GIS Core Database Revision:
Update Data Resource Site Application
Administrator’ s Guide

February 14th, 2002

Robert Maki

GIS Database and Infrastructure
Supervisor

Minnesota DNR

Management Information Services
Bureau

1.0 Introduction

This document describes an integrated system level application operating at the Minnesota
Department of Natural Resources, which maintains the currentness of fileserver based GIS data
resources within the organization. It is one subsystem of the Revised GIS Core Architecture
initiative. This document iswritten for a very technical audience, specifically persons who will
have to troubleshoot, extend, or replace the application being described here. Any reader of the
document must have an understanding of the overall Revised Core Architecture to make any sense
of it and are encouraged to review: “Revised Core Database Genera Architecture Design,” and
“Minnesota DNR Data Resource Site Specifications.”

20 Genera Overview

The Update Data Resource Site application (update _drs) isasuite of programs which update the
data resources and associated descriptive metadata of a Minnesota DNR Data Resource Site
(DRS). A DRSisa“datacenter” where data are explicitly stored or otherwise referenced (i.e.
centralized database server sources). DRS site administrators are empowered to describe the
desired conditions of a data resource site with regard to data content. The application obtains the
DRS “desired conditions’ specified by the site administrator, compares them to the actual
conditions present on the site, and acts to adjust the site content to reflect the desired conditions.
A dataflow diagram (DFD) of the processis provided in Figure 1.

DRS Image
Actual iti
Condition

Conditions

Layer, aoi
content

Parameters Derived

Figure 1. General
DFD for DRS
Update Process

actions

Analyze
and Modify
Workplan

Ste
Cagpabilities

Request Info

The system draws data from the Central Office DRS (referred to as “Drsmain”), retaining format
and content but varying in spatial extent (area of interest, or “AOI”). Each DRS-Layer

-1-

combination hasits own AQI.

The application operates on a Solaris operating system and includes components written in Perl
and Arc Macro Language (AML). It interacts with three specific data storage environments. 1) an
Oracle database which stores and presents information on DRS desired conditions (the DNR Data
Dictionary, or DD), 2) aset of ASCII formatted text files that describe the states of the desired and
actual sites, and instruction sets for update and 3) a variety of filesystem-based GIS data structures
that hold the data being distributed/updated/removed.

The application operatesin afixed linear sequence of steps to execute the update process. The
main driver for the application is called from a scheduled UNIX cron job. Update schedules are
set at the operating system level. Each siteis considered in turn, and subject to the site update
process. The processitself features afairly extensive set of error condition tests which may be
either fatal or non-fatal in nature. Error conditions are written to adaily error report with
subsections headed with a DRS name and date stamp. Similarly, specific update activities are
written to a separate | og.

3.0 Maor Process Descriptions
The application consists of twenty-two separate program modules. Thirteen of these actually
perform the work, four are drivers for the others, and five others perform common tasks within the

environment. Figure 2 lists the programs and the hierarchical order in which they are called.
Working (non-driver) modules are listed with an “*”.

Figure 2. Update DRS Program Structure Chart

gueue_updat e_j ob. pl Common nodul es:
drive_drs_update. pl
dri ve_desired_cond. pl conmmon. pl
nmake_desi red_| ayer _def. pl * error_rep.p
Make_desi red_store_def. pl* nk_early_term pl
nmake_desi red_aoi . pl * rmearly termp
Make_desired |l ay_stat.am * common_var . an

create_drs_workpl an. pl *
triage_update_proc.pl*
update_site.amn *
updat e_drs_def. pl *
exi sting _cond_driver.p
gen_l ayer_status. pl*
update _drs_alyer list.pl*
update_drs_aoi . pl*
Update drs_lib.am*
Updat e_i mage_cat . am *

3.1 Maetdfile Processing

Any discussion of major processes must be prefaced by a description of the various types of
metafiles being processed. The application processes sets of metadata describing the desired and
actual status (conditions) of a data resource site. Desired conditions originate in the DNR Data
Dictionary, an Oracle-based data registry environment. These conditions are translated into two
metafiles: 1) adata layer def file, and 2) an AOI file. A third metafile class, the layer_statusfile
is generated based on a combination of AOI and existing conditions on the Central Office DRS.
Metafiles constituting the actions to be taken in a site update process round out the list of system
metadata types.

3.1.1 data layer_def file

The data layer_def file format isformally described in “Minnesota DNR Data Resource Site
Specifications.” This simple comma delimited ASCII file adheres to the following format:

[layer _desc],[DNR Unit],[tiling_schene],[product type],[resource_description],
[vendor _object type],[server],[instance],[product I1D],[thematic class id]

data_layer def recordsexample:

M nnesota County Borders, gen, state, 2, bdry_counpy3,
pol ygon, nul | , nul I , 220000020201, 22

1: 24000 Quadrangl e I ndex, gen, state, 2, i ndx_q024kpy4,
pol ygon, nul | , nul I , 210000020201, 21

3.1.2 aoi files

AOI filesare ASCII fileswhich contain alist of lower case four character county abbreviations.!
They are named in the following manner:

[resource description]-aoi.txt

3.1.3 layer statusfiles

Layer status files are comma-delimited ASCII files used to express tile-based status for each layer.
Each layer-site has alayer status file which indicatestile id, date, and size in Kb. They adhere to

the following format:

[tileid], [date], [sizein Kb]

*Areaof Interest is expressed in whole county increments

-3-

They are named in the following manner:

[resource description]-Ilayer.txt

These three metadata classes exist in two types of locations. 1) desired conditions, and 2) data
resource sites. Their physical placement on the filesystem is described in Figures 3a and 3b.

|
[Mot her shi p]

Apps Figure 3a: Desired
Conditions M etafile
Placement
Update drs
Desi red_cond

[DRS site id]

Dat a_| ayer _def

Aloi Layelr _stat
[resource nane]-aoi.txt [resource nane] -1 ayer.txt
[resource name N -aoi.txt [resource name N -|ayer.txt

[resource site nane]

Figure 3b: DRS
Met adat a M etafile Placement

Dat a_def

Dat a_| ayer _def

Aoi Layer st at
I
[resource nane] -aoi.txt [resource name] -1 ayer. txt
[resource nane N -aoi.txt [resource nane N -I|ayer.txt

These three metadata classes define everything that the application needs to know about a site:
layer content (existence, absence, format, tiling scheme, administrator), area of interest (by
county), and layer status by tile (including date information). A set of these metafiles is developed
for the desired conditions and compared to a set which reflects actual conditions. Differences
between the two are expressed in a*“workplan” document which contains the instruction sets for
performing the actual site updates.

3.1.4 Workplans

Workplans are XML style documents which adhere to the format described in Figure 4.
Workplans have three primary subsections: 1) addlayer, 2) droplayer, and 3) modifylayer. The
first two are essentiadly lists of tilesto be added or dropped. The third is somewhat more
complex in that modifying layers may entail copying tiles, deleting tiles, or making new tiles (clips
of statewide data).

Figure 4: DRS Update Wor kplan Document Type

<wor kpl an>

<addl ayer >

<resour ce_nane>[resour ce nane] </ resource_nane>
<extent>[state | subset]</extent>

<tile>[tile id]</tile>

<tile>[tile NN</tile>

</ addl ayer >

<dr opl ayer >

<resour ce_nane>[resour ce nane] </ resource_nanme>
<tile>[tile id]</tile>

-5-

<tile>[tile N </tile>

</ dropl ayer >

<nodl ayer >

<resource_nane>[resource nane] </ resource_nane>
<extent>[state | subset]</extent>
<copytil e>

<tile>[tile id]</tile>
<tile>[tile N </tile>

</ copytil e>

<deltil e>

<tile>[tile id]</tile>
<tile>[tile N </tile>

</deltile>

<maketile>[tile id]</maketil e>

</ nmodl ayer >

</ wor kpl an>

Workplan actions are read by a sub-process which executes them. Workplans can have any
number of addlayer, droplayer, and modlayer sections.

Workplans are located at M OTHERSH | P/applications/update_drs/workplans

and are named as.

[DRS 1 D] _workpl an. t xt

3.1.5Action Layer Ligts

Update processes are also informed by alist of layers that constitute the set of data layer objects
that are being acted upon. Action layer lists are stored at:

SMOTHERSHI P/applicationsupdate_drs/desired_cond/<drs ID>/act _| ayers

Action layer lists are ASCI| text files which store a set of resource names. The followingisan
example:

| ake_usgspy?2
bdry_counpy?2
etc.

Action layer lists are system generated by the program “triage_update _proc.pl” or, in the case of a
Drsmain site update, by “drive_main_partial.pl.” They are included in the discussion here
because they can be used to selectively guide a manua update process, especially when rebuilding
the main DRS and recovering from a disrupted update process (Section 5).

3.2 Individual Process Descriptions

3.21 queue update job.pl [NOT IMPLEMENTED AT THIS TIME]

3.2.2 drive_drs_update.pl

Description: Thisisthe master driver operating per data resource site.

Inputs: arguments(data resource site name), drs location from the data dictionary

Outputs: None

Calls made: drive_desired_cond.pl ,create_drs workplan.pl, update_site.aml, update drs def.pl,
existing_cond_driver.pl

3.2.3 drive _desired_cond.pl

Description: Calls the programs which build desired conditions.

Inputs: arguments(data resource site name)

Outputs: None

Calls made: make desired layer def.pl, make desired_aoi.pl, make desired lay stat.aml
3.24 make desired layer def.pl

Description: creates adata layer_def for a specific layer from the desired conditions present in
the data dictionary. It queriesthe Data Dictionary to create the layer list.

Inputs: arguments(data resource site name), Data Dictionary desired conditions
Outputs: a desired conditions data_layer def file.
Calls made: None

3.25 make desired store def.pl

Description: creates afile with relevant connection information for non-file server based GIS
sources. It queriesthe database src file in the Data Dictionary.

Inputs: Data Dictionary
Outputs: adata_store_def file in the desired conditions location
Calls made: None

326 make desired _aoi.pl

Description: creates AOI filesfor each layer in the desired conditions data_layer def file. It
gueries the Data Dictionary to develop the AOI’s.

Inputs: desired conditions data_layer_def file, arguments(data resource site name)
Outputs: asuite of AQI files
Calls made: None

3.2.7 make desired lay stat.aml

Description: Creates layer status files based on site-layer AOI. Builds desired layer statusfiles
from the layer statusfile records that exist on the Central Office DRS.

Inputs. arguments(data resource site name), desired conditions data layer def file, aoi files,
Central Office DRS layer_stat files, tile x-ref tables (at
SMOTHERSHIP/apps/gen_app_support/search_indexes/infolarc![tile scheme name]_xref
Outputs: asuite of layer_stat files

Calls made: None

3.2.8 create_drs workplan.pl

Description: creates aworkplan document for a site by comparing the desired and actual
conditions of asite. Changesto the three principle metafile types are considered [layer
presence/absence, change in layer status (tile date, tile prsence/absence), and area of interest
change]. Additionally, layer inclusion in aworkplan can be triggered by: change of tiling scheme,
or change in dataformat for alayer.

Inputs: desired conditions layer status, desired conditions AOI, desired conditions layer list,
actual conditions layer status, actual conditions AOI, actual conditions layer list, arguments(data
resource site name, data resource site location)

Outputs: aworkplan document by DRS

Calls made: None

3.2.9 triage_update proc.pl

Description: reads aworkplan document and determinesif the actions stored within it will
compromise the DRS being updated. The following tests are made: 1) too much data being
deleted, 2) too much data requested, and 3) not enough disk space on target location. Case 1 will
result in the entire process aborting. At the time of thiswriting, an excessive delete request is
considered to be an amount that would take more than 10 hours to replace under the current
linespeed rating. Case 2 will result in arescaling of the addition request to an amount that will be
transferrable within 10 hours under the current linespeed request. Layer requests are sorted by
total data volume and iteratively pared down tile by tile until the request is considered to be a
manageabl e size (beginning with the largest layer). Case 3 operates the same way, except that it

-8-

uses disk space criteriarather than add request-linespeed. In this case, the application will
always preserve 100 Mb of disk space on the target device.

Inputs: a DRS workplan, $mothership layer status files, linespeed rating obtained from the data
dictionary.

Outputs: an error report, if necessary

Calls made: none

3.2.10 update steaml

Description: Reads aworkplan, and updates a data resource site

Inputs. a DRS workplan document, arguments(data resource site name, data resource site location)
Outputs. An updated DRS site

Calls made: None

3.2.11 update drs def.pl

Description: copies anew data layer_def file to the DRS from the desired conditions location
Inputs: arguments(data resource site name, data resource site location)

Outputs: arevised data layer_def file on the DRS
Calls made: None

3.2.13 existing_cond_driver.pl

Description: Main driver for establishing existing conditions. Thisis necessary to ensure
compliance between the DRS and its associated metadata

Inputs: arguments(data resource site name, data resource site location)
Outputs: None
Calls made: gen_layer_status.pl, update drs layer list.pl, update drs aoi.pl, update drs lib.aml

3.2.14 gen layer status.pl

Description: Creates layer status files based on actual filesystem conditions. Invoking the active
layer override option causes afull layer statusfile rebuild for the site.

Inputs: DRS data layer def file, arguments(data resource site name, data resource site location,
active layer override[Y])

Outputs: A suite of layer_statusfilesfor aDRS

Calls made: None

3.2.15 update _drs layer_list.pl

Description: Eliminates records from a DRS data |layer_def file based on existence of the data at
the file system location.

Inputs: DRS data layer def file, arguments(data resource site name, data resource site location)
Outputs: A revised DRS data_layer_def file
Calls made: None

3.2.16 update drs_aoi.pl
Description: Transfers a new set of AOI file from the desired conditions location

Inputs: Desired conditions AQI files, arguments(data resource site name, data resource site
location)

Outputs. anew suite of DRS AQI files

Calls made: None

3.2.17 update_drs lib.aml

Description: Reconfigures the DRS librarian environment to reflect actual conditions on the site.
Invoking the active layer override option causes afull librarian environment rebuild for the site.

Inputs: DRS data layer def file, DRS layer_status files, SARCHOME/tabled/librariesfile,
arguments(data resource site name, data resource site location, layer override option [Y])
Outputs: A revised SARCHOME/tables/libraries file, new or eliminated library “ database’
directories

Calls made: None

3.2.18 update image_cats.aml
Description: Reconfigures the image catal og environment to reflect actual conditions on the site.

Reads the data_layer_def file and builds new catalogs for al image themes. Invoking the active
layer override option causes a full image catalog rebuild for the site.

-10-

Inputs: DRS data layer_def file, DRS layer_statusfiles

arguments(data resource site name, data resource site location, layer override option [Y])
Outputs: a set of INFO-based image catalogs at $drs_|oc/metadatalimage_catsinfo

Calls made: None

4.0 Primary DRS Update Operations

The Update DRS Application is triggered through a cron process (anticipated to be) on a nightly
update schedule. At this point, the queue_update job.pl program is executed which in turn calls
the master driver for the application (drive_drs update.pl). All programs are located at:
$MOTHERSHI P/applications/update drs.

Conceptually, the application operates in three stages for each DRS: 1) assemble desired
conditions, 2) create and execute the workplan, and 3) update existing conditions. Every program
module has its own potentia points of failure, which are subject to internal tests within the code
itself.

The heterogeneous nature of the programming environment required the development of an
operating system level test for program failure, which is the creation of a system file (called
“early_term”) upon each program start up and its subsequent deletion when a program successfully
exits. Some programs will not execute as long asthe early term file exists. This pre-test is
strategically placed in the program execution sequence. The third logical section of the
application (update existing conditions) represents a special case. It isessential for the DRS
metadata to always reflect the actual conditions on the site. Therefore if the system fails part way
through an update process, it is still essential to execute that section. The third section is intended
to execute whenever the application proceeds into the second section.

By default, the Update DRS process operates selectively, for the most part only acting on the
layers that appear in afina workplan. Exceptions are the processes which transfer the new layer
def file, and AQI filesto the target DRS, which are wholesal e replacements.

Three programs have override switches which alow for afull site metafile rebuild:
gen_layer_status.pl, update drs lib.aml, and update image cats.aml. In each case, athird
optional argument of “ Y’ can be added. If thisswitch isnot used, the processes will be guided by
the desired_cond/action_layersfile.

All temporary files are written to $prog_loc/desired_cond/$drsname/process. This prevents
conflicts between concurrently running update processes.

The update_drs process as described here should never be applied to the main DRS (Mothership).
Section 6.2 (below) provides the correct procedure for updating the main site.
5.0 DRS Update Reporting

-11-

The DRS update process spawns two types of reports. 1) genera error report, and 2) site activity
reports.

Genera error reports are funneled to an open file with a date stamp. All error activity reported
during the course of aday iswritten to asinglefile. The application isvery conservative, with
most error conditions considered fatal, resulting in a update process abort with an error report
section written to: SMOTHERSHIP/apps/update_drs/error_reports[DRS site ID]_[data stamp].
Most error conditions are truly catastrophic, including: cannot connect to the DD, or a

data layer def fileismissing, or primary DRS files cannot be found. The exception iswhen a
specific layer cannot be updated due to the absence of a DRS layer_status file which is noted in
the error report while the process continues. In that situation, the layer in question should be
unchanged on the DRS.

Activity reports are written to SMOTHERSHIP/apps/update_drs/desired_cond/
$drsname/act_reports, and are again stamped with adate. All activity for a given site during the
course of aday isreported there. Thefileisinitiated during the workplan triage process
(triage_update_proc.pl) where statistics on update requests are generated. When “triage” reduces
aworkplan scope to conform to target site parameters, the purged data el ements are listed here.
The data copy process aso contributes to activity_reports.

6.0 DRSUpdate Utilities

At the time of thiswriting the DRS site update process is supported by three other related
applications that collectively constitute the full DRS site update environment. These include 1)
DRS Site Ingtallation, 2) Main DRS Metafile Rebuild, and 3) DRS Disrupted Operations
Recovery. These are discussed in separate sections below.

6.1 DRS Site Installation

DRS siteinstallation is performed by running SMOTHERSHI P/apps/update_drg/install_drs.pl
with arguments of $drsname and $drs _loc. This ssimply establishes the minimum directory and file
structures necessary for aDRS. After running this program, run drive_drs_update.pl (with the
drsname argument) to actually populated the site with desired conditions.

6.2 Main DRS Metafile Rebuild

The main DRS (mothership) needs to have its metadata rebuilt regularly to reflect changes in data
content. Metadata builds may be either “full” (meaning ‘complete’), or “partial.” This processes
are amilar to aregular site update, except that the data content of the siteis not changed.

Full rebuilds are accomplished by running drive_main_full.pl. A program structure chart of this
processis described in Figure 5. Full rebuilds usually take about 25 minutes to complete. They
are the ultimate DRSMain recovery step and will disrupt DRSMain site usage within the last 12
minutes of the process. drive_main_full.pl takes the name “drsmain” asits sole argument.

-12-

Figure 5: DRSmain Full Build Process

drive_main_full.pl

drive_desired_nother. pl
nmake desired_ | ayer. pl *
make desired_aoi. pl*

recov_from update_abort. pl
update drs_def.pl*
gen_l| ayer _status. pl*
update drs_alyer list.pl*
update drs_aoi.pl*
Update drs_lib.am*
Updat e i mage cat.anl *

Partial DRSMain rebuilds are more common and generally non-disruptive to users. They are
accomplished by running drive_main_partial.pl, which has the following usage:

drive_main_partial.pl <DRSMain name> <list> <list of layers to update separated by spaces>

When called with only the first argument (currently, “drsmain”), the program will read the file:
SMOTHERSHIP/apps/update_drs/desired_cond/<DRSMain name>/action_layers to obtain the list
of layersto act on. When the keyword “list” is added, the application expects a space-separated
list of layer namesto follow. These arguments are used to create a new action_layersfile, which
isthen used to fuel the process. A structure chart for this processis presented in Figure 6.

Figure 6: DRSMain Partial Build Process

drive_main_partial.pl

drive_desired_nother. pl
make desired_ | ayer. pl *
make desired_aoi. pl*

exi sting _cond _driver. pl
gen_| ayer _status. pl*
update drs_alyer list.pl*
update _drs_aoi.pl*
Update drs_lib.am*
Updat e i mage cat.anl *

6.3 DRS Disrupted Operations Recovery

It is sometimes necessary to manually disrupt a site update process’. The proper method for

2A “naturally” interrupted process, where the system fails gracefully from arecognized failure condition,
will almost always continue and rebuild the target site, eliminating the need for taking the steps described here.

-13-

restoring a site to health depends on at which point in the process the interruption occurred.
Termination at the desired conditions generation stage has no effect on the target site. However,
once a data transfer process has begun, the content of the site has changed, and some decisions
affecting remedia action must be made.

The user must be clear that there is no way to roll back the data changes that have occurred in an
interrupted process. The only way to replace dataisto verify the site Desired Conditions and
restart the update process. The problem with simply restarting the processis that the new existing
conditions have not been properly built, and if the site is not properly described internally, then the
update process will not execute correctly.® Consider two scenarios: 1) The user interrupts a site
update when they realize that some layers are being removed from the site accidentally, and 2) The
user interrupts a site update when they realize that a copy processis going to take too long. In
Scenario 1, if the processis simply restarted (after correcting the desired conditions), the deleted
datawill not be replaced, because that change is not reflected in the actual conditions. If the
processis restarted in Scenario 2, all of the data that has been copied to date will be recopied
again. Restoring the metafiles to reflect the actual conditions of a site isimportant.

Three categories of metafiles are affected here: 1) the layer registry (data_layer def), 2) the area
of interest files (aoi’s), and 3) the layer_statusfiles. The desired conditions and the existing
conditions will have differencesin these files.

The main question the Update DRS Application user must ask is whether the content of the siteis
best reflected in the desired conditions that were being executed, or the actua conditions that were
present before site update began. To state it another way: do you want the site to go forward to
reflect the partial update, or would you like the site layer description to be based on the previous
set of conditions?

A partialy executed workplan will have added or deleted datafrom the site. If a set of unwanted
deletions has occurred, it is likely that the desired conditions were wrong and the user should seek
recovery to the previous conditions. If the application was in the process of correctly copying
new datato the site, and extensive deletion processes have not been conducted, then asite
recovery based on the desired conditions would be most appropriate. Each option is described in
subsections below.

6.3.1 Restoring DRS Metafiles Based on Previous Conditions
Thisisthe best approach when data have primarily been subtracted from asite. To rebuild the
DRS metafiles based on previous conditions, run the existing_cond_driver.pl program with the

standard arguments.

6.3.2 Restoring DRS Metafiles Based on Desired Conditions

3Since the site update processis based on the comparison of desired versus actual conditions, an
incorrect actual condition description will not provide expected results.

-14-

Thisisthe best approach when there has been a net addition of datato the site. To rebuild DRS
metafiles based on desired conditions, run the program recov_from_update abort.pl with the
standard arguments. Thiswill read the data_layer_def file already on the site, and build the layer-
specific metafiles for the layersinvolved in the action. Alternately, the administrator may wish
torun recov_from_update abort full.pl to completely rebuild the site metafiles from scratch.
This second option may take from 30-120 minutes to execute, and should not triggered during the
daytime, asit will disrupt user accessto the site. Both of these programs executes the sequence
listed in Figure 7.

Figure 7: recov_from_update abort program sequence

recov_from update_abort. pl
update _drs_def.pl*
gen_| ayer _status. pl*
update drs_alyer list.pl*
update _drs_aoi.pl*
Update drs_lib.am*
Updat e i mage cat.anl *

-15-

