RS 02 – Hydrogeological – Drill Hole Monitoring and Data Collection – Phase 1 Hydrogeologic Investigation – Phase 1 PolyMet NorthMet Mine Site RS-02

Table of Contents

Exe	cutive	Summary	.iii
1.0		Introduction	1
1.0	1.1	Background	
	1.1	Scope of Work	
	1.2	Report Organization	
	1.5	Report Organization	2
2.0		Characterization of Surficial Sediment	3
	2.1	Field Activities and Data Collection Methodology	3
		2.1.1 Soil Boring Advancement	
		2.1.2 Geotechnical Sampling	3
		2.1.2 Well Installation	4
		2.1.3 Aquifer Performance Testing	5
		2.1.4 Groundwater Sampling	5
	2.2	Field Investigation Observations and Results	6
		2.2.1 Geology	6
		2.2.2 Geotechnical Testing	6
		2.2.3 Aquifer Performance Testing	6
	2.3	Analytical Results	7
•			
3.0		Characterization of the Duluth Complex	
	3.1	Field Activities and Data Collection Methodology	
		3.1.1 Aquifer Performance Testing	
		3.1.2 Groundwater Sampling	
	3.2	Field Investigation Observations and Results	
		Aquifer Performance Testing	
	3.3	Analytical Results	10
4.0		Quality Assurance	11
4.0		Quality Assurance	11
5.0		Summary and Conclusions	13
0.0	5.1	Surficial Aquifer	
	5.2	Duluth Complex	
	5.3	Conclusions	
Ref	erence	\$	15

List of Tables

Table 1	Groundwater Analytical Parameter with Analysis Method
Table 2	Surficial Aquifer Test Data
Table 3	Geotechnical Test Results, Classification, Water Content, Atterberg Limits, Specific Gravity, and Organic Matter
Table 4	Geotechnical Test Results, Proctor and Permeability
Table 5	Surficial Aquifer Analytical Data
Table 6	Duluth Complex Aquifer Test Data
Table 7	Bedrock Aquifers Analytical Data

List of Figures

Figure 2 Site Layout with March 2005 Hydrogeologic Investigation Locations

List of Appendices

- Appendix A Rotasonic Boring and Well Construction Logs
- Appendix B Aquifer Performance Test Analyses
- Appendix C Field Sampling Data Sheets
- Appendix D Groundwater Analytical Data Reports
- Appendix E Geotechnical Sample Analysis

Supplemental Electronic Data

Aquifer Test Groundwater Elevation Data

Executive Summary

An initial hydrogeologic investigation was conducted at the PolyMet mine site (the Site). The objective of this investigation was to determine the hydraulic properties and water quality from the Duluth Complex and the surficial deposits at the Site. In addition, preliminary geotechnical information was collected on the surficial deposits.

Ten shallow borings were advanced through the surficial sediment at the Site, terminating in bedrock, in order to visually inspect the sediment encountered and to perform aquifer performance tests. Three of the surficial aquifer borings were converted to monitoring wells, from which groundwater samples were collected. The surficial sediment across the site are relatively heterogeneous, ranging from very dense clay to well-sorted sand. As a result, the ability of the surficial aquifer to transmit water was highly variable depending on location. Hydraulic conductivity values varied between 0.012 feet/day and 31 feet/day. Water chemistry varied by location within the surficial aquifer. High levels of metals, most notably aluminum, copper, and mercury, were observed at several locations. The occurrence of these metals is likely associated with the presence of the Duluth Complex which underlies the surficial deposits across much of the Site.

Aquifer testing was conducted on ten of the exploration borings completed in the Duluth Complex. In addition, water samples for laboratory analysis were collected from two of the 6-inch diameter exploration boreholes and a water supply well on site. Hydraulic conductivity values measured in the Duluth Complex boreholes ranged from 2.6×10^{-4} feet/day to 4.09×10^{-2} feet/day, with a geometric mean of 2.3×10^{-3} feet/day. These values fall within the range of hydraulic conductivities for the Duluth Complex reported by Siegel and Ericson (1980).

Water quality in the exploratory boreholes was variable. High levels of ammonia, aluminum, copper, and silver were found in both boreholes. The sample collected from the supply well had lower levels of metals. The occurrence of aluminum, copper, iron, and manganese in these boreholes are directly attributable to the Duluth Complex, in general, and the Copper-Nickel region of the complex in particular. The presence of ammonia in the deep boreholes may indicate that the water in the borehole came from the shallow surficial deposits. Ammonia is not typically found in deep bedrock systems but is common in wetland environments.

This report has been prepared for PolyMet Mining, Corporation (PolyMet) by Barr Engineering Company (Barr) to document the results of the Hydrogeologic Investigation that was conducted at the PolyMet NorthMet mine site (the Mine Site) (Figure 1). The objective of this study was to provide information regarding:

- The ability of the Duluth Complex rocks and the surficial sediment at the Mine Site to transmit water into the proposed NorthMet pit (i.e., the transmissivity of the units);
- The quality of the water within the Duluth Complex rocks and the surficial sediment at the Mine Site; and
- Preliminary geotechnical characteristics of the surficial sediment.

This information is needed for permitting purposes (i.e. water appropriations permit, NPDES permit, permit to mine) and engineering design (i.e. stockpiles and wastewater treatment systems). These data will also likely be used in the Environmental Impact Statement.

1.1 Background

A scoping Environmental Assessment Worksheet (EAW) was submitted in June, 2005 for PolyMet's proposed NorthMet Mine and Ore Processing Facilities located near Hoyt Lakes, Minnesota. PolyMet plans to excavate and process the low grade polymetallic disseminated magmatic sulfide NorthMet deposit in northeastern Minnesota, approximately 6 miles south of the town of Babbitt and about 2 miles south of the operating Northshore Mining Company taconite open pit. Project plans call for the excavation of up to 32,000 tons of ore per day, using open-pit mining methods. Overburden and waste rock will be stripped and stockpiled. Processing of the ore will take place at the existing Cliffs Erie processing plant.

The NorthMet deposit is located in the Duluth Complex, a large mafic intrusion that was emplaced into flood basalts along a portion of the Middle Proterozoic Midcontinent Rift System. The NorthMet deposit is situated along the western edge of the Complex within the Partridge River intrusion, which has been subdivided into a least seven igneous stratigraphic units in drill core. All of these igneous layers exhibit a shallow dip (10°-25°) to the south-southeast. Underlying the Complex at NorthMet is the sedimentary Lower Proterozoic (1.8 million year old) Virginia Formation, which, in turn, is

underlain by the Biwabik Iron-Formation. The Biwabik will not be intersected in mining operations. The Virginia may be intersected along the northern footwall of the pit.

Extensive exploratory drilling has been conducted at the NorthMet deposit to establish the extent of the deposit. During the 2004/2005 winter, exploratory drilling was conducted to further define the geological model of the deposit. This drilling included NTW-sized (approximately 3-inch outer-diameter with a 2 inch rock core) exploratory borings and 6-inch outer-diameter (4 inch rock core) exploratory borings. The NTW borings were inclined approximately 60 to 70 degrees from vertical. The 6-inch borings were generally drilled in pairs, with one vertical boring and one inclined boring at most drill locations. Both the NTW and 6-inch borings were cased through the unconsolidated material.

1.2 Scope of Work

The Hydrogeologic Investigation presented in this report was designed to aid in the characterization of the Duluth Complex and the surficial sediment located at the Mine Site. Ten shallow borings were advanced through the surficial material, terminating in bedrock, at the Mine Site to characterize the surficial sediment via visual inspection and aquifer performance testing. Three of the shallow borings were converted to monitoring wells from which groundwater samples were collected.

Geotechnical samples were collected from the soil borings located beneath or near the proposed waste rock stockpiles. These samples were collected to provide preliminary information on the geotechnical properties of the surficial sediment.

Aquifer performance tests were conducted in ten exploratory borings at the Mine Site open to the Duluth Complex. Groundwater samples were collected from two of these borings, as well as from the water supply well at the Mine Site. This work provides information on the ability of the Duluth Complex and the surficial sediment to transmit water into the proposed NorthMet pit (i.e. the transmissivity of the units) and the quality of the water within these units.

1.3 Report Organization

This report is organized into four sections including this introduction. Section 2 summarizes the characterization of the surficial sediment, Section 3 summarizes the characterization of the Duluth Complex and Section 4 provides the investigation conclusions and recommendations.

2.0 Characterization of Surficial Sediment

Understanding the ability of the surficial sediment to transmit water into the pit and the chemical characteristics of that water is critical in understanding both the overall quality and quantity of water that can be expected in the pit. The information collected as part of this investigation will be used in conjunction with data collected during future investigations to help predict the effects the proposed mine will have on area surface water features. In addition, the geotechnical properties of the surficial sediment will have affect the design of the waste rock stockpiles and the ability of the sediment to be used as construction material.

All work was done in accordance with the *Hydrogeologic Investigation Work Plan for the PolyMet NorthMet Mine Site – March 29, 2005* (Work Plan) (Barr, 2005) except where noted below.

2.1 Field Activities and Data Collection Methodology

2.1.1 Soil Boring Advancement

Ten soil borings (SB-05-01 – SB-05-10) were installed by WDC using Rotasonic drilling techniques. Borings were installed at the proposed locations provided in the Work Plan (Figure 2). All soil borings were installed in accordance with the Work Plan specifications with the exception of SB-05-08. Difficult drilling conditions at this location (heaving sand and highly compacted till) required the boring to be terminated before bedrock was encountered. Due to the high bedrock elevation in boring SB-05-10, an additional boring (SB-05-10A) was advanced adjacent to SB-05-10 to allow installation of a temporary well. Soil samples were collected continuously to the termination depth of the boreholes using a 4-inch diameter, 5-foot long Rotasonic core barrel. Boring logs are included in Appendix A.

2.1.2 Geotechnical Sampling

Geotechnical samples were collected from four of the soil boring (SB-05-01, SB-05-04, SB-05-09 and SB-05-10). Four samples were delivered to Soil Engineering Testing (SET) for the analysis. Two samples were sent to the University of Minnesota, Soil Testing Laboratory for organic soil testing.

Parameters analyzed for include:

• Soil classification

- Natural water content
- Atterberg limits
- Particle size distribution
- Specific gravity
- Standard Proctor density
- Organic soil fertility test
- Permeability of remolded samples

Not all tests were run on all samples; tests were selected based on the soil classification of each sample. Identification of the samples tested are provided in Tables 3 and 4.

2.1.2 Well Installation

Permanent Well Installation

Three permanent monitoring wells (MW-05-02, MW-05-08, and MW-05-09) were constructed inside the Rotasonic borings of the same numbers (i.e., MW-05-02 was constructed in boring SB-05-02) (Figure 2). Wells were constructed using 2-inch diameter, number 10 slot PVC screens with 2-inch diameter PVC riser casing. Two of the wells, MW-05-08 and MW-05-09, were installed in accordance with the Work Plan specifications. The construction of MW-05-02 was modified from the Work Plan specifications due to the high bedrock elevation at the location. MW-05-02 was constructed with a one foot screen, rather than the proposed 5 or 10 foot screen. Coarse sand was added to a height of 0.5 feet above the screened interval. The remaining portion of the annulus was sealed with a combination of bentonite chips (1 foot) and neat cement (4 feet). Monitoring wells MW-05-08 and MW-05-09 were constructed with 10-foot and 5-foot long screens respectively. The remaining portion of the annulus was sealed with a combination of bentonite chips (2 feet) and neat cement (4.5 to 5 feet). All wells were completed above-grade with locking steel protective covers. Additional well construction information is provided on the boring logs in Appendix A.

Permanent monitoring wells were developed by surging and overpumping. The development process continued until the discharge appeared relatively free of suspended sediment. At MW-05-08, a total of 65 gallons (approximately 23 well volumes) were purged during development. This well was screened in a very fine sand and silt unit and contained large amounts of suspended sediment, and required extensive pumping and surging before clear discharge was obtained. Three well volumes were pumped from MW-05-02 and MW-05-09, since they did not contain as much suspended sediment as MW-05-08 and discharge appeared clear following purging of three well volumes.

Temporary Well Installation

Six temporary wells were installed in the remaining boreholes for the purpose of performing aquifer performance tests (see Section 2.1.3). Temporary wells were constructed using 5-foot long, 2-inch diameter PVC screens, with the exception of SB-05-06 and SB-05-10A, which were competed with 4-foot long screens due to shallow borehole depths at these locations. Where possible, the screened interval was placed across the stratigraphic unit in each borehole expected to have the highest transmissivity, based on field observations. At each location, the natural formation was allowed to collapse to an elevation of approximately two feet above the top of the screen. Bentonite chips were placed above the collapsed formation, as necessary, to act as a seal. Temporary wells were used only for aquifer testing and no analytical samples were collected, they were not developed.

2.1.3 Aquifer Performance Testing

In order to estimate the transmissivity of the surficial units, aquifer tests were performed at each permanent and temporary well location. Each aquifer test consisted of drawing the water level in the well down with a peristaltic or whale pump at a nearly constant rate, turning off and removing the pump assembly, and monitoring the recovery of the water level in the well. Water level recovery data were collected using a pressure transducer connected to a datalogger to allow for high frequency data collection. Data collection continued until at least 90% of the drawdown had been recovered. Water level data are included in Appendix B. Following completion of aquifer testing at the temporary well locations, the screens and risers were removed and the boreholes were backfilled with either bentonite chips or cement grout.

2.1.4 Groundwater Sampling

Groundwater samples were collected from the three permanent monitoring wells on March 23, 2005. The wells were developed during monitoring well construction, prior to sampling. All wells were purged prior to sampling, with purging considered complete when the field measurements stabilized or when three borehole volumes of water were evacuated. Field sampling data sheets are included in Appendix C.

Groundwater samples were collected and placed into laboratory-supplied containers and submitted to Northeast Technical Services (Virginia, Minnesota) for laboratory analysis of total metals, dissolved metals and general chemistry parameters. Groundwater laboratory parameters and methods are provided in Table 1.

5

2.2 Field Investigation Observations and Results

2.2.1 Geology

The surficial sediment across the site are relatively heterogeneous, ranging from very dense clay to well-sorted sand. In general, the surficial units are poorly sorted and contain numerous cobbles and boulders. A highly compacted gray clay unit with numerous pebbles was encountered just above the bedrock surface in several of the borings. Bedrock was encountered at depths ranging from four feet below grade at SB-B-10 to 17 feet below grade at SB-05-03. With the exception of SB-05-05, groundwater was encountered in all of the borings. The depth to groundwater across the site is generally less than five feet below grade. Details on the geology encountered in each boring are contained on the boring logs in Appendix A.

2.2.2 Geotechnical Testing

Geotechnical tests were run on soil samples collected from four of the soil borings at the Site. Identification of the samples tested and results of the testing are provided in Tables 3 and 4. Figure 2 shows the sampling locations. Test results are provided in Appendix E.

The test results indicate that there are silty sands (SM and SC-SM), clays (CL-ML), and organic soils (OH and PT/OH) on site. The silty sands and clay soils could be used for buffer material to level subgrade below a liner that may be required for reactive waste mine rock stockpiles. They could also be used for cover soils where needed. The silty sands are not permeable enough to use as drainage sand. The clay soils are too permeable to meet liner design requirements, but could meet cover design requirements. The organic soils could be salvaged and used, either as-is (with soil amendments) or mixed with other soils to enhance establishment of vegetation on stockpiles or in other locations, where needed.

2.2.3 Aquifer Performance Testing

Water-level recovery data were collected during each of the pumping tests. The data were analyzed using the Theis Recovery Method (Theis, 1935). This method calculates the transmissivity of a confined, homogeneous aquifer based on changes in water levels through time in a fully penetrating well due to constant pumping. This method has also been shown to be applicable in unconfined aquifers and in partially penetrating wells as long as the late time data is analyzed, as was done in this case (Kruseman and de Ridder, 2000). Because the tests were single-well test, it was not possible to obtain storativity values. Transmissivities were converted to average hydraulic

conductivities by dividing each transmissivity value by the aquifer thickness at the location. Aquifer-test data are presented in Table 2 and are shown in Appendix B.

Hydraulic conductivity values varied between 31 ft/day and 0.012 ft/day. The largest values of hydraulic conductivities were measured in MW-05-02 (31 ft/day) and SB-05-01 (26 ft/day). The hydraulic conductivity values measured in MW-05-02 is higher than would be expected considering the well is screened in sandy clay at the contact of the clay and the underlying Duluth Complex. The remaining hydraulic conductivity values fall within the ranges of values expected for the given material that was tested (Freeze and Cherry, 1979).

In several of the borings, thick sequences of sand were encountered (MW-05-08, MW-05-09, SB-05-07). However, aquifer tests at these locations found hydraulic conductivities (0.061, 0.027, 3.6 ft/day respectively) that were on the low end of the range for silty sand. Hydraulic conductivity values for silty sand generally range from 0.01 to 100 ft/day (Freeze and Cherry, 1979).

2.3 Analytical Results

Groundwater samples were collected from the three Site monitoring wells (MW-05-02, MW-05-08, MW-05-09) in March 2005. The analytical results are presented in Table 5. Since the ultimate fate of the mine pit water is not known, analytical results are compared to the Minnesota Surface Water Quality Class 2B Chronic and the Lake Superior Basin Water Quality Class 2B Chronic criteria for the sake of comparison. The Minnesota Surface Water Quality Class 2B Chronic standards are designed to be protective of surface water used for recreation and support cool or warm water sport or commercial fish and associated aquatic life. Class 2B surface water is not protected as a drinking water source. The Lake Superior Basin water quality standards protect Class 2B waters within the Lake Superior watershed. Because a receiving water has not been identified at this time, a hardness of 50 mg/l was used to derive the criteria.

The water sample from well MW-05-02 exceeded criteria for ammonia (240 ug/l), pH (10), aluminum (322 ug/l), and copper (11.2 ug/l). The sample from MW-05-08 exceeded criteria for aluminum (1,040 ug/l), copper (10 ug/l), and mercury (0.0053 ug/L). The sample from MW-05-09 exceeded criteria for aluminum (4,640 ug/L), chromium (28.6 ug/l), cobalt (5.4 ug/l), copper (72.2 ug/l), lead (5.6 ug/l), and mercury (0.0181 ug/l).

3.0 Characterization of the Duluth Complex

Understanding the ability of the Duluth Complex to transmit water into the proposed mine pit and the quality of that water is critical in understanding both the overall quality and quantity of future pit water. Exploratory borings at the Site were used to test the transmissivity of the Duluth Complex and to collect groundwater samples representative of the portion of the Complex that will be intersected by the proposed mine pit.

All work was done in accordance with the *Hydrogeologic Investigation Work Plan for the PolyMet NorthMet Mine Site – March 29, 2005* (Work Plan) (Barr, 2005) except where noted below.

3.1 Field Activities and Data Collection Methodology

3.1.1 Aquifer Performance Testing

Aquifer performance tests were conducted in 10 of the new exploratory boreholes drilled during 2005 by Boart Longyear and Idea Drilling at the Mine Site. Four of the tests were conducted in 6-inch diameter boreholes and six of the tests were conducted in NTW boreholes (Figure 2). Each aquifer test consisted of dewatering the borehole to create approximately 200 feet of drawdown and measuring the recovery of the water level following dewatering.

The 6-inch boreholes were dewatered using an electric pump with the intake set at a depth of 200 feet below ground surface. The pumping rates were held nearly constant for the period of dewatering, which ranged from approximately 40 to 80 minutes. Following dewatering, the pump was shut off and a pressure transducer connected to a datalogger was installed in the borehole to record water-level recovery data. With the exception of boring 05-404M, the pump assembly remained in the borehole during the water-level recovery period. Because boring 05-404M was an angled boring, it was not possible to install the pressure transducer without removing the pump assembly.

The NTW boreholes were dewatered by inserting tubing into the well to a depth of approximately 200 feet and blowing high-pressure air supplied by an air compressor into the borehole to displace water from the borehole. This process allowed for the rapid removal (less than one minute) of water from the borehole resulting in a slug-test. Following dewatering, the tubing assembly was quickly removed from the borehole, a pressure transducer was installed, and the water level was allowed to recover. Additional details on the testing are provided in Table 4.

3.1.2 Groundwater Sampling

Groundwater samples were collected from three of the deep borings at the site. Two of the samples were collected from 6-in diameter exploratory boreholes. The remaining sample was collected from the water supply well (Unique Well Number 717972). This well is open to both the Duluth Complex (20-150 feet below ground surface) and the Virginia Formation (150-200 feet below ground surface). The 6-inch boreholes contained large quantities of drilling fluid and were developed to the extent possible by overpumping prior to sampling. The sample from 05-401M was collected after the borehole had been dewatered 5 times despite the fact that it still had a cloudy appearance. Following development, groundwater samples were collected into laboratory supplied containers and submitted to Northeast Technical Services for laboratory analysis of total metals, dissolved metals and general chemistry parameters. Groundwater laboratory parameters and methods are provided in Table 1.

3.2 Field Investigation Observations and Results

Aquifer Performance Testing

Results from the ten aquifer performance tests that were conducted in the exploratory borings are shown in Table 6. Data and results from aquifer testing are presented in Appendix B. The aquifer tests that were conducted in the 6-inch diameter boreholes (05-401M, 05-404M, 05-407M, 05-411M) were analyzed using the Moench solution for a pumping test in a fractured aquifer with slab blocks (Moench, 1984). The Moench solution (1984) is an analytical solution for predicting water-level displacements in response to pumping in a fractured aquifer assuming a double-porosity model with slab-shaped matrix blocks with fracture skin and wellbore skin. The method solves for the hydraulic conductivity and storage for both the fractures and the rock matrix and provides information on the wellbore skin and fracture skin.

The aquifer tests that were conducted in the NTW holes were analyzed using the Bouwer-Rice solution for a slug test (Bouwer and Rice, 1976), with the exception of the test conducted in borehole 05-414C. At this location, the Bouwer and Rice solution could not match the observed water level data. That is, the Bouwer and Rice solution is a straight line solution, requiring data plotted on log paper lie on a straight line. The data from borehole 05-414C did not meat this requirement. This test was instead analyzed using the KGS model (Hyder et al., 1994). Unlike the Bouwer and Rice solution, the KGS model assumes that flow into the well is unsteady.

Hydraulic conductivity values measured in the Duluth Complex boreholes ranged from 2.6 $\times 10^{-4}$ feet/day to 4.1 $\times 10^{-2}$ feet/day, with a geometric mean of 2.3 $\times 10^{-3}$ feet/day. It is worth noting that

eight of the ten boreholes terminate in the Virginia Formation, which is generally more permeable. However, because less the 5% of the borehole length was within the Virginia Formation, it likely does not significantly affect the results of the aquifer testing.

These values fall within the expected range of hydraulic conductivities for the Duluth Complex. Siegel and Ericson (1980) report specific capacities of 0.11 and 0.02 (gal/min)/ft for two Duluth Complex wells located between 10-20 miles northeast of the Site. Hydraulic conductivities can be estimated from this data using the methodology of Razack and Huntley (1991). The results are hydraulic conductivity values of 1.6×10^{-2} feet/day and 2.8×10^{-3} feet/day respectively.

3.3 Analytical Results

Groundwater samples were collected from two 6-inch diameter exploratory boreholes open to the Duluth Complex (05-407M and 05-401M) and a water supply well at the site open to the Duluth Complex and the Virginia Formation (Unique Well Number 717972) in March 2005. The analytical results are presented in Table 7. Since the ultimate fate of the mine pit water is not known, analytical results are compared to the Minnesota Surface Water Quality Class 2B Chronic and the Lake Superior Basin Water Quality Class 2B Chronic criteria for the sake of comparison. Because a receiving water has not been identified at this time, a hardness of 50 mg/l was used to derive the criteria.

The water sample from boring 05-407M exceeded the criteria for ammonia (1,900 ug/l), pH (9.8), aluminum (39,900 ug/l), chromium (42 ug/l), cobalt (19.9 ug/l), copper (587 ug/l), lead (9.5 ug/l), mercury (0.0034 ug/l), nickel (172 ug/l), and silver (7.4 ug/l). The sample from boring 05-401M exceeded criteria for ammonia (610 ug/l), aluminum (3170 ug/l), copper (53.3 ug/l), and silver (1.1 ug/l).

4.0 Quality Assurance

A quality assurance and quality control review was performed on the analytical results from the sampling event. This review was performed in accordance with the Barr Engineering Standard Operating Procedure for data validation, which is based on "The National Functional Guidelines for Organic and Inorganic Data Review" (EPA 1999/2004). All methyl mercury analysis was performed by Frontier Geosciences, Inc. located in Seattle, Washington and all other analysis was performed by Northeast Technical Services located in Virginia, Minnesota.

Field procedures were evaluated using an equipment blank (mercury only) and a trip blank (methyl mercury only) and laboratory procedures were evaluated utilizing technical holding times, accuracy and precision data, masked duplicate samples and data package completeness.

The equipment blank had a detection of mercury near the reporting limit. All data within five times the blank value were qualified as potentially false positive. The trip blank was non-detect for methyl mercury. Technical holding times were evaluated for each sample and target parameter, based on the EPA recommendations listed in 40 CFR SW8-46 "Test Methods for Evaluating Hazardous Waste". All holding times were met. No laboratory accuracy and precision data were included in the data packages for examination, however the laboratory indicated that the laboratory control sample (LCS) for molybdenum and the matrix spike (MS) for potassium were not within control limits. All molybdenum data associated with this LCS were qualified and should be considered potentially biased low. All potassium data associated with this MS were qualified and should be considered potentially biased high. No remaining data was qualified.

One masked duplicate was collected and submitted to the laboratory with the project samples. The precision between this duplicate and the original sample was evaluated by comparing the data and calculating the relative percent difference (RPD) according the equation below.

RPD = <u>Amount in Spike 1 - Amount in Spike 2</u> X 100

0.5(Amount in Spike 1 + Amount in Spike 2)

The boron analysis showed the sample at $<3.5\mu$ g/L while its masked duplicate had a value of 3.8μ g/L. In addition, the sample had a nitrate plus nitrite value of 0.1 mg/L while the masked duplicate had a value of 0.9mg/L. Since all of these values are near the analytical detection limit, it

does not represent a large data variability problem and no data was qualified. All remaining RPD's fell within acceptable laboratory control limits (<30%) for all remaining target compounds.

Data completeness is evaluated by comparing the analysis requested with the data package as received. The laboratory chain of custody listed the sample collection date as 2/10/05 when the actual date was 3/10/05. The laboratory report contains the correct date. All data was received complete.

All data met the data project requirements and is deemed acceptable with the previously mentioned qualifications for the purposes of this project.

The purpose of the Hydrogeologic Investigation was to gather information on the ability of the surficial sediment and the Duluth Complex to transmit water to the proposed NorthMet pit, to characterize the quality of the water found in these formations, and to gather preliminary information on the geotechnical properties of the surficial sediment.

5.1 Surficial Aquifer

Ten shallow borings were advanced through the surficial sediment at the Site, terminating in bedrock, in order to visually inspect the sediment encountered and to perform aquifer performance tests. Three of the surficial aquifer borings were converted to monitoring wells, from which groundwater samples were collected. The surficial sediment across the site are relatively heterogeneous, ranging from very dense clay to well-sorted sand. As a result, the ability of the surficial aquifer to transmit water was highly variable depending on location. Hydraulic conductivity values varied between 0.012 feet/day and 31 feet/day. With the exception of MW-05-02, values of hydraulic conductivity determined at each location were within the expected range of values for the material these wells were screened in.

Water chemistry varied by location within the surficial aquifer. Water quality criteria (2B Cronic) were exceeded at more than one location for a select group of metals, most notably aluminum, copper, and mercury. The occurrence of these metals is likely associated with the presence of the Duluth-Complex bedrock as described further in Section 5.2.

5.2 Duluth Complex

Aquifer testing was conducted on ten of the exploration borings completed in the Duluth Complex. In addition, water samples for laboratory analysis were collected from two of the 6-inch diameter exploration boreholes and the water supply well. Hydraulic conductivity values measured in the Duluth Complex boreholes ranged from 2.6×10^{-4} feet/day to 4.1×10^{-2} feet/day, with a geometric mean of 2.3×10^{-3} feet/day. These values fall within the range of hydraulic conductivities for the Duluth Complex reported by Siegel and Ericson (1980).

Water quality in the exploratory boreholes was variable. Water quality criteria were exceeded for ammonia, aluminum, copper, and silver in both boreholes. The sample collected from the supply

well did not exceed water quality standards. The occurrence of aluminum, copper, iron, and manganese in these boreholes are directly attributable to the Duluth Complex, in general, and the Copper-Nickel region of the complex in particular. These results are consistent with the findings presented in the U.S. Geological Survey Copper-Nickel Study Region report (Siegel and Ericson, 1980), which found elevated copper (up to 190 ug/L), cobalt (up to 46 ug/L), and nickel (up to 120 ug/L) concentrations in groundwater samples collected from the surficial material directly over the mineralized zone of the Duluth Complex. The study also found elevated concentrations of iron (up to 67 mg/L), aluminum (up to 200 ug/L), and manganese (up to 26 mg/L) in the region (Siegel and Ericson, 1980). The presence of ammonia in the deep boreholes may indicate that the water in the borehole came from the shallow surficial deposits. Ammonia is not typically found in deep bedrock systems but is common in wetland environments.

5.3 Conclusions

The results of this study provide information on the hydrogeologic properties of the surficial aquifer system and the Duluth Complex. The data collected as part of this study are consistent with the assumptions that were used in the initial mine pit water balance that was presented in the EAW. That is, the average value of hydraulic conductivity of the Duluth Complex found as part of this study (0.0023 feet/day) is similar to the lower value that was used in the preliminary SEEP modeling of the pits (0.0017 feet/day). In addition, the preliminary conceptual model assumed that the surficial material is relatively thin (less than 20 feet) and does not have a high bulk transmissivity. This is consistent with the finding from this investigation, where the average depth to bedrock was approximately 13.5 feet and the hydraulic conductivity ranged from 31 to 0.012 feet/day.

Additional data is needed to determine the overall water balance for the mine pit. A Phase II Hydrogeologic Investigation, conducted in the winter of 2005/2006, will help determine the aquifer properties for the Virginia Formation, which will likely be encountered along portions of the northern mine pit wall. This investigation involved aquifer tests and groundwater sampling. Following the completion of the Phase II Hydrogeologic Investigation, a more detailed water balance for the mine pit will be conducted.

Barr Engineering Company (Barr), 2005. Hydrogeologic Investigation Work Plan for the PolyMet NorthMet Mine Site. Prepared on behalf of PolyMet Mining, Inc., March 29, 2005.

Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.

Freeze, R.A., and J.A. Cherry, 1979. Groundwater. Englewood Cliffs, N.J.: Prentice Hall.

Kruseman, G.P. and N.A. DeRidder, 2000. Analysis and Evaluation of Pumping Test Data (2nd ed.), Publication 47, Intern. Inst. for Land Reclamation and Improvement, Wageningen, The Netherlands, 370p.

Hyder, Z, J.J. Butler, Jr., C.D. McElwee and W. Liu, 1994. Slug tests in partially penetrating wells, Water Resources Research, vol. 30, no. 11, pp. 2945-2957.

Moench, A.F., 1984. Double-porosity models for a fissured groundwater reservoir with fracture skin, Water Resources Research, vol. 20, no. 7, pp. 831-846.

Razack, M. and D. Huntley, 1991. Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer, Ground Water, vol. 29, no. 6, pp. 856-861.

Siegel, D.I., and D.W. Ericson, 1980. Hydrology and water quality of the copper-nickel study region, Northeastern Minnesota, U.S. Geological Survey, Water-Resources Investigations 80-739.

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524.

Tables

Table 1 Groundwater Analytical Parameters with Analysis Method

Description	Method
Alkalinity, Total as CaCO3	EPA 310.1
Carbon, Total Organic	EPA 415.1
Chemical Oxygen Demand	STD METH 5220D, 18TH ED
Chloride	EPA 325.2
Cyanide Total	EPA 335.2
Fluoride	EPA 340.1
Hardness, Total (calculated)	EPA 200.7
Nitrogen, Ammonia	EPA 350.1
Nitrogen, Nitrate + Nitrite	EPA 353.2
pH	EPA 150.1
Phosphorus, Total	EPA 365.2
Sulfate	EPA 375.4
Aluminum, Total	EPA 200.7
Aluminum, Dissolved	EPA 200.7
Antimony, Total	EPA 204.2
Arsenic, Total	EPA 200.8
Barium, Total	EPA 200.7
Beryllium, Total	EPA 210.2
Boron, Total	EPA 200.7
Cadmium, Total	EPA 213.2
Cadmium, Dissolved	EPA 213.2
Calcium, Total	EPA 200.7
Chromium, Total	EPA 218.2
Chromium, Dissolved	EPA 218.2
Cobalt, Total	EPA 219.2

Description	Method
Copper, Total	EPA 220.2
Copper, Dissolved	EPA 220.2
Iron, Total	EPA 200.7
Lead, Total	EPA 7421
Magnesium, Total	EPA 200.7
Manganese, Total	EPA 200.7
Mercury, Low Level Total	EPA 1631E
Methyl Mercury, Total	EPA 1631E
Molybdenum, Total	EPA 246.2
Molybdenum, Dissolved	EPA 246.2
Nickel, Total	EPA 249.2
Nickel, Dissolved	EPA 249.2
Palladium, Total	EPA 200.7
Platinum, Total	EPA 200.7
Potassium, Total	EPA 200.7
Selenium, Total	EPA 270.2
Selenium, Dissolved	EPA 270.2
Silver, Total	EPA 272.2
Silver, Dissolved	EPA 272.2
Sodium, Total	EPA 200.7
Strontium, Total	EPA 200.7
Thallium, Total	EPA 279.2
Titanium, Total	EPA 283.2
Zinc, Total	EPA 200.7
Zinc, Dissolved	EPA 200.7

Table 2 Surficial Aquifer Test Data PolyMet Mining, Inc.

					St	atic	Test	start					
Location	Material	Well depth (ft)*	Screen length (ft)	Aquifer thickness (ft)	DTGW (ft)*	Water column (ft)	DTGW (ft)*	Water column (ft)	Pumping duration (min)	Pumping rate (gpm)	Initial displacement (ft)	Transmissivity (ft ² /day)	Hydraulic Conductivity (ft/day)
SB-05-01	OL	15.7	5	12.25	3.45	12.25	3.60	12.10	17	1.6	0.15	322.5	26
MW-05-02	CL	8.77	1	2.25	6.52	2.25	7.55	1.22	11	0.5	1.03	68.82	31
SB-05-03	CL/SM	8.9	5	8.12	5.28	3.62	8.9	0.00	3	0.5	3.62	0.1131	0.014
SB-05-04	DLCX	21	5	5	1.6	19.4	6.7	14.30	3	0.45	5.10	0.1642	0.033
SB-05-06	CL	12.65	4	12.65	1	11.65	12.65	0	8	0.5	11.65	0.1556	0.012
SB-05-07	SM/SC	13.75	5	11.77	1.98	11.77	2.99	10.76	16	0.5	1.01	42.2	3.6
MW-05-08	SP	20.55	10	18.84	3.21	17.34	20.55	0	7	0.6	17.34	1.143	0.061
MW-05-09	SP/SM	16.15	5	6.04	10.11	6.04	15.05	1.1	9	0.5	4.94	0.1644	0.027
SB-05-10	SM/CL	8	4	4.44	3.56	4.44	8	0	3	0.5	4.44	0.4927	0.11

* Measured from top of casing

Table 3 - Geotechnical Test Results, Classification, Water Content, Atterberg Limits, SpecificGravity, and Organic Matter

Sai	mple	Soil	Water	A	tterberg Lim	Specific	Organic	
Boring No.	Depth (ft below ground)	Classifi- cation	Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	Gravity	Matter %
SB-05-01	4.0 - 5.0	ОН	NP	NP	NP	NP	NP	9.8
SB-05-01	6.0 - 8.0	PT/OH	NP	NP	NP	NP	NP	68.7
SB-05-04	2.0 – 7.5	CL-ML	22.0	25.6	20.0	5.6	2.78	NP
SB-05-04	8.5 – 15.5	SM	6.0	11.1	10.0	1.1	2.76	NP
SB-05-09	8.5 – 12.5	SM	7.9	NP	NP	NP	2.76	NP
SB-05-10	1.0 - 4.0	SM/SC-SM	11.6	15.0	12.2	2.8	2.76	NP

NP = Not Performed

Table 4 - Geotechnical Test Results, Proctor and Permeability

San	nple	Standard Pro	octor Analysis	Permeability Analysis				
Boring No.	Depth (ft below ground)	Optimum Water Content %	Max. Dry Density Ib/cf	Water Content as Tested %	Dry Density as Tested Ib/cf	Permeability cm/sec		
SB-05-04	2.0 – 7.5	13.5	119.1	16.1	112.9	8.7 x 10 ⁻⁸		
SB-05-04	8.5 – 15.5	7.1	136.8	9.6	129.2	6.0 x 10 ⁻⁷		
SB-05-09	8.5 – 12.5	7.2	134.7	9.6	127.7	1.5 x 10 ⁻⁶		
SB-05-10	1.0 - 4.0	9.4	131.4	12.0	125.3	1.5 x 10 ⁻⁷		

Table 5 Surficial Aquifer Analytical Data Summary Polymet Mining, Inc. (concentrations in ug/L, unless noted otherwise)

IT de		MM 05 02	N / N / 07 00	MM 05 00	MM 05 00
Location	MN Surface		MW-05-08		
Date	Water Class	3/23/2005	3/23/2005	3/23/2005	3/23/2005
Dup	2B Chronic (1)			DUP	
Exceedance Key	Bold				
General Parameters					
Alkalinity, total, mg/L		88.3	72.8	65.2	47
Chemical Oxygen Demand, mg/L		12.4	12.4	8.8	6.9
Chloride, mg/L	230	1.3	1.1	1.3	5.5
Cyanide		<20	<20	<20	<20
Fluoride, mg/L		0.21	0.19	0.19	0.1
Hardness, total, mg/L		84.8	64.3	66.1	53.4
Nitrate + Nitrite		330	310	900	<100
Nitrogen, ammonia as N	40	240	<100	<100	<100
Phosphorus total		140	170	160	470
Sulfate, mg/L		10.8	21.2	20.3	13.8
pH, standard units	6.5 - 9.0 PH	10	7.4	7.7	7.5
Carbon, total organic, mg/L		8	3.8	3.3	4.6
Metals		<u> </u>			
Aluminum	125	322	1040	1300	4640
Antimony	31	<3	<3	<3	<3
Arsenic	53	3.2	4.4	3.1	3.4
Barium		<10	32.5	32	90.7
Beryllium		< 0.2	< 0.2	< 0.2	0.3
Boron		<35	<35	38	40.2
Cadmium	0.66 HD	< 0.2	<0.2	<0.2	<0.2
Calcium		30100	14500	14900	12100
Chromium	11 CR6	1.2	6.1	4.8	28.6
Cobalt	5.0	<1	1.8	1.6	5.4
Conner	5.2 HD	11.2	10	7.8	72.2
Copper	• • • • • • • • • • • • • • • • • • • •				
Iron		350	1740	1940	6400
Iron Lead	 1.3 HD	350 <1	<1	<1	6400 5.6
Iron Lead Magnesium		350 <1 2300	<1 6800	<1 7000	6400 5.6 5700
Iron Lead Magnesium Manganese	 1.3 HD 	350 <1 2300 <30	<1 6800 220	<1 7000 220	6400 5.6 5700 330
Iron Lead Magnesium Manganese Mercury	 1.3 HD 0.0013	350 <1 2300 <30 <0.002	<1 6800 220 0.0053	<1 7000 220 0.0036	6400 5.6 5700 330 0.0181
Iron Lead Magnesium Manganese Mercury Mercury methyl	 1.3 HD 0.0013 	350 <1 2300 <30 <0.002 <0.000025	<1 6800 220 0.0053 <0.000025	<1 7000 220 0.0036 <0.000025	6400 5.6 5700 330 0.0181 0.000043
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum	 1.3 HD 0.0013 	350 <1 2300 <30 <0.002 <0.000025 16.1 *	<1 6800 220 0.0053 <0.000025 35.6 *	<1 7000 220 0.0036 <0.000025 33.1 *	6400 5.6 5700 330 0.0181 0.000043 12.4 *
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel	 1.3 HD 0.0013 29 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9	<1 7000 220 0.0036 <0.000025 33.1 * 6.2	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium	 1.3 HD 0.0013 29 HD 	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum	 1.3 HD 0.0013 29 HD 	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 <25	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium	 1.3 HD 0.0013 29 HD 	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 <25 1600 *	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 <25 1600 *	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 <25 1600 *	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 <25 2100 *
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium	 1.3 HD 0.0013 29 HD 5.0	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25 <25 1600 * <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 <25 1600 * <2	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver	 1.3 HD 0.0013 29 HD 5.0 1.0 HD	350 <1 2300 <30 <0.002 5 16.1 * <2 <25 <25 1600 * <2 <1	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium	 1.3 HD 0.0013 29 HD 5.0 1.0 HD 	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25 1600 * <2 <1 11900	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium	 1.3 HD 0.0013 29 HD 5.0 1.0 HD 	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium	1.3 HD 0.0013 29 HD 5.0 1.0 HD 0.56	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2	6400 5.6 5700 330 0.0181 0.000043 12.4* 9.6 <25 <25 2100* <2 <1 9500 37.7 <2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium Titanium	1.3 HD 0.0013 29 HD 5.0 1.0 HD 0.56	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 2100 * <2 <1 9500 37.7 <2 620
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium Titanium Zinc	1.3 HD 0.0013 29 HD 5.0 1.0 HD 0.56	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2	6400 5.6 5700 330 0.0181 0.000043 12.4* 9.6 <25 <25 2100* <2 <1 9500 37.7 <2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u>	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD 59 HD 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <26 <1 11900 191 <2 30.7 <10	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6 <10	6400 5.6 5700 330 0.0181 0.000043 12.4* 9.6 <25 <25 2100* <2 <1 9500 37.7 <2 620 11.8
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6 <10 132	6400 5.6 5700 330 0.0181 0.000043 12.4* 9.6 <25 <25 2100* <2 <1 9500 37.7 <2 620 11.8 910
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6 <10 132 <0.2	6400 5.6 5700 330 0.0181 0.000043 12.4* 9.6 <25 <25 2100* <2 <1 9500 37.7 <2 620 11.8 910 <0.2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved Chromium, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1 8	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1 6.4	<1 7000 220 0.0036 <0.000025 33.1 * 6.2 <25 <25 1600 * <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1 2.3	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5 18.2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1 8 13.1	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1 6.4 34.4	<1 7000 220 0.0036 <0.000025 33.1* 6.2 <25 <25 1600* <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1 2.3 32.9	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5 18.2 <5
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Molybdenum dissolved Nickel, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1 8 13.1 <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1 6.4 34.4 <2	<1 7000 220 0.0036 <0.000025 33.1* 6.2 <25 1600* <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1 2.3 32.9 <2	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5 18.2 <5 <2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Potassium Selenium Silver Sodium Strontium Thallium Zinc Dissolved Metals Aluminum, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Molybdenum dissolved Nickel, dissolved Solenium, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.00025 16.1 * <2 <25 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1 8 13.1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1 6.4 34.4 <2 <2 <2	<1 7000 220 0.0036 <0.000025 33.1* 6.2 <25 1600* <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1 2.3 32.9 <2 <2 <2 <2 < 2 < 2 < 2 < 2 < 2 < 2 <	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5 18.2 <5 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2
Iron Lead Magnesium Manganese Mercury Mercury methyl Molybdenum Nickel Palladium Platinum Platinum Selenium Silver Sodium Strontium Thallium Titanium Zinc <u>Dissolved Metals</u> Aluminum, dissolved Cadmium, dissolved Chromium, dissolved Copper, dissolved Molybdenum dissolved Nickel, dissolved	1.3 HD 0.0013 29 HD 29 HD 5.0 1.0 HD 0.56 59 HD	350 <1 2300 <30 <0.002 <0.000025 16.1 * <2 <25 <25 1600 * <2 <1 11900 191 <2 30.7 <10 44.6 <0.2 <1 8 13.1 <2	<1 6800 220 0.0053 <0.000025 35.6 * 7.9 <25 <25 1600 * <2 <1 15700 35.9 <2 113 <10 214 <0.2 <1 6.4 34.4 <2	<1 7000 220 0.0036 <0.000025 33.1* 6.2 <25 1600* <2 <1 13500 37.1 <2 82.6 <10 132 <0.2 <1 2.3 32.9 <2	6400 5.6 5700 330 0.0181 0.000043 12.4 * 9.6 <25 <25 2100 * <2 <1 9500 37.7 <2 620 11.8 910 <0.2 2.5 18.2 <5 <2

Table 5 Surficial Aquifer Analytical Data Summary Polymet Mining, Inc. Footnotes

- -- No criteria.
- (1) Criteria represents most conservative value as noted in Minnesota Rules Chapter 7050.0222 and 7052.0100.
- * Estimated value, QA/QC criteria not met.
- CR6 Value represents the criteria for Chromium, hexavalent.
- HD Hardness dependent. The specific analyte should be referenced in Minnesota Rules Chapter 7050.0222 and 7052.0100 for specific exp. calculations. The values reported are assuming a hardness of 50 mg/L.
- PH Not less than 6.5 nor greater than 9.0.

DUP Duplicate sample.

The data was also compared to, and did not exceed, EPA Maximum Contaminant Levels criteria.

Table 6 Duluth Complex Aquifer Test Data PolyMet Mining, Inc.

Hole Number	UTM Northing	UTM Easting	Total Depth (ft)	Overburden Thickness (ft)	Duluth Thickness (ft)	Virginia Thickness (ft)	Azimuth	Dip (from horizontal)	Hydraulic Conductivity (ft/day)
05-401M	5275255.38	578872.88	349	0	338	11	0	-90	0.0036
05-404M	5275168.83	578761.26	349	0	349	0	326	-70	0.01
05-407M	5274194.69	576528.16	354	8	346	0	0	-90	0.0084
05-411M	5273507.48	576265.73	639	13	626	0	0	-90	0.00084
05-405C	5273410.38	575952.21	769	33	721	15	326	-70	0.00067
05-406C	5273476.35	576160.58	757	7	737	13	326	-65	0.00026
05-409C	5273582.83	575945.37	488	18	457	13	326	-65	0.041
05-410C	5273361.33	575856.36	737	8	718	11	326	-65	0.00042
05-413C	5273687.08	576017.46	388	14	372	2	326	-60	0.012
05-414C	5273331.66	576264.35	1438	0	1266	172	326	-65	0.00039
								Minimum Maximum Geo. Mean	0.00026 0.041 0.0023

Table 7 Bedrock Aquifer Analytical Data Summary Polymet Mining, Inc. (concentrations in ug/L, unless noted otherwise)

(concentrations		1	,	1
Location	MN Surface	05-407M	05-401M	Supply Well
Date	Water Class	3/10/2005	3/10/2005	3/23/2005
Dup	2B Chronic (1)			
Exceedance Key	Bold			
General Parameters				
Alkalinity, total, mg/L		93.7	106	95.2
Chemical Oxygen Demand, mg/L		33.9	17.7	9.7
Chloride, mg/L	230	2.7	1.7	0.5
Cyanide		<20	<20	<20
Fluoride, mg/L		0.49	0.14	0.25
Hardness, total, mg/L		149	61.7	60.4
Nitrate + Nitrite		<100	<100	<100
Nitrogen, ammonia as N	40	1900	610	<100
Phosphorus total		1100	200	<100
Sulfate, mg/L		24.7	13.6	4.4
pH, standard units	6.5 - 9.0 PH	9.8	8.1	8.7
Carbon, total organic, mg/L		2.6	3.9	3.9
Metals				
Aluminum	125	39900	3170	<25
Antimony	31	<3	<3	<3
Arsenic	53	4.4	<2	<2
Barium		92.1	<10	<10
Beryllium		0.8	<0.2	<0.2
Boron		183	<35	128
Cadmium	0.66 HD	<0.2	<0.2	<0.2
Calcium		38500	20500	12000
Chromium	11 CR6	42	4.6	<1
Cobalt	5.0	19.9	2.2	<1
Copper	5.2 HD	587	53.3	<2
Iron		24500	3050	60
Lead	1.3 HD	9.5	<1	<1
Magnesium		12800	12200	7400
Manganese		200	12200	<30
Mercury	0.0013	0.0034	0.001 b	<0.0005
Mercury methyl		< 0.000025	< 0.000025	< 0.000025
Molybdenum		<5	<5	<5 *
Nickel	29 HD	172	18.3	<2
Palladium		<50 c	<25	<25
Platinum		<25	<25	<25
Potassium		5200	1900	1400 *
Selenium	5.0	<2	<2	<2
Silver	1.0 HD	7.4	1.1	<1
Sodium	1.0 HD	38200	8600	20200
Strontium		143	48	46.5
Thallium	0.56	<2	48	40.3 <2
		<2 765	< <u>-</u> 66.8	<10
Titanium Zinc	 59 HD	46.8	<10	<10
Dissolved Metals	5711D	0.0	~10	~10
<u>Dissolved Metals</u> Aluminum, dissolved		126	62.5	-25
Cadmium, dissolved		126	62.5	<25
,		<0.2	<0.2	<0.2
Chromium, dissolved		<1	<1	<1
Copper, dissolved		<2	2.2	<2
Molybdenum dissolved		<5	<5	<5
Nickel, dissolved		<2	6.2	<2
Selenium, dissolved		<2	<2	<2
Silver, dissolved		<1	<1	<1
Zinc, dissolved		<10	<10	<10

Table 7 Bedrock Aquifer Analytical Data Summary Polymet Mining, Inc. Footnotes

- No criteria.
 (1) Criteria represents most conservative value as noted in Minnesota Rules Chapter 7050.0222 and 7052.0100.
 * Estimated value, QA/QC criteria not met.
 b Potential false positive value based on blank data validation procedure.
 c Coeluting compound.
- CR6 Value represents the criteria for Chromium, hexavalent.
- HD Hardness dependent. The specific analyte should be referenced in Minnesota Rules Chapter 7050.0222 and 7052.0100
- for specific exp. calculations. The values reported are assuming a hardness of 50 mg/L.
- PH Not less than 6.5 nor greater than 9.0.
 - The data was also compared to, and did not exceed, EPA Maximum Contaminant Levels criteria.

Figures

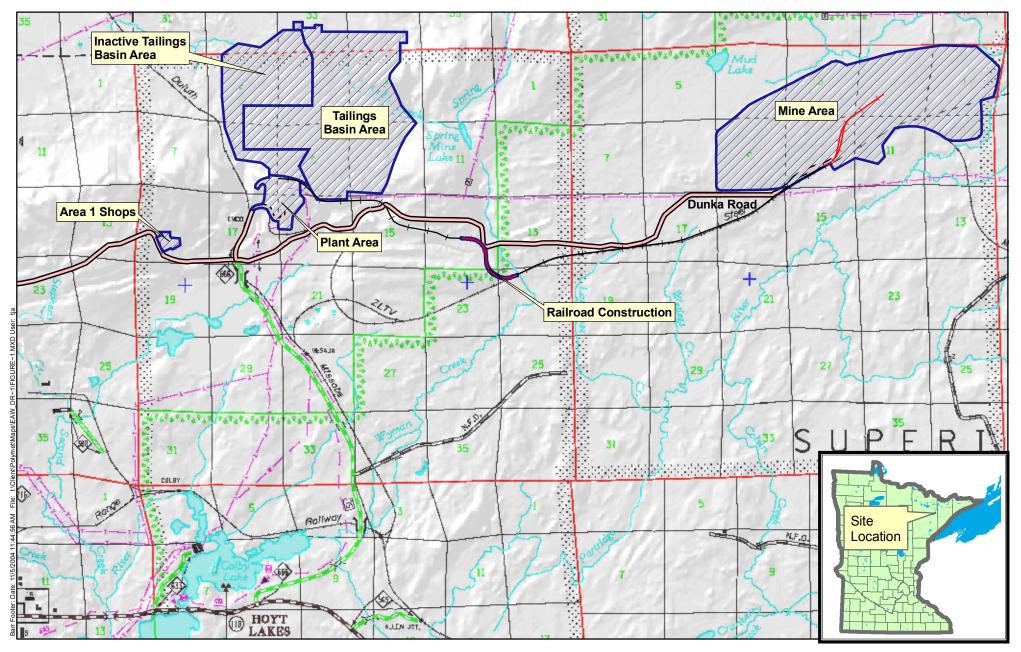
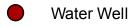


Figure 1

SITE LOCATION MAP PolyMet Mining, Inc. Hoyt Lakes, Minnesota

Railroads

----- Existing


Proposed

Access Roads

Project Boundaries

- 6-inch
- NTW
- Soil Boring
- Monitoring Well

Potential Future Mine Features

Loadout Pocket

Overburden Stockpiles

Mine Pits

Rock Stockpiles

(Mine features based on August 2006 design)

Allen, Babbitt, Babbitt SW, and Isaac Lake 7.5 Minute USGS Quadrangles

Figure 2

SITE LAYOUT WITH MARCH 2005 HYDROGEOLOGIC INVESTIGATION LOCATIONS PolyMet Mining, Inc. Hoyt Lakes, Minnesota

Appendices

Appendix A

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Inve				ractor WDC Exploration & Wells	LOG OF WELL MW-05-02 SHEET 1 OF 1			
Number _23/69-862				arted 3/14/05 Ended 3/15/05	Elevation			
Location NorthMet Mine Site				y Jere Mohr	Total Depth _18.0			
STH SER			۲					
DEPTH D	Moisture	ASTM	ГІТНОГОGY	DESCRIPTION	WELL OR PIEZOMETER DEPTH CONSTRUCTION DETAIL FEET			
		CL		Medium brown sandy clay, upper 1' wet, the moist, very moist at 5'. Chunks of black crystalline rock at 5'.	hen PRO. CASING Diameter: 6 inches Type: Steel Interval: 0-4 ft bgs RISER CASING Diameter: 2 inches Type: PVC Interval: 0-5 ft bgs GROUT -5 Type: Cement Interval: 0-4 ft bgs SEAL Type: Bentonite Interval: 4-5 ft bgs SANDPACK Type: Red Flint Interval: 5-6.5 ft bgs SCREEN -10 Diameter: 2 inches Type: PVC Interval: 5.5-6.5 ft bgs - 10 Diameter: 2 inches - 10 Diameter: 2 inches - 10 - 15 - 15			
BARR Telephone: Fax:				Remarks				
				Additional data may have been collected in the				

Client PolyMet Mining Corporation				ractor WDC Exploration & Wells	LOG OF WELL MW-05-08 SHEET 1 OF 1		
Project Name PolyMet Hydrogeologic Inv	estigatio	n Drill	Meth	od Rotasonic			
Number <u>23/69-862</u>		Drill	ing S	tarted 3/16/05 Ended 3/16/05	Elevation		
Location NorthMet Mine Site		Log	ged E	By _Jere Mohr	Total Depth 28.5		
DEPTH DEPTH DEPTH DEPTH DIscoloration- Odor- Odor- Sheen Comparing Sheen	Moisture	ASTM	ПТНОLOGY	DESCRIPTION	WELL OR PIEZOMETER CONSTRUCTION DETAIL FEET		
	Wet @ 6" Wet	SM		Light brown medium to coarse silty sand. Dark brown, well-sorted medium sand.	PRO. CASING Diameter: 6 inches Type: Steel Interval: 0-5 ft bgs RISER CASING Diameter: 2 inches Type: PVC Interval: 0-7.5 ft bgs GROUT Type: Cement Interval: 0-5 ft bgs SEAL SEAL Type: Bentonite Interval: 5-7 ft bgs		
_	Wet	SP		Dark brown, well-sorted fine to medium sa	nd. SANDPACK		
- 15 - - -	Wet	SP		Grayish brown well-sorted fine to medium sand with silt.	Interval: 7-17 ft bgs SCREEN - 15 Diameter: 2 inches Type: PVC - Interval: 7.5-17.5 ft bgs Natural formation allowed to cave below 17.5' bgs.		
	Wet	CL		Gray silty clay with granite and mafic rock fragments and pebbles. (Till)	- 20 		
				End of Boring - 28.5 feet			
Barr Engineering Co				Remarks Well installed in adjacent boring in MW-05-08. Heaving sand - c	g (boring not logged) due to loss of casing lifficult drilling and well installation.		
BARR Telephone: Fax:				Additional data may have been collected in the	e field which is not included on this log.		

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06

-			ning Corporation				ractor WDC Exploration & Wells	LOG OF WELL MW-05-09 SHEET 1 OF 1
Numbe			/Met Hydrogeologic Inv	estigatior			arted 2/10/05 Ended 2/11/05	F lave the
			t Mine Site				. Marile Landau	Elevation Total Depth 13.0
	프논	ER						
DEPTH FEET	SAMP. LENG & RECOVER	SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ГІТНОГОGΥ	DESCRIPTION	WELL OR PIEZOMETER DEPTH CONSTRUCTION DETAIL FEET
5-			Dry	SP SM		Topsoil. Brown, fine-grained sand with 5-10% gravel, moist. Gray-brown, fine-grained silty sand with up to 40% gravel, cobbles and boulders (angular), dry. Very difficult drilling (highly compacted). Brown, medium to coarse sand, uniform, wet.	RISER CASING Diameter: 2 inches Type: PVC Interval: 0-7.5 ft bgs GROUT Type: Cement Interval: 0-4.5 ft bgs SEAL	
10-	-			Moist/Wet	SM		Brown silty sand with some clay and trace of gravel and cobbles, moist/wet. Gray-black, fine grained crystalline rock, magnetic (Iron formation) assumed to be a boulder. End of Boring - 13 feet	
ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06	-	Ba	rr Engineering Co				Remarks	
BA	RF	R Te Fai	lephone: x:				Additional data may have been collected in the fie	eld which is not included on this log.

	Client PolyMet Mining Corporation				Drill	Drill Contractor WDC Exploration & Wells LOG OF Boring SE				
	Project	Nam	e Poly	Met Hydrogeologic Inve	estigatio	n Drill	Meth	od Rotasonic		-
	Number <u>23/69-862</u>				Drill	ing St	arted 3/13/05 Ended 3/13/05	Elevation		
					Log	Logged By _Jere Mohr Total Depth _19.0				
C	DEPTH	SAMP. LENGTH & RECOVERY	AMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ПТНОГОСУ	DESCRIPTI	ION	DEPTH FEET
	-		ω		Wet	CL		Light brown to gray clayey topsoil with rock	s (~25%), wet at 1' bgs.	-
		-			Wet	CL OL		Grayish-brown silty clay, wet. Reddish-brown organic-rich silty clay.		- 5
	- 	-			Wet	OL		Dark brown to gray organic-rich silty clay. F black (Virginia Formation). Black fine-grained rock (Virginia Formation		-
ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06	-				Wet			End of Boring - 19 feet		-
RO LOG 5 (5/27/04) 2:	BA	RF	R Te	rr Engineering Co lephone:	I	L		Remarks Temp well screen (5') set from then bentonite chips.	10-15' bgs. Allowed to collapse to ~i	B' bgs,
ENVIE			F a	x:				Additional data may have been collected in the	field which is not included on this log.	

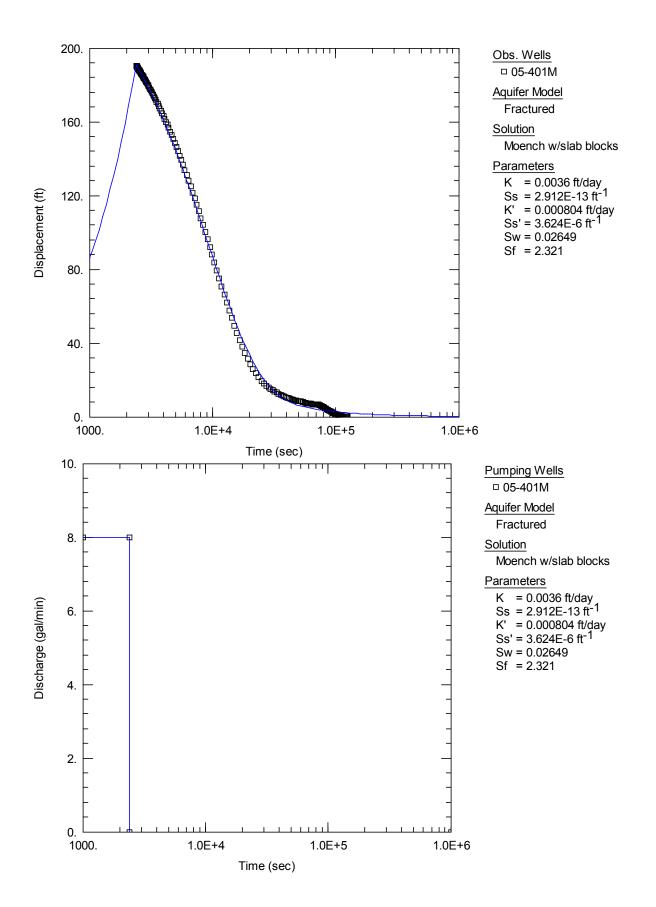
Client PolyMet Mining Corporation			Drill	Drill Contractor WDC Exploration & Wells LOG OF BORING SB				
Project Name PolyMet Hydrogeologic Investigation			n Drill	Meth	od Rotasonic	-		
Number <u>23/69-862</u>			Drill	ing St	tarted 3/15/05 Ended 3/15/05	Elevation		
Location NorthMet Mine Site			Log	ged B	By _Jere Mohr	- Total Depth 20.5		
DEPTH BAMP: LENGTH EEEL SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ПТНОГОСУ	DESCRI	PTION	DEPTH FEET	
-		Moist	CL		Reddish-brown sandy clay with cobbles		-	
5		Wet	CL		Dark brown to gray sandy clay.		- 5	
- 10		Moist	CL		Reddish brown sandy clay with ~30% rc	ocks/cobbles (Virginia Formation).	- 10	
		Wet	SM		Gray-brown silty sand.			
		Moist	CL		Gray sandy clay with ~20% rocks/pebble	es.	_	
-					Boulder (no recovery).		-	
-		-	CL		Very dense gray clay. Fine grained black rock (Virginia Format	tion)		
						· · · ,	- - - 20	
					End of Boring - 20.5 feet		- - -	
Bar	r Engineering Co				Remarks Temp well screen (5') set fro	om 7.5' to 12.5' bgs.		
BARR Tele	ephone:				Additional data may have been collected in	the field which is not included on this log.		

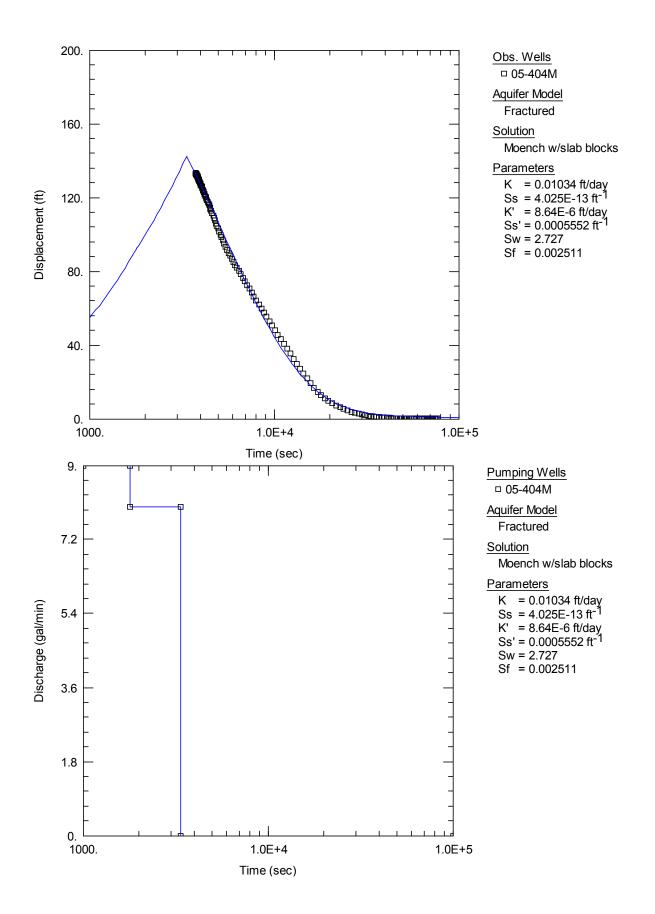
ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06

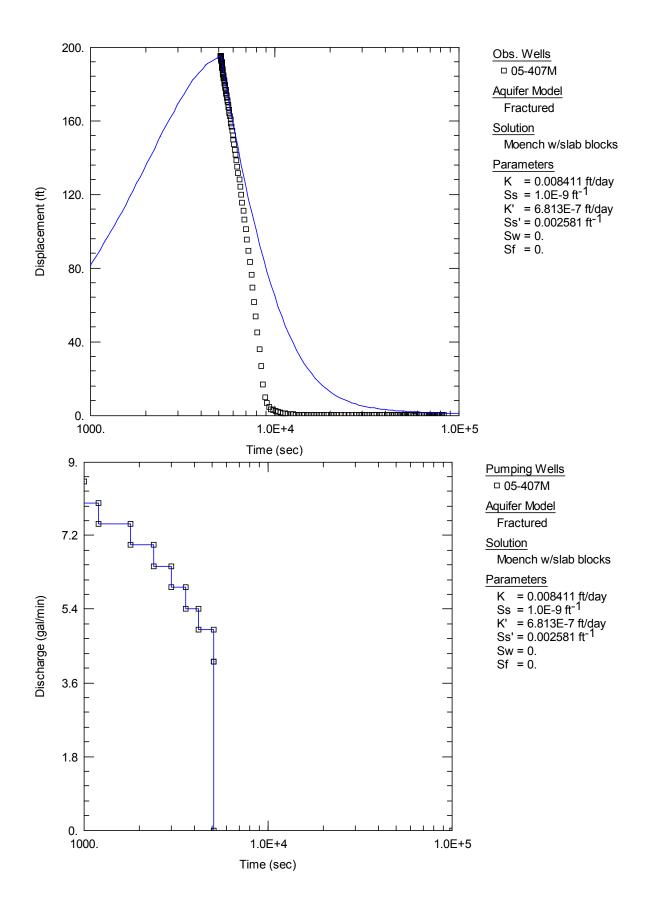
			ning Corporation	etigation				F Boring SB-05-04 SHEET 1 OF 1
Numbe				Jongano			tarted <u>3/7/05</u> Ended <u>3/8/05</u> Elevation	
Locatio	on <u>N</u>	orthMet	Mine Site		Log	ged E	By Mark Hagley Total Depth	
DEPTH FEET	SAMP. LENGTH & RECOVERY	SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ГІТНОГОСУ	DESCRIPTION	DEPTH FEET
5-	-				PT		Peat/wetland vegetation, frozen. Tan - brown clayey silt, uniform, moist to wet.	5
10-	-				CL		Dark-gray silty clay, dense. Dark-gray, sandy silt with ~10% cobbles (up to 2" diamet Gray silty fine sand with 10-20% coarse gravel and cobbl	
15-	-				SM			
ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06	-						Greenish-black crystalline rock - Duluth Complex gabbro.	-
04) 236							End of Boring - 20 feet	
BA BA	R		rr Engineering Co lephone: x:				Remarks Temp well screen (5') set from ~15-20' bgs, a 14-20', bentonite chips from 2-14' bgs. Additional data may have been collected in the field which is no	

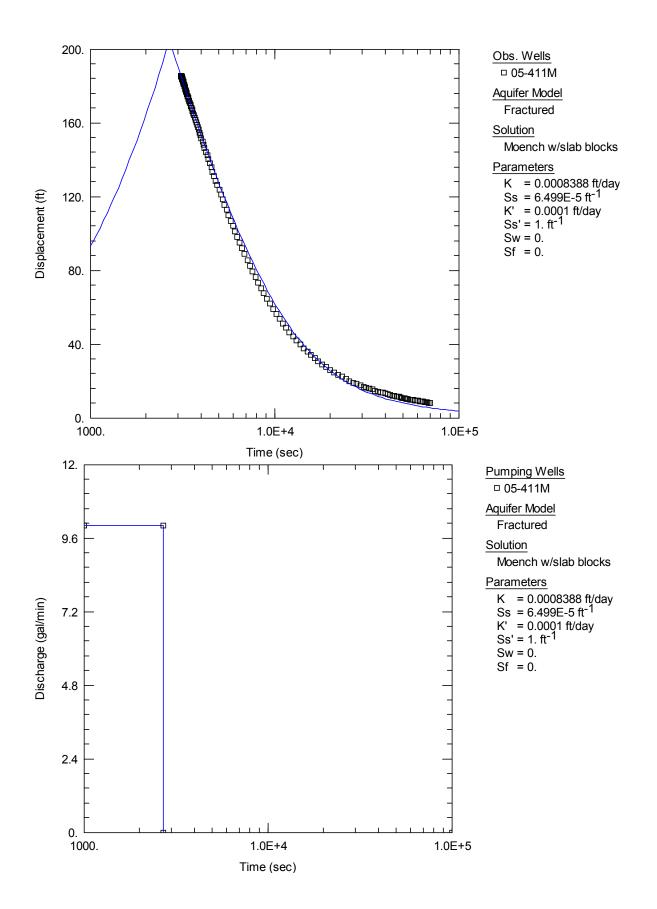
Client PolyMet Mi	ining Corporation lyMet Hydrogeologic Inve	estigation			tractor WDC Exploration & Wells LOG OF Boring SB-(SHEET)5-05 1 OF 1
Number _23/69-86		Jugano				
Location NorthMet Mine Site					tarted	
E ~ H						
AMP: LENGTH & RECOVERY SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	ГІТНОГОСУ	DESCRIPTION	DEPTH FEET
-		Moist	CL		Dark brown to black clayey topsoil.	_
				<i>\////</i>	Dark black fine-grained rock (boulder).	_
5						-
		Dry	SM		Medium brown silty sand.	-
				<u></u>	Dark black fine-grained rock.	-
						— 10 - -
-		Dry				-
15						— 15 -
					End of Boring - 18 feet	_
	arr Engineering Co elephone:				Remarks No temp well set - dry borehole.	
BARR Te	ax:				Additional data may have been collected in the field which is not included on this log.	

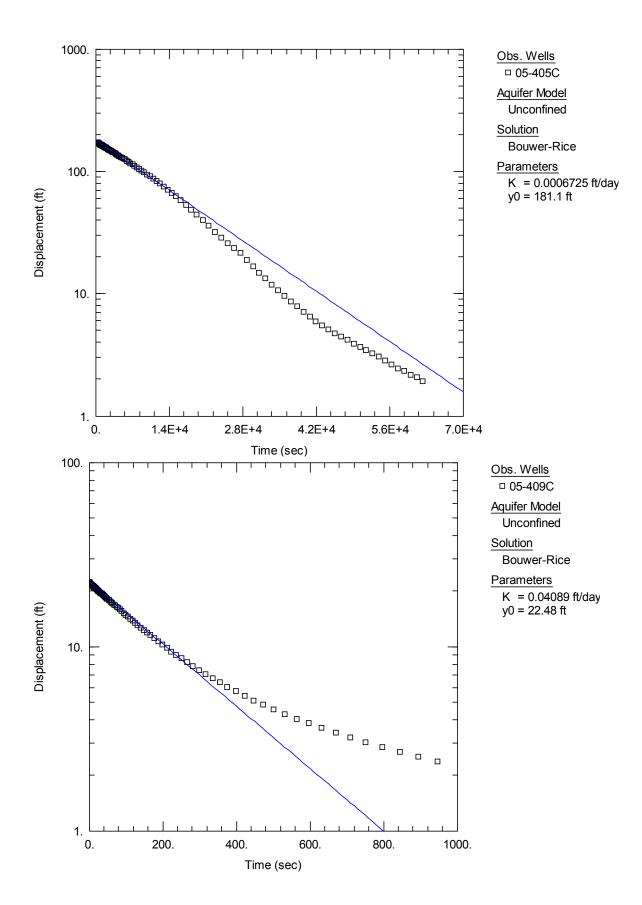
Client <u>PolyMet Mining Corporation</u> Project Name PolyMet Hydrogeologic Investigation	Drill Contractor WDC Exploration & Wells	LOG OF Boring SB-05-06 SHEET 1 OF 1
Number _23/69-862	Drilling Started 3/14/05 Ended 3/14/05	Elevation
Location NorthMet Mine Site	Logged By Jere Mohr	Total Depth <u>16.0</u>
DEPTH HL S HEET HL S HE S	MTSA DESCRIP	TION FEET
	OL Very loose organic rich clay. OL Boulder - minimal recovery. Granite recov	-
10	SM Light brown silty coarse sand with pebbles Light brown silty clay with ~25% pebbles.	-
15- 15- 15- 15- 15- 15- 15- 15-	Black fine-grained rock. End of Boring - 16 feet	- 15
	Pemarka Tomp well careen (51) act from	
Barr Engineering Co BARR Telephone: Fax:	Additional data may have been collected in th	

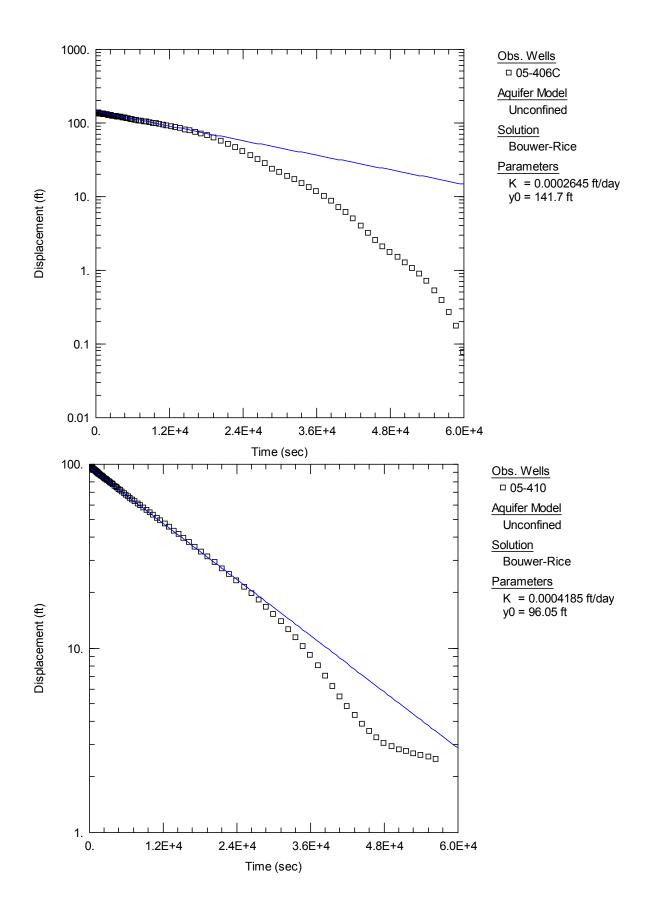

Client PolyMet Mining Corporation	Drill Cor	ntractor WDC Exploration & Wells SHEET 1	5-07		
Project Name PolyMet Hydrogeologic Investigation	n Drill Met				
Number <u>23/69-862</u>	Drilling \$	Drilling Started 3/12/05 Ended 3/12/05 Elevation			
Location NorthMet Mine Site	Logged	By Mark Hagley Total Depth <u>17.0</u>			
DEPTH H A W H A W A W A W A W A W A W A W A	ASTM LITHOLOGY		DEPTH FEET		
- Moist	SM	Brown silty sand with 10-20% cobbles and boulders (up to 4" diameter). Frost to 1.5', moist below.			
5	SM		- 5		
	SC	Dark gray sandy silt with cobbles. Very dense brown clayey sand with ~15% gravel and cobbles (to 1"). (Till)	- 10		
15—		Green/black coarse crystalline rock (Duluth Complex gabbro).	- 15		
		End of Boring - 17 feet			
			_		
BARR Barr Engineering Co BARR Telephone: Fax:		Remarks Temp well screen (5') set from 8-13' bgs, allowed to collapse up to 6. then bentonite chips above. Additional data may have been collected in the field which is not included on this log.	2',		

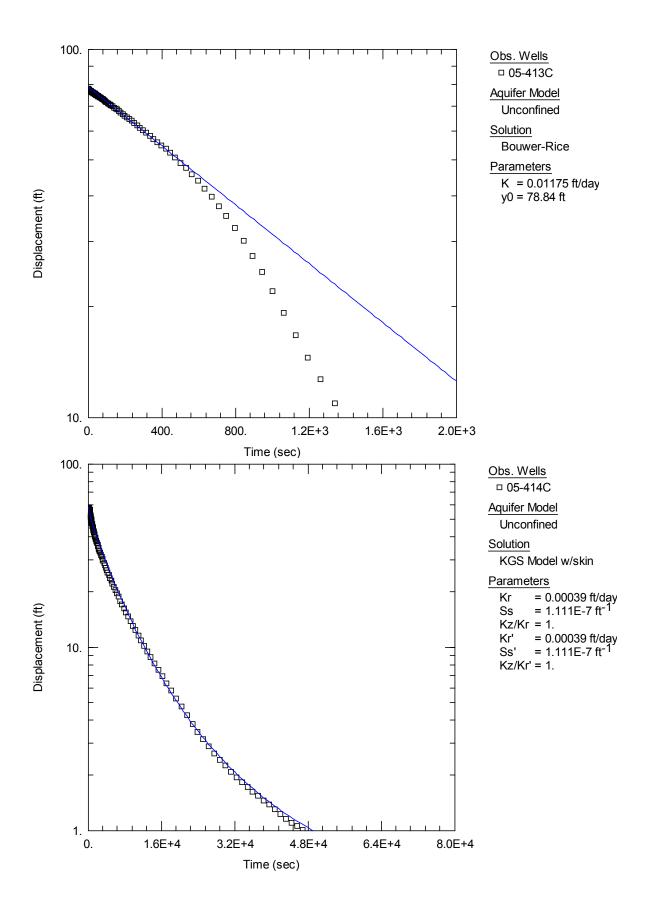

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 1/17/06

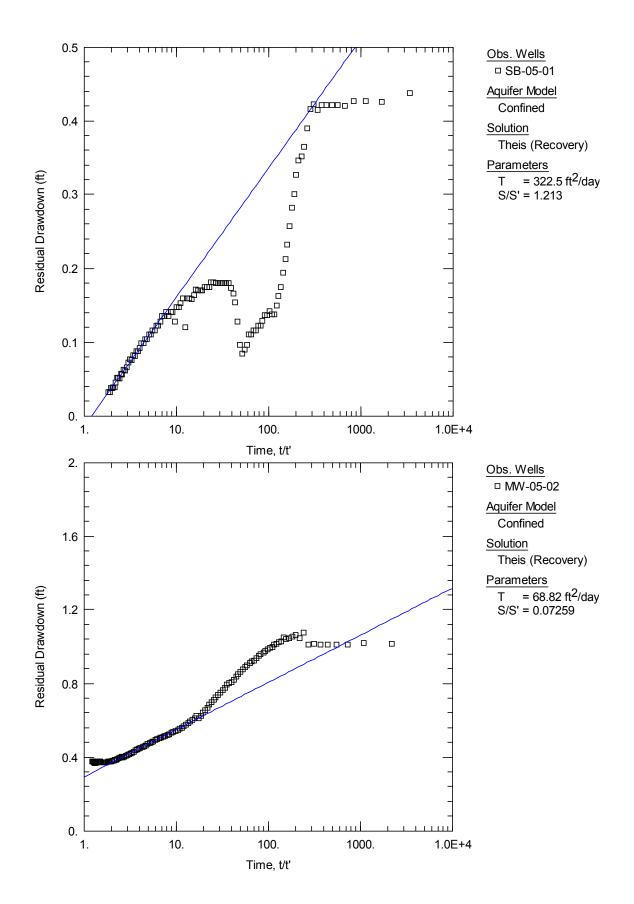

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation	Drill Contractor _WDC Exploration & Wells Drill Method _Rotasonic	LOG OF Boring SB-05-10 SHEET 1 OF 1
Number 23/69-862	Drilling Started _3/9/05 Ended _3/10/05	Elevation
Location NorthMet Mine Site	Logged By Mark Hagley	Total Depth 14.5
DEPTH H A W W S S S S S S S S S S S S S S S S S	MTSA DESCRIPT	TION FEET
	PT Peat/Organic material. Frozen. Fine-grained silty sand, brown, with 5-10% angular). SM Dark gray, fine-grained crystalline rock. And the second	
	End of Boring - 14.5 feet	- - - - - - - - - - - - - - - - - - -
Barr Engineering Co Telephone: Fax:	Remarks No temporary well set in boring	g; set in adjacent boring SB-05-10A
BARR Telephone: Fax:	Additional data may have been collected in th	e field which is not included on this log.

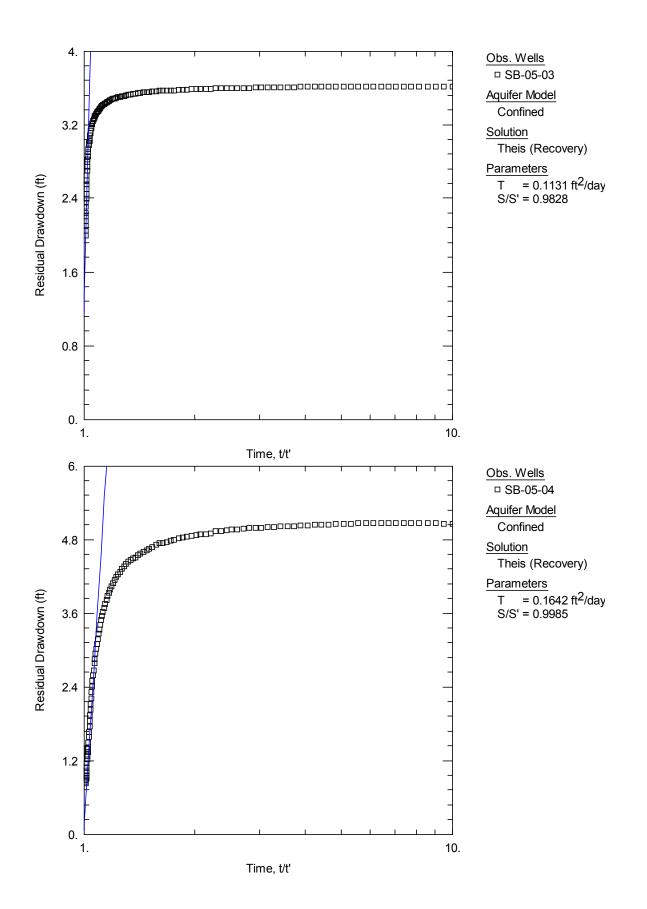

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation	Drill Contractor <u>WDC Exploration & Wells</u> Drill Method Rotasonic	LOG OF WELL SB-05-10A SHEET 1 OF 1
Number <u>23/69-862</u>	Drilling Started 3/10/05 Ended 3/10/05	Elevation
Location NorthMet Mine Site	Logged By Mark Hagley	Total Depth _6.0
DEPTH H > X = H H > X = H ON > O Discoloration- Odor- Sheen Discoloration- Sheen FEET H = O O N = N H = O O N = O O N = O O N = N H = O O N = O N = O O	MTRA DESCRIP	TION FEET
Barr Engineering Co Telephone: Fax:	PT Peat/Organic material. Frozen. PT Fine-grained silty sand, brown, with 5-109 angular). SM Dark brown sandy clay with <5% angular CL End of Boring - 6 feet	-
Barr Engineering Co	Remarks Temp well screen (4') set from	1 2-6' bgs, allowed to collapse to ~1.5' bgs,
BARR Fax:	then bentonite chips to surface	

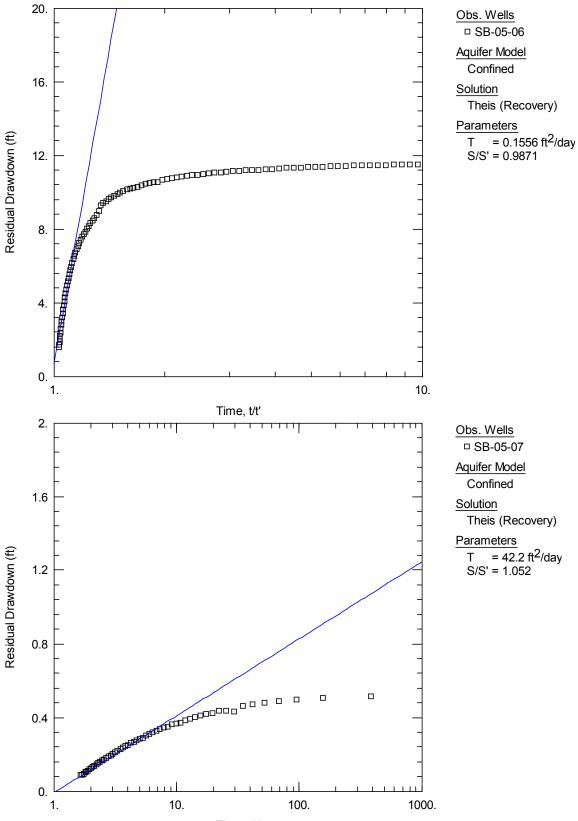

Appendix B

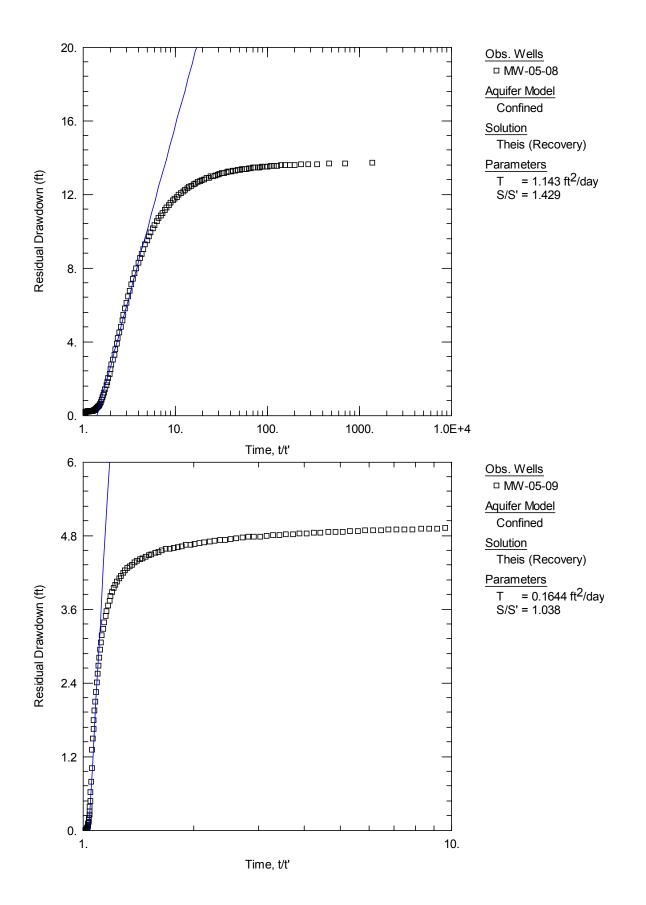


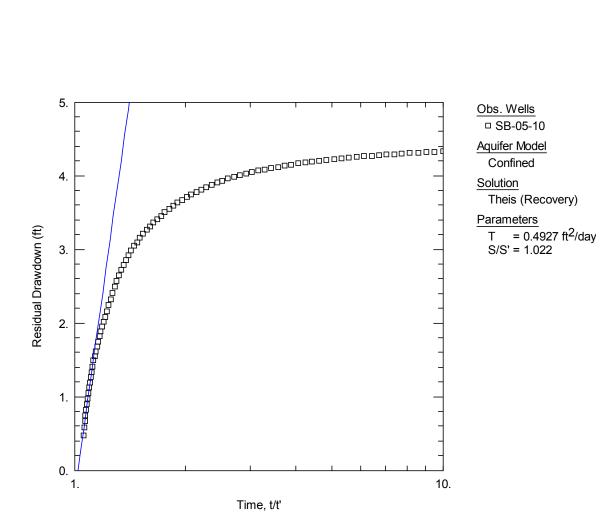












Time, t/ť

Appendix C

Appendix C Field Sampling Data Sheets

NOTE:

At the time of sample collection, the names of the exploratory boreholes were unknown and temporary names were given to the samples collected from these boreholes. The table below shows the temporary borehole names and the actual borehole names. The temporary names are used in this appendix, while the actual borehole names are used throughout the report.

Actual Borehole Name	Temporary Borehole Name
05-407M	26100
05-401M	East

Client: Pory Met	Mining C	» r þ ,	М	onitoring Po	oint: 2 (5100			
Location: North	Met	······	Da	Date: 3/10/05					
Project #: 23/6		4-005		ample Time:		5			
GENERAL			L.	STABI	IZATION	TEST			
Barr lock:	NO			ms/ cm ³		ORP			
Casing diameter:	6 "	Time/ Volume	Temp. ºC	Cond. @ 25	рН	Eh	D.O.	Turbidity Appearance	
Total well depth:*	350'	400 min/ 400 gal	5.37	0.208	8.25	75.3	/	SL. Cloudy	
Static water level:*	5.32'	43 min/ 430 gal	5.63	0.208	8.09	93.4	<		
Water depth:*	344.68'	45 min/ 450 mil	5.75	0.2.08	8.14	98.8	1		
Well volume: (gal)	506.3	47 min/ 470 gal	5.77	0.208	8.14	102.3			
Purge method:	Submersible Pump	49 min/ 490 gal	5.80	0.207	8.15	103.5			
Sample method:	Submersible Pump								
Start time:	8:10	Odor: N	lone	<u>.</u>					
Stop time:	8:59	Purge Appe	arance:	st, cl	oudy				
Duration: (minutes)	49	Sample App	earance	: <u>54</u> c	cloud	- <u>J</u>			
Rate, gpm:	10	Comments:							
Volume, purged:	490 gai								
Duplicate collected?	N								
Sample collection by:		CO2-		Mn2-	Fe(1	ſ)-	Fe2-	-	
Others present:	, ban (wbc		Conditio	n:					
MW: groundwater monitor	ing well WS: water	supply well	SW: s	surface water	SE: sedi	ment ot		en rehole	
VOC semi-volat	ile- gene	ral·2 n	utrient-	2 cyanic	le- i	DRO-	Sulfide	}-	
oil,grease- bacte	ria- total	metal- 2_	filtere	ed metal- 2	met	thane-	filt	er-	
Others:									

Client: PolyMe-	Client: PolyMet Mining Corp.				Monitoring Point: E_{ast}					
Location: North	Met		Da	Date: 3/10/05						
Project #: 23/6		+-005		Sample Time: 11:30						
GENERAL				STABIL	IZATION	TEST				
Barr lock:	No			ms/a		ORP				
Casing diameter:	6 4	Time/ Volume	Temp. °C	Cond. @ 25	pН	,Etr	D.O.	Turbidity Appearance		
Total well depth:*	-	30/	5.35	0.179	7.72	150.2		cloudy		
Static water level:*	11.10									
Water depth:*										
Well volume: (gal)					<u>.</u>					
Purge method:	Submersible Pump									
	Pump Submersible									
Sample method:	Pamp	<u>.</u>]					<u> </u>		
Start time:	11:00	Odor: ト	Jone							
Stop time:	10.36	Purge Appe	earance:	cloud	1 - 0	l villi	<u>~g f</u>	Elurid		
Duration: (minutes)	30	Sample Ap		11		и				
Rate, gpm:	8	Comments	:							
Volume, purged:	240 gal									
Duplicate collected?	No			. <u>.</u>						
Sample collection by:	JAMA	CO2-	Ν	1n2-	Fe(7	-)-	Fe2-			
Others present: Britt	, Dan (WD	د) Well	Condition							
MW: groundwater monitor	OPcn MW: groundwater monitoring well WS: water supply well SW: surface water SE: sediment other: BorchoLe									
VOC- semi-volat	ile- gene	ral- &	nutrient-	2_ cyanic	le- I	DRO-	Sulfide			
oil,grease- bacter	ria- total	metal- R	filtered	I metal- 2_	. met	hane-	filte	ər-		
Others:										

Client: PolyMe	t Mining	Corp.	Mor	nitoring Po	oint: Mw	-05 -	02	
Location: Nort			Dat	e: 3/2:	3/05			
Project #: 23/6.		4-005	San	ple Time:	12:0	>0		
GENERAL				STABIL	IZATION	TEST		
Barr lock:	Yes	Time(Temp.	m 5/ cm ³ Cond.		DRP		Turbidity
Casing diameter:	2 "	Time/ Volume	⁵ C	@ 25	pН	Eh	D. <mark>O.</mark>	Appearance
Total well depth:*	10.05 *	3 min 14 min	3.31	1.671	12.17	-18.0	1	clear
Static water level:*	7.80*	17 min 19 min	2.77	0.388		-18.0	-	
Water depth:*	2.25	al min 23min	2.83 2.92	0.273	10.79		-	
Well volume: (gal)	0.37	25 min 27 min	2.98 2.96	0.212	10.30	4.3	1	
Purge method:	Peristaltic	29 min	a.98	0.201	10.14	11.9		
Sample method:	Peristaltic							
Start time:	11:26	Odor: N	one					
Stop time:	11,55			CLe				
Duration: (minutes)	29	Sample Ap	pearance:	cle	ar			 _
Rate, gpm:	0.25	1		- calib				to
Volume, purged:	7.25 gal	conf.		n, gh	PA	- 566	- m 3	05
Duplicate collected?	No							
Sample collection by:	JAMA	CO2-	M	n2-	Fe(1	[]-	Fe2	
Others present:		Well	Condition:	600	d			
MW: groundwater monitor	ing well WS: water	supply well	SW: su	rface water	SE: sedi	ment ol	ther:	
VOC- semi-volal	tile- gene	eral- 2	nutrient-	2 cyani	de- 1	DRO-	Sulfide	}-
oil,grease- bacte	ria - total	metal- Q	filtered	metal- 2	met	hane-	fil	ter-
Others:	.					. <u> </u>		

Client: Poymer	t Mining C	orp.		Monitoring Point: MW-05-08					
Location: Nora	thMet			Date: 3/23/05					
Project #: 23/6	9-862-000	+-005	Sar	nple Time:	10:4	5			
GENERAL	DATA			STABI		TEST		· · · · · · · · · · · · · · · · · · ·	
Barr lock:	Yes	Time/	Temp.	ms/ cm ³ Cond.		ORP		Turbidity	
Casing diameter:	2"	Volume	°C	@ 25	рН	El	D.O.	Appearance	
Total well depth:*	20.55	2 min 4 min	4.05	0.191	8.05 7.63	12.9	1	clear	
Static water level:*	3.21	9 min 11 min	4.38	0.202	7.41	-159.9	1		
Water depth:*	17.34	13 min	4.38	0.194	7.20	-205.3	· ·		
Weil volume: (gal)	a.83	19min	4.37	0.183	7.20	- 176.3			
Purge method:	Peristaltic								
Sample method:	Peristaltic								
Start time:	10:23	Odor: N	one					·····	
Stop time:	10:42	Purge Appe	earance:	clear					
Duration: (minutes)	19	Sample Ap	pearance:	clea					
Rate, gpm:	0.5	Comments	:						
Volume, purged:	9.5 gal	4							
Duplicate collected?	Yes								
Sample collection by:	JAMQ	CO2-	N	1n2-	Fe(T)-	Fe2	ی میں دور اور اور اور اور اور اور اور اور اور ا	
Others present:		Well	Condition	Goo	od				
MW: groundwater monito	oring well WS: wate	r supply well	SW: su	rface water	SE: sed	iment ot	her:		
VOC- semi-vola	tile- gene	eral- 4	nutrient-	+ cyani	də- 🔍	DRO-	Sulfide	}-	
oil,grease- bacte	eria- total	metal- 4	filtere	d metal- 4	me	thane-	fil	ter-	
Others:									

Client: PolyMet	= Mining	Corp.	Mor	nitoring Po	int: Mn	1-05-0	n-7	
Location: Nort	hMet	t	Dat	e: 3/2	3/05			
Project #: 23/6		04-00	S San	nple Time:	8:58	3		
GENERAL			, <u></u>	STABIL	IZATION	TEST		· · · · · · · · · · · · · · · · · · ·
Barr lock:	Yes			ms/ cm ³		ORP		Turbidity
Casing diameter:	211	Time/ Volume	Temp. ℃	Cond @ 25	pН	Eh	D.O.	Appearance
Total well depth:*	16.15	1 min	3.65	0122	7.29	183.9		Clear
Static water level:*	10.11	Bmin	3.77	0.115	6.60	208.2		
Water depth:*	6.04	Smin	3.95	0.132	6.51	202.5	~	
Well volume: (gal)	0.98	7 min	4.09	0.140	6.59	192.6	<i></i>	<u> </u>
Purge method:	Peristaltic	Ilmin	4.20	0.139	6.62	187.8	-	
Sample method:	Peristaltic							
Start time:	8:37	Odor: 📐	lone					
Stop time:	8:48	Purge Appe	earance:	Clear				
Duration: (minutes)	<u>+ 1</u>	Sample Ap	pearance:	Clea	<u>۲</u>			
Rate, gpm:	0.25	Comments						
Volume, purged:	2.75	Purg	ed a	kry o min	efter	- 11	min	ntes,
Duplicate collected?	No	San	ple	MIM			e	
Sample collection by:	JANZ	CO2-	M	n2-	Fe(Г)-	Fe2	-
Others present:		Well	Condition:					
MW: groundwater monito	ring well WS: water	supply well	SW: su	rface water	SE: sedi	ment ot	her:	
VOC- semi-vola	tile- gene	eral-2	nutrient- a	ઽ_ cyani	de-	DRO-	Sulfide	e-
oil,grease- bacte	eria- total	metal- २	filtered	metal- S	<u> </u>	lhane-	fil	ter-
Others:								

Appendix D

Appendix D Groundwater Analytical Data Reports

NOTE:

At the time of sample collection, the names of the exploratory boreholes were unknown and temporary names were given to the samples collected from these boreholes. The table below shows the temporary borehole names and the actual borehole names. The temporary names are used in this appendix, while the actual borehole names are used throughout the report.

Actual Borehole Name	Temporary Borehole Name
05-407M	26100
05-401M	East

MDH Laboratory # 027-137-157

Sample ID:S050691455Project #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:26100		Status: NTS COC No Sampled Completed	: 3/10/2005 1:04/13/2005	5		
Notes: High solids. c: Elevated reporting limit due to	3/69-86	2		APR 1 & 2005 ENGINEERING CO.		
Analyte	Analysis Date	Result	Units	RL	Method	
Alkalinity, Total as CaCO3	3/24/2005	93.7	mg/L	10	310.1	
Aluminum	3/17/2005	39900	ug/L	250	200.7	
Antimony	3/24/2005	< 3	ug/L	3	204.2	
Arsenic	3/25/2005	4.4	ug/L	2	206.2	
Barium	3/17/2005	92.1	ug/L	10	6010B/200.7	
Beryllium	3/21/2005	0.8	ug/L	0.2	210.2	
Boron	3/17/2005	183	ug/L	35	200.7	
Cadmium	3/21/2005	< 0.2	ug/L	0.2	213.2	
Calcium	3/17/2005	38.5	mg/L	0.5	200.7	
Chloride	3/22/2005	2.7	mg/L	0.5	325.2	
Chromium	3/23/2005	42	ug/L	1	218.2	
Cobalt	3/23/2005	19.9	ug/L	1	219.2	
COD	3/25/2005	33.9	mg/L	10	SM 5220-D	
Copper	3/17/2005	587	ug/L	5	200.7	
Cyanide	3/18/2005	< 0.02	mg/L	0.02	335.2	
Fluoride	3/21/2005	0.49	mg/L	0.1	340.2	
Hardness (Calculated)	4/13/2005	149	mg/L	1	200.7	
Iron	3/17/2005	24.5	mg/L	0.3	200.7	
Lead, GF	3/23/2005	9.5	ug/L	1	239.2	
Magnesium	3/17/2005	12.8	mg/L	0.5	200.7	
Manganese	3/17/2005	0.2	mg/L	0.01	200.7	
Mercury, Low Level	3/18/2005	3.4	ng/L	0.5	1631E	

Approved By:

______ Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 1 of 7

MDH Laboratory # 027-137-157

Sample ID: S050691455	Project #:	Sampler: Client	Type: Grab
Client: Barr Engineer Study: Consultant Descript: PolyMet Location: 26100	l	Status: Normal NTS COC No: 47646 Sampled: 3/10/2005 9: Completed: 04/13/2005	Matrix: Liquid 30 AM

Notes:

High solids.

c: Elevated reporting limit due to matrix effects.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	3/22/2005	< 0.025	ng/L	0.025	1631E
Molybdenum, GF	3/21/2005	< 5	ug/L	5	246.2
Nickel	3/17/2005	172	ug/L	5	200.7
Nitrogen, Ammonia	3/16/2005	1.9	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	3/15/2005	< 0.1	mg/L	0.1	353.2
Palladium	3/17/2005	c<50	ug/L	50	200.7
рН	3/11/2005	9.8	SU	0.1	150.1
Phosphorous, Total	3/17/2005	1.1	mg/L	0.1	365.4
Platinum	3/17/2005	<25	ug/L	25	200.7
Potassium	3/17/2005	5.2	mg/L	2	200.7
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/24/2005	7.4	ug/L	1	272.2
Sodium	3/17/2005	38.2	mg/L	0.5	200.7
Strontium	3/17/2005	143	ug/L	4	200.7
Sulfate	3/18/2005	24.7	mg/L	1	375.4
Thallium	3/24/2005	<2	ug/L	2	279.2
Fitanium	3/30/2005	765	ug/L	100	283.2
ГОС	3/17/2005	2.6	mg/L	1	415.1
Zinc	3/17/2005	46.8	ug/L	10	200.7

Approved By:

m

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 2 of 7

MDH Laboratory # 027-137-157

Sample ID:S050691501Project #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:East	Sampler: Client Status: Normal NTS COC No: 47646 Sampled: 3/10/2005 11 Completed: 04/13/2005	Type: Grab Matrix: Liquid 1:30 AM
Notes: Clean sample		

Analyte	Analysis Date	Result	Units	RL	Method
Alkalinity, Total as CaCO3	3/24/2005	106	mg/L	10	310.1
Aluminum	3/17/2005	3170	ug/L	25	200.7
Antimony	3/24/2005	< 3	ug/L	3	204.2
Arsenic	3/25/2005	<2	ug/L	2	206.2
Barium	3/17/2005	< 10	ug/L	10	6010B/200.7
Beryllium	3/21/2005	< 0.2	ug/L	0.2	210.2
Boron	3/17/2005	<35	ug/L	35	200.7
Cadmium	3/21/2005	< 0.2	ug/L	0.2	213.2
Calcium	3/17/2005	20.5	mg/L	0.5	200.7
Chloride	3/22/2005	1.7	mg/L	0.5	325.2
Chromium	3/23/2005	4.6	ug/L	1	218.2
Cobalt	3/23/2005	2.2	ug/L	1	219.2
COD	3/25/2005	17.7	mg/L	10	SM 5220-D
Copper	3/17/2005	53.3	ug/L	5	200.7
Cyanide	3/18/2005	< 0.02	mg/L	0.02	335.2
Fluoride	3/21/2005	0.14	mg/L	0.1	340.2
Hardness (Calculated)	4/13/2005	61.7	mg/L	1	200.7
Iron	3/17/2005	3.05	mg/L	0.03	200.7
Lead, GF	3/23/2005	< 1	ug/L	1	239.2
Magnesium	3/17/2005	12.2	mg/L	0.5	200.7
Manganese	3/17/2005	0.14	mg/L	0.01	200.7
Mercury, Low Level	3/18/2005	1	ng/L	0.5	1631E

Approved By:

¥УY

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

MDH Laboratory # 027-137-157

Sample ID:S050691501Project #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:East	Sampler: ClientType: GrabStatus: NormalMatrix: LiquidNTS COC No: 47646Sampled: 3/10/2005Sampled: 3/10/200511:30 AMCompleted: 04/13/2005
Notes:	

Clean sample

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	3/22/2005	< 0.025	ng/L	0.025	1631E
Molybdenum, GF	3/21/2005	< 5	ug/L	5	246.2
Nickel	3/17/2005	18.3	ug/L	5	200.7
Nitrogen, Ammonia	3/16/2005	0.61	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	3/15/2005	< 0.1	mg/L	0.1	353.2
Palladium	3/17/2005	< 25	ug/L	25	200.7
pH	3/11/2005	8.1	SU	0.1	150.1
Phosphorous, Total	3/17/2005	0.2	mg/L	0.1	365.4
Platinum	3/17/2005	<25	ug/L	25	200.7
Potassium	3/17/2005	1.9	mg/L	0.2	200.7
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/24/2005	1.1	ug/L	1	272.2
Sodium	3/17/2005	8.6	mg/L	0.5	200.7
Strontium	3/17/2005	48	ug/L	4	200.7
Sulfate	3/18/2005	13.6	mg/L	1	375.4
Thallium	3/24/2005	<2	ug/L	2	279.2
Titanium	3/30/2005	66.8	ug/L	10	283.2
тос	3/18/2005	3.9	mg/L	1	415.1
Zinc	3/17/2005	<10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 4 of 7

MDH Laboratory # 027-137-157

Sample ID:S050691502Project #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:26100	Sampler: Client Status: Normal NTS COC No: 47646 Sampled: 3/10/2005 9: Completed: 03/31/2005	Type: Grab - Filtered Matrix: Liquid 30 AM
Notes:		

Dirty looking sample.

Analyte	Analysis Date	Result	Units	RL	Method
Aluminum	3/15/2005	126	ug/L	25	200.7
Cadmium	3/30/2005	< 0.2	ug/L	0.2	213.2
Chromium	3/29/2005	< 1	ug/L	1	218.2
Copper	3/29/2005	<2	ug/L	2	220.2
Molybdenum, GF	3/29/2005	<5	ug/L	5	246.2
Nickel	3/29/2005	<2	ug/L	2	249.2
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/25/2005	<1	ug/L	1	272.2
Zinc	3/15/2005	< 10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 5 of 7

MDH Laboratory # 027-137-157

Sample ID:S050691503Project #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:East		Status NTS COC No Sampleo	Sampler: Client Type: Grab - Filtered Status: Normal Matrix: Liquid NTS COC No: 47646 Sampled: 3/10/2005 11:30 AM Completed: 03/31/2005				
Notes:							
Clean sample.							
		Result	Units	RL	Method		
Analyte	Analysis Date			25	200.7		
Aluminum	3/15/2005	62.5	ug/L				
Cadmium	3/30/2005	< 0.2	ug/L	0.2	213.2		
Chromium	3/29/2005	<1	ug/L	1	218.2		
Copper	3/29/2005	2.2	ug/L	2	220.2		
Molybdenum, GF	3/29/2005	< 5	ug/L	5	246.2		
Nickel	3/29/2005	6.2	ug/L	2	249.2		
Selenium, GF	3/29/2005	<2	ug/L	2	270.2		
Silver	3/25/2005	< 1	ug/L	1	272.2		
Zinc	3/15/2005	< 10	ug/L	10	200.7		

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 6 of 7

MDH Laboratory # 027-137-157

Sample ID:S05069150AProject #:Client:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:Equipment Blank		Sampler: Client Status: Normal NTS COC No: 47646 Sampled: 3/10/2005 10:0 Completed: 03/21/2005		Matrix	Type: Grab Matrix: Liquid 00 AM	
Notes:						
Analyte	Analysis Date	Result	Units	RL	Method	
Mercury, LL Equipment Blan	3/18/2005	0.4	ng/L	0.2	1631E	

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Wednesday, April 13, 2005

NTS Laboratory Data Base System

Page 7 of 7

Frontier GeoSciences Inc.

414 Pontius Ave N Seattle, WA 98109

206-622-6960 fax 206-622-6870 April 5, 2005

Renee Stone Northeast Technical Services 315 Chestnut Street P.O. Box 1142 Virginia, MN 55792

RE: Methyl Mercury in Aqueous Samples

Dear Ms. Stone,

Enclosed are the results for methyl Hg in the water samples collected on March 10, 2005. The samples were received by Frontier in good condition on March 11, 2005 within a sealed cooler at 3.1 °C.

Immediately following sample receipt, the samples for methyl mercury were preserved with 0.4% (v/v) hydrochloric acid and placed into refrigerated storage. Methyl mercury in water analysis was determined by distillation, aqueous phase ethylation, isothermal GC separation, and cold vapor atomic fluorescence spectrometry (CVAFS) detection. Analysis was performed on March 22, 2005 according to Frontier's standard operating procedure (SOP) FGS-070.

Analytical Issues:

There were no analytical issues to report and all quality control were within acceptable limits. Please note that the samples arrived without any unique identification. The numbers listed on the COC were not written on the samples themselves. The sample custodian assigned the label "A Clear" to the sample without any visible particulate, and the label "B Cloudy" to the sample with visible particulate matter.

Please feel free to contact me with any questions regarding this report.

Sincerely,

Laura Daniels Project Coordinator laurad@frontiergeosciences.com

Innovative Solutions • Environmental Research • Analytical Services www.FrontierGeoSciences.com

Northeast Technical Services c/o Renee Stone

analyzed by: Frontier Geosciences, Inc. 414 Pontius Avenue North, Seattle, WA 98109 phone: (206) 622-6960 fax: (206) 622-6870

Samples analyzed:	March 22, 20	05 (MHC	G7-050322-1)

Sample Identification	Date Collected	Methyl Hg, ng/L (ppt)*
A Clear 🔅	3/10/05	ND (<0.025)
B Cloudy 🌣	3/10/05	ND (<0.025)

☆= Sample ID assigned upon reciept, please see narrative

*Blank corrected

ND-Sample concentration below reporting limit.

Northeast Technical Services c/o Renee Stone

analyzed by: Frontier Geosciences, Inc. 414 Pontius Avenue North, Seattle, WA 98109 phone: (206) 622-6960 fax: (206) 622-6870

Samples analyzed:	March 22,	2005 ((MHG7-050322-1)
-------------------	-----------	--------	-----------------

						Methyl		
	L							
	Idei	ntitica						
			fion –					

Method blanks

Blank-1	0.010
Blank-2	0.021
Blank-3	0.009
Mean	0.013
Estimated MDL	0.020
Reporting Limit	0.025

Estimated MDL = 3×3 standard deviation of the method blanks

Certified Reference Material

DORM-2	4,545 ng/L
recovery	101.7%
reference value	4,470 ng/L

Acceptance limit: 75-125%

Northeast Technical Services c/o Renee Stone

analyzed by: Frontier Geosciences, Inc. 414 Pontius Avenue North, Seattle, WA 98109 phone: (206) 622-6960 fax: (206) 622-6870

Samples analyze	d: March 22, 2005 (MI	IG7-050322-1)
Sample	Date	Methyl Hg,
Identification	Collected	ng/L (ppt)*

Analytical Replicates

Batch QC	-	1.451
Methed Duplicate		1.399
Mean		1.425
RPD		3.6%

Acceptance limit: 25%

*Blank corrected

Northeast Technical Services c/o Renee Stone

analyzed by: Frontier Geosciences, Inc. 414 Pontius Avenue North, Seattle, WA 98109 phone: (206) 622-6960 fax: (206) 622-6870

Samples analyzed:	March 22, 2005	(MHG7-050322-1)	
			_

					i fanta da da da da
a Maladi wa Maladi a					
				Viethvi Ha	
Namnle		Date		Methvl Hø	
Country IV					
T 1 4.0 11					
Identificati		Collected		ng/L (ppt)	

Matrix Spikes

-	0.340
-	2.521
	2.000
	2.181
	109.1%
	2.495
	2.000
	2.155
	107.8%
	1.2
-	-

Acceptance limit: 75-125%

MS-matrix spike

MSD-matrix spike duplicate

RPD-relative percent deviation

*Blank corrected

															ſ
NORTHEAST TECHNICAL SERVICES, IN 315 Chestnut Street PO Box 1142 Virginia, MN 55792 (218)741-4290 Fax (218) 741-4291	JCAL 5 (1142 11-4291	SER VIC	,ES, II	XC.								CHAIN C PAGE [COC# <u>1</u>	CHAIN OF CUSTODY RECORD PAGE 1 OF 1 COC# <u>イイ(クイ(</u> の		
CLENT NAME, ADDRESS, PHONE#: Barr Engineering 332 W Superior St Duluth, M N SS802	NVOICE TO: Bacr. MP 15,	Engineering W 774 St	the St	REPORT TO: 11, 10 4700 V	1 2 3	2 Pint	4 in	NO PRES.	EONH - S POSZH - SJ	7 <i>5 -</i> HCT	но∽И свенсг иатню		SPECIAL INSTRUCTIONS:		
PROJECT: POLYMCE	SAMPLER:	Mou	PERMIT REQ.:	ä	1)			CENERAL 1691	เพลเลาบพ						T
NTS LOG-IN NO: DESCRIPTION:	START DATE:	SAMPLE CULLECTION DATE	SAMPLE COL	SAMPLE COLLECTION TIME START TIME: END TIME:	COMP GRAB	VB LIQ. SC	یے آ		CONT	CONTAINERS	1	ANALYSIS:			1
ke ke ka	3 ic/os		4.30					t X	~ ~ ~		-	See	attaile		Τ
•	3/0/02	1	11:30	1		X		+ <u>ナ</u> メ		2		Ser Zer	1		<u> </u>
150A Eguip. Blank	20/01/2	1	00;01	1	<u>Х</u>	X						Total	הר ור אש	M. 1631	
														- - -	
SAMPLED BY: Jere Mohr		RELINQUISHED BY	C	1	lut	DATE	DATE: 3/19/0	C REI	LINQUISH	ED TO M	ITS SAI	DATE: ディックシス RELINQUISHED TO NTS SAMPLE LOCK-UP: TIME: (3: ナビ		DATE: TIME:	
RELINQUISHED BY:	DATE: TIME:	RECEIVED BY:				DATE: TIME:			CEIVED FI	ROM NT	S SAMF	RECEIVED FROM NTS SAMPLE LOCK-UP:		DATE: THME:	
RECEIVED BY:	DATE: TIME:	RELINQUISHED BY:	BY:			DATE: TIME:		<u> </u>	RECEIVED FOR LAB B	La K		1 JD Ca	DATE: 3-10-05	OS SAMPLE TEMP:	
								{	"			en ice]	-	1

23/69-8622004005

MDH Laboratory # 027-137-157

Sample ID:S050821534PrClient:Barr EngineeringStudy:ConsultantDescript:PolyMetLocation:MW-05-02	roject #: 6845	Status: NTS COC No Sampled	r: Client : Normal : 47825 : 3/23/2005 1 1:04/29/2005	Matri	9: Grab x: Liquid
Notes:				RFC	FINED
a- Laboratory control spike not w n Matrix Spike recovery not withi *Reporting limit raised for mercu	n control limits, rec	overy 118%.		MAY (D 6 20 05
Analyte	Analysis Date	Result	Units	ENGINE	ERING CO.
Alkalinity, Total as CaCO3	3/29/2005	88.3	mg/L	10	310.1
Aluminum	4/5/2005	322	ug/L	25	200.7
Antimony	3/31/2005	<3	ug/L	3	204.2
Arsenic	3/30/2005	3.2	ug/L	2	206.2
Barium	4/5/2005	<10	ug/L	10	6010B/200.7
Beryllium	3/31/2005	< 0.2	ug/L	0.2	210.2
Boron	4/5/2005	<35	ug/L	35	200.7
Cadmium	3/31/2005	< 0.2	ug/L	0.2	213.2
Calcium	4/5/2005	30.1	mg/L	0.5	200.7
Chloride	4/4/2005	1.3	mg/L	0.5	325.2
Chromium	4/11/2005	1.2	ug/L	1	218.2
Cobalt	4/11/2005	< 1	ug/L	1	219.2
COD	3/29/2005	12.4	mg/L	10	SM 5220-D
Copper	4/11/2005	11.2	ug/L	2	220.2
Cyanide	3/29/2005	< 0.02	mg/L	0.02	335.2
Fluoride	4/4/2005	0.21	mg/L	0.1	340.2
Hardness (Calculated)	4/14/2005	84.8	mg/L	1	200.7
Iron	4/5/2005	0.35	mg/L	0.05	200.7
Lead	4/4/2005	< 1	ug/L	1	7421
Magnesium	4/5/2005	2.3	mg/L	0.5	200.7
Manganese	4/5/2005	< 0.03	mg/L	0.03	200.7
Mercury, Low Level	4/18/2005	*<2	ng/L	2	1631E

Approved By:

Ø Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 1 of 16

MDH Laboratory # 027-137-157

Sample ID: S050821534 Project #: 6845	Sampler: Client Type: Grab
Client: Barr Engineering	Status: Normal Matrix: Liquid
Study: Consultant	NTS COC No: 47825
Descript: PolyMet	Sampled: 3/23/2005 12:00 PM
Location: MW-05-02	Completed:04/29/2005

Notes:

a-Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

*Reporting limit raised for mercury due to matrix interference.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	4/15/2005	< 0.025	ng/L	0.02	1631E
Molybdenum, GF	3/31/2005	a 16.1	ug/L	5	246.2
Nickel	4/11/2005	<2	ug/L	2	249.2
Nitrogen, Ammonia	3/30/2005	0.24	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	4/4/2005	0.33	mg/L	0.1	353.2
Palladium	4/5/2005	<25	ug/L	25	200.7
pH	3/25/2005	10	SU	0.1	150.1
Phosphorous, Total	3/30/2005	0.14	mg/L	0.1	365.4
Platinum	4/5/2005	<25	ug/L	25	200.7
Potassium	4/5/2005	n 1.6	mg/L	1	200.7
Selenium, GF	3/30/2005	<2	ug/L	2	270.2
Silver	4/3/2005	< 1	ug/L	1	272.2
Sodium	4/5/2005	11.9	mg/L	0.5	200.7
Strontium	4/5/2005	191	ug/L	4	200.7
Sulfate	4/6/2005	10.8	mg/L	1	375.4
Thallium	3/31/2005	<2	ug/L	2	279.2
Fitanium	4/1/2005	30.7	ug/L	10	283.2
ГОС	4/4/2005	8	mg/L	1	415.1
Zinc	4/5/2005	<10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 2 of 16

MDH Laboratory # 027-137-157

Sample ID: S050821543 Project #: 6845	Sampler: Client Type: Grab
Client: Barr Engineering	Status: Normal Matrix: Liquid
Study: Consultant	NTS COC No: 47825
Descript: PolyMet	Sampled: 3/23/2005 10:45 AM
Location: MW-05-08	Completed: 04/29/2005

Notes:

a-Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Alkalinity, Total as CaCO3	3/29/2005	72.8	mg/L	10	310.1
Aluminum	4/5/2005	1040	ug/L	25	200.7
Antimony	3/31/2005	< 3	ug/L	3	204.2
Arsenic	3/30/2005	4.4	ug/L	2	206.2
Barium	4/5/2005	32.5	ug/L	10	6010B/200.7
Beryllium	3/31/2005	< 0.2	ug/L	0.2	210.2
Boron	4/5/2005	<35	ug/L	35	200.7
Cadmium	3/31/2005	< 0.2	ug/L	0.2	213.2
Calcium	4/5/2005	14.5	mg/L	0.5	200.7
Chloride	4/4/2005	1.1	mg/L	0.5	325.2
Chromium	4/11/2005	6.1	ug/L	1	218.2
Cobalt	4/11/2005	1.8	ug/L	1	219.2
COD	3/29/2005	12.4	mg/L	10	SM 5220-D
Copper	4/11/2005	10	ug/L	2	220.2
Cyanide	3/29/2005	< 0.02	mg/L	0.02	335.2
Fluoride	4/4/2005	0.19	mg/L	0.1	340.2
Hardness (Calculated)	4/14/2005	64.3	mg/L	1	200.7
Iron	4/5/2005	1.74	mg/L	0.05	200.7
Lead	4/4/2005	< 1	ug/L	1	7421
Magnesium	4/5/2005	6.8	mg/L	0.5	200.7
Manganese	4/5/2005	0.22	mg/L	0.03	200.7
Mercury, Low Level	4/15/2005	5.3	ng/L	2	1631E

Approved By:

SMI

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 3 of 16

MDH Laboratory # 027-137-157

Sample ID	: S050821543	Project #: 6845	Sampler: Client	Type: Grab
Client: Study:	Barr Engineeri Consultant	ng	Status: Normal NTS COC No: 47825	Matrix: Liquid
Descript:			Sampled: 3/23/2005 1	0:45 AM
Location:	MW-05-08		Completed:04/29/2005	

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	4/15/2005	< 0.025	ng/L	0.02	1631E
Molybdenum, GF	3/31/2005	a 35.6	ug/L	5	246.2
Nickel	4/11/2005	7.9	ug/L	2	249.2
Nitrogen, Ammonia	3/30/2005	< 0.1	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	4/4/2005	0.31	mg/L	0.1	353.2
Palladium	4/5/2005	<25	ug/L	25	200.7
pН	3/25/2005	7.4	SU	0.1	150.1
Phosphorous, Total	3/30/2005	0.17	mg/L	0.1	365.4
Platinum	4/5/2005	< 25	ug/L	25	200.7
Potassium	4/5/2005	n 1.6	mg/L	0.4	200.7
Selenium, GF	3/30/2005	< 2	ug/L	2	270.2
Silver	4/3/2005	< 1	ug/L	1	272.2
Sodium	4/5/2005	15.7	mg/L	0.5	200.7
Strontium	4/5/2005	35.9	ug/L	4	200.7
Sulfate	4/6/2005	21.2	mg/L	1	375.4
Thallium	3/31/2005	<2	ug/L	2	279.2
Titanium	4/1/2005	113	ug/L	10	283.2
ТОС	4/4/2005	3.8	mg/L	1	415.1
Zinc	4/5/2005	<10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 4 of 16

MDH Laboratory # 027-137-157

Sample ID: S050821544 Project #: 6845	Sampler: Client Type: Grab
Client: Barr Engineering	Status: Normal Matrix: Liquid
Study: Consultant	NTS COC No: 47825
Descript: PolyMet	Sampled: 3/23/2005 12:30 PM
Location: Supply Well	Completed: 04/29/2005

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Alkalinity, Total as CaCO3	3/29/2005	95.2	mg/L	10	310.1
Aluminum	4/5/2005	<25	ug/L	25	200.7
Antimony	3/31/2005	< 3	ug/L	3	204.2
Arsenic	3/30/2005	<2	ug/L	2	206.2
Barium	4/5/2005	< 10	ug/L	10	6010B/200.7
Beryllium	3/31/2005	< 0.2	ug/L	0.2	210.2
Boron	4/5/2005	128	ug/L	35	200.7
Cadmium	3/31/2005	< 0.2	ug/L	0.2	213.2
Calcium	4/5/2005	12	mg/L	0.5	200.7
Chloride	4/4/2005	0.5	mg/L	0.5	325.2
Chromium	4/11/2005	<1	ug/L	1	218.2
Cobałt	4/11/2005	<1	ug/L	1	219.2
COD	3/29/2005	9.7	mg/L	2	SM 5220-D
Copper	4/11/2005	<2	ug/L	2	220.2
Cyanide	3/29/2005	< 0.02	mg/L	0.02	335.2
Fluoride	4/4/2005	0.25	mg/L	0.1	340.2
Hardness (Calculated)	4/14/2005	60.4	mg/L	1	200.7
Iron	4/5/2005	0.06	mg/L	0.05	200.7
Lead	4/4/2005	<1	ug/L	1	7421
Magnesium	4/5/2005	7.4	mg/L	0.5	200.7
Manganese	4/5/2005	< 0.03	mg/L	0.03	200.7
Mercury, Low Level	4/15/2005	< 0.5	ng/L	0.5	1631E

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 5 of 16

MDH Laboratory # 027-137-157

Sample ID	: S050821544 Project #: 6845	Sampler: Client Type: Grab	
Client:	Barr Engineering	Status: Normal Matrix: Liquid NTS COC No: 47825	
Study: Descript:	Consultant PolvMet	Sampled: 3/23/2005 12:30 PM	
Location:	Supply Well	Completed: 04/29/2005	

Notes:

a-Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	4/15/2005	< 0.025	ng/L	0.02	1631E
Molybdenum, GF	3/31/2005	a<5	ug/L	5	246.2
Nickel	4/11/2005	<2	ug/L	2	249.2
Nitrogen, Ammonia	3/30/2005	< 0.1	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	4/4/2005	< 0.1	mg/L	0.1	353.2
Palladium	4/5/2005	<25	ug/L	25	200.7
pH	3/25/2005	8.7	SU	0.1	150.1
Phosphorous, Total	3/30/2005	< 0.1	mg/L	0.1	365.4
Platinum	4/5/2005	<25	ug/L	25	200.7
Potassium	4/5/2005	n 1.4	mg/L	0.4	200.7
Selenium, GF	3/30/2005	<2	ug/L	2	270.2
Silver	4/3/2005	< 1	ug/L	1	272.2
Sodium	4/5/2005	20.2	mg/L	0.5	200.7
Strontium	4/5/2005	46.5	ug/L	4	200.7
Sulfate	4/6/2005	4.4	mg/L	1	375.4
Thallium	3/31/2005	<2	ug/L	2	279.2
Titanium	4/1/2005	< 10	ug/L	10	283.2
ТОС	4/4/2005	3.9	mg/L	1	415.1
Zinc	4/5/2005	< 10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 6 of 16

MDH Laboratory # 027-137-157

Sample ID	: S05082154A	Project #: 6845	Sampler: Client	Type: Grab
1	Barr Engineeri Consultant PolyMet Duplicate	ng	Status: Normal NTS COC No: 47825 Sampled: 3/23/2005 Completed: 04/29/2005	Matrix: Liquid

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Alkalinity, Total as CaCO3	3/29/2005	65.2	mg/L	10	310.1
Aluminum	4/5/2005	1300	ug/L	25	200.7
Antimony	3/31/2005	<3	ug/L	3	204.2
Arsenic	3/30/2005	3.1	ug/L	2	206.2
Barium	4/5/2005	32	ug/L	10	6010B/200.7
Beryllium	3/31/2005	< 0.2	ug/L	0.2	210.2
Boron	4/5/2005	38	ug/L	35	200.7
Cadmium	3/31/2005	< 0.2	ug/L	0.2	213.2
Calcium	4/5/2005	14.9	mg/L	0.5	200.7
Chloride	4/4/2005	1.3	mg/L	0.5	325.2
Chromium	4/11/2005	4.8	ug/L	1	218.2
Cobalt	4/11/2005	1.6	ug/L	1	219.2
COD	3/29/2005	8.8	mg/L	10	SM 5220-D
Copper	4/11/2005	7.8	ug/L	2	220.2
Cyanide	3/29/2005	< 0.02	mg/L	0.02	335.2
Fluoride	4/4/2005	0.19	mg/L	0.1	340.2
Hardness (Calculated)	4/14/2005	66.1	mg/L	1	200.7
Iron	4/5/2005	1.94	mg/L	0.05	200.7
Lead	4/4/2005	< 1	ug/L	1	7421
Magnesium	4/5/2005	7	mg/L	0.5	200.7
Manganese	4/5/2005	0.22	mg/L	0.03	200.7
Mercury, Low Level	4/15/2005	3.6	ng/L	2	1631E

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 7 of 16

MDH Laboratory # 027-137-157

Sample ID:	S05082154A	Project #: 6845	Sampler: Client	Type: Grab
	Barr Engineerin Consultant PolyMet Duplicate	10	Status: Normal NTS COC No: 47825 Sampled: 3/23/2005 Completed: 04/29/2005	Matrix: Liquid

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	4/15/2005	< 0.025	ng/L	0.02	1631E
Molybdenum, GF	3/31/2005	a 33.1	ug/L	5	246.2
Nickel	4/11/2005	6.2	ug/L	2	249.2
Nitrogen, Ammonia	3/30/2005	< 0.1	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	4/4/2005	0.9	mg/L	0.1	353.2
Palladium	4/5/2005	< 25	ug/L	25	200.7
pН	3/25/2005	7.7	SU	0.1	150.1
Phosphorous, Total	3/30/2005	0.16	mg/L	0.1	365.4
Platinum	4/5/2005	<25	ug/L	25	200.7
Potassium	4/5/2005	n 1.6	mg/L	0.4	200.7
Selenium, GF	3/30/2005	<2	ug/L	2	270.2
Silver	4/3/2005	< 1	ug/L	1	272.2
Sodium	4/5/2005	13.5	mg/L	0.5	200.7
Strontium	4/5/2005	37.1	ug/L	4	200.7
Sulfate	4/6/2005	20.3	mg/L	1	375.4
Thallium	3/31/2005	<2	ug/L	2	279.2
Titanium	4/1/2005	82.6	ug/L	10	283.2
тос	4/4/2005	3.3	mg/L	1	415.1
Zinc	4/5/2005	<10	ug/L	10	200.7

Approved By:

ally

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 8 of 16

MDH Laboratory # 027-137-157

Sample ID	: S05082154B	Project #: 6845	Sampler: Client	Type: Grab
Client: Study:	Barr Engineeri Consultant	ng	Status: Normal NTS COC No: 47825	Matrix: Liquid
1 ~	PolyMet		Sampled: 3/23/2005 8	:58 AM
Location:	MW-05-09		Completed:04/29/2005	

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Alkalinity, Total as CaCO3	3/29/2005	47	mg/L	10	310.1
Aluminum	4/5/2005	4640	ug/L	25	200.7
Antimony	3/31/2005	< 3	ug/L	3	204.2
Arsenic	3/30/2005	3.4	ug/L	2	206.2
Barium	4/5/2005	90.7	ug/L	10	6010B/200.7
Beryllium	3/31/2005	0.3	ug/L	0.2	210.2
Boron	4/5/2005	40.2	ug/L	35	200.7
Cadmium	3/31/2005	< 0.2	ug/L	0.2	213.2
Calcium	4/5/2005	12.1	mg/L	0.5	200.7
Chloride	4/4/2005	5.5	mg/L	0.5	325.2
Chromium	4/11/2005	28.6	ug/L	1	218.2
Cobalt	4/11/2005	5.4	ug/L	1	219.2
COD	3/29/2005	6.9	mg/L	10	SM 5220-D
Copper	4/5/2005	72.2	ug/L	10	200.7
Cyanide	3/29/2005	< 0.02	mg/L	0.02	335.2
Fluoride	4/4/2005	0.1	mg/L	0.1	340.2
Hardness (Calculated)	4/14/2005	53.4	mg/L	1	200.7
Iron	4/5/2005	6.4	mg/L	0.05	200.7
Lead	4/4/2005	5.6	ug/L	1	7421
Magnesium	4/5/2005	5.7	mg/L	0.5	200.7
Manganese	4/5/2005	0.33	mg/L	0.03	200.7
Mercury, Low Level	4/15/2005	18.1	ng/L	2	1631E

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 9 of 16

MDH Laboratory # 027-137-157

Sample ID: S05082154B Project #: 6845	Sampler: Client Type: Grab
Client: Barr Engineering	Status: Normal Matrix: Liquid
Study: Consultant	NTS COC No: 47825
Descript: PolyMet	Sampled: 3/23/2005 8:58 AM
Location: MW-05-09	Completed: 04/29/2005

Notes:

a- Laboratory control spike not within control limits = 84%.

n Matrix Spike recovery not within control limits, recovery 118%.

Analyte	Analysis Date	Result	Units	RL	Method
Mercury, Methyl	4/15/2005	0.043	ng/L	0.02	1631E
Molybdenum, GF	3/31/2005	a 12.4	ug/L	5	246.2
Nickel	4/5/2005	9.6	ug/L	5	200.7
Nitrogen, Ammonia	3/30/2005	< 0.1	mg/L	0.1	350.1
Nitrogen, Nitrate + Nitrite	4/4/2005	< 0.1	mg/L	0.1	353.2
Palladium	4/5/2005	<25	ug/L	25	200.7
рН	3/25/2005	7.5	SU	0.1	150.1
Phosphorous, Total	3/30/2005	0.47	mg/L	0.1	365.4
Platinum	4/5/2005	<25	ug/L	25	200.7
Potassium	4/5/2005	n 2.1	mg/L	1	200.7
Selenium, GF	3/30/2005	<2	ug/L	2	270.2
Silver	4/3/2005	< 1	ug/L	1	272.2
Sodium	4/5/2005	9.5	mg/L	0.5	200.7
Strontium	4/5/2005	37.7	ug/L	4	200.7
Sulfate	4/6/2005	13.8	mg/L	1	375.4
Thallium	3/31/2005	<2	ug/L	2	279.2
Titanium	4/1/2005	620	ug/L	100	283.2
тос	4/4/2005	4.6	mg/L	1	415.1
Zinc	4/5/2005	11.8	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 10 of 16

MDH Laboratory # 027-137-157

Sample ID: Client: Study: Descript: Location:	S05082154C Barr Engineeri Consultant PolyMet Trip Blank	Project #: 6845	Sampler: Client Status: Normal NTS COC No: 47825 Sampled: 3/23/2005 Completed: 04/29/2005		Туре: Grab Matrix: Liquid	
Notes:						
	Analyte	Analysis Date	Result	Units	RL	Method
	Methyl	4/15/2005	< 0.025	ng/L	0.02	1631E

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 11 of 16

MDH Laboratory # 027-137-157

Sample ID:	S05082154D Project #: 6845	Sampler: Client	Type: Grab - Filtered
Client: Study:	Barr Engincering Consultant	Status: Normal NTS COC No: 47825	Matrix: Liquid
Descript:	PolyMet	Sampled: 3/23/2005 12:	:00 PM
Location:	MW-05-02	Completed: 03/31/2005	
Natas			

Notes:

Analyte	Analysis Date	Result	Units	RL	Method
Aluminum	3/29/2005	44.6	ug/L	25	200.7
Cadmium	3/30/2005	< 0.2	ug/L	0.2	213.2
Chromium	3/29/2005	< 1	ug/L	1	218.2
Copper	3/29/2005	8	ug/L	2	220.2
Molybdenum, GF	3/29/2005	13.1	ug/L	5	246.2
Nickel	3/29/2005	<2	ug/L	2	249.2
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/25/2005	< 1	ug/L	1	272.2
Zinc	3/29/2005	<10	ug/L	10	200.7

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 12 of 16

MDH Laboratory # 027-137-157

Sample ID	: S050821550 Project #: 6845	Sampler: Client	Type: Grab - Filtered	
Client: Study:	Barr Engineering Consultant	Status: Normal NTS COC No: 47825	Matrix: Liquid	
Descript:	PolyMet	Sampled: 3/23/2005 10:45 AM		
Location:	MW-05-08	Completed: 03/31/2005		
Notes:				

Analyte	Analysis Date	Result	Units	RL	Method
Aluminum	3/29/2005	214	ug/L	25	200.7
Cadmium	3/30/2005	< 0.2	ug/L	0.2	213.2
Chromium	3/29/2005	< 1	ug/L	1	218.2
Copper	3/29/2005	6.4	ug/L	2	220.2
Molybdenum, GF	3/29/2005	34.4	ug/L	5	246.2
Nickel	3/29/2005	<2	ug/L	2	249.2
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/25/2005	< 1	ug/L	1	272.2
Zinc	3/29/2005	< 10	ug/L	10	200.7

Approved By:

Project Manager:

SIN

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 13 of 16

MDH Laboratory # 027-137-157

Sample ID:S05082155Client:Barr EnginedStudy:ConsultantDescript:PolyMetLocation:MW-05-09		Status NTS COC No Sampleo	r: Client : Normal o: 47825 4: 3/23/2005 4: 03/31/2005	Matri	»: Grab - Filtered x: Liquid
Notes:					
Analyte	Analysis Date	Result	Units	RL	Method
Aluminum	3/29/2005	910	ug/L	25	200.7
Cadmium	3/30/2005	< 0.2	ug/L	0.2	213.2
Chromium	3/29/2005	2.5	ug/L	1	218.2
Copper	3/29/2005	18.2	ug/L	2	220.2
 Molybdenum, GF	3/29/2005	<5	ug/L	5	246.2
Nickel	3/29/2005	<2	ug/L	2	249.2
Selenium, GF	3/29/2005	<2	ug/L	2	270.2
Silver	3/25/2005	< 1	ug/L	1	272.2
	512512005	-			

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

Page 14 of 16

Selenium, GF

Silver

Zinc

"Solutions for Technical Concerns"

3/29/2005

3/25/2005

3/29/2005

MDH Laboratory # 027-137-157

2

1

10

ug/L

ug/L

ug/L

Sample ID:S05082155AClient:Barr EngineerStudy:ConsultantDescript:PolyMetLocation:Duplicate		Status: NTS COC No: Sampled:	: Client Normal : 47825 : 3/23/2005 : 03/31/2005		^{9:} Grab - Filtered ix: Liquid
Notes:					
Analyte	Analysis Date	Result	Units	RL	Method
Analyte Aluminum	Analysis Date 3/29/2005	Result	Units ug/L	RL 25	Method 200.7
Aluminum	3/29/2005	132	ug/L	25	200.7
Aluminum Cadmium Chromium	3/29/2005 3/30/2005	132 <0.2	ug/L ug/L	25	200.7 213.2
Aluminum Cadmium	3/29/2005 3/30/2005 3/29/2005	132 <0.2 <1	ug/L ug/L ug/L	25 0.2 1	200.7 213.2 218.2

< 2

<1

<10

Approved By:

Project Manager:

Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

Friday, April 29, 2005

NTS Laboratory Data Base System

270.2

272.2

200.7

MDH Laboratory # 027-137-157

Sample ID:S05082155FClient:Barr EnginceStudy:ConsultantDescript:PolyMetLocation:Supply Well		45	Statu NTS COC N Sample	er: Client s: Normal lo: 47825 cd: 3/23/2005 1 ed: 03/31/2005	Matri	»: Grab - Filtered x: Liquid
Notes:						
Analyte	Analysis	Date	Result	Units	RL	Method
Aluminum	3/29/20)05	<25	ug/L	25	200.7
Cadmium	3/30/20	005	< 0.2	ug/L	0.2	213.2
Chromium	3/29/20)05	< 1	ug/L	1	218.2
Copper	3/29/20)05	<2	ug/L	2	220.2
Molybdenum, GF	3/29/20	005	< 5	ug/L	5	246.2
Nickel	3/29/20	005	<2	ug/L	2	249.2
		207		/1	2	270.2
Selenium, GF	3/29/20	005	<2	ug/L	4	270.2
<u>Selenium, GF</u> Silver	3/29/20		<2	ug/L ug/L	1	270.2

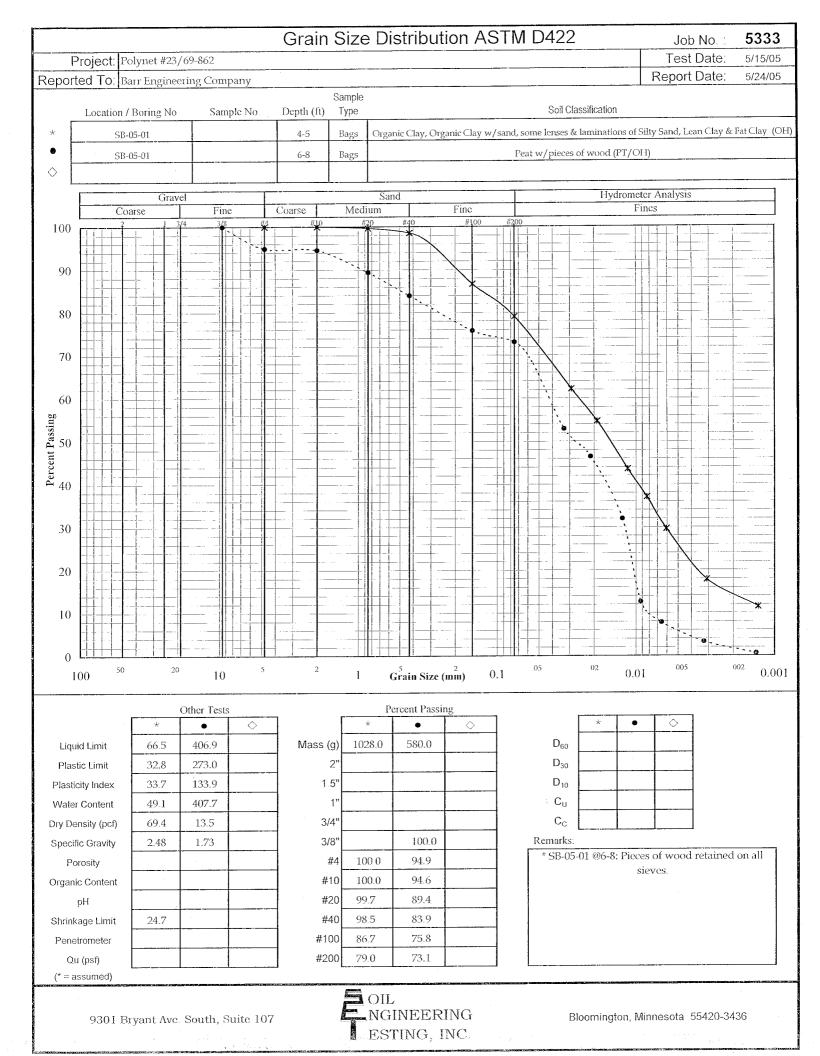
Approved By:

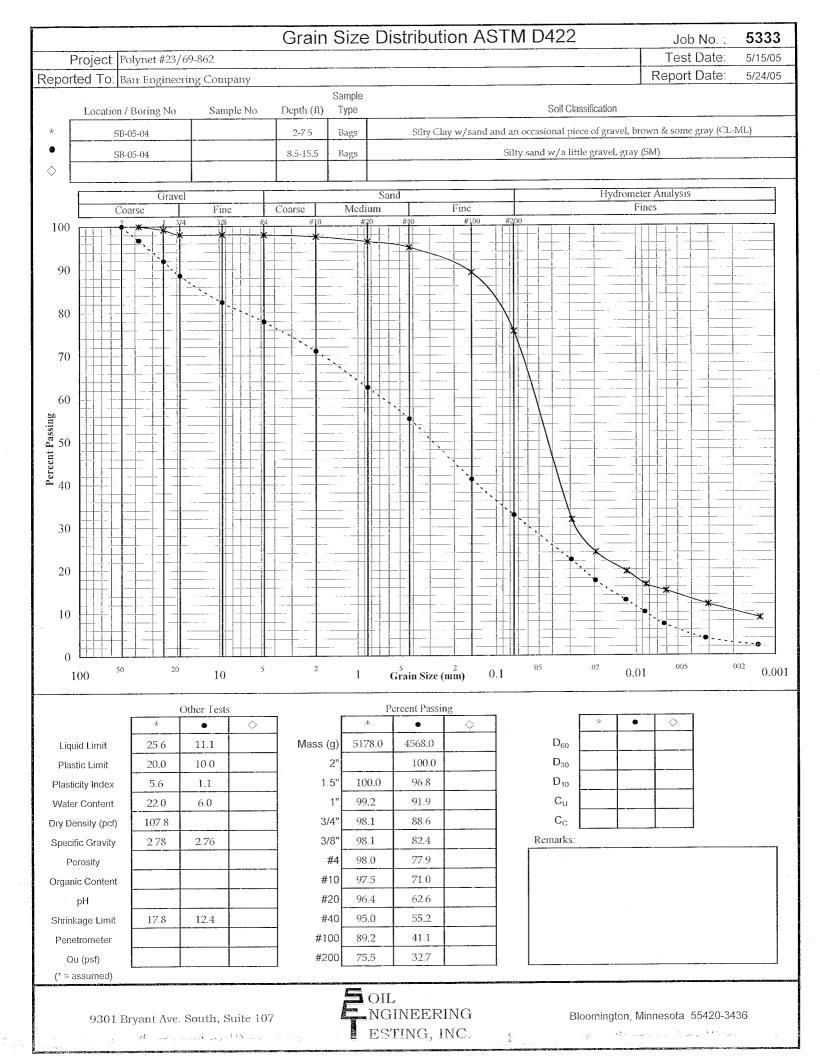
Project Manager:

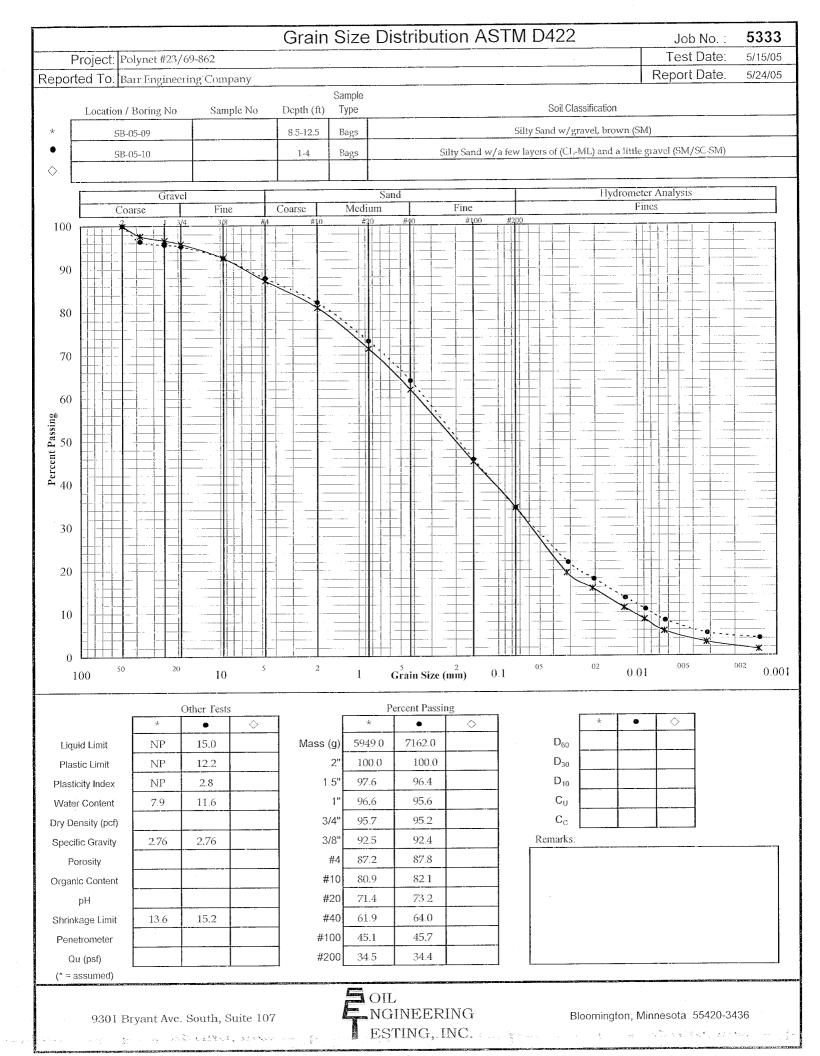
Analyses were performed by methods approved by the U.S. Environmental Protection Agency and the Minnesota Department of Health.

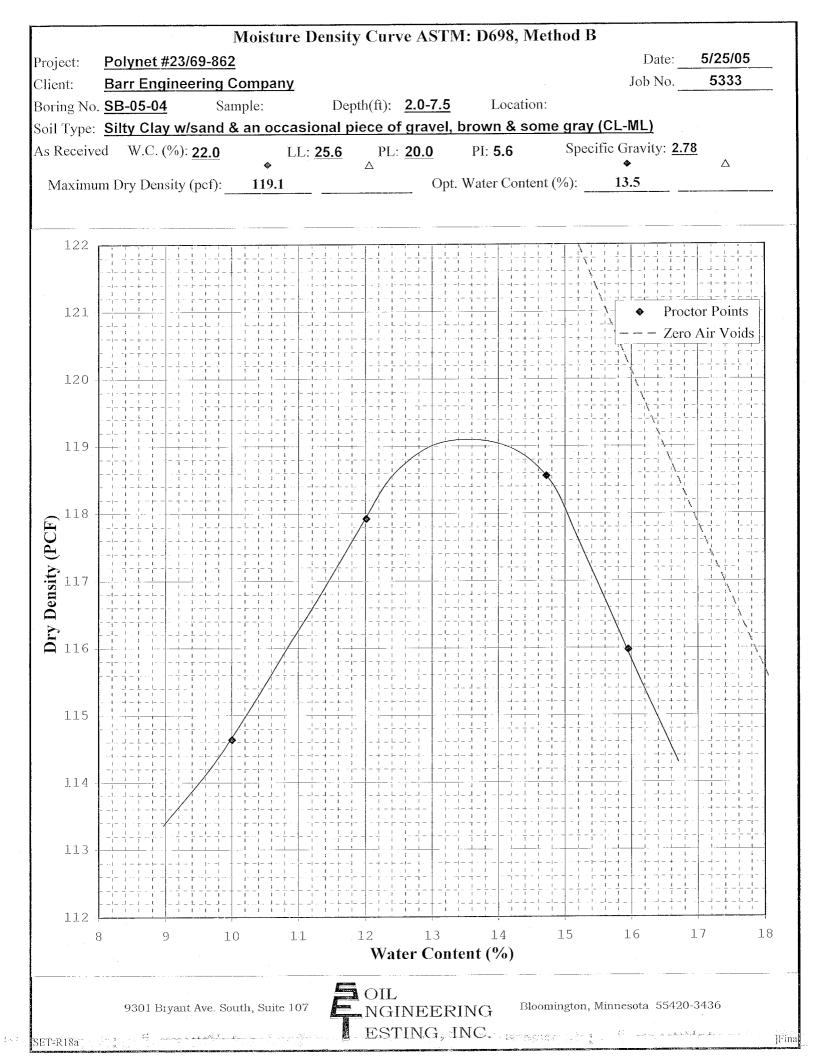
Northeast Technical Services, Inc. makes no warranty except that the analysis has been made upon the samples received in accordance with generally accepted testing laboratory principles and practices. The results of the analysis may not be characteristic of the whole from which the sample was taken. This warranty is in lieu of all other warranties either expressed or implied.

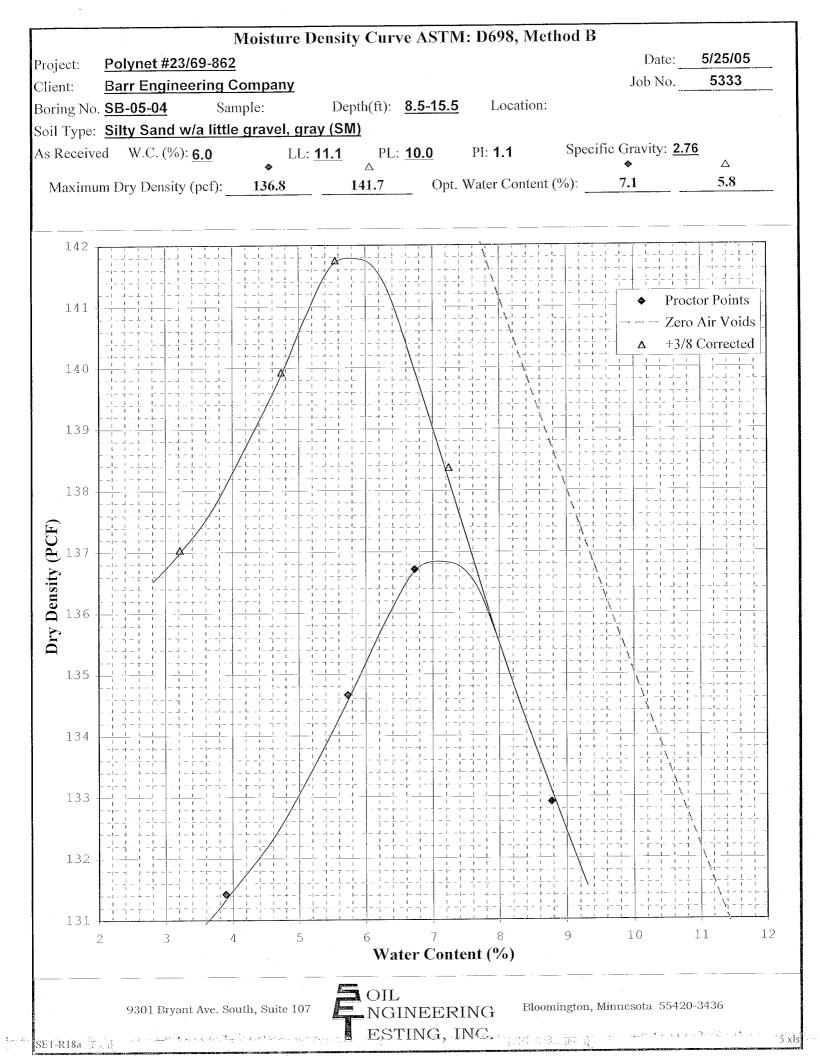
Friday, April 29, 2005

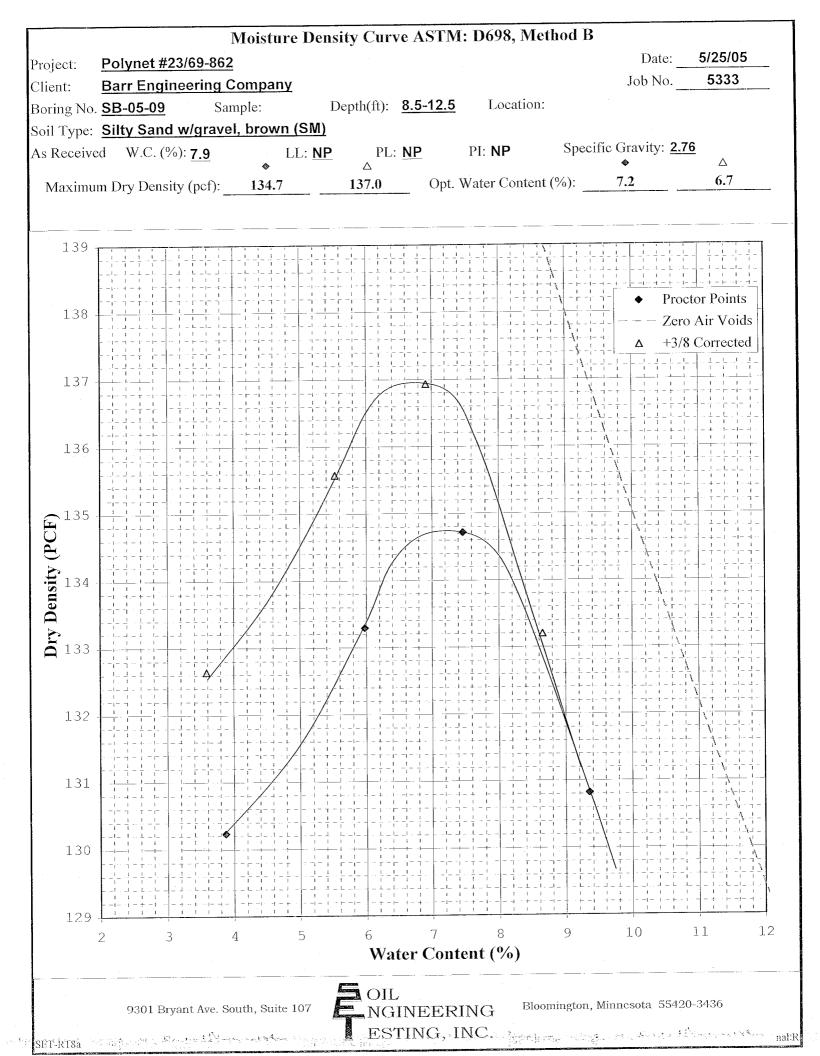

NTS Laboratory Data Base System


Page 16 of 16


Coc# 47825	Project Manager: NELS NELSON Project Contact: Tina Pint Laboratory: NTS Remarks/ Analysis Required:	See attached list		Methyl Hg	See attached							Date Time	ADSUN 3-Bate 13:39	S.7 ° C Rev. 08/01/01
Sys	Total No. Of Containers	ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ	00 00	~ 	69							Received by:	Received by: Air Bill Number:	
NTS# 10845	(HCL)/DRO, IL Glass Lugols, Glass, Amber Formalin, Glass											Time	Time ま、その	ator
N Ú	Mairlpak Whirlpak Total Phenol (H ₂ SO ₄)	<u>6</u> 7	તે તે		ત							Date	Date Jos 1	- Lab Coordinator
Number of Containers Dreservative	Volatile Organic (Unpres.) Volatile Organic (Pres.) Semivolatile Organic Total Metals (HNO3) Dissolved Metals (HNO3)		2 2 2 2 2 2 2 2		к м -							Relinquished By:		- Field Copy; Pink
Chain of Custody	Chain of Custody 4700 West 77th Street 4700 West 77th StreetMinneapolis, MN 55435-4803(952) 832-2600Project Number $2.3 \swarrow 6.9 - 2.6 \circ 2.6 \circ 4$ $2.3 \coprod 6.9 - 2.6 \circ 2.6 \circ 4$ NoNo17756MatrixTypeIdentificationDateTime $\overline{3}$ $\overline{3}$ $\overline{5}$ $\overline{6}$ <t< td=""><td>1. MW-05-02 3/37 12:00 X X 2. MW-05-08 10:45 X X</td><td>3. Dw - 05 - 08 10: 45 × × × × × × × × × × × × × × × × × ×</td><td>×</td><td>6. well 1 1 2:30 X X</td><td>5050321534</td><td>9. 154B</td><td>10. 154 A</td><td>11. 1544 12. 1544</td><td></td><td>15. 16.</td><td>Sampled By:</td><td>Here Mour</td><td>Distribution: White-Original Accompanies Shipment to Lab; Yellow</td></t<>	1. MW-05-02 3/37 12:00 X X 2. MW-05-08 10:45 X X	3. Dw - 05 - 08 10: 45 × × × × × × × × × × × × × × × × × ×	×	6. well 1 1 2:30 X X	5050321534	9. 154B	10. 154 A	11. 1544 12. 1544		15. 16.	Sampled By:	Here Mour	Distribution: White-Original Accompanies Shipment to Lab; Yellow


377


Appendix E



Permeability Test Data

Project: _____

Polynet - #23/69-862

Date: 6/8/2005

Reported To:

Barr Engineering Company

Job No.: 5333-A

Silty Clay w/S & an occasic piece of grav brown & sor gray (CL-M Atterberg Limits LL 25.6 PL 20.0 Pl 5.6 Moisture Density Standard Proctor Opt. Water Content 13.5 Max Dry Den. (pcf) 119.1 Permeability Test Test Wall Flexible Porosity: 0.325 Ht. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	nal rel, Silty Sand w/a ne Little Gravel, Gra	8.5-12.5 Bags Silty Sand w/Gravel, Brown (SM) NP NP NP NP 7.2 134.7	1 0-4.0 Bags Silty Sand w/a Little Gravel (SM/SC-SM) 15.0 12.2 2 8 9 4				
Sample Type:BagsSilty Clay w/S & an occasic piece of grav brown & sor gray (CL-MAtterberg LimitsLL25.6PL20.0PI5.6Moisture Density Standard ProctorOpt. Water Content13.5Max Dry Den. (pcf)119.1Permeability TestTest WallFlexiblePorosity:0.325Ht. (in):3.00Dia. (in):2.85Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	Bags and nal rel, Silty Sand w/a Little Gravel, Grav (SM) 11.1 10.0 1.1 7.1	Bags Silty Sand w/Gravel, Brown (SM) NP NP NP NP 7.2	Bags Silty Sand w/a Little Gravel (SM/SC-SM) 15.0 12.2 2.8				
Silty Clay w/S & an occasic piece of grav brown & sor gray (CL-M Atterberg Limits LL 25.6 PL 20.0 Pl 5.6 Moisture Density Standard Proctor Opt. Water Content 13.5 Max Dry Den. (pcf) 119.1 Permeability Test Test Wall Flexible Porosity: 0.325 Ht. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	and nal el, Silty Sand w/a ne Little Gravel, Grav (SM) 11.1 10.0 1.1 7.1	Silty Sand w/Gravel, Brown (SM) NP NP NP NP 7.2	Silty Sand w/a Little Gravel (SM/SC-SM) 15.0 12.2 2.8	······			
& an occasic piece of grav brown & sor gray (CL-MAtterberg LimitsLL25.6PL20.0PI5.6Moisture Density Standard ProctorOpt. Water Content13.5Max Dry Den. (pcf)119.1Permeability Test	nal silty Sand w/a Little Gravel, Grav	y w/Gravel, Brown (SM) NP NP NP 7.2	Little Gravel (SM/SC-SM) 15.0 12.2 2.8				
LL 25.6 PL 20.0 PI 5.6 Moisture Density Standard Proctor 5.6 Opt. Water Content 13.5 Max Dry Den. (pcf) 119.1 Permeability Test 7 Test Wall Flexible Porosity: 0.325 Ht. (in): 3.00 Dia. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	10.0 1.1 7.1	NP NP 7.2	12.2 2.8				
PL20.0PI5.6Moisture Density Standard Proctor5.6Moisture Density Standard Proctor13.5Max Dry Den. (pcf)119.1Permeability Test119.1Permeability Test119.1Porosity:0.325Ht. (in):3.00Dia. (in):2.85Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	10.0 1.1 7.1	NP NP 7.2	12.2 2.8				
PI5.6Moisture Density Standard ProctorOpt. Water Content13.5Max Dry Den. (pcf)119.1Permeability TestImage: Standard Procession of the standard Process	7.1	NP 7.2	2.8				
Moisture Density Standard ProctorOpt. Water Content13.5Max Dry Den. (pcf)119.1Permeability Test	7.1	7.2					
Standard ProctorOpt. Water Content13.5Max Dry Den. (pcf)119.1Permeability Test119.1Permeability Test119.1Permeability Test0.325Porosity:0.325Ht. (in):3.00100112.90000010001000200030003000400050005000600070008000900 <td></td> <td>-</td> <td>9.4</td> <td></td> <td></td> <td></td> <td></td>		-	9.4				
Max Dry Den. (pcf)119.1Permeability TestTest WallFlexiblePorosity:0 325Ht. (in):3.00Dia. (in):2.85Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press.(Effective-psi):2.010-14Water Temp °C:23.0% Compaction94.8%		-	9.4				
Permeability TesticitiesTest WallFlexiblePorosity:0 325Ht. (in):3.00Dia. (in):2.85Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press.(Effective-psi):2.010-14Water Temp °C:23.0% Compaction94.8%	136.8	134.7				· · · · · · · · · · · · · · · · · · ·	
Test WallFlexiblePorosity:0 325Ht. (in):3.00Dia. (in):2.85Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press.2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%			131.4				
Dia. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%							
Dia. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	Flexible	Flexible	Flexible				
Dia. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	0.228	0.237	0.251				
Dia. (in): 2.85 Dry Density (pcf): 112.9 Water Content: 16.1% Test Type: Falling Max Head (ft): 3.9 Confining press. (Effective-psi): 2.0 Trial No.: 10-14 Water Temp °C: 23.0 % Compaction 94.8%	3.00	3.00	3.00				
Dry Density (pcf):112.9Water Content:16.1%Test Type:FallingMax Head (ft):3.9Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	2.85	2.85	2.85				
Test Type:FallingMax Head (ft):3.9Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	129.2	127.7	125_3				
Max Head (ft):3.9Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	9.6%	9.6%	12.0%				
Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	Falling	Falling	Falling				
Confining press. (Effective-psi):2.0Trial No.:10-14Water Temp °C:23.0% Compaction94.8%	3.9	3.9	3.9	·	-		
Water Temp °C:23.0% Compaction94.8%	2.0	2.0	2.0				
% Compaction 94.8%	8-12	12-16	10-14				
	23.0	23.0	23.0				
	94_5%	94.8%	95.4%				
% Saturation (After Test) 95.6%							
		Coefficient of I					.
K @ 20 °C (cm/sec) 8.7 x 10 ⁻⁸	6.0 x 10 ⁻⁷	1.5 x 10 ⁻⁶	1.5 x 10 ⁻⁷				
K @ 20 °C (ft/min) 1.7 x 10 ⁻⁷	5.6 x 10 ⁻⁶	2.9 x 10 ⁻⁶	3.0 x 10 ⁻⁷				

9301 Bryant Ave South Suite 107

JOIL NGINEERING ESTING, INC. and the second state of the second state of the second state of the

Bloomington, Minnesota 55420-3436

University of Minnesota Soil Testing Laboratory	linn€ tory	sota				0)	SOIL TEST REPORT	TEST REP	REP	ORT		Client Copy Department of Soil, Water, an Minnesota Extension Service	Client at of Soil, V Extension	Client Copy Department of Soil, Water, and Climate Minnesota Extension Service	Climate
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			S	SOIL ENGINEERING TESTING, INC	JEERING	TESTING			04144	-		Agricultura	ll Experime	Agricultural Experiment Station	
53 -05-01		4'toS'	√ 0	ATTN: JOHN WH SUITE 107	N WHELAN	Z				Page		~			
			் கீ மீ	9301 BRYANT AVE BLOOMINGTON M	TON MN	/E S MN 55420-3436	436			Repo	Report No. Laboratory No.	29239 60688	00 88 80 90		
										Date	Date Received		05/17/2005		
Sample/Field Number: 4T05					(0	SOIL TEST	RESUL	TS		Date	Reported		05/19/2005		
Estimated Organic Soluble Soil Matter Salts Texture % mmhos/cm	H	Buffer Index	Nitrate NO3-N ppm	Olsen Phosphorus ppm P	Bray 1 Phosphorus ppm P	Potassium ppm K	Sulfur SO4 -S ppm	Zinc ppm	lron ppm	Manganese ppm	Copper ppm	Boron ppm	Calcium ppm	Magnesium ppm	Lead ppm
Medium 9.8	5.6	6.1			10	30									
				INT	ERPRET	INTERPRETATION OF		SOIL TEST RESULTS	JLTS						
Phosphorus (P)	dddddddd	dddc							Hđ	**************************************		****	-	-	-
	5 Low	10 Medium	15 ium	20 Hiah	25 <	.5 V. Hiah	_			3.0 4.0 Acid	0 2.0	6.0 Optimum	7.0	8.0 9.0 Alkaline	9.0 line
Potassium (K) KKKK	XX			>		>		Solubl	Soluble Salts	-	-		-	-	-
	25 Low	75 1 Medium	125 lium	175 High	225 V.	25 V. High	_			0 1.0 2.0 Satisfactory	3.0	5.0 sible F		8.0 9.0 10.0 Excessive Salts	10.0 e Salts
					R	ECOMME	NDATION	S FOR: B	efore see	RECOMMENDATIONS FOR: Before seeding or sodding	dding				
LIME RECOMMENDATION: 0 LBS/1,000 SQ.FT. TOTAL AMOUNT OF EACH NUTRIENT TO APPLY PER YEAR:* NITROGEN 1 LBS/1,000 SQ.FT. 44 LBS/ACRE THE APPROXIMATE RATIO OR PROPORTION OF THESE NUTRIENTS IS: 5-25-30	LBS/1,0 JTRIEN GEN 00 SQ.F ⁻ ACRE R PROF	00 SQ.F ⁻ T TO APF T. ² ORTION	T PLY PER Y I OF THES	/EAR:* ie Nutrien	ITS IS: 5-2	РНО9 5 LBS/1, 220 LI 25-30	PHOSPHATE 5 LBS/1,000 SQ.FT. 220 LBS/ACRE -30				Ö	Grass not watered CI POTASH 6 LBS/1.000 SQ.FT. 260 LBS/ACRE	Щ Ц	Clippings not removed T.	emoved
During preparation of the seedbed and prior to seeding, till into the top 4-6 inches of soil a fertilizer that supplies the recommended amount of phosphate and potash (ie. a fertilizer that contains little or no nitrogen). Much of the nitrogen applied to this depth will be lost through leaching.	edbed (or no n	and prior itrogen).	to seedir Much of	rg, till into t the nitroge	he top 4- en applie	6 inches d d to this d	p 4-6 inches of soil a fertilizer that supplies the plied to this depth will be lost through leaching.	rtilizer tha e lost thro	t supplies ugh leac	s the recom hing.	imended a	amount of	phospha	ite and pot	ash (ie.
Next, rake into the surface prior to seeding an amount of fertilizer that contains only nitrogen such as 34-0-0 or 46-0-0, or a grade that is high in nitrogen but low in phosphate and potash. that will result in 0.5 lb. of nitrogen per 1000 sq. ft. (22 lb./acre) being applied.	rrior to s will resu	seeding ault in 0.5	an amoun lb. of nitr	nt of fertiliz(ogen per 1	er that co 000 sq. fi	ntains only t. (22 łb./a	y nitrogen cre) being	such as 3 applied.	.4-0-0 or	46-0-0, or :	a grade th	at is high	in nitroge	en but low i	c
An additional 0.5 lb. N/1000 sq. ft. (22 lb./ acre) should be applied two weeks after seedling emergence or sodding and watered in. After this, the rates and timing of N fertilization are based on the cultural practices that are used. Contact your county extension educator for more information. Water frequently the first year. Retest soil after one year to determine maintenance recommendations. It is recommended that clippings not be removed.	sq. ft. (∍ cultura mainter	(22 lb./ a al practic nance re	cre) shou ses that ar commenc	ld be applic e used. C lations. It i	ed two wé ontact yo s recomn	eeks after ur county nended th	seedling e extension at clipping	emergence educator is not be r	e or sodc for more emoved.	blied two weeks after seedling emergence or sodding and watered in. After this, the rates and Contact your county extension educator for more information. Water frequently the first year. It is recommended that clippings not be removed.	atered in. , . Water f	After this, requently	the rates the first _y	s and timinç /ear. Rete	timing of N Retest soil
*CAUTION! Do not apply more that 1 lb. nitrogen per 1000 sq. ft. in one application to avoid burning the grass.	iore tha	it 1 lb. nil al inform	trogen pe.	ply more that 1 lb. nitrogen per 1000 sq. ft. in For additional information, contact the YARD	ft. in one ARD & G	applicatio ARDEN L	one application to avoid burning the grass & GARDEN LINE: Phone: 612-624-4771	burning th ie: 612-62	ne grass. 4-4771		l informatio	on is provi sion.umn.	ided on th edu/vard	Additional information is provided on the back side of Mebsite: www.extension.umn.edu/vardandgarden	le of
			>> · · >>			 									

9°**

Explanation of Soil Test Report

1) the availability of several plant nutrients, 2) the activity of soil microorganisms, This is a measurement of acidity, which is important because it affects: 3) the ability of soil to hold plant nutrients. Soil pH:

The optimum pH for most plants and soil microorganisms is between 6.0 and 7.0. Some plants, however, such as blueberries, azaleas and others prefer more acidic conditions (i.e., lower pH). Since grasses are quite tolerant to a wide pH range, lime is generally not recommended on established grasses.

This test is used only to determine the lime requirements and should not be confused Buffer Index: with soil pH

classifications used for organic matter are: Low 0-3%, Medium 3.1-4.5%, High 4.6-19%, and Organic The Regular Series test includes an estimate of the percent organic matter. The 1) to improve soil structure, water infiltration, drainage, and soil aeration Organic Matter has many important functions in soils, some of which are: 3) to increase the water holding capacity of sandy soils. When organic 2) to act as a reservoir of available plant nutrients on clayey type soils. Soil 19.1% or greater. **Drganic Matter:**

This test is used primarily to check for high amounts of salts in "black" dirt that is used in new landscaping or for top-dressing purposes and for possible salt damage to grass from salted streets and sidewalks. Excess salt must be leached by intense watering before the plants will grow normally. Soluble Salts:

organic amendments are required to change the organic matter content of the soil.

matter is low, large amounts of peat, compost, crop residues, manure or other

Recommended for soils or sandbox sand to which young children may be repeatedly exposed. Lead:

Recommendations are not provided for these tests since the interpretations are imited to special situations. The tests are provided for professionals only. Other Special Tests:

symbols. A line of P or K letters ending in the lower areas of the block, represents a low level of the The relative levels of various nutrients are indicated by a series of Interpretation of Soil Tests: nutrient.

recommendations are given in pounds per area (1000 square feet for turf, or 100 square feet for gardens, trees or shrubs). Plant nutrients are expressed as nitrogen (N), phosphate (P205) and potash (K20). The recommended plant nutrient requirements can be met by applying a given amount of fertilizer(s). Lime and plant nutrient Recommendations and Calculation of Fertilizer Required:

plant nutrients. Most garden centers sell fertilizer blends (10-10-10) rather than single nutrient fertilizers tertilizer blends on the market you may not find one that exactly meets the ratio recommended (reported on the front side). In this case, you should select a fertilizer blend with the closest ratio of N-P205-K20 like 20-0-0 or 0-0-60 which are available from fertilizer dealers. Because there are a limited number of phosphate, and potash. A common garden fertilizer labeled 10-10-10 contains 10% of each of the three Commercial fertilizers are identified with a 3-numeral code that indicates the percentage of nitrogen, to that recommended.

Since meeting the exact amount required for each nutrient will not be possible in all cases, it's most important to match the Nitrogen (N) required. The amount of fertilizer to apply that will give the recommended amount of nitrogen can be obtained from the following table:

25. C 1.0 lb. N/1000 sq. ft **Fotal lbs.** fertilizer to apply/1000 sq. ft Table to Determine Total Amount of Fertilizer to Apply Based on Actual Nitrogen Recommended: 16.7 3.3 3.6 3.7 3.7 4.5 4.8 5.0 5.3 5.6 6.3 6.7 8.3 10.0 12.5 2.2 2.3 3.1 3.1 4.2 Nitrogen Recommended 0.2 lb. N/100 sq. ft 1.00 1.12 1.12 1.26 1.26 1.54 1.54 1.66 2.00 2.00 2.50 2.50 2.50 2.50 2.50 0.54 0.54 0.56 0.60 0.62 0.66 0.72 0.74 0.80 0.84 0.90 0.96 Total lbs. fertilizer to apply / 100 sq. ft 0.15 lb. N/100 sq ft 0.40 0.1 lb. N/100 sq. ft 0.330.360.400.420.420.420.450.450.630.650.770.650.750.27 0.28 0.30 0.31 (First number of fertilizer Fertilizer Nitrogen % grade on bag) 45 0 5

Example: If the N (mitrogen) recommendation is for 0.1 lb. N/100 ft. sq. and the fertilizer grade you selected has a ratio of 18-6-12 (column 1), you will have to apply 0.56 lbs of this fertilizer (from column 2) for each 0.1 lb. N recommended per 100 square feet.

Note: 2 cups (1 pint) of dry fertilizer weighs about 1 pound.

For Home Lawns: follow these rules when applying fertilizer: General Information

1) use a formula designed for lawns (not trees, flower beds or farms)

2) apply fertilizer during the spring and late summer (do not fertilize frozen ground).

3) apply fertilizer uniformly in two directions with a mechanical spreader.

4) sweep up any fertilizer accidentally applied on sidewalks and driveways to prevent its movement to storm sewers, lakes and streams.

5) water the lawn thoroughly after fertilizing to dissolve the nutrients and force them down to the soil surface to combine with the soil.

For Vegetable and Flower Gardens:

good source of trace nutrients as well as improve soil granulation. Three to five bushels of manure Manure, compost, or other forms of organic matter may be added. These amendments provide a or compost per 100 square feet are recommended.

<u>C</u>r

Al Strate

University of Mim Soil Testing Laboratory	University of Minnesota Soil Testing Laboratory	of M aborat	inne ory	sota					SOIL TEST REPORT	TEST REP	REF Garde	ORT		Departmer Minnesota	Client Copy Department of Soil, Water, ar Minnesota Extension Service	Client Copy Department of Soil, Water, and Climate Minnesota Extension Service	Climate
V Certifica	< R-55-01	-0-	10,4	10, 4° %;	v	SOIL ENGINEERING TESTING, INC ATTN: JOHN WHELAN	VEERING N WHEL	G TESTIN AN		3)		Ū.	Agricultura 2	al Experime	Agricultural Experiment Station 2	
)))))	ാനമ	9301 BRYANT AVE S BLOOMINGTON MN	NT AVE STON MI	/E S MN 55420-3436	3436			Rep	Report No. Laboratory No.		39 89		
Samnle/Field Number: 6T08	Jumber: 6	TUR						SOIL TEST	T RESULTS	က		Date Date	Date Received Date Reported		05/17/2005 05/19/2005		
Estimated Or Soil M	Organic Subarter Matter M	Soluble Salts mmhos/cm	H.	Buffer Index	Nitrate NO3-N ppm	Olsen Phosphorus ppm P	Bray 1 Phosphorus ppm P	Pota	·	Zinc ppm	lron ppm	Manganese	Copper ppm	Boron ppm	Calcium ppm	Magnesium ppm	Lead ppm
Peat 6	68.7		5.6				7	6									
						N	ERPRE	INTERPRETATION OF		SOIL TEST RESULTS	JLTS	-		-			
Ph	Phosphorus (P)		ddddddd	ቢ							Hq	******	**************************************	****		_	_
4 ×0;		L [Low	10 Medium	15 ium	20 High	25 V	5 V. High	1			3.0 4 Acid	4.0 5.0	6.0 Optimum	7.0	8.0 9.0 Alkaline	9.0 line
٥.	Potassium (K)	X X X							ſ	Solub	Soluble Salts			-	_		
		2	25 Low	75 Medium	125 lium	175 High	225 V.	225 V. High	1			0 1.0 2.0 Satisfactory	3.0	4.0 5.0 6.0 7.0 Possible Problem	0	8.0 9.0 10.0 Excessive Salts	10.0 Salts
** ** *							Ľ	ECOMME	RECOMMENDATIONS FOR: Before seeding or sodding	S FOR: B	efore se	eding or sc	dding				
LIME RECOMMENDATION: 0 LBS/1,000 SQ.FT. TOTAL AMOUNT OF EACH NUTRIENT TO APPLY PER YEAR.* NITROGEN 1 LBS/1,000 SQ.FT. 44 LBS/ACRE THE APPROXIMATE RATIO OR PROPORTION OF THESE NUTRIENTS IS: 5-25-30	MMENDA UNT OF I 1 XIMATE F	ATION: 0 LBS/1,00 = EACH NUTRIENT NITROGEN 1 LBS/1,000 SQ.FT 44 LBS/ACRE E RATIO OR PROP	LBS/1,0 UTRIEN1 GEN 0 SQ.FT ACRE 3 PROP	30 SQ.F TO API	T. JLY PER ' I OF THES	YEAR.* SE NUTRIE	NTS IS: 5	PHC 5 LBS/1 220 L	PHOSPHATE 5 LBS/1,000 SQ.FT. 220 LBS/ACRE -30	· · · · · · · · · · · · · · · · · · ·			Ğ	Grass not watered Cl POTASH 6 LBS/1,000 SQ.FT. 260 LBS/ACRE	<u></u> Ц. Ш.	Clippings not removed T.	emoved
4. 1																	
During preparation of the seedbed and prior to seeding, till into the top 4-6 inches of soil a fertilizer that supplies the recommended amount of phosphate and potash (ie. a fertilizer that contains little or no nitrogen). Much of the nitrogen applied to this depth will be lost through leaching.	baration c hat conta	of the set ins little	edbed ₅ or no n	and priol (trogen).	r to seedi . Much o	ing, till into νf the nitroς	the top 4 Jen applie	6 inches ed to this c	of soil a fei depth will b	rtilizer tha e lost thrc	t supplie ugh lead	s the recor ching.	nmended ;	amount o	f phosphe	ate and pot	ash (ie.
Next, rake into the surface prior to seeding an amount of fertilizer that contains only nitrogen such as 34-0-0 or 46-0-0, or a grade that is high in nitrogen but low in phosphate and potash, that will result in 0.5 lb. of nitrogen per 1000 sq. ft. (22 lb./acre) being applied.	into the s and pota	urface p. sh, that v	rior to s vill resu	eeding Ilt in 0.5	an amoui Ib. of niti	nt of fertiliz rogen per	er that co 1000 sq.	ontains on ft. (22 lb./	ly nitrogen acre) being	such as 3 applied.	34-0-0 or	46-0-0, or	a grade th	lat is high	in nitrog∈	en but low i	L.
An additional 0.5 lb. N/1000 sq. ft. (22 lb./ acre) should be applied two weeks after seedling emergence or sodding and watered in. After this, the rates and timing of N fertilization are based on the cultural practices that are used. Contact your county extension educator for more information. Water frequently the first year. Retest soil after one year to determine maintenance recommendations. It is recommended that clippings not be removed.	al 0.5 lb. are base ∋ar to det	N/1000 ad on the termine r	sq. ft. (cultur <i>ə</i> nainten	22 lb./ a Il practic ance re	icre) shou ses that a comment	uld be appl ire used. (dations. It	ied two w Contact y is recom	/eeks afte our county mended ti	r seedling e / extension hat clipping	educator s not be r	e or sod for more emoved	ding and w informatic	atered in. n. Water	After this frequently	, the rates / the first	s and timin year. Rete	g of N st soil
*CAUTION! Do not apply more that 1 lb. nitrogen per 1000 sq. ft. in one application to avoid burning the grass.	! Do not	apply m	ore that	t Ib. ni	trogen pe	sr 1000 sq.	ft. in one	e applicatio	on to avoid	burning t	he grass	. Additions	al informati	on is prov	/ided on t	Additional information is provided on the back side of	de of
County: HENNEPIN.	NIEPIN		ddition	al inforn	nation, co	For additional information, contact the YARD		GARDEN	& GARDEN LINE: Phone: 612-624-4771	ne: 612-62	24-4771	Website:	www.exter	nsion.umr	ı.edu/yarc	Website: www.extension.umn.edu/yardandgarden	Ċ.

;

Explanation of Soil Test Report

1) the availability of several plant nutrients, 2) the activity of soil microorganisms, This is a measurement of acidity, which is important because it affects: Soil pH:

The optimum pH for most plants and soil microorganisms is between 6.0 and 7.0. Some plants, however, such as blueberries, azaleas and others prefer more acidic conditions (i.e., lower pH). Since grasses are quite tolerant to a wide pH range, lime is generally not recommended on established grasses. 3) the ability of soil to hold plant nutrients.

This test is used only to determine the lime requirements and should not be confused Buffer Index: with soil pH

classifications used for organic matter are: Low 0-3%, Medium 3.1-4.5%, High 4.6-19%, and Organic The Regular Series test includes an estimate of the percent organic matter. The Organic Matter has many important functions in soils, some of which are: Soil 19.1% or greater. Organic Matter:

1) to improve soil structure, water infiltration, drainage, and soil aeration on clayey type soils.

2) to act as a reservoir of available plant nutrients

organic amendments are required to change the organic matter content of the soil. matter is low, large amounts of peat, compost, crop residues, manure or other 3) to increase the water holding capacity of sandy soils. When organic

This test is used primarily to check for high amounts of salts in "black" dirt that is used in new landscaping or for top-dressing purposes and for possible salt damage to grass from salted streets and sidewalks. Excess salt must be leached by intense watering before the plants will grow normally. Soluble Salts:

Recommended for soils or sandbox sand to which young children may be repeatedly exposed Lead:

Recommendations are not provided for these tests since the interpretations are imited to special situations. The tests are provided for professionals only. Other Special Tests:

symbols. A line of P or K letters ending in the lower areas of the block, represents a low level of the The relative levels of various nutrients are indicated by a series of Interpretation of Soil Tests: autrient.

recommendations are given in pounds per area (1000 square feet for turf, or 100 square feet for gardens. trees or shrubs). Plant nutrients are expressed as nitrogen (N), phosphate (P205) and potash (K20). The recommended plant nutrient requirements can be met by applying a given amount of fertilizer(s). Lime and plant nutrient Recommendations and Calculation of Fertilizer Required:

plant nutrients. Most garden centers sell fertilizer blends (10-10-10) rather than single nutrient fertilizers fertilizer blends on the market you may not find one that exactly meets the ratio recommended (reported on the front side). In this case, you should select a fertilizer blend with the closest ratio of N-P205-K20 ike 20-0-0 or 0-0-60 which are available from fertilizer dealers. Because there are a limited number of phosphate, and potash. A common garden fertilizer labeled 10-10-10 contains 10% of each of the three Commercial fertilizers are identified with a 3-numeral code that indicates the percentage of nitrogen, to that recommended

Since meeting the exact amount required for each nutrient will not be possible in all cases, it's most important to match the Nitrogen (N) required. The amount of fertilizer to apply that will give the recommended amount of nitrogen can be obtained from the following table:

Table to Determine Total Amount of Fertilizer to Apply Based on Actual Nitrogen Recommended:

53

	ft.	بر المراجع سر ال		<u>.</u>		. `.	1	5 12 - 15			، میں مربعہ ک	-				۰ • • • • •	÷.		ç P		N. F	÷		0	\$.;.;
71	1.0 lb. N/1000 sq. ft Total lbs fertilizer to	apply/1000 sq. ft	2.2	2.7	2.8	3.0	3.1	3.3	3.6	3.7	4.0	4.2	4.5	4.8	5.0	. 5.3	5.6	6.3	. 2.9	7.7	8.3	10.0	12.5	16.7	20.0
Nitrogen Recommended	0.2 lb. N/100 sq. ft	0 sq. ft	0.44	0.54	0.56	0.60	0.62	0.66	0.72	0.74	0.80	0.84	0.90	0.96	1.00	1.06	1.12	1.26	1.34	1.54	1.66	2.00	2.50	3.34	4.00
	0.15 lb. N/100 sq ft	Total lbs. fertilizer to apply / 100 sq. ft	0.33	0.40	0.42	0.45	0.46	0.50	0.54	0.56	0.60	0.63	0.68	0.72	0.75	0.80	0.84	0.95	1.00	1.15	1.25	1.50	1.88	2.50	3.00
	0.1 lb. N/100 sq. ft	Totai Ibs.	0.22	0.27	0.28	0.30	0.31	0.33	0.36	0.37	0.40	0.42	0.45	0.48	0.50	0.53	0.56	0.63	0.67	0.77	0.83	1.00	1.25	1.67	2.00
	Fertilizer Nitrogen %	grade on bag)	45	37	36	33	32	30	28	27	25	24	22	21	20	19	18	16	15	13	12	10	8	6	5

Example: If the N (nitrogen) recommendation is for 0.1 lb. N/100 ft. sq. and the fertilizer grade you selected has a ratio of 18-6-12 (column 1), you will have to apply 0.56 lbs of this fertilizer (from column 2) for each 0.1 lb. N recommended per 100 square feet.

Note: 2 cups (1 pint) of dry fertilizer weighs about 1 pound.

For Home Lawns: follow these rules when applying fertilizer: General Information

1) use a formula designed for lawns (not trees, flower beds or farms).

2) apply fertilizer during the spring and late summer (do not fertilize frozen ground).

3) apply fertilizer uniformly in two directions with a mechanical spreader.

4) sweep up any fertilizer accidentally applied on sidewalks and driveways to prevent its movement to storm sewers, lakes and streams. 5) water the lawn thoroughly after fertilizing to dissolve the nutrients and force them down to the soil surface to combine with the soil.

For Vegetable and Flower Gardens:

good source of trace nutrients as well as improve soil granulation. Three to five bushels of manure Manure, compost, or other forms of organic matter may be added. These amendments provide a or compost per 100 square feet are recommended.

 $\sum_{i=1}^{N-1} ||f_i| \leq 1$