, DIMENSIONS, AND/OR ELEVATIONS ARE BASED ON 2013 TOPOGRAPHIC/BATHYMETRIC SURVEY(S), AND AS SUCH DO NOT REFLECT CHANGES TO THE CHANNEL THAT MAY HAVE OCCURRED SINCE THAT TIME.

0	ISSU	JED FOR PE	ERMIT APPLICATION	A A	IJ	10/2020	BAB	BAB
NO.		REVISION-	-DESCRIPTION	В	Y	DATE	снк'р	APP'D
			E enbri	DGE				
DWN.	BY: AJJ	DATE 10/2020	PROPOSED	ENBRID	GE	L3R F	PIPELIN	νE
CHK.			CROSSIN	ARY ME NG OF S	i hi Str	DD — H RAIGHT	HDD RIVER	2
PROJ.	ENGR.		EN hubbar	BRIDGE	MF ITY	974.2 MINN	2 ESOTA	4
PROJ.	MGR.		SCALE	DWG. NO.		,	2001/	
CLIEN	T APP.		NOTED B-93-5.84-MDNR-33-0					

-ROCK QUALITY DESIGNATION (PERCENT)

- MUST USE HIS DWN EXPERIENCE AND JUDGMENT IN INTERPRETING THIS DATA.

- PILOT HOLE AS OPPOSED TO TOP OF INSTALLED PIPE.

- 5. CURVE RADIUS: NO LESS THAN 2,400 FEET BASED ON A 3-JDINT AVERAGE (ASSUMING RANGE 2 DRILL PIPE)
- MODIFY DRILLING PRACTICES AND DOWNHOLE ASSEMBLIES AS NECESSARY TO PREVENT DAMAGE TO EXISTING FACILITIES.

LINE 3 PIPELINE PROJECT	BI AN AND BROEILE	36 INCH DIDEI INE CDOSSING OF THE STDAICHT DIVIED	SP KWW JSP SULLING IN DEPONDENT DIRECTIONAL DRIFTING	SP DMP JSP	KB JSP JSP LOCATION: HUBBARD COUNTY, MINNESOTA	CM DMP JSP DRAWN DATE CHECKED APPROVED DRAWING NUMBER REVISION	Y CHK'D APP. ACM 07/25/17 DMP JSP D-03-5.84-22565-D-1352 D
			D 09/30/20 UPDATE WETLANDS JS	C 10/25/19 RELOCATE ENTRY POINT AS DIRECTED BY ENBRIDGE JS	B 09/29/17 UPDATE WORKSPACE AND ESA LABEL	A 07/25/17 ISSUE FOR CONSTRUCTION AC	NO. DATE REVISION DESCRIPTION B
		J.D.HairwAssociates, Inc.	Consulting Engineers)JE(■ 0 0 2424 East 21st Street	Suite 510 Tulsa, Oklahoma 74114
						14 T 72	+U4 4

В	ISSUED FOR PERMIT	AJM	12/13/19	KEH	KD
А	ISSUED FOR REVIEW	AJM	12/10/19	KEH	KD
NO.	REVISION-DESCRIPTION	BY	DATE	CHK'D	APP'D

MDNR ID No. 34: MP 976.6; Shell River (M-096-035-004)

PROPOSED RESTORATION ACTIVITIES WILL BE REVIEWED BY DNR AND ENBRIDGE DURING SITE VISIT AND MAY BE CHANGED TO REFLECT SITE CONDITIONS AT THE TIME OF CONSTRUCTION.

HUC5130aWB; IFC ID: S-200.0 FEATURE ID CROSSING TYPE DRY CROSSING PROPOSED RESTORATION BRUSH - TOE WOOD AND SOD MATS (SEE DETAILS FOR LIVE STAKING, TRANSPLANTS, AND SHRUB SPECIES IF APPLICABLE) SHRUB-CARR WITHIN OR ADJACENT WETLAND BWSR SEED MIX WET MEADOW NE (34-371) **DOMINANT WETLAND VEGETATION** 1. CAREX LACUSTRIS 3. SALIX PETIOLARIS PHALARIS ARUNDINACEA 4. SALIX DISCOLOR SOBS (O/H) or NPC (S1-3) N/A

NOTES

1. CONSTRUCTION TIMING RESTRICTIONS

- 1.1. MDNR REGION 1 PWI COOL/WARM WATER FISHERY: MARCH 15 JUNE 30.
- 1.2. WHEN WORK OCCURS WITHIN "WORK IN WATER RESTRICTIONS", ALL EXPOSED SOIL AREAS WITHIN 200 FEET OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE STABILIZED WITHIN 24 HOURS DURING THE RESTRICTION PERIOD. STABILIZATION OF ALL EXPOSED SOILS WITHIN 200 FEET OF THE PUBLIC WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARIL' CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD
- 1.3. WILD RICE: APRIL 1 JULY 15
- 2. WORK SHALL BE CONDUCTED IN ACCORDANCE WITH APPLICABLE STANDARDS IN ENBRIDGE'S EPP AND VMP FOR PUBLIC LANDS AND WATERS. THE SPECIFICATIONS WITHIN THIS SSRP MAY MODIFY OR REPLACE THESE STANDARDS.
- 3. SEE GENERAL NOTES PAGE FOR ADDITIONAL DETAIL.
- 4. INFORMATION REGARDING SEEDING SPECIFICATIONS, SEED BED PREPARATION TECHNIQUES, ETC. ARE DESCRIBED IN THE PLANTING PLAN CONTAINED WITHIN THE VMP.
- 5. TRENCH BREAKER LOCATION IS APPROXIMATE PENDING FIELD VERIFICATION (EPP SECTION 1.13)

Y	В	ISSUED FOR PERMITTING					10/2020		
	А	A ISSUED FOR REVIEW					08/2020		
	NO.		REVISIO	BY	DATE	снк'р	APP'D		
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER – MP 976.6 – MDNR ID 34 RE-VEGETATION PLAN								
	SCALE DWG. NO. NOTED SSRP-976.6-001					PAGE NO	7		
					D				(17)(11)

GENERAL

- 1. REFER TO RESTORATION DETAIL SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED RESTORATION MEASURES.
- 2. REFER TO SITE PHOTOS FOR INFORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO PROVIDE ADDITIONAL GUIDANCE FOR RESTORATION EFFORTS.

TOE WOOD

- 1. ROUGH GRADE CHANNEL BED FEATURES INCLUDING POOLS AND PLACEMENT OF SUBSTRATE.
- 2. INSTALL FOOTER LOG(S) ALONG PROPOSED TOE OF SLOPE. FOOTER LOGS SHOULD BE ANGLED TO ALLOW FOR TOE ALIGNMENT TO GENERALLY MATCH THE EXISTING CURVE AND EVENLY TRANSITION FROM UPSTREAM TO DOWNSTREAM
- 3. PUSH FOOTER LOG INTO SOIL APPLY A SMALL AMOUNT OF GRAVEL OR STONE AS NEEDED TO PREVENT FLOATATION OF FOOTER LOG PRIOR TO PLACING WOODY DEBRIS.
- 4. PLACE A LAYER WOODY DEBRIS IN 6" TO 8" LIFTS, APPLY 3"-4" GRAVEL AND/OR SOIL FILL AND COMPACT WITH EXCAVATOR BUCKET. WASH FILL MATERIAL INTO WOODY DEBRIS MATRIX WITH WATER FROM CHANNEL. APPLY ADDITIONAL LAYERS "AS NEEDED" TO REACH THE SPECIFIED TOE WOOD HEIGHT
- 5. PLACE STACKED SOD MATS ABOVE TOE WOOD. THE USE OF TRANSPLANTS OR FABRIC LIFTS MAY BE FIELD APPROVED BY ENBRIDGE IN CONSULTATION WITH MN DNR.

SOD MATTING

- 1. REMOVE VEGETATED MATS ON EITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT WHICH CAN UNDERCUT THE VEGETATION FOR REMOVAL. SMALL SHRUBS AND/OR TREES WITHIN THE SOD MATS ARE ACCEPTABLE AND SHOULD NOT BE REMOVED. DEPENDING ON THE LEVEL OF SATURATION AT THE TIME OF REMOVAL. IT MAY BE DIFFICULT TO OBTAIN INTACT CONSOLIDATED MATS. BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED AND CAPTURED FOR PLACEMENT.
- 2. SOD MATS CAN BE TRANSPLANTED DURING ANY SEASON.
- 3. SOD MAT WILL BE PLACED ON CLEAR GROUND OR MATS WITHIN THE WORKSPACE.
- 4. MONITOR MATS TO SUPPORT SURVIVABILITY: WATERING MAY BE NEEDED.
- 5. RIOR TO PLACEMENT OF SOD MATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN APPLICATION AREA TO PROVIDE A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD ALLOW FOR THE FINISHED SOD SURFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS UPSTREAM AND DOWNSTREAM OF THE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE
- 6. 7EGETATED MATS WILL BE RETURNED/SET IN PLACE WITH ONSITE EQUIPMENT.
- 7. SURFACE APPLIED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PERPENDICULAR TO THE CHANNEL / FLOW.
- 8. STACKED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE CHANNEL / FLOW.
- 9. WHEN PLACING SOD MATS, DO NOT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE VEGETATION WILL QUICKLY ATTEMPT TO COLONIZE THESE VOIDS.
- WATER SOD MATS AFTER REPLACEMENT IF CONDITIONS ARE HOT AND DRY. DAMP AND/OR FROZEN SOD MATS DO NOT REQUIRE WATERING. 10
- THE TOP MAT AND/OR OTHER MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE TO ENSURE THAT IT DOES NOT MOBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE ESTABLISHED. 11 12 1THE VEGETATED MATS WILL BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF THE TRENCH AND STABILIZED PER THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE EPP.
- LIVE STAKING
- 1. CLEANLY REMOVE ALL SIDE BRANCHES AND THE TOP GROWTH, AND FASHION THE CUTTINGS INTO LIVE STAKES AS DEPICTED IN THE DETAIL DRAWING. AN OPTION DURING PREPARATION IS TO PAINT AND SEAL THE TOP OF THE LIVE STAKE BY DIPPING THE TOP 1-2 INCHES INTO A 50-50 MIX OF LIGHT-COLORED LATEX PAINT AND WATER. SEALING THE TOP OF STAKE WILL REDUCE THE POSSIBILITY OF DESICCATION. ASSURE THE STAKES ARE PLANTED WITH THE TOP UP, AND MAKES THE STAKES MORE VISIBLE FOR SUBSEQUENT PLANTING EVALUATIONS
- 2. USE A PUNCH BAR OR HAND AUGER TO CREATE A NARROW PILOT HOLE, PERPENDICULAR TO THE SLOPE, THROUGH ANY EROSION CONTROL MATTING, RIP RAP, OR OTHER REVETMENT, FILTER FABRIC, ETC., IF PRESENT, AND DEEP ENOUGH TO INTERCEPT THE WATER TABLE. THE HOLE SHOULD BE ONLY AS LARGE AS NECESSARY TO INSTALL THE LIVE STAKE WITHOUT DAMAGE WHILE ENSURING THE HIGHEST AMOUNT OF STAKE-SOIL CONTACT
- 3. INSERT THE POINTED END OF THE LIVE STAKE INTO THE PILOT HOLE. TAMP INTO THE GROUND WITH A DEAD BLOW HAMMER TAKING CARE NOT TO SPLIT OR OTHERWISE DAMAGE THE LIVE STAKE. USE WATER, SOIL BACKFILL, TAMPING, ETC, TO ACHIEVE GOOD SOIL-TO-STEM CONTACT AND REMOVE AIR POCKETS.
- 4. USE ONSITE EQUIPMENT TO APPLY WATER FROM THE CHANNEL AFTER INSTALLATION.
- 5. ALL CUTS SHOULD BE CLEAN AND SMOOTH. NO CRACKED OR SPLIT LIVE STAKES SHOULD BE USED. IF THEY SPLIT DURING TAMPING, THEY SHOULD BE CUT BELOW THE CRACK OR REPLACED.
- 6. THE SPECIFIED NUMBER OF LIVE STAKES SHOULD BE INSTALLED INTO THE SOIL AND PROTRUDE ABOVE THE SOIL AND ANY SOD MATTING, MULCHING, EROSION CONTROL MATTING, RIP RAP, OR OTHER REVETMENT
- 7. LIVE STAKE SHOULD NOT MOVE AFTER INSTALLATION: ENSURING IT IS IN FIRM CONTACT WITH THE SOIL.
- 8. IT IS IMPORTANT TO ENSURE THAT THE UPSTREAM AND DOWNSTREAM ENDS OF THE LIVE STAKING A MERGE SMOOTHLY INTO THE UNDISTURBED BANK BEYOND THE PROJECT AREA. THE RATE OF INSTALLING LIVE STAKES SHOULD TAPER OFF GRADUALLY TO BLEND IN WITH THE EXISTING VEGETATION.

	COMMON NAME	SCIENTIFIC NAME
	ELDERBERRY	SAMBUCUS CANADENSIS
	HIGH BUSH CRANBERRY	VIBURNUM OPOLUS (TRILOBUM)
	RED-OSIER DOGWOOD	CORNUS STOLONIFERA
	SILKY DOGWOOD	CORNUS AMOMUM
3	SPECKELD ALDER	ALNUS INCANA
	WILLOW	SALIX SPP.
	DOGWOOD	CORNUS SPP.
	NONE	NONE

PRELIMINARY SPECIES. PRIOR TO RESTORATION ACTIVITIES, ALL SPECIES WILL BE REQUIRED TO BE VERIFIED AS NATIVE AND FOUND WITHIN THE COUNTY WHERE PLANTED

2. LIVE STAKE SPECIES SELECTION: USE AT LEAST THREE (3) SPECIES WITH NO MORE THAN 60% OF ANY ONE (1) SPECIES; ALTERNATIVE SPECIES MAY BE SELECTED BASED ON SITE CONDITIONS AND AVAILABILITY. ALTERNATIVE SPECIES SHOULD BE REVIEWED AGAINST USDA DATA BASE FOR MN NATIVE SPECIES.

(WHERE APPLICABLE) TRANSPLANTS AND/OR CONTAINER SHRUBS MAY BE SUBSTITUTED FOR LIVE STAKES BÁSED ON SITE SPECIFIC CONDITIONS.

CONTAINER PLANTED SHRUBS ARE RECOMMENDED TO BE 18"- 24" IN SIZE.

CONTAINER PLANTED SHRUBS SPACING: 1 SHRUB PER 3 LINEAR FEET OF BANK.

ADDITIONAL ROWS SPACED 3 FEET APART, AND 3-5 SHRUBS OF THE SAME SPECIES. (WHERE APPLICABLE) TRANSPLANTS SHOULD BE EXCAVATED WITH A MINIMUM OF 12"

SOIL, DIAMETER EQUÁL TO PLANT DRIP LINE, AND LOOSE UNBOUND BALL.

LIVE STAKE SPACING (WHERE APPLICABLE): STAGGER 1 STAKE PER 3 LINEAR FEET OF STREAM BANK IN 2 - 3 ROWS SPACED 1 FOOT APART. PLACE FIRST ROW ALONG TOP OF BANK (BANKFULL) AND THE LOWER ROW(S) BETWEEN THE TOP OF BANK AND OHWM

LEGEND

E ENBRIDGE

ENBRIDGE L3R PIPELINE PERMANENT RIGHT OF WAY TEMPORARY WORKSPACE WATERBODY - RIFFLE (ROSGEN SURVEY) WATERBODY - POOL (ROSGEN SURVEY) WATERBODY - RUN (ROSGEN SURVEY) WATERBODY - GLIDE (ROSGEN SURVEY) CONTOUR (1' INTERVAL) TOP OF BANK ORDINARY HIGH WATER MARK FIELD DELINEATED WETLAND TRAVEL LANE/CONSTRUCTION MATTING TRENCH - 10 TRENCH – 20'

В	ISSUED		10/2020					
A	ISSUE	MJT	08/2020					
NO.	REVISION-DESCRIPTION			DATE	снк'р	APP'D		
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 976.6 - MDNR ID 34 SITE SPECIFIC DETAILS								
SCAL	e NOTED	DWG. NO. SSRP-976.6-004			PAGE N	э. /7		

PLOTTED SIZE: ANSI FULL BLEED B (17x1

В	ISSUED FOR PERMITTING		10/2020				
А	ISSUED FOR REVIEW	MJT	08/2020				
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D		
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER – MP 976.6 – MDNR ID 34 SITE SPECIFIC DETAILS							
SCAL	е Dwg. No. NOTED SSRP-976.6-004	dwg. no. SSRP-976.6-004		page no. 4/7			

EXCAVATION LIMITS -WOODY DEBIRS (X12, X13) (TYP.)

SOD MATTING DETAIL

É ENBRIDGE

В	ISSUED		10/2020					
A	ISSUE	MJT	08/2020					
NO.	REVISIO	BY	DATE	снк'р	APP'D			
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 976.6 - MDNR ID 34 SITE SPECIFIC DETAILS							
SCAL	e NOTED	dwg. no. SSRP-976.6-004			page no 5/	о. /7		

DESCRIPTION SPACING BETWEEN INDIVIDUALLY INSTALLED LIVE STAKES. STAKES CAN BE PLACED IN A

PLACEMENT OF LOWER ROW OF LIVE STAKES RELATIVE TO THE APPROXIMATE BASE FLOW

LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS LIVE

STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION. DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND. AT LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINAL

DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS

LIVE STAKE – TYPICALLY CITE A PERMISSIBLE MINIMUM AND MAXIMUM DIAMETER.

WATER LEVEL WITH CONSIDERATION GIVEN TO DURATION OF INUNDATION DURING

INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT.

TRIANGULAR GRID (NRCS 2007A) OR RANDOMLY (NRCS 2007A, IOWA DNR 2006).

RECOMMEND SPECIES DIVERSITY THROUGHOUT PROJECT AREA.

POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE

POSITION OF LIVE STAKE RELATIVE TO THE TOE OF A SLOPE

BANKFULL AND OTHER HIGH FLOW EVENTS.

LIVE	STAKE	PLANTINGS	DETAIL
	JIANL		

VALUE

3.00

0 - 3

0 - 3

1433.2+/

24-36

3-4

 $\frac{1}{2}$ - 1 $\frac{1}{2}$

TYPICAL UNIT

FEET

FEET

FEET

FEET

FEET

FEET

INCHES

DIMENSION²

А

В

С

D

Е

F

G

NOTES:

NAME

LIVE STAKE SPACING

LIVE STAKE - TOP OF SLOPE

PLACEMENT

LIVE STAKE - TOE OF SLOPE

PLACEMENT

LIVE STAKE – BASE FLOW

RELATIONSHIP

LIVE STAKE LENGTH

LIVE STAKE PROTRUSION

LIVE STAKE DIAMETER

DIMENSION LABELS ARE REFERENCED IN THE DETAIL DRAWINGS.

	EXCAVATED PLANT WITH ROOTBALL
MOUNDED SOIL - BACKFILL PERIMETER (TYP.)	WEED BARRIER FABRIC FABRIC STAKE
SCARIFIED SIDES - OF EXCAVATION	
SOIL BACKFILL SOIL/ROOT MATRIX MOUNDED SOIL	D D
BACKFILL	CROSS SECTION

DIMENSION ²	NAME	TYPICAL UNIT	VALUE	
А	PLANTING DEPTH	VARIES		PLANTING DEPTH OF THE TRANSPLANT.
В	HEIGHT OF MOUNDED SOIL BACKFILL	INCHES		HEIGHT OF MOUNDED LOOSE SOIL PLACED IN
С	DEPTH OF PLANTING PIT	VARIES		DEPTH OF THE PLANTING PIT; ACCOMMODAT SOIL AT BOTTOM OF PIT.
D	WIDTH OF PLANTING PIT	VARIES		OVER-EXCAVATED WIDTH OF THE PLANTING F
E	HEIGHT OF MOUNDED SOIL PERIMETER	INCHES		HEIGHT OF SOIL BERM CONSTRUCTED ALONG
F	WIDTH OF MOUNDED SOIL PERIMETER	INCHES		WIDTH OF SOIL BERM CONSTRUCTED ALONG
G	WIDTH OF WEED BARRIER FABRIC (OPTIONAL)	INCHES		WIDTH OF FABRIC PLACED ON SURFACE TO C HAVE GRASSES, LEAF MATTER, ETC. ATTACHEE
Н	FABRIC STAKE LENGTH (OPTIONAL)	INCHES		LENGTH OF STAPLES/SPIKES USED TO SECURE V
I	THICKNESS OF MULCH (OPTIONAL)	INCHES		THICKNESS OF MULCH, IF NECESSARY. TRANSF REQUIRE MULCH.
J	GAP BETWEEN MULCH AND PLANT STEM/TRUNK (OPTIONAL)	INCHES		ROOM BETWEEN PLANT STEM/TRUNK AND MU

MATTING STAKE

> SOIL BACKFILL

MATTING ANCHOR DETAIL

DATA ARE FOR TRANSPLANTED VEGETATION.

DIMENSION LABELS ARE REFERENCED IN THE DETAIL DRAWINGS.

TRANSPLANTS EXAMPLES

TRANSPLANTING DETAIL

DIMENSION ²	NAME	TYPICAL UNIT	VALUE	DESCRIPTION			
А	MATTING STAKE SPACING	FEET, INCHES		SPACING BETWEEN EROSION CONTROL MATTING STAKES USED TO FASTEN THE MATTING TO THE SOIL			
В	MATTING OVERLAP	FEET, INCHES		AMOUNT OF EROSION CONTROL MATTING OVERLAP IF MULTIPLE PIECES AND/OR ROLLS OF MATTING ARE USED. OVERLAP VARIES DEPENDING ON THE LOCATION OF THE OVERLAP WITH RESPECT TO POSITION ON THE SLOPE, LOCATION OF THE MATTING (EDGE OR END), AND PRODUCT SPECIFICATIONS.			
С	MATTING ANCHOR TRENCH DEPTH	FEET, INCHES		DEPTH OF TRENCH INTO WHICH EDGE OF EROSION CONTROL MATTING IS ANCHORED AT THE TOP AND/OR TOE OF A SLOPE.			
D	MATTING ANCHOR TRENCH WIDTH	FEET, INCHES		WIDTH OF TRENCH INTO WHICH EDGE OF EROSION CONTROL MATTING IS ANCHORED AT THE TOP AND/OR TOE OF A SLOPE.			
E	top of slope anchor trench setback	FEET, INCHES		TOP OF SLOPE ANCHOR TRENCH DISTANCE FROM THE TOP OF SLOPE. TOP OF SLOPE REFERS TO TOP OF SIDE SLOPE, BANK SLOPE, TERRACE SLOPE, BANKFULL, ETC.			
F	MATTING STAKE LENGTH	INCHES		LENGTH OF EROSION CONTROL MATTING STAKES OR STAPLES USED TO FASTEN THE MATTING TO THE SOIL			
NOTES:							
1. DATA ARE FOI	R EROSION CONTROL MATTING	APPLIED TO STREAM BANK SLOPES.					
DIMENSION LABELS ARE REFERENCED IN THE DETAIL DRAWINGS.							

EROSION CONTROL MATTING DETAIL

	MAT (T	TING - YP.)
	TOP OF SLOPE	-A-
	C C C C C C C C C C C C C C C C C C C	1 1) DIREC 2) DIREC SLOPE MATTING
BA	CKFILL	
	TOE OF SLOPE EROSION CONTROL MATTING	

EENBRIDGE[®]

TOE OF SLOPE

DESCRIPTION

NTO OVER-EXCAVATED PLANTING PIT.

TES DIMENSION OF SOIL AND EXCAVATED ROOTS AS WELL AS MOUNDED LOOSE

PIT; ACCOMMODATES THE WIDTH OF THE EXCAVATED SOIL AND ROOTS.

THE PERIMETER OF THE PLANTING PIT; HELPS RETAIN WATER.

THE PERIMETER OF THE PLANTING PIT; HELPS RETAIN WATER.

CONTROL WEEDS WITHIN THE MOUNDED SOIL PERIMETER; TRANSPLANTS TYPICALLY D AND DO NOT REQUIRE WEED BARRIER FABRIC.

WEED BARRIER FABRIC

PLANTS TYPICALLY HAVE GRASSES, LEAF MATTER, ETC. ATTACHED AND DO NOT

JLCH. TRANSPLANTS TYPICALLY HAVE GRASSES, LEAF MATTER, ETC. ATTACHED

В	ISSUED FOR PERMITTING		10/2020				
А	ISSUED FOR REVIEW	MJT	08/2020				
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D		
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER – MP 976.6 – MDNR ID 34 SITE SPECIFIC DETAILS							
SCAL	e dwg. no. NOTED SSRP-976.6-004			PAGE NO	о. /7		

3. PRE-CONSTRUCTION PHOTOS WILL BE USED TO AID IN RESTORATION.

-									
В	ISSUED FOR PERMITTING	MJT	10/2020						
A	ISSUED FOR REVIEW	MJT	08/2020						
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D				
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 976.6 - MDNR ID 34 PHOTO PAGE									
SCALE DWG. NO. SSRP-976.6-005				page no. 5/5					

GENERAL

- 1. THE SPECIFICATIONS WITHIN THIS SSRP MAY MODIFY OR REPLACE PROJECT-WIDE STANDARDS PRESENTED IN THE EPP. WHERE MATERIAL WITHIN THESE SSRPS EXCEEDS STANDARD CONSTRUCTION MEASURES IN THE EPP. THESE SSRPS SUPERSEDE THE EPP.
- 2. CONSTRUCTION AND RESTORATION OF WATERBODY CROSSINGS WILL FOLLOW THESE GENERAL STEPS:
 - A. SITE CLEARING
 - B. INSTALLATION OF TEMPORARY EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES ("BMPS")
 - C. BRIDGE INSTALLATION
 - D. EXCAVATION/BACKFILLING OF THE WATERBODY INCLUDING:
 - SOD SAVING TOPSOIL SEGREGATION AT NON-WOODED SITES
 - STREAMBED MATERIAL SEGREGATION
 - PIPE INSTALLATION
 - BACKFILL, INCLUDING IMPLEMENTATION OF CONSTRUCTION-RELATED RESTORATION METHODS (I.E., TOE WOOD)
 - E. REPLACEMENT OF STREAMBED MATERIAL AND TOPSOIL/SOD LAYER
 - F. RESTORATION OF STREAM BANKS TO PRE-CONSTRUCTION CONTOURS
 - G. IF FINAL GRADING NOT POSSIBLE AT THE TIME, TEMPORARY STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - H. AFTER FINAL GRADING, PERMANENT SEEDING AND/OR WOODY VEGETATION RESTORATION, STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - 1. BRIDGE REMOVAL DURING FINAL RESTORATION AFTER STABILIZATION AND PERMANENT SEEDING
 - J. POST-CONSTRUCTION MONITORING

CROSSING METHODS

- 1. ALL WATERBODY AND WETLAND CROSSINGS WILL BE CONDUCTED IN COMPLIANCE WITH SECTION 2.0 AND SECTION 3.0 OF THE ENVIRONMENTAL PROTECTION PLAN ("EPP"), RESPECTIVELY, SECTION 2.0 AND 3.0 OF THE WINTER CONSTRUCTION PLAN PRESENTS MODIFICATIONS FOR WATERBODY AND WETLAND CONSTRUCTION METHODS, RESPECTIVELY, IN WINTER CONDITIONS.
- 2. ENBRIDGE'S SUMMARY OF CONSTRUCTION METHODS AND PROCEDURES (THE 'PROCEDURES, 'APPENDIX A OF THE EPP) OUTLINES THE VARIOUS CONSTRUCTION METHODS THAT ENBRIDGE MAY UTILIZE TO CONSTRUCT THROUGH WATERBODIES AND WETLANDS/BASINS AS PRESENTED ON THESE SITE-SPECIFIC RESTORATION PLANS ("SSRPS").
 - A. DRY CROSSING (ISOLATED) METHODS (INCLUDING THE DRY CROSSING AND MODIFIED DRY CROSSING METHOD) ARE DESCRIBED SECTIONS 4.3 OF THE PROCEDURES, AND IN SECTIONS 2.5.2 AND 2.5.3 AND FIGURES 23 AND 24 OF THE EPP.
 - B. THE BORE METHOD (NON-PRESSURIZED) IS DESCRIBED IN SECTION 3.5 OF THE PROCEDURES, AND SECTION 4.0 OF THE EPP.
 - C. THE MODIFIED UPLAND CONSTRUCTION (WETLAND) METHOD IS DESCRIBED IN SECTION 3.3 OF THE PROCEDURES, AND SECTION 3.0 AND FIGURES 30 TO 34 OF THE EPP.
 - D. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE OPEN CUT (NON-ISOLATED) WATERBODY CROSSING METHOD IS DESCRIBED IN SECTION 4.1 OF THE PROCEDURES. AND SECTION 2.5.1 AND FIGURE 24 OF THE FPP
 - E. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE PUSH-PULL METHOD IS DESCRIBED IN SECTION 3.4 OF THE PROCEDURES, AND SECTION 3.7.1 AND FIGURES 35 AND 36 OF THE EPP.

CLEARING/VEGETATION REMOVAL

- 1. STUMPS WITHIN THE TRENCH LINE WILL BE COMPLETELY REMOVED, GROUND, AND/OR HAULED OFF-SITE TO AN APPROVED LOCATION. TREE STUMPS OUTSIDE THE TRENCH LINE WILL BE GROUND BELOW NORMAL GROUND SURFACE TO FACILITATE A SAFE WORK AREA AND TO ALLOW TOPSOIL REMOVAL, IF NECESSARY. IN SOME CIRCUMSTANCES, TREE STUMPS OUTSIDE THE TRENCH LINE MAY BE COMPLETELY REMOVED TO ALLOW FOR A SAFE WORK AREA AND HAULED OFF-SITE TO AN APPROVED LOCATION AS OUTLINED IN SECTION 1.8.3 OF THE EPP.
- 2. CLEARING WILL BE CONDUCTED IN WATERBODIES AND WETLANDS AS OUTLINED IN SECTION 2.2 AND 3.2 OF THE EPP, RESPECTIVELY. CHIPS, MULCH, OR MECHANICALLY CUT WOODY DEBRIS SHALL NOT BE STOCKPILED IN A WETLAND. HYDRO-AX DEBRIS, OR SIMILAR CAN BE LEFT IN THE WETLAND IF SPREAD EVENLY IN THE CONSTRUCTION WORKSPACE TO A DEPTH THAT WILL ALLOW FOR NORMAL REVEGETATION, AS DETERMINED BY THE EI. CHIPPING IS NOT ALLOWED ON PUBLIC LANDS. ON PUBLIC LANDS, MULCH AND MECHANICALLY CUT WOODY DEBRIS MUST BE UNIFORMLY BROADCAST TO LESS THAN 2-INCH THICKNESS AND IN A MANNER THAT MAINTAINS VISIBLE GROUND.
- 3. ENBRIDGE WILL PROPERLY INSTALL AND MAINTAIN REDUNDANT SEDIMENT CONTROL MEASURES IMMEDIATELY AFTER CLEARING AND PRIOR TO INITIAL GROUND DISTURBANCE AT SURFACE WATERS LOCATED WITHIN 50 FEET OF THE PROJECT AND WHERE STORMWATER FLOWS TO THE SURFACE WATER (REFER TO THE ENVIRONMENTAL PLAN SHEETS IN THE SWPPP), AND WITHIN 100 FEET OF SPECIAL AND IMPAIRED WATERS, INCLUDING TROUT STREAMS.
- 4. ON PUBLIC LANDS AND WHEREVER PRACTICABLE AT WATERBODY CROSSINGS, ENBRIDGE WILL USE WILDLIFE-FRIENDLY EROSION AND SEDIMENT CONTROL BMPS THAT CONTAIN BIODEGRADABLE NETTING (CATEGORY 3N OR 4N NATURAL FIBER) AND WILL AVOID THE USE OF PLASTIC MESH (SECTIONS 1.17.1 AND 2.6.1 OF THE EPP).

TEMPORARY STABILIZATION

- SWPPP.
- 2. HYDRO-MULCH AND LIQUID TACKIFIER CAN BE USED IN PLACE OF CERTIFIED WEED-FREE STRAW OR HAY MULCH WITH PRIOR RECOMMENDED RATE. ENBRIDGE WILL AVOID THE USE OF HYDROMULCH ON PUBLIC LANDS; HOWEVER, ENBRIDGE MAY USE 1.8.3 OF THE EPP.

RESTORATION AND STABILIZATION

- WILL CONSULT WITH THE MDNR BEFORE PROCEEDING FURTHER AS OUTLINED IN SECTION 2.6 OF THE EPP.
- 2. UNSTABLE SOILS AND/OR SITE-SPECIFIC FACTORS SUCH AS STREAM VELOCITY AND FLOW DIRECTION MAY REQUIRE ADDITIONAL RESTRICTIONS.
- DISPOSED OF AT AN APPROVED OFF-SITE LOCATION AS NEEDED TO ENSURE CONTOURS ARE RESTORED TO AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS.
- 4. REVEGETATION ACTIVITIES WILL OCCUR AS OUTLINED IN SECTION 7.0 OF THE EPP. SEED MIXES AT PUBLIC WATERS WILL BE FOLLOWS

-			
A	EMERGENT (34-181)	G	DRY PRAIRIE GENERAL (35–221)
В	RIPARIAN NE (34–361)	н	MESIC PRAIRIE GENERAL (35–241)
С	RIPARIAN S&W (34-261)	1	MESIC PRAIRIE NW (35-441)
D	WET MEADOW NE (34-371)	J	DRY PRAIRIE NORTHWEST (35-421)
E	WET MEADOW S&W (34-271)	к	WOODLAND EDGE NE (36-311)
F	WETLAND REHABILITATION (34–171)	L	NATURAL REVEGETATION

- PLACE FROM EXISTING PLANT MATERIAL AND ROOT STOCK IN THESE COMMUNITIES.
- 6. ALL MATERIALS USED FOR CONSTRUCTION OF THE PROJECT MUST BE REMOVED FROM THE SITE.
- 7. ENBRIDGE WILL CONDUCT POST-CONSTRUCTION MONITORING IN ACCORDANCE WITH THE POST-CONSTRUCTION MONITORING PLA FOR WETLANDS AND WATERBODIES. AND IN ACCORDANCE WITH THE VMP FOR THE UPLAND PORTIONS OF THE PROJECT ON PUBLIC LANDS.

1. ON PORTIONS OF THE PROJECT WHERE WORK WILL BE OCCURRING DURING APPLICABLE "WORK IN WATER RESTRICTIONS" FOR PUBLIC WATERS (REFER TO SECTION 2.1), ALL EXPOSED SOIL AREAS WITHIN 200 FEET OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE STABILIZED WITHIN 24 HOURS DURING THE RESTRICTION PERIOD. STABILIZATION OF ALL EXPOSED SOILS WITHIN 200 FEET OF THE PUBLIC WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD. THESE AREAS WILL BE IDENTIFIED ON THE ENVIRONMENTAL PLAN SHEETS ACCOMPANYING THE

APPROVAL FROM ENBRIDGE. ALL HYDROMULCH AND LIQUID TACKIFIER PRODUCTS USED WILL BE ON THE APPLICABLE STATE DOT PRODUCT LIST. HYDRO-MULCH AND LIQUID TACKIFIER PRODUCTS CONTAINING PLASTIC/POLYPROPYLENE FIBER ADDITIVES AND MALACHITE GREEN (COLORANT) WILL NOT BE UTILIZED ON THIS PROJECT. APPLICATION RATES WILL BE AT THE MANUFACTURER'S HYDROMULCH ON STEEP SLOPES TO PREVENT EROSION UNTIL PERMANENT COVER HAS BEEN ESTABLISHED AS OUTLINED IN SECTION

1. ENBRIDGE WILL RESTORE THE STREAM BANKS AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS UNLESS THAT SLOPE IS DETERMINED TO BE UNSTABLE. IF THE SLOPE IS CONSIDERED UNSTABLE, ENBRIDGE WILL RESHAPE THE BANKS TO PREVENT SLUMPING. FOR PUBLIC WATERS, ENBRIDGE WILL RETURN THE BANK TO PRE-CONSTRUCTION CONTOURS, UNLESS OTHERWISE DIRECTED BY THE SITE-SPECIFIC RESTORATION PLAN. IF ENBRIDGE CANNOT RESTORE TO PRE-CONSTRUCTION CONTOURS AT A PUBLIC WATER, ENBRIDGE

RESTORATION EFFORTS, SUCH AS INSTALLATION OF WOODY VEGETATION, GEOTEXTILE FABRIC, OR TREE, LOG, ROOTWAD, OR BOULDER REVETMENTS TO STABILIZE DISTURBED STREAM BANKS (SEE FIGURE 29) AS OUTLINED IN SECTION 2.6.2 OF THE EPP. ENBRIDGE WILL WORK WITH THE MDNR TO ENSURE ALL WORK/ADJUSTMENTS ARE APPROVED AND ARE CONDUCTED WITHIN APPLICABLE TIMING

3. IN UPLAND AND WETLAND AREAS, CLEANUP AND ROUGH GRADING WILL OCCUR AS OUTLINED IN SECTIONS 1.16 AND 3.9 OF THE EPP. ENBRIDGE WILL BACKFILL THE TRENCH TO AN ELEVATION SIMILAR TO THE ADJACENT AREAS OUTSIDE THE TRENCH LINE AND WILL ADD A SLIGHT CROWN OF APPROXIMATELY 3 TO 6 INCHES (DEPENDING ON SOIL TYPE) OVER THE BACKFILLED TRENCH TO ALLOW FOR SUBSIDENCE. GENERALLY, EXCESS SUBSOIL DISPLACED BY THE PIPE INSTALLATION WILL BE SPREAD ACROSS THE PORTION OF THE CONSTRUCTION WORKSPACE WHERE TOPSOIL REMOVAL HAS OCCURRED. ANY REMAINING EXCESS SUBSOIL WILL BE REMOVED AND

SELECTED AND APPLIED AS INDICATED IN THE PLANTING PLAN, WHICH IS APPENDIX A OF THE POST-CONSTRUCTION VEGETATION MANAGEMENT PLAN FOR PUBLIC LANDS AND WATERS ("VMP"). SEED MIXES RELATIVE TO THESE SSRP CROSSINGS ARE CODED AS

5. ENBRIDGE WILL NOT SEED STANDING WATER OR WOODED (PSS AND PFO) WETLAND COMMUNITIES. NATURAL REVEGETATION WILL TAKE

	в	ISSUED FOR PERMITTING	MJT	10/2020				
N	NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D		
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN CONSTRUCTION NOTES							
•	SCAL	SCALE DWG. NO. SSRP-NOTES			PAGE NO.			

MDNR ID No. 35: MP 981.4; Shell River (M-096-035-004)

RESTORATION NOTES:

GENERAL

- 1. REFER TO RESTORATION DETAIL SHEETS FOR ADDITIONAL INFORMATION RELATED TO PROPOSED RESTORATION MEASURES.
- 2. REFER TO SITE PHOTOS FOR INFORMATION ON PRE-CONSTRUCTION CROSSING CONDITIONS AND TO PROVIDE ADDITIONAL GUIDANCE FOR RESTORATION EFFORTS.

TOE WOOD

- 1. ROUGH GRADE CHANNEL BED FEATURES INCLUDING POOLS AND PLACEMENT OF SUBSTRATE.
- 2. INSTALL FOOTER LOG(S) ALONG PROPOSED TOE OF SLOPE. FOOTER LOGS SHOULD BE ANGLED TO ALLOW FOR TOE ALIGNMENT TO GENERALLY MATCH THE EXISTING CURVE AND EVENLY TRANSITION FROM UPSTREAM TO DOWNSTREAM.
- 3. PUSH FOOTER LOG INTO SOIL APPLY A SMALL AMOUNT OF GRAVEL OR STONE AS NEEDED TO PREVENT FLOATATION OF FOOTER LOG PRIOR TO PLACING WOODY DEBRIS.
- 4. PLACE A LAYER WOODY DEBRIS IN 6" TO 8" LIFTS, APPLY 3"-4" GRAVEL AND/OR SOIL FILL AND COMPACT WITH EXCAVATOR BUCKET. WASH FILL MATERIAL INTO WOODY DEBRIS MATRIX WITH WATER FROM CHANNEL. APPLY ADDITIONAL LAYERS "AS NEEDED" TO REACH THE SPECIFIED TOE WOOD HEIGHT.
- 5. PLACE STACKED SOD MATS ABOVE TOE WOOD. THE USE OF TRANSPLANTS OR FABRIC LIFTS MAY BE FIELD APPROVED BY ENBRIDGE IN CONSULTATION WITH MN DNR.

SOD MATTING

- 1. REMOVE VEGETATED MATS ON EITHER SIDE OF THE STREAM CROSSING USING ONSITE EQUIPMENT WHICH CAN UNDERCUT THE VEGETATION FOR REMOVAL. SMALL SHRUBS AND/OR TREES WITHIN THE SOD MATS ARE ACCEPTABLE AND SHOULD NOT BE REMOVED.
- 2. DEPENDING ON THE LEVEL OF SATURATION AT THE TIME OF REMOVAL, IT MAY BE DIFFICULT TO OBTAIN INTACT CONSOLIDATED MATS, BUT GENERALLY THE NATIVE VEGETATION WILL BE RETAINED AND CAPTURED FOR PLACEMENT.
- 3. SOD MATS CAN BE TRANSPLANTED DURING ANY SEASON.
- 4. PLACE THE VEGETATED MATS ON TIMBER MATS OR CLEAR GROUND AREA LOCATED IN THE ATWS USING SKID STEER OR FRONT-END LOADER.
- 5. MONITOR MATS TO SUPPORT SURVIVABILITY: WATERING MAY BE NEEDED.
- 6. PRIOR TO PLACEMENT OF SOD MATS FINISH GRADE CHANNEL BANK AND ADJACENT FLOODPLAIN APPLICATION AREA TO PROVIDE A SMOOTH AND EVEN SURFACE. SUBGRADE ELEVATION SHOULD ALLOW FOR THE FINISHED SOD SURFACE TO TRANSITION EVENLY WITH THE CHANNEL BANKS UPSTREAM AND DOWNSTREAM OF THE INSTALLATION AREA. AVOID ABRUPT CHANGES IN GRADE.
- 7. RETURN THE VEGETATED MATS USING ONSITE EQUIPMENT.
- a. SURFACE APPLIED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PERPENDICULAR TO THE CHANNEL / FLOW.
 - b. STACKED SOD MATTING SHOULD BE PLACED WITH THE LONG SIDE PARALLEL TO THE CHANNEL / FLOW.
- 8. WHEN PLACING SOD MATS, DO NOT LEAVE LARGE GAPS BETWEEN EACH SOD MAT AS NON-NATIVE VEGETATION WILL QUICKLY ATTEMPT TO COLONIZE THESE VOIDS.
- 9. WATER SOD MATS AFTER REPLACEMENT IF CONDITIONS ARE HOT AND DRY. DAMP AND/OR FROZEN SOD MATS DO NOT REQUIRE WATERING.
- 10. THE TOP MAT AND/OR OTHER MATS CAN BE ANCHORED WITH A LIVE AND/OR DEAD STOUT STAKE TO ENSURE THAT IT DOES NOT MOBILIZE DURING A FLOOD EVENT BEFORE THE ROOTS HAVE ESTABLISHED.
- 11. THE VEGETATED MATS WILL BE REPLACED AS SOON AS PRACTICAL FOLLOWING BACKFILLING OF THE TRENCH AND STABILIZED PER THE TIMING REQUIREMENTS DESCRIBED IN SECTION 1.9.1 OF THE EPP.

в	ISSUED FOR PERMITTING				10/2020				
А	ISSUED FOR REVIEW				08/2020				
NO.	REVISION-DESCRIPTION				DATE	СНК'Д	APP'D		
ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 981.4 - MDNR ID 35 SITE SPECIFIC DETAILS									
NOTED			dwg. no. SSRP-981.4-004			PAGE NO. 3/7			

SURFACE APPLIED SOD MATS

NOTES:

1.

	TOE	WOOD DIMENS	SIONS
VARIABLE	VALUE	TYPICAL UNIT	DESCRIPTION
X1	6.0 - 10.0	IN.	FOOTER LOG DIAMETER
X2	8.0 - 12.0	FT.	FOOTER LOG LENGTH
X3	18.0	IN.	TOE WOOD HEIGHT
X4	SEE SHEET 3	N/A	MATCH TYPICAL SECTION
X5	SEE SHEET 5	FT.	SOD LIFT HEIGHT
X6	3.0	#	SOD LIFTS
X7	8.0 - 10.0	FT.	TOE WOOD WIDTH
X8	3.0 - 6.0	FT.	SOD LIFT WIDTH
X9	24.0	IN.	WOOD STAKE LENGTH
X10	4.0	IN.	WOOD STAKE WIDTH (TOP)
X11	0.5	IN.	WOOD STAKE WIDTH (BOTTOM)
X12	1/2 - 3.0	IN.	WOODY DEBRIS DIAMETER
X13	8.0 - 12.0	FT.	WOODY DEBRIS LENGTH
X14	3" MINING GRAVEL WITH FINES	%	SELECT COARSE MATERIAL BACKFILL (BY VOLUME)

LIVE BRUSH OR OTHER BANK VEGETATION MAY BE INCORPORATED. ANGLE OF SOD MAT SURFACE SHALL MATCH THE PROPOSED CHANNEL CROSS SECTION AND PROVIDE A SMOOTH AND EVEN CHANNEL BANK SURFACE BETWEEN UPSTREAM AND DOWNSTREAM BANKS. DURING AND IMMEDIATELY AFTER CONSTRUCTION, BANK SLOPES ABOVE THE WOOD TOE ARE VULNERABLE TO EROSION. ESTABLISHING VEGETATION OR OTHER COVER MATERIAL AS SOON AS POSSIBLE WILL HELP REDUCE EROSION. ADDITIONAL MAINTENANCE IS NOT EXPECTED ONCE VEGETATION ESTABLISHES. INSPECTION AFTER LARGE FLOW EVENTS MAY BE ADVISABLE TO DETERMINE IF ANY MATERIAL MOVEMENT OR UNEXPECTED SCOUR HAS OCCURRED.

TOE WOOD EXAMPLE

SOD LIFTS (X6)

ÉENBRIDGE

WOODY MATERIAL OF APPROPRIATE SIZE CONSISTING OF LOGS, TRUNKS, LIMBS, BRANCHES, AND SMALLER WOODY DEBRIS INCLUDING TOPS OR SLASH. ON-SITE WOODY MATERIAL IS PREFERRED.

WOODY DEBRIS SHOULD BE GREEN OR RELATIVELY GREEN AND MAY CONSIST OF HARDWOODS, CONIFERS, OR A COMBINATION OF

PLAN VIEW AT BANKFULL ELEVATION

В	ISSUED	FOR PERMITTING		10/2020		
А	ISSUE	D FOR REVIEW	MJT	08/2020		
NO.	REVISIO	DN-DESCRIPTION	BY	DATE	CHK'D	APP'D
ENBRIDGE LINE 3 REPLACEMENT PROJE SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 981.4 - MDNR ID SITE SPECIFIC DETAILS						
SCAL	e NOTED	dwg. no. SSRP-981.4-004			PAGE NO	э. /7

PLOTTED SIZE: ANSI FULL BLEED B (17x11)

CROSS SECTION

DIMENSION ¹	NAME	TYPICAL UNIT	VALUE	DESCRIPTION			
А	SOD MAT WIDTH	FEET	3-4	WIDTH OF INDIVIDUAL SOD MAT.			
В	sod mat length	FEET	3-6	LENGTH OF INDIVIDUAL SOD MAT.			
С	SOD MAT THICKNESS	INCHES	12	THICKNESS OF INDIVIDUAL SOD MAT.			
D	STACKED SOD MAT SETBACK	FEET, INCHES	N/A	THE DISTANCE BETWEEN THE EDGES OF SOD MATS STACKED TO FORM A SLOPE			
E WIDTH OF E STACKED SOD FEET, INCHES N/A WIDTH OF A BANK CREATED BY STACKED SOD MATS MATS							
F	HEIGHT OF STACKED SOD MATS	FEET, INCHES	N/A	HEIGHT OF A SLOPE CREATED BY STACKED SOD MATS			
G WIDTH OF SURFACE- APPLIED FEET, INCHES 10-20 WIDTH OF A SLOPE STABILIZED WITH SURFACE-APPLIED SOD MATS							
Н	TOP OF BANK SOD MATTING DISTANCE	FEET	25	DISTANCE SOD MATTING IS INSTALLED ON THE TOP OF BANK			
NOTES:	· · · · · ·			•			

SOD MATTING DETAIL

SOD MAT DETAIL

SOD MAT EXAMPLES

В	ISSUED	FOR PERMITTING		10/2020			
А	ISSUE	MJT	08/2020				
NO.	REVISI	ON-DESCRIPTION	BY	DATE	снк'р	APP'D	
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 981.4 - MDNR ID 35 SITE SPECIFIC DETAILS						
SCAL	e NOTED	dwg. no. SSRP-981.4-004		page no 5/	о. /7		
						(47.44)	

PLOTTED SIZE: ANSI FULL BLEED B (17x11

A LIVE STAKE SPACING FEET 3 OC SPACING BETWEEN INDIVIDUALLY INSTALLED LIVE STAKES. STAKES CAN BE PLACED IN A TRIANGULAR GRID (NRCS 2007A) OR RANDOMLY (NRCS 2007A, IOWA DNR 2006). RECOMMEND SPECIES DIVERSITY THROUGHOUT PROJECT AREA. B LIVE STAKE – TOP OF SLOPE PLACEMENT INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE C LIVE STAKE – TOE OF SLOPE PLACEMENT INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE D LIVE STAKE – BASE FLOW RELATIONSHIP INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOE OF A SLOPE E LIVE STAKE – BASE FLOW RELATIONSHIP INCHES 24-36 PLACEMENT OF LOWER ROW OF LIVE STAKES RELATIVE TO THE APPROXIMATE BASE FLOW WATER LENGTH F LIVE STAKE LENGTH INCHES 24-36 EENGTH OF REPARED DORMANT LIVE CUTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH STALLED LIVE STAKE PROTRUSION INCHES 3-4 G LIVE STAKE DIAMETER INCHES 3-4 DIAMETER OF PREPARED DORMANT LIVE CUTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH SUPPLICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION.	DIMENSION ¹	NAME	TYPICAL UNIT	VALUE	DESCRIPTION				
B LIVE STAKE - TOP OF SLOPE PLACEMENT INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE C LIVE STAKE - TOE OF SLOPE PLACEMENT INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE D LIVE STAKE - BASE FLOW RELATIONSHIP INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE E LIVE STAKE - BASE FLOW RELATIONSHIP INCHES 24-36 PLACEMENT OF LOWER ROW OF LIVE STAKE SRELATIVE TO THE APPROXIMATE BASE FLO WATER LEVEL WITH CONSIDERATION GIVEN TO DURATION OF INUNDATION DURING BANKFULL AND OTHER HIGH FLOW EVENTS. E LIVE STAKE LENGTH INCHES 24-36 LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION F LIVE STAKE PROTRUSION INCHES 3-4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND I.V LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINA INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT. G LIVE STAKE DIAMETER INCHES $\frac{1}{2}-1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS LIVE STAKE - TYPICALLY CITE A PERMISSIBLE MINIMUM AND MAXIMUM DIAMETER.	A	LIVE STAKE SPACING	FEET	3 OC	SPACING BETWEEN INDIVIDUALLY INSTALLED LIVE STAKES. STAKES CAN BE PLACED IN A TRIANGULAR GRID (NRCS 2007A) OR RANDOMLY (NRCS 2007A, IOWA DNR 2006). RECOMMEND SPECIES DIVERSITY THROUGHOUT PROJECT AREA.				
C LIVE STAKE - TOE OF SLOPE PLACEMENT INCHES 0-3 POSITION OF LIVE STAKE RELATIVE TO THE TOE OF A SLOPE D LIVE STAKE - BASE FLOW RELATIONSHIP INCHES 1390.5± PLACEMENT OF LOWER ROW OF LIVE STAKES RELATIVE TO THE APPROXIMATE BASE FLC WATER LEVEL WITH CONSIDERATION GIVEN TO DURATION OF INUNDATION DURING BANKFULL AND OTHER HIGH FLOW EVENTS. E LIVE STAKE LENGTH INCHES 24-36 LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION. F LIVE STAKE PROTRUSION INCHES 3-4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND. / LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINA INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT. G LIVE STAKE DIAMETER INCHES $\frac{1}{2}-1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS LIVE STAKE DIAMETER	В	LIVE STAKE – TOP OF SLOPE PLACEMENT	INCHES	0-3	POSITION OF LIVE STAKE RELATIVE TO THE TOP OF A SLOPE				
D LIVE STAKE – BASE FLOW RELATIONSHIP INCHES 1390.5± PLACEMENT OF LOWER ROW OF LIVE STAKES RELATIVE TO THE APPROXIMATE BASE FLC WATER LEVEL WITH CONSIDERATION GIVEN TO DURATION OF INUNDATION DURING BANKFULL AND OTHER HIGH FLOW EVENTS. E LIVE STAKE LENGTH INCHES 24–36 LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION F LIVE STAKE PROTRUSION INCHES 3–4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND. / LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINAL INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT. G LIVE STAKE DIAMETER INCHES $\frac{1}{2}-1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED A LIVE STAKE DIAMETER	C LIVE STAKE – TOE OF SLOPE INCHES 0 – 3 POSITION OF LIVE STAKE RELATIVE TO THE TOE OF A SLOPE								
E LIVE STAKE LENGTH INCHES 24-36 LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS I STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION F LIVE STAKE PROTRUSION INCHES 3-4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND. J LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINAL INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT. G LIVE STAKE DIAMETER INCHES $\frac{1}{2} - 1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED A LIVE STAKE - TYPICALLY CITE A PERMISSIBLE MINIMUM AND MAXIMUM DIAMETER.	D	LIVE STAKE – BASE FLOW RELATIONSHIP	INCHES	1390.5±	PLACEMENT OF LOWER ROW OF LIVE STAKES RELATIVE TO THE APPROXIMATE BASE FLOW WATER LEVEL WITH CONSIDERATION GIVEN TO DURATION OF INUNDATION DURING BANKFULL AND OTHER HIGH FLOW EVENTS.				
F LIVE STAKE PROTRUSION INCHES 3-4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND., LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINAL INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT. G LIVE STAKE DIAMETER INCHES $\frac{1}{2}-1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED A LIVE STAKE - TYPICALLY CITE A PERMISSIBLE MINIMUM AND MAXIMUM DIAMETER.	E	LIVE STAKE LENGTH	INCHES	24-36	LENGTH OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS LIVE STAKE. LENGTH SHOULD BE SUFFICIENT TO REACH LOW-FLOW WATER TABLE ELEVATION.				
G LIVE STAKE DIAMETER INCHES $\frac{1}{2} - 1\frac{1}{2}$ DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED A OTES: DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED A	F LIVE STAKE PROTRUSION INCHES 3-4 DISTANCE INSTALLED LIVE STAKE SHOULD PROTRUDE ABOUT 20% FROM THE GROUND. AT LEAST TWO BUDS OR BUD SCARS SHOULD BE PRESENT ABOVE THE GROUND IN THE FINAL INSTALLATION, DEPENDING ON THE SURROUNDING VEGETATION HEIGHT.								
	G	LIVE STAKE DIAMETER	INCHES	$\frac{1}{2}-1\frac{1}{2}$	DIAMETER OF PREPARED DORMANT LIVE CUTTING FROM WOODY PLANT TO BE USED AS LIVE STAKE – TYPICALLY CITE A PERMISSIBLE MINIMUM AND MAXIMUM DIAMETER.				
	OTES:								

TOE OF SLOPE TOP OF SLOPE, Α BANKFULL STAGE INSTALLED LIVE STAKE (TYP.) APPROXIMATE BASE FLOW WATER LEVEL Ε \bigtriangledown TOE OF SLOPE, TOE OF STREAM BANK BREAK IN SLOPE OR INNER BERM WATER'S BANKFULL TOP OF BANK -- STREAM EDGE

TOP OF

SLOPE

NOTES:

- 1. AIR PHOTOS ARE FROM 2018 ENBRIDGE AERIAL PHOTOGRAPHY.
- 2. ADDITIONAL ON-THE GROUND PHOTOS MAY BE TAKEN PRIOR TO CONSTRUCTION AT MDNR REQUEST.
- 3. PRE-CONSTRUCTION PHOTOS WILL BE USED TO AID IN RESTORATION.

в	ISSUED FOR PERMITTING	MJT	10/2020					
А	ISSUED FOR REVIEW	MJT	08/2020					
NO.	REVISION-DESCRIPTION	BY	DATE	снк'р	APP'D			
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN SHELL RIVER - MP 981.4 - MDNR ID 35 PHOTO PAGE							
SCAL	e dwg. no. SSRP-981.4-005			page no. 5/5				

PLOTTED SIZE: ANSI FULL BLEED B (17x11)

GENERAL

- 1. THE SPECIFICATIONS WITHIN THIS SSRP MAY MODIFY OR REPLACE PROJECT-WIDE STANDARDS PRESENTED IN THE EPP. WHERE MATERIAL WITHIN THESE SSRPS EXCEEDS STANDARD CONSTRUCTION MEASURES IN THE EPP. THESE SSRPS SUPERSEDE THE EPP.
- 2. CONSTRUCTION AND RESTORATION OF WATERBODY CROSSINGS WILL FOLLOW THESE GENERAL STEPS:
 - A. SITE CLEARING
 - B. INSTALLATION OF TEMPORARY EROSION AND SEDIMENT CONTROL BEST MANAGEMENT PRACTICES ("BMPS")
 - C. BRIDGE INSTALLATION
 - D. EXCAVATION/BACKFILLING OF THE WATERBODY INCLUDING:
 - SOD SAVING TOPSOIL SEGREGATION AT NON-WOODED SITES
 - STREAMBED MATERIAL SEGREGATION
 - PIPE INSTALLATION
 - BACKFILL, INCLUDING IMPLEMENTATION OF CONSTRUCTION-RELATED RESTORATION METHODS (I.E., TOE WOOD)
 - E. REPLACEMENT OF STREAMBED MATERIAL AND TOPSOIL/SOD LAYER
 - F. RESTORATION OF STREAM BANKS TO PRE-CONSTRUCTION CONTOURS
 - G. IF FINAL GRADING NOT POSSIBLE AT THE TIME, TEMPORARY STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - H. AFTER FINAL GRADING, PERMANENT SEEDING AND/OR WOODY VEGETATION RESTORATION, STABILIZATION AND REPLACEMENT/REINFORCEMENT OF TEMPORARY BMPS
 - 1. BRIDGE REMOVAL DURING FINAL RESTORATION AFTER STABILIZATION AND PERMANENT SEEDING
 - J. POST-CONSTRUCTION MONITORING

CROSSING METHODS

- 1. ALL WATERBODY AND WETLAND CROSSINGS WILL BE CONDUCTED IN COMPLIANCE WITH SECTION 2.0 AND SECTION 3.0 OF THE ENVIRONMENTAL PROTECTION PLAN ("EPP"), RESPECTIVELY, SECTION 2.0 AND 3.0 OF THE WINTER CONSTRUCTION PLAN PRESENTS MODIFICATIONS FOR WATERBODY AND WETLAND CONSTRUCTION METHODS, RESPECTIVELY, IN WINTER CONDITIONS.
- 2. ENBRIDGE'S SUMMARY OF CONSTRUCTION METHODS AND PROCEDURES (THE 'PROCEDURES, 'APPENDIX A OF THE EPP) OUTLINES THE VARIOUS CONSTRUCTION METHODS THAT ENBRIDGE MAY UTILIZE TO CONSTRUCT THROUGH WATERBODIES AND WETLANDS/BASINS AS PRESENTED ON THESE SITE-SPECIFIC RESTORATION PLANS ("SSRPS").
 - A. DRY CROSSING (ISOLATED) METHODS (INCLUDING THE DRY CROSSING AND MODIFIED DRY CROSSING METHOD) ARE DESCRIBED SECTIONS 4.3 OF THE PROCEDURES, AND IN SECTIONS 2.5.2 AND 2.5.3 AND FIGURES 23 AND 24 OF THE EPP.
 - B. THE BORE METHOD (NON-PRESSURIZED) IS DESCRIBED IN SECTION 3.5 OF THE PROCEDURES, AND SECTION 4.0 OF THE EPP.
 - C. THE MODIFIED UPLAND CONSTRUCTION (WETLAND) METHOD IS DESCRIBED IN SECTION 3.3 OF THE PROCEDURES, AND SECTION 3.0 AND FIGURES 30 TO 34 OF THE EPP.
 - D. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE OPEN CUT (NON-ISOLATED) WATERBODY CROSSING METHOD IS DESCRIBED IN SECTION 4.1 OF THE PROCEDURES. AND SECTION 2.5.1 AND FIGURE 24 OF THE FPP
 - E. ALTHOUGH NOT PROPOSED AS A PRIMARY METHOD AT THESE SSRP WATERBODIES, THE PUSH-PULL METHOD IS DESCRIBED IN SECTION 3.4 OF THE PROCEDURES, AND SECTION 3.7.1 AND FIGURES 35 AND 36 OF THE EPP.

CLEARING/VEGETATION REMOVAL

- 1. STUMPS WITHIN THE TRENCH LINE WILL BE COMPLETELY REMOVED, GROUND, AND/OR HAULED OFF-SITE TO AN APPROVED LOCATION. TREE STUMPS OUTSIDE THE TRENCH LINE WILL BE GROUND BELOW NORMAL GROUND SURFACE TO FACILITATE A SAFE WORK AREA AND TO ALLOW TOPSOIL REMOVAL, IF NECESSARY. IN SOME CIRCUMSTANCES, TREE STUMPS OUTSIDE THE TRENCH LINE MAY BE COMPLETELY REMOVED TO ALLOW FOR A SAFE WORK AREA AND HAULED OFF-SITE TO AN APPROVED LOCATION AS OUTLINED IN SECTION 1.8.3 OF THE EPP.
- 2. CLEARING WILL BE CONDUCTED IN WATERBODIES AND WETLANDS AS OUTLINED IN SECTION 2.2 AND 3.2 OF THE EPP, RESPECTIVELY. CHIPS, MULCH, OR MECHANICALLY CUT WOODY DEBRIS SHALL NOT BE STOCKPILED IN A WETLAND. HYDRO-AX DEBRIS, OR SIMILAR CAN BE LEFT IN THE WETLAND IF SPREAD EVENLY IN THE CONSTRUCTION WORKSPACE TO A DEPTH THAT WILL ALLOW FOR NORMAL REVEGETATION, AS DETERMINED BY THE EI. CHIPPING IS NOT ALLOWED ON PUBLIC LANDS. ON PUBLIC LANDS, MULCH AND MECHANICALLY CUT WOODY DEBRIS MUST BE UNIFORMLY BROADCAST TO LESS THAN 2-INCH THICKNESS AND IN A MANNER THAT MAINTAINS VISIBLE GROUND.
- 3. ENBRIDGE WILL PROPERLY INSTALL AND MAINTAIN REDUNDANT SEDIMENT CONTROL MEASURES IMMEDIATELY AFTER CLEARING AND PRIOR TO INITIAL GROUND DISTURBANCE AT SURFACE WATERS LOCATED WITHIN 50 FEET OF THE PROJECT AND WHERE STORMWATER FLOWS TO THE SURFACE WATER (REFER TO THE ENVIRONMENTAL PLAN SHEETS IN THE SWPPP), AND WITHIN 100 FEET OF SPECIAL AND IMPAIRED WATERS, INCLUDING TROUT STREAMS.
- 4. ON PUBLIC LANDS AND WHEREVER PRACTICABLE AT WATERBODY CROSSINGS, ENBRIDGE WILL USE WILDLIFE-FRIENDLY EROSION AND SEDIMENT CONTROL BMPS THAT CONTAIN BIODEGRADABLE NETTING (CATEGORY 3N OR 4N NATURAL FIBER) AND WILL AVOID THE USE OF PLASTIC MESH (SECTIONS 1.17.1 AND 2.6.1 OF THE EPP).

TEMPORARY STABILIZATION

- SWPPP.
- 2. HYDRO-MULCH AND LIQUID TACKIFIER CAN BE USED IN PLACE OF CERTIFIED WEED-FREE STRAW OR HAY MULCH WITH PRIOR RECOMMENDED RATE. ENBRIDGE WILL AVOID THE USE OF HYDROMULCH ON PUBLIC LANDS; HOWEVER, ENBRIDGE MAY USE 1.8.3 OF THE EPP.

RESTORATION AND STABILIZATION

- WILL CONSULT WITH THE MDNR BEFORE PROCEEDING FURTHER AS OUTLINED IN SECTION 2.6 OF THE EPP.
- 2. UNSTABLE SOILS AND/OR SITE-SPECIFIC FACTORS SUCH AS STREAM VELOCITY AND FLOW DIRECTION MAY REQUIRE ADDITIONAL RESTRICTIONS.
- DISPOSED OF AT AN APPROVED OFF-SITE LOCATION AS NEEDED TO ENSURE CONTOURS ARE RESTORED TO AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS.
- 4. REVEGETATION ACTIVITIES WILL OCCUR AS OUTLINED IN SECTION 7.0 OF THE EPP. SEED MIXES AT PUBLIC WATERS WILL BE FOLLOWS:

А	EMERGENT (34-181)	G	DRY PRAIRIE GENERAL (35–221)
В	RIPARIAN NE (34–361)	н	MESIC PRAIRIE GENERAL (35–241)
С	RIPARIAN S&W (34-261)	I	MESIC PRAIRIE NW (35-441)
D	WET MEADOW NE (34-371)	J	DRY PRAIRIE NORTHWEST (35-421)
E	WET MEADOW S&W (34-271)	к	WOODLAND EDGE NE (36-311)
F	WETLAND REHABILITATION (34–171)	L	NATURAL REVEGETATION

- PLACE FROM EXISTING PLANT MATERIAL AND ROOT STOCK IN THESE COMMUNITIES.
- 6. ALL MATERIALS USED FOR CONSTRUCTION OF THE PROJECT MUST BE REMOVED FROM THE SITE.
- 7. ENBRIDGE WILL CONDUCT POST-CONSTRUCTION MONITORING IN ACCORDANCE WITH THE POST-CONSTRUCTION MONITORING PLA FOR WETLANDS AND WATERBODIES. AND IN ACCORDANCE WITH THE VMP FOR THE UPLAND PORTIONS OF THE PROJECT ON PUBLIC LANDS.

1. ON PORTIONS OF THE PROJECT WHERE WORK WILL BE OCCURRING DURING APPLICABLE "WORK IN WATER RESTRICTIONS" FOR PUBLIC WATERS (REFER TO SECTION 2.1), ALL EXPOSED SOIL AREAS WITHIN 200 FEET OF THE WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE STABILIZED WITHIN 24 HOURS DURING THE RESTRICTION PERIOD. STABILIZATION OF ALL EXPOSED SOILS WITHIN 200 FEET OF THE PUBLIC WATER'S EDGE, AND THAT DRAIN TO THAT WATER, WILL BE INITIATED IMMEDIATELY AND COMPLETED WITHIN 7 CALENDAR DAYS WHENEVER CONSTRUCTION ACTIVITY HAS PERMANENTLY OR TEMPORARILY CEASED ON ANY PORTION OF THE SITE OUTSIDE OF THE RESTRICTION PERIOD. THESE AREAS WILL BE IDENTIFIED ON THE ENVIRONMENTAL PLAN SHEETS ACCOMPANYING THE

APPROVAL FROM ENBRIDGE. ALL HYDROMULCH AND LIQUID TACKIFIER PRODUCTS USED WILL BE ON THE APPLICABLE STATE DOT PRODUCT LIST. HYDRO-MULCH AND LIQUID TACKIFIER PRODUCTS CONTAINING PLASTIC/POLYPROPYLENE FIBER ADDITIVES AND MALACHITE GREEN (COLORANT) WILL NOT BE UTILIZED ON THIS PROJECT. APPLICATION RATES WILL BE AT THE MANUFACTURER'S HYDROMULCH ON STEEP SLOPES TO PREVENT EROSION UNTIL PERMANENT COVER HAS BEEN ESTABLISHED AS OUTLINED IN SECTION

1. ENBRIDGE WILL RESTORE THE STREAM BANKS AS NEAR AS PRACTICABLE TO PRE-CONSTRUCTION CONDITIONS UNLESS THAT SLOPE IS DETERMINED TO BE UNSTABLE. IF THE SLOPE IS CONSIDERED UNSTABLE, ENBRIDGE WILL RESHAPE THE BANKS TO PREVENT SLUMPING. FOR PUBLIC WATERS, ENBRIDGE WILL RETURN THE BANK TO PRE-CONSTRUCTION CONTOURS, UNLESS OTHERWISE DIRECTED BY THE SITE-SPECIFIC RESTORATION PLAN. IF ENBRIDGE CANNOT RESTORE TO PRE-CONSTRUCTION CONTOURS AT A PUBLIC WATER, ENBRIDGE

RESTORATION EFFORTS, SUCH AS INSTALLATION OF WOODY VEGETATION, GEOTEXTILE FABRIC, OR TREE, LOG, ROOTWAD, OR BOULDER REVETMENTS TO STABILIZE DISTURBED STREAM BANKS (SEE FIGURE 29) AS OUTLINED IN SECTION 2.6.2 OF THE EPP. ENBRIDGE WILL WORK WITH THE MDNR TO ENSURE ALL WORK/ADJUSTMENTS ARE APPROVED AND ARE CONDUCTED WITHIN APPLICABLE TIMING

3. IN UPLAND AND WETLAND AREAS, CLEANUP AND ROUGH GRADING WILL OCCUR AS OUTLINED IN SECTIONS 1.16 AND 3.9 OF THE EPP. ENBRIDGE WILL BACKFILL THE TRENCH TO AN ELEVATION SIMILAR TO THE ADJACENT AREAS OUTSIDE THE TRENCH LINE AND WILL ADD A SLIGHT CROWN OF APPROXIMATELY 3 TO 6 INCHES (DEPENDING ON SOIL TYPE) OVER THE BACKFILLED TRENCH TO ALLOW FOR SUBSIDENCE. GENERALLY, EXCESS SUBSOIL DISPLACED BY THE PIPE INSTALLATION WILL BE SPREAD ACROSS THE PORTION OF THE CONSTRUCTION WORKSPACE WHERE TOPSOIL REMOVAL HAS OCCURRED. ANY REMAINING EXCESS SUBSOIL WILL BE REMOVED AND

SELECTED AND APPLIED AS INDICATED IN THE PLANTING PLAN, WHICH IS APPENDIX A OF THE POST-CONSTRUCTION VEGETATION MANAGEMENT PLAN FOR PUBLIC LANDS AND WATERS ("VMP"). SEED MIXES RELATIVE TO THESE SSRP CROSSINGS ARE CODED AS

5. ENBRIDGE WILL NOT SEED STANDING WATER OR WOODED (PSS AND PFO) WETLAND COMMUNITIES. NATURAL REVEGETATION WILL TAKE

	В	ISSUED FOR PERMITTING	MJT	10/2020			
N	NO.	NO. REVISION-DESCRIPTION BY DATE					
	ENBRIDGE LINE 3 REPLACEMENT PROJECT SITE-SPECIFIC RESTORATION PLAN						
	CONSTRUCTION NOTES						
•	SCALE DWG. NO. SSRP-NOTES					Э.	

PLOTTED SIZE: ANSI FULL BLEED B (17x11)