MIGRATORY BIRD POPULATIONS

Wetland Wildlife Populations \& Research 102 23rd Street
Bemidji, MN 56601
(218) 755-2973

2005 MINNESOTA WATERFOWL BREEDING POPULATION SURVEY

Steve Cordts, Wetland Wildlife \& Populations Research

Abstract

The number of breeding waterfowl in a portion of Minnesota has been estimated each year since 1968 as a part of the overall inventory of North American breeding waterfowl. The survey consists of aerial observations supplemented by more intensive ground counts on selected routes to determine the proportion of birds counted by the aerial crew. Procedures used are similar to those used elsewhere across the waterfowl breeding grounds. The 2005 aerial survey portion was flown from 3-29 May. Pond numbers increased 22% compared to 2004 and were similar to the long-term average. Estimated numbers of temporary (Type 1) wetlands increased 224% from 2004 but remained below (-58%) the long-term average. The mallard breeding population $(238,500)$ declined significantly $(-36 \%, \mathrm{P}=0.03)$ from 2004 $(375,313)$. Mallard numbers were well below the 10 -year average (-30%) but similar to the long-term average $(223,368)$. The blue-winged teal breeding population $(194,125)$ decreased significantly $(-45 \% ; \mathrm{P}$ $=0.02)$ compared to $2004(353,209)$ and was below the 10 -year (-19%) and long-term (-15%) averages. Populations of "other" ducks $(199,355)$, excluding scaup, decreased 29% and remained below the 10 -year average (-21%) but above the long-term average ($+12 \%$). Wood ducks (35%), ring-necked ducks (30%), gadwalls (8\%), and redheads (5%) accounted for most (78%) of the total population of "other" ducks. The estimate of total duck abundance (632,000), which excludes scaup, decreased 37% compared to 2004 and was 24% below the 10 -year average but unchanged from the long-term average (630,000). Canada goose numbers (uncorrected for visibility) decreased 15% compared to 2004 but were 4% above the 10 year average and 109% above the long-term average. Declines in duck numbers, particularly blue-winged teal, were expected this year, in part because conditions during spring 2004 may have delayed migration of blue-winged teal through the state and resulted in some migrant teal being counted last year. Survey timing in 2005 may have also contributed to lower estimates of duck abundance. Weather delays resulted in most (70%) of the survey being flown after 15 May when leaf-out and other factors may have led to lower estimates of duck abundance.

\section*{METHODS}

The aerial survey is based on a sampling design that includes three survey strata (Table 1, Figure 1). The strata cover 39% of the state area and are defined by density of lake basins (>10 acres) exclusive of the infertile northeastern lake region. The strata include the following:

Stratum I: high density, 21 or more lake basins per township. Stratum II: moderate density, 11 to 20 lake basins per township. Stratum III: low density, 2 to 10 lake basins per township.

Areas with less than two basins per township

Figure 1. Location of waterfowl breeding population survey strata in Minnesota.

 are not surveyed. Strata boundaries were based upon "An Inventory of Minnesota Lakes" (Minnesota Conserv. Dept. 1968:12). Standard procedures for the survey follow those outlined in "Standard Operating
Procedures for Aerial Waterfowl

Breeding Ground Populations and Habitat Surveys in North America" (USFWS/CWS 1987). Changes in survey methodology were described in the 1989 Minnesota Waterfowl Breeding Population Survey report. Pond and waterfowl data for 1968-74 were calculated from Jessen (1969-72) and Maxson and Pace (1989).

All aerial transects in Strata I-III (Table 1) were flown using a Cessna 185 (N105NR). Wetlands were counted on the observer's side of the plane (0.125 mile wide transect) only; a correction factor obtained in 1989 was used to adjust previous data (1968-88) that was obtained when the observer counted wetlands on both sides of the plane (0.25 mile wide transect).

During the 2005 survey, we used the U.S. Fish and Wildlife Service computer program RECORD to capture data in the airplane (Jack Hodges, US Fish and Wildlife Service, Migratory Bird Management-Juneau, AK). We mounted 2 laptop computers in the rear of the plane and connected them to the plane GPS. Data were recorded and stored as WAV files through the plane intercom system (pilot) or a remote microphone/mouse system (observer). When the microphones were keyed, an associated GPS location was captured in a POS file so that each wetland or waterfowl observation would have an approximate GPS location associated with it. The TRANSCRIBE portion of the software, which allows users to transcribe WAV files and summarize data, was used for data entry.

Visibility correction factors (VCFs) were derived from intensive ground surveys on 14 selected routes flown by the aerial crew. Many of these routes use a county road as the mid-point of the transect boundary which aids in navigation and helps ensure the aerial and ground crews survey the same area. Ground routes each originally included approximately 100 wetland areas; however, drainage has reduced the number of wetlands on most of the routes. All observations from both ground crews and aerial crews were used to calculate the VCFs.

The SAS computer program was modified in 1992 to obtain standard errors for mallard and bluewinged teal breeding population estimates. These calculations were based upon SAS computer code written by Graham Smith, USFWS-Office of Migratory Bird Management. Estimates for 2004 and 2005 were compared using two-tailed Z-tests.

SURVEY CHRONOLOGY

The 2005 aerial survey portion began on 3 May in southern Minnesota and concluded in northern Minnesota on 29 May. The survey was completed in 12 days of flight time. Transects were flown on 34, 6, 8, 15-16, 20, 23-24, 26-27, and 29 May. Aerial flights began no earlier than 7 AM each day and were completed by 12 PM each day except on 29 May when 7 transects were flown between 4-8 PM. Most delays were due to low ceilings, high winds ($>20 \mathrm{mph}$) or precipitation events. Most (70%) of the survey was completed after 15 May; the survey spanned the longest period (27 days) on record and the completion date (29 May) was the $2^{\text {nd }}$ latest recorded since 1968.

WEATHER AND HABITAT CONDITIONS

Wetland conditions in spring 2005 were much improved from 2004. Ice out on most lakes across the state occurred 5-10 days earlier than

Figure 2. Number of May ponds (Types II-V) and long-term average (dashed line) in Minnesota, 1968-2005.
average. April temperatures averaged $5.2^{\circ} \mathrm{F}$ above normal statewide and regional temperatures ranged from $3.2^{\circ} \mathrm{F}$ above average in northeast Minnesota to $5.9^{\circ} \mathrm{F}$ above average in the northwest and south central Minnesota
(http://climate.umn.edu/cawap/monsum/0504.txt). April precipitation was near average statewide and ranged from 0.92 inches below normal in northeast to 0.56 inches above normal in the central portion of the state. May temperatures averaged about $3.2^{\circ} \mathrm{F}$ below normal statewide. May precipitation was 0.77 inches above normal statewide and ranged from 0.36 inches below normal in southeast Minnesota to 1.93 inches above normal in north central Minnesota (http://climate.umn.edu/cawap/monsum/0505.txt). Additional temperature and precipitation data during the survey period are provided in Appendix A. In late April 2005, statewide topsoil moisture indices were rated as 4% very short or short, 84% adequate, and 12% surplus moisture. On May 29 , statewide indices were rated as 1% short, 63% adequate and 36% surplus moisture. (Minnesota Agricultural Statistics Service Weekly Crop Weather Reports, http://www.nass.usda.gov/mn/). For comparison, in late April 2004 statewide topsoil moistures indices were rated as 42% very short or short, 57% adequate, and 1% surplus moisture.

Planting dates for row crops were later in 2005 than previous years. By May 1, 41% of the corn acres had been planted statewide compared to 64% in 2004 and 47% for the previous 5 -year average. Rain events later in May delayed the initial cutting of alfalfa hay across the state. By June 5, only 9% of alfalfa hay had been cut compared to 12% in 2004 and a 5 -year average of 28% (Minnesota Agricultural Statistics Service Weekly Crop Weather Reports, http://www.nass.usda.gov/mn/).

Wetland numbers (Type II-V) increased 22\% from 2004 and were 8% below the 10-year average (Table 2) and 2% below the long-term average (Table 2; Figure 2). The number of temporary (Type 1) wetlands increased 224% from 2004 but remained 42% below the 10 -year average and 58% below the long-term average.

Leaf-out dates were considerably earlier than 2004, which made visibility from the air extremely difficult, particularly along transects in the forested portion of the state.

Figure 3. Mallard population estimates (adjusted for visibility bias) and longterm average (dashed line) in Minnesota, 1968-2005.

Figure 4. Blue-winged teal population estimates (adjusted for visibility bias) and long-term average (dashed line) in Minnesota, 1968-2005.

Figure 5. Other duck (excluding scaup) populations (adjusted for visibility bias) and long-term average (dashed line) in Minnesota, 1968-2005.

WATERFOWL POPULATIONS

The number of ducks, Canada geese, and coots, by stratum, are shown in Tables 3-5; total numbers are presented in Table 6. These estimates are not corrected for visibility bias.

The 2005 waterfowl breeding population estimate of mallards was 238,500 ($\mathrm{SE}=28,595$), which was 36% lower and significantly different ($\mathrm{Z}=$ $2.13, \mathrm{P}=0.03$) than 2004 (Table 7, Figure 3). Mallard numbers were below (-30%) the 10 -year average but 7% higher than the long-term average. Mallard abundance in 2005 was the lowest recorded since 1991.

The estimated blue-winged teal population was $194,125(\mathrm{SE}=37,358)$, which was significantly less than $2004(\mathrm{Z}=2.35, \mathrm{P}=0.02)$. Blue-winged teal numbers were 19% below the 10-year average and 15% below the long-term average (Table 7, Figure 4).

Other duck numbers (excluding scaup) declined 29% to 199,355 and were 12% above the long-term average and below the 10-year average (21%) (Table 7, Figure 5). Scaup numbers were 46% lower than in 2004. The total duck population, excluding scaup, was 631,980 , which was 37% lower than $2004,24 \%$ below the 10 -year average and unchanged from the long-term average (Table 7, Figure 6). This was the lowest total duck estimate since 1987.

Visibility Correction Factors (VCFs) were higher in 2005 for mallards ($+22 \%$), blue-winged teal $(+7 \%)$, and "other" ducks ($+45 \%$) compared to 2004 (Table 7). Mallard VCFs were 36% higher than the long-term average and the $3{ }^{\text {rd }}$ highest on record. The blue-winged teal VCF was unchanged from the longterm average. The VCF for "other" ducks was 36\% above long-term averages. Some differences were expected due to a change in pilots in 2005 and early leaf-out conditions, which decreased visibility on many transects.

Canada goose numbers (uncorrected for visibility) decreased 15% compared to 2004 and were 109% above the long-term average (Table 7, Figure 7). The VCF for Canada geese was $2.02,28 \%$ higher than 2004 and 16% below the long-term average. The population estimate of Canada geese adjusted for visibility increased 8\% (Table 7, Figure 8).

Figure 6. Total duck (excluding scaup) population estimate and long-term average (dashed line) in Minnesota, 1968-2005.

Figure 7. Canada goose population estimates (not adjusted for visibility bias) and long-term average in Minnesota, 19722005.

Figure 8. Canada goose population estimates (adjusted for visibility bias) and long-term average in Minnesota, 19882005.

The estimated coot population was 11,640 , which was 74% below the long-term average.

SUMMARY

Wetland conditions were improved from 2004 but similar to long-term averages. Mallard abundance $(238,500)$ declined significantly from $2004(375,313)(\mathrm{P}=0.02)$ but remained near the longterm average $(223,000)$. Blue-winged teal abundance $(194,125)$ declined significantly from 2004 $(353,209)(\mathrm{P}=0.02)$ and was below the long-term average $(229,000)$. Duck abundance for most other species declined relative to 2004. Canada goose numbers, unadjusted for visibility bias, decreased 15\% from 2004 but were 4% above the 10 -year average.

ACKNOWLEDGMENTS

Special thanks to the pilot and all the efforts of the ground crews from both the Minnesota Department of Natural Resources (MNDNR) and the U.S. Fish and Wildlife Service (USFWS) Tom Pfingsten, Conservation Officer Pilot, MNDNR, Division of Enforcement; Steve Cordts, Waterfowl Staff Specialist, MNDNR, Division of Wildlife; Sean Kelly, Asst. Chief, Migratory Bird \& Refuge Biology, USFWS, Region III, Twin Cities; Wayne Brininger, Wildlife Biologist, USFWS, Tamarac National Wildlife Refuge; Jeanne Holler, Wildlife Biologist, USFWS, Sherburne National Wildlife Refuge; Rich Papasso, Refuge Operations Specialist, USFWS, Big Stone National Wildlife Refuge; Tony Rondeau, Wildlife Biologist, USFWS, HAPET, Fergus Falls; Sally Zodrow, Biological Science Technician, USFWS, Sherburne National Wildlife Refuge; Kim Bousquet, USFWS, Big Stone National Wildlife Refuge; Lowell Deede, USFWS, Tamarac National Wildlife Refuge; Dawn Johnson, USFWS, HAPET, Fergus Falls; Jim Kelley, USFWS, Region III, Twin Cities; Bob Russell, USFWS, Region III, Twin Cities; Lori Wolff, USFWS, Private Lands Office, St.
Cloud; Bob Bengson, USFWS; Mary Soler, USFWS; Paul Soler, USFWS

LITERATURE CITED:

Jessen, R. J. 1969. Waterfowl breeding ground survey, 1968. Minn. Game Research Proj. Q. Prog. Rep. 29(32):173-180.

Jessen, R. J. 1971. Waterfowl breeding ground survey, 1969. Minn. Game Research Proj. Q. Prog. Rep. 31(2):100-106.

Jessen, R. J. 1971. Waterfowl breeding ground survey, 1970. Minn. Game Research Proj. Q. Prog. Rep. 31(2):107-113.

Jessen, R. J. 1971. Waterfowl breeding ground survey, 1971. Minn. Game Research Proj. Q. Prog. Rep. 31(2):114-120.

Jessen, R. J. 1972. Waterfowl breeding ground survey, 1972. Minn. Game Research Proj. Q. Prog. Rep. 32(2):89-95.

Minnesota Conservation Department. 1968. An inventory of Minnesota Lakes. Waters Section, Division of Waters, Soils, and Minerals, Bull. No. 25. 498pp.

Maxson, S. J., and R. M. Pace. 1989. Summary and evaluation of Minnesota's waterfowl breeding population survey, 1972-1986. Minnesota Wildl. Rep. 7. 92pp.

USFWS/CWS. 1987. Standard operating procedures for aerial waterfowl breeding ground population and habitat surveys in North America. U.S. Fish and Wildlife Service and Canadian Wildlife Service.

Table 1. Survey design for Minnesota, May 2005. ${ }^{1}$

	Stratum			
	1	2	3	Total
Survey design				
Square miles in stratum	5,075	7,970	17,671	30,716
Square miles in sample - waterfowl	182.75	136.375	203.125	522.25
Square miles in sample - ponds	91.375	68.1875	101.5625	261.125
Linear miles in sample	731.0	545.5	812.5	$2,089.0$
Number of transects in sample	39	36	40	115
Minimum transect length (miles)	5	6	7	5
Maximum transect length (miles)	36	35	39	39
Expansion Factor - waterfowl	27.770	58.442	86.996	
Expansion Factor - ponds	55.540	116.884	173.991	
Current year coverage				
Square miles in sample - waterfowl	182.75	136.375	203.125	522.25
Square miles in sample - ponds	91.375	68.1875	101.5625	261.125
Linear miles in sample	731.0	545.5	812.5	$2,089.0$
Number of transects in sample	39	36	40	115
Minimum transect length (miles)	5	6	7	5
Maximum transect length (miles)	36	35	39	39
Expansion Factor - waterfowl	27.770	58.442	86.996	
Expansion Factor - ponds	55.540	116.884	173.991	

${ }^{1}$ Also, 8 additional air-ground transects (total linear miles $=202.5$, range $-10-60$ miles) were flown to use in calculating the VCF

Table 2. Estimated number of May ponds (Type 1 and Types II-V) during Minnesota waterfowl breeding population survey, 1968-2005.

	Year	Type I	Number of ponds ${ }^{1}$
	1968		272,000
	1969		358,000
	1970		276,000
	1971		277,000
	1972		333,000
	1973		251,000
	1974		322,000
	1975		175,000
	1976		182,000
	1977		91,000
	1978		215,000
	1979		259,000
	1980		198,000
	1981		150,000
	1982		269,000
	1983		249,000
	1984		264,000
	1985		274,000
	1986		317,000
	1987		178,000
	1988		160,000
	1989		203,000
	1990		184,000
	1991	82,862	237,000
	1992	10,019	225,000
	1993	199,870	274,000
	1994	123,958	294,000
	1995	140,432	272,000
	1996	147,859	330,000
	1997	30,751	310,000
	1998	20,560	243,000
	1999	152,747	301,000
	2000	5,090	204,000
	2001	66,444	303,000
	2002	30,602	254,000
	2003	34,005	244,000
	2004	9,494	198,000
	2005	30,764	241,000
10-year average (1996-2005)		52,832	262,800
Long-term average (1968-2005)		72,364	247,026
Change from:			
2004		+224\%	+22\%
10-year average		-42\%	-8\%
Long-term average		-58\%	-2\%

${ }^{T}$ Type II-V, correction factor from $1989(123,000 / 203,000=0.606)$ used to adjust $1968-88$ pond numbers. Ponds counted on 0.125 mile wide transect after 1988.

Table 3. Minnesota waterfowl breeding populations by species for Stratum I (high wetland density), expanded for area but not visibility, 19872005.

											Year								
Species	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Dabblers:																			
Mallard	30,713	32,769	26,659	29,686	25,854	28,770	23,327	22,160	20,494	25,104	26,992	33,157	26,576	26,604	28,742	29,297	25,937	29,381	19,050
Black Duck	1,440	0	0	0	56	0	0	56	0	0	0	0	0	0	0	0	0	0	56
Gadwall	499	916	722	2,694	2,721	2,777	778	444	1,055	1,083	611	1,111	1,777	833	1,333	944	1,250	2,111	1,166
American Wigeon	0	111	83	222	0	56	0	0	194	0	0	56	56	56	111	0	56	555	167
Green-winged Teal	0	0	0	0	56	0	111	278	0	278	56	333	0	278	56	278	222	444	56
Blue-winged Teal	22,654	17,467	14,218	23,771	15,940	15,274	10,358	9,164	7,609	6,720	6,387	8,220	6,998	11,247	7,387	14,218	9,664	23,771	9,303
Northern Shoveler	831	278	722	778	1,777	1,000	111	278	111	1,277	1,500	500	555	1,055	305	1,277	278	1,166	333
Northern Pintail	111	500	222	444	389	222	611	167	167	167	111	111	167	167	389	56	111	56	0
Wood Duck	14,789	11,580	8,303	14,468	10,775	10,941	11,636	7,359	6,831	6,498	9,497	12,302	5,582	10,219	6,720	2,888	4,499	8,081	5,498
Dabbler Subtotal	71,037	63,621	50,929	72,063	57,568	59,040	46,932	39,906	36,461	41,127	45,154	55,790	41,711	50,459	45,043	48,958	42,017	65,565	35,629
Divers:																			
Redhead	1,800	1,277	2,638	3,305	2,555	3,499	1,416	1,972	639	722	778	944	500	583	1,444	750	333	805	666
Canvasback	1,357	722	2,888	1,972	2,305	2,111	2,777	3,166	3,860	1,166	1,333	1,777	2,971	1,222	2,027	1,833	1,333	666	972
Scaup	1,883	2,860	14,024	8,970	9,858	23,854	6,748	19,661	7,192	13,829	3,416	9,247	1,750	7,415	5,832	2,444	2,055	5,971	4,110
Ring-necked Duck	499	528	1,500	1,638	1,777	4,721	2,222	3,582	1,583	3,166	2,694	2,749	2,360	4,776	2,444	2,777	1,361	5,165	1,722
Goldeneye	0	56	167	56	0	222	111	222	111	167	0	111	56	56	333	111	0	222	222
Bufflehead	0	56	583	0	333	722	0	444	56	278	0	56	111	56	111	222	111	389	167
Ruddy Duck	323	666	722	1,500	361	500	1,250	639	167	139	528	11,052	972	0	83	1,305	417	305	1,222
Hooded Merganser	0	0	0	139	0	444	222	111	278	611	555	389	722	500	722	555	333	278	333
Large Merganser	0	0	0	0	56	111	0	56	0	0	56	0	0	0	111	0	972	0	111
Diver Subtotal	5,862	6,165	22,522	17,580	17,245	36,184	14,746	29,853	13,886	20,078	9,360	26,325	9,442	14,608	13,107	9,997	6,915	13,801	9,525
Total Ducks	76,899	69,786	73,451	89,643	74,813	95,224	61,678	69,759	50,347	61,205	54,514	82,115	51,153	65,067	58,150	58,955	48,932	79,366	45,154
Other:																			
Coot	1,163	3,777	22,799	27,326	11,108	11,386	1,166	528	611	3,055	5,054	555	83	3,999	1,722	2,888	2,666	21,411	2,444
Canada Goose	8,059	12,024	14,663	16,523	9,803	10,914	13,135	12,802	14,413	12,774	10,330	16,967	19,495	22,160	24,882	24,104	22,160	23,160	22,938

Table 4. Minnesota waterfowl breeding populations by species for Stratum II (medium wetland density), expanded for area but not visibility, 1987-2005.

	Year																		
Species	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Dabblers:																			
Mallard	50,260	41,085	42,896	39,682	39,215	45,585	37,111	42,896	42,896	48,507	54,643	53,942	52,247	49,559	44,650	43,773	34,715	44,474	26,883
Black Duck	0	0	0	0	0	0	0	0	0	0	0	0	0	0	117	0	0	0	0
Gadwall	0	584	1,344	2,805	1,870	2,045	1,286	1,403	1,052	935	468	584	1,519	3,039	1,636	701	584	3,565	584
American Wigeon	0	3,507	0	234	701	351	0	117	0	468	351	818	0	468	0	0	0	2,513	117
Green-winged Teal	234	117	117	0	0	0	351	117	0	935	234	351	117	117	117	468	234	234	0
Blue-winged Teal	29,455	30,039	25,189	31,208	24,663	26,766	18,818	19,227	10,636	13,851	13,792	13,208	10,578	19,637	9,701	21,390	15,955	30,624	11,513
Northern Shoveler	701	1,695	2,338	2,104	3,857	1,636	1,286	935	818	1,636	2,571	701	2,104	4,675	1,052	2,221	1,403	1,753	234
Northern Pintail	818	468	701	701	701	234	351	468	234	117	234	468	117	117	117	0	117	0	0
Wood Duck	10,052	14,494	10,578	14,903	8,065	11,221	9,468	9,409	6,662	8,708	11,338	10,520	19,753	13,792	7,831	5,143	4,558	8,766	3,273
Dabbler subtotal	91,520	91,989	83,163	91,637	79,072	87,838	68,671	74,572	62,298	75,157	83,631	80,592	86,435	91,404	65,221	73,696	57,566	91,929	42,604
Divers:																			
Redhead	701	1,169	1,636	4,325	1,519	3,097	2,279	3,799	1,403	1,110	1,987	935	1,636	2,805	2,455	234	584	1,110	292
Canvasback	0	935	584	234	117	0	584	1,052	0	234	701	117	117	935	0	468	1,052	234	0
Scaup	5,552	3,857	25,598	25,189	13,383	22,208	877	14,085	7,831	21,916	18,935	4,032	3,331	6,779	3,039	5,961	2,279	7,188	2,981
Ring-necked Duck	1,461	2,104	3,214	2,513	2,104	2,922	3,156	3,331	1,403	7,714	3,565	2,279	2,221	5,610	3,799	6,370	2,455	5,377	1,929
Goldeneye	234	468	935	351	818	351	584	701	701	1,753	818	234	935	584	468	234	234	351	117
Bufflehead	0	0	701	234	0	526	117	234	0	117	117	0	0	0	0	1,169	117	468	351
Ruddy Duck	0	2,162	3,390	1,227	4,558	1,227	3,390	409	117	58	117	0	468	0	0	1,870	2,688	0	351
Hooded Merganser	0	234	0	0	0	351	584	468	117	234	468	117	701	935	1,403	701	701	234	234
Large Merganser	0	0	0	0	0	117	0	0	0	0	0	0	0	117	117	0	0	234	351
Diver subtotal	7,948	10,929	36,058	34,073	22,499	30,799	11,571	24,079	11,572	33,136	26,708	7,714	9,409	17,765	11,281	17,007	10,110	15,196	6,606
Total Ducks	99,468	102,918	119,221	125,710	101,571	118,637	80,242	98,651	73,870	108,293	110,339	88,306	95,844	109,169	76,502	90,703	67,676	107,125	49,210
Other:																			
Coot	1,169	2,338	3,740	11,630	5,552	11,162	5,201	1,461	526	7,013	5,026	643	234	1,110	468	4,909	1,519	8,007	584
Canada Goose	4,675	5,143	10,227	11,279	8,591	7,305	9,409	12,565	12,682	13,559	16,364	19,812	18,585	25,831	24,604	20,688	22,091	28,461	20,688

Table 5. Minnesota waterfowl breeding populations by species for Stratum III (low wetland density), expanded for area but not visibility, 19872005.

	Year																		
Species	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Dabblers:																			
Mallard	84,908	81,689	54,807	71,511	63,246	69,771	63,333	73,425	79,166	79,862	78,993	101,873	90,390	81,690	72,642	72,121	55,156	84,561	36,539
Black Duck	0	0	0	174	0	0	0	0	0	0	0	0	0	0	0	0	0	174	0
Gadwall	0	1,914	5,220	8,787	2,262	2,436	1,218	2,610	3,306	3,306	2,436	3,045	2,436	2,610	10,701	3,306	1,566	6,960	2,001
American Wigeon	0	1,827	174	957	696	522	348	1,218	0	1,044	348	696	0	522	174	1,218	174	1,566	1,044
Green-winged Teal	1,566	0	522	0	348	0	348	174	0	957	348	174	0	1,218	1,392	522	174	0	174
Blue-winged Teal	50,371	53,677	50,893	52,198	50,893	51,067	35,494	41,932	29,492	36,625	25,316	26,360	18,530	29,405	20,618	56,374	21,140	39,758	27,578
Northern Shoveler	3,306	3,654	6,264	23,663	5,568	11,048	1,914	2,784	5,307	12,701	11,049	4,176	4,002	20,444	10,701	6,264	870	3,828	348
Northern Pintail	174	3,219	696	696	1,914	870	1,218	696	174	870	522	870	870	696	522	0	174	348	174
Wood Duck	30,449	21,662	23,141	25,055	17,747	24,185	25,229	23,228	16,355	27,926	14,268	23,837	20,531	25,055	17,225	13,572	12,702	20,705	7,482
Dabbler subtotal	170,774	167,642	141,717	183,041	142,674	159,899	129,102	146,067	133,800	163,291	133,280	161,031	136,759	161,640	133,975	153,377	91,956	157,900	75,340
Divers:																			
Redhead	696	609	2,175	3,219	2,610	6,438	1,827	2,958	7,134	1,044	1,044	2,001	3,480	2,523	3,654	1,305	174	1,740	1,479
Canvasback	0	174	174	1,044	696	0	348	696	174	1,392	0	3,306	174	3,915	522	696	1,131	2,784	0
Scaup	2,871	3,828	32,276	5,916	17,486	20,009	4,176	23,924	13,397	29,840	8,787	15,137	8,961	18,182	6,873	4,611	783	17,747	5,307
Ring-necked Duck	2,349	1,566	2,088	2,088	3,480	3,654	2,871	5,568	1,044	12,875	3,654	2,958	1,479	8,178	8,526	7,395	1,479	5,133	10,179
Goldeneye	174	522	870	609	696	1,044	696	783	1,479	1,914	522	696	696	1,044	1,566	3,132	1,305	696	1,044
Bufflehead	0	0	1,392	0	552	696	348	696	0	1,044	174	348	0	0	0	1,218	783	2,088	0
Ruddy Duck	2,175	1,566	1,305	1,218	9,396	6,786	1,218	2,175	2,349	1,740	348	0	174	0	696	18,878	87	2,262	870
Hooded Merganser	0	174	0	174	348	348	348	696	1,044	1,566	696	696	1,218	957	174	2,175	174	1,740	1,218
Large Merganser	0	0	0	0	0	348	0	174	174	0	0	0	0	0	0	522	0	0	261
Diver subtotal	8,265	8,439	40,280	14,268	35,264	39,323	11,832	37,670	26,795	51,415	15,225	25,142	16,182	34,799	22,011	39,932	5,916	34,190	20,358
Total Ducks	179,039	176,081	181,997	197,309	177,938	199,222	140,934	183,737	160,595	214,706	148,505	186,173	152,941	196,439	155,986	193,309	97,872	192,090	95,698
Other:																			
Coot	1,914	59,940	24,794	11,918	47,587	62,463	12,179	12,788	3,828	182,953	24,620	5,133	14,702	67,684	3,132	14,007	7,134	77,427	8,613
Canada Goose	17,225	21,923	27,056	30,623	23,837	15,746	21,314	23,228	30,971	34,537	33,755	42,368	41,933	57,940	39,932	33,407	43,412	46,717	39,758

Table 6. Minnesota waterfowl breeding populations by species for Stratum I-III combined, expanded for area coverage but not for visibility, 1987-2005.

Species	Year																		
	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Dabblers:																			
Mallard	165,881	155,543	124,362	140,879	128,315	144,126	123,771	138,481	142,556	153,473	160,628	188,972	169,213	157,853	146,034	145,191	115,974	158,416	82,472
Black Duck	1,440	0	0	174	56	0	0	56	0	0	0	0	0	0	117	0	0	174	56
Gadwall	499	3,414	7,286	14,286	6,853	7,258	3,282	4,457	5,413	5,324	3,515	4,740	5,733	6,482	13,670	4,951	3,400	12,635	3,752
American Wigeon	0	5,445	257	1,413	1,397	929	348	1,335	194	1,512	699	1,570	56	1,045	285	1,218	230	4,634	1,327
Green-winged Teal	1,800	117	639	0	404	0	810	569	0	2,170	638	858	117	1,613	1,564	1,267	630	678	230
Blue-winged Teal	102,480	101,183	90,300	107,177	91,496	93,107	64,670	70,323	47,737	57,196	45,495	47,788	36,106	60,288	37,706	91,982	46,759	94,152	48,394
Northern Shoveler	4,838	5,627	9,324	26,545	11,202	13,684	3,311	3,997	6,236	15,614	15,120	5,377	6,661	26,175	12,058	9,762	2,550	6,747	915
Northern Pintail	1,103	4,187	1,619	1,841	3,004	1,326	2,180	1,331	575	1,154	867	1,449	1,153	979	1,028	56	402	404	174
Wood Duck	55,290	47,736	42,022	54,426	36,587	46,347	46,333	39,996	29,848	43,132	35,103	46,659	45,866	49,067	31,777	21,603	21,759	37,553	16,253

Divers:

| |
| :--- | ---: |
| Redhead | 3,197 | 3,055 | 6,449 | 10,849 | 6,684 | 13,034 | 5,522 | 8,729 | 9,176 | 2,876 | 3,809 | 3,880 | 5,616 | 5,911 | 7,552 | 2,289 | 1,092 | 3,656 | 2,438 |
| Canvasback | 1,357 | 1,831 | 3,646 | 3,250 | 3,118 | 2,111 | 3,709 | 4,914 | 4,034 | 2,792 | 2,034 | 5,200 | 3,262 | 6,072 | 2,549 | 2,996 | 3,516 | 3,684 | 972 |
| Scaup | 10,306 | 10,545 | 71,898 | 40,075 | 40,727 | 66,071 | 11,801 | 57,670 | 28,420 | 65,585 | 31,138 | 28,416 | 14,041 | 32,376 | 15,743 | 13,016 | 5,117 | 30,906 | 12,397 |
| Ring-necked Duck | 4,309 | 4,198 | 6,802 | 6,239 | 7,361 | 11,297 | 8,249 | 12,481 | 4,030 | 23,755 | 9,913 | 7,986 | 6,060 | 18,565 | 14,768 | 16,542 | 5,294 | 15,675 | 13,829 |
| Goldeneye | 408 | 1,046 | 1,972 | 1,016 | 1,514 | 1,617 | 1,391 | 1,706 | 2,291 | 3,834 | 1,340 | 1,041 | 1,687 | 1,684 | 2,367 | 3,477 | 1,539 | 1,269 | 1,383 |
| Bufflehead | 0 | 56 | 2,676 | 234 | 885 | 1,944 | 465 | 1,374 | 56 | 1,439 | 291 | 404 | 111 | 56 | 111 | 2,609 | 1,011 | 2,944 | 517 |
| Ruddy Duck | 2,498 | 4,394 | 5,417 | 3,945 | 14,315 | 8,513 | 5,858 | 3,223 | 2,633 | 1,937 | 993 | 11,052 | 1,613 | 0 | 779 | 22,054 | 3,192 | 2,567 | 2,443 |
| Hooded Merganser | 0 | 408 | 0 | 313 | 348 | 1,143 | 1,154 | 1,275 | 1,439 | 2,411 | 1,719 | 1,202 | 2,641 | 2,392 | 2,299 | 3,432 | 1,209 | 2,251 | 1,785 |
| Large Merganser | 0 | 0 | 0 | 0 | 56 | 576 | 0 | 230 | 174 | 0 | 56 | 0 | 0 | 117 | 228 | 522 | 972 | 234 | 723 |
| Diver subtotal | 22,075 | 25,533 | 98,860 | 65,921 | 75,008 | 106,306 | 38,149 | 91,602 | 52,253 | 104,629 | 51,293 | 59,181 | 35,031 | 67,173 | 46,396 | 66,937 | 22,942 | 63,186 | 36,487 |

[^0] Other:

$\begin{array}{llllllllllllllllllllllll}\text { Coot } & 4,246 & 66,055 & 51,333 & 50,874 & 64,247 & 85,011 & 18,546 & 14,777 & 4,965 & 193,021 & 34,700 & 6,331 & 15,020 & 72,793 & 5,321 & 21,804 & 11,319 & 106,845 & 11,641\end{array}$

| Canada Goose | 29,959 | 39,090 | 51,946 | 58,425 | 42,231 | 33,965 | 43,858 | 48,595 | 58,066 | 60,870 | 60,449 | 79,147 | 80,012 | 105,932 | 89,418 | 78,200 | 87,663 | 98,339 | 83,384 |
| :--- |

Table 7. Estimated waterfowl populations during the Minnesota Waterfowl breeding population survey, 1968-2005.

[^1]Table 7. Continued.

Year			Scaup			Total ducks (ex. scaup)		Total Ducks		Canada geese		
			Unad. PI	VCF	PI	Unad. PI	PI	Unad. PI	PI	Unad. PI	VCF	PI
		1968	22,834	2.08	47,495	144,392	320,994	167,226	368,488			
		1969	9,719	2.27	22,062	132,952	323,213	142,671	345,275			
		1970	12,105	1.62	19,610	129,967	324,219	142,072	343,829			
		1971	5,713	1.71	9,764	119,667	277,137	125,380	286,901			
		1972	12,062	1.69	20,379	132,928	217,181	144,990	237,560	366		
		1973	10,633	2.45	26,093	142,857	389,486	153,490	415,580	1,965		
		1974	18,378	2.79	51,201	122,534	281,605	140,912	332,806	8,835		
		1975	9,563	3.31	31,649	135,626	471,608	145,189	503,257	5,997		
		1976	22,494	3.35	75,323	198,236	684,082	220,730	759,405	5,409		
		1977	2,971	11.95	35,517	116,641	501,099	119,612	536,616	7,279		
		1978	14,774	3.35	48,812	106,677	462,502	121,451	511,314	7,865		
		1979	92,134	3.79	348,948	148,200	552,416	240,334	901,364	4,843		
		1980	12,602	3.97	50,070	182,063	690,593	194,665	740,663	6,307		
		1981	19,844	3.88	75,451	175,055	439,769	194,899	515,220	10,156		
		1982	21,556	4.32	93,204	127,153	465,195	148,709	558,399	6,600		
		1983	9,551	2.84	27,077	148,392	367,142	157,943	394,219	11,081		
		1984	15,683	2.18	34,111	224,736	529,679	240,419	563,790	14,051		
		1985	7,409	2.35	17,430	221,516	562,898	228,925	580,328	16,658		
		1986	6,247	2.67	16,678	215,463	520,787	221,710	537,465	19,599		
		1987	10,306	2.51	25,910	345,107	588,954	355,413	614,864	29,960		
		1988	10,545	2.61	27,553	338,240	725,238	348,785	752,791	39,057	1.36	53,004
		1989	71,898	2.89	207,991	302,771	813,615	374,669	1,021,606	51,946	1.88	97,898
		1990	40,075	1.97	78,892	372,587	807,870	412,662	886,761	58,425	1.37	80,147
		1991	40,727	2.81	114,480	313,595	753,710	354,322	868,191	42,231	4.18	176,465
		1992	66,071	2.33	153,939	347,012	973,323	413,083	1,127,262	33,965	2.43	82,486
		1993	11,801	3.28	38,750	271,053	837,172	282,854	875,921	43,858	2.08	91,369
		1994	57,670	3.55	204,536	294,477	1,115,558	352,147	1,320,095	48,595	1.68	77,878
		1995	28,421	4.05	115,096	256,390	797,144	284,811	912,241	58,065	2.08	120,775
		1996	65,585	2.64	173,351	318,619	889,057	384,204	1,062,408	60,870	3.92	238,708
		1997	31,138	2.72	84,834	282,220	868,137	313,358	952,971	60,449	2.59	156,817
		1998	28,416	1.64	46,528	328,238	693,084	356,654	739,612	79,147	1.75	138,507
		1999	14,041	2.49	35,002	285,778	680,463	299,819	715,465	80,012	3.35	268,168
		2000	32,376	2.10	67,520	338,299	747,779	370,675	815,299	105,932	2.84	301,298
		2001	15,743	2.85	44,914	274,892	716,353	290,653	761,267	89,418	2.17	193,887
		2002	13,016	4.04	52,606	327,951	1,171,537	340,967	1,224,143	78,200	2.42	189,353
		2003	5,117	5.30	27,120	209,529	721,805	214,646	748,925	87,663	3.78	331,094
		2004	30,906	2.94	90,926	347,673	1,008,324	378,579	1,099,250	98,339	1.58	155,859
		2005	12,397	3.98	49,340	177,663	631,980	190,060	681,320	83,384	2.02	168,469
Averages:												
10-ye	(1995-2004)		26,476	3.08	73,790	296,959	829,368	323,437	903,158	79,810	2.65	209,447
Long-	rm (1968-200		24,014	3.14	70,794	227,820	629,545	251,834	700,339	39,898	2.42	162,343
\% change from:												
		2004	-60\%	+35\%	-46\%	-49\%	-37\%	-50\%	-38\%	-15\%	+28\%	+8\%
	10-year a	verage	-53\%	+29\%	-33\%	-40\%	-24\%	-41\%	-25\%	+4\%	-24\%	-20\%
	Long-term a	verage	-48\%	$+27 \%$	-30\%	-22\%	0	-25\%	-3\%	+109\%	-16\%	+4\%

[^2]Appendix A. Temperature and precipitation at selected cities in, or adjacent to, Minnesota May Waterfowl Survey Strata, 1 May-29 May 2005 (Source: Minnesota Climatological Working Group, http://climate.umn.edu/cawap/nwssum/nwssum.asp).

Region	City	Temperature (F) for week ending:										Total weekly precipitation (in)					Precipitation departure from normal 1 Apr-29 May
		1-May		8-May		15-May		22-May		29-May							
		Avg ${ }^{1}$	Depart ${ }^{2}$	1-May	8-May	15-May	22-May	29-May									
NW	Crookston	36.2	-12.3	47.2	- 4.8	48.2	-6.9	60.5	2.7	54.4	-5.8	0.02	0.05	1.00	1.49	0.66	0.07
NC	Grand Rapids	36.1	-10.9	52.3	2.1	45.2	-7.8	54.4	-1.2	54.4	-3.4	0.40	0.24	1.02	1.08	2.81	1.77
	Itasca	36.2	-8.2	45.4	-2.5	47.6	-3.5	55.3	1.3	53.8	-2.6	0.29	0.15	0.93	0.53	2.55	1.45
WC	Alexandria	38.2	-10.7	53.2	1.1	46.0	-9.0	58.6	1.0	55.3	-4.6	0.04	0.37	0.57	0.61	1.00	0.40
	Fergus Falls	38.8	-10.5	49.2	-3.4	47.7	-7.8	60.2	2.0	56.5	-3.9	0.00	0.17	2.30	0.50	1.50	2.20
	Montivideo	40.5	-10.0	50.5	-3.3	47.2	-9.6	61.7	2.2	57.4	-4.6	0.10	0.35	1.94	1.37	0.81	3.15
	Morris	39.6	-10.8	49.8	-3.8	48.0	-8.6	58.6	-0.6	57.9	-3.7	0.01	0.15	0.72	0.68	0.54	0.28
C	Becker	41.4	-8.2	51.2	-1.4	51.3	-4.1	56.8	-1.0	58.4	-1.6	0.08	0.11	1.02	1.00	1.22	-0.18
	Hutchinson	42.2	-9.1	52.2	-2.3	51.6	-5.9	57.7	-2.4	59.2	-3.3	0.14	0.15	1.07	1.51	0.75	1.54
	St. Cloud	39.8	-9.8	53.6	1.0	48.8	-6.6	58.0	0.2	57.6	-2.4	0.06	0.26	0.66	1.14	1.25	0.54
	Staples	37.7	-10.4	48.1	-2.9	48.8	-5.0	55.4	-0.9	55.1	-3.3	0.08	0.02	0.45	0.57	2.34	1.78
	Willmar	41.8	-8.7	50.4	-3.3	49.8	-6.9	57.8	-1.6	59.1	-2.8	0.05	0.52	0.99	0.58	1.03	0.95
EC	Aitkin	37.3	-9.4	46.8	-2.9	47.4	-5.0	51.4	-3.5	59.0	1.8	0.29	0.11	0.38	0.91	1.44	-0.03
	Cambridge	missing															
	Msp Airport	41.5	-10.8	55.8	0.6	50.8	-7.2	59.4	-1.1	59.5	-3.3	0.21	0.26	1.34	0.87	0.31	-0.21
SW	Pipestone	39.6	-10.8	52.0	-1.5	49.0	-7.3	62.5	3.5	58.2	-3.2	0.07	0.63	1.11	1.04	0.94	0.49
	Redwood Falls	41.4	-11.4	54.4	-1.6	48.4	-10.5	61.7	0.1	59.0	-5.1	0.10	1.08	1.45	1.47	0.18	1.33
	Worthington	40.7	-8.7	52.0	-0.7	50.6	-5.1	60.6	2.0	59.4	-1.7	0.08	0.94	1.55	2.03	0.54	3.03
SC	Faribault	41.3	-8.6	49.9	-3.1	52.4	-3.5	56.0	-2.7	59.5	-1.8	0.28	0.63	2.29	0.95	0.52	0.55
	Waseca	41.2	-9.6	52.6	-1.4	51.3	-5.7	57.1	-2.6	59.8	-2.4	0.33	0.92	3.25	1.08	0.74	2.44
	Winnebago	43.6	-7.4	52.6	-1.6	51.8	-5.3	58.9	-1.0	60.2	-2.3	0.26	1.20	4.75	0.70	0.78	4.58
Statewi		39.5	-9.6	50.5	$5-1.7$	48.7	-6.3	57.3	-0.4	56.8	-3.2	0.20	0.45	1.40	1.02	0.96	

${ }^{1}$ Average temperature $\left({ }^{\circ} \mathrm{F}\right)$ for the week ending on the date shown.
${ }^{2}$ Departure from normal temperature.
$\mathrm{m}=$ missing data

The following waterfowl information is taken from the U.S. Fish and Wildlife Service report Waterfowl Population, 2005 by Pamela R. Garrettson, Timothy J. Moser, and Khristi Wilkins. The entire report is available on the Division of Migratory Bird Management home pate (http://migratorybirds.fws.gov).

Table 1. Canada goose population indices (in thousands) of the eastern prairie flock, 1971-2005 (from: U.S. Fish and Wildlife Service. 2005. Waterfowl population status, 2005. U.S. Department of the Interior, Washington, D.C. U.S.A.).

Year	Population ${ }^{\text {a,b }}$
1971-72	125,000
1972-73	138,000
1973-74	120,000
1974-75	144,000
1975-76	216,000
1976-77	164,000
1977-78	180,000
1978-79	99,000
1979-80	n.a.
1980-81	125,000
1981-82	132,000
1982-83	155,000
1983-84	136,000
1984-85	158,000
1985-86	195,000
1986-87	203,000
1987-88	209,000
1988-89	210,000
1989-90	232,000
1990-91	212,000
1991-92	202,000
1992-93	157,000
1993-94	211,000
1994-95	205,000
1995-96	190,000
1996-97	199,000
1997-98	126,000
1998-99	207,000
1999-00	275,000
2000-01	215,000
2001-02	216,000
2002-03	229,000
2003-04	291,000
2004-05	255,000

[^3]

Figure 1. Breeding ground survey estimates of the Eastern Prairie Population of Canada geese, 1972-2005. (from: U.S. Fish and Wildlife Service. 2005. Waterfowl population status, 2005. U.S. Department of the Interior, Washington, D.C. U.S.A.). Surveys conducted in spring. Indirect or preliminary estimates. Data not available for 1980.

Table 2. Estimated number of May ponds (adjusted for visibility) in Prairie Canada (portions of Alberta, Saskatchewan and Manitoba) 1961-2005 and north-central U.S. (North Dakota, South Dakota and Montana) 1974-2005. (from: U.S. Fish and Wildlife Service. 2005. Waterfowl population status, 2005. U.S. Department of the Interior, Washington, D.C. U.S.A.)

Ponds (thousands)

Year	Ponds (thousands)	
	Prairie Canada	North Central U.S. ${ }^{\text {a }}$
	1,977	--
1962	2,369	--
1963	2,482	--
1964	3,371	--
1965	4,379	--
1966	4,555	--
1967	4,691	--
1968	1,986	--
1969	3,548	--
1970	4,875	--
1971	4,053	--
1972	4,009	--
1973	2,950	--
1974	6,390	1,841
1975	5,320	1,911
1976	4,599	1,392
1977	2,278	771
1978	3,622	1,590
1979	4,859	1,522
1980	2,141	761
1981	1,443	683
1982	3,185	1,458
1983	3,906	1,259
1984	2,473	1,766
1985	4,283	1,327
1986	4,025	1,735
1987	2,524	1,348
1988	2,110	791
1989	1,693	1,290
1990	2,817	691
1991	2,494	706
1992	2,784	825
1993	2,261	1,351
1994	3,769	2,216
1995	3,893	2,443
1996	5,003	2,480
1997	5,061	2,397
1998	2,522	2,065
1999	3,862	2,842
2000	2,422	1,524
2001	2,747	1,893
2002	1,439	1,281
2003	3,522	1,668
2004	2,513	1,407
2005	3,921	1,461
Average	3,381	1,522
2005	3,921	1,461
\% Change in 2005 from:		
	+ 56	+ 4
Long term Average	+16	- 4
${ }^{\text {a }}$ No comparable survey d	vailable for the	ing 1961-73.

Figure 2. Estimates of North American breeding populations, 95\% confidence intervals, and North American Waterfowl Management Plan population goal (dashed line) for selected species and number of water areas in May in Prairie Canada and Northcentral U.S. (from: U.S. Fish and Wildlife Service. 2005. Waterfowl population status, 2005. U.S. Department of the Interior, Washington, D.C. U.S.A.)

Figure 2. (Continued).

Minnesota Spring Canada Goose Survey, 2005

Stephen Maxson, Wetland Wildlife Populations \& Research Group

INTRODUCTION

This report presents results from the fifth year of a spring helicopter survey of resident Canada geese in Minnesota. The purpose of the survey is to produce a statewide population estimate with 95% Confidence Intervals.

METHODS

The state was divided into three ecoregions (Prairie Parkland, Eastern Broadleaf Forest/Tallgrass Aspen Parklands, Laurentian Mixed Forest) hereafter referred to as Prairie, Transition, and Forest. The 7 county Metro area was excluded from the Transition ecoregion. Similarly, Lake and Cook Counties plus the Boundary Waters Canoe Area were excluded from the Forest ecoregion. Within each ecoregion, 900 $1 / 4$ section plots were randomly selected using ArcView.

The 900 plots in each ecoregion were divided into 3 strata based on habitat quality for resident geese. The 3 strata were defined as follows: 1) not nesting habitat - expect no geese, 2) limited nesting habitat - expect 1 or 2 pairs, 3) prime nesting habitat - expect 3 or more pairs. Stratification was based on National Wetland Inventory data and was done using ArcView. Strata were separated based on the total acres of type 3,4 , and 5 wetlands and rivers on the plot as described below:

Prairie

No geese $=$ $1-2$ pairs =
$3+$ pairs $=$
Transition
No geese $=$ $1-2$ pairs =
$3+$ pairs $=$

Forest
No geese $=$ $1-2$ pairs =
$3+$ pairs $=$

Type 3-4-5 <0.5 acres and rivers <10 acres or plot is all water. ($\mathrm{n}=476$ plots).
Type 3-4-5>0.5 acres but Type $3<15$ acres or Type 3-4-5 <0.5 acres and rivers >10 acres. ($\mathrm{n}=344$ plots).
Type $3>15$ acres, but plot is not all water. ($\mathrm{n}=80$ plots).

Type 3-4-5 <1 acre and rivers <8 acres or plot is all water. ($\mathrm{n}=377$ plots).
Type $3-4-5=1-25$ acres or Type 3-4-5>25 acres, but Type $3<15$ acres or Type $3-4-5<1$ acre and rivers >8 acres. ($\mathrm{n}=428$ plots).
Type $3-4-5>25$ acres, but Type $3>15$ acres and plot is not all water. ($\mathrm{n}=95$ plots).

Type 3-4-5 <2 acres and rivers <2 acres or plot all water. ($\mathrm{n}=510$ plots).
Type 3-4-5>2 acres, but not all water or Type 3-4-5 <2 acres and rivers >2 acres. ($\mathrm{n}=390$ plots).
None.

Plots in the No geese strata are not flown. Each year 30 plots are randomly selected in each of the 5 remaining strata and these 150 plots are surveyed at low level using a helicopter. Ideally, the survey should be conducted during mid-incubation.

Pilot John Heineman and I flew the survey 20-24 April, 28-29 April and 2-3 May, 2005. Canada geese seen within plot boundaries were recorded as singles, pairs, and groups. We also recorded whether
singles and pairs were observed with a nest. The number of singles was doubled when the total number of geese per plot was calculated (unless 2 singles were observed to associate as a pair after being flushed).

RESULTS AND DISCUSSION

The total population estimate for 2005 was 320,754 ($\pm 90,541$). Adding 17,500 for the Twin Cities metro area (Cooper 2004) yields a statewide estimate of $\mathbf{3 3 8 , 2 5 4}$ (Table 1). Confidence Intervals were 28.2% of the estimate which is near the target of 25.0%. The survey tallied 33.0% singles (after doubling, as noted above), 50.2% pairs, and 16.8% groups (Table 2). Typically, many of the pairs seen on this survey are not associated with nests and are likely nonbreeders. An index to nesting effort (i.e., "Productive Geese") can be obtained by combining singles (after doubling) and pairs associated with nests. In $2005,40.7 \%$ of the geese seen were classified as Productive Geese (Table 2). While confidence intervals overlap among years, a linear trend line applied to these data suggests the population has been increasing over the 5 years of this survey (Figure 1).

Type 1 wetlands were few and scattered during the survey. However, water levels in Type 3,4 and 5 wetlands appeared to be about normal. Barring extensive nest flooding, I would expect average to above-average Canada goose production in 2005.

ACKNOWLEDGEMENTS

Frank Martin (Univ. of MN) was instrumental in designing the survey. Tim Loesch, Christopher Pouliot, and Shelly Buitenwerf set up the original 2,700-1/4 section plots using ArcView and were very helpful in getting the survey up and running in 2001. Shelly Buitenwerf provided GPS coordinates of plots to the pilot, and printed out maps of the 150 plots flown this year. John Giudice wrote the SAS program that analyzes the survey data.

BIBLIOGRAPHY

Cooper, J. 2004. Canada goose program report 2004. Unpublished report. 20 pp.

Table 1. Spring Canada goose population estimates in Minnesota, 2001-2005.

Year	Prairie	Transition	Forest	Subtotal	95% CI	Metro	TOTAL
2001	77,360	95,470	92,390	265,220	69,500	20,000	$\mathbf{2 8 5 , 2 2 0}$
2002	135,850	144,900	33,940	314,690	134,286	20,000	$\mathbf{3 3 4 , 6 9 0}$
2003	106,520	121,290	56,420	284,230	78,428	20,000	$\mathbf{3 0 4 , 2 3 0}$
2004	128,501	130,609	95,636	354,747	107,303	20,000	$\mathbf{3 7 4 , 7 4 7}$
2005	113,939	149,286	57,529	320,754	90,541	17,500	$\mathbf{3 3 8 , 2 5 4}$

Table 2. Proportions of Canada Geese seen as singles, pairs, groups, and productive geese on the Minnesota Spring Canada Goose Survey, 2001-2005.

Year	Singles 1	Pairs 1	Groups	Productive Geese 2
2001	27.0	63.9	9.1	36.4
2002	30.7	52.0	17.2	41.5
2003	27.9	58.2	13.9	29.3
2004	26.5	57.5	16.0	35.5
2005	33.0	50.2	16.8	40.7

${ }^{1}$ Numbers of singles and pairs were doubled before calculating proportions.
${ }^{2}$ Productive geese equals Singles + Pairs with nests.

Figure 1. Spring Canada goose population estimates ($\pm 95 \%$ CI) in Minnesota, 2001-2005. (Does not include Metro area.)

The following mourning dove information is taken from the U.S. Fish and Wildlife Service report by Dolton, D.D. and R.D. Rau. 2005. Mourning dove population status, 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp. The entire report is available on the Division of Migratory Bird Management home page (http://migratorybirds.fws.gov).

Figure 1. Breeding and wintering ranges of the mourning dove (adapted from Mirarchi and Baskett 1994). From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp.

Figure 2. Mourning dove management units with 2004 hunting and nonhunting states. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

Table 1. Preliminary estimates of the number of hunters, days hunted, and total bag from Harvest Information Program surveys for the 2004-05 season. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

Management unit / State	Hunters	Days Hunted	Birds bagged
CENTRAL	512,500	$1,844,300 \pm 8 \%$	$9,807,700 \pm 8 \%$
AR	$37,900 \pm 13 \%$	$114,000 \pm 21 \%$	$740,600 \pm 19 \%$
CO	$19,400 \pm 8 \%$	$54,800 \pm 19 \%$	$299,900 \pm 16 \%$
KS	$13,700 \pm 10 \%$	$119,300 \pm 13 \%$	$689,400 \pm 13 \%$
MN	$41,600 \pm 9 \%$	$61,100 \pm 50 \%$	$107,000 \pm 42 \%$
MO	$2,600 \pm 31 \%$	$128,800 \pm 17 \%$	$715,900 \pm 30 \%$
MT	$19,100 \pm 11 \%$	$71,400 \pm 99 \%$	$20,900 \pm 44 \%$
NE	$9,900 \pm 15 \%$	$42,000 \pm 14 \%$	$365,900 \pm 15 \%$
NM	$4,500 \pm 25 \%$	$13,000 \pm 24 \%$	$302,800 \pm 23 \%$
ND	$27,100 \pm 9 \%$	$94,000 \pm 11 \%$	$555,500 \pm 32 \%$
OK	$10,000 \pm 16 \%$	$36,700 \pm 21 \%$	$184,100 \pm 26 \%$
SD	$287,700 \pm 9 \%$	$1,089,200 \pm 13 \%$	$5,664,600 \pm 14 \%$
TX	$3,200 \pm 27 \%$	$8,700 \pm 34 \%$	$43,700 \pm 46 \%$
WY			

Figure 3. Mean number of mourning doves heard per route by state in the Central Management Unit, 2004-05. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

Figure 4. Trends in number of mourning doves heard per route by state in the Central Management Unit, 1996-2005. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

Figure 5. Trends in mourning doves heard per route by state in the Central Management Unit, 19662005. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

Figure 6. Population indices and trends of breeding mourning doves in the Central Management Unit, 1966-2005. Heavy solid line = doves heard; light solid line = doves seen. Light and heavy dashed lines = predicted trends. (From: Mourning dove population status, 2005. Dolton, D.D. and R.D. Rau. 2005. U.S. Fish and Wildlife Service, Laurel, Maryland, USA. 19 pp).

The following American woodcock information is taken from the U.S. Fish and Wildlife Service report American Woodcock Population Status, 2005 by James R. Kelley, Jr. and Rebecca D. Rau. The entire report is available on the Division of Migratory Bird Management home page (http://migratorybirds.fws.gov).

Figure 1. Woodcock management regions, breeding range, singing-ground survey coverage, (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15pp.)

Table 1. Trends (\% change per year ${ }^{\text {a }}$) in number of American woodcock heard in singing-ground survey as determined by the estimating equations technique (Link and Sauer, 1994) (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005.
U.S. Fish and Wildlife Service, Office of Migratory Bird Management, Laurel, MD. 15pp).

Management Unit/State	$\begin{gathered} \hline 2 \text { year } \\ \mathrm{N}^{\mathrm{c}} \end{gathered}$	$\begin{aligned} & \hline \text { (2004-05) } \\ & \text { \% Change } \end{aligned}$	Routes Run ${ }^{\text {b }}$	$10 \text { year }$ N	$\begin{aligned} & \hline \hline \text { (1995-05) } \\ & \text { \% Change } \end{aligned}$	$\begin{gathered} \hline 37 \text { year } \\ \mathrm{N} \end{gathered}$	$\begin{aligned} & \hline \text { (1968-05) } \\ & \text { \% Change } \end{aligned}$
CENTRAL	205	5.2	336	394	0.1	625	$-1.8 * * *$
IL	0		5	5	10.9	25	25.5
IN	3	-51.4***	12	7	-3.7	39	- 6.6**
$\mathrm{MB}^{\text {e }}$	4	34.5	12	22	-0.9	22	-2.2
MI	62	0.3	93	110	-0.6	146	-1.7 ***
MN	55	12.8	77	77	0.4	101	- 1.0**
OH	11	-36.7*	25	24	-3.1	56	$-6.2 * * *$
ON	20	10.3	43	75	2.6	136	-2.0 ***
WI	49	18.4	69	74	-0.3	100	$-1.9 * * *$

${ }^{\text {a }}$ Mean of weighted route trends within each State, Province, or Region. To estimate the total percent change over several years, use: $100(\% \text { change } / 100+1)^{y}-100$ where y is the number of years.
Note: extrapolating the estimated trend statistic (\% change per year) over time (e.g., 30 years) may exaggerate the total change over the period.
${ }^{\mathrm{b}}$ Total number of routes surveyed in 2004 for which data were received by 1 June.
${ }^{c}$ Number of comparable routes (2003 versus 2004) with at least 2 non-zero counts.
${ }^{\mathrm{d}}$ Indicates slope is significantly different from zero: * $\mathrm{P} \leq 0.10 ; * * \mathrm{P} \leq 0.05 ; * * * \mathrm{P} \leq 0.01$; significance levels are approximate for states where $\mathrm{N}<10$.
${ }^{\mathrm{e}}$ Manitoba began participating in the Singing-ground survey in 1990.

Figure 2. Adjusted index of American woodcock recruitment, 1963-2004. Dashed line is the index based on all 19632003 average. (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15pp).

Figure 3. American woodcock singing ground survey long term trends and annual indices, 1968-2005. (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15pp)

Table 2. Preliminary estimates of woodcock hunter numbers, days afield, and harvest for selected states, from the 2002-03, 2003-04, and 2004-05. Harvest Information Program surveys. (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15pp).

anagement	Active woodcock hunters			Days afield			Harvest		
	2002-03	2003-04	2004-05	2002-03	2003-04	2004-05	2002-03	2003-04	2004-05
Central Region	n.a. ${ }^{\text {a }}$	n.a.	n.a.	$\begin{array}{r} 428,200 \\ \pm 26 \% \end{array}$	$\begin{array}{r} 369,900 \\ \pm 16 \% \end{array}$	$\begin{array}{r} 366,100 \\ \pm 15 \% \end{array}$	$\begin{array}{r} 187,500 \\ \pm 24 \% \\ \hline \end{array}$	$\begin{array}{r} 213,500 \\ \pm 23 \% \\ \hline \end{array}$	$\begin{array}{r} 234,800 \\ \pm 20 \% \\ \hline \end{array}$
IL	$\begin{array}{r} 3,000 \\ \pm 90 \% \end{array}$	$\begin{array}{r} 2,400 \\ \pm 79 \% \\ \hline \end{array}$	$\begin{array}{r} 1,200 \\ \pm 74 \% \\ \hline \end{array}$	$\begin{array}{r} \hline 6,400 \\ \pm 88 \% \\ \hline \end{array}$	$\begin{array}{r} 12,200 \\ \pm 112 \% \\ \hline \end{array}$	$\begin{array}{r} 3,500 \\ \pm 78 \% \\ \hline \end{array}$	$\begin{array}{r} 9,000 \\ \pm 110 \% \\ \hline \end{array}$	$\begin{array}{r} 2,200 \\ \pm 90 \% \\ \hline \end{array}$	$\begin{array}{r} 1,900 \\ \pm 96 \% \\ \hline \end{array}$
IN	$\begin{array}{r} 1,700 \\ \pm 114 \% \end{array}$	$\begin{array}{r} 700 \\ \pm 97 \% \end{array}$	$\begin{array}{r} 1,100 \\ \pm 104 \% \end{array}$	$\begin{array}{r} 24,200 \\ \pm 172 \% \end{array}$	$\begin{array}{r} 6,000 \\ \pm 134 \% \end{array}$	$\begin{array}{r} 5,300 \\ \pm 124 \% \end{array}$	$\begin{array}{r} 6,900 \\ \pm 161 \% \end{array}$	$\begin{array}{r} 1,800 \\ \pm 31 \% \end{array}$	$\begin{array}{r} 7,900 \\ \pm 145 \% \end{array}$
MI	$\begin{array}{r} 25,200 \\ \pm 18 \% \\ \hline \end{array}$	$\begin{aligned} & 35,100 \\ & \pm 14 \% \end{aligned}$	$\begin{aligned} & 31,200 \\ & \pm 13 \% \end{aligned}$	$\begin{array}{r} 135,400 \\ \pm 23 \% \end{array}$	$\begin{array}{r} 159,000 \\ \pm 18 \% \end{array}$	$\begin{array}{r} 147,000 \\ \pm 14 \% \end{array}$	$\begin{array}{r} 78,300 \\ \pm 26 \% \\ \hline \end{array}$	$\begin{array}{r} 121,500 \\ \pm 30 \% \\ \hline \end{array}$	$\begin{array}{r} 102,500 \\ \pm 21 \% \\ \hline \end{array}$
MN	$\begin{array}{r} 8,200 \\ \pm 66 \% \end{array}$	$\begin{aligned} & 14,300 \\ & \pm 38 \% \end{aligned}$	$\begin{aligned} & \hline 14,500 \\ & \pm 27 \% \end{aligned}$	$\begin{array}{r} 49,300 \\ \pm 92 \% \end{array}$	$\begin{aligned} & 48,700 \\ & \pm 43 \% \end{aligned}$	$\begin{aligned} & 67,000 \\ & \pm 33 \% \end{aligned}$	$\begin{array}{r} 9,200 \\ \pm 31 \% \end{array}$	$\begin{aligned} & 29,900 \\ & \pm 84 \% \end{aligned}$	$\begin{array}{r} 38,500 \\ \pm 53 \% \end{array}$
OH	$\begin{array}{r} 5,200 \\ \pm 108 \% \end{array}$	$\begin{array}{r} 3,400 \\ \pm 88 \% \end{array}$	$\begin{array}{r} 2,600 \\ \pm 82 \% \\ \hline \end{array}$	$\begin{array}{r} 23,200 \\ \pm 138 \% \end{array}$	$\begin{aligned} & 10,300 \\ & \pm 86 \% \end{aligned}$	$\begin{array}{r} 18,200 \\ \pm 126 \% \\ \hline \end{array}$	$\begin{array}{r} 3,100 \\ \pm 45 \% \end{array}$	$\begin{array}{r} 2,500 \\ \pm 78 \% \\ \hline \end{array}$	$\begin{array}{r} 4,600 \\ \pm 101 \% \\ \hline \end{array}$
WI	$\begin{aligned} & 17,600 \\ & \pm 30 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 16,100 \\ & \pm 30 \% \end{aligned}$	$\begin{aligned} & \hline 15,700 \\ & \pm 30 \% \end{aligned}$	$\begin{aligned} & 58,900 \\ & \pm 26 \% \end{aligned}$	$\begin{aligned} & \hline 65,600 \\ & \pm 33 \% \end{aligned}$	$\begin{aligned} & \hline 61,100 \\ & \pm 30 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 33,900 \\ & \pm 34 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 30,300 \\ & \pm 35 \% \\ & \hline \end{aligned}$	$\begin{array}{r} 47,300 \\ \pm 50 \% \\ \hline \end{array}$

${ }^{\text {a }}$ Regional estimates of hunter numbers cannot be obtained due to the occurrence of individual hunters being registered in the Harvest Information Program in more than one state.

DECREASE ($\mathrm{P}<0.10$)
7 DECREASE (NS)

INCREASE (NS)
INSUFFICIENT SAMPLE SIZE

Figure 4. Short-term trends in number of American woodcock heard on the Singing-ground Survey; 2004-05. (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15 pp)

DECREASE ($P<0.10$)
increase (nS)
DECREASE (NS)

Figure 5. Long-term trends in number of American woodcock heard on the Singing-ground Survey; 1968-05. (from: Kelley, J.R., Jr., and R.D. Rau. 2005. American woodcock population status, 2005. U.S. Fish and Wildlife Service, Laurel, MD. 15pp)

[^0]: Total Ducks
 $355,406348,785374,669412,662354,322413,083 \quad 282,854352,147 \quad 284,812 \quad 384,204313,358356,594299,936370,675 \quad 290,635 \quad 342,967 \quad 214,646378,579190,060$

[^1]: ${ }^{1}$ Unad. PI - unadjusted population index, VCF - Visibility Correction Factor, PI - adjusted population index, SE - standard error.
 ${ }^{2}$ Calculated from data in Waterfowl breeding ground survey reports, 1968 through 1972, from Minn. Game Res. Quarterly Reps. 1968 and 1969 other duck VCF is total duck VCF.
 ${ }^{3}$ Calculated from data in Maxson and Pace (1989).

[^2]: ${ }^{1}$ Unad. PI - unadjusted population index, VCF - Visibility Correction Factor, PI - adjusted population index, SE - standard error.

[^3]: ${ }^{\text {a }}$ Surveys conducted in Spring.
 ${ }^{\mathrm{b}}$ Indirect or preliminary estimate.

