

NPDES/SDS Permit Application

Volume V – Tailings Basin and Beneficiation Plant

Prepared for Poly Met Mining, Inc.

July 2016 (initial submittal)

October 2017 (updated)

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

NPDES/SDS Permit Application Volume V – Tailings Basin and Beneficiation Plant

July 2016 (initial submittal)

October 2017 (updated)

Contents

Applica	ation	Forms	1
Perm	nit Ap	pplication Checklist for Industrial Wastewater	1
Indu	strial	Chemical Additives Attachment	4
1.0	Intr	oduction	6
2.0	Ben	eficiation Plant and Tailings Basin Water Management and Infrastructure	13
2.1	E	xisting Conditions	13
2.	1.1	Historic Conditions	13
2.	1.2	Current Conditions	14
2.2	В	eneficiation Plant	15
2.	2.1	Facility Description	15
2.	2.2	Flotation Tailings Characterization	15
2.	2.3	Chemical Additives	16
2.3	Т	ailings and Associated Water Management and Infrastructure	17
2.	3.1	Flotation Tailings Basin	18
2.	3.2	Flotation Tailings Transport and Deposition	20
2.	3.3	FTB Seepage Capture Systems	20
	2.3.3	FTB Seepage Containment System	20
	2.3.3	FTB South Seepage Management System	22
	2.3.3	Construction Schedule	22
2.	3.4	Progressive Reclamation, and an Overview of the Reclamation, Closure, and Postclosure Maintenance Phases	22
2.4	S	tormwater Management and Infrastructure	23
2.4	4.1	Significant Materials	25
2.4	4.2	Stormwater Management System	25
2.4	4.3	Drainage Swale	26
2.5	A	daptive Management	26
3.0	Tail	ings Basin Monitoring	27

\\barr.com\projects\Mpls\23 MN\69\2369862\WorkFiles\APA\Permitting\NPDES\Permit Applications\Volume V - Tailings Basin\Volume V - Tailings Basin v2d23.docx

3.1	Existing Baseline Monitoring	27
3.	1.1 Surface Water	27
3.	1.2 Groundwater	32
3.2	Proposed Monitoring Plan	35
4.0	Groundwater Nondegradation	36
4.1	Regulatory Context	36
4.2	Existing Groundwater Quality	36
4.3	Description of Engineering Controls to Protect Groundwater and Abate Existing Groundwater Impacts	37
5.0	References	38

List of Tables

Table 1-1	Beneficiation Plant and Tailings Basin Summary	6
Table 1-2	Project Water Definitions	9
Table 1-3	Volume V of PolyMet's NPDES/SDS Permit Application Cross-Reference	. 11
Table 2-1	FTB Pond Water Inflows During Operations	. 19
Table 3-1	Summary of Baseline Surface Water Monitoring Stations (2004 through 2015)	. 28
Table 3-2	Baseline Exceedances of Surface Water Standards at Monitoring Stations on the	
	Embarrass River (Downstream of Spring Mine Creek), Unnamed (Mud Lake) Creek,	
	Trimble Creek, Unnamed Creek, and Second Creek (2004 through 2015)	. 30
Table 3-3	Baseline Exceedances of Surface Water Standards at the Monitoring Station on the	
	Embarrass River Upstream of Spring Mine Creek (2004, 2006 through 2015)	. 31
Table 3-4	Baseline Exceedances of Groundwater Standards at Uninfluenced Wells Identified in	
	Large Table 3 (2007, 2009 through 2015)	. 33
Table 3-5	Baseline Exceedances of Groundwater Standards at Influenced Wells Identified in	
	Large Table 3 (2007, 2009 through 2015)	. 34
Table 3-6	Baseline Exceedances of Cliffs Erie NPDES/SDS Permit No. MN0054089 Groundwater	
	Intervention Limits at Existing NPDES/SDS Groundwater Monitoring Stations GW001	
	through GW008 (2007 through 2013)	. 35

List of Large Tables

Large Table 1	Tailin	igs Ba	sin	and I	Benef	iciatio	n Plant	t Che	emio	al A	ddi	tives	;
		-				r		~	11.		۰.		~

- Large Table 2 Tailings Basin Baseline Surface Water Quality Monitoring Summary
- Large Table 3 Tailings Basin Groundwater Monitoring Stations
- Large Table 4 Tailings Basin Baseline Surface Water Quality Monitoring Summary

List of Large Figures

Large Figure 1	Site Location
Large Figure 2	Tailings Basin and Beneficiation Plant Existing Conditions
Large Figure 3	Tailings Basin and Beneficiation Plant Layout – Mine Year 1
Large Figure 4	Tailings Basin and Beneficiation Plant Layout – Mine Year 20
Large Figure 5	Existing Baseline Surface Water Conditions

List of Appendices

- Appendix A Waste Water Treatment System Terminology Changes
- Appendix B Permit Application Support Drawings
- Appendix C Chemical Additives Safety Data Sheets

List of Acronyms and Abbreviations

Acronym or Abbreviation	Description
Application	NPDES/SDS Permit Application
BMP	Best Management Practice
Cliffs Erie	Cliffs Erie, LLC
FEIS	Final Environmental Impact Statement
FTB	Flotation Tailings Basin
LTVSMC	LTV Steel Mining Company
MCL	Maximum Concentration Limit
MDNR	Minnesota Department of Natural Resources
MPCA	Minnesota Pollution Control Agency
NPDES	National Pollutant Discharge Elimination System
PMP	Probable Maximum Precipitation
PolyMet	Poly Met Mining, Inc.
Project	NorthMet Project
SDS	State Disposal System
sMCL	Secondary Maximum Concentration Limit
SWPPP	Stormwater Pollution Prevention Plan
USEPA	U.S. Environmental Protection Agency
WWTS	Waste Water Treatment System

Permit Application Checklist for Industrial Wastewater

NPDES/SDS Permit Program

National Pollutant Discharge Elimination System (NPDES)/ State Disposal System (SDS)

Doc Type: Permit Application

	MPCA use only
	Permit Number
а	
he	
	Date Received
	(MM/DD/YYYY)

processing, comes into direct contact with, or is left over from production of a raw material, intermediate product, finished product, byproduct or waste product. This checklist is intended to help permit applicants determine the correct forms to submit as part of

Industrial Process Wastewater is wastewater which, during the manufacturing or

This checklist is intended to help permit applicants determine the correct forms to submit as part of a complete permit application package. The Minnesota Pollution Control Agency (MPCA) will review the application materials for completeness and notify the applicant within 30 business days of receipt whether the application is incomplete or complete enough for processing.

Print or type application: Before submitting an application, make a photocopy of this form and all other application materials for your records. The MPCA will review the application for completeness and provide an official response to the permittees within 30 days of receipt of all necessary application materials.

Permit application assembly: To expedite the processing and review of your application, put this form and any other applicable permit application checklists for other waste types at the beginning of your submittal package. Please place all other application forms in order as listed on the back of this form. Do not place forms and checklists in an appendix as this makes it difficult and time consuming for staff to locate them.

Completeness instructions: The MPCA will not process an application without properly completed forms. *All sections of required forms must be completed.* If portions do not apply to this facility, please indicate using "n/a" or explain why it doesn't apply. For permit reissuance, all forms information must also be completed in full even if the information requested is not changing from the existing permit. This allows the MPCA to quickly verify that the existing information is correct.

Facility name: NorthMet Tailings Basin and Bene	Permit No.: MN TBD	
Reason for Application (check all that apply):	· —	
	Resubmittal of an application detern (Include copies of all returned forms	1
Does this action include construction activities:	Construction is proposed as pa	art of the permit action
Does this action include construction activities.	☐ No construction is proposed as propo	I

Form Submittal

Submit two (2) complete copies of the permit application package. At least one (1) copy must be a hard copy. The other may be an electronic copy. The completed form is to be returned to:

Attn: Fiscal Services – 6th floor Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155-4194

Assistance

If you have any questions regarding the selection of the proper forms or how to complete the required information, contact the MPCA staff assigned to your facility. Staff is assigned by regions and a director of regional staff can be located at: <u>http://www.pca.state.mn.us/index.php/about-mpca/mpca-overview/agency-structure/mpca-offices/mpca-offices.html</u>

You may also contact the MPCA at:

- In Metro Area 651-296-6300
- Outside Metro Area: 800-657-3864
- E-mail to: <u>askpca@state.mn.us</u>.

NorthMet Project NPDES/SDS Permit Application Update - October 2017 Application Forms Selection (Check all boxes that apply and include the completed form with the submittal.)

Listed below are application forms and required submittals that may be required for a typical industrial wastewater treatment facility application. All required forms must be completed in-full and included with the				CA Iy
submittal. The MPCA cannot process an application that does not include all of the required application forms. All forms, instructions, and additional information can be found on the MPCA website at <u>http://www.pca.state.mn.us/enzq915.</u>				
Check all boxes that apply. Include a	copy of all completed application forms with the submittal.	Received	Incomplete	Complete
Required for all water quality permits	For Transmittal Form: Refer to Volume I of this Permit Application.			
http://www.pca.state.mn.us/index.ph Application Fee as specified on the T Certification Signature as specified o	ransmittal Form			
Required for all new permits and modifica	tions with a change in design flow ermination Guidelines for Wastewater Treatment Facilities,			
Major NPDES facilities and/or Categorical U.S. Environmental Protection Agence http://www.pca.state.mn.us/index.ph EPA Application Form 2C (5 pages o http://www.pca.state.mn.us/index.ph	cy (EPA) Application Form 1 (10 pages of instructions, 16 pages total) <u>o/view-document.html?gid=7024</u> f instructions, 25 pages total)			
Discharge to surface water (for major and Industrial Surface Water Discharge o http://www.pca.state.mn.us/index.php	f Process Wastewater Application (wq-wwprm7-20)			
Non-contact cooling water Industrial Non-Contact Cooling Wate http://www.pca.state.mn.us/index.php				
Discharge to land Industrial Land Discharge of Process <u>http://www.pca.state.mn.us/index.php</u> Industrial Land Application of Industrial				
	nent facility a Municipal Wastewater Treatment Facility Application e.mn.us/index.php/view-document.html?gid=7033			
Treatment facilities using stabilization por Municipal and Industrial Pond Attach http://www.pca.state.mn.us/index.php	ment (wq-wwprm7-11)			
Stormwater management for wastewater treatment permit holders Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a) http://www.pca.state.mn.us/index.php/view-document.html?gid=19364 Instructions for Industrial Stormwater Permit Application Attachment to NPDES/SDS permit (wq-wwprm7-60b) http://www.pca.state.mn.us/index.php/view-document.html?gid=19364 				
Additional attachments Additional Station Location Attachment (wq-wwprm7-49) http://www.pca.state.mn.us/index.php/view-document.html?gid=7049 Additional Chemical Additives Attachment (wq-wwprm7-48) http://www.pca.state.mn.us/index.php/view-document.html?gid=7051				
above, such as a map. A single map that pro acceptable. A separate copy of each form is Topographic map.	ocess flow diagram showing all treatment components, direction of			

(Common types of supplem engineering reports, plans	nts, reports, plans, or attachments included nental information may include maps, proce and specifications, technical checklists and	ess flow diagrams, facility plans,			
proposed project.)	Refer to Volume V Table of Contents				
Other waste types Some facilities may also include other waste types that are not covered by this checklist. Facilities with multiple types of wastes should review the other permit application checklists to determine if additional forms and attachments may be required.					
Permit Application Checklist for Municipal/Domestic Wastewater (wq-wwprm7-04a) Permit Application Checklist for Miscellaneous Waste Types (wq-wwprm7-04c) Permit Application Checklist for Water Treatment (wq-wwprm7-04d)					

Minnesota Pollution Control Agency

520 Lafayette Road North St. Paul, MN 55155-4194

Industrial Chemical Additives Attachment **NPDES/SDS** Permit Program

Doc Type: Permit Application

The National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit Program regulates wastewater discharges to land and surface waters. This is an attachment to the Industrial Applications for facilities with multiple chemical additives.

Complete the attachment by typing or printing in black ink. Attach additional sheets as necessary. For more information, please contact the Minnesota Pollution Control Agency (MPCA) at: In Metro Area: 651-296-6300 or Outside Metro Area: 800-657-3864.

Permittee name: Poly Met Mining, Inc. Permit number: MN TBD Amount/duration/ frequency of Location of chemical addition in process addition (e.g., to raw water supply, at greensand filter, Average rate of use Maximum rate of use Chemical Purpose before RO unit #2. etc.) (weight or volume per day) (weight or volume per day) SIPX (Sodium Collector: Selectively adsorb minerals Isopropyl Xanthate) 2.74 tons/day 4.79 tons/dav based on hydrophobicity of the collector Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Circuit (Primary) and mineral Continuous (1,000 tons/year) (1,750 tons/year) PAX (Potassium Amyl Xanthate) Collector: Selectively adsorb minerals Flotation Circuit, specifically the Flotation 2.74 tons/day 4.79 tons/day based on hydrophobicity of the collector Roughers, Scavengers, and Cleaner (Potential Substitute) and mineral Flotation Cells Continuous (1,000 tons/year) (1,750 tons/year) MIBC (Methyl Isobutyl Carbinol, Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 100% Solution) 2.88 tons/dav 4.11 tons/dav bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner (Primary) cells Flotation Cells Continuous (1,050 tons/year) (1,500 tons/year) F-160-05 Frother Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day bubbles as they rise through the flotation (Potential Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells Continuous (1,050 tons/year)) (1,500 tons/year) F-160-13 Frother Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day (Potential bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells Continuous (1,050 tons/year) (1,500 tons/year) NALCO DVS4U038 Frother: Used to improve stability of froth Flotation Circuit, specifically the Flotation 2.88 tons/day 4.11 tons/day (Potential bubbles as they rise through the flotation Roughers, Scavengers, and Cleaner Substitute) cells Flotation Cells (1.050 tons/vear) (1.500 tons/vear) Continuous 1.71 tons/dav 2.05 tons/day Copper Sulfate Flotation Circuit, specifically Scavenger Activator: Used to increase the available Pentahydrate adsorption sites on the mineral to allow Cells (625 tons/year) (750 tons/year) Continuous

Elecculant: Promote flocculation of	Elotation Circuit, specifically Concentrate		0.082 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(30 tons/year)	(50 tons/year)
Flocculant: Promote flocculation of	Flotation Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year)
			0.07 tops/day	0.14 tons/day
Flocculant: Promote flocculation of		Continuous		(50 tons/year)
		Continuous		(50 10113/year)
Elecculant: Promoto flocculation of	Electrical Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year)
Flocculant: Promote flocculation of	Flotation Circuit, specifically Concentrate		0.07 tons/day	0.14 tons/day
suspended particles in liquors	Thickeners	Continuous	(25 tons/year)	(50 tons/year
Flocculant: Used to depress gangue			3.29 tons/day	4.79 tons/day
selectivity towards Cu Ni minerals	Pyrhotite Cleaner Flotation Cells	Continuous	(1,200 tons/year)	(1,750 tons/year)
	Flatation Operations		28.15 tons/day	41.10 tons/day
Flotation Circuit	Cleaner Flotation Clrcuit, specifically the Separation	Continuous	(10,274 tons/year)	(15,000 tons/year)
	Flocculant: Promote flocculation of suspended particles in liquors Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni minerals pH Modifier: Used to regulate pH in the	suspended particles in liquorsThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersFlocculant: Vised to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation CellsPH Modifier: Used to regulate pH in theFlotation Circuit, specifically the Separation	suspended particles in liquorsThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuousFlocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation CellsContinuouspH Modifier: Used to regulate pH in theFlotation Circuit, specifically the SeparationContinuous	Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate ThickenersContinuous(30 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Promote flocculation of suspended particles in liquorsFlotation Circuit, specifically Concentrate Thickeners0.07 tons/day (25 tons/year)Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni mineralsFlotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation Cells3.29 tons/day (1,200 tons/year)PH Modifier: Used to regulate pH in the pH Modifier: Used to regulate pH in theFlotation Circuit, specifically the Separation28.15 tons/day

*Remember to attach the *Material Safety Data Sheets*, complete product labels and any other information on chemical composition, aquatic toxicity, human health, and environmental fate for each chemical additive.

Please make a copy for your records.

Refer to the Transmittal Form for mailing instructions.

Chemicals listed as potential substitutes are not intended to be used at the average and maximum rates of use unless the primary chemical additive is unavailable.

1.0 Introduction

This volume, Volume V of the National Pollutant Discharge Elimination System (NPDES) / State Disposal System (SDS) Permit Application (Application) for Poly Met Mining, Inc.'s (PolyMet) NorthMet Project (Project), focuses on the Tailings Basin and Beneficiation Plant at the Plant Site. Refer to Section 2.0 of Volume I for discussion of the permitting approach for this Application as it applies to the Tailings Basin and Beneficiation Plant.

The Beneficiation Plant will produce Flotation Tailings throughout 20 years of ore processing. Flotation Tailings are the materials remaining after metallic sulfide minerals are liberated from the finely ground ore in the flotation process. Flotation Tailings will be deposited in the Flotation Tailings Basin (FTB), which will be placed on top of a portion of the existing former LTV Steel Mining Company (LTVSMC) tailings basin. In this Application, the "FTB" means the newly constructed NorthMet Flotation Tailings Basin, the "LTVSMC tailings basin" means the existing former LTVSMC tailings basin, and the "Tailings Basin" means the combined LTVSMC tailings basin and the FTB. Seepage from the Tailings Basin will be collected by the FTB Seepage Containment System and the FTB South Seepage Management System (collectively known as the FTB seepage capture systems).

Table 1-1 provides a high-level overview of the Beneficiation Plant and the Tailings Basin.

Beneficiation Plant and Tailings Basin Summary						
Purpose	To produce copper and nickel concentrates, and to safely contain Flotation Tailings generated by the Beneficiation Plant in a manner that results in compliance with applicable water quality standards at appropriate compliance points.					
Location	At the Project Plant Site. The Beneficiation Plant is located at the former LTV Steel Mining Company (LTVSMC) taconite process plant area, and the Tailings Basin lies to the north (Large Figure 1).					
Beneficiation Plant description	The Beneficiation Plant will crush and grind the ore, then use a flotation process to separate the base and precious minerals from the tailings. Flotation Tailings will be pumped as a slurry to the FTB. Water for use in Beneficiation Plant processes will be drawn primarily from the FTB Pond, supplemented as necessary with water from the Plant Reservoir.					
Tailings Basin description	The FTB will be the primary collection and distribution facility for water used by the Beneficiation Plant. The FTB will be constructed atop a portion of the LTVSMC tailings basin. The LTVSMC tailings basin is divided into cells; Cell 1E, Cell 2E, and Cell 2W. The FTB will occupy Cells 1E and 2E. The FTB will expand from an area, measured at the crest of the dams, of about 530 acres (existing Cell 2E) at the beginning of operations to a maximum area of about 1,370 acres (existing Cell 2E plus existing Cell 1E). FTB dams will be constructed using upstream methods.					

Table 1-1Beneficiation Plant and Tailings Basin Summary

Ber	eficiation Plant and Tailings Basin Summary
FTB seepage capture systems	The FTB Seepage Containment System and the FTB South Seepage Management System (collectively known as the FTB seepage capture systems) will collect water seeping from the Tailings Basin via surface or shallow groundwater flow. The FTB Seepage Containment System will surround the western and northern sides and extend to a portion of the eastern side of the Tailings Basin. It will consist of a cutoff wall installed to the top of the bedrock, with a collection trench and drain pipe installed on the upgradient side (tailings basin side) of the cutoff wall. The FTB South Seepage Management System, which currently exists as the SD026 pumpback system, consists of a berm, trench, and pumpback system and collects seepage on the southern side of the FTB.
Water management and discharge	<i>Tailings basin water</i> will be recycled back to the Beneficiation Plant and will not be discharged during operations. <i>Tailings basin seepage</i> will be collected and either returned to the FTB Pond or routed to the Waste Water Treatment System (WWTS).
Estimated commission	Mine Year 1 ⁽¹⁾
Reclamation and closure phase plan ⁽²⁾	Upland areas of the FTB will be revegetated. Exposed FTB beach areas and the pond bottom will be amended with bentonite to limit oxygen infiltration into the tailings. The FTB seepage capture systems will continue to operate, pumping seepage to the WWTS for treatment. Overflow from the FTB Pond will be prevented by pumping any excess pond water to the WWTS.
Postclosure maintenance phase plan ⁽³⁾	The FTB seepage capture systems will continue to operate, pumping <i>tailings basin seepage</i> to the WWTS for treatment. Overflow from the FTB Pond will be prevented by pumping any excess pond water to the WWTS. The ultimate objective is to transition from mechanical water treatment to a non-mechanical water treatment system. During the closure or postclosure maintenance phases, if it can be demonstrated that water in the FTB Pond is <i>stormwater</i> and that it complies with applicable standards, then PolyMet could seek approval to allow excess pond water to discharge through the FTB Closure Overflow structure.

Italicized terms are defined in Table 1-2.

(1) Mine Year 1 will begin on the first day of production blasting within the open pit at the Mine Site.

(2) The reclamation and closure phases are estimated to start in Mine Year 21 and 25, respectively.

(3) The postclosure maintenance phase is estimated to start in Mine Year 55, once the West Pit has flooded.

This volume is organized in four sections:

Section 1.0	Provides an overview of the Tailings Basin and Beneficiation Plant and provides the
	water definitions specific to the volume.

Section 2.0 Describes water management and infrastructure at the Beneficiation Plant and Tailings Basin, including existing conditions, tailings and *stormwater* management and infrastructure, adaptive management, chemical additives, progressive reclamation, and an overview of the reclamation, closure, and postclosure maintenance phases.

- Section 3.0 Summarizes the proposed monitoring plan for the Tailings Basin and Beneficiation Plant.
- Section 4.0 Describes how the FTB complies with the groundwater nondegradation rule (Minnesota Rules, part 7060.0500).

In accordance with Minnesota Rules, part 6132.0200, the FTB has been designed "to control possible adverse environmental effects of nonferrous metallic mineral mining, to preserve natural resources, and to encourage planning of future land utilization." The design of the FTB, and the Tailings Basin as a whole, includes systems for managing water in a manner that results in compliance with applicable water quality standards at appropriate compliance points (Section 1.1 of Reference (1)). The water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality; additionally, plans have been developed for adaptive management (Sections 4.0 and 5.0 of Reference (2) and Section 6.4 of Reference (1)) and contingency mitigation (Section 6.5 of Reference (1)) as deemed necessary to maintain compliance (refer to Section 2.5 of this volume for further discussion).

Water management at the Beneficiation Plant and the Tailings Basin includes collection and management of *process water, tailings basin water*, and *tailings basin seepage*. The flow of water associated with the Tailings Basin and Beneficiation Plant is included on Large Figure 4 in Volume I, which depicts the general flow of water throughout the Project. Refer to Sections 2.2 through 2.4 of this volume for further details on the management of *process water, tailings basin water, tailings basin seepage*, and *stormwater*.

Table 1-2 provides definitions for the terms *mine water, process water, tailings basin water, tailings basin seepage, plant reservoir water, industrial stormwater, construction stormwater,* and *non-contact stormwater,* as well as notes regarding the definitions' application to specific facets at the Tailings Basin and Beneficiation Plant.

Separate applications will be submitted requesting:

- authorization to discharge *stormwater* associated with construction activities at the Tailings Basin under the Minnesota NPDES/SDS Construction Stormwater General Permit (Construction Stormwater General Permit)
- authorization to discharge *stormwater* associated with industrial activities at the Tailings Basin under the Minnesota NPDES/SDS Industrial Stormwater General Permit (Industrial Stormwater General Permit)

Refer to Section 2.4 of this volume for further details on the management of *stormwater* during operations.

Table 1-2 Project Water Definitions

Project-Specific Term	Project-Wide Definition ⁽¹⁾	Tailings Basin Specifics
Mine Water	Water collected by the mine water management systems, including precipitation, runoff, groundwater, and other water collected from areas of the Mine Site and routed from the Mine Site to the Waste Water Treatment System (WWTS) or Flotation Tailings Basin (FTB) via the Mine to Plant Pipelines (MPP) and, in later years, routed to the East and Central Pits for pit flooding.	(no additions to Project-Wide Definition)
Process Water	Water that has been used in the beneficiation process or hydrometallurgical process.	Water that has been used in the beneficiation process.
Tailings Basin Water	 Water in the FTB Pond or in pores of the tailings, which includes the following sources: process water resulting from the beneficiation process treated mine water routed from the WWTS construction mine water conveyed from the Mine Site Overburden Storage and Laydown Area (OSLA) runoff tailings basin seepage collected by the FTB seepage capture systems and returned to the FTB Pond treated water from the Sewage Treatment System greensand filter backwash and clean-inplace (CIP) wastes from the WWTS precipitation and runoff from within the FTB dams and tributary to the FTB Pond 	The primary water source for the Beneficiation Plant.
Tailings Basin Seepage	<i>Tailings basin water</i> that infiltrates through Flotation Tailings, LTV Steel Mining Company (LTVSMC) tailings, and/or Tailings Basin dams and migrates through the base or the external dam faces of the Tailings Basin.	(no additions to Project-Wide Definition)
Plant Reservoir Water	 Water collected and stored within the Plant Reservoir, which includes the following: water pumped from Colby Lake precipitation that falls on the Plant Reservoir 	The make-up water source for the Beneficiation Plant.
Industrial Stormwater	<i>Stormwater</i> associated with industrial activities ⁽²⁾ .	Includes precipitation and runoff from the Tailings Basin dam exterior slopes, where not captured by the seepage capture systems.

Project-Specific Term	Project-Wide Definition ⁽¹⁾	Tailings Basin Specifics
Construction Stormwater	<i>Stormwater</i> associated with construction activities ⁽³⁾ .	(no additions to Project-Wide Definition)
Non-Contact Stormwater	Precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities ⁽³⁾ , or industrial activities ⁽²⁾ .	Does not include runoff from reclaimed Tailings Basin dam exterior slopes (refer to <i>industrial</i> <i>stormwater</i>).

(1) If two types of waters mix, the mixture is handled as the more actively managed type of water (e.g., a mixture of *non-contact stormwater* and *process water* is managed as *process water*). Management of water mixtures will be governed by regulatory requirements.

(2) As defined in Minnesota Rules, part 7090.0080, subpart 6

(3) As defined in Minnesota Rules, part 7090.0080, subpart 4

During environmental review, PolyMet developed numerous Management Plans to provide details of the design, construction, operations, reclamation, closure, and postclosure maintenance phases of the Project. The Management Plans rely on and incorporate the results of Data Packages, which are compilations of technical data and related supporting information.

Information from the above-referenced documents, as well as from this and other permit applications and issued permits, will be incorporated into an operations plan for use during the operations, reclamation, closure, and postclosure maintenance phases of the Project. Refer to Section 1.7 of Volume I for a description of the Project phases.

To help the reviewer navigate the supporting material for Volume V of this Application, Table 1-3 cross references key Tailings Basin and Beneficiation Plant-related topics, PolyMet Management Plans and Data Packages, sections of this narrative, and permit application requirements.

Note that some terminology associated with the Waste Water Treatment System (WWTS) has changed since the environmental review process was completed and the NPDES/SDS Permit Application was submitted in July 2016. Changes are associated with the relocation of the mine water treatment trains that were previously planned for the Mine Site Waste Water Treatment Facility, which will now be in the Plant Site WWTS, and the relocation of the Mine Site equalization basins, Central Pumping Station, and Construction Mine Water Basin south of Dunka Road. There is no change to the level of treatment planned for the Project as a result of these relocations. To facilitate the review of documents prepared for the NorthMet Mining Project and Land Exchange Final Environmental Impact Statement (FEIS) (Reference (3)) which are also referenced in this Application, Appendix A explains the WWTS terminology changes.

Table 1-3 Volume V of PolyMet's NPDES/SDS Permit Application Cross-Reference

		Location of Relevant Details:				
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume V	Permit Application Form	Application Question
Existing Conditions		NorthMet Project: Geotechnical Data Package Volume 1 – Flotation Tailings Basin (Reference (4))	Section 3.0	Section 2.1		
	Facility Description	NorthMet Project: Project Description (Reference (5))	Section 4.3.2	Table 1-1, Section 2.2.1		
	Raw Material Consumed	NorthMet Project: Project Description (Reference (5))	Section 4.3.2.6	Section 2.2.1		
	Product Produced	NorthMet Project: Project Description (Reference (5))	Section 4.3.2.5	Section 2.2.1		
Beneficiation Plant	Operation Initiated	NorthMet Project: Project Description (Reference (5))	Section 4.3.2	Table 1-1, Section 2.2.1		
	Water Supply Source	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Section 6.1.1	Section 2.2.1		
	Water Balance	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Section 6.1.1	Section 2.2.1		
	Chemical Additives			Section 2.2.3	Industrial Chemical Additives Attachment (wq-wwprm7-48)	All
	Geochemical Characteristics	NorthMet Project: Waste Characterization Data Package (Reference (7))	Sections 5.0 and 10.0			
Flotation Tailings	Geotechnical Characteristics	NorthMet Project: Geotechnical Data Package Volume 1 – Flotation Tailings Basin (Reference (4))	Section 5.3	Section 2.2.2		
Characterization	Expected Contribution to Sulfate and Metal Loading	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Section 6.4.2.5			
	Estimated Volume	NorthMet Project: Project Description (Reference (5))	Section 4.3.2.5			
Process Water				Section 2.3		
	Facility Description	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 1.0	Table 1-1, Section 2.3.1		
	Operation Initiated	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 1.0	Table 1-1		
	Flotation Tailings Basin (FTB) Permit Application Support Drawings	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Attachment A	Appendix B		
Tailings Basin	Dams	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 2.2 and Large Table 1	Section 2.3.1		
	FTB South Seepage Management System	NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 2.1.3 and 4.1.3	Table 1-1, Sections 2.3.3 and 2.3.3.2		

		Location of Relevant Details:				
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume V	Permit Application Form	Application Question
	FTB Seepage Containment System	NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 2.1.4 and 4.1.4	Table 1-1, Sections 2.3.3 and 2.3.3.1		
	FTB Seepage Containment and Stream Augmentation Systems Permit Application Support Drawings	NorthMet Project: Water Management Plan – Plant (Reference (1))	Attachment C	Appendix B		
Tailin an Daoin	Flotation Tailings Transport and Deposition System	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Sections 2.3 and 4.2	Section 2.3.2		
(continued)	Water Balance	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Section 6.1.5	Section 2.3.1		
	Construction	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 2.2.4	Section 2.3.1		
	Operational Plan	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 4.0			
	Progressive Reclamation and an Overview of the Reclamation, Closure, and Postclosure Maintenance Phases	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 7.0			
		NorthMet Project: Adaptive Water Management Plan (Reference (2))	Sections 5.1, 5.5, 6.4, and 6.5	Table 1-1, Section 2.3.4		
		NorthMet Project: Water Management Plan – Plant (Reference (1)) Sec				
Stormwater	Overall	NorthMet Project: Flotation Tailings Management Plan (Reference (8))	Section 2.5	Section 2.4		
Tailings Basin (continued) Ta	Significant Materials			Section 2.4.1		
	Drainage Swale	NorthMet Project: Water Management Plan – Plant (Reference (1))	Section 2.6	Section 2.4.3		
	FTB Seepage Containment and Stream Augmentation Systems Permit Application Support DrawingsBasin ed)Basin ed)Water BalanceConstruction Operational PlanProgressive Reclamation and an Overview of the Reclamation, Closure, and Postclosure Maintenance PhasesCorrallter ment and ctureSignificant Materials Drainage Swale Receiving WatersManagement and Contingency MitigationngBaseline Surface Water Monitoring Proposed Monitoring Plan			Section 2.4.2		
		NorthMet Project: Water Management Plan – Plant (Reference (1))	Sections 6.4 and 6.5	Continue 2.5		
Adaptive Managem	ent and Contingency Mitigation	NorthMet Project: Adaptive Water Management Plan (Reference (2))	Sections 4.0 and 5.0	Section 2.5		
	Baseline Surface Water Monitoring	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Sections 4.4.1 and 4.4.4	Section 3.1.1		
Monitoring	Baseline Groundwater Monitoring	NorthMet Project: Water Modeling Data Package Volume 2 – Plant Site (Reference (6))	Sections 4.3.2 and 4.3.4	Section 3.1.2		
	Proposed Monitoring Plan			Section 3.2		
Groundwater Nond	egradation			Section 4.0		

Gray shading indicates no corresponding reference material

2.0 Beneficiation Plant and Tailings Basin Water Management and Infrastructure

This section focuses on water management associated with the Beneficiation Plant and Tailings Basin during operations, specifically during the period covered by this Application (approximately Mine Years 1 through 5). The following sub-sections describe:

- the existing site conditions (Section 2.1)
- the Beneficiation Plant (Section 2.2), including chemical additives proposed for use at the Beneficiation Plant (Section 2.2.3)
- the systems for managing tailings and associated water (Section 2.3), including an overview of plans for progressive reclamation and the reclamation, closure, and postclosure maintenance phases (Section 2.3.4)
- the stormwater management systems (Section 2.4)
- the adaptive management approach that can be used to modify tailings basin water management systems in response to site-specific conditions encountered during operations (Section 2.5)

Permit application support drawings for tailings basin water management systems are included in Appendix B.

2.1 Existing Conditions

2.1.1 Historic Conditions

The LTVSMC tailings basin was used by LTVSMC (and its predecessor Erie Mining Company) for disposal of taconite tailings. The facility was constructed in stages beginning in the 1950s. It was configured as three adjacent cells, identified as Cell 1E, Cell 2E, and Cell 2W, and was developed by first constructing perimeter starter dams and placing tailings from the iron-ore process directly on native material. Perimeter dams were initially constructed from rock, and subsequent dams were constructed of coarse tailings using upstream construction methods. The existing cells and dams are unlined and do not have a core or cutoff other than the fine tailings and slimes that deposited upstream (on the pond side) of the coarse tailings dams.

Historically most seepage from the LTVSMC tailings basin followed the northwesterly gradient in the surficial aquifer and eventually upwelled over a broad area encompassing the toes of the Tailings Basin dams and the wetlands located north and west of the Tailings Basin (surface seepage). A portion of the seepage (estimated to be less than 10%) remained as groundwater flow to the north, northwest, and west of the Tailings Basin (groundwater seepage) (Section 6.4 of Reference (6)). During LTVSMC operations, a system of ditches, pumps, and pipelines captured surface seepage at select locations along the toes of the Tailings Basin dams and returned it to the pond, however some surface seepage was uncontained.

LTVSMC tailings basin operations were discontinued in January 2001 and the basin has been inactive since, except for reclamation activities consistent with the Minnesota Department of Natural Resources (MDNR)-approved Closure Plan currently managed by Cliffs Erie, LLC (Cliffs Erie), and more recently, activities associated with the April 6, 2010 Consent Decree between Cliffs Erie and the Minnesota Pollution Control Agency (MPCA). Since LTVSMC shut down, the surface seepage flow has decreased and many of the seeps are no longer flowing.

2.1.2 Current Conditions

The LTVSMC tailings basin is in the Embarrass River watershed. *Stormwater* drains to the interior of the basin from a subwatershed area bounded by the perimeter dam crests, high ground east of Cell 2E, high ground southeast of Cell 1E, and the Spring Mine Lake subwatershed east of Cell 1E. *Stormwater* runoff from the exterior slopes of the West and North Dams drains west-northwest toward Unnamed Creek and north towards Trimble Creek and Unnamed (Mud Lake) Creek. The South Dam of Cell 2W drains south and west to the Emergency Basin and out to Unnamed Creek. *Stormwater* from high ground southeast of Cell 1E drains south toward Second Creek in the Partridge River watershed. Large Figure 2 shows existing stormwater conditions at the Plant Site, including the LTVSMC tailings basin.

There is no water ponded in Cell 2W; current groundwater elevations in Cell 2W are below the Tailings Basin surface. Ponds of water remain in Cells 1E and 2E. As it has historically, most seepage eventually upwells over a broad area encompassing the toes of the Tailings Basin dams and the wetlands located north and west of the Tailings Basin (Attachment C of Reference (1)). Six surface seeps remain active: Seeps 20, 22 (upstream of Cliffs Erie NPDES/SDS Permit MN0054089 monitoring station SD004), and 24 (North Side Seep) on the northwestern corner of Cell 2W; Seep 30 on the northern side of Cell 2E, and Seeps 32 and 33 on the southern side of Cell 1E (upstream of Cliffs Erie NPDES/SDS Permit MN0042536 monitoring station SD026).

Seepage from active seeps is currently collected at three locations and pumped back into Cell 1E by pumpback systems installed in 2011 under the 2010 Consent Decree between Cliffs Erie and the MPCA. The pumpback systems that collect seepage upgradient of existing Cliffs Erie NPDES/SDS Permit MN0054089 monitoring stations SD004 and SD006 will be replaced by the FTB Seepage Containment System (Section 2.1.4 of Reference (1)). PolyMet will continue to operate the existing pumpback system that collects seepage from the southern side of the Tailings Basin upgradient of existing Cliffs Erie NPDES/SDS Permit MN0042536 monitoring station SD026; the system will be referred to as the FTB South Seepage Management System (Section 2.1.3 of Reference (1)). Large Figure 2 shows current conditions at the Tailings Basin, including the location of active seeps and existing pumpback systems.

In the time period after issuance of a permit to PolyMet and before the FTB Seepage Containment System is operational, PolyMet will continue to operate the existing pumpback systems in accordance with the schedule of compliance established under the Consent Decree between Cliffs Erie and the MPCA. The construction schedule for the FTB Seepage Containment System is presented in Section 2.3.3.3 of this volume.

2.2 Beneficiation Plant

2.2.1 Facility Description

The Beneficiation Plant will process ore to produce nickel and copper concentrates. Ore will be crushed at the Coarse Crusher Building, ground in the semi-autogenous grinding mill and ball mill at the Concentrator Building, and then sent to the Flotation Building. In flotation, the minerals containing base and precious metals will be separated from the tailings using a combination of flotation reagents. Inputs to the Beneficiation Plant will include ore delivered by rail from the Mine Site, water from the Tailings Basin and/or Plant Reservoir (*tailings basin water* and/or *plant reservoir water*), various process consumables as detailed in Section 4.3.2.6 of Reference (5), and chemical additives as described in Section 2.2.3 of this volume.

The Beneficiation Plant will require an annual average of approximately 13,800 gpm of water for processing. Nearly all this water (99%) will be piped with the tailings to the FTB; less than 1% will be lost to evaporation in the plant or included with the concentrate (Table 2-1 of Reference (1)).

Water for Beneficiation Plant processes will come primarily from the FTB Pond (*tailings basin water*). Other minor sources of water will include water in the raw ore, reagents, and gland seals of slurry pumps. Makeup water, as needed, will be drawn from the Plant Reservoir (*plant reservoir water*). The Plant Reservoir will be supplied with raw water pumped from Colby Lake under terms of a water appropriation permit. Makeup water demand will vary depending on factors such as precipitation and Project operations. The Beneficiation Plant demand for make-up water from Colby Lake will average about 560 gpm and will vary from about 25 gpm to about 1,750 gpm depending on the Mine Year (Section 6.1.5 of Reference (6)). The water balance of the Beneficiation Plant is discussed further as part of the overall water balance of the FTB (Section 2.3.1 of this volume).

The Beneficiation Plant will process approximately 32,000 tons of ore per day, and produce approximately 660 tons per day of copper and nickel concentrates and approximately 31,340 tons per day of Flotation Tailings (Section 4.3.2.5 of Reference (5)). Copper concentrates will be dewatered and shipped to customers via rail. Nickel concentrates will be dewatered and shipped directly to customers via rail until the Hydrometallurgical Plant is built to process them on-site. Flotation Tailings will be slurried to the FTB.

2.2.2 Flotation Tailings Characterization

Flotation Tailings representative of the tailings expected from the Beneficiation Plant were produced during pilot-plant processing of Project ore samples in 2005, 2006, 2008, and 2009 (Section 2.1.1 of Reference (8)). The Flotation Tailings are composed primarily of plagioclase with lesser amounts of olivine and pyroxenes, and only very small amounts of sulfide minerals, which are of interest because of their potential to release sulfate and metals (Attachment L of Reference (4)). The flotation process is fine-tuned to maximize the capture of sulfide minerals, which are the source of the valuable copper, nickel, and platinum group elements, and minimize the amount lost to tailings.

The Flotation Tailings' potential effect on water quality will depend not only on their composition, but also on the overall geochemical environment. The rate at which constituents, such as sulfate and metals, are

released from the Flotation Tailings will vary depending on factors such as pH level and oxygen availability.

Samples of the Flotation Tailings were submitted for laboratory testing to determine geotechnical and geochemical parameters for use in water quality modeling and FTB planning. Results of geotechnical testing are presented in Section 5.3 of Reference (4). Results of ongoing kinetic testing to measure the release rates of constituents from the Flotation Tailings are presented in Section 5.1 of Reference (7). Ongoing testing of Flotation Tailings samples collected starting in 2006 has shown that samples containing higher sulfur content exhibit lower pHs and higher oxidation rates than samples with lower sulfur content; however, these tests have shown that the tailings will not generate acid: in eight years of testing no pH levels below 6 have been recorded (Section 5.1.4 of Reference (7)). Kinetic testing generally shows that metals leaching is stable or decreases over time, and that within the pH range expected for the FTB (above pH of approximately 7.0), metals leaching is not significantly affected by changes in humidity cell pH (Section 5.1.4 of Reference (7)). The Tailings Basin and associated water management systems have been designed based on the results of the eight years of characterization work on samples of Flotation Tailings.

The NorthMet Waste Characterization Data Package reports how geochemical test results were used in water quality modeling; refer to Section 10 of Reference (7). The expected contribution of the Flotation Tailings to the load of sulfate and metals in *tailings basin seepage* is described in Section 6.4.2.5 of Reference (6). Sources other than the Flotation Tailings that will contribute to the load of sulfate and metals in *tailings basin water* and the existing LTVSMC tailings.

2.2.3 Chemical Additives

Chemical additives will be used during flotation at the Beneficiation Plant to improve recovery of base and precious metals. Specifically each chemical additive will serve as one of the following:

- a collector to promote the adsorption of certain minerals
- a frother to improve froth bubble stability
- an activator to increase mineral adsorption sites
- a flocculant to promote flocculation of suspended particles
- a depressant for gangue minerals to improve selectivity towards copper and nickel minerals
- a pH modifier to regulate pH within the flotation circuit

The amount of each chemical needed in the process can be calculated and adjusted for the amount and characteristics of the ore being processed. As such, in order to maintain system efficacy and monitor costs, the minimal amount of chemicals will be used to provide the maximum metal recoveries.

Chemical additives will, for the most part, report to the flotation concentrate. However, low levels of some additives are expected to be present in the Flotation Tailings slurry piped to the FTB. Most of the chemical

additive components present within the Flotation Tailings slurry will biodegrade within the Tailings Basin. Chemical additives that do not biodegrade and that are transported with seepage will be collected by the FTB seepage capture systems (Section 2.3.3 of this volume) and routed to the WWTS for treatment. However, by design the WWTS does not remove all constituents, including some cations (i.e., K and Na). WWTS discharge may contain insignificant amounts of a few constituents that originated as chemical additives. Plant Site water modeling includes those additives that are expected to be present in WWTS influent, and the WWTS will be designed to treat all constituents necessary to meet permit conditions.

Additional information regarding proposed chemical additives that may be used in the flotation process is included in Large Table 1. Additionally, Safety Data Sheets and product information labels for each proposed chemical additive are included in Appendix C. Based on Project economics and the availability of specific products, the same chemical additive may be acquired from multiple manufacturers provided that the chemical additive is commensurate with the chemical additive proposed within this Application.

2.3 Tailings and Associated Water Management and Infrastructure

This section describes the design and operation of the infrastructure that will be used to manage Flotation Tailings, *tailings basin water*, and *tailings basin seepage* in accordance with applicable regulations. This infrastructure will be constructed or upgraded from existing conditions as necessary prior to commencement of Project operations.

From flotation, a slurry composed of *process water* and Flotation Tailings will be pumped to the FTB, where tailings will settle on beaches and at the bottom of the pond. Most water from the FTB Pond will be recycled to the Beneficiation Plant and some will infiltrate into the tailings. The FTB will be the primary collection and distribution point for water used in the beneficiation process. The FTB will receive *process water* from the Beneficiation Plant, construction *mine water* and Overburden Storage and Laydown Area (OSLA) runoff from the Mine Site via the Mine to Plant Pipelines (MPP), treated *mine water* from the WWTS, precipitation, and *tailings basin seepage* collected by the FTB seepage capture systems, along with other minor sources, as described in Table 2-1 of this volume. Water from the FTB Pond will be recycled back to the Beneficiation Plant.

The FTB is designed as a closed system. No discharge is planned. An emergency overflow will be provided as standard engineering practice for dam safety, but the FTB will be designed and operated with sufficient freeboard so that there is a low likelihood of a precipitation event causing an overflow during the lifetime of the basin (Section 2.5 of Reference (8)). *Tailings basin seepage* will be collected by the FTB seepage capture systems. Refer to Section 6.1 of Reference (6) for the details of the Plant Site water balance, including the Tailings Basin.

The following sections describe the design and operation of the major components of the tailings and water management systems, which include the FTB (Section 2.3.1), systems for transport and deposition of Flotation Tailings (Section 2.3.2), and the FTB seepage capture systems (Section 2.3.3). Plans for progressive reclamation during operations and the reclamation, closure, and postclosure maintenance phases are summarized in Section 2.3.4.

2.3.1 Flotation Tailings Basin

The FTB is designed to contain Flotation Tailings generated over 20 years of operation (Section 1.0 of Reference (8)). The basin is sized with sufficient freeboard and emergency overflow infrastructure to safely accommodate the 72-hour probable maximum precipitation (PMP) rainfall event (Sections 2.2.3 and 2.5 of Reference (8)). The PMP, which is defined as "the theoretically greatest depth of precipitation for a given duration over a particular drainage area..." is specified by the Office of Hydrology of the National Oceanic and Atmospheric Administration.

Three basic management techniques will be used to minimize the potential water resource impacts of the Flotation Tailings. First, the ore will be processed using a bulk sulfide flotation process to minimize the amount of sulfide minerals in tailings reporting to the FTB. Second, Flotation Tailings will be deposited as bulk tailings, rather than allowing coarse and fine tailings to segregate, because bulk tailings exhibit lower release rates of metals and other constituents than segregated tailings (Section 5.2 of Reference (7)). Third, FTB design includes features to minimize oxidation of the tailings (Section 2.2.4 of Reference (8)) because oxidation increases release rates of metals from the tailings.

FTB perimeter dams will be raised in an upstream construction method using compacted LTVSMC coarse tailings. Vegetation will be removed from the surface of the existing Tailings Basin in areas where dams will be constructed and tailings will be placed. A bentonite amended oxygen barrier layer will be placed on exterior sides of the FTB dams to limit oxidation of the tailings. The FTB dams are designed to meet all required factors of safety (Section 8.0 of Reference (4)), and will be constructed and operated in accordance with Minnesota state dam safety regulations (Section 2.0 of Reference (4)).

The facility will be constructed in stages, gradually increasing in elevation and size, as documented in Large Table 1 of Reference (8). Initially, Flotation Tailings will be placed in Cell 2E. Three dam lifts are planned during the first five years of operations. In Mine Year 7, after Lift 5 is finished, Cell 2E will merge with Cell 1E. Large Figure 3 shows the configuration of the Tailings Basin at the end of Mine Year 1. A total of eight dam lifts will be constructed during operations. Large Figure 4 shows the footprint of the FTB at the end of operations (Mine Year 20). For additional detail on the design of the FTB, refer to Section 2.2 of Reference (8). The FTB Permit Application Support Drawings are included in Appendix B.

The FTB Pond will receive water from a total of seven sources during operations. These inflows and their relative volumes are shown in Table 2-1. This water supply to the FTB Pond will be sufficient to supply most of the Beneficiation Plant water demand. The overall water balance for the Tailings Basin (Section 6.1.5 of Reference (6)) shows that during operations the Project is a net consumer of water.

Table 2-1	FTB Pond Water Inflows During Operations

Water source	Description	Approximate relative percent of total inflow ⁽¹⁾
Beneficiation Plant	<i>Process water</i> directly to Flotation Tailings Basin (FTB) Pond <i>Process water</i> runoff from FTB beaches	72%
Precipitation	Direct precipitation and runoff from within the Tailings Basin	10%
Waste Water Treatment System (WWTS)	Treated mine water	9.8%
Seepage Capture Systems	<i>Tailings basin seepage</i> , groundwater, and <i>stormwater</i> runoff from upgradient Tailings Basin dams	7%
WWTS	Greensand filter backwash and clean-in-place (CIP) membrane waste	1%
Mine Site	Construction <i>mine water</i> and Overburden Storage and Laydown Area (OSLA) runoff via the Mine to Plant Pipelines (MPP)	0.2%
Sewage Treatment System	Treated effluent pumped to FTB Pond twice a year	0.1%

(1) Representative inflow during operations, in Mine Year 10 (Section 6.1.2 of Reference (6)). The proportion of various inflows will vary depending on operational factors and weather.

Inflows to the FTB Pond will be managed to keep the water level as high as possible without exceeding dam safety criteria. Setting the pond level as high as safely possible minimizes environmental impacts: smaller beaches minimize fugitive dust generation and reduce the potential for oxidation of exposed Flotation Tailings. FTB Pond level management is detailed in Section 4.4 of Reference (8). Additional details on the FTB Pond water balance are available in Section 6.1 of Reference (6).

No direct discharge from the FTB Pond is planned during operations. Seepage from the FTB Pond will be collected by the FTB seepage capture systems and either returned to the pond or treated at the WWTS prior to discharge (Section 2.3.3 of this volume). Discharge from the WWTS is described in Volume III.

The FTB is designed to prevent overflow. Dam raises are planned to provide ample freeboard to accommodate water level bounce from routine precipitation events (Section 4.2 of Reference (8)) and from PMP events as previously described. The FTB Pond water level will be managed to maintain adequate freeboard by adjusting the relative amount of *tailings basin seepage* routed back to the pond and sent to the WWTS. An emergency overflow for the FTB during operations will be provided for protection of the dams in the rare event that freeboard within the FTB were not sufficient to contain all *stormwater* from a PMP rainfall event. This is standard practice in dam design, to accommodate overflows in a manner that protects the integrity of the dams. The emergency overflow channel outlet is located near the headwaters of Unnamed (Mud Lake) Creek, as shown on Large Figure 3 and Large Figure 4.

However, PMP rainfall events are rare and such an event has a low likelihood of occurring during the life of the basin (Section 2.2.3 of Reference (8)). Therefore, no discharge from the FTB Pond is expected.

A geotechnical and dam safety monitoring program will be conducted to support long-term performance of the FTB, under the terms of a MDNR Dam Safety Permit (Section 5.0 of Reference (8)).

2.3.2 Flotation Tailings Transport and Deposition

Flotation Tailings will be pumped to the FTB in slurry form through a system of pumps and pipes. For approximately the first seven years of operation, the Flotation Tailings will be placed in Cell 2E. The design of the tailings transport and deposition system will be integrated with FTB dam design to define tailings discharge locations and system head.

The locations of the pipelines used to place the tailings in the FTB will evolve as operations continue. The system can be configured to deposit tailings by gravity flow over beaches or subaqueously in the FTB Pond. Roughly 30% of the tailings will be deposited on the beaches and 70% will be deposited subaqueously in the FTB Pond. Subaqueous deposition will spread tailings across the bottom of the pond without mixing with the pond water and minimize particle size segregation during deposition (Section 2.3 of Reference (8)).

A return water system will be constructed to recycle water from the FTB Pond for use in the Beneficiation Plant. As the dams are raised, the process water return pipeline will be moved to maintain the pipeline at or near the surface of the dam. Additional information on the Flotation Tailings transport and deposition systems is available in Section 2.3 of Reference (8).

2.3.3 FTB Seepage Capture Systems

Seepage from the northern, northwestern, western, and eastern sides of the Tailings Basin will be captured by the FTB Seepage Containment System (Section 2.3.3.1), and seepage from the southern side of the Tailings Basin will be collected by the FTB South Seepage Management System (Section 2.3.3.2). Much of the water collected by the FTB seepage capture systems will be returned to the FTB Pond for reuse at the Beneficiation Plant (Section 6.1.4 of Reference (6)). Water in excess of what can be reused will be pumped to the WWTS for treatment and discharged from the surface water discharge outfalls to wetlands in the headwater area of Unnamed Creek, wetlands in the headwater area of Trimble Creek, and the headwater segment of Second Creek, as described in Section 2.4.3 of Volume III. The locations of the FTB seepage capture systems and surface water discharge outfalls are shown on Large Figure 3 and Large Figure 4.

2.3.3.1 FTB Seepage Containment System

Seepage from the LTVSMC tailings basin currently flows to the north and west as surface seepage or groundwater seepage; however, this seepage will be managed (collected and treated) when the FTB Seepage Containment System begins operation. The FTB Seepage Containment System will collect *tailings basin seepage* along the northern, northwestern, western, and eastern toes of the Tailings Basin dams. Along most of the eastern side of the Tailings Basin, high bedrock will prevent groundwater seepage; no dams are needed in these areas. The FTB Seepage Containment System will collect water seeping from the

Tailings Basin via surface and shallow groundwater flow, as well as runoff from the exteriors of the dams on the northern, northwestern, western, and eastern sides of the Tailings Basin, and from the small watershed area between the toes of the dams and the FTB Seepage Containment System.

PolyMet will not deposit tailings in the FTB until the FTB Seepage Containment System along the northern and western sides of the Tailings Basin is fully functional. The segment along the eastern side of the Tailings Basin will be constructed concurrently with the East Dam, prior to the time that FTB Cells 2E and 1E will merge. No seepage is reasonably expected along the eastern side of the Tailings Basin prior to the merging of FTB Cells 2E and 1E.

The FTB Seepage Containment System will consist of a cutoff wall (a low permeability hydraulic barrier) placed into the existing surficial deposits, with a drainage collection system installed on the upgradient side, as shown in Figure 2-1 of Reference (1). The drainage collection system will have a collection trench filled with granular drainage material and a perforated drain pipe located near the bottom of the trench. Vertical risers extending above ground surface from the drain pipe will collect runoff and surface seepage discharging upgradient of the FTB Seepage Containment System. Refer to Sections 2.1.4 and 4.1.4 of Reference (1) for additional information on the design and operation of the FTB Seepage Containment System. The FTB Seepage Containment System Permit Application Support Drawings are included in Appendix B.

The FTB Seepage Containment System will draw down the water table on the Tailings Basin side of the cutoff wall, maintaining an inward gradient and mitigating the potential for seepage to pass through the cutoff wall (i.e., any seepage through the cutoff wall will be inward into the FTB Seepage Containment System). The cutoff wall will be extended to bedrock in order to minimize the amount of water drawn inward. Groundwater flow modeling indicates that the FTB Seepage Containment System will collect 100% of surface seepage and at least 93% of the groundwater seepage that would otherwise flow to the north, northwest, or west of the Tailings Basin (Attachment C of Reference (1)). Hydrologic assessment indicates that the eastern portion of the FTB Seepage Containment System will have 100% capture efficiency (Section 2.1.4 of Reference (1)). Monitoring wells and piezometers will be installed along the length of the FTB Seepage Containment system to demonstrate its performance, as described in Section 3.2.2.4 of Volume I.

Eliminating the current discharge to the wetlands north and west of the Tailings Basin will significantly reduce inflow to downstream tributaries. To minimize hydrologic impacts to these wetlands and tributaries:

- during the construction phase, temporary culverts will be installed in the FTB Seepage Containment System access road to allow surface water in the area between the FTB Seepage Containment System and the Tailings Basin to continue to flow to the surrounding wetlands; these culverts will be removed or sealed prior to the start of the operations phase
- during the operations phase, stream flow in Trimble Creek and Unnamed Creek will be augmented with treated water from the WWTS (refer to Section 2.4.3 of Volume III), and stream

flow in Unnamed (Mud Lake) Creek will be augmented with *non-contact stormwater* routed via a drainage swale (refer to Section 2.4.3 of this volume)

2.3.3.2 FTB South Seepage Management System

Seepage along the southern side of the Tailings Basin has historically been limited to surface seepage, and it is expected that this will continue. The existing SD026 pumpback system currently collects surface seepage from the southern side of the Tailings Basin as part of the Consent Decree between Cliffs Erie and the MPCA, as described in Section 2.1.2 of this volume. During Project operations, PolyMet will continue to operate this system to collect seepage: it will be known as the FTB South Seepage Management System. Refer to Sections 2.1.3 and 4.1.3 of Reference (1) for additional information on the design and operation of the FTB South Seepage Management System.

Prior to the installation of the SD026 pumpback system in 2011, surface seepage from the southern side of the Tailings Basin was a major contributor to the headwaters of Second Creek. The FTB South Seepage Management System will continue to collect this seepage, thus continuing to reduce stream flow in Second Creek from pre-Consent Decree levels. To counteract this reduction, stream flow in Second Creek will be augmented with treated water from the WWTS (refer to Section 2.4.3 of Volume III).

2.3.3.3 Construction Schedule

PolyMet will not deposit Flotation Tailings in the FTB until the portion of the FTB Seepage Containment System surrounding the northern, northwestern, and western sides of the Tailings Basin is fully functional. No seepage is reasonably expected along the eastern side of the Tailings Basin prior to the merging of FTB Cells 2E and 1E in Mine Year 7. PolyMet will not merge Cells 2E and 1E until the portion of the FTB Seepage Containment System on the eastern side of the Tailings Basin is fully functional. A network of monitoring wells and piezometers will be installed along the FTB Seepage Containment System to verify the performance of the FTB Seepage Containment System, as described in Section 3.2.2.4 of Volume I.

The construction schedule for the FTB Seepage Containment System and associated monitoring system will be based on the time of year the NPDES/SDS permit is issued, as well as receipt of all other necessary permits for this work to commence. Two construction seasons will be necessary to install the FTB Seepage Containment System and associated monitoring wells and test their performance.

2.3.4 Progressive Reclamation, and an Overview of the Reclamation, Closure, and Postclosure Maintenance Phases

While the activities described in this section are beyond the scope of the first NPDES/SDS permit term, an overview of progressive reclamation activities that will occur during the operations phase and activities associated with the reclamation, closure, and postclosure maintenance phases, which are estimated to begin in Mine Years 21, 25, and 55, respectively, are provided here as additional background.

The Tailings Basin exterior slopes will be progressively reclaimed during operations. During construction, the exterior dam slopes will be amended with bentonite to limit oxygen infiltration and stabilized with vegetation (Section 7.1 of Reference (8)). For final reclamation, upland FTB areas not previously amended

with bentonite (dam crest and interior slope) and exposed beaches will be amended with bentonite to limit oxygen infiltration (Section 7.2 of Reference (8)). These areas will then be vegetated. The FTB Pond bottom will also be amended with bentonite. The bentonite-amended pond bottom will reduce the amount of water collected by the FTB seepage capture systems. It will also reduce the percolation from the FTB Pond, maintaining a permanent pond as an oxygen barrier above the Flotation Tailings to reduce oxidation, infiltration, and resultant production of chemical constituents (Section 5.1 of Reference (2)).

PolyMet will continue to operate the FTB seepage capture systems during the reclamation, closure, and postclosure maintenance phases. During reclamation and closure, the WWTS will continue to treat water collected by the FTB seepage capture systems. FTB Pond overflow will be prevented by pumping any excess pond water to the WWTS. The long-term objective is to replace the WWTS with non-mechanical water treatment systems (Section 6.4 of Reference (2)); however, the WWTS will be maintained operable until non-mechanical systems are demonstrated and approved. During the closure or postclosure maintenance phases, if it can be demonstrated that water in the FTB Pond is *stormwater* and that it complies with applicable standards, then PolyMet could seek approval to allow the pond to overflow (Section 6.5 of Reference (2)).

2.4 Stormwater Management and Infrastructure

This section describes the management of *stormwater* at the Tailings Basin, including best management practices (BMPs) and the design and operation of the infrastructure that will be used to manage *stormwater* in accordance with applicable regulations. *Stormwater* associated with the Beneficiation Plant is included in the discussion of Plant Site *stormwater* in Section 2.3 of Volume IV.

Consistent with the overall Project approach (Table 1-2 of this volume), *stormwater* at the Tailings Basin is defined in three categories:

- construction stormwater, which consists of stormwater associated with construction activities
- *industrial stormwater*, which consists of *stormwater* associated with industrial activities
- *non-contact stormwater*, which consists of precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities, or industrial activities

Stormwater infrastructure will be constructed or upgraded from existing conditions as necessary prior to commencement of Project operations. As discussed in Section 1.0 of this volume, a separate application is being submitted requesting authorization to discharge *stormwater* associated with construction activities at the Tailings Basin under the Construction Stormwater General Permit. While these activities will be associated with the separate Construction Stormwater General Permit program, an overview of PolyMet's plan for management of *construction stormwater* is included here as additional background. *Stormwater* associated with construction activities will be managed with controls and BMPs, including erosion and sediment control measures, construction water management control measures, dust control measures, and construction site restoration practices. Prior to the start of each phase of construction activities, these

management measures will be incorporated into a Construction Stormwater Pollution Prevention Plan (SWPPP) based on detailed construction plans and in accordance with Construction Stormwater General Permit requirements. In order to meet the permanent stormwater management requirements of the Construction Stormwater General Permit, additional stormwater features beyond those discussed herein may be included in final engineering designs and subsequently added to the Construction SWPPP.

Also, as discussed in Section 1.0 of this volume, a separate application will be submitted requesting authorization to discharge *stormwater* associated with industrial activities at the Tailings Basin under the Industrial Stormwater General Permit. While these activities will be associated with the separate Industrial Stormwater General Permit program, an overview of PolyMet's plan for management of *industrial stormwater* is included here as additional background. PolyMet will develop and implement an Industrial SWPPP in accordance with Industrial Stormwater General Permit requirements, which will incorporate and expand upon the discussions in this section.

Relatively little precipitation or runoff associated with the Tailings Basin will be managed as *industrial stormwater* or *non-contact stormwater*. Most precipitation and runoff will be:

- collected within the FTB Pond or within Tailings Basin Cell 2W and managed as *tailings basin water* as described in Section 2.3 of this volume
- collected by the FTB seepage capture systems and managed with *tailings basin seepage* as described in Section 2.3 of this volume

The portions of the Tailings Basin where precipitation and runoff will be managed as *industrial stormwater* are described in Section 2.4.2.

Subwatershed divides at the Plant Site during operations, including those associated with the Tailings Basin, are shown on Large Figure 3 and Large Figure 4. Stormwater conditions during operations will be changed from existing conditions as follows:

- Precipitation that falls on the exterior dam faces on the northern, northwestern, western, and eastern sides of the Tailings Basin will be collected by the FTB Seepage Containment System.
- Runoff from the Tailings Basin Cell 2W South Dam exterior will initially flow south to the existing Emergency Basin or west toward the Unnamed Creek subwatershed. After construction of the HRF:
 - runoff from the southeastern portion of the Tailings Basin Cell 2W South Dam exterior will flow south and be routed through the West Plant stormwater system as described in Section 2.3.2 of Volume IV
 - runoff from the southwestern portion of the Tailings Basin Cell 2W South Dam exterior will be routed west and managed with runoff from the HRF dam exteriors as described in Section 2.4.2 of Volume VI

- After the FTB South Dam is constructed:
 - runoff from the west-facing portion of the FTB South Dam exterior will flow west, where it will be routed through the West Plant stormwater system as described in Section 2.3.2 of Volume IV
 - runoff from the southwest and south-facing central portion of the FTB South Dam exterior will infiltrate into the FTB south buttress then be collected by the FTB South Seepage Management System and managed with *tailings basin seepage* as described in Section 2.3 of this volume
 - runoff from the easternmost south-facing portion of the FTB South Dam exterior will flow south within the Second Creek watershed (Section 2.6.3.1 of Reference (1))

Stormwater infrastructure associated with the Tailings Basin (described in Section 2.4.2) will take into account these changes to existing stormwater conditions, natural drainage patterns, and the potential for *stormwater* to contact significant materials (Section 2.4.1).

2.4.1 Significant Materials

Significant materials are defined by 40 CFR § 122.26(b)(12) as including, but not limited to:

"raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); any chemical the facility is required to report pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA); fertilizers; pesticides; and waste products such as ashes, slag, and sludge that have the potential to be released with stormwater discharges."

Stormwater may come into contact with significant materials at the Tailings Basin and will be managed throughout the life of the Project using appropriate BMPs, including engineered controls and spill prevention and response procedures, to reduce or eliminate contact or exposure of pollutants to *stormwater* or remove pollutants from *stormwater*.

2.4.2 Stormwater Management System

The areas associated with the Tailings Basin that will generate runoff to be managed as *industrial stormwater* will be the Tailings Basin Cell 2W South Dam exterior, the west-facing portion of the FTB South Dam exterior, and the easternmost south-facing portion of the FTB South Dam exterior. The stormwater flow patterns for runoff from these areas are described in Section 2.4.

Prior to operation, management measures for *stormwater* associated with the Tailings Basin will be incorporated into an Industrial SWPPP based on detailed construction plans. Additional information about *stormwater* management at the Tailings Basin is presented in Section 2.5 of Reference (8).

2.4.3 Drainage Swale

A drainage swale will be constructed east of the Tailings Basin to re-route toward Unnamed (Mud Lake) Creek the *non-contact stormwater* (e.g., natural runoff) that currently flows into the Tailings Basin (Large Figure 3). This drainage swale will be constructed before the FTB Seepage Containment System is operational. The purposes of the drainage swale are to augment streamflow in Unnamed (Mud Lake) Creek, replacing inflow that will be reduced by the FTB Seepage Containment System, and to prevent water from ponding at the toe of the East Dam.

2.5 Adaptive Management

The tailings basin water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality. As described in Section 1.6 of Volume I, if water quality objectives are not met by these engineering controls, PolyMet will use an adaptive management approach, as necessary, to improve performance. As part of the adaptive management approach at the Tailings Basin, studies will first be undertaken to determine the root cause of the problem. Second, the design or operation of existing (or planned) Project engineering controls will be modified to remedy the root cause. Third, if modifying the design or operation of Project engineering controls is not sufficient, then contingency mitigation actions will be taken. Fourth, outcomes will be monitored and may be evaluated with water modeling. This process is meant to be iterative and will be repeated as necessary. The process for implementing adaptive management at the Tailings Basin is described in Section 6.4 of Reference (1) and Sections 4.0 and 5.0 of Reference (2).

Section 6.5 of Reference (1) presents feasible contingency mitigation actions available to address the following specific situations:

- new surface seeps emerge as the FTB is developed
- FTB Pond water quality is worse than expected
- potential groundwater or surface water concerns downgradient of the FTB

3.0 Tailings Basin Monitoring

Monitoring of baseline water quality and quantity has been ongoing in the vicinity of the Tailings Basin. As the Project commences, monitoring will continue at specific locations for a variety of purposes, including compliance with this permit. Baseline monitoring data from monitoring stations presented in the FEIS (Reference (3)) (which includes stations proposed in the NPDES/SDS monitoring plan) is described in Section 3.1; Section 3.2 provides information on the proposed monitoring plan.

3.1 Existing Baseline Monitoring

This section summarizes the surface water and groundwater monitoring previously conducted at the Tailings Basin.

3.1.1 Surface Water

Baseline monitoring has been conducted at numerous locations along tributaries to the Embarrass River and the Partridge River that could potentially be affected by the Project, including Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek. Baseline monitoring stations associated with the Tailings Basin are shown on Large Figure 2 and Large Figure 5.

Daily flow data is available for the Embarrass River from the U.S. Geological Survey (USGS) gaging station 04017000 (Embarrass River at Embarrass, Minnesota) from 1942 to 1964. The hydrology data has been validated and adjusted for use on this Project, as described in Section 4.4.1 of Reference (6). Daily flow data is also available for Second Creek from the USGS gaging station 04015500 (Second Creek near Aurora, Minnesota) from 1955 to 1980; however, during that period flow at this location was heavily affected by mine pit dewatering, so this data has not been used for this Project (Section 1.4.1 of Reference (1)).

Several locations have been monitored for water quality and quantity since 2004, as summarized in Table 3-1; existing surface water monitoring stations are shown on Large Figure 2 and Large Figure 5.

Current Monitoring Station ID	Water Body		Water Quality Monitoring Years	Average Instantaneous Flow (cfs)	Number of Flow Measurements	Flow Measurement Monitoring Years	
MLC-1		Unnamed	2011-2015	N/A	N/A	N/A	
MLC-2		(Mud Lake)	2011-2015	2.7	4	2011	
MLC-3A		Creek	2012	N/A	N/A	N/A	
PM-19			2009-2015	1.7	13	2009-2011	
TC-1	Embarrass	Trimble Creek	2012	N/A	N/A	N/A	
TC-1a	River Tributaries	Creek	2012-2015	N/A	N/A	N/A	
PM-11/ SW003				2004, 2006, 2008-2015	3	24	2004-2011
UC-1/PM-9		Unnamed Creek	2004, 2006, 2012-2013	0	4	2004-2006	
UC-1a			2013-2015	N/A	N/A	N/A	
PM-12/ SW004 ⁽¹⁾			2004, 2006- 2015	9	40	2004-2009	
PM-12.2 ⁽¹⁾			2010-2015	4.1	8	2010-2011	
PM-12.3	Embarrass Ri	ver	2010-2015	12.8	8	2010-2011	
PM-12.4			2010-2015	17.2	8	2010-2011	
PM-13/ SW005			2004, 2006- 2015	61.1	41	2004-2011	
PM-7/ SD026	Partridge River Tributary	Second Creek	2004-2015	1.2	21	2004-2007	

 Table 3-1
 Summary of Baseline Surface Water Monitoring Stations (2004 through 2015)

(1) This station represents existing conditions upstream of the potential influence of the Tailings Basin.

Refer to Large Table 2 for a summary of the baseline surface water quality monitoring results and Section 4.4.4 of Reference (6) and Reference (9) for detailed baseline surface water quality results. The frequency and extent (i.e., number of constituents) of monitoring varied by location. Monitoring conducted from 2004 through 2008 generally included fewer locations and a wider list of constituents to characterize the baseline conditions within the watersheds. Monitoring from 2008 through 2011 generally focused on a smaller list of constituents and locations. More extensive baseline monitoring was resumed in 2012, including additional locations along Embarrass River tributaries and a wider list of constituents (Section 1.4.1 of Reference (1)). Other downstream water bodies monitored for water quality include Sabin Lake (2009-2013), Wynne Lake (2009-2013), and Embarrass Lake (2009-2011); the related water quality data is available in Section 4.4.4.4 of Reference (6). Under Minnesota Rules, part 7050.0430, Embarrass River, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek are unlisted waters with the default classification of Class 2B, 3C, 4A, 5, and 6. For several parameters, one or more baseline monitoring results recorded a concentration higher than the applicable surface water quality standard, as summarized in Table 3-2 for the monitoring stations on the Embarrass River downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek and Table 3-3 for the monitoring station on the Embarrass River upstream of Spring Mine Creek. The baseline water quality of the Embarrass River at PM-12 (upstream of Spring Mine Creek) represents natural background levels. The water quality of the Embarrass River at the other stations listed in Table 3-1, Unnamed (Mud Lake) Creek, Trimble Creek, unnamed Creek, and Second Creek represents a mixture of natural background levels and the possible influence of past industrial operations.

Table 3-2Baseline Exceedances of Surface Water Standards at Monitoring Stations on the
Embarrass River (Downstream of Spring Mine Creek), Unnamed (Mud Lake)
Creek, Trimble Creek, Unnamed Creek, and Second Creek (2004 through 2015)

	Number	r Water Quality Standard and Number of Exceedances ⁽¹⁾									
Parameter	of Samples	es 2B ⁽²⁾ 3C 4A		4B			5				
Aluminum (dissolved)	466	125 µg/L	8	N/A	-	N/A	-	N/A	-	N/A	-
Aluminum (total)	523	125 µg/L	68	N/A	-	N/A	-	N/A	-	N/A	-
Cobalt (dissolved)	250	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-
Cobalt (total)	483	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-
Hardness as CaCO3	548	N/A	-	500 mg/L	104	N/A	-	N/A	-	N/A	-
pH (SU) ⁽³⁾	756	6.5-9.0	11	6.0 – 9.0	0	6.0 – 8.5	2	6.0 – 9.0	0	6.0 – 9.0	0
Mercury (dissolved)	24	0.0013 µg/L ⁽²⁾	22	N/A	-	N/A	-	N/A	-	N/A	-
Mercury (total)	264	0.0013 µg/L ⁽²⁾	110	N/A	-	N/A	-	N/A	-	N/A	-
Solids, Total Dissolved	552	N/A	-	N/A	-	700 mg/L	103	1,000 mg/L	3	N/A	-
Specific Conductance	744	N/A	-	N/A	-	1,000 µmhos/c m	178	N/A	-	N/A	-
Thallium	290	0.56 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-

Note: This assessment includes stations on the Embarrass River downstream of Spring Mine Creek, Unnamed (Mud Lake) Creek, Trimble Creek, Unnamed Creek, and Second Creek identified in Table 3-1 (MLC-1, MLC-2, MLC-3A, PM-19, TC-1, TC-1a, PM-11/ SW003, UC-1/PM-9, UC-1a, PM-12/ SW004, PM-12.2, PM-12.3, PM-12.4, PM-13/ SW005, and PM-7/ SD026). Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include mercury.

(3) pH exceedances are due to samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU) as noted).

Table 3-3Baseline Exceedances of Surface Water Standards at the Monitoring Station on
the Embarrass River Upstream of Spring Mine Creek (2004, 2006 through 2015)

	Number	V	/ater	Quality Sta	andar	d and Nur	nber	of Exceeda	ances	(1)	
Parameter	of Samples	2B ⁽²⁾		3C		4A		4B		5	
Aluminum (dissolved)	52	125 µg/L	7	N/A	-	N/A	-	N/A	-	N/A	-
Aluminum (total)	64	125 µg/L	18	N/A	-	N/A	-	N/A	-	N/A	-
pH (SU) ⁽³⁾	85	6.5-9.0	13	6.0 – 9.0	2	6.0 – 8.5	2	6.0 – 9.0	2	6.0 – 9.0	2
Mercury (dissolved)	8	0.0013 µg/L ⁽²⁾	8	N/A	-	N/A	-	N/A	-	N/A	-
Mercury (total)	42	0.0013 µg/L ⁽²⁾	35	N/A	-	N/A	_	N/A	_	N/A	-

Note: This assessment includes the station on the Embarrass River upstream of Spring Mine Creek identified in Table 3-1 (PM-12/ SW004). This station is proposed to be monitored as part of this permit.

These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include mercury.

(3) pH exceedances are due to samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU) as noted).

The existing Cliffs Erie NPDES/SDS Permit for the former LTVSMC tailings basin (MN0054089) includes five surface water discharge stations (SD001, SD002, SD004, SD005, and SD006) and three surface water monitoring stations (SW003 [PM-11], SW004 [PM-12], and SW005 [PM-13]). There is currently no discharge at any of the five existing surface water discharge stations: no surface seepage is present at SD001, SD002, and SD005 and seepage upgradient of SD004 and SD006 is captured by the temporary pumpback systems installed in 2011 under the 2010 Cliffs Erie Consent Decree (which will be replaced by the FTB Seepage Containment System). The proposed monitoring plan for this Project includes monitoring of surface water monitoring stations SW003 and SW005, but will not include monitoring of SW004 or of any of the existing surface water discharge stations (refer to Section 3.2 of this volume).

The existing Cliffs Erie NPDES/SDS permit includes one surface water discharge station (SD026) related to the Tailings Basin. The existing pumpback system, which will continue during Project operations as the FTB South Seepage Management System, was installed in 2011 to collect surface seepage upstream of SD026 and pump it back into LTVSMC tailings basin Cell 1E. Cliffs Erie continues to monitor SD026 as part of their ongoing NPDES/SDS monitoring requirements (Section 1.4.1 of Reference (1)); additionally, for purposes of the Project, baseline surface water quality monitoring of Second Creek was performed at this location (also known as baseline surface water monitoring station PM-7) during 2004, 2006, and 2007. PM-7 is proposed as a surface water monitoring station for the Project (with proposed NPDES/SDS station ID SW020). Data collected at PM-7 is presented in Large Table 5 of Reference (6).

3.1.2 Groundwater

The surficial aquifer consists of a relatively thin mantle of peat, glacial till, and reworked sediments. Depth to bedrock along the containment system alignment to the north, northwest, and west of the Tailings Basin ranges from 3.5 to 42.5 feet. The average thickness of surficial deposits along these alignments is 19.5 feet. No substantial surficial deposits are present along the southern and much of the eastern sides of the Tailings Basin, where the basin abuts bedrock. Surficial deposits underlie a portion of the alignment of the East Dam. Although the thickness of the native sediments below the LTVSMC tailings is unknown, it is estimated that it is similar to the surrounding area. The underlying bedrock is the Giant's Range granite batholith (Section 4.3.1 of Reference (6)).

Groundwater elevations measured around the existing Tailings Basin indicate that groundwater flows to the north and northwest, toward the Embarrass River. As the Tailings Basin was built up over time, a groundwater mound formed beneath the basin due to seepage from the various ponds, which altered local flow directions and rates (Section 4.3.2.2.1 of Reference (6)). Groundwater flow to the south and east is generally constricted by the bedrock outcrops and the underlying bedrock unit of the Giant's Range granite batholith (Reference (10)), which outcrops as a ridge and drainage divide and makes up the highest topography in the area. However, there is a gap in the bedrock hills near the southern end of the Tailings Basin, which allows some seepage to flow south toward Cliffs Erie NPDES/SDS monitoring station SD026, forming the headwaters of Second Creek, a tributary to the lower Partridge River.

Baseline monitoring of groundwater quality and elevation at the existing Tailings Basin has been and continues to be assessed via a network of monitoring wells completed into the unconsolidated surficial aquifer. A summary of these existing wells is available as Large Table 3, and their locations are shown on Large Figure 2.

Sixteen existing monitoring wells provide information on groundwater quality in the surficial deposits in the area of the Tailings Basin. Some of the wells (GW001 through GW008, with the exception of GW003 and GW004, which have been dry in recent years) have been sampled regularly for more than 10 years as part of the NPDES/SDS Permit for the existing LTVSMC tailings basin (NPDES/SDS Permit No. MN0054089 held by Cliffs Erie). The groundwater monitoring well network also includes four wells installed in 2009 specifically for evaluation of baseline conditions for this Project, and three additional wells installed in 2010 as part of the Cliffs Erie Consent Decree (Section 1.4.2 of Reference (1)). An additional well, GW016, was installed in 2013 as a replacement for well GW014, which was believed to be influenced by surface water (Section 1.4.2 of Reference (1)). The wells are monitored quarterly, with the exception of the winter (first) quarter. For a complete tabulation of baseline groundwater quality data collected from 2007 through 2015 at the existing Tailings Basin, refer to Section 4.3.4 of Reference (6) and Reference (9). Refer also to Large Table 4, which provides a summary of these results.

Four of the wells, including one upgradient well, are uninfluenced by existing LTVSMC tailings basin seepage and represent natural background conditions (GW002, GW011, GW013, and GW015). Baseline condition exceedances of groundwater quality standards, specifically U.S. Environmental Protection Agency (USEPA) Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits

(sMCLs), are summarized in Table 3-4 for these wells, which represent natural background conditions. In accordance with Minnesota Rules, part 7060.0600, subpart 8, "where the background level of natural origin is reasonably definable and higher than the accepted standard for potable water and the hydrology and extent of the aquifer are known, the natural level may be used as the standard".

The remaining wells at the Tailings Basin have been influenced by historic or current *tailings basin seepage*. Baseline condition exceedances of groundwater quality standards, specifically USEPA MCLs and sMCLs, are summarized in Table 3-5 for these wells. Additionally, exceedances of NPDES/SDS Permit No. MN0054089 groundwater intervention limits from 2007 to April 2014 are summarized in Table 3-6.

		Water Quality Sta	andard and	d Number of Exceedan	ces ⁽¹⁾	
Parameter	Number of Samples	USEPA MCL ⁽²	2)	USEPA sMCL ⁽³⁾		
Aluminum (dissolved)	72	N/A	-	50 µg/L	28	
Aluminum (total)	50	N/A	-	50 µg/L	46	
Arsenic (total)	50	10 µg/L	1	N/A	-	
Chromium (total)	50	100 µg/L	1	N/A	-	
Cyanide	50	0.2 mg/L	1	N/A	-	
Iron (dissolved)	65	N/A	-	300 µg/L	1	
Iron (total)	50	N/A	-	300 µg/L	35	
Lead (total)	50	15 µg/L	1	N/A	-	
Manganese (dissolved)	67	N/A	-	50 µg/L	18	
Manganese (total)	50	N/A	-	50 µg/L	30	
рН	72	N/A	-	6.5-8.5 SU	24	
Turbidity	71	5 NTU	42	N/A	-	

Table 3-4Baseline Exceedances of Groundwater Standards at Uninfluenced Wells Identified
in Large Table 3 (2007, 2009 through 2015)

Note: This assessment includes uninfluenced stations (GW002, GW011, GW013, and GW015) identified in Large Table 3. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Plant Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.

⁽²⁾ USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

⁽³⁾ USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Table 3-5Baseline Exceedances of Groundwater Standards at Influenced Wells Identified in
Large Table 3 (2007, 2009 through 2015)

		Water Quality Sta	andard and	d Number of Exceeda	inces ⁽¹⁾
Parameter	Number of Samples	USEPA MCL	(2)	USEPA sMCI	(3)
Aluminum (dissolved)	192	N/A	-	50 µg/L	2
Aluminum (total)	138	N/A	-	50 µg/L	83
Arsenic (dissolved)	168	10 µg/L	1	N/A	-
Arsenic (total)	136	10 µg/L	4	N/A	-
Barium (dissolved)	128	2,000 µg/L	4	N/A	-
Beryllium (total)	135	4 µg/L	1	N/A	-
Chromium (total)	135	100 µg/L	5	N/A	-
Fluoride	194	4.0 mg/L	0	2.0 mg/L	19
Iron (dissolved)	159	N/A	-	300 µg/L	95
Iron (total)	138	N/A	-	300 µg/L	105
Lead (total)	135	15 µg/L	5	N/A	-
Manganese (dissolved)	170	N/A	-	50 µg/L	154
Manganese (total)	138	N/A	-	50 µg/L	127
рН	206	N/A	-	6.5-8.5 SU	4
Sulfate, as SO4	195	N/A	-	250 mg/L	59
TDS	169	N/A	-	500 mg/L	99
Turbidity	200	5 NTU	83	N/A	-

Note: This assessment includes influenced stations (GW001, GW005, GW006, GW007, GW008, GW009, GW010, GW012, GW014, and GW016) identified in Large Table 3. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

- (1) The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Plant Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.
- (2) USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.
- (3) USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Table 3-6Baseline Exceedances of Cliffs Erie NPDES/SDS Permit No. MN0054089Groundwater Intervention Limits at Existing NPDES/SDS Groundwater Monitoring
Stations GW001 through GW008 (2007 through 2013)

		Permit Limit	and Num	ıber of Exceedances ⁽	1)	
Parameter	Number of Samples	Instantaneous Max	kimum	Intervention Limit ⁽²⁾		
Boron (dissolved)	74	600 µg/L	0	150 µg/L	51	
Fluoride (total)	118	4.0 mg/L	0	1.0 mg/L	65	
Manganese (dissolved) ⁽³⁾	95	1000 µg/L	45	250 µg/L	61	
Molybdenum (dissolved) ⁽⁴⁾	117	30 µg/L	18	7.5 μg/L	80	
Solids, total dissolved	91	N/A	-	500 mg/L	57	
Sulfate, as SO ₄	119	250 mg/L	35	250 mg/L	35	

(1) These columns reflect the water quality standard and the number of exceedances for the standard.

(2) Instantaneous maximum intervention limit.

(3) 95 of the samples exceed the instantaneous maximum intervention limit. 45 of the samples exceed both the instantaneous maximum and instantaneous maximum intervention limit and have a concentration >1000 μg/L; 16 of the samples are >250 μg/L but <1000 μg/L, and thus only exceed the instantaneous maximum intervention limit.</p>

(4) 80 of the samples exceed the instantaneous maximum intervention limit. 62 of the samples are >7.5 µg/L but <30 µg/L, and thus only exceed the instantaneous maximum intervention limit; the remaining 18 samples are >30 µg/L and thus exceed both the instantaneous maximum and instantaneous maximum intervention limit.

Natural background concentrations in groundwater are above the standards for aluminum and manganese at the Tailings Basin. These background levels were discussed during the environmental review process (Section 4.3.4.2 of Reference (6)).

3.2 Proposed Monitoring Plan

Monitoring proposed as part of permit requirements for the Tailings Basin and Beneficiation Plant is included in the integrated Plant Site monitoring plan presented in Section 3.0 of Volume I. The proposed Plant Site monitoring plan includes groundwater monitoring stations, surface water monitoring stations, and internal waste stream monitoring stations associated with the Tailings Basin and Beneficiation Plant; these proposed monitoring stations are shown on Large Figure 3 and Large Figure 4.

4.0 Groundwater Nondegradation

PolyMet evaluated the anticipated effects of the Tailings Basin on groundwater quality. Section 4.1 describes how Minnesota's rules governing protection of underground waters apply to groundwater downgradient of the Tailings Basin. Section 4.2 documents that groundwater downgradient of the Tailings Basin has been discernably impacted by previous mining activities and does not reflect natural quality. Section 4.3 summarizes Project activities, including the use of engineering controls and mitigation measures, designed to protect groundwater and abate existing groundwater impacts in accordance with Minnesota's groundwater protection requirements. Existing groundwater quality downgradient of the Tailings Basin is described in Section 3.1.2 of this volume, and PolyMet's plan for ongoing groundwater monitoring is presented in Section 3.2 of this volume.

4.1 Regulatory Context

The State of Minnesota has policies to protect groundwater, including a groundwater nondegradation policy that states that certain waste "shall be controlled as may be necessary to ensure that to the maximum practicable extent the underground waters of the state are maintained at their natural quality" unless MPCA determines that a change is justifiable on certain specified grounds (Minnesota Rules, part 7060.0500). The State's policy on groundwater further states that groundwater should be "protected as nearly as possible in its natural condition." (Minnesota Rules, part 7060.0200). The MPCA rules provide that "[n]atural conditions exist where there is no discernable impact from point or nonpoint source pollutants attributable to human activity or from a physical alteration of wetlands" (Minnesota Rules, part 7050.0170).

Downgradient of the LTVSMC tailings basin, groundwater does not exist in its natural condition, as a result of seepage of pollutants from decades of ferrous mining activities at the site, including in particular ferrous seepage from the LTVSMC tailings basin. Section 4.2 demonstrates, based on available water quality monitoring data, that these previous ferrous mining activities have had a discernable impact on groundwater at various locations downgradient of the LTVSMC tailings basin. Under these circumstances, the Minnesota nondegradation policy of maintaining the natural quality of groundwater to the maximum practicable extent is not applicable. Where groundwater in its "natural condition" is not present to be protected against degradation, the State's groundwater policy focuses instead on "abating [existing] pollution" and "maximiz[ing] the possibility of rehabilitating degraded waters."(Minnesota Rules, part 7060.0400). The Project's design will have the effect of rehabilitating currently degraded groundwater downgradient of the Tailings Basin in accordance with the policies set forth in Minnesota Rules, chapter 7060 (Section 4.3).

4.2 Existing Groundwater Quality

The existing LTVSMC tailings basin has affected downgradient groundwater quality. Effects of the previous ferrous mining activities at the site are observed in, for example, elevated concentrations of TDS (especially chloride, sulfate, and other major cations and anions) and certain trace constituents (such as fluoride and molybdenum) (Section 4.3.4.1 of Reference (6)). Four Plant Site wells, which are not

downgradient of the LTVSMC tailings basin, are uninfluenced by legacy seepage and represent natural background conditions (GW002, GW011, GW013, and GW015) (Section 3.1.2 of this volume). Monitoring locations downgradient of the LTVSMC tailings basin, however, exhibit discernable effects of legacy seepage, including exceedances of Class 1 Standards (Table 3-5) and exceedances of permit limits in Cliffs Erie NPDES/SDS Permit No. MN0054089 (Table 3-6). Existing groundwater quality is summarized in Large Table 4, and existing monitoring stations are shown on Large Figure 2.

4.3 Description of Engineering Controls to Protect Groundwater and Abate Existing Groundwater Impacts

PolyMet will construct the FTB seepage capture systems to capture *tailings basin seepage*, including both nonferrous seepage from the NorthMet Project as well as legacy ferrous seepage, from the northern, northwestern, western, eastern, and southern sides of the Tailings Basin (Sections 2.3.3.1 and 2.3.3.2 of this volume). Additional detail on these systems and their expected performance is presented in Sections 2.1.3 and 2.1.4 of Reference (1), and their locations are shown on Large Figure 4.

The FTB seepage capture systems will abate the existing flow of ferrous seepage to groundwater. Over time, these engineering controls are expected to rehabilitate existing groundwater impacts outside of the FTB seepage capture systems as existing impacts are attenuated. With respect to potential groundwater impacts associated with the Project, the effect of the engineering controls and tailings and water management plans (Flotation Tailings Management Plan [Reference (8)]) and the Plant Site Water Management Plan [Reference (1)]) will be that no exceedances of applicable groundwater quality standards are expected at the property boundary (Section 6.5 of Reference (6)). Groundwater concentrations of some parameters that currently exceed Class 1 standards or existing Cliffs Erie permit limits will decrease over time as a result of the Project engineering controls (for example iron, boron, fluoride, and sulfate, see Attachment H of Reference (6)). These actions by PolyMet will meet the groundwater protection and pollution abatement policies of Minnesota Rules, chapter 7060.

PolyMet will monitor the performance of the FTB seepage capture systems and the groundwater quality downgradient of the Tailings Basin (Section 3.2.2 of Volume I), and if the engineering controls are not achieving the desired outcomes, will implement adaptive management actions or contingency mitigation (Sections 6.4 and 6.5 of Reference (1)), as necessary to comply with all permit conditions.

5.0 References

1. Poly Met Mining, Inc. NorthMet Project Water Management Plan - Plant (v6). August 2017.

2. —. NorthMet Project Adaptive Water Management Plan (v11). August 2017.

Minnesota Department of Natural Resources, U.S. Army Corps of Engineers and U.S. Forest
 Service. Final Environmental Impact Statement: NorthMet Mining Project and Land Exchange. November 2015.

4. **Poly Met Mining, Inc.** NorthMet Project Geotechnical Data Package Vol 1 - Flotation Tailings Basin (v8). May 2017.

5. —. NorthMet Project Project Description (v9). February 2015.

6. —. NorthMet Project Water Modeling Data Package Volume 2 - Plant Site (v11). March 2015.

7. —. NorthMet Project Waste Characterization Data Package (v12). February 2015.

8. —. NorthMet Project Flotation Tailings Management Plan (v7). May 2017.

9. **Barr Engineering Co.** 2014-2015 Surface water and groundwater quality data collected for the NorthMet Project Technical Memorandum to Jennifer Saran, PolyMet Mining Inc. May 27, 2016.

10. Jirsa, M.A., Chandler, V.W. and Lively, R.S. Bedrock Geology of the Mesabi Iron Range. [Map]. s.l. : Minnesota Geological Survey, 2005. Miscellaneous Map M-163.

Large Tables

Large Table 1 Tailings Basin and Beneficiation Plant Chemical Additives

Chemical	Purpose	Location of chemical addition in process	Amount/duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location	Storage Capacity	Tank Description	Secondary Containment	
SIPX (Sodium Isopropyl Xanthate) (Primary)	Collector: Selectively adsorb minerals based on hydrophobicity of the collector and mineral	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Circuits	Continuous	2.74 tons/day (1,000 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 20 ton, 100% SIPX), AST (0.5% concentration in water)	25,000 gal AST	Building containment	Sodium will be receiving wate within the Flot oxidized to su included withi trithiocarbinat
PAX (Potassium Amyl Xanthate) (Potential Substitute)	Collector: Selectively adsorb minerals based on hydrophobicity of the collector and mineral	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.74 tons/day (1,000 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 20 ton, 100% PAX), AST (0.5% concentration in water)	25,000 gal AST	Building containment	Potassium wil receiving wate within the FTE removed by th concentrate. I particles and t
MIBC (Methyl Isobutyl Carbinol, 100% Solution) (Primary)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This product v of alcohols, w carbon mono:
F-160-05 Frother (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This product v classified as d and will be rea monoxide, car
F-160-13 Frother (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This product v classified as d and will be re- monoxide, car
NALCO DVS4U038 (Potential Substitute)	Frother: Used to improve stability of froth bubbles as they rise through the flotation cells	Flotation Circuit, specifically the Flotation Roughers, Scavengers, and Cleaner Flotation Cells	Continuous	2.88 tons/day (1,050 tons/year)	4.11 tons/day (1,500 tons/year)	Flotation Reagents Building	AST (100% solution)	Two ASTs: 15,000 gal AST 3,000 gal AST	Building containment	This product v additive is not Data Sheet) au to carbon oxid
Copper Sulfate Pentahydrate (Primary)	Activator: Used to increase the available adsorption sites on the mineral to allow for adsorption by the Collector	Flotation Circuit, specifically the Scavenger Cells	Continuous	1.71 tons/day (625 tons/year)	2.05 tons/day (750 tons/year)	Flotation Reagents Building	Bulk (< 30 ton pentahydrate crystals), AST (< 10% concentration in water)	17,000 gal AST	Building containment	The copper co oxide or as an precipitates w to an off-site be transporte

Fate and Transport

I be transported to the WWTS and be discharged to the rater body. The alcohol component of SIPX will be biodegraded Flotation Tailings Basin (FTB). Xanthate primarily will be sulfate and be removed by the WWTS. Some xanthate may be ithin the concentrate. Decomposes to carbon disulfide, nate, isopropyl alcohol.

will be transported to the WWTS and be discharged to the vater body. The alcohol component of SIPX will be biodegraded FTB. Xanthate primarily will be oxidized to sulfate and be y the WWTS. Some xanthate may be included within the e. Decomposes to carbon disulfide. Absorbs to concentrate and not the tailing.

ct will attach to the concentrate and collector. It is composed , which will be biodegraded within the FTB. Decomposes to noxide and carbon dioxide.

ct will attach to the concentrate and collector. It is not s dangerous to the environment (per the Safety Data Sheet) readily biodegraded within the FTB. Decomposes to carbon carbon dioxide, aldehydes, ketones, organic acids.

ct will attach to the concentrate and collector. It is not s dangerous to the environment (per the Safety Data Sheet) readily biodegraded within the FTB. Decomposes to carbon carbon dioxide, aldehydes, ketones, organic acids.

ct will attach to the concentrate and collector. This chemical not classified as dangerous to the environment (per the Safety) and will be readily biodegraded within the FTB. Decomposes oxides.

component of this chemical additive will precipitate with iron an oxide. The sulfate will be precipitated as gypsum. These s will be included in the sludge that will initially be transported te landfill. Following start-up of the HydroMet, the sludge will rted to the Hydrometallurgical Residue Facility (HRF).

Chemical	Purpose	Location of chemical addition in process	Amount/duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location	Storage Capacity	Tank Description	Secondary Containment	
MagnaFloc 10 (Primary)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.082 tons/day (30 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	15,000 gal AST	Building containment	The floccular several proce (concentrate transported final product to the FTB. A process facili
MagnaFloc 455 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The floccular several proce (concentrate transported final product to the FTB. A process facili
Neo NS 6655 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The floccular several proce (concentrate transported final product to the FTB. A process facili
NALCO 83949 (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The floccular several proce (concentrate transported final product to the FTB. A process facil
NALCO 9877 PULV (Potential Substitute)	Flocculant: Promote flocculation of suspended particles in liquors	Flotation Circuit, specifically the Concentrate Thickeners	Continuous	0.07 tons/day (25 tons/year)	0.14 tons/day (50 tons/year)	Flotation Reagents Building	Bulk (< 5 ton, 100% solution), AST (< 1% concentration in water)	12,500 gal AST	Building containment	The floccular several proce (concentrate transported final product to the FTB. A process facili
CMC (Carboxyl Methyl Cellulose) (Tennapress PE26) (Primary)	Flocculant: Used to depress gangue minerals in flotation cells to improve selectivity towards Cu Ni minerals	Flotation Circuit, specifically Rougher and Pyrhotite Cleaner Flotation Cells	Continuous	3.29 tons/day (1,200 tons/year)	4.79 tons/day (1,750 tons/year)	Flotation Reagents Building	Bulk (< 25 ton, 100% CMC), AST (< 1% concentration in water)	70,000 gal AST	Building containment	This chemica down within cellulose and
Lime Slurry (Primary)	pH Modifier: Used to regulate pH in the Flotation Circuit	Flotation Circuit, specifically the Separation Cleaner Flotation Cells	Continuous	28.15 tons/day (10,274 tons/year)	41.10 tons/day (15,000 tons/year)	Flotation Reagents Building	Bulk (< 400 ton, 100% Hydrated Lime), AST (< 15% solution in water)	80,000 gal AST	Building containment	The calcium neutralized. the sludge th start-up of th

Fate and Transport

lant chemical additives will adsorb to the solids material in occess thickeners to improve settling rates and productivity ate and hydrometallurgical thickeners). The flocculants will be ad with the solids from these thickeners to intermediate and ucts. These flocculants will not report with the Flotation Tailings . All recovered water from these thickeners is reused in the cility. This product is biodegradable within the process.

lant chemical additives will adsorb to the solids material in occess thickeners to improve settling rates and productivity ate and hydrometallurgical thickeners). The flocculants will be ad with the solids from these thickeners to intermediate and acts. These flocculants will not report with the Flotation Tailings . All recovered water from these thickeners is reused in the cility. This product is biodegradable within the process.

lant chemical additives will adsorb to the solids material in occess thickeners to improve settling rates and productivity ate and hydrometallurgical thickeners). The flocculants will be ad with the solids from these thickeners to intermediate and ucts. These flocculants will not report with the Flotation Tailings . All recovered water from these thickeners is reused in the cility. This product is biodegradable within the process.

lant chemical additives will adsorb to the solids material in occess thickeners to improve settling rates and productivity ate and hydrometallurgical thickeners). The flocculants will be ad with the solids from these thickeners to intermediate and ucts. These flocculants will not report with the Flotation Tailings . All recovered water from these thickeners is reused in the cility. This product is biodegradable within the process.

lant chemical additives will adsorb to the solids material in occess thickeners to improve settling rates and productivity ate and hydrometallurgical thickeners). The flocculants will be ad with the solids from these thickeners to intermediate and ucts. These flocculants will not report with the Flotation Tailings . All recovered water from these thickeners is reused in the cility. This product is biodegradable within the process.

ical additive is an organic compound, which will be broken in the FTB. It is an anionoic water soluble polymer derived from ind is mainly used for silicate gangue inhibitors.

m within this chemical additive will either be precipitated or d. The calcium will be precipitated as gypsum and included in that will initially be transported to an off-site landfill. Following f the HydroMet Plant, the sludge will be transported to the HRF.

Large Table 2 Tailings Basin Baseline Surface Water Quality Monitoring Summary

		Wa	ter Quality Da 2011-20				
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
	T		General Para	ameters			
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	29	90.7	653	246	214
Alkalinity, total, as CaCO3	NA	mg/l	15	97.7	404	238	214
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	42	6.9	43.8	19.3	16.4
Chemical Oxygen Demand	NA	mg/l	8	37	80.2	56.5	50.6
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	42	< 1	24.3	8.54	6.80
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	40	< 0.1	11.13	6.79	7.41
Fluoride	NA	mg/l	2	0.15	0.31	0.23	0.23
Hardness, as CaCO3	NA	mg/l	42	83.5	616	220	199
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	9	< 0.1	0.16	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	8	< 0.1	1.7	0.33	0.11
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	40	6.66	7.87	7.26	7.31
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	8	0.0066	0.14	0.050	0.046
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	42	141	838	331	299
Solids, total suspended	NA	mg/l	2	2	4	3	3
Specific Conductance @ 25 °C	NA	µmhos/cm	40	199	1362	492	412
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	42	< 1	118	18.2	7.9
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	40	0.08	23.61	9.68	9.70
Turbidity	NA	NTU	40	0.08	80.3	9.95	4.30
landiaty	NA	NIO	Metal		80.5	9.95	4.50
Aluminum	Dissolved	µg/l	42	< 10	51.1	19.3	20.4
Aluminum	Total	μg/l	42	< 10	80.1	29.7	26.2
Antimony	Total	μg/l	20	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	μg/l	7	< 0.5	2	1.25	1.30
Arsenic	Total	μg/l	41	0.42	7	1.88	1.20
Barium	Total	μg/l	15	11	93.8	36.0	29.1
Beryllium	Total	μg/l	15	< 0.2	< 0.2	NA	< 0.2
Boron	Total		15	< 50	< 100	53.7	< 0.2
Soron Cadmium	Total	µg/l	15	< 0.03	< 0.2	53.7 NA	< 0.2
		µg/l					
Calcium	Total	mg/l	42	12.9	88.9	33.9	31.1
Chromium	Total	µg/l	15	< 1	1.2	0.55	< 1
Cobalt	Dissolved	µg/l	28	< 0.2	1	0.35	0.25
Cobalt	Total	µg/l	42	< 0.2	1.1	0.31	0.22
Copper	Dissolved	µg/l	28	< 0.5	1.85	0.46	< 0.5
Copper	Total	µg/l	42	0.43	1.5	0.42	< 0.5
ron	Dissolved	µg/l	28	302	35600	5705	2040
ron	Total	µg/l	42	265	37600	6111	3870
Lead	Dissolved	µg/l	9	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	42	< 0.02	< 0.5	0.24	< 0.5

		Wa	ter Quality Da 2011-20				
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
			General Para	ameters			F
Magnesium	Total	mg/l	42	12.5	95.8	32.9	28.3
Manganese	Dissolved	µg/l	28	14.3	1030	364	270
Manganese	Total	µg/l	42	5	1040	346	217
Mercury	Dissolved	ng/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	15	0.655	4	1.74	1.56
Methyl Mercury	Dissolved	ng/l	NA	NA	NA	NA	NA
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	8	< 0.3	1.06	0.60	0.58
Nickel	Dissolved	µg/l	28	< 0.5	1	0.37	< 0.5
Nickel	Total	µg/l	42	< 0.5	0.92	0.32	< 0.5
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	15	0.615	4.6	2.10	1.93
Selenium	Total	µg/l	28	< 0.2	< 1	0.49	< 1
Silver	Total	µg/l	8	< 0.2	< 0.2	NA	< 0.2
Sodium	Total	mg/l	15	15.4	57.5	30.4	27.0
Strontium	Total	µg/l	2	68.8	270	169	169
Thallium	Total	µg/l	27	< 0.0004	< 0.02	0.0037	< 0.005
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Total	µg/l	6	< 3	3.7	1.87	< 3
Zinc	Dissolved	µg/l	26	< 6	9.5	4.03	< 6
Zinc	Total	µg/l	42	< 6	10.7	3.69	< 6

			ity Data for MLC- 011-2015	2			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
		Genera	al Parameters		•		
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	36	60.5	210	130	130
Alkalinity, total, as CaCO3	NA	mg/l	22	76.5	210	133	131
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	51	10.4	48	22.3	20.7
Chemical Oxygen Demand	NA	mg/l	15	34.8	111	70.5	70.7
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	54	1.7	22.9	6.57	5.70
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	53	< 0.1	11.5	4.80	4.71
Fluoride	NA	mg/l	4	0.2	0.33	0.25	0.25
Hardness, as CaCO3	NA	mg/l	51	56.8	199	119	119
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	15	< 0.1	0.12	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	15	< 0.1	2.08	0.34	< 0.1
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	53	6.4	7.76	7.14	7.17
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	15	< 0.004	0.25	0.048	0.028
Redox (oxidation potential)	NA	mV	1	NA	NA	456	456
Solids, total dissolved	NA	mg/l	51	110	335	210	208
Solids, total suspended	NA	mg/l	5	< 1	24	7.39	3.35
Specific Conductance @ 25 °C	NA	µmhos/cm	53	58.4	454.9	263	275
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	54	< 1	40.2	4.59	2.4
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	53	-0.01	21.25	8.83	8.23
Turbidity	NA	NTU	53	0	150.3	10.6	3.40
			Metals				
Aluminum	Dissolved	µg/l	54	< 10	154	30.6	< 25
Aluminum	Total	µg/l	54	11.2	1420	77.8	36.2
Antimony	Total	µg/l	30	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	7	0.54	1.6	1.06	0.98
Arsenic	Total	µg/l	51	0.48	3.1	1.17	1.10
Barium	Total	µg/l	18	10.5	61.6	26.5	26.5
Beryllium	Total	µg/l	18	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	18	< 50	< 100	NA	< 50
Cadmium	Total	µg/l	18	< 0.03	< 0.2	0.08	< 0.2
Calcium	Total	mg/l	51	9.1	32.7	19.9	19.6
Chromium	Total	µg/l	18	< 1	1.6	0.61	< 1
Cobalt	Dissolved	μg/l	37	< 0.2	1.13	0.39	0.34
Cobalt	Total	µg/l	51	< 0.2	1.2	0.39	0.30
Copper	Dissolved	µg/l	37	< 0.15	1.6	0.46	< 0.5
Copper	Total	µg/l	51	0.2	7.5	0.62	< 0.5
Iron	Dissolved	µg/l	37	212	26900	3454	2150
Iron	Total	µg/l	51	160	27100	4117	2700
Lead	Dissolved	μg/l	10	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	47	0.06	0.57	0.25	< 0.5
Magnesium	Total	mg/l	51	8.2	30.1	16.9	16.6
Manganese	Dissolved	μg/l	36	7.2	1310	342	242

			ity Data for MLC- 011-2015	2			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
		Genera	al Parameters				
Manganese	Total	µg/l	51	3.5	1310	300	184
Mercury	Dissolved	ng/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	22	0.9	6.9	2.98	2.5
Methyl Mercury	Dissolved	ng/l	NA	NA	NA	NA	NA
Methyl Mercury	Total	ng/l	4	< 0.1	3.74	1.26	0.61
Molybdenum	Total	µg/l	15	0.21	0.92	0.46	0.44
Nickel	Dissolved	µg/l	37	< 0.5	2.2	0.50	< 0.6
Nickel	Total	µg/l	51	< 0.5	3	0.52	0.58
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	22	0.33	4.4	1.39	1.23
Selenium	Total	µg/l	33	< 0.2	< 1	0.47	< 1
Silver	Total	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Sodium	Total	mg/l	22	9.5	33.2	16.7	16.7
Strontium	Total	µg/l	4	60.9	136	102	120
Thallium	Total	µg/l	35	< 0.0004	0.03	0.0058	< 0.005
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	4	< 10	< 10	NA	< 10
Vanadium	Total	µg/l	11	< 3	< 10	NA	< 3
Zinc	Dissolved	µg/l	37	< 6	47.4	6.01	< 6
Zinc	Total	µg/l	51	< 6	42.4	4.87	< 6

		Water Qua	lity Data for ML	C-3A			
Demonster	Fraction	Units	2012 # of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Parameter	Fraction		# of Samples -/	winimum ^{,_,}		Average	wedian."
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	1	NA	NA	448	448
Alkalinity, total, as CaCO3	NA	mg/l	1	NA	NA	448	448
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	2	14.3	15	14.7	14.7
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Chemical Oxygen Demand	NA	mg/l	1	NA	NA	37.4	37.4
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	2	13.2	22.8	18.0	18.0
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	2	4.8	5.2	5.0	5.0
Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	2	236	394	315	315
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	2	7.07	7.6	7.34	7.34
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	1	NA	NA	0.005	0.005
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	2	369	613	491	491
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	2	506.1	885.2	696	696
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	2	17.3	53.2	35.3	35.3
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature, °C	NA	deg C	2	0.72	4.3	2.51	2.51
Turbidity	NA	NTU	2	0	0	0	0
	L		Metals				
Aluminum	Dissolved	µg/l	2	< 20	< 20	NA	< 20
Aluminum	Total	µg/l	2	< 20	< 20	NA	< 20
Antimony	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA
Arsenic	Total	µg/l	2	< 0.5	0.59	0.42	0.55
Barium	Total	µg/l	1	NA	NA	37.3	37.3
Beryllium	Total	µg/l	1	< 0.2	NA	NA	< 0.2
Boron	Total	µg/l	1	NA	NA	160	160
Cadmium	Total	µg/l	1	< 0.2	NA	NA	< 0.2
Calcium	Total	mg/l	2	34.5	59.8	47.2	47.2
Chromium	Total	µg/l	1	< 1	NA	NA	< 1
Cobalt	Dissolved	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Cobalt	Total	µg/l	2	< 0.2	0.2	0.15	< 0.2
Copper	Dissolved	µg/l	2	< 0.5	0.55	0.40	0.53
Copper	Total	µg/l	2	0.53	0.59	0.56	0.56
Iron	Dissolved	µg/l	2	136	231	184	184
Iron	Total	µg/l	2	275	284	280	280
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA
Lead	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	2	36.4	59.4	47.9	47.9
Manganese	Dissolved	µg/l	2	19.2	397	208	208

		Water Qua	ality Data for ML	C-3A			
			2012		-	-	-
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Manganese	Total	µg/l	2	19.1	402	211	211
Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Mercury	Total	ng/L	1	0.99	1.3	1.15	1.15
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	1	NA	NA	1.7	1.7
Nickel	Dissolved	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Nickel	Total	µg/l	2	< 0.5	0.59	0.42	0.55
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	1	NA	NA	3.0	3.0
Selenium	Total	µg/l	2	< 1	< 1	NA	< 1
Silver	Total	µg/l	1	< 0.2	NA	NA	< 0.2
Sodium	Total	mg/l	1	NA	NA	63.9	63.9
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Total	µg/l	2	< 0.0004	< 0.005	NA	0.0027
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Total	µg/l	1	< 3	NA	NA	< 3
Zinc	Dissolved	µg/l	2	< 6	< 6	NA	< 6
Zinc	Total	µg/l	2	< 6	< 6	NA	< 6

NA No data available.(1) Field duplicates not included in count of samples.

			ality Data for PN 2009-2015	I-19			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Gene mg/l	ral Parameters 36	123	535	337	323
Alkalinity, total, as CaCO3	NA	mg/l	25	161	514	339	320
Biochemical Oxygen Demand (5-day)	NA	mg/l	3	< 2.4	< 3	NA	< 3
Carbon, dissolved organic	NA	mg/l	11	11.1	24.5	16.5	16.5
Carbon, total organic	NA	mg/l	54	10.3	33.7	16.9	14.6
Chemical Oxygen Demand	NA	mg/l	18	29.8	79.7	48.9	45.5
Chloride	Dissolved	mg/l	1	NA	NA	9.59	9.59
Chloride	NA	mg/l	69	6.7	55.1	16.1	12.4
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	59	< 0.1	11.68	6.04	6.30
Fluoride	NA	mg/l	2	0.87	0.95	0.91	0.91
Hardness, as CaCO3	NA	mg/l	54	121	530	310	276
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	18	< 0.1	< 0.1	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	15	< 0.1	0.39	0.11	< 0.1
Nitrogen, total	NA	mg/l	3	1.27	1.76	1.44	1.45
Nitrogen, total kjeldahl (TKN)	NA	mg/l	3	1.27	1.66	1.40	1.40
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.02	0.02
рН	NA	pH units	59	6.1	7.77	7.30	7.47
Phosphorus, total, as P	Dissolved	mg/l	8	0.014	0.028	0.019	0.018
Phosphorus, total, as P	NA	mg/l	18	< 0.004	< 0.1	0.029	0.023
Redox (oxidation potential)	NA	mV	1	NA	NA	468	468
Solids, total dissolved	NA	mg/l	54	195	708	448	407
Solids, total suspended	NA	mg/l	14	< 1	19.5	4.39	2.80
Specific Conductance @ 25 °C	NA	µmhos/cm	59	285.3	1229	685	642
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	8.3	8.3
Sulfate, as SO4	NA	mg/l	69	< 1	139	36.0	20.9
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA	< 0.1
Temperature	NA	deg C	59	0.01	22.23	8.91	8.34
Turbidity	NA	NTU	59 Metals	0	40.4	3.47	1.50
Aluminum	Dissolved	µg/l	54	< 10	67.3	20.0	24.1
Aluminum	Total	µg/l	54	13.4	238	40.1	26.0
Antimony	Total	μg/l	31	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	7	< 0.5	1.1	0.64	0.58
Arsenic	Total	µg/l	54	0.45	3.9	0.94	0.64
Barium	Total	µg/l	19	52	154	83.4	75.8
Beryllium	Total	μg/l	19	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	19	< 100	177	126	133.5
Cadmium	Total	µg/l	19	< 0.02	< 0.2	NA	< 0.2
Calcium	Total	mg/l	54	18.5	77.1	47.3	43.8
Chromium	Total	µg∕l	19	< 1	1	0.53	< 1
Cobalt	Dissolved	µg/l	37	< 0.2	0.86	0.25	0.22
Cobalt	Total	µg/l	54	< 0.2	0.98	0.25	0.22
Copper	Dissolved	µg/l	37	< 0.15	1.9	0.57	0.55
Copper	Total	µg∕l	54	0.29	2.4	0.61	0.54
		1 3,					314
Iron	Dissolved	µg/l	45	107	2560	541	
Iron Iron	Dissolved Total	μg/l μg/l	54	226	5830	1086	660
Iron Iron Lead	Dissolved Total Dissolved	μg/l μg/l μg/l	54 10	226 < 0.5	5830 < 0.5	1086 NA	660 < 0.5
Iron Iron Lead Lead	Dissolved Total Dissolved Total	μg/l μg/l μg/l μg/l	54 10 48	226 < 0.5 < 0.02	5830 < 0.5 < 0.5	1086 NA 0.24	660 < 0.5 < 0.5
Iron Iron Lead Lead Magnesium	Dissolved Total Dissolved Total Total	μg/l μg/l μg/l μg/l mg/l	54 10 48 54	226 < 0.5 < 0.02 18	5830 < 0.5 < 0.5 81.8	1086 NA 0.24 46.6	660 < 0.5 < 0.5 40.2
Iron Iron Lead Lead Magnesium Manganese	Dissolved Total Dissolved Total Total Dissolved	μg/l μg/l μg/l μg/l mg/l μg/l	54 10 48 54 37	226 < 0.5 < 0.02 18 36.2	5830 < 0.5 < 0.5 81.8 4140	1086 NA 0.24 46.6 777	660 < 0.5 < 0.5 40.2 356
Iron Iron Lead Lead Magnesium Manganese Manganese	Dissolved Total Dissolved Total Total Dissolved Total	μg/l μg/l μg/l μg/l mg/l μg/l μg/l	54 10 48 54 37 54	226 < 0.5 < 0.02 18 36.2 24.2	5830 < 0.5 < 0.5 81.8 4140 3990	1086 NA 0.24 46.6 777 693	660 < 0.5 < 0.5 40.2 356 348
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury	Dissolved Total Dissolved Total Total Dissolved Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l ηg/L	54 10 48 54 37 54 8	226 < 0.5 < 0.02 18 36.2 24.2 0.6	5830 < 0.5 < 0.5 81.8 4140 3990 2.1	1086 NA 0.24 46.6 777 693 1.6	660 < 0.5 < 0.5 40.2 356 348 1.8
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury	Dissolved Total Dissolved Total Dissolved Dissolved Dissolved Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l ng/L ng/L	54 10 48 54 37 54 8 22	226 < 0.5 < 0.02 18 36.2 24.2 0.6 0.5	5830 < 0.5 < 0.5 81.8 4140 3990 2.1 4.2	1086 NA 0.24 46.6 777 693 1.6 1.72	660 < 0.5 < 0.5 40.2 356 348 1.8 1.35
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury	 Dissolved Total Dissolved Total Total Dissolved Dissolved Dissolved Dissolved Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l μg/l ng/L ng/L ng/L	54 10 48 54 37 54 8 22 8	226 < 0.5 < 0.02 18 36.2 24.2 0.6 0.5 < 0.1	5830 < 0.5 < 0.5 81.8 4140 3990 2.1 4.2 0.67	1086 NA 0.24 46.6 777 693 1.6 1.72 0.35	660 < 0.5 < 0.5 40.2 356 348 1.8 1.35 0.355
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury	 Dissolved Total Dissolved Total Total Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Total Dissolved Total Dissolved Total Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l ηg/L ηg/L ηg/L ηg/L	54 10 48 54 37 54 8 22 8 2 2	226 < 0.5 < 0.02 18 36.2 24.2 0.6 0.5 < 0.1 < 0.1	5830 < 0.5 < 0.5 81.8 4140 3990 2.1 4.2 0.67 0.16	1086 NA 0.24 46.6 777 693 1.6 1.72 0.35 0.11	660 < 0.5 < 0.5 40.2 356 348 1.8 1.35 0.355 0.13
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury Methyl Mercury	 Dissolved Total Dissolved Total Total Dissolved Dissolved Dissolved Dissolved Dissolved Total Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l ηg/L ηg/L ηg/L ηg/L μg/l	54 10 48 54 37 54 8 22 8 2 2 18	226 < 0.5 < 0.02 18 36.2 24.2 0.6 0.5 < 0.1 < 0.1 0.39	5830 < 0.5 < 0.5 81.8 4140 3990 2.1 4.2 0.67 0.16 2.45	1086 NA 0.24 46.6 777 693 1.6 1.72 0.35 0.11 1.28	660 < 0.5 < 0.5 40.2 356 348 1.8 1.35 0.355 0.13 1.44
Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury	 Dissolved Total Dissolved Total Total Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Total Dissolved Total Dissolved Total Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l ηg/L ηg/L ηg/L ηg/L	54 10 48 54 37 54 8 22 8 2 2	226 < 0.5 < 0.02 18 36.2 24.2 0.6 0.5 < 0.1 < 0.1	5830 < 0.5 < 0.5 81.8 4140 3990 2.1 4.2 0.67 0.16	1086 NA 0.24 46.6 777 693 1.6 1.72 0.35 0.11	660 < 0.5 < 0.5 40.2 356 348 1.8 1.35 0.355 0.13

	Water Quality Data for PM-19 2009-2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg∕l	NA	NA	NA	NA	NA						
Potassium	Total	mg/l	25	1.4	5.2	3.04	2.98						
Selenium	Total	µg/l	33	0.37	< 1	0.50	< 1						
Silver	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2						
Sodium	Total	mg/l	25	26.8	76.2	48.8	48.2						
Strontium	Total	µg/l	2	220	242	231	231						
Thallium	Total	µg/l	38	< 0.0004	< 0.2	0.01	< 0.005						
Tin	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5						
Titanium	Total	µg/l	2	< 10	< 10	NA	< 10						
Vanadium	Total	µg/l	9	< 3	< 10	NA	< 3						
Zinc	Dissolved	µg/l	37	< 6	21.7	4.66	< 6						
Zinc	Total	µg∕l	54	< 6	31.2	3.85	< 6						

		Water Qı	ality Data for T(2012	C-1			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ ral Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	1	NA	NA	335	335
Alkalinity, total, as CaCO3	NA	mg/l	1	NA	NA	335	335
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	4	14.8	31.8	23.0	22.7
Chemical Oxygen Demand	NA	mg/l	1	NA	NA	45.8	45.8
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	4	7.5	17.2	11.7	11.05
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	4	1.46	6.43	4.08	4.22
Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	4	231	299	273	282
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	-	NA	NA	NA	NA	NA
	NA	mg/l	4	NA 7.38	7.69	7.48	7.43
pH		pH units					
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	1	NA	NA	0.028	0.028
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	4	366	416	400	408
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	4	492.2	651.9	600	628
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	4	1.3	36.6	12.4	5.9
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	4	7.04	19.42	12.7	12.25
Turbidity	NA	NTU	4	0.7	15.3	5.45	2.90
		1	Metals	Γ	Γ	T	1
Aluminum	Dissolved	µg/l	4	25.6	48	36.7	36.7
Aluminum	Total	µg/l	4	26.5	82.5	44.9	45.3
Antimony	Total	µg/l	4	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA
Arsenic	Total	µg/l	4	0.98	5.2	2.57	2.05
Barium	Total	µg/l	1	NA	NA	95.2	95.2
Beryllium	Total	µg/l	1	< 0.2	NA	NA	< 0.2
Boron	Total	μg/l	1	NA	NA	137	137
Cadmium	Total	μg/l	1	< 0.2	NA	NA	< 0.2
Calcium	Total	mg/l	4	38.2	49.8	43.6	43.2
Chromium	Total	μg/l	1	< 1	NA	NA	< 1
Cobalt	Dissolved	μg/l	4	< 0.2	1.2	0.55	0.45
Cobalt	Total		4	0.25	1.2	0.55	0.45
		µg/l					
Copper	Dissolved	µg/l	4	< 0.5	0.85	0.40	< 0.5
Copper	Total	µg/l	4	< 0.5	0.53	0.32	< 0.5
Iron	Dissolved	µg/l	4	329	3070	1481	1263
Iron	Total	µg/l	4	941	8330	3255	1875
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA
Lead	T . (.)	µg/l	4	< 0.5	< 0.5	NA	< 0.5
14 .	Total						10.0
Magnesium	Total	mg/l	4	33	42.3	39.9	42.2
Magnesium Manganese			4	33 111	42.3 3430	39.9 1218	42.2 665
5	Total	mg/l				1	
Manganese	Total Dissolved	mg/l µg/l	4	111	3430	1218	665
Manganese Manganese	Total Dissolved Total	mg/l μg/l μg/l	4	111 202	3430 3670	1218 1305	665 675
Manganese Manganese Mercury	Total Dissolved Total Dissolved	mg/l μg/l μg/l ng/L	4 4 NA	111 202 NA	3430 3670 NA	1218 1305 NA	665 675 NA
Manganese Manganese Mercury Mercury	Total Dissolved Total Dissolved Total	mg/l μg/l μg/l ng/L ng/L	4 4 NA 1	111 202 NA NA	3430 3670 NA NA	1218 1305 NA 1.10	665 675 NA 1.10
Manganese Manganese Mercury Mercury Methyl Mercury	Total Dissolved Total Dissolved Dissolved Dissolved Dissolved	mg/l μg/l μg/l ng/L ng/L ng/L ng/L	4 4 NA 1 NA	111 202 NA NA NA	3430 3670 NA NA NA	1218 1305 NA 1.10 NA	665 675 NA 1.10 NA
Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury Molybdenum	Total Dissolved Total Dissolved Total Dissolved Total Total	mg/l μg/l ng/L ng/L ng/L ng/L μg/l	4 4 NA 1 NA NA 1	1111 202 NA NA NA NA NA	3430 3670 NA NA NA NA NA	1218 1305 NA 1.10 NA NA 0.89	665 675 NA 1.10 NA NA 0.89
Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury	Total Dissolved Total Dissolved Dissolved Total Dissolved Dissolved Total Dissolved	mg/l μg/l μg/l ng/L ng/L ng/L ng/L	4 4 NA 1 NA NA	111 202 NA NA NA NA	3430 3670 NA NA NA NA	1218 1305 NA 1.10 NA NA	665 675 NA 1.10 NA NA

	Water Quality Data for TC-1 2012												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg/l	NA	NA	NA	NA	NA						
Potassium	Total	mg/l	1	NA	NA	2.30	2.30						
Selenium	Total	µg∕l	4	< 1	< 1	NA	< 1						
Silver	Total	µg/l	1	< 0.2	NA	NA	< 0.2						
Sodium	Total	mg/l	1	NA	NA	47.0	47.0						
Strontium	Total	µg/l	NA	NA	NA	NA	NA						
Thallium	Total	µg∕l	4	< 0.0004	< 0.005	NA	0.0012						
Tin	Total	µg/l	NA	NA	NA	NA	NA						
Titanium	Total	µg/l	NA	NA	NA	NA	NA						
Vanadium	Total	µg/l	1	< 3	NA	NA	< 3						
Zinc	Dissolved	µg/l	4	< 6	< 6	NA	< 6						
Zinc	Total	µg/l	4	< 6	8.9	4.48	< 6						

ParameterPractionUnits# of Samples()Minimum(2)Maximum(2)Average(9)Maximum(2)Alkalinity, bicarbonate, as CaCO3NAmg/l26144545332AAlkalinity, total, as CaCO3NAmg/l12177523328ABiochemical Oxygen Demand (5-day)NAmg/lNANANANANACarbon, dissolved organicNAmg/lNANANANANACarbon, total organicNAmg/l381027.214.912Chemical Oxygen DemandNAmg/l53159.640.516ChlorideDissolvedmg/lNANANANANAChlorideDissolvedmg/lNANANANANAChlorideNAmg/l386.633.517.316ChlorideNAmg/lNANANANANANAChlorideNAmg/l381.5411.466.3416ChlorideNAmg/l381.5411.466.3416FluorideNAmg/l381.4454733116Nitrogen, Nitrate + Nitrite, as NNAmg/l5<0.1<0.1NANitrogen, otalNAmg/lNANANANA12Nitrogen, otalNAmg/lNANANANA121				ality Data for TC 2012-2015	-1a			
Alanisy Alanisy Balanisy Balanisy 	Parameter	Fraction		# of	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Aladimly, teol an CarO3NArmg11731532128Binchenical Corogin Corowall CorowallNANANANANANANACarloo, classide regainNANg1SB	Alkalinity hisarbonata as CaCO2	ΝΑ			144	545	222	335
shorthmapNAmgdNANANANANANACarloo, tabl OrganicNANANANANANANANANAChemical DoganicNAmgdS.G.10C.22S.S.S.C.Chemical Doganic ManNAmgdS.G.10C.22S.S.S.S.S.S.S.S.S.C.S.C.S.C.S.C.S.C.S. <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>323</td></td<>			-					323
Carbon descendencingNAmg/lNANANANANACarbon total organicNAmg/l381027.216.91Chonda OrganicDacobedmg/lNANANANANANANAChondaDacobedmg/lNA </td <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td>	•							NA
Cachon Inal organseNAmg/IBI10027.21.4.9Chenikal Oxygen DemendNAmg/INASI3139.6M45.1CholideDisobedmg/INASANANANACholideNAmg/ISASASASASACholideNAmg/ISANANANANACyandridNAmg/ISASASASASACyandridNAmg/ISASASASASACyandridNAmg/ISASASASASADisolvei traggenNAmg/ISASASASASADisolvei traggenNAmg/ISASASASASASANaragen, names, as NNAmg/ISASASASASASASANaragen, starik as PODasolmg/ISAMANANANANANASA<								NA
ChematonDisolemmg/lS.3.1.S.0.5.47.3.1ChoradeNAMg/lNAN	5							13.1
ChioriaDisoledmg/lM/ANANANAChiorabpilaNAMAMAMANANANAChiorabpilaNAMAMAMANANACyanifeNAmg/lNANANANACyanifeNAmg/lMANANANANAPlancingNAmg/lAMANANANAPlancingNAmg/lANANANANAPlancingNAmg/lANANANANAPlancingNAmg/lANANANANAPlancingNAmg/lANANANANANirogen, Natinat + Nitiki, ax NNAmg/lS<0.1			-		31			36.3
Chicophyla NA mg/l NA NA NA NA Cynnide NA mg/l NA NA NA NA NA Bioxoleti oxygen NA mg/l 38 1.54 1.16.6 6.41 Handress, at CaCO3 NA mg/l 38 1.44 517 331 Narogen, Narta + Nitro, at N NA mg/l 5 <0.1		Dissolved		NA	NA	NA	NA	NA
QanideNAmgANANANANANADisolved oxygenNAmgA381.5411.460.34Disolved oxygenNAmgAMANANANANAHardress, at CCO3NAmgA75<0.1	Chloride	NA	mg/l	38	6.6	33.5	17.3	15.2
Disolved orgigin NA mg/l 38 1.54 1.14e 6.34 Fluoride NA mg/l NA NA NA NA NA Hardness, as CAC3 NA mg/l 38 1.44 5.77 331 Nitrogen, Natrate - Nitrite, at N NA mg/l S <0.1	Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
FluoideNANANANANANANAHardness at CCO3NAng/l33144547331331Nitrogen, Narica = Nintrika, as NNAng/l55<0.1	Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CuCO3NANAmg/n381445473311Nirrogen, mirronia, an NNAmg/n5<	Dissolved oxygen	NA	mg/l	38	1.54	11.46	6.34	6.23
Nitragen, Nitrate + Nitrite, as N NA mg/l S < 0.1 < 0.1 NA Nitrogen, anmonia, as N NA mg/l S < 0.1	Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Nirogen: anmonia, as NNAmg/MCCOOO	Hardness, as CaCO3	NA	mg/l	38	144	547	331	289
Nitrogen, total kijdehi (TKN) NA mg/l NA NA NA NA Nitrogen, total kijdehi (TKN) NA mg/l NA NA NA NA NA pH NA mg/l NA NA NA NA NA NA pH NA mg/l NA NA NA NA NA Phosphous, total, as P Disolved mg/l NA NA NA NA NA Solids, total asopendel NA mg/l 38 231 722 474 Solids, total asopendel NA mg/l NA NA NA NA Specific Conductance 02 5°C NA mg/l NA NA NA NA NA Sulfate, as SO4 NA mg/l NA MA NA NA NA Sol Sulfate, as SO4 NA mg/l NA mg/l 38 0.02 7.52 7.26 Turbidty NA	Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	5	< 0.1	< 0.1	NA	< 0.1
Nicogen. Iotal kieldelii (TIKN)NAMAmg/INA<	Nitrogen, ammonia, as N	NA	mg/l	5	< 0.1	0.31	0.12	< 0.1
Orthophosphate, as PO4NANAPmg/INAPMg/INAPMNANANANAphsphons, total, as PNA <td>Nitrogen, total</td> <td>NA</td> <td>mg/l</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4NANAPMINAPMINAPMINAPMINAPMINAPMINAPMINAPMINAPMINANANANANAPNPhosphorus, total, as PNANAMANANAINA <t< td=""><td>5</td><td>NA</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	5	NA		NA	NA	NA	NA	NA
pHNApH units386.857.827.37NPhosphorus, total, as PDissolvedmg/lNANANANANANAPhosphorus, total, as PNAmg/lS<0.004		NA	-	NA	NA	NA	NA	NA
Phosphorus, total, as PDissolvedmg/lNANANANANANAPhosphorus, total, as PNAmg/lS<0.004		NA		38	6.85	7.82	7.37	7.41
Redox (oxidation potential)NAmVNANANAmQ/Solids, total dissolvedNAmg/382317224741Solids, total dissolvedNAmg/382317224741Solids, total suspendedNAmg/NANANANA11507231Sulfate, as SO4Dissolvedmg/NANANANANANA13251.41Sulfate, as SO4NAmg/38113251.411	Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)NAmVNANANAmQ/Solids, total dissolvedNAmg/382317224741Solids, total dissolvedNAmg/382317224741Solids, total suspendedNAmg/NANANANA11507231Sulfate, as SO4Dissolvedmg/NANANANANANA13251.41Sulfate, as SO4NAmg/38113251.411	Phosphorus, total, as P	NA	-	5	< 0.004	0.048	0.02	0.016
Solids, total suspendedNANANANANANANANASpecific Conductance @ 25 °CNAµmhos/m38345.611507231Sulfate, as SO4Dissolvedmg/lNANANANANANANASulfate, as SO4NAmg/lSA113251.41Sulfate, as SO4NAmg/lNANANANANANANASulfate, as SO4NAmg/lSA-0.0919.257.261TurbidityNAdeg C38-0.0919.257.261TurbidityNAMAMANANANANANAAluminumDissolvedµg/l38<10	Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C NA µmhos/cm 38 345.6 1150 723 NA Sulfate, as SO4 Dissolved mg/l NA NA NA NA NA Sulfate, as SO4 NA mg/l NA MA NA NA NA NA Sulfate, as SO4 NA mg/l NA MA NA AR	Solids, total dissolved	NA	mg/l	38	231	722	474	434
Sulfate, as SO4Dissolvedmg/lNANANANANASulfate, as SO4NAmg/l38113251.41Sulfate, as SO4NAMAmg/l38113251.41CamperatureNAMedg C380.0910.257.2611TurbidityNANANANANA4.47777.2611AluminumDissolvedµg/l380.042.44.777777.6422.4111 <td>Solids, total suspended</td> <td>NA</td> <td>mg/l</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4NAmg/l38113251.4NASulfate, as S'-NAMAmg/lNANANANANATemperatureNAdeg C38-0.0919.257.26NATurbidityNANAMB042.44.77NAAluminumDissolvedµg/l38-0.0919.257.26NAAluminumTotalµg/l38-10<50	Specific Conductance @ 25 °C	NA	µmhos/cm	38	345.6	1150	723	676
Sulfide, as S ¹ -NANAMAMAMAMANANATemperatureNAdeg C38-0.0919.357.261TurbidryNANANU38042.44.771AluminumDissolvedµg/I38<10	Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
TemperatureNAdeg C38-0.0919.257.267.26TurbidityNANTU38042.44.777AluminumDiscolvedµg/l38<10	Sulfate, as SO4	NA	mg/l	38	1	132	51.4	55.5
TurbidityNANTU38042,44,77AlurinumDissolvedµg/l38<10	Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Metals Metals Netals Aluminum Dissolved $\mu g/l$ 38 <10	Temperature	NA	deg C	38	-0.09	19.25	7.26	5.36
AluminumDissolvedµg/l38<10<5016.11AluminumTotalµg/l3810.276.422.41AntimonyTotalµg/l17<0.5	Turbidity	NA	NTU	38	0	42.4	4.77	2.40
AluminumTotal $\mu g/l$ 38 102 764 22.4 AntimonyTotal $\mu g/l$ 17 <0.5 <0.5 NA A ArsenicDissolved $\mu g/l$ 7 <0.5 2.2 0.96 A ArsenicTotal $\mu g/l$ 38 <0.31 3.7 0.87 A BarlumTotal $\mu g/l$ 122 60.9 157 103 B BeryllumTotal $\mu g/l$ 122 <0.2 <0.2 NA A BoronTotal $\mu g/l$ 122 <0.2 <0.2 NA A CaldiumTotal $\mu g/l$ 122 <0.2 <0.2 NA A CalciumTotal $\mu g/l$ 122 <0.2 <0.2 NA A CalciumTotal $\mu g/l$ 38 21.8 81 49.2 A CobaltDissolved $\mu g/l$ 24 <0.2 0.61 0.23 A CobaltDissolved $\mu g/l$ 38 <0.2 0.72 0.23 A CopperTotal $\mu g/l$ 38 <0.5 3.6 0.52 A IronDissolved $\mu g/l$ 38 <0.5 3.6 0.52 A LeadDissolved $\mu g/l$ 38 <0.5 <0.5 NA A MaganeseDissolved $\mu g/l$ 38 <0.5 <0.5 NA A MarganeseDisolved $\mu g/l$ </td <td></td> <td></td> <td></td> <td>Metals</td> <td></td> <td>T</td> <td></td> <td>T</td>				Metals		T		T
Antimony Total µg/l 17 < 0.5 < 0.5 NA Arsenic Dissolved µg/l 7 < 0.5	Aluminum	Dissolved	µg/l	38	< 10	< 50	16.1	< 20
Arsenic Dissolved µg/l 7 < 0.5 2.2 0.96 Arsenic Total µg/l 38 < 0.31	Aluminum	Total	µg/l	38	10.2	76.4	22.4	22.2
Arsenic Total µg/l 38 < 0.31 3.7 0.87 Barium Total µg/l 12 66.9 157 103 1 Beryllium Total µg/l 12 < 0.2	Antimony	Total	µg/l	17	< 0.5	< 0.5	NA	< 0.5
Baium Total µg/l 12 66.9 157 103 I Beryllium Total µg/l 12 <0.2	Arsenic	Dissolved	µg/l	7	< 0.5	2.2	0.96	0.75
BerylliumTotal $\mu g/l$ 12 < 0.2 < 0.2 NAIBoronTotal $\mu g/l$ 12 < 100 185138ICadmiumTotal $\mu g/l$ 12 < 0.2 < 0.2 NAICalciumTotal $m g/l$ 3821.88149.2ICalciumTotal $\mu g/l$ 12 < 1 < 1 NAICalciumTotal $\mu g/l$ 12 < 1 < 1 NAICobaltDissolved $\mu g/l$ 24 < 0.2 0.610.23ICobaltTotal $\mu g/l$ 38 < 0.2 0.720.23ICopperDissolved $\mu g/l$ 24 < 0.5 1.20.47ICopperTotal $\mu g/l$ 38 < 0.5 3.60.52IIronDissolved $\mu g/l$ 38 < 0.5 3.60.52IIronDissolved $\mu g/l$ 38 < 0.5 < 0.5 NAILeadDissolved $\mu g/l$ 38 < 0.5 < 0.5 NAIMagnesiumTotal $\mu g/l$ 38 < 0.5 < 0.5 NAIMagneseDissolved $\mu g/l$ 38 < 0.5 < 0.5 NAILeadTotal $\mu g/l$ 38 < 0.5 < 0.5 NAIMagneseDissolved $\mu g/l$ 38 21.6 83.7 50.6 IMetrury <td< td=""><td>Arsenic</td><td>Total</td><td>µg/l</td><td>38</td><td>< 0.31</td><td>3.7</td><td>0.87</td><td>0.52</td></td<>	Arsenic	Total	µg/l	38	< 0.31	3.7	0.87	0.52
BoronTotal $\mu g/l$ 12<100185138CadmiumTotal $\mu g/l$ 12<0.2	Barium	Total	µg/l	12	66.9	157	103	103
CadmiumTotal $\mu g/l$ 12 < 0.2 < 0.2 NACalciumTotal mg/l 38 21.8 81 49.2 < 0.2 < 0.1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	Beryllium	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Calcium Total mg/l 38 21.8 81 49.2 Chromium Total µg/l 12 <1	Boron	Total	µg/l	12	< 100	185	138	142
ChromiumTotal $\mu g/l$ 12<1<1NANACobaltDissolved $\mu g/l$ 24<0.2	Cadmium	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2
CobaltDissolved $\mu g/l$ 24< 0.20.610.231CobaltTotal $\mu g/l$ 38< 0.2			-					45.6
Cobalt Total µg/l 38 < 0.2 0.72 0.23 1 Copper Dissolved µg/l 24 < 0.5								< 1
Copper Dissolved µg/l 24 < 0.5 1.2 0.47 1 Copper Total µg/l 38 < 0.5								< 0.2
CopperTotal $\mu g/l$ 38 < 0.5 3.6 0.52 IronDissolved $\mu g/l$ 24 95.3 2990 542 10 IronTotal $\mu g/l$ 38 226 6700 1162 1162 LeadDissolved $\mu g/l$ 10 < 0.5 < 0.5 NA 1162 LeadTotal $\mu g/l$ 38 226 6700 1162 1162 MagnesiumTotal $\mu g/l$ 38 < 0.5 < 0.5 NA 1162 ManganeseDissolved $\mu g/l$ 38 21.6 83.7 50.6 167 ManganeseTotal $\mu g/l$ 38 22.2 3210 686 167 MercuryDissolved ng/L NANANA 14 Methyl MercuryDissolved ng/L NA NA NA NA Methyl MercuryTotal ng/L NA NA NA NA MolybdenumTotal $\mu g/l$ 5 0.63 1.5 1.03								< 0.2
IronDissolved $\mu g/l$ 2495.32990542IronTotal $\mu g/l$ 3822667001162LeadDissolved $\mu g/l$ 10<0.5								0.51
Iron Total μg/l 38 226 6700 1162 Lead Dissolved μg/l 10 <0.5								< 0.5
LeadDissolvedµg/l10< 0.5< 0.5NALeadTotalµg/l38< 0.5								245
Lead Total µg/l 38 < 0.5 < 0.5 NA Magnesium Total mg/l 38 21.6 83.7 50.6 Manganese Dissolved µg/l 24 37 1960 637 Manganese Total µg/l 38 22.2 3210 686 Mercury Dissolved ng/L NA NA NA NA Methyl Mercury Dissolved ng/L 12 0.655 5.1 2.14 Methyl Mercury Dissolved ng/L NA NA NA NA Methyl Mercury Total ng/L NA NA NA NA Methyl Mercury Total ng/L NA NA NA NA Molybdenum Total µg/l 5 0.63 1.5 1.03								600
Magnesium Total mg/l 38 21.6 83.7 50.6 Manganese Dissolved μg/l 24 37 1960 636 19								< 0.5
ManganeseDissolvedµg/l24371960637ManganeseTotalµg/l3822.23210686686MercuryDissolvedng/LNANANANANAMercuryTotalng/L120.6555.12.14686Methyl MercuryDissolvedng/LNANANANANA10Methyl MercuryDissolvedng/LNANANANANA1010Methyl MercuryTotalng/LNANANANANA103 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>< 0.5</td></td<>								< 0.5
ManganeseTotalµg/l3822.23210686MercuryDissolvedng/LNANANANAMercuryTotalng/L120.6555.12.14Methyl MercuryDissolvedng/LNANANANAMethyl MercuryTotalng/LNANANANAMethyl MercuryTotalng/LNANANANAMethyl MercuryTotalng/LNANANANAMolybdenumTotalµg/l50.631.51.031.03	5							43.6
MercuryDissolvedng/LNANANANAMercuryTotalng/L120.6555.12.1412Methyl MercuryDissolvedng/LNANANANANAMethyl MercuryTotalng/LNANANANANAMolybdenumTotalug/l50.631.51.031	5							327
MercuryTotalng/L120.6555.12.14Methyl MercuryDissolvedng/LNANANANAMethyl MercuryTotalng/LNANANANAMolybdenumTotalµg/l50.631.51.03	5							348
Methyl Mercury Dissolved ng/L NA NA NA NA Methyl Mercury Total ng/L NA NA NA NA Methyl Mercury Total ng/L NA NA NA NA Molybdenum Total µg/l 5 0.63 1.5 1.03			-					NA
Methyl Mercury Total ng/L NA NA NA Molybdenum Total µg/l 5 0.63 1.5 1.03			_				1	2.57
Molybdenum Total μg/l 5 0.63 1.5 1.03			-					NA
			_					NA
Nickel Dissolved µg/l 24 < 0.5 1.4 0.36	•							0.91
								< 0.5
Nickel Total μg/l 38 < 0.5 1.2 0.38 Palladium Total μg/l NA NA NA NA								< 0.5 NA

	Water Quality Data for TC-1a 2012-2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg/l	NA	NA	NA	NA	NA						
Potassium	Total	mg/l	12	1.7	5	3.15	3.05						
Selenium	Total	µg/l	24	< 1	< 1	NA	< 1						
Silver	Total	µg/l	5	< 0.2	< 0.2	NA	< 0.2						
Sodium	Total	mg/l	12	30.2	70	49.4	46.4						
Strontium	Total	µg/l	NA	NA	NA	NA	NA						
Thallium	Total	µg/l	24	< 0.0004	< 0.02	NA	< 0.005						
Tin	Total	µg/l	NA	NA	NA	NA	NA						
Titanium	Total	µg/l	NA	NA	NA	NA	NA						
Vanadium	Total	µg/l	5	< 3	< 3	NA	< 3						
Zinc	Dissolved	µg/l	24	< 6	6.4	3.14	< 6						
Zinc	Total	µg/l	38	< 6	11.5	3.32	< 6						

			Data for PM-11 / 2004-2015	SW003			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	ral Parameters 36	85.3	550	310	321
Alkalinity, total, as CaCO3	NA	mg/l	37	106	550	295	299
Biochemical Oxygen Demand (5-day)	NA	mg/l	3	< 3	< 3	NA	< 3
Carbon, dissolved organic	NA	mg/l	11	8.7	14.3	11.7	12.0
Carbon, total organic	NA	mg/l	68	6.5	44.6	13.0	10.7
Chemical Oxygen Demand	NA	mg/l	25	16.2	65.8	34.1	36.5
Chloride	Dissolved	mg/l	1	NA	NA	14.3	14.3
Chloride	NA	mg/l	81	3.1	34.1	17.0	16.1
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	63	< 0.1	12.69	6.27	6.50
Fluoride	NA	mg/l	11	0.84	2.2	1.49	1.39
Hardness, as CaCO3	NA	mg/l	66	109	705	373	346
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	25	< 0.1	0.11	0.05	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.1	0.21	0.07	< 0.1
Nitrogen, total	NA	mg/l	3	1.17	1.28	1.22	1.21
Nitrogen, total kjeldahl (TKN)	NA	mg/l	3	1.11	1.28	1.19	1.17
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.01	< 0.02
рН	NA	pH units	76	6.64	8.3	7.56	7.62
Phosphorus, total, as P	Dissolved	mg/l	9	0.005	< 0.02	0.009	0.0085
Phosphorus, total, as P	NA	mg/l	32	< 0.004	< 1	0.047	0.026
Redox (oxidation potential)	NA	mV	1	NA	NA	493	493
Solids, total dissolved	NA	mg/l	66	186	927	492	452
Solids, total suspended	NA	mg/l	24	< 1	8	2.62	2.40
Specific Conductance @ 25 °C	NA	µmhos/cm	70	248	1386	793	824
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	123	123
Sulfate, as SO4	NA	mg/l	85	4.4	245	115	122
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA	< 0.1
Temperature	NA	deg C	69	0.24	24.4	10.2	9.70
Turbidity	NA	NTU	64	0	13.5	1.72	0.90
Aluminum	Dissolved	ug/l	Metals 54	< 10	83.9	17.0	21.3
Aluminum	Total	µg/l	66	< 10	119	29.5	28.3
Antimony	Total	µg/l	35	< 0.5	< 3	29.5 NA	< 0.5
Arsenic	Dissolved	µg/l	7	< 0.5	3.9	1.14	0.80
Arsenic	Total	μg/l μg/l	58	< 0.5	4.1	0.87	0.80
Barium	Total	μg/l	26	13.4	67.9	35.5	34.0
Beryllium	Total	μg/l	23	< 0.2	< 0.2	NA	< 0.2
Boron	Total	μg/l	23	< 100	307	207	228
Cadmium	Total	μg/l	25	0.021	< 0.2	0.084	< 0.2
Calcium	Total	mg/l	66	15.5	78.4	44.6	39.8
Chromium	Total	μg/l	26	0.33	2.3	0.64	< 1
Cobalt	Dissolved	μg/l	37	< 0.2	7	0.34	< 0.2
Cobalt	Total	µg/l	64	0.16	7.6	0.30	< 0.2
Copper	Dissolved	μg/l	37	0.34	1.8	0.81	0.75
Copper	Total	μg/l	66	< 0.5	< 5	0.93	0.79
Iron	Dissolved	μg/l	45	80	17300	653	188
Iron	Total	μg/l	61	0.21	18000	890	513
Lead	Dissolved	μg/l	10	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	60	0.03	< 1	0.25	< 0.5
Magnesium	Total	mg/l	66	18.9	124	63.8	57.3
Manganese	Dissolved	μg/l	37	17.3	1640	380	256
Manganese	Total	μg/l	64	19.3	1800	323	155
Mercury	Dissolved	ng/L	8	0.6	2.5	1.45	1.4
Mercury	Total	ng/L	38	< 0.5	< 10	2.00	1.60
Methyl Mercury	Dissolved	ng/L	8	< 0.1	0.55	0.20	0.15
		-	9	0.15	0.46	0.26	0.23
Methyl Mercury	Total	IIU/L					
Methyl Mercury Molybdenum		ng/L µg/l	-	3.7	29.3	11.9	9.60
Molybdenum	Total	µg/l	28	3.7 < 0.5	29.3 1.8		
			-	3.7 < 0.5 < 0.5	29.3 1.8 < 5	11.9 0.41 0.68	9.60 < 0.5 0.58

	Water Quality Data for PM-11 / SW003 2004-2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg/l	5	< 0.25	< 250	NA	< 25						
Potassium	Total	mg/l	32	1	8.41	4.89	4.99						
Selenium	Total	µg/l	42	0.24	< 3.6	0.67	< 1						
Silver	Total	µg/l	21	< 0.2	< 1	NA	< 0.2						
Sodium	Total	mg/l	34	12.6	62.2	40.6	44.0						
Strontium	Total	µg/l	6	95.1	327	207	218						
Thallium	Total	µg/l	47	< 0.0004	< 2	0.116	0.0075						
Tin	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5						
Titanium	Total	µg/l	3	< 10	< 10	NA	< 10						
Vanadium	Total	µg/l	9	< 3	< 10	NA	< 3						
Zinc	Dissolved	µg/l	37	< 6	7.9	3.52	< 6						
Zinc	Total	µg/l	66	1.6	41.2	4.15	< 6						

			Data for UC-1 / I 06, 2012-2013	PM-9			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Genera mg/l	l Parameters 3	399	471	437	442
Alkalinity, total, as CaCO3	NA	mg/l	12	186	471	336	337
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	18	5.8	18.5	10.6	9.5
Chemical Oxygen Demand	NA	mg/l	10	5.1	84.4	28.7	23.9
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	20	11	43.9	25.3	26.9
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	13	0.68	12.03	6.68	7.21
Fluoride	NA	mg/l	9	1.12	1.9	1.52	1.50
Hardness, as CaCO3	NA	mg/l	20	213	844	461	445
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	0.12	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	7	< 0.1	0.24	0.09	< 0.1
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
pH	NA	pH units	21	6.97	8.2	7.62	7.63
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	10	0.008	< 0.1	0.043	< 0.1
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	20	325	1030	615	565
Solids, total suspended	NA	mg/l	7	< 1	12	4.43	5.00
Specific Conductance @ 25 °C	NA	µmhos/cm	21	569	1558	951	935
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	20	67.5	380	169	149
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	20	0.3	21.19	9.24	8.01
Turbidity	NA	NTU	14	0	3.4	1.60	1.60
			Metals		I		
Aluminum	Dissolved	µg/l	11	< 20	30.3	19.7	21.5
Aluminum	Total	µg/l	20	< 20	52.4	26.7	28.6
Antimony	Total	µg/l	15	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA
Arsenic	Total	µg/l	15	< 0.5	< 2	0.84	< 0.82
Barium	Total	µg/l	10	18.3	59.5	36.3	35.2
Beryllium	Total	µg/l	7	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	7	228	395	309	320
Cadmium	Total	µg/l	7	< 0.2	< 0.2	NA	< 0.2
Calcium	Total	mg/l	20	33.8	91.7	57.9	56.4
Chromium Cobalt	Total	µg/l	7	< 1	1.4 0.34	0.80	< 1
Cobalt	Discoluted			< 0.2		0.71	0.21
Cobalt	Dissolved	µg/l	11	< 0.2			0 22
Copper	Total	µg/l	18	< 0.2	< 1	0.32	0.32
Copper	Total Dissolved	μg/l μg/l	18 11	< 0.2 0.54	< 1 3.7	0.32 1.38	1.10
Copper	Total Dissolved Total	μg/l μg/l μg/l	18 11 20	< 0.2 0.54 < 0.5	< 1 3.7 < 5	0.32 1.38 1.43	1.10 0.98
Copper Iron	Total Dissolved Total Dissolved	μg/l μg/l μg/l μg/l	18 11 20 11	< 0.2 0.54 < 0.5 65.4	< 1 3.7 < 5 1050	0.32 1.38 1.43 257	1.10 0.98 123
Copper Iron Iron	Total Dissolved Total Dissolved Total Total Total	μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18	< 0.2 0.54 < 0.5 65.4 0.3	< 1 3.7 < 5 1050 1590	0.32 1.38 1.43 257 369	1.10 0.98 123 259
Copper Iron Iron Lead	Total Dissolved Total Dissolved Total Total Dissolved Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA	< 0.2 0.54 < 0.5 65.4 0.3 NA	< 1 3.7 < 5 1050 1590 NA	0.32 1.38 1.43 257 369 NA	1.10 0.98 123 259 NA
Copper Iron Iron Lead Lead	Total Dissolved Total Dissolved Total Dissolved Total	μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3	< 1 3.7 < 5 1050 1590 NA < 1	0.32 1.38 1.43 257 369 NA NA	1.10 0.98 123 259 NA < 0.5
Copper Iron Iron Lead Lead Magnesium	Total Dissolved Total Dissolved Total Dissolved Dissolved Total Total	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7	< 1 3.7 < 5 1050 1590 NA < 1 149	0.32 1.38 1.43 257 369 NA NA NA 78.4	1.10 0.98 123 259 NA < 0.5 71.6
Copper Iron Iron Lead Lead Magnesium Manganese	Total Dissolved Total Dissolved Total Dissolved Total Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9	< 1 3.7 < 5 1050 1590 NA < 1 149 1520	0.32 1.38 1.43 257 369 NA NA 78.4 326	1.10 0.98 123 259 NA < 0.5 71.6 157
Copper Iron Iron Lead Lead Magnesium Manganese Manganese	Total Dissolved Total Dissolved Total Dissolved Total Total Dissolved Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 18	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520	0.32 1.38 1.43 257 369 NA NA NA 78.4 326 259	1.10 0.98 123 259 NA < 0.5 71.6 157 158
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury	Total Dissolved Total Dissolved Total Dissolved Total Dissolved Dissolved Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 11 18 NA	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury	TotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 11 18 NA 12	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA 1	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA < 10	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA 2.73	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA 3.00
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Mercury	TotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedDissolvedDissolvedDissolvedDissolvedDissolvedDissolvedDissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 11 18 NA 12 NA	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA 1 NA	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA < 10 NA	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA 2.73 NA	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA 3.00 NA
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury	TotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 11 18 NA 12 NA NA NA	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA 1 NA NA NA	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA < 10 NA NA NA	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA 2.73 NA NA	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA 3.00 NA NA
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury Molybdenum	TotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 20 20 11 18 NA 12 NA 10	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA 1 NA 1 NA NA 4.4	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA < 10 NA NA 30	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA 2.73 NA 2.73 NA 17.4	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA 3.00 NA NA 19.8
Copper Iron Iron Lead Lead Magnesium Manganese Manganese Mercury Mercury Methyl Mercury Methyl Mercury	TotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolvedTotalDissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	18 11 20 11 18 NA 20 20 20 11 11 18 NA 12 NA NA NA	< 0.2 0.54 < 0.5 65.4 0.3 NA < 0.3 39.7 27.9 40 NA 1 NA NA NA	< 1 3.7 < 5 1050 1590 NA < 1 149 1520 1520 NA < 10 NA NA NA	0.32 1.38 1.43 257 369 NA NA 78.4 326 259 NA 2.73 NA NA	1.10 0.98 123 259 NA < 0.5 71.6 157 158 NA 3.00 NA NA

	Water Quality Data for UC-1 / PM-9 2004-2006, 2012-2013												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg/l	5	< 0.25	< 125	NA	< 25						
Potassium	Total	mg/l	10	4.1	9.1	6.27	6.25						
Selenium	Total	µg/l	20	< 1	< 3.6	NA	< 1						
Silver	Total	µg/l	12	< 0.2	< 1	NA	< 0.24						
Sodium	Total	mg/l	12	35.1	61.4	49.0	47.7						
Strontium	Total	µg/l	4	179	326	258	264						
Thallium	Total	µg/l	20	< 0.0004	< 2	0.25	0.0055						
Tin	Total	µg/l	NA	NA	NA	NA	NA						
Titanium	Total	µg/l	1	< 10	NA	NA	< 10						
Vanadium	Total	µg/l	3	< 3	< 3	NA	< 3						
Zinc	Dissolved	µg/l	11	< 6	30.4	7.81	< 6						
Zinc	Total	µg/l	20	< 6	64	9.55	< 10						

			Data for PM-12 / 2004-2015	′ SW004			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Gene mg/l	ral Parameters 28	13.3	122	57.1	52.1
Alkalinity, total, as CaCO3	NA	mg/l	41	15.2	152	51.8	45.8
Biochemical Oxygen Demand (5-day)	NA	mg/l	2	< 3	< 3	NA	< 3
Carbon, dissolved organic	NA	mg/l	10	15.6	32.3	23.7	23.6
Carbon, total organic	NA	mg/l	72	6.2	44.7	22.0	20.7
Chemical Oxygen Demand	NA	mg/l	16	25.2	122	61.3	52.0
Chloride	Dissolved	mg/l	1	NA	NA	5.9	5.9
Chloride	NA	mg/l	85	1.3	22.3	4.82	4.40
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	72	< 0.1	11.8	5.53	5.35
Fluoride	NA	mg/l	21	< 0.1	0.2	0.10	0.1
Hardness, as CaCO3	NA	mg/l	70	17.8	171	61.7	55
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16	< 0.1	0.12	0.05	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	11	< 0.1	0.56	0.14	< 0.1
Nitrogen, total	NA	mg/l	2	1.56	1.76	1.66	1.66
Nitrogen, total kjeldahl (TKN)	NA	mg/l	2	1.56	1.66	1.61	1.61
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.03	0.025
pH	NA	pH units	86	5.84	8.45	7.04	6.92
Phosphorus, total, as P	Dissolved	mg/l	9	0.01	0.035	0.02	< 0.02
Phosphorus, total, as P	NA	mg/l	36	0.009	0.22	0.02	< 0.1
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	70	46	258	133	131
Solids, total suspended	NA	mg/l	20	< 1	4	2.09	2
Specific Conductance @ 25 °C		0	79	0	777		
•	NA	µmhos/cm				138	127
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	1.07	1.07
Sulfate, as SO4	NA	mg/l	89	0.5	116	5.74	< 2
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA	< 0.1
Temperature	NA	deg C	79	0.22	25.3	10.3	10.5
Turbidity	NA	NTU	61	0	3000	59.2	3
Aluminum	Dissolved	µg/l	Metals 52	23.2	184	73.6	64.6
Aluminum	Total	μg/l	64	44.3	280	109	103
Antimony	Total	μg/l	27	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved		7	< 0.5	2	1.12	0.76
		µg/l	49				
Arsenic	Total	µg/l		0.38	< 10	1.44	1.25
Barium	Total	µg/l	23	< 10	57.9	22.4	20.9
Beryllium	Total	µg/l	20	< 0.2	1.4	0.17	< 0.2
Boron	Total	µg/l	21	< 35	< 100	NA	< 50
Cadmium	Total	µg/l	23	< 0.02	1.1	0.14	< 0.2
Calcium	Total	mg/l	70	4.1	29.9	14.5	13.5
Chromium	Total	µg/l	23	0.48	2.3	0.76	< 1
Cobalt	Dissolved	µg/l	29	< 0.2	3.7	1.41	0.98
Cobalt	Total	µg/l	70	0.13	4.1	1.01	< 1
Copper	Dissolved	µg/l	29	< 0.5	1.5	0.71	0.66
Copper	Total	µg/l	72	< 0.5	< 5	1.08	1.00
Iron	Dissolved	µg/l	37	541	9800	3066	2500
Iron	Total	µg/l	52	1.66	11200	3991	3020
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	57	0.08	1.1	0.27	< 0.5
Magnesium	Total	mg/l	70	1.8	27.3	6.28	5.50
Manganese	Dissolved	µg/l	29	13.6	1390	530	414
Manganese	Total	µg/l	55	6.7	1550	418	276
Mercury	Dissolved	ng/L	8	1.5	5	3.49	3.50
Mercury	Total	ng/L	42	0.877	< 10	4.36	4.75
Methyl Mercury	Dissolved	ng/L	8	0.12	2.7	0.72	0.56
	Total	ng/L	13	0.16	1.38	0.53	0.45
Methyl Mercury	Total	IIQ/L					
Methyl Mercury Molybdenum	Total	_	19	0.094	< 5	1.28	0.31
Molybdenum		µg/l	-	0.094		1.28 1.09	0.31
, ,	Total	_	19		< 5 2.1 < 5		

	Water Quality Data for PM-12 / SW004 2004-2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Platinum	Total	µg/l	5	< 0.25	< 25	NA	< 25						
Potassium	Total	mg/l	23	0.29	4	1.23	1.04						
Selenium	Total	µg/l	39	0.085	< 10	0.80	< 1						
Silver	Total	µg/l	18	< 0.2	< 1	NA	< 0.2						
Sodium	Total	mg/l	25	2.2	11.8	4.01	3.4						
Strontium	Total	µg/l	4	17.6	61.9	35.2	31						
Thallium	Total	µg/l	40	< 0.0004	< 2	0.13	0.0070						
Tin	Total	µg/l	1	< 0.5	NA	NA	< 0.5						
Titanium	Total	µg/l	1	< 10	NA	NA	< 10						
Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3						
Zinc	Dissolved	µg/l	29	< 6	13.7	5.26	< 6						
Zinc	Total	µg/l	72	2.7	104	7.72	< 6						

Water Quality Data for UC-1A 2013-2015										
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾			
Alkalinity, bicarbonate, as CaCO3	NA	Genera mg/l	l Parameters 24	104	551	318	332			
Alkalinity, total, as CaCO3	NA	mg/l	10	173	551	319	317			
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA			
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA			
Carbon, total organic	NA	mg/l	31	6.7	21.4	11.4	9.8			
Chemical Oxygen Demand	NA	mg/l	3	22.9	60.7	39.7	35.6			
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA			
Chloride	NA	mg/l	31	4.4	33.1	17.5	15.1			
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA			
Cyanide	NA	mg/l	NA	NA	NA	NA	NA			
Dissolved oxygen	NA	mg/l	31	4.58	11.91	8.12	7.49			
Fluoride	NA	mg/l	NA	NA	NA	NA	NA			
Hardness, as CaCO3	NA	mg/l	31	146	698	402	365			
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	3	< 0.1	< 0.1	NA	< 0.1			
Nitrogen, ammonia, as N	NA	mg/l	3	< 0.1	0.12	0.07	< 0.1			
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA			
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA			
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA			
рН	NA	pH units	31	7.13	7.84	7.55	7.58			
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA			
Phosphorus, total, as P	NA	mg/l	3	0.02	0.076	0.041	0.026			
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA			
Solids, total dissolved	NA	mg/l	31	198	932	517	463			
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA			
Specific Conductance @ 25 °C	NA	µmhos/cm	31	313	1385	802	743			
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA			
Sulfate, as SO4	NA	mg/l	31	2.8	255	111	89.4			
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA			
Temperature	NA	deg C	31	0.61	19.81	9.22	9.12			
Turbidity	NA	NTU	32	0	10.7	2.78	2.00			
			Metals							
Aluminum	Dissolved	µg/l	31	< 10	< 50	13.0	< 20			
Aluminum	Total	µg/l	31	< 10	74.7	19.5	< 20			
Antimony	Total	µg/l	10	< 0.5	< 0.5	NA	< 0.5			
Arsenic	Dissolved	µg/l	7	< 0.5	1.6	0.74	0.79			
Arsenic					2.8	0.70				
	Total	µg/l	31	< 0.5		0.79	0.56			
Barium	Total	µg/l	10	29	61.9	42.1	39.1			
Beryllium	Total Total	μg/l μg/l	10 10	29 < 0.2	61.9 < 0.2	42.1 NA	39.1 < 0.2			
Beryllium Boron	Total Total Total	μg/l μg/l μg/l	10 10 10	29 < 0.2 141	61.9 < 0.2 305	42.1 NA 208	39.1 < 0.2 195			
Beryllium Boron Cadmium	Total Total Total Total Total	μg/l μg/l μg/l μg/l	10 10 10 10	29 < 0.2 141 < 0.2	61.9 < 0.2 305 < 0.2	42.1 NA 208 NA	39.1 < 0.2 195 < 0.2			
Beryllium Boron Cadmium Calcium	Total Total Total Total Total Total	μg/l μg/l μg/l μg/l mg/l	10 10 10 10 31	29 < 0.2 141 < 0.2 19	61.9 < 0.2 305 < 0.2 75.9	42.1 NA 208 NA 47.2	39.1 < 0.2 195 < 0.2 43.6			
Beryllium Boron Cadmium Calcium Chromium	Total Total Total Total Total Total Total	μg/l μg/l μg/l μg/l mg/l μg/l	10 10 10 10 31 10	29 < 0.2 141 < 0.2 19 < 1	61.9 < 0.2 305 < 0.2 75.9 < 1	42.1 NA 208 NA 47.2 NA	39.1 < 0.2 195 < 0.2 43.6 < 1			
Beryllium Boron Cadmium Calcium Chromium Cobalt	Total Total Total Total Total Total Total Dissolved	μg/l μg/l μg/l μg/l mg/l μg/l	10 10 10 10 31 10 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35	42.1 NA 208 NA 47.2 NA 0.15	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt	Total Total Total Total Total Total Total Dissolved Total	μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 17 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4	42.1 NA 208 NA 47.2 NA 0.15 0.18	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper	Total Total Total Total Total Total Dissolved Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 17 31 17 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Copper	Total Total Total Total Total Total Dissolved Dissolved Total Dissolved	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 17 31 17 31 17 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65	39.1 < 0.2			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Copper Iron	 Total Total Total Total Total Total Total Dissolved Total Dissolved Total Dissolved Dissolved Total Dissolved Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 31 17 31 17 31 17 31 17 31 17 31 17 31 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Copper Iron Iron	 Total Total Total Total Total Total Total Dissolved Dissolved Dissolved Dissolved Total Dissolved Total Total Dissolved Total 	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Copper Iron Iron Iron	 Total Total Total Total Total Total Total Dissolved Dissolved Dissolved Dissolved Total Dissolved Total Dissolved Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 10 31 10 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 10	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5			
Beryllium Boron Cadmium Calcium Chromium Cobalt Cobalt Copper Copper Iron Iron Lead	 Total Total Total Total Total Total Total Dissolved Total 	μg/l	10 10 10 10 31 10 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 10 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 < 0.5	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5			
Beryllium Boron Cadmium Calcium Calcium Chromium Cobalt Cobalt Cobalt Copper Copper Iron Iron Lead Lead Magnesium	 Total Total Total Total Total Total Total Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Total Dissolved Total Dissolved Total 	μg/l	10 10 10 10 10 31 10 31 17 31 17 31 17 31 17 31 17 31 17 31 31 31 31 31 31 31 31 31 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 < 1.4 220 < 0.5 < 24	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA NA 69.1	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5			
Beryllium Boron Cadmium Calcium Calcium Chromium Cobalt Cobalt Cobalt Copper Copper Copper Iron Iron Lead Lead Lead Magnesium	 Total Total Total Total Total Total Total Total Dissolved 	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	10 10 10 10 31 10 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 10 31 17	$\begin{array}{c} 29 \\ < 0.2 \\ 141 \\ < 0.2 \\ 19 \\ < 1 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ \hline 71.4 \\ 220 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 24 \\ 45.6 \end{array}$	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124 927	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA NA 69.1 461	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 61.4 424			
Beryllium Boron Cadmium Calcium Calcium Chromium Cobalt Cobalt Cobalt Copper Copper Copper Iron Iron Iron Lead Lead Lead Magnesium Manganese Manganese	 Total Total Total Total Total Total Total Dissolved Total Total Dissolved Total Dissolved 	μg/l	10 10 10 10 31 10 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 10 31 10 31 17 31 31 31 31 31	$\begin{array}{c} 29 \\ < 0.2 \\ 141 \\ < 0.2 \\ 19 \\ < 1 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.5 \\ < 0.5 \\ \hline 71.4 \\ 220 \\ < 0.5 \\ < 0.5 \\ < 0.5 \\ < 24 \\ 45.6 \\ 34 \end{array}$	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 < 0.5 124 927 2430	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA NA 69.1 461 540	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 61.4 424 467			
Beryllium Boron Cadmium Calcium Calcium Chromium Cobalt Cobalt Cobalt Copper Copper Copper Iron Iron Iron Lead Lead Magnesium Manganese Manganese Mercury	 Total Total Total Total Total Total Total Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved 	μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 10 31 31 17 31 17 31 17 31 17 31 NA	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 24 45.6 34 NA	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 < 0.5 124 927 2430 NA	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 61.4 424 467 NA			
Beryllium Boron Cadmium Calcium Calcium Chromium Cobalt Cobalt Cobalt Copper Copper Copper Copper Iron Iron Iron Lead Lead Lead Magnesium Manganese Manganese Manganese	 Total Total Total Total Total Total Total Dissolved Total 	μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 10 31 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 71.4 220 < 0.5 71.4 220 < 0.5 24 45.6 34 NA 0.527	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124 927 2430 NA 5.7	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA 1.94	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 61.4 424 467 NA 1.70			
BerylliumBoronCadmiumCalciumCalciumChromiumCobaltCobaltCopperIronLeadLeadManganeseMarcuryMercuryMethyl Mercury	 Total Total Total Total Total Total Total Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved Total Dissolved Dissolved Total Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved Dissolved 	μg/l μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 10 31 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31 17 31	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 71.4 220 < 0.5 71.4 220 < 0.5 24 45.6 34 NA 0.527 NA	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124 927 2430 NA 5.7 NA	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA 1.94 NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1 424 467 NA 1.70 NA			
BerylliumBoronCadmiumCalciumCalciumChromiumCobaltCobaltCopperCopperIronLeadLeadMagnesiumManganeseMercuryMercuryMethyl MercuryMethyl MercuryMethyl Mercury	 Total Total Total Total Total Total Total Dissolved 	μg/l μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 17 31 10 31 31 17 31 17 31 17 31 17 31 17 31 17 0 31 17 0 31 17 0 31 17 0 31 17 0 17 17 17 17 17 17 17 17 17 17 17 17 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 24 45.6 34 NA 0.527 NA NA	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124 927 2430 NA 5.7 NA NA	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA 1.94 NA NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.4 424 467 NA 1.70 NA NA			
BerylliumBoronCadmiumCalciumCalciumChromiumCobaltCobaltCopperIronIronLeadMagnesiumManganeseMercuryMethyl MercuryMethyl MercuryMolybdenum	 Total Total Total Total Total Total Total Dissolved Total Dissolved 	μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 17 31 10 31 17 31 10 31 17 31 17 31 10 31 17 31 10 8 10 8 10 8 10 8 10 17 17 17 17 17 17 17 17 17 17 17 17 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 < 0.5 24 45.6 34 NA 0.527 NA NA 5.1	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 < 0.5 124 927 2430 NA 5.7 NA NA 7	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA 1.94 NA 1.94 NA NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1 424 467 NA 1.70 NA NA 5.20			
Beryllium Boron Cadmium Calcium Calcium Cobalt Cobalt Cobalt Copper Copper Copper Iron Iron Lead Lead Magnesium Manganese Manganese Manganese Manganese Mercury Metruy Methyl Mercury Methyl Mercury	 Total Total Total Total Total Total Total Dissolved 	μg/l μg/l	10 10 10 10 31 10 17 31 17 31 17 31 17 31 17 31 10 31 31 17 31 17 31 17 31 17 31 17 31 17 0 31 17 0 31 17 0 31 17 0 31 17 0 17 17 17 17 17 17 17 17 17 17 17 17 17	29 < 0.2 141 < 0.2 19 < 1 < 0.2 < 0.2 < 0.2 < 0.5 < 0.5 71.4 220 < 0.5 < 0.5 24 45.6 34 NA 0.527 NA NA	61.9 < 0.2 305 < 0.2 75.9 < 1 0.35 0.4 1.1 2 1660 2730 < 0.5 < 0.5 124 927 2430 NA 5.7 NA NA	42.1 NA 208 NA 47.2 NA 0.15 0.18 0.64 0.65 422 871 NA NA 69.1 461 540 NA 1.94 NA NA	39.1 < 0.2 195 < 0.2 43.6 < 1 < 0.2 < 0.2 < 0.2 0.70 0.53 273 679 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.4 424 467 NA 1.70 NA NA			

Water Quality Data for UC-1A 2013-2015									
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾		
Platinum	Total	µg/l	NA	NA	NA	NA	NA		
Potassium	Total	mg/l	10	1.7	7.2	4.02	4.02		
Selenium	Total	µg/l	17	< 1	< 1	NA	< 1		
Silver	Total	µg/l	3	< 0.2	< 0.2	NA	< 0.2		
Sodium	Total	mg/l	10	17.6	62.9	34.5	27.6		
Strontium	Total	µg/l	NA	NA	NA	NA	NA		
Thallium	Total	µg/l	17	< 0.002	< 0.02	0.004	0.0050		
Tin	Total	µg/l	NA	NA	NA	NA	NA		
Titanium	Total	µg/l	NA	NA	NA	NA	NA		
Vanadium	Total	µg/l	3	< 3	< 3	NA	< 3		
Zinc	Dissolved	µg/l	17	< 6	9.7	3.58	< 6		
Zinc	Total	µg/l	31	< 6	10.8	3.25	< 6		

Water Quality Data for PM-12.2 2010-2015										
Parameter	Fraction	Units	# of Samples ⁽¹⁾ neral Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾			
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	21	23	219	103	89.0			
Alkalinity, total, as CaCO3	NA	mg/l	7	71.2	192	104	89.0			
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA			
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA			
Carbon, total organic	NA	mg/l	43	4.7	46.6	20.6	18.1			
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA	NA			
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA			
Chloride	NA	mg/l	51	1.3	10.3	3.69	3.60			
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA			
Cyanide	NA	mg/l	NA	NA	NA	NA	NA			
Dissolved oxygen	NA	mg/l	50	< 0.1	12.19	5.60	5.45			
Fluoride	NA	mg/l	NA	NA	NA	NA	NA			
Hardness, as CaCO3	NA	mg/l	21	57.2	711	261	205			
Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA	NA			
Nitrogen, ammonia as N	NA	mg/l	NA	NA	NA	NA	NA			
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA			
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA			
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA			
pH	NA	pH units	50	6.08	8.32	7.19	7.13			
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA			
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA			
Redox (oxidation potential)	NA	mV	1	NA	NA	437	437			
Solids, total dissolved	NA	mg/l	21	114	1020	413	331			
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA			
Specific Conductance @ 25 °C	NA	µmhos/cm	50	11.5	1600	539	438			
Sulfate, as SO4	Dissolved		NA	NA	NA	NA	NA			
		mg/l	51	30.4	595		108			
Sulfate, as SO4 Sulfide, as S ² -	NA	mg/l				171				
· · ·	NA	mg/l	NA FO	0.07	NA 456	NA 10.1	NA 10.2			
Temperature	NA	deg C	50			19.1	10.2			
Turbidity	NA	NTU	51 Metals	0	3000	66.0	5.10			
Aluminum	Dissolved	µg/l	47	15.5	160	46.4	35.6			
Aluminum	Total	μg/l	47	< 20	197	77.3	58.1			
Antimony	Total	μg/l	7	< 0.5	< 0.5	NA	< 0.5			
Arsenic	Dissolved	μg/l	7	< 0.5	2.1	1.03	0.78			
Arsenic	Total	μg/l	21	< 0.31	3	0.97	0.73			
Barium	Total		7	21.6	49.4	28.0	25.6			
	Total	µg/l	7	< 0.2	2.4	0.43	< 0.2			
Beryllium		µg/l								
Boron	Total	µg/l	7	< 100	< 100	NA	< 100			
Cadmium	Total	µg/l	7	< 0.2	2.1	0.39	< 0.2			
Calcium	Total	mg/l	21	7.4	60.7	26.5	24.1			
Chromium	Total	µg/l	7	< 1	1.9	0.80	< 1			
Cobalt	Dissolved	µg/l	7	0.38	1.2	0.66	0.52			
Cobalt	Total	µg/l	21	< 0.2	2.8	0.58	0.43			
Copper	Dissolved	µg/l	7	0.74	1.2	0.93	0.97			
Copper -	Total	µg/l	21	0.55	3.2	1.21	1.10			
Iron	Dissolved	µg/l	29	272	5710	1525	1130			
Iron	Total	µg/l	43	475	6940	2082	1760			
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA			
Lead	Total	µg/l	21	< 0.5	2	0.33	< 0.5			
Magnesium	Total	mg/l	21	9.4	136	47.3	36.1			
Manganese	Dissolved	µg/l	29	75.3	1390	560	534			
Manganese	Total	µg/l	43	19.8	1440	479	375			
Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA			
Mercury	Total	ng/L	7	0.522	7	3.13	3.45			
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA			
Methyl Mercury	Total	ng/L	NA	NA	NA	NA	NA			
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA			
Nickel	Dissolved	µg/l	7	0.55	2.9	1.32	1.10			
							1			
Nickel	Total	µg/l	21	< 0.5	3.1	1.18	0.97			

Water Quality Data for PM-12.2 2010-2015										
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾			
Platinum	Total	µg/l	NA	NA	NA	NA	NA			
Potassium	Total	mg/l	7	4	17.4	8.41	7.33			
Selenium	Total	µg∕l	7	< 1	3.2	0.89	< 1			
Silver	Total	µg/l	NA	NA	NA	NA	NA			
Sodium	Total	mg/l	7	8.3	32.5	16.8	14.3			
Strontium	Total	µg/l	NA	NA	NA	NA	NA			
Thallium	Total	µg/l	7	< 0.005	< 0.02	0.01	< 0.005			
Tin	Total	µg/l	NA	NA	NA	NA	NA			
Titanium	Total	µg∕l	NA	NA	NA	NA	NA			
Vanadium	Total	µg/l	NA	NA	NA	NA	NA			
Zinc	Dissolved	µg/l	7	< 6	< 6	NA	< 6			
Zinc	Total	µg/l	21	< 6	7.2	3.20	< 6			

			ity Data for PM- 2010-2015	12.3			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Gene mg/l	ral Parameters NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	43	9.7	46.3	21.4	18.6
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA	NA
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	51	1.5	13	4.96	4.30
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	50	< 0.1	12.35	7.36	7.60
Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, ammonia as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
pH	NA	pH units	50	6.27	8.25	7.28	7.29
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
•				NA	NA		
Phosphorus, total, as P	NA	mg/l	NA			NA	NA 162
Redox (oxidation potential)	NA	mV	1	NA	NA	463	463
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	50	95.7	802.6	308	245
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	51	5.64	221	58.2	29.5
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	50	-0.01	22.72	10.2	11.1
Turbidity	NA	NTU	51	0	3000	64.2	4.50
Aluminum	Dissolved	ug/l	Metals 26	< 20	133	43.4	32.9
Aluminum		µg/l	26	26.8	433		84.2
	Total	µg/l				125	
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Total	µg/l	NA	NA	NA	NA	NA
Beryllium	Total	µg/l	NA	NA	NA	NA	NA
Boron	Total	µg/l	NA	NA	NA	NA	NA
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	NA	NA	NA	NA	NA
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	NA	NA	NA	NA	NA
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	43	380	6240	1780	1330
Iron	Total	µg/l	43	472	6620	2391	1830
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA
Lead	Total	µg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	NA	NA	NA	NA	NA
Manganese	Dissolved	µg/l	22	30.5	1640	543	449
Manganese	Total	µg/l	22	43.3	1660	562	442
Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Mercury	Total	ng/L	NA	NA	NA	NA	NA
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA	NA
Molybdenum	Total	μg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	μg/l	NA	NA	NA	NA	NA
THERE	DISSONCU	pq/1					
Nickel	Total	μg/l	NA	NA	NA	NA	NA

Water Quality Data for PM-12.3 2010-2015										
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾			
Platinum	Total	µg∕l	NA	NA	NA	NA	NA			
Potassium	Total	mg/l	NA	NA	NA	NA	NA			
Selenium	Total	µg/l	NA	NA	NA	NA	NA			
Silver	Total	µg/l	NA	NA	NA	NA	NA			
Sodium	Total	mg/l	NA	NA	NA	NA	NA			
Strontium	Total	µg/l	NA	NA	NA	NA	NA			
Thallium	Total	µg/l	NA	NA	NA	NA	NA			
Tin	Total	µg/l	NA	NA	NA	NA	NA			
Titanium	Total	µg/l	NA	NA	NA	NA	NA			
Vanadium	Total	µg/l	NA	NA	NA	NA	NA			
Zinc	Dissolved	µg/l	NA	NA	NA	NA	NA			
Zinc	Total	µg/l	NA	NA	NA	NA	NA			

			y Data for PM-1 10-2015	2.4			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Genera mg/l	al Parameters NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	43	9.4	44.6	20.3	18.3
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA	NA
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	51	1.6	17.1	5.44	4.50
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	50	< 0.1	12.4	7.81	7.93
Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, ammonia as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	50	6.44	8.52	7.40	7.37
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	1	NA	NA	441	441
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	50	91.3	664.5	298	235
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA
Sulfate, as SO4	NA	mg/l	51	5.67	181	50.1	24.3
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	50	0.02	22.95	10.2	10.7
Turbidity	NA	NTU	51	0	3000	68.4	4.60
			Metals	Ţ	Т		
Aluminum	Dissolved	µg/l	26	< 20	133	43.2	33.2
Aluminum	Total	µg/l	26	< 25	349	116	84.1
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Total	µg/l	NA	NA	NA	NA	NA
Beryllium	Total	µg/l	NA	NA	NA	NA	NA
Boron	Total	µg/l	NA	NA	NA	NA	NA
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	NA	NA	NA	NA	NA
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	NA	NA	NA	NA	NA
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	43	388	5540	1657	1160
Iron	Total	µg/l	43	486	5790	2128	1760
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA
Lead	Total	µg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	NA	NA	NA	NA	NA
Manganese	Dissolved	µg/l	22	35.2	1020	385	357
Manganese	Total	µg/l	22	53.7	1050	405	368
Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Mercury	Total	ng/L	NA	NA	NA	NA	NA
Methyl Mercury	Dissolved	ng/L	NA	NA	NA	NA	NA
Methyl Mercury	Total	ng/L	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	NA	NA	NA	NA	NA
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA

	Water Quality Data for PM-12.4 2010-2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Platinum	Total	µg∕l	NA	NA	NA	NA	NA					
Potassium	Total	mg/l	NA	NA	NA	NA	NA					
Selenium	Total	µg/l	NA	NA	NA	NA	NA					
Silver	Total	µg/l	NA	NA	NA	NA	NA					
Sodium	Total	mg/l	NA	NA	NA	NA	NA					
Strontium	Total	µg/l	NA	NA	NA	NA	NA					
Thallium	Total	µg∕l	NA	NA	NA	NA	NA					
Tin	Total	µg/l	NA	NA	NA	NA	NA					
Titanium	Total	µg∕l	NA	NA	NA	NA	NA					
Vanadium	Total	µg/l	NA	NA	NA	NA	NA					
Zinc	Dissolved	µg/l	NA	NA	NA	NA	NA					
Zinc	Total	µg/l	NA	NA	NA	NA	NA					

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.
 Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

			Data for PM-13 2004-2015	/ SW005			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	eral Parameters 28	27	210	111	115
Alkalinity, total, as CaCO3	NA	mg/l	39	26	202	96.2	101
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	8	16.3	29.6	22.5	21.8
Carbon, total organic	NA	mg/l	70	9.1	46.6	20.6	18.3
Chemical Oxygen Demand	NA	mg/l	14	< 10	120	49.7	41.1
Chloride	Dissolved	mg/l	1	NA	NA	4.55	4.55
Chloride	NA	mg/l	83	2	94.8	7.28	5.09
Chlorophyll a	NA	mg/l	NA	NA	NA	NA	NA
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	70	2.1	12.62	7.7	7.80
Fluoride	NA	mg/l	21	< 0.1	2.28	0.37	0.24
Hardness, as CaCO3	NA	mg/l	68	35.6	337	139	120
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	14	< 0.1	0.23	0.09	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	11	< 0.1	0.2	0.09	< 0.1
Nitrogen, total	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, total kjeldahl (TKN)	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	8	< 0.02	< 0.07	0.03	0.03
pH	NA	pH units	84	6.3	8.6	7.42	7.41
Phosphorus, total, as P	Dissolved	mg/l	9	0.009	0.028	0.016	0.018
Phosphorus, total, as P Phosphorus, total, as P	NA		34	< 0.009	0.028	0.016	0.018
Redox (oxidation potential)	NA	mg/l mV	34 NA	< 0.004	0.18 NA	0.045 NA	0.081 NA
•							
Solids, total dissolved	NA	mg/l	68	48	494	227	220
Solids, total suspended	NA	mg/l	18	< 1	13	6.8	7.35
Specific Conductance @ 25 °C	NA	µmhos/cm	78	42	698.2	284	240
Sulfate, as SO4	Dissolved	mg/l	1	NA	NA	31.4	31.4
Sulfate, as SO4	NA	mg/l	87	7.55	688	53.9	27.4
Sulfide, as S ² -	NA	mg/l	8	< 0.1	< 0.1	NA	< 0.1
Temperature	NA	deg C	77	-0.01	24.6	10.8	11.27
Turbidity	NA	NTU	58	0	3000	58.3	4.90
Aluminum	Dissolved	ug/l	Metals 52	15.3	138	49	35.9
Aluminum	Total	µg/l	64	43.9	1150	187	129
		µg/l					
Antimony	Total	µg/l	26 7	< 0.5	< 3	NA 1.00	< 0.5
Arsenic	Dissolved	µg/l		< 0.5	2.2	1.09	0.87
Arsenic	Total	µg/l	47	0.39	2.9	1.1	1.1
Barium	Total	µg/l	21	14.3	57.5	37.4	39.3
Beryllium	Total	µg/l	18	< 0.2	0.27	0.10	< 0.2
Boron	Total	µg/l	18	< 35	< 100	40.4	< 100
Cadmium	Total	µg/l	21	0.044	0.26	0.10	< 0.2
Calcium	Total	mg/l	68	7	44.8	22.7	22.8
Chromium	Total	µg/l	21	0.71	4.3	0.80	< 1
Cobalt	Dissolved	µg/l	29	< 0.2	0.91	0.34	0.32
Cobalt	Total	µg/l	68	< 0.2	1.1	0.44	0.44
Copper	Dissolved	µg/l	29	0.56	1.7	1.02	1.0
Copper	Total	µg/l	70	0.62	< 5	1.32	1.2
Iron	Dissolved	µg/l	36	504	5000	1773	1315
Iron	Total	µg/l	50	2.08	5740	2191	1840
Lead	Dissolved	µg/l	10	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	55	0.15	< 1	0.27	< 0.5
Magnesium	Total	mg/l	68	5.9	54.7	20.1	16.0
Manganese	Dissolved	µg/l	29	< 0.5	720	346	346
Manganese	Total	µg/l	53	< 0.5	757	301	308
Mercury	Dissolved	ng/L	8	1.5	4.1	3.11	3.2
Mercury	Total	ng/L	43	0.84	12.4	3.57	2.85
mercury		_	8	0.23	0.76	0.41	0.33
Methyl Mercury	Dissolved	ng/L	Ũ				•
	Dissolved Total	ng/L ng/L	13	0.074	1.1	0.38	0.31
Methyl Mercury		-		0.074 < 0.3	1.1 < 5	0.38	0.31
Methyl Mercury Methyl Mercury	Total	ng/L µg/l	13				
Methyl Mercury Methyl Mercury Molybdenum	Total Total	ng/L	13 17	< 0.3	< 5	1.65	0.94

	Water Quality Data for PM-13 / SW005 2004-2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Platinum	Total	µg∕l	5	< 0.25	< 25	NA	< 25					
Potassium	Total	mg/l	21	1.5	7.4	2.99	2.8					
Selenium	Total	µg/l	38	< 1	< 3.6	NA	< 1					
Silver	Total	µg/l	16	< 0.2	< 1	NA	< 0.2					
Sodium	Total	mg/l	23	5.2	29.8	13.5	12.5					
Strontium	Total	µg/l	4	29.1	104	58.3	50					
Thallium	Total	µg/l	38	< 0.0004	< 2	0.135	0.0050					
Tin	Total	µg/l	NA	NA	NA	NA	NA					
Titanium	Total	µg/l	1	NA	NA	13	13					
Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3					
Zinc	Dissolved	µg/l	29	< 6	10.2	3.51	< 6					
Zinc	Total	µg/l	70	3.2	61	6.97	< 6					

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.
 Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

Water Quality Data for PM-7 / SD026 1999-2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾				
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	63	182	687	393	419				
Alkalinity, bicarbonate, as HCO3	NA	mg/l	82	181	716	399	413				
Alkalinity, total, as CaCO3	NA	mg/l	55	< 10	536	390	418				
Biochemical Oxygen Demand (5-day)	NA	mg/l	5	2	< 3	1.52	< 2.4				
Carbon, dissolved organic	NA	mg/l	4	4.7	5.7	5.1	5.0				
Carbon, total organic	NA	mg/l	58	3.6	7.8	5.4	5.1				
Cations	NA	meq/l	15	8.9	16	13.2	13.9				
Chemical Oxygen Demand	NA	mg/l	27	< 2	183	22.6	17.0				
Chloride	Dissolved	mg/l	NA	NA	NA	NA	NA				
Chloride	NA	mg/l	155	3.1	21.5	11.5	11.2				
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02				
Dissolved oxygen	NA	mg/l	49	3.3	13.88	8.94	9.14				
Fluoride	NA	mg/l	81	0.41	4.2	2.30	2.49				
Hardness, as CaCO3	NA	mg/l	220	175	780	439	471				
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16	< 0.1	0.11	0.06	< 0.1				
Nitrogen, ammonia, as N	NA	mg/l	11	< 0.01	0.25	0.07	< 0.1				
Nitrogen, total	NA	mg/l	4	0.61	1.5	0.93	0.80				
Nitrogen, total kjeldahl (TKN)	NA	mg/l	5	0.51	1.5	0.90	0.81				
Nitrogen, total organic, as N	NA	mg/l	1	NA	NA	1	1				
Nitrogen, unionized ammonia, as N	NA	mg/l	15	< 0.01	0.02	0.01	< 0.01				
рН	NA	pH units	296	6.77	8.7	7.83	7.89				
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02				
Phosphorus, total, as P	NA	mg/l	17	0.006	0.11	0.041	0.081				
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA				
Salinity	NA	mg/l	26	300	600	496	500				
Sodium, % of total cations	NA	%	15	10.3	24.1	17.6	18.8				
Solids, total dissolved	NA	mg/l	155	350	1540	650	678				
Solids, total suspended	NA	mg/l	240	0.6	26.5	2.78	2.25				
Specific Conductance @ 25 °C	NA	µmhos/cm	299	1	1393	997	1039				
Sulfate, as SO4	Dissolved	mg/l	NA	NA	NA	NA	NA				
Sulfate, as SO4	NA	mg/l	154	< 1	360	173	175				
Sulfide, as S ² -	NA	mg/l	1	NA	NA	2.00	2.00				
Temperature	NA	deg C	117	0.3	22.7	9.01	9.20				
Turbidity	NA	NTU	79	0	328	9.17	2.34				
	Discol ad		/letals	. 10	20.4		. 20				
Aluminum	Dissolved	µg/l	31	< 10	38.4	11.1	< 20				
Aluminum	Total	µg/l	55	< 0.4	63.7	18.4	23.5				
Antimony	Total	µg/l	16	< 0.5	3	0.86	< 0.5				
Arsenic	Dissolved	µg/l	17	< 0.31	0.69	0.35	< 0.5				
Arsenic	Total	µg/l	41	< 0.31	2	0.62	0.51				
Barium Beryllium	Total Total	µg/l	35 19	15.5 < 0.2	51.2 0.2	27.3 0.11	25.0				
•	Total Total	µg/l	98	< 0.2 92	311	210	< 0.2				
Boron Cadmium	Total	μg/l μg/l	98 27	0.05	< 0.2	0.10	229 < 0.2				
Calcium	Total	mg/l	102	49.2	< 0.2 90.3	75.5	< 0.2 77.4				
Chromium	Total	mg/l	20	49.2 < 1	90.3	0.63	< 1				
Cobalt	Dissolved	μg/l	17	< 0.2	0.45	0.63	0.30				
Cobalt	Total	μg/l	102	0.17	< 5	0.29	0.30				
Copper	Dissolved		102	0.17	1.8	1.00	1.00				
Copper	Total	µg/l	68	< 0.5	< 10	1.11	0.92				
Iron	Dissolved	µg/l µg/l	17	< 50	726	303	244				
Iron	Total	μg/l	57	0.18	1980	645	510				
Lead	Dissolved	μg/l	NA	NA	NA	NA	NA				
Lead	Total	μg/l	54	< 0.03	1	0.31	< 0.5				
Lithium	Total		1	< 0.03	NA	25.6	25.6				
Magnesium	Total	µg/l mg/l	104	46.6	120	84.5	87.8				
Manganese	Dissolved	µg/l	104	336	120	777	729				
	Lissolveu						520				
5	Total	un/l	11/	(1 / ≺	7190	595					
Manganese	Total Dissolved	µg/l	114 NA	0.73	2190	595 NA					
5	Total Dissolved Total	µg/l ng/l ng/l	114 NA 89	0.73 NA < 0.1	× 25	NA 1.02	NA 0.60				

	Wat		ata for PM-7 / 99-2015	′ SD026			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Methyl Mercury	Total	ng/l	7	< 0.025	< 25	3.03	0.12
Molybdenum	Total	µg/l	87	4	53	22.1	23.0
Nickel	Dissolved	µg/l	17	< 0.5	< 1	0.33	< 0.5
Nickel	Total	µg/l	60	< 0	5	1.32	1.00
Palladium	Total	µg/l	5	< 0.3	< 250	NA	< 25
Platinum	Total	µg/l	5	< 0.25	< 250	NA	< 25
Potassium	Total	mg/l	52	3.29	14.8	7.66	8.34
Selenium	Total	µg/l	31	0.037	< 3.6	0.814	< 1
Silver	Total	µg/l	17	< 0.2	1	0.25	< 0.24
Sodium	Total	mg/l	52	13	62.7	41.3	44.5
Strontium	Total	µg/l	18	232	361	297	296
Thallium	Total	µg/l	31	< 0.002	2	0.26	< 0.2
Tin	Total	µg/l	4	< 0.5	10	2.73	< 0.5
Titanium	Total	µg/l	2	< 10	10	7.50	< 10
Vanadium	Total	µg/l	4	< 3	4	2.13	< 3
Zinc	Dissolved	µg/l	17	< 6	14.6	7.66	7.40
Zinc	Total	µg/l	68	< 0.24	82.5	8.20	7.40

NA No data available.
(1) Field duplicates not included in count of samples.
(2) Minimum and maximum determined with non-detect samples at the detection limit.
(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

Large Table 3 Tailings Basin Groundwater Monitoring Stations

Current Monitoring	Proposed NPDES/SDS	Unique Well	Bedrock or Surficial	Water Quality		We	ell Location				Upgradient/Downgradient?	Average depth to water	
Station ID	Station ID	Number	Aquifer	Monitoring Years	UTM Easting	UTM Northing	Township	Range	Section	Forty	Current ⁽¹⁾	table (feet)	Date
GW001			Surficial Aquifer	2007, 2009-2015	566028.67	5276003.26	60	14	33	NESE	Not applicable	2.56	Unknown
GW002	GW002		Surficial Aquifer	2007, 2009-2015	561841.00	5271962.00	59	14	18	SWNW	Not applicable	20.93	Unknown
GW003		597383	Within FTB		564488.00	5273378.00	59	14	8	SENE	Not applicable	Dry	July 1998
GW004		551772	Within FTB		564410.00	5273298.00	59	14	8	SENE	Not applicable	Dry	October 1994
GW005		597384	Within FTB	2009-2015	564361.00	5273427.00	59	14	8	SENE	Not applicable	133.86	July 1998
GW006		625042	Surficial Aquifer	2007, 2009-2015	563873.49	5275683.25	60	14	32	SESW	Not applicable	11.15	April 2001
GW007		625043	Surficial Aquifer	2007, 2009-2015	563453.89	5274725.57	59	14	5	SWNW	Not applicable	7.32	April 2001
GW008		625044	Surficial Aquifer	2007, 2009-2015	563699.00	5273110.00	59	14	8	SENW	Not applicable	4.52	April 2001
GW009	GW009		Surficial Aquifer	2009-2015	566084.33	5277751.94	60	14	28	NESE	Not applicable	4.36	February 2009
GW010	GW010	767967	Surficial Aquifer	2009-2015	564680.49	5276976.61	60	14	32	NENE	Not applicable	2.49	May 2009
GW011		767966	Surficial Aquifer	2009-2015	563440.54	5276749.89	60	14	32	NWNW	Not applicable	20.73	May 2009
GW012		767968	Surficial Aquifer	2009-2015	565469.07	5275974.94	60	14	33	NESW	Not applicable	4.87	May 2009
GW013			Surficial Aquifer	2010-2015	562342.02	5276625.05	60	14	31	SWNE	Not applicable	2.46	July 2010
GW014			Surficial Aquifer	2010-2014	561168.69	5276123.59	60	15	36	NESE	Not applicable	4.32	July 2010
GW015	GW015		Surficial Aquifer	2010-2015	558718.00	5273855.46	59	15	11	NWNW	Not applicable	2.98	July 2010
GW016	GW016		Surficial Aquifer	2013-2015	561551.38	5276343.72	60	14	31	SWNW	Not applicable	5.06	August 2013

(1) Whether wells are upgradient or downgradient of Project features will change following permit issuance and initiation of activities at the FTB. For information regarding well locations following Mine Year 1, refer to Volume I.

		Wate	r Quality Da	ata for GW001			
			2007 - 1	2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
			General Pa	rameters		F	
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	339	405	387	390
Alkalinity, carbonate, as CaCO3	NA	mg/l	11	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	22	339	428	395	394
Biochemical Oxygen Demand (5-day)	NA	mg/l	11	< 2.4	< 8	NA	< 4
Carbon, dissolved organic	NA	mg/l	12	8.3	9.8	8.97	8.90
Carbon, total organic	NA	mg/l	22	7.3	9.8	8.75	8.8
Chemical Oxygen Demand	NA	mg/l	15	23.2	52.9	34.2	31.4
Chloride	NA	mg/l	21	25.3	28.1	26.9	27.0
Cyanide	NA	mg/l	15	< 0.01	0.0219	0.0085	0.0107
Dissolved oxygen	NA	mg/l	24	0.01	5.36	1.40	1.37
Fluoride	NA	mg/l	21	< 0.1	0.19	0.14	0.15
Hardness, as CaCO3	NA	mg/l	21	328	418	371	370
Nitrogen, Nitrate, as N	NA	mg/l	2	< 0.1	< 0.1	NA	< 0.1
Nitrogen, Nitrite, as N	NA	mg/l	2	< 0.05	< 0.1	NA	0.075
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.14	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	22	< 0.1	0.21	0.14	0.13

Large Table 4 Tailings Basin Baseline Surface Water Quality Monitoring Summary

		Wate	r Quality Da	ata for GW001									
	2007 - 2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
Orthophosphate , as PO4	NA	mg/l	1	< 0.02	NA	NA	< 0.02						
рН	NA	pH units	45	4.1	8	7.05	7.10						
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	< 0.0003						
Phosphorus, total, as P	NA	mg/l	16	< 0.1	0.11	0.05	< 0.1						
Redox (oxidation potential)	NA	mV	24	2	591	242	147						
Silica, as SiO2	NA	mg/l	1	NA	NA	23.7	23.7						
Silica, Reactive as (SiO2)	NA	mg/l	5	23.1	24.4	23.7	23.8						
Solids, total dissolved	NA	mg/l	18	455	586	516	511						
Solids, total suspended	NA	mg/l	1	NA	NA	42	42						
Specific Conductance @ 25 °C	NA	µmhos/cm	25	640	902	854	873						
Sulfate, as SO4	NA	mg/l	21	28.8	41.5	33.3	31.9						
Sulfide, as S ² -	NA	mg/l	1	< 5	NA	NA	< 5						
Temperature	NA	deg C	23	3.5	11.01	7.64	7.60						
Turbidity	NA	NTU	24	0	187	25.4	1.70						
			Meta	als									
Aluminum	Dissolved	µg/l	21	< 10	25	12.6	20.8						
Aluminum	Total	µg/l	16	< 20	3060	637	180						
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5						
Antimony	Total	µg/l	15	< 0.5	< 0.5	NA	< 0.5						
Arsenic	Dissolved	µg/l	18	< 0.31	< 2	0.39	< 0.5						
Arsenic	Total	µg/l	15	< 0.5	< 10	0.81	0.54						
Barium	Dissolved	µg/l	14	228	267	247	246						
Barium	Total	µg/l	16	229	300	267	268						
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA	< 0.2						

		Wate	r Quality Da	ata for GW001			
			2007 -	2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Beryllium	Total	µg/l	15	< 0.2	< 2	NA	< 0.2
Boron	Dissolved	µg/l	15	256	308	277	275
Boron	Total	µg/l	16	254	312	273	266
Cadmium	Dissolved	µg/l	21	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	15	< 0.2	0.98	0.22	< 0.2
Calcium	Dissolved	mg/l	1	NA	NA	71	71
Calcium	Total	mg/l	22	61.8	81.4	73.9	74.3
Chromium	Dissolved	µg/l	21	< 1	< 2	NA	< 1
Chromium	Total	µg/l	15	< 1	7.7	1.96	< 1
Cobalt	Dissolved	µg∕l	14	< 0.2	0.37	0.17	< 0.2
Cobalt	Total	µg/l	15	0.21	2.5	0.74	0.34
Copper	Dissolved	µg/l	21	< 0.5	5.41	0.80	0.52
Copper	Total	µg/l	15	0.55	13.6	4.26	1.00
Iron	Dissolved	µg∕l	18	4750	11000	8719	9100
Iron	Total	µg/l	16	8690	14700	11418	10950
Lead	Dissolved	µg∕l	14	< 0.5	< 0.6	NA	< 0.5
Lead	Total	µg/l	15	< 0.5	5.6	1.23	< 0.5
Magnesium	Dissolved	mg/l	1	NA	NA	42	42
Magnesium	Total	mg/l	22	41.3	52.2	45.2	45.2
Manganese	Dissolved	µg∕l	18	2200	4260	3544	3630
Manganese	Total	µg/l	16	2300	3890	3221	3380
Mercury	Total	ng/l	19	< 0.5	4.6	1.41	0.63
Methyl Mercury	Total	ng/l	13	< 0.03	0.14	0.05	< 0.05
Molybdenum	Dissolved	µg/l	21	8	10.2	9.06	9.00
Molybdenum	Total	µg/l	15	8	10.1	9.19	9.10
Nickel	Dissolved	µg∕l	21	< 0.5	4.4	1.12	0.55
Nickel	Total	µg/l	15	< 0.5	10.9	3.14	2.10
Palladium	Total	µg/l	15	< 0.3	< 0.5	NA	< 0.5
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA	< 0.3
Platinum	Total	µg/l	15	< 0.3	< 0.5	NA	< 0.5

	Water Quality Data for GW001											
2007 - 2015												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Potassium	Dissolved	mg/l	1	NA	NA	3.2	3.2					
Potassium	Total	mg/l	22	2.52	4	3.09	2.92					
Selenium	Dissolved	µg/l	21	< 1	< 1	NA	< 1					
Selenium	Total	µg/l	15	< 1	< 10	0.89	< 1					
Silicon, as Si	Dissolved	mg/l	5	11.5	12.7	12.1	12.1					
Silicon, as Si	Total	mg/l	5	11.8	12.4	12.1	12.1					
Silver	Dissolved	µg/l	15	< 0.2	< 0.2	NA	< 0.2					
Silver	Total	µg/l	15	< 0.2	< 0.2	NA	< 0.2					
Sodium	Dissolved	mg/l	1	NA	NA	60	60					
Sodium	Total	mg/l	22	48.8	65	52.8	51.5					
Strontium	Dissolved	µg/l	1	NA	NA	240	240					
Strontium	Total	µg/l	16	240	289	264	266					
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA	0.11					
Thallium	Total	µg/l	15	< 0.017	0.53	0.16	< 0.2					
Titanium	Dissolved	µg/l	1	NA	NA	2.8	2.8					
Titanium	Total	µg/l	15	< 10	160	31.3	< 10					
Zinc	Dissolved	µg/l	21	< 6	50.8	7.65	< 6					
Zinc	Total	µg/l	15	< 6	74.9	13.2	< 6					

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

	Water Quality Data for GW002 2007 - 2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
	[General Para	meters	Γ							
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	17.6	54.6	31.7	30.7					
Alkalinity, carbonate, as CaCO3	NA	mg/l	12	< 10	< 10	NA	< 10					
Alkalinity, total, as CaCO3	NA	mg/l	21	17.6	54.6	31.8	30					
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA	< 4					
Carbon, dissolved organic	NA	mg/l	12	1.8	7.1	4.27	4.4					
Carbon, total organic	NA	mg/l	21	1.5	7.4	3.75	3.9					
Chemical Oxygen Demand	NA	mg/l	15	< 10	38	20.3	19					
Chloride	NA	mg/l	21	< 0.5	1.4	0.62	0.9					
Cyanide	NA	mg/l	15	0.0054	< 0.02	0.0064	< 0.01					
Dissolved oxygen	NA	mg/l	21	1.75	16.21	9.19	9.37					
Fluoride	NA	mg/l	21	< 0.1	< 0.1	NA	< 0.1					
Hardness, as CaCO3	NA	mg/l	21	28.9	73.9	43.2	39.6					
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1					
Nitrogen, Nitrite, as N	NA	mg/l	1	< 0.05	NA	NA	< 0.05					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	< 0.1	NA	< 0.1					
Nitrogen, ammonia, as N	NA	mg/l	21	< 0.05	0.44	0.07	< 0.1					
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA					
рН	NA	pH units	41	5.3	8.3	7.23	7.3					
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	< 0.0003					
Phosphorus, total, as P	NA	mg/l	15	< 0.1	0.48	0.22	0.18					
Redox (oxidation potential)	NA	mV	21	171	638	409	416					
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA					
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA					
Solids, total dissolved	NA	mg/l	17	81	142	98.1	94					
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA					
Specific Conductance @ 25 °C	NA	µmhos/cm	21	0	225	78.5	68.8					

		Wate	r Quality Data 2007 - 20				
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Sulfate, as SO4	NA	mg/l	21	4.7	7.74	6.19	6.24
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	20	5.85	21.72	12.5	13.25
Turbidity	NA	NTU	21	1	786	130	43.8
			Metals				
Aluminum	Dissolved	µg/l	21	< 25	682	116	76.8
Aluminum	Total	µg/l	15	413	16000	5682	5360
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	15	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	17	< 0.5	< 2	NA	< 0.5
Arsenic	Total	µg/l	15	< 0.5	< 10	1.12	< 1
Barium	Dissolved	µg/l	15	5.96	11.7	7.04	6.8
Barium	Total	µg/l	15	10.9	110	48.5	49.5
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA	< 0.2
Beryllium	Total	µg/l	15	< 0.2	< 2	0.19	< 0.2
Boron	Dissolved	µg/l	16	< 50	< 200	NA	< 50
Boron	Total	µg/l	15	< 50	< 200	NA	< 50
Cadmium	Dissolved	µg/l	21	< 0.2	1.33	0.19	< 0.2
Cadmium	Total	µg/l	15	< 0.2	1.72	0.32	< 0.2
Calcium	Dissolved	mg/l	1	NA	NA	11	11
Calcium	Total	mg/l	21	8.4	17.8	11.8	11
Chromium	Dissolved	μg/l	21	< 1	2.4	1.14	1.3
Chromium	Total	µg/l	15	2	31	14.1	13.8
Cobalt	Dissolved	µg/l	15	< 0.2	0.32	0.11	< 0.2
Cobalt	Total	µg/l	15	0.27	7.9	3.27	2.8
Copper	Dissolved	µg/l	21	1.1	784	39.7	2.5
Copper	Total	µg/l	15	1.8	32	12.9	12.4
Iron	Dissolved	μg/l	17	< 50	678	114	66.4
Iron	Total	µg/l	15	458	18000	6428	5610
Lead	Dissolved	µg/l	15	< 0.5	< 0.6	NA	< 0.5
Lead	Total	µg/l	15	< 0.5	4	1.79	1.6
Magnesium	Dissolved	mg/l	1	NA	NA	1.8	1.8
Magnesium	Total	mg/l	21	1.6	7.88	3.49	3.36
Manganese	Dissolved	μg/l	18	1.3	12	4.23	2.75
Manganese	Total	μg/l	15	11.1	340	119	102
Mercury	Total	ng/L	20	0.685	9.3	3.99	3

		Wate	r Quality Data				
			2007 - 20 # of	125			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Methyl Mercury	Total	ng/L	14	< 0.03	< 0.1	0.04	0.085
Molybdenum	Dissolved	µg/l	21	< 0.2	0.41	0.16	< 0.3
Molybdenum	Total	µg/l	15	< 0.2	< 5	0.47	0.33
Nickel	Dissolved	µg/l	21	0.61	2.2	1.14	1.01
Nickel	Total	µg/l	15	1.4	32	12.2	11.5
Palladium	Total	µg/l	15	< 0.03	< 0.5	NA	< 0.5
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA	< 0.3
Platinum	Total	µg/l	15	< 0.009	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	1	NA	NA	0.41	0.41
Potassium	Total	mg/l	21	0.3	4	1.13	0.85
Selenium	Dissolved	µg/l	21	< 1	< 1	NA	< 1
Selenium	Total	µg/l	15	< 1	< 5	NA	< 1
Silicon, as Si	Dissolved	µg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	15	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	15	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	1	NA	NA	2.5	2.5
Sodium	Total	mg/l	21	2.1	5.5	3.19	2.91
Strontium	Dissolved	µg/l	1	NA	NA	42	42
Strontium	Total	µg∕l	15	38.3	110	62.7	51.9
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA	< 0.2
Thallium	Total	µg/l	15	< 0.017	0.59	0.16	< 0.2
Titanium	Dissolved	µg/l	1	NA	NA	5.2	5.2
Titanium	Total	µg/l	15	17.8	820	341	300
Zinc	Dissolved	µg/l	21	< 6	< 30	5.96	< 6
Zinc	Total	µg/l	15	< 6	48	19.5	18.8

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		Wa	iter Quality Da 2009 - 2				
			# of				
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
			General Par	ameters			
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13	300	439	349	341
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	20	300	439	352	353
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 3	< 24	5.4	4.1
Carbon, dissolved organic	NA	mg/l	13	1.6	5.1	2.75	2.4
Carbon, total organic	NA	mg/l	20	1.4	4.4	2.10	1.9
Chemical Oxygen Demand	NA	mg/l	14	< 10	66.3	29.1	25
Chloride	NA	mg/l	20	28.2	31.9	30.0	30
Cyanide	NA	mg/l	14	< 0.0035	< 0.02	NA	< 0.01
Dissolved oxygen	NA	mg/l	21	< 0.1	10	3.99	2.49
Fluoride	NA	mg/l	20	1.9	3.2	2.26	2.1
Hardness, as CaCO3	NA	mg/l	20	399	815	530	526
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.16	0.07	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.1	< 1	0.21	0.2
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	40	7.2	8.5	7.87	7.95
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	14	< 0.1	0.72	0.20	0.13

		Wa	ter Quality Da 2009 - 2				
			# of	015			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Redox (oxidation potential)	NA	mV	21	58	535	324	338
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	18	694	886	780	789
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	21	512	1359	1156	1199
Sulfate, as SO4	NA	mg/l	21	209	353	287	283.5
Sulfide, as S ² -	NA	mg/l	1	NA	NA	8	8
Temperature	NA	deg C	21	3.83	22.59	11.5	10.6
Turbidity	NA	NTU	21	1	702	181	150.8
			Meta	s	Γ		
Aluminum	Dissolved	µg/l	20	< 10	40.6	14.4	23.3
Aluminum	Total	µg/l	14	387	21500	4170	2860
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	14	< 0.5	< 2.5	0.37	< 0.5
Arsenic	Dissolved	µg/l	17	< 0.5	1.2	0.42	< 0.5
Arsenic	Total	µg/l	15	1.18	27.1	6.51	4.185
Barium	Dissolved	µg/l	13	7.6	29.4	21.5	24.6
Barium	Total	µg/l	14	36.2	193	72.7	64.7
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	14	< 0.2	2.17	0.58	0.44
Boron	Dissolved	µg/l	15	408	551	471	468
Boron	Total	µg/l	14	390	569	441	419
Cadmium	Dissolved	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	14	< 0.2	1.98	0.45	0.34
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	55.6	167	79.9	74.4
Chromium	Dissolved	µg/l	20	< 1	1.6	0.61	< 1
Chromium	Total	µg/l	14	4.3	71.3	21.8	12.3
Cobalt	Dissolved	µg/l	13	< 0.2	0.95	0.39	0.345

		Wa	nter Quality Da 2009 - 2				
-			# of	(2)	(2)	- (2)	
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Cobalt	Total	µg/l	14	1.2	23.4	7.04	5.23
Copper	Dissolved	µg/l	20	0.62	5.09	1.53	1.2
Copper	Total	µg/l	14	4.7	89.4	24.7	17.2
Iron	Dissolved	µg/l	17	< 50	816	198	68.2
Iron	Total	µg/l	14	6100	190000	48568	32200
Lead	Dissolved	µg/l	13	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	0.7	20.9	5.54	4.13
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	20	61.9	97.8	80.3	84
Manganese	Dissolved	µg/l	18	92.9	480	258	247
Manganese	Total	µg/l	14	601	8820	2749	1840
Mercury	Total	ng/L	20	< 0.5	71.2	9.15	5
Methyl Mercury	Total	ng/L	14	< 0.03	0.27	0.07	< 0.1
Molybdenum	Dissolved	µg/l	20	14.2	39.7	27.6	27
Molybdenum	Total	µg/l	14	18.2	49.8	30.5	30.6
Nickel	Dissolved	µg/l	20	< 0.5	7.2	2.95	3.2
Nickel	Total	µg/l	14	8.5	108	34.1	24.2
Palladium	Total	µg/l	14	< 0.03	0.63	0.30	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	14	0.026	< 0.5	0.24	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	20	10.4	17.8	13.5	13.2
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	14	< 1	< 5	NA	< 1
Silicon, as Si	Dissolved	µg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	14	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	14	< 0.2	< 1	0.15	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	58.7	128	102	101
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	μg/l	14	290	396	337	330
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	μg/l	14	< 0.017	< 1	0.17	< 0.2
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA

Water Quality Data for GW005 2009 - 2015										
ParameterFractionUnits# of Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽⁴⁾										
Titanium	Total	µg/l	14	< 10	190	38.4	27.2			
Zinc	Zinc Dissolved µg/l 20 < 6 22.7 4.89 < 6									
Zinc	Total	µg/l	14	< 6	78.2	24.3	17.8			

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

	Water Quality Data for GW006 2007 - 2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
A.U. 11 11			General Par	ameters								
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	14	605	852	695	678.5					
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 10	< 50	NA	< 20					
Alkalinity, total, as CaCO3	NA	mg/l	24	521	973	732	704.5					
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA	< 3					
Carbon, dissolved organic	NA	mg/l	14	2.6	4.4	3.31	3.25					
Carbon, total organic	NA	mg/l	24	2	3.8	3.04	3.1					
Chemical Oxygen Demand	NA	mg/l	17	< 10	23	11.27	11.7					
Chloride	NA	mg/l	24	8.26	22.7	14.76	15					
Cyanide	NA	mg/l	17	< 0.0035	< 0.02	0.0077	< 0.01					
Dissolved oxygen	NA	mg/l	25	0.05	4.38	1.09	0.92					
Fluoride	NA	mg/l	24	1.3	2.56	1.8	1.775					
Hardness, as CaCO3	NA	mg/l	23	757	1810	1268	1160					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	22	< 0.1	< 0.1	NA	< 0.1					
Nitrogen, ammonia, as N	NA	mg/l	24	< 0.1	0.43	0.195	0.195					
Nitrogen, Nitrate, as N	NA	mg/l	2	< 0.1	< 0.1	NA	< 0.1					
Nitrogen, Nitrite, as N	NA	mg/l	2	< 0.05	< 0.1	NA	0.075					
Orthophosphate, as PO4	NA	mg/l	1	< 0.02	NA	NA	< 0.02					
рН	NA	pH units	47	6.7	8.6	7.33	7.265					
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	< 0.0003					
Phosphorus, total, as P	NA	mg/l	18	< 0.1	0.19	0.091	< 0.1					
Redox (oxidation potential)	NA	mV	25	-17	553	250	195					

		Wa	ter Quality Da	ta for GW006			
	T		2007 - 2	015	Г		
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Silica, as SiO2	NA	mg/l	1	NA	NA	38	38
Silica, Reactive as (SiO2)	NA	mg/l	5	28.2	40	35.0	36
Solids, total dissolved	NA	mg/l	19	1204	1860	1508	1383
Solids, total suspended	NA	mg/l	1	NA	NA	20	20
Specific Conductance @ 25 °C	NA	µmhos/cm	26	559	2606	1942	2087.5
Sulfate, as SO4	NA	mg/l	25	217	749	551	519
Sulfide, as S ² -	NA	mg/l	2	< 2	< 5	NA	3.5
Temperature	NA	deg C	24	4.3	15.97	9.93	10.46
Turbidity	NA	NTU	25	0	11.2	1.12	0.5
			Meta	ls			
Aluminum	Dissolved	µg/l	23	< 10	31.2	13.2	< 25
Aluminum	Total	µg/l	18	< 20	572	88.7	25.6
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	17	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	19	0.52	6.5	2.6	1.8
Arsenic	Total	µg/l	18	0.66	6.62	3.89	3.8
Barium	Dissolved	µg/l	15	68.5	133	105.9	99.25
Barium	Total	µg/l	18	66	127	106	106
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA	< 0.2
Beryllium	Total	µg/l	17	< 0.2	< 2	NA	< 0.2
Boron	Dissolved	µg/l	16	350	558	475	465
Boron	Total	µg/l	18	330	554	477	472
Cadmium	Dissolved	µg/l	23	< 0.2	0.34	0.12	< 0.2
Cadmium	Total	µg/l	17	< 0.2	< 0.2	NA	< 0.2
Calcium	Dissolved	mg/l	1	NA	NA	84	84
Calcium	Total	mg/l	24	81.9	139	112.0	109
Chromium	Dissolved	µg/l	23	< 1	< 2	NA	< 1
Chromium	Total	µg/l	17	< 1	2.06	0.68	< 1
Cobalt	Dissolved	µg/l	15	1.6	5.2	3.32	2.8
Cobalt	Total	µg/l	17	1.6	3.8	2.66	2.76

		Wa	ter Quality Da 2007 - 2	ita for GW006 2015			
_	_		# of		(0)	- (2)	(4)
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Copper	Dissolved	µg/l	23	1	11	2.96	2.3
Copper	Total	µg/l	17	1.24	7.27	2.51	2.5
Iron	Dissolved	µg/l	19	126	9400	4024	2940
Iron	Total	µg/l	18	148	6730	3717	4230
Lead	Dissolved	µg/l	15	< 0.5	< 0.6	NA	< 0.5
Lead	Total	µg/l	17	< 0.5	< 0.6	NA	< 0.5
Magnesium	Dissolved	mg/l	1	NA	NA	140	140
Magnesium	Total	mg/l	24	134	356	240	223
Manganese	Dissolved	µg/l	19	495	1260	1053	1095
Manganese	Total	µg/l	18	541	1420	1066	1110
Mercury	Total	ng/l	21	0.512	4.5	1.32	1.105
Methyl Mercury	Total	ng/l	15	< 0.03	0.27	0.049	< 0.1
Molybdenum	Dissolved	µg/l	23	20.3	45	26.6	25.6
Molybdenum	Total	µg/l	17	22	47	28.2	26.9
Nickel	Dissolved	µg/l	23	< 0.5	7	3.32	3
Nickel	Total	µg/l	17	< 0.5	7	3.34	3
Palladium	Total	µg/l	17	< 0.03	0.81	0.26	< 0.5
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA	< 0.3
Platinum	Total	µg/l	17	< 0.009	< 0.5	0.23	< 0.5
Potassium	Dissolved	mg/l	1	NA	NA	9.9	9.9
Potassium	Total	mg/l	24	6.84	16	11.2	11
Selenium	Dissolved	µg/l	23	< 1	< 1	NA	< 1
Selenium	Total	µg/l	17	< 1	< 1	NA	< 1
Silicon, as Si	Dissolved	mg/l	5	7.4	17.6	15	16.4
Silicon, as Si	Total	mg/l	5	7.4	18.2	15.1	16.1
Silver	Dissolved	µg/l	17	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	17	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	1	NA	NA	37	37
Sodium	Total	mg/l	24	33	80	58	59.4
Strontium	Dissolved	µg/l	1	NA	NA	360	360
Strontium	Total	μg/l	18	350	721	581	567.5
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA	< 0.2
Thallium	Total	μg/l	17	< 0.017	0.51	0.15	< 0.2
Titanium	Dissolved	μg/l	1	NA	NA	2.6	2.6
Titanium	Total	μg/l	17	4.1	47	9.2	< 10

Water Quality Data for GW006 2007 - 2015										
Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽⁴⁾										
Zinc	Zinc Dissolved µg/l 23 < 6 < 30 6.6 < 6									
Zinc	Total	µg/l	17	< 6	< 30	4.6	< 6			

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		v		Data for GW00	7		
				- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
	Ι		General F	arameters	Ĩ		
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13	274	307	291	287.5
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	23	250	316	291	288
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA	< 2.4
Carbon, dissolved organic	NA	mg/l	13	1.4	3.1	2.0	1.85
Carbon, total organic	NA	mg/l	23	< 1	2.4	1.65	1.6
Chemical Oxygen Demand	NA	mg/l	17	6.75	95.4	13.59	10.4
Chloride	NA	mg/l	23	27.7	30.5	29.14	29.35
Cyanide	NA	mg/l	17	< 0.0035	< 0.02	0.0069	< 0.01
Dissolved oxygen	NA	mg/l	24	0.08	5	1.28	0.55
Fluoride	NA	mg/l	23	1.7	2.04	1.9	1.895
Hardness, as CaCO3	NA	mg/l	23	375	440	415	412.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	22	< 0.1	0.33	0.062	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	23	0.06	0.19	0.069	< 0.1
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, Nitrite, as N	NA	mg/l	1	< 0.05	< 0.05	NA	< 0.05
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	46	6.6	8.7	7.67	7.7
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	< 0.0003

		N		Data for GW00	7		
			2007 # of	- 2015			
Parameter	Fraction	Units	[#] OI Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Phosphorus, total, as P	NA	mg/l	17	< 0.1	0.1	0.05	< 0.1
Redox (oxidation potential)	NA	mV	24	144	561	403	408
Silica, as SiO2	NA	mg/l	1	NA	NA	17	17
Silica, Reactive as (SiO2)	NA	mg/l	5	16.1	18	17.0	17
Solids, total dissolved	NA	mg/l	18	517	608	566	561
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	24	531	981	895	906.9
Sulfate, as SO4	NA	mg/l	24	151	183	169	168
Sulfide, as S ² -	NA	mg/l	1	< 2	NA	NA	< 2
Temperature	NA	deg C	23	2.38	13.49	8.62	9.2
Turbidity	NA	NTU	24	0	82.4	10.11	0.95
			Me	tals			
Aluminum	Dissolved	µg/l	23	< 10	25.6	10.9	< 20
Aluminum	Total	µg/l	17	12	284	43	< 25
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	17	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	19	< 0.5	2.6	1.26	1.2
Arsenic	Total	µg/l	18	0.84	7.64	2.15	1.33
Barium	Dissolved	µg/l	15	1.2	4.5	1.8	1.5
Barium	Total	µg/l	17	1.2	< 10	2.9	2.05
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA	< 0.2
Beryllium	Total	µg/l	17	< 0.2	< 2	NA	< 0.2
Boron	Dissolved	µg/l	16	371	467	410	407
Boron	Total	µg/l	17	353	450	402	401
Cadmium	Dissolved	µg/l	23	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	17	< 0.2	0.23	0.10	< 0.2
Calcium	Dissolved	mg/l	1	NA	NA	54	54
Calcium	Total	mg/l	23	45	53.4	50.5	50.55
Chromium	Dissolved	µg/l	23	< 1	< 2	0.54	< 1

		V		Data for GW00 [°] - 2015	7		
Devementer	Exaction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Parameter Chromium	Fraction Total	µg/l	17	< 1	2.5	0.7	
Cobalt	Dissolved	μg/l	15	0.56	0.91	0.74	0.75
Cobalt	Total	μg/l	17	0.56	3.94	1.08	0.83
Copper	Dissolved	μg/l	23	0.56	5.16	1.10	0.945
Copper	Total	μg/l	17	< 0.7	11.6	2.2	1.1
Iron	Dissolved	μ <u>g</u> /l	18	< 50	132	33	< 50
Iron	Total	μg/l	17	< 50	5970	724	50.5
Lead	Dissolved	µg/l	15	< 0.5	< 0.6	NA	< 0.5
Lead	Total	µg/l	17	< 0.5	2.09	0.42	< 0.5
Magnesium	Dissolved	mg/l	1	NA	NA	75	75
Magnesium	Total	mg/l	23	63.6	75.7	70.3	69.5
Manganese	Dissolved	μg/l	19	1000	1400	1247	1270
Manganese	Total	µg/l	17	1070	4130	1565	1285
Mercury	Total	ng/l	21	< 0.5	6.8	0.89	< 0.5
Methyl Mercury	Total	ng/l	15	< 0.03	0.15	0.05	< 0.1
Molybdenum	Dissolved	µg/l	23	< 0.3	34.2	29.3	29.85
Molybdenum	Total	µg/l	17	27.1	35	30.6	30.65
Nickel	Dissolved	μg/l	23	< 0.5	4	0.93	< 0.6
Nickel	Total	µg/l	17	< 0.5	4	1.4	1.24
Palladium	Total	µg/l	17	0.032	< 0.5	0.23	< 0.5
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA	< 0.3
Platinum	Total	μg/l	17	0.01	< 0.5	0.23	< 0.5
Potassium	Dissolved	mg/l	1	NA	NA	9.1	9.1
Potassium	Total	mg/l	23	6.7	9.8	8.2	8.02
Selenium	Dissolved	µg/l	23	< 1	< 1	NA	< 1
Selenium	Total	µg/l	17	< 1	1.1	0.52	< 1
Silicon, as Si	Dissolved	mg/l	5	7.3	8.1	7.6	7.7
Silicon, as Si	Total	mg/l	5	7.1	8.3	7.69	7.8
Silver	Dissolved	µg∕l	17	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg∕l	17	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	1	NA	NA	46	46
Sodium	Total	mg/l	23	46	65.7	50.0	49.9
Strontium	Dissolved	µg∕l	1	NA	NA	330	330
Strontium	Total	µg∕l	17	278	330	308	310
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA	< 0.2
Thallium	Total	µg/l	17	< 0.017	< 0.4	0.13	< 0.2

	Water Quality Data for GW007 2007 - 2015											
# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽²⁾												
Titanium	Dissolved	µg/l	1	NA	NA	1.95	1.95					
Titanium	Total	µg∕l	17	< 2	< 10	4.64	< 10					
Zinc	Dissolved	µg/l	23	< 6	< 30	5.3	< 6					
Zinc	Total	µg/l	17	< 6	< 30	4.2	< 6					

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		w		Data for GW008	3		
				- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
				arameters		Therage	
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13	115	148	129	131
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	22	115	158	131	131.5
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA	< 2.4
Carbon, dissolved organic	NA	mg/l	13	1.1	3	1.9	1.7
Carbon, total organic	NA	mg/l	22	1	3.2	1.45	1.3
Chemical Oxygen Demand	NA	mg/l	16	< 10	26.5	9.56	< 10
Chloride	NA	mg/l	22	0.56	1.3	0.76	0.9
Cyanide	NA	mg/l	16	< 0.0035	< 0.02	0.0080	< 0.01
Dissolved oxygen	NA	mg/l	23	0.64	11.98	3.17	2.88
Fluoride	NA	mg/l	22	< 0.1	0.12	0.1	< 0.1
Hardness, as CaCO3	NA	mg/l	22	130	195	148	144.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	21	< 0.1	0.12	0.053	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	22	< 0.05	0.14	0.050	< 0.05
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1
Nitrogen, Nitrite, as N	NA	mg/l	1	< 0.05	NA	NA	< 0.1
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	44	5.2	8.5	6.9	6.94
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.0003	NA	NA	< 0.0003

		w	ater Quality I	Data for GW00	8		
	1		1	- 2015			1
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Phosphorus, total, as P	NA	mg/l	16	< 0.1	0.86	0.15	< 0.1
Redox (oxidation potential)	NA	mV	23	208	563	439	479
Silica, as SiO2	NA	mg/l	1	30	30	30	30
Silica, Reactive as (SiO2)	NA	mg/l	5	29.2	35.7	32.5	32.75
Solids, total dissolved	NA	mg/l	18	151	235	193	196
Specific Conductance @ 25 °C	NA	µmhos/cm	23	222	321	272	272.4
Sulfate, as SO4	NA	mg/l	22	10.1	23.5	15	15.75
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	22	2.69	13.8	8.53	9.825
Turbidity	NA	NTU	23	0	886	87.5	2
			Me	tals			
Aluminum	Dissolved	µg/l	22	< 10	29.6	12.3	< 20
Aluminum	Total	µg/l	16	23.5	24300	3549	195
Antimony	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	16	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	18	< 0.5	< 2	NA	< 0.5
Arsenic	Total	µg/l	16	< 0.5	4.17	0.92	< 1
Barium	Dissolved	µg/l	14	27.1	35	32.1	32.85
Barium	Total	µg/l	16	28.7	234	62.0	34.8
Beryllium	Dissolved	µg/l	7	< 0.2	< 2	NA	< 0.2
Beryllium	Total	µg/l	16	< 0.2	< 2	0.23	< 0.2
Boron	Dissolved	µg/l	16	< 50	< 200	NA	< 50
Boron	Total	µg/l	16	< 50	< 200	NA	< 50
Cadmium	Dissolved	µg/l	22	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	16	< 0.2	0.39	0.13	< 0.2
Calcium	Dissolved	mg/l	1	NA	NA	24	24
Calcium	Total	mg/l	22	21	31.8	24.1	23.4
Chromium	Dissolved	µg/l	22	< 1	2.9	1.51	1.55
Chromium	Total	µg/l	16	1.06	65.1	10.1	1.8

		W		Data for GW00 - 2015	8		
			# of	2015			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Cobalt	Dissolved	µg/l	14	< 0.2	0.2	0.11	0.2
Cobalt	Total	µg/l	16	< 0.2	16.8	2.47	< 0.2
Copper	Dissolved	µg/l	22	0.7	16.8	2.13	1.14
Copper	Total	µg/l	16	0.76	50	8.3	1.3
Iron	Dissolved	µg/l	18	24	106	31	< 50
Iron	Total	µg/l	16	< 50	31000	4364	251
Lead	Dissolved	µg/l	14	< 0.5	< 0.6	NA	< 0.5
Lead	Total	µg/l	16	< 0.5	8.49	1.36	< 0.5
Magnesium	Dissolved	mg/l	1	NA	NA	21	21
Magnesium	Total	mg/l	22	18.3	28	21.4	20.95
Manganese	Dissolved	µg∕l	19	2.6	84	24	18.6
Manganese	Total	µg/l	16	10	866	171	28.7
Mercury	Total	ng/l	21	< 0.5	22.4	2.44	< 0.5
Methyl Mercury	Total	ng/l	15	< 0.03	0.28	0.06	< 0.1
Molybdenum	Dissolved	µg/l	22	< 0.2	0.59	0.2	0.3
Molybdenum	Total	µg/l	16	< 0.2	< 5	0.5	< 0.3
Nickel	Dissolved	µg/l	22	0.63	2.5	1.13	1.09
Nickel	Total	µg/l	16	0.71	67.5	10.7	2
Palladium	Total	µg/l	16	< 0.03	< 0.5	NA	< 0.5
Platinum	Dissolved	µg/l	1	< 0.3	NA	NA	< 0.3
Platinum	Total	µg/l	16	< 0.009	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	1	NA	NA	1.9	1.9
Potassium	Total	mg/l	22	1.25	4.62	1.9	1.6
Selenium	Dissolved	µg/l	22	< 1	< 1	NA	< 1
Selenium	Total	µg/l	16	< 1	< 1	NA	< 1
Silicon, as Si	Dissolved	mg/l	5	12.3	14.9	13.8	14.1
Silicon, as Si	Total	mg/l	5	12.2	14.8	13.6	13.7
Silver	Dissolved	µg/l	16	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	16	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	1	NA	NA	6	6
Sodium	Total	mg/l	22	4.8	8.64	5.7	5.4
Strontium	Dissolved	µg/l	1	NA	NA	91	91
Strontium	Total	µg/l	16	74.3	149	94	84.7
Thallium	Dissolved	µg/l	7	< 0.02	< 0.4	NA	< 0.2
Thallium	Total	µg/l	16	< 0.017	0.44	0.13	< 0.2
Titanium	Dissolved	µg/l	1	NA	NA	3	3

	Water Quality Data for GW008 2007 - 2015											
# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽⁴⁾												
Titanium	Total	µg/l	16	< 10	1100	151	< 10					
Zinc	Dissolved	µg/l	22	< 6	< 30	5.4	< 6					
Zinc	Total	µg/l	16	< 6	77.8	13.5	< 6					

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		w		Data for GW009)		
				- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
				arameters		menage	mean
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	13	168	239	207	212
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 10	< 10	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	21	141	239	197	199
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA	< 4
Carbon, dissolved organic	NA	mg/l	13	10.1	22.9	15.9	15
Carbon, total organic	NA	mg/l	21	10.3	25.5	16.8	15.9
Chemical Oxygen Demand	NA	mg/l	15	39.5	154	64.7	50.2
Chloride	NA	mg/l	21	2.08	17.1	7.05	4.65
Cyanide	NA	mg/l	15	< 0.01	0.0446	0.0093	0.01
Dissolved oxygen	NA	mg/l	21	< 0.1	7.6	1.66	0.88
Fluoride	NA	mg/l	21	< 0.1	0.28	0.2	0.16
Hardness, as CaCO3	NA	mg/l	21	174	346	223	201
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	21	< 0.1	0.19	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	21	< 0.1	0.36	0.17	0.185
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	41	6.31	8.2	6.9	6.8
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA

		w		Data for GW009)		
				- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Phosphorus, total, as P	NA	mg/l	15	< 0.1	3.92	0.65	< 0.1
Redox (oxidation potential)	NA	mV	21	-13	651	251	210
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	18	314	443	359	358
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	21	450.3	981	577	538.7
Sulfate, as SO4	NA	mg/l	21	15.6	235	75.7	65.8
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	21	3.06	19.4	8.67	8.57
Turbidity	NA	NTU	21	0	2543	301	7.1
		I	Me	tals			
Aluminum	Dissolved	µg/l	21	14.8	< 250	27.7	< 25
Aluminum	Total	µg/l	15	< 40	47800	10952	1450
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	15	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	18	< 0.5	< 2	0.88	0.935
Arsenic	Total	µg/l	15	< 0.5	9.97	2.10	1.02
Barium	Dissolved	µg/l	13	52.6	74	62.2	63.1
Barium	Total	µg/l	15	62.7	594	162.8	76.8
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	15	< 0.2	2.72	0.42	< 0.2
Boron	Dissolved	µg/l	14	75.1	< 500	125	118
Boron	Total	µg/l	15	65.8	< 500	139	114
Cadmium	Dissolved	µg/l	21	< 0.2	0.2	0.10	< 0.2
Cadmium	Total	µg/l	15	< 0.2	0.95	0.28	< 0.2
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	21	33.6	66	43.2	40.1
Chromium	Dissolved	µg/l	21	< 1	3.3	0.96	< 1

		W		Data for GW009 - 2015)		
			# of	2020			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Chromium	Total	µg/l	15	< 1	344	41.9	4.18
Cobalt	Dissolved	µg/l	13	3.1	6.8	4.63	4.7
Cobalt	Total	µg/l	15	3.5	81.3	13.6	5.6
Copper	Dissolved	µg/l	21	1.19	20.7	4.21	2.65
Copper	Total	µg/l	15	2.4	252	35.5	6.73
Iron	Dissolved	µg/l	17	1140	16400	10302	9120
Iron	Total	µg/l	15	3060	83900	25394	14700
Lead	Dissolved	µg/l	13	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	15	< 0.5	44.6	5.81	0.62
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	21	20.3	43.9	27.8	25.1
Manganese	Dissolved	µg/l	18	17.3	3910	3026	3270
Manganese	Total	µg/l	15	2690	4220	3461	3440
Mercury	Total	ng/l	21	2.5	69.7	15.4	4.9
Methyl Mercury	Total	ng/l	14	< 0.03	0.11	0.05	< 0.1
Molybdenum	Dissolved	µg∕l	21	0.26	9	3.98	3.65
Molybdenum	Total	µg/l	15	1.9	11.1	5.86	6.25
Nickel	Dissolved	µg∕l	21	2.6	9.2	4.24	3.9
Nickel	Total	µg/l	15	2.8	294	38.7	6.9
Palladium	Total	µg/l	15	0.24	2.11	0.42	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	15	< 0.009	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	21	1.56	8.1	3.23	2.55
Selenium	Dissolved	µg∕l	21	< 1	< 1	NA	< 1
Selenium	Total	µg∕l	15	< 1	1.98	0.59	< 1
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	15	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg∕l	15	< 0.2	0.42	0.12	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	21	24.4	77.6	43.6	42.35
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	15	146	301	208	183
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.2
Thallium	Total	µg/l	15	< 0.017	0.74	0.20	< 0.2

	Water Quality Data for GW009 2009 - 2015										
# of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽											
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Titanium	Total	µg/l	15	< 10	3350	561	80				
Zinc	Zinc Dissolved µg/l 21 < 6 26.7 6.39 < 6										
Zinc	Total	µg∕l	15	< 6	348	44.5	8.1				

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		Wa	ater Quality I 2009 ·	Data for GW010)		
			# of	. 2013			
			Samples ⁽¹	• • (2)	(2)	- (2)	
Parameter	Fraction	Units	, General P	Minimum ⁽²⁾ arameters	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	277	379	318	294
Alkalinity, carbonate, as CaCO3	NA	mg/l	12	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	19	259	421	337	327
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	9.3	2.6	< 3
Carbon, dissolved organic	NA	mg/l	12	8.6	15.3	12.7	13.4
Carbon, total organic	NA	mg/l	19	5.4	14.9	12.5	13.3
Chemical Oxygen Demand	NA	mg/l	13	16.3	70	39.4	39.2
Chloride	NA	mg/l	19	15.5	19.9	17.4	17.2
Cyanide	NA	mg/l	13	< 0.01	< 0.02	0.007	< 0.01
Dissolved oxygen	NA	mg/l	18	0.02	5.5	0.95	0.19
Fluoride	NA	mg/l	19	< 0.1	0.13	0.1	< 0.1
Hardness, as CaCO3	NA	mg/l	19	232	387	302	293
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	< 0.1	0.1	0.05	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.05	0.38	0.11	< 0.1
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	36	5.8	8.4	6.9	6.86
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	13	< 0.1	< 0.1	NA	< 0.1

		Wa		Data for GW010)							
	2009 - 2013 # of											
			# OI Samples ⁽¹									
Parameter	Fraction	Units)	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Redox (oxidation potential)	NA	mV	18	-70	597	205	159					
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA					
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA					
Solids, total dissolved	NA	mg/l	18	248	477	399	405					
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA					
Specific Conductance @ 25 °C	NA	µmhos/cm	18	535	837	687	700.25					
Sulfate, as SO4	NA	mg/l	19	1.6	31.7	4.58	2.3					
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA					
Temperature	NA	deg C	18	6.13	11.09	8.29	7.995					
Turbidity	NA	NTU	18	0	14.1	2.29	0.4					
			Ме	tals								
Aluminum	Dissolved	µg/l	19	< 10	37.6	16.5	< 25					
Aluminum	Total	µg/l	13	< 20	463	96.3	29.3					
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5					
Antimony	Total	µg/l	13	< 0.5	< 0.5	NA	< 0.5					
Arsenic	Dissolved	µg/l	18	1.18	10.7	4.70	4.3					
Arsenic	Total	µg/l	13	1.16	6.4	3.32	2.76					
Barium	Dissolved	µg/l	13	1200	2200	1732	1580					
Barium	Total	µg/l	13	442	1930	1484	1510					
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2					
Beryllium	Total	µg/l	13	< 0.2	< 0.2	NA	< 0.2					
Boron	Dissolved	µg/l	14	84.6	142	118	120					
Boron	Total	µg/l	13	81.8	150	104	100					
Cadmium	Dissolved	µg/l	19	< 0.2	< 0.2	NA	< 0.2					
Cadmium	Total	µg/l	13	< 0.2	< 0.2	NA	< 0.2					
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Calcium	Total	mg/l	19	48.4	81.5	63.0	61.4					
Chromium	Dissolved	µg/l	19	< 1	2.7	1.44	< 1					
Chromium	Total	µg/l	13	< 1	3.54	1.65	1.7					

	Water Quality Data for GW010 2009 - 2013											
.	Funding		# of Samples ⁽¹		R4 • • • • • • • (2)	a						
Parameter Cobalt	Fraction Dissolved	Units	13	Minimum ⁽²⁾ 0.73	Maximum ⁽²⁾ 2.9	Average ⁽³⁾ 1.48	Median ⁽⁴⁾ 1.4					
		µg/l	13		4.4		1.4					
Cobalt	Total Dissolved	µg/l	13	1.1	8.11	2.24	1.82					
Copper		µg/l	19	< 0.5	6.7	1.66	2.6					
Copper Iron	Total Dissolved	µg/l	13	5900	21900	2.86 12041	10950					
Iron	Total	µg/l	17	1150	13900	9695	9780					
	Dissolved	µg/l	13	< 0.5	0.57	0.27	< 0.5					
Lead		µg/l		< 0.5								
Lead	Total	µg/l	13		0.68	0.32	< 0.5					
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Magnesium	Total	mg/l	19	27.1	44.6	35	33.9					
Manganese	Dissolved	µg/l	18	254	600	422	408					
Manganese	Total	µg/l	13	272	641	416	429					
Mercury	Total	ng/l	18	1.41	5.8	3.53	3.7					
Methyl Mercury	Total	ng/l	12	< 0.03	0.51	0.07	< 0.1					
Molybdenum	Dissolved	µg/l	19	0.24	1.2	0.70	0.68					
Molybdenum	Total	µg/l	13	0.22	1.2	0.61	0.55					
Nickel	Dissolved	µg/l	19	< 0.5	6.9	1.65	1.2					
Nickel	Total	µg/l	13	< 0.5	6.8	2.28	1.99					
Palladium	Total	µg/l	13	< 0.3	< 0.5	NA	< 0.5					
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA					
Platinum	Total	µg/l	13	< 0.3	< 0.5	NA	< 0.5					
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Potassium	Total	mg/l	19	1.93	2.91	2.44	2.5					
Selenium	Dissolved	µg/l	19	< 1	< 1	NA	< 1					
Selenium	Total	µg/l	13	< 1	< 1	NA	< 1					
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA					
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA					
Silver	Dissolved	µg/l	13	< 0.2	< 0.2	NA	< 0.2					
Silver	Total	µg/l	13	< 0.2	< 0.2	NA	< 0.2					
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Sodium	Total	mg/l	19	29.9	44.1	38.5	39.1					
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Strontium	Total	µg∕l	13	180	250	213	208					
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11					
Thallium	Total	µg/l	13	< 0.017	< 0.4	NA	< 0.2					

	Water Quality Data for GW010 2009 - 2013											
# of # of Samples ⁽¹) Samples ⁽¹) Parameter Fraction Units) Minimum ⁽²⁾ Maximum ⁽²⁾												
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Titanium	Total	µg/l	13	< 10	34	9.66	< 10					
Zinc	Dissolved	µg/l	19	< 6	9.51	3.75	6					
Zinc	Total	µg/l	13	< 6	6.1	3.12	< 6					

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were nondetects.

	Water Quality Data for GW011 2009 - 2015											
			2009 · # of	- 2015								
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
			General P	arameters								
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	10	23.9	96.1	46.2	46.8					
Alkalinity, carbonate, as CaCO3	NA	mg/l	10	< 10	< 20	NA	< 10					
Alkalinity, total, as CaCO3	NA	mg/l	15	23.9	96.1	43.4	46					
Biochemical Oxygen Demand (5-day)	NA	mg/l	10	< 2.4	< 8	NA	< 2.4					
Carbon, dissolved organic	NA	mg/l	10	< 1	3.1	1.59	1.4					
Carbon, total organic	NA	mg/l	15	< 1	< 2	1.16	1.1					
Chemical Oxygen Demand	NA	mg/l	11	< 10	75.1	15.5	< 10					
Chloride	NA	mg/l	15	< 0.5	2.78	1.16	1.2					
Cyanide	NA	mg/l	11	< 0.0035	< 0.02	0.007	< 0.01					
Dissolved oxygen	NA	mg/l	14	1.34	11.84	9.02	9.655					
Fluoride	NA	mg/l	15	< 0.1	0.11	0.05	< 0.1					
Hardness, as CaCO3	NA	mg/l	15	32.8	236	72.8	54.4					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	15	< 0.1	0.31	0.17	0.18					
Nitrogen, ammonia, as N	NA	mg/l	15	< 0.05	0.14	0.05	< 0.1					
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA					
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA					
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA					
рН	NA	pH units	28	5.5	8.33	6.74	6.75					
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA					
Phosphorus, total, as P	NA	mg/l	11	< 0.1	6	0.96	0.255					

		Wa		Data for GW01: - 2015	1		
			# of	- 2015			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Redox (oxidation potential)	NA	mV	14	271	616	461	476.5
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	13	65	116	97.3	97
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	14	71	1103	169	96.8
Sulfate, as SO4	NA	mg/l	15	5.54	20.8	10.5	11
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature	NA	deg C	14	5.1	19.4	11.0	10.345
Turbidity	NA	NTU	14	0	2458	360	56.6
				tals		ľ	1
Aluminum	Dissolved	µg/l	15	10.2	27.8	12.4	< 20
Aluminum	Total	µg/l	11	28.1	63500	11988	3674
Antimony	Dissolved	µg/l	4	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	11	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	13	< 0.31	< 2	NA	< 0.5
Arsenic	Total	µg/l	11	< 0.5	18	3.22	1.145
Barium	Dissolved	µg/l	11	14.7	27.4	20.3	19.1
Barium	Total	µg/l	11	18.5	703	140	59.85
Beryllium	Dissolved	µg/l	4	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	11	< 0.2	2.72	0.45	< 0.2
Boron	Dissolved	µg/l	9	< 50	< 100	NA	< 50
Boron	Total	µg/l	11	< 50	< 100	NA	< 50
Cadmium	Dissolved	µg/l	15	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	11	< 0.2	0.67	0.17	< 0.2
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	15	7.6	41.4	14.5	11.9
Chromium	Dissolved	µg/l	15	< 1	2.2	1.26	1.4
Chromium	Total	µg/l	11	< 1	258	41.0	8.105
Cobalt	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2

		W		Data for GW01	L		
			2009 · # of	- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Cobalt	Total	µg/l	11	< 0.2	87.1	12.9	3.01
Copper	Dissolved	µg/l	15	< 0.5	6.2	1.12	0.73
Copper	Total	µg/l	11	1.2	300	43.8	8.585
Iron	Dissolved	µg/l	12	< 50	56.6	29.3	< 50
Iron	Total	µg/l	11	< 50	82600	15635	2950
Lead	Dissolved	µg/l	11	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	11	< 0.5	56.2	8.02	< 0.5
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	15	3.3	32.2	8.87	6
Manganese	Dissolved	µg/l	13	0.85	17	4.29	2.1
Manganese	Total	µg/l	11	5.5	2140	388	171.5
Mercury	Total	ng/l	14	< 0.5	43.1	5.76	0.92
Methyl Mercury	Total	ng/l	9	< 0.03	< 0.1	0.04	< 0.1
Molybdenum	Dissolved	µg/l	15	< 0.2	1.4	0.33	< 0.3
Molybdenum	Total	µg/l	11	< 0.2	2.87	0.82	0.41
Nickel	Dissolved	µg/l	15	2.1	5.64	3.57	3.5
Nickel	Total	µg/l	11	2.7	316	48.7	10.925
Palladium	Total	µg/l	11	0.045	1.64	0.36	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	11	< 0.009	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	15	0.85	6.13	2.10	1.27
Selenium	Dissolved	µg/l	15	< 1	< 1	NA	< 1
Selenium	Total	µg/l	11	< 1	1.19	0.56	< 1
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	11	< 0.2	0.46	0.13	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	15	2.7	7.7	4.31	3.6
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	11	41.8	269	96.7	73.2
Thallium	Dissolved	µg/l	4	< 0.02	< 0.2	NA	< 0.2
Thallium	Total	µg/l	11	< 0.017	0.53	0.15	< 0.2

Water Quality Data for GW011 2009 - 2015										
# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽²⁾										
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA			
Titanium	Total	µg∕l	11	< 10	2100	563	110			
Zinc	Dissolved	µg/l	15	< 6	13.8	4.34	< 6			
Zinc	Total	µg/l	11	< 6	366	53.4	10.4			

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		Wa		ata for GW012									
	2009 - 2015 # of												
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾						
runneter	riaction	Onits	General Pa		Maximum	Average	mean						
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	14	496	680	606	613						
Alkalinity, carbonate, as CaCO3	NA	mg/l	13	< 20	23.7	11.1	< 20						
Alkalinity, total, as CaCO3	NA	mg/l	21	496	696	609	622						
Biochemical Oxygen Demand (5-day)	NA	mg/l	13	< 2.4	< 8	NA	< 2.4						
Carbon, dissolved organic	NA	mg/l	14	3.9	7.1	5.6	5.6						
Carbon, total organic	NA	mg/l	21	4	6.8	5.1	4.9						
Chemical Oxygen Demand	NA	mg/l	14	< 10	59.1	19.1	15.6						
Chloride	NA	mg/l	21	13.3	23	17.3	17.4						
Cyanide	NA	mg/l	14	< 0.0035	0.0289	0.009	< 0.01						
Dissolved oxygen	NA	mg/l	21	0.03	9.4	1.88	0.4						
Fluoride	NA	mg/l	21	< 0.13	0.26	0.2	0.17						
Hardness, as CaCO3	NA	mg/l	20	670	1090	859	913						
Nitrogen, Nitrate, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1						
Nitrogen, Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1						
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.11	0.053	< 0.1						
Nitrogen, ammonia, as N	NA	mg/l	21	< 0.05	< 0.1	0.05	< 0.1						
Orthophosphate, as PO4	NA	mg/l	1	NA	NA	0.02	0.02						
рН	NA	pH units	40	6.59	7.9	7.3	7.4						
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA						
Phosphorus, total, as P	NA	mg/l	15	< 0.1	2.9	0.27	< 0.1						

	Water Quality Data for GW012 2009 - 2015											
			# of	2015								
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Redox (oxidation potential)	NA	mV	21	215	792	411	385					
Silica, as SiO2	NA	mg/l	1	NA	NA	18.9	18.9					
Silica, Reactive as (SiO2)	NA	mg/l	5	15.5	19	17.4	17.4					
Solids, total dissolved	NA	mg/l	19	893	1458	1201	1245					
Solids, total suspended	NA	mg/l	1	NA	NA	4.90	4.9					
Specific Conductance @ 25 °C	NA	µmhos/cm	22	573	2376	1703	1759					
Sulfate, as SO4	NA	mg/l	21	246	507	392	425					
Sulfide, as S ² -	NA	mg/l	1	< 5	NA	NA	< 5					
Temperature	NA	deg C	21	2.83	13.98	9.24	9.91					
Turbidity	NA	NTU	21	0	1651	122	1.1					
	[Met	als			[
Aluminum	Dissolved	µg/l	20	< 10	< 80	16.7	< 25					
Aluminum	Total	µg/l	15	< 20	29000	3556	80					
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5					
Antimony	Total	µg/l	14	< 0.5	< 0.5	NA	< 0.5					
Arsenic	Dissolved	µg/l	18	< 0.5	< 2	0.36	< 0.5					
Arsenic	Total	µg/l	14	< 0.5	3.44	0.80	0.65					
Barium	Dissolved	µg/l	15	153	277	207	206					
Barium	Total	µg/l	15	156	452	245	237.5					
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2					
Beryllium	Total	µg/l	14	< 0.2	1.02	0.17	< 0.2					
Boron	Dissolved	µg/l	14	168	442	374	383					
Boron	Total	µg/l	15	313	442	386	379					
Cadmium	Dissolved	µg/l	20	< 0.2	1.1	0.16	< 0.2					
Cadmium	Total	µg/l	14	< 0.2	2	0.30	< 0.2					
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Calcium	Total	mg/l	21	128	211	165	174					
Chromium	Dissolved	µg/l	20	< 1	< 1	NA	< 1					
Chromium	Total	µg/l	14	< 1	68.2	9.00	< 1					
Cobalt	Dissolved	µg/l	15	< 0.2	0.88	0.54	0.53					

		Wa		ata for GW012			
			2009 - # of	2015			
Parameter	Fraction	Units	[#] OI Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Cobalt	Total	µg/l	14	0.42	17.9	2.76	1.065
Copper	Dissolved	µg/l	20	1.8	6.2	3.38	2.76
Copper	Total	µg/l	14	2.1	205	24.5	3.95
Iron	Dissolved	µg/l	18	< 50	551	88.6	59.65
Iron	Total	µg/l	15	77.2	30100	3510	153.5
Lead	Dissolved	µg/l	15	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	8.26	1.28	< 0.5
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	21	81.4	136	110	117
Manganese	Dissolved	µg/l	18	140	567	267	261.5
Manganese	Total	µg/l	15	173	776	392	384.5
Mercury	Total	ng/l	19	1.05	153	12.4	1.65
Methyl Mercury	Total	ng/l	12	< 0.03	< 0.1	0.04	< 0.1
Molybdenum	Dissolved	µg/l	20	26.5	38.4	34.2	33.4
Molybdenum	Total	µg/l	14	19.5	37.2	31.9	31.75
Nickel	Dissolved	µg/l	20	8.1	13.3	10.7	10.8
Nickel	Total	µg/l	14	8.2	90.6	19.7	11.5
Palladium	Total	µg/l	14	< 0.03	1.72	0.41	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	14	< 0.009	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	21	2.59	5.04	3.46	3.3
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	14	< 1	< 1	NA	< 1
Silicon, as Si	Dissolved	mg/l	5	8	8.7	8.40	8.4
Silicon, as Si	Total	mg/l	5	7.9	9	8.44	8.35
Silver	Dissolved	µg/l	14	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	14	< 0.2	0.23	0.11	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	21	80.3	131	107	108
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	15	692	1050	873	910
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.2
Thallium	Total	µg/l	14	< 0.017	< 0.4	NA	< 0.2

Water Quality Data for GW012 2009 - 2015											
# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median											
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Titanium	Total	µg/l	14	< 10	780	134	< 10				
Zinc	Dissolved	µg/l	20	< 6	43.7	5.30	< 6				
Zinc	Total	µg/l	14	< 6	94.9	13.4	< 6				

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		W		Data for GW013			
			2010 · # of	- 2015			
Parameter	Fraction	Units	# OI Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
				arameters	- 		
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	12.7	46.2	18.5	17.2
Alkalinity, carbonate, as CaCO3	NA	mg/l	12	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	18	11.4	46.2	16.8	16.3
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA	< 2.4
Carbon, dissolved organic	NA	mg/l	12	2.4	5.2	3.64	3.8
Carbon, total organic	NA	mg/l	18	2.4	5.8	3.39	3.2
Chemical Oxygen Demand	NA	mg/l	12	< 10	23.5	12.2	12.6
Chloride	NA	mg/l	18	< 0.5	< 1	0.39	< 0.5
Cyanide	NA	mg/l	12	< 0.01	0.945	0.086	< 0.01
Dissolved oxygen	NA	mg/l	18	5.8	10.79	8.10	7.77
Fluoride	NA	mg/l	18	0.06	0.56	0.06	< 0.1
Hardness, as CaCO3	NA	mg/l	18	11.7	19.8	16.3	16.7
Nitrate + Nitrite, as N	NA	mg/l	18	< 0.1	0.25	0.13	0.14
Nitrogen, ammonia as N	NA	mg/l	18	< 0.05	0.49	0.07	< 0.1
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	35	5.39	7.2	6.16	6.2
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	12	< 0.1	< 0.1	NA	< 0.1

		Wa		Data for GW013	1		
			# of	- 2015			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Redox (oxidation potential)	NA	mV	18	364	635	484	438.5
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	18	12	104	61.9	59
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	18	0	43	28.5	33.55
Sulfate, as SO4	NA	mg/l	18	2.2	4.1	2.93	2.74
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature, °C	NA	deg C	18	4.69	10.56	7.67	7.78
Turbidity	NA	NTU	18	0	71.4	12.0	2.4
			Ме	tals			
Aluminum	Dissolved	µg/l	18	27.7	154	56.9	44.7
Aluminum	Total	µg/l	12	51.6	2450	654	312
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	12	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	18	< 0.31	< 1	NA	< 0.5
Arsenic	Total	µg/l	12	< 0.5	< 1	0.37	< 0.5
Barium	Dissolved	µg/l	15	13.8	20.2	17.4	17.25
Barium	Total	µg/l	12	15.8	50.5	25.6	21.6
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	14	< 50	< 100	NA	< 50
Boron	Total	µg/l	12	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	18	< 0.03	< 0.2	0.10	< 0.2
Cadmium	Total	µg/l	12	0.04	< 0.2	0.10	< 0.2
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	18	2.8	4.39	3.76	3.8
Chromium	Dissolved	µg/l	18	< 1	1.46	0.77	< 1
Chromium	Total	µg/l	12	< 1	6.42	1.90	1.95
Cobalt	Dissolved	µg/l	15	< 0.2	3.3	0.29	< 0.2

		W		Data for GW013			
	1			- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Cobalt	Total	µg/l	12	< 0.2	1.36	0.43	0.28
Copper	Dissolved	µg/l	18	1.1	7.18	2.10	1.7
Copper	Total	µg/l	12	1.5	7.68	3.17	2.69
Iron	Dissolved	µg/l	18	< 50	103	34.9	< 50
Iron	Total	µg/l	12	55.6	2320	630	340
Lead	Dissolved	µg/l	15	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	12	< 0.5	3.55	0.53	< 0.5
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	18	1.2	2.14	1.67	1.7
Manganese	Dissolved	µg/l	18	< 0.5	29	3.78	1.28
Manganese	Total	µg/l	12	1	39.7	10.4	5.39
Mercury	Total	ng/l	18	1.8	6	3.40	3.31
Methyl Mercury	Total	ng/l	11	< 0.03	0.25	0.05	< 0.1
Molybdenum	Dissolved	µg/l	18	< 0.2	0.44	0.16	0.23
Molybdenum	Total	µg/l	12	< 0.2	0.48	0.19	0.24
Nickel	Dissolved	µg/l	18	0.51	1.69	0.80	0.74
Nickel	Total	µg/l	12	0.71	6.93	2.12	1.37
Palladium	Total	µg/l	12	< 0.5	< 0.5	NA	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	12	< 0.5	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	18	0.246	0.64	0.35	0.33
Selenium	Dissolved	µg/l	18	< 0.2	< 1	NA	< 1
Selenium	Total	µg/l	12	< 0.2	< 1	0.47	< 1
Silicon, as Si	Dissolved	µg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	18	1.3	< 2	1.34	1.7
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	12	15.9	27.3	22.2	23.4
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.02
Thallium	Total	µg/l	12	< 0.017	0.81	0.15	< 0.2

Water Quality Data for GW013 2010 - 2015											
Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾											
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Titanium	Total	µg∕l	12	< 10	88	24.4	13				
Zinc	Dissolved	µg/l	18	< 6	12.3	4.12	< 6				
Zinc	Total	µg∕l	12	< 6	11.9	3.68	< 6				

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		V		Data for GW01	L4		
				- 2015			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
				Parameters			
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	317	507	398	398.5
Alkalinity, carbonate, as CaCO3	NA	mg/l	12	< 10	< 20	NA	15
Alkalinity, total, as CaCO3	NA	mg/l	15	317	507	389	387
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 3	9.7	4.36	< 4
Carbon, dissolved organic	NA	mg/l	12	9.1	19.3	12.1	12.3
Carbon, total organic	NA	mg/l	15	9.1	16.3	11.8	11.5
Chemical Oxygen Demand	NA	mg/l	12	23.7	126	49.4	39.75
Chloride	NA	mg/l	15	9.1	25	17.3	16.9
Cyanide	NA	mg/l	12	< 0.01	0.0234	0.010	0.01245
Dissolved oxygen	NA	mg/l	15	0.16	9.81	4.24	4.3
Fluoride	NA	mg/l	15	< 0.1	0.86	0.46	0.42
Hardness, as CaCO3	NA	mg/l	15	274	1220	492	427
Nitrate + Nitrite, as N	NA	mg/l	15	< 0.1	0.51	0.10	< 0.1
Nitrogen, ammonia as N	NA	mg/l	15	0.07	0.3	0.09	< 0.1
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	29	6.1	7.8	7.09	7.01
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA

	Water Quality Data for GW014 2010 - 2015											
			# of									
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Phosphorus, total, as P	NA	mg/l	12	< 0.1	10.6	1.63	0.17					
Redox (oxidation potential)	NA	mV	15	3.7	535	307	313					
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA					
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA					
Solids, total dissolved	NA	mg/l	15	421	653	566	578					
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA					
Specific Conductance @ 25 °C	NA	µmhos/cm	15	505	1022	898	953.4					
Sulfate, as SO4	NA	mg/l	15	37.4	211	94.8	84.8					
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA					
Temperature, °C	NA	deg C	15	3.61	25.98	12.0	11.37					
Turbidity	NA	NTU	15	12.6	2458	361	95.8					
		1	Me	etals								
Aluminum	Dissolved	µg/l	15	< 20	232	39.7	< 25					
Aluminum	Total	µg/l	12	582	134000	25097	2720					
Antimony	Dissolved	µg/l	3	< 0.5	< 0.5	NA	< 0.5					
Antimony	Total	µg/l	12	< 0.5	< 5	0.68	< 0.5					
Arsenic	Dissolved	µg/l	15	0.34	4.99	0.86	< 0.5					
Arsenic	Total	µg/l	12	< 0.5	26.6	4.35	1.4					
Barium	Dissolved	µg/l	12	36.6	200	124	141.5					
Barium	Total	µg/l	12	77.3	1520	357	189.5					
Beryllium	Dissolved	µg/l	3	< 0.2	< 0.2	NA	< 0.2					
Beryllium	Total	µg/l	12	< 0.2	5.43	0.92	0.205					
Boron	Dissolved	µg/l	11	136	267	191	192					
Boron	Total	µg/l	12	169	< 500	203	198					
Cadmium	Dissolved	µg/l	15	0.04	1.1	0.16	< 0.2					
Cadmium	Total	µg/l	12	< 0.2	4.57	0.78	< 0.2					
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA					
Calcium	Total	mg/l	15	47.4	252	97.8	87.6					
Chromium	Dissolved	µg/l	15	< 1	2.86	0.79	< 1					

		V	2010	Data for GW01 - 2015	14		
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Chromium	Total	µg/l	12	1.5	1000	139	10.15
Cobalt	Dissolved	µg/l	12	0.26	5	1.30	1.12
Cobalt	Total	µg/l	12	1.3	215	28.0	3.14
Copper	Dissolved	µg/l	15	< 0.5	5.81	2.05	1.5
Copper	Total	µg/l	12	4.1	545	80.4	9.12
Iron	Dissolved	μg/l	15	< 50	10800	4389	3500
Iron	Total	µg/l	12	2410	228000	43592	13800
Lead	Dissolved	µg/l	12	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	12	< 0.5	78.4	11.7	1.98
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	15	37.7	144	60.1	49.1
Manganese	Dissolved	µg/l	15	547	1940	1472	1550
Manganese	Total	µg/l	12	864	6720	2285	1775
Mercury	Total	ng/l	15	0.81	102	12.4	2.2
Methyl Mercury	Total	ng/l	11	< 0.03	0.44	0.15	0.105
Molybdenum	Dissolved	µg/l	15	3.7	59	21.1	12.2
Molybdenum	Total	µg/l	12	9.8	130	35.6	18.75
Nickel	Dissolved	µg/l	15	0.8	11.2	3.04	1.4
Nickel	Total	µg/l	12	2.6	620	85.4	10.45
Palladium	Total	µg/l	12	< 0.5	5.72	1.08	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	12	< 0.5	< 5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	15	2.1	17.2	5.41	3.2
Selenium	Dissolved	µg/l	15	0.47	< 1	0.50	< 1
Selenium	Total	µg/l	12	< 1	< 10	1.50	< 1
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	12	< 0.2	< 2	0.28	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	15	48.8	80.1	64.0	60.1
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	12	230	1230	459	353
Thallium	Dissolved	µg/l	3	< 0.2	< 0.2	NA	< 0.2
Thallium	Total	µg/l	12	< 0.017	< 2	0.29	< 0.2

Water Quality Data for GW014 2010 - 2015											
# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽²⁾											
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Titanium	Total	µg∕l	12	37.2	5560	1434	151.5				
Zinc	Dissolved	µg/l	15	< 6	37.2	7.15	< 6				
Zinc	Total	µg/l	12	< 6	610	92.2	13.35				

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		W		Data for GW01 - 2015	5		
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	General F	Parameters 98	135	109	106
Alkalinity, carbonate, as CaCO3	NA	mg/l	12	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	18	98	135	108	106
Biochemical Oxygen Demand (5-day)	NA	mg/l	12	< 2.4	< 8	NA	< 2.4
Carbon, dissolved organic	NA	mg/l	12	2	3.6	2.95	3.1
Carbon, total organic	NA	mg/l	18	1.9	3.7	2.43	2.4
Chemical Oxygen Demand	NA	mg/l	12	< 10	40.6	14.0	12.2
Chloride	NA	mg/l	18	< 0.5	4.8	0.81	0.62
Cyanide	NA	mg/l	12	< 0.01	< 0.02	NA	< 0.01
Dissolved oxygen	NA	mg/l	18	< 0.1	3.6	0.85	< 0.1
Fluoride	NA	mg/l	18	0.16	0.23	0.19	0.2
Hardness, as CaCO3	NA	mg/l	18	104	162	116	112
Nitrate + Nitrite, as N	NA	mg/l	18	< 0.1	0.28	0.063	< 0.1
Nitrogen, ammonia as N	NA	mg/l	18	0.08	0.19	0.077	< 0.1
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	35	7.04	8	7.55	7.525
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA
Phosphorus, total, as P	NA	mg/l	12	< 0.1	0.43	0.11	< 0.1

		W		Data for GW01 - 2015	5		
			# of			. (2)	
Parameter Redox (oxidation	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
potential)	NA	mV	18	35	472	263	266.5
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	18	124	236	165	161
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	18	175	312	215	210.05
Sulfate, as SO4	NA	mg/l	18	5.2	38.6	9.54	7.4
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature, °C	NA	deg C	18	6.1	8.92	7.38	7.41
Turbidity	NA	NTU	18	0	303	43.2	0.4
			Me	tals	•		•
Aluminum	Dissolved	µg/l	18	< 10	89.9	17.9	< 20
Aluminum	Total	µg/l	12	< 20	4870	1277	102
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	12	< 0.5	< 5	NA	< 0.5
Arsenic	Dissolved	µg/l	18	0.58	1.3	0.79	0.9
Arsenic	Total	µg/l	12	< 0.5	< 5	0.94	< 1
Barium	Dissolved	µg/l	15	146	273	215	211
Barium	Total	µg/l	12	160	258	209	204
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	12	< 0.2	< 2	NA	< 0.2
Boron	Dissolved	µg/l	14	< 50	< 100	NA	< 50
Boron	Total	µg/l	12	< 50	< 100	NA	< 50
Cadmium	Dissolved	µg/l	18	< 0.2	0.26	0.11	< 0.2
Cadmium	Total	µg/l	12	< 0.2	< 2	NA	< 0.2
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	18	24.2	38.7	27.2	26.3
Chromium	Dissolved	µg/l	18	< 1	1.04	0.53	< 1
Chromium	Total	µg/l	12	< 1	< 10	3.39	2.47
Cobalt	Dissolved	µg/l	15	< 0.2	< 0.2	NA	< 0.2
Cobalt	Total	µg/l	12	< 0.2	3.52	1.17	1.1

		W		Data for GW01 - 2015	5		
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Copper	Dissolved	μg/l	18	< 0.5	6.49	1.34	0.6
Copper	Total	µg/l	12	< 0.5	21.7	6.69	< 5
Iron	Dissolved	µg/l	18	< 50	159	93.7	105
Iron	Total	µg/l	12	112	5800	1638	249
Lead	Dissolved	μg/l	15	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	12	< 0.5	< 5	0.92	0.56
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	18	10.5	16	11.6	11.1
Manganese	Dissolved	µg/l	18	294	744	597	611
Manganese	Total	µg/l	12	541	730	619	602
Mercury	Total	ng/l	18	< 0.5	2.6	0.78	< 0.5
Methyl Mercury	Total	ng/l	11	< 0.03	< 0.1	0.04	< 0.1
Molybdenum	Dissolved	µg/l	18	2	16.6	4.03	2.7
Molybdenum	Total	µg/l	12	2.1	17.1	5.47	3.6
Nickel	Dissolved	µg/l	18	< 0.5	1.6	0.56	0.55
Nickel	Total	µg/l	12	< 0.5	11.4	3.81	3.97
Palladium	Total	µg/l	12	< 0.5	< 5	NA	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	12	< 0.5	< 5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	18	1.2	2.43	1.57	1.4
Selenium	Dissolved	µg/l	18	< 1	< 1	NA	< 1
Selenium	Total	µg/l	12	< 1	< 10	NA	< 1
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	12	< 0.2	< 2	NA	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	18	3.3	9.76	4.36	3.62
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	12	208	275	245	247
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	12	< 0.017	< 2	NA	< 0.2
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	12	< 10	281	86.8	< 20
Zinc	Dissolved	µg/l	18	< 6	17.8	4.89	< 6

Water Quality Data for GW015 2010 - 2015										
Parameter	# of # of Parameter Fraction Units Samples ⁽¹⁾ Minimum ⁽²⁾ Maximum ⁽²⁾ Average ⁽³⁾ Median ⁽⁴⁾									
Zinc Total µg/l 12 < 6 < 60 8.04 < 6										

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.

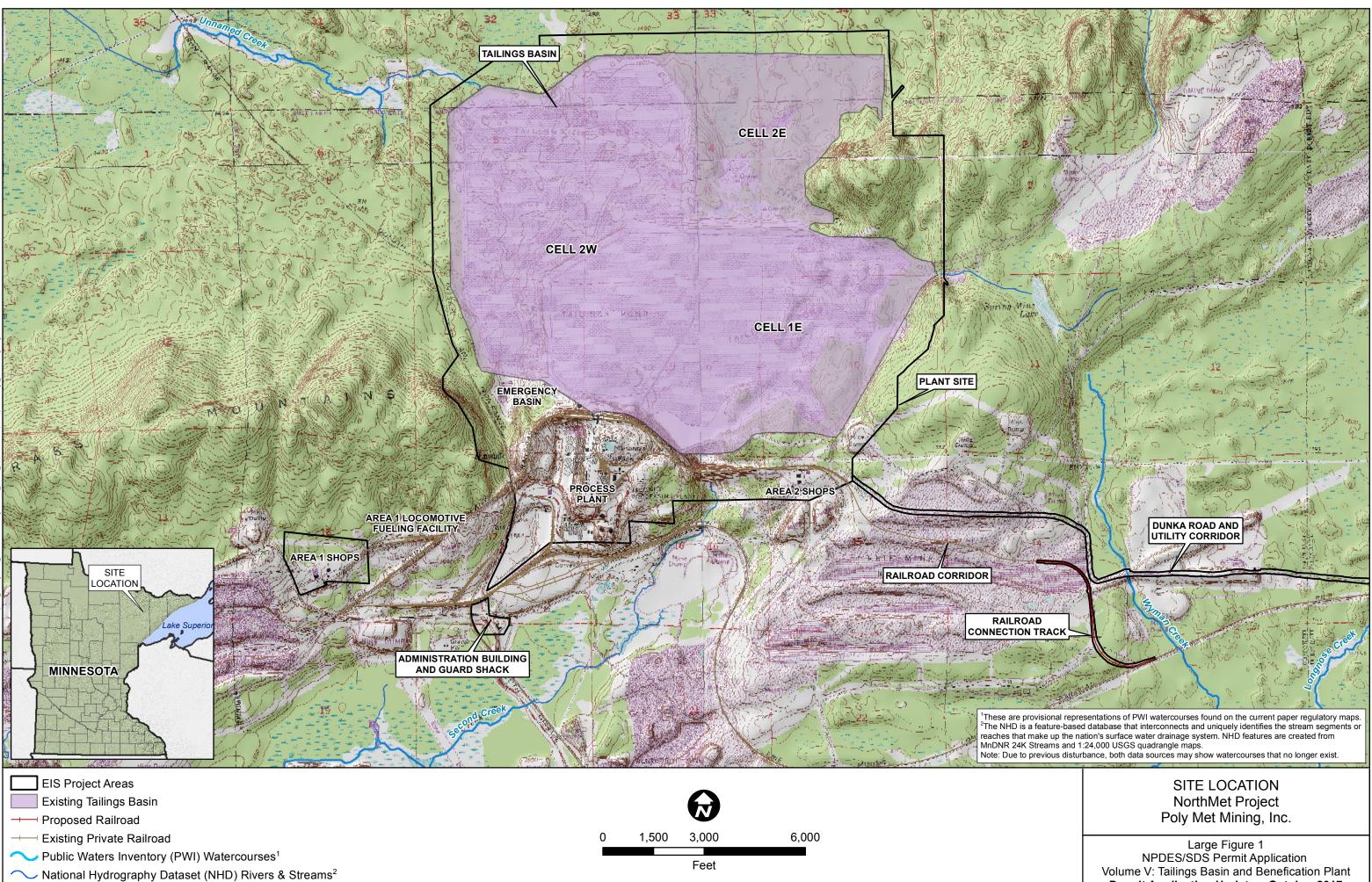
(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

		w		Data for GW01	L 6		
			2013 # of	- 2015			
Parameter	Fraction	Units	# OI Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
			General F	Parameters			
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	2	32.9	63.8	48.4	48.35
Alkalinity, carbonate, as CaCO3	NA	mg/l	2	< 10	< 10	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	8	32.9	63.8	45.9	43.75
Biochemical Oxygen Demand (5-day)	NA	mg/l	2	4.3	13	8.65	8.65
Carbon, dissolved organic	NA	mg/l	2	8.9	20.7	14.8	14.8
Carbon, total organic	NA	mg/l	8	2.5	20.4	6.68	4.3
Chemical Oxygen Demand	NA	mg/l	2	31.6	89.7	60.7	60.65
Chloride	NA	mg/l	8	< 1	2.4	0.85	< 1
Cyanide	NA	mg/l	2	0.0134	0.0211	0.017	0.01725
Dissolved oxygen	NA	mg/l	8	< 0.1	6.12	3.58	3.37
Fluoride	NA	mg/l	8	< 0.1	0.26	0.13	0.12
Hardness, as CaCO3	NA	mg/l	8	32.3	64.7	42.7	40.25
Nitrate + Nitrite, as N	NA	mg/l	8	< 0.1	0.16	0.080	< 0.1
Nitrogen, ammonia as N	NA	mg/l	8	< 0.1	< 0.1	NA	< 0.1
Nitrogen, Nitrate as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, Nitrite as N	NA	mg/l	NA	NA	NA	NA	NA
Orthophosphate, as PO4	NA	mg/l	NA	NA	NA	NA	NA
рН	NA	pH units	16	6.37	8	6.95	6.82
Phosphorus, total, as P	Dissolved	mg/l	NA	NA	NA	NA	NA

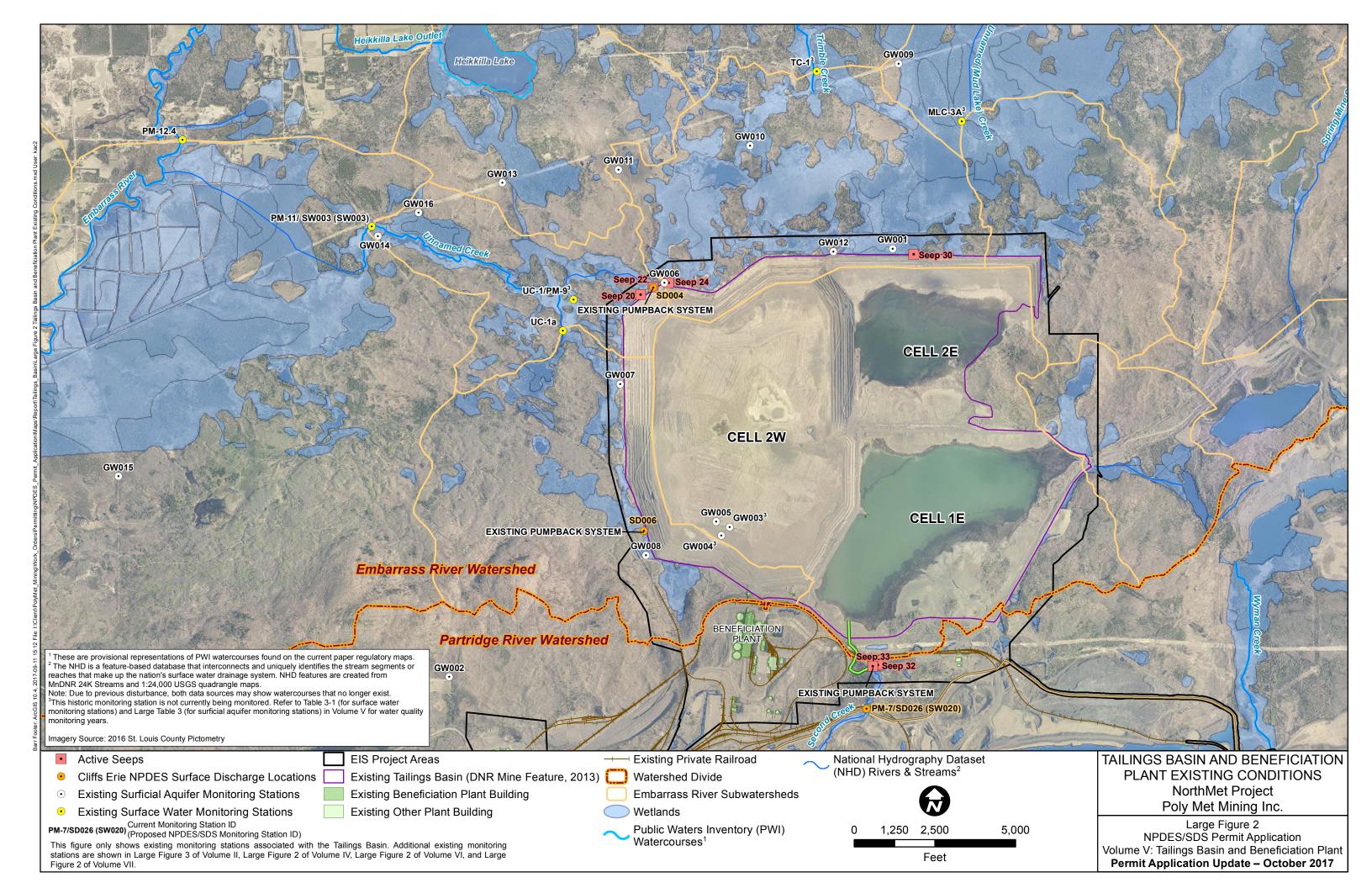
		W		Data for GW01 - 2015	.6		
			# of	- 2015			
Parameter	Fraction	Units	Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Phosphorus, total, as P	NA	mg/l	2	< 0.1	< 0.1	NA	< 0.1
Redox (oxidation potential)	NA	mV	8	228	469	309	269
Silica, as SiO2	NA	mg/l	NA	NA	NA	NA	NA
Silica, Reactive as (SiO2)	NA	mg/l	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	8	83	129	107	102.5
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	8	86.6	157	103	93.05
Sulfate, as SO4	NA	mg/l	8	3.4	6.8	4.38	3.7
Sulfide, as S ² -	NA	mg/l	NA	NA	NA	NA	NA
Temperature, °C	NA	deg C	8	3.58	13.22	9.05	9.315
Turbidity	NA	NTU	8	1.9	59.1	16.5	5.9
			Me	etals	-		
Aluminum	Dissolved	µg/l	8	10.2	47	16.5	< 20
Aluminum	Total	µg/l	2	651	3060	1856	1855.5
Antimony	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	8	< 0.5	1.1	0.67	0.7
Arsenic	Total	µg/l	2	< 0.5	1.1	0.68	0.8
Barium	Dissolved	µg/l	8	9.1	19.7	14.4	14.2
Barium	Total	µg/l	2	15.1	49.9	32.5	32.5
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	8	< 50	< 100	NA	< 100
Boron	Total	µg/l	2	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	8	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Calcium	Dissolved	mg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	8	6.9	13.2	9.43	8.4
Chromium	Dissolved	µg/l	8	< 1	1.6	0.64	< 1

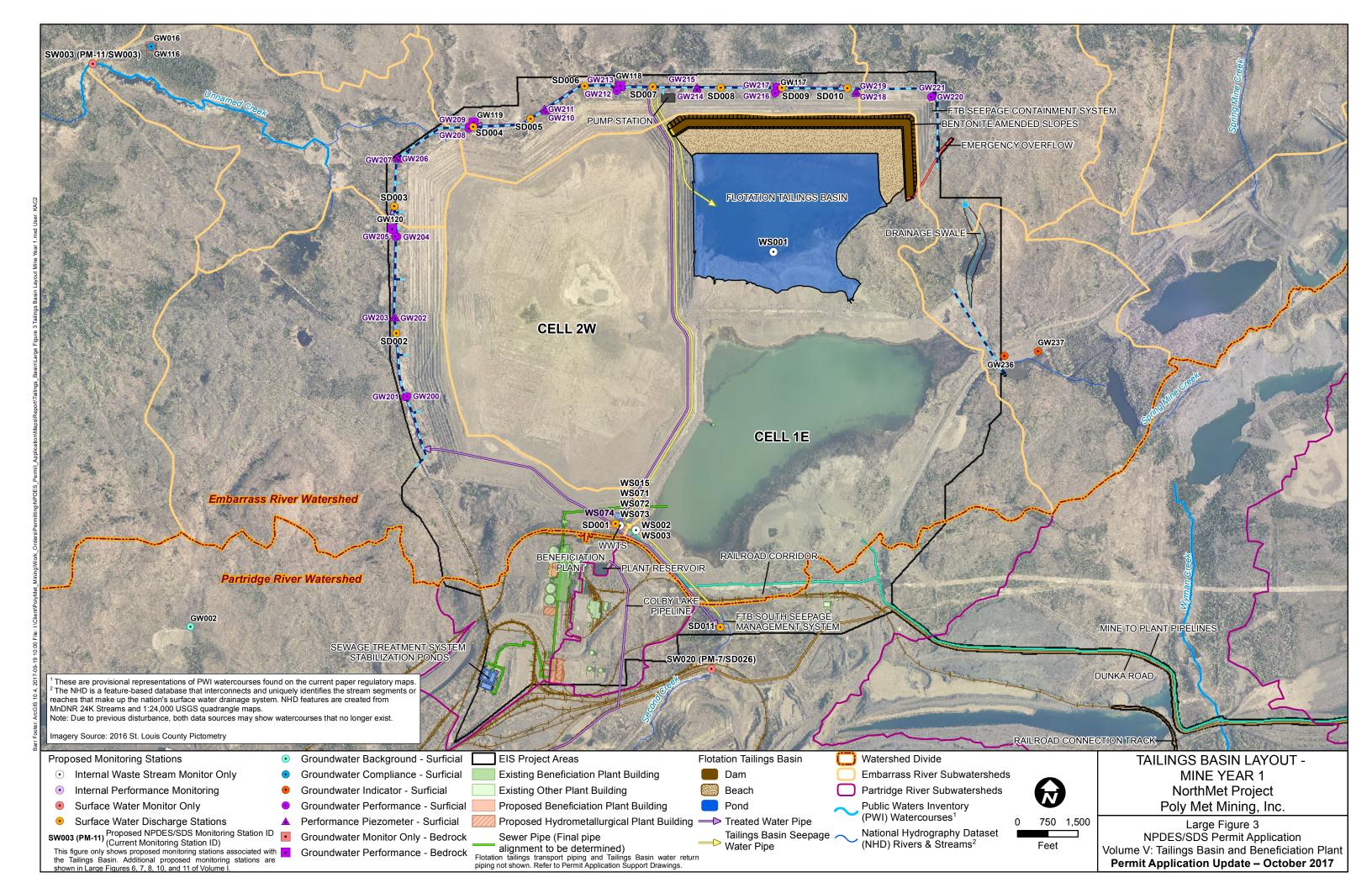
		W	2013	Data for GW01 - 2015	L6		
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Chromium	Total	µg/l	2	2.4	8.6	5.50	5.5
Cobalt	Dissolved	μg/l	8	1.4	5.4	2.48	2.1
Cobalt	Total	µg/l	2	2	7.5	4.75	4.75
Copper	Dissolved	µg/l	8	0.56	2	1.19	1.045
Copper	Total	µg/l	2	3.2	11.9	7.55	7.55
Iron	Dissolved	µg/l	8	67.6	766	440	415
Iron	Total	µg/l	2	729	3980	2355	2354.5
Lead	Dissolved	µg/l	8	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	2	< 0.5	1.3	0.78	0.9
Magnesium	Dissolved	mg/l	NA	NA	NA	NA	NA
Magnesium	Total	mg/l	8	3.7	7.8	5.19	4.65
Manganese	Dissolved	µg/l	8	184	1420	966	1002.5
Manganese	Total	µg/l	2	217	903	560	560
Mercury	Total	ng/l	8	< 0.5	5.5	1.42	0.776
Methyl Mercury	Total	ng/l	2	< 0.03	0.12	0.07	< 0.03
Molybdenum	Dissolved	µg/l	8	1.2	1.6	1.45	1.5
Molybdenum	Total	µg/l	2	1.1	1.3	1.20	1.2
Nickel	Dissolved	µg/l	8	1.8	7.7	3.16	2.6
Nickel	Total	µg/l	2	4.3	16.3	10.3	10.3
Palladium	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Platinum	Dissolved	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Potassium	Dissolved	mg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	8	0.828	1.6	1.11	1.01
Selenium	Dissolved	µg/l	8	< 1	< 1	NA	< 1
Selenium	Total	µg∕l	2	< 1	< 1	NA	< 1
Silicon, as Si	Dissolved	mg/l	NA	NA	NA	NA	NA
Silicon, as Si	Total	mg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Sodium	Dissolved	mg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	8	3.7	8	4.85	4.45
Strontium	Dissolved	µg/l	NA	NA	NA	NA	NA
Strontium	Total	µg/l	2	32.6	69	50.8	50.8
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	2	< 0.017	< 0.2	NA	0.1085

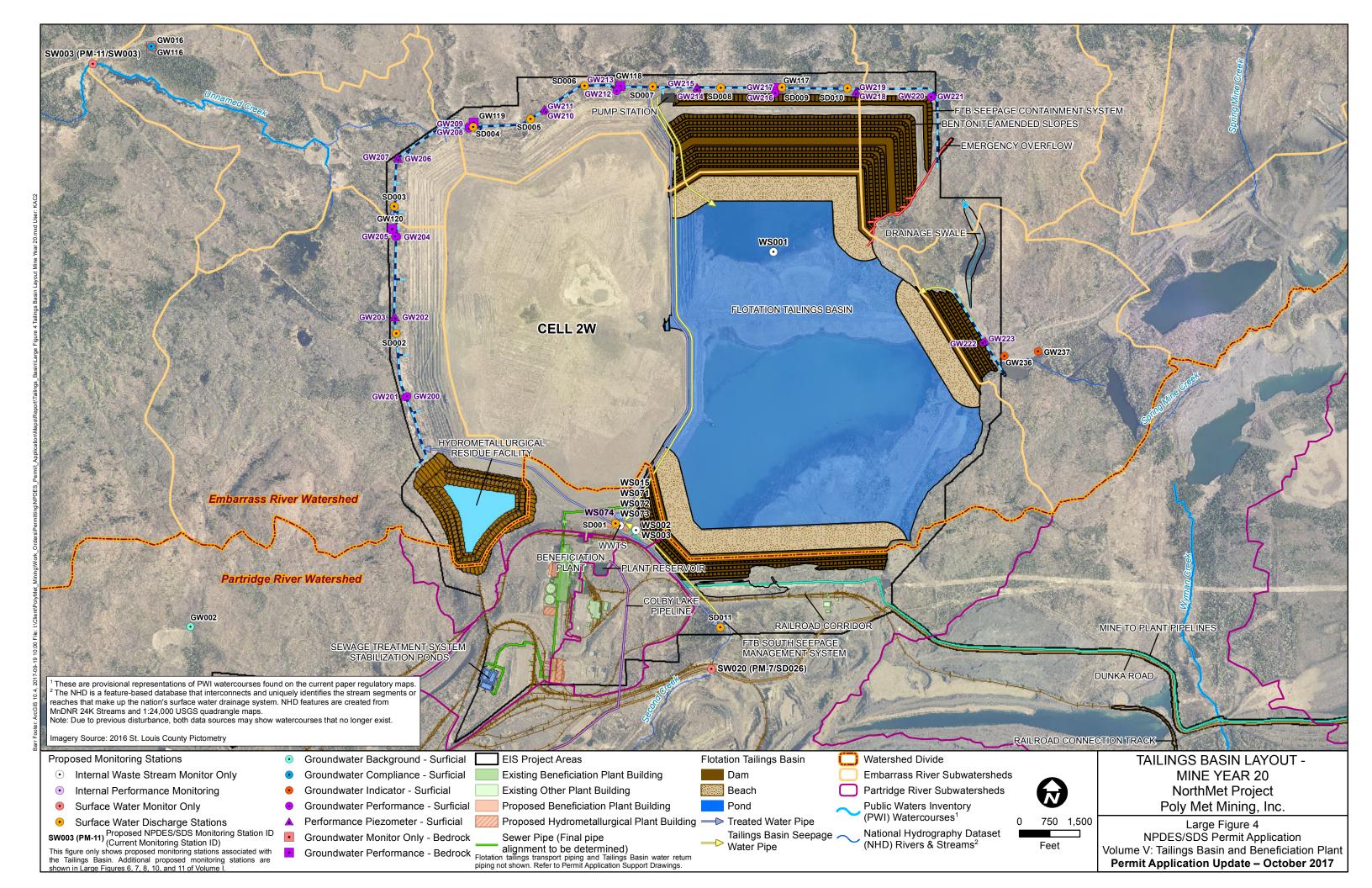
Water Quality Data for GW016 2013 - 2015								
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾	
Titanium	Dissolved	µg/l	NA	NA	NA	NA	NA	
Titanium	Total	µg/l	2	28.1	127	77.6	77.55	
Zinc	Dissolved	µg/l	8	< 6	< 6	NA	< 6	
Zinc	Total	µg/l	2	< 6	9.6	6.30	7.8	

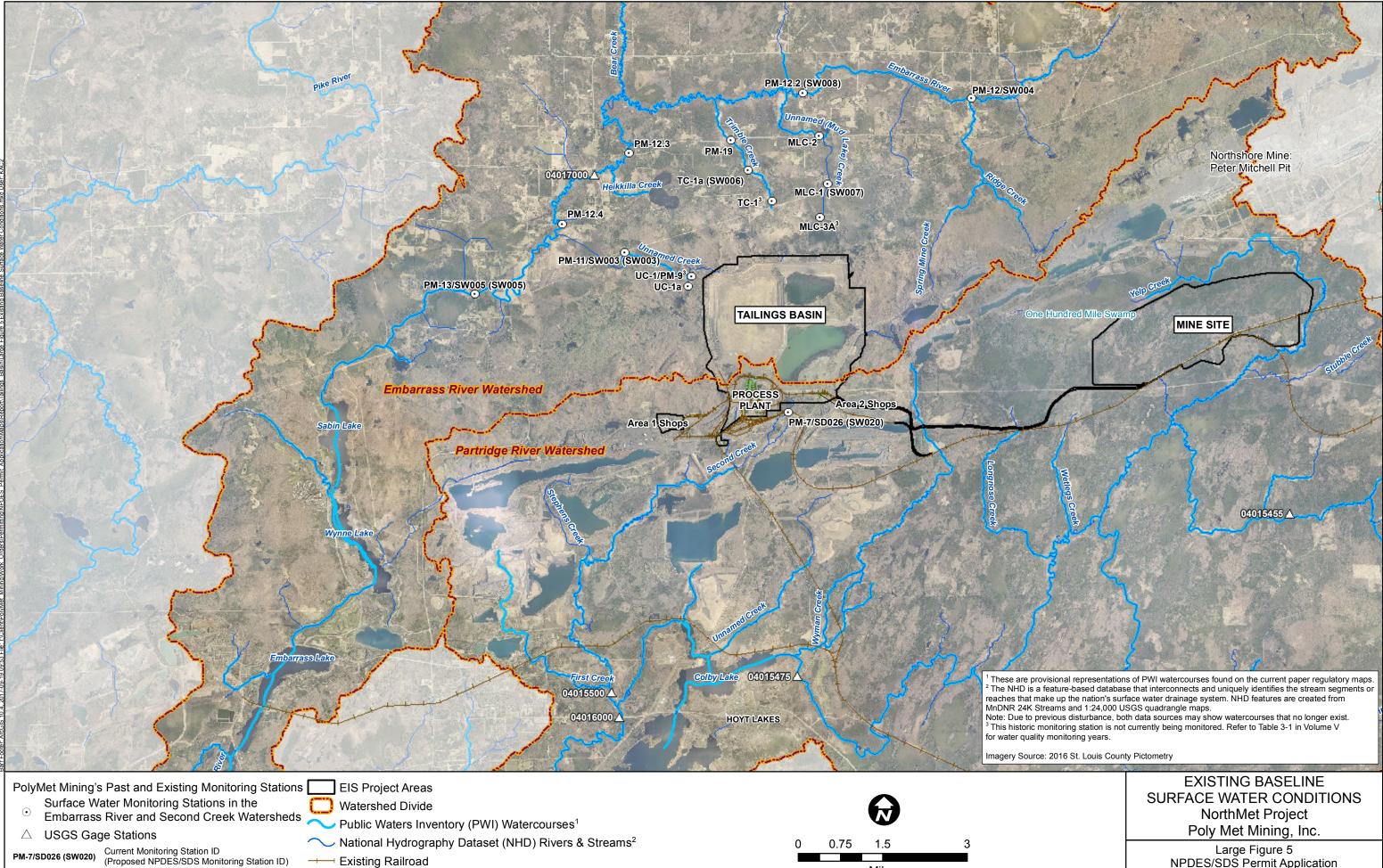

(1) Field duplicates not included in count of samples.

(2) Minimum and maximum determined with non-detect samples at the detection limit.


(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.


Water quality data is not available for GW003 or GW004 because these wells have been dry during the period of monitoring (2007-2015).


Large Figures



Large Figure 1 NPDES/SDS Permit Application Volume V: Tailings Basin and Benefication Plant **Permit Application Update – October 2017**

Other existing and past surface water monitoring stations in the Partridge River watershed are shown on Large Figure 7 in Volume II.

Miles

NPDES/SDS Permit Application Volume V: Tailings Basin and Beneficiation Plant Permit Application Update – October 2017

Appendices

Appendix A

Waste Water Treatment System Terminology Changes

Appendix A Waste Water Treatment System Terminology Changes

Some terminology associated with the Waste Water Treatment System (WWTS) has changed since the environmental review process was completed and the NPDES/SDS Permit Application was submitted in July 2016. Changes are associated with the relocation of the mine water treatment trains that were previously planned for the Mine Site Waste Water Treatment Facility (WWTF), which will now be in the Plant Site WWTS, and the relocation of the Mine Site equalization basins, Central Pumping Station (CPS), and Construction Mine Water Basin south of Dunka Road. There is no change to the level of treatment planned for the Project as a result of these relocations.

To facilitate the review of documents prepared for the NorthMet Mining Project and Land Exchange Final Environmental Impact Statement (FEIS) which are also referenced in this NPDES/SDS Permit Application, the following table explains WWTS terminology changes.

Former Name	New Name		
Waste Water Treatment Plant (WWTP) and Waste Water Treatment Facility (WWTF)	Waste Water Treatment System (WWTS) ⁽¹⁾		
Treated Water Pipeline	As a whole: Mine to Plant Pipelines (MPP) Three individual pipes: Construction Mine Water Pipeline Low Concentration Mine Water Pipeline High Concentration Mine Water Pipeline		
Construction Mine Water Basin	Construction Mine Water Basin		
West Equalization Basin	High Concentration Equalization Basin (HCEQ Basin)		
East Equalization Basin 1	Low Concentration Equalization Basin 1 (LCEQ Basin 1)		
East Equalization Basin 2	Low Concentration Equalization Basin 2 (LCEQ Basin 2)		
WWTP effluent (discharged to receiving waters)	WWTS discharge		
WWTF effluent (sent to the FTB via the Central Pumping Station)	Treated mine water ⁽³⁾ (WWTS stream pumped to the FTB)		
Treated mine water ⁽²⁾	Treated mine water ⁽³⁾		
Central Pumping Station	Central Pumping Station		
	Equalization Basin Area ⁽⁴⁾		
Splitter Structure	This structure will be integrated into the Central Pumping Station.		
Central Pumping Station (CPS) Pond	This pond no longer exists.		

(1) The two sets of treatment trains that were previously at two locations will now be housed under one roof at the Plant Site.

(2) "Treated mine water" formerly included WWTF effluent, OSLA runoff, and construction mine water and was all sent to the FTB.

(3) "Treated mine water" now consists of effluent from the chemical precipitation and membrane filtration portion of the WWTS that are sent to the FTB.

(4) New term describing pond area south of Dunka Road

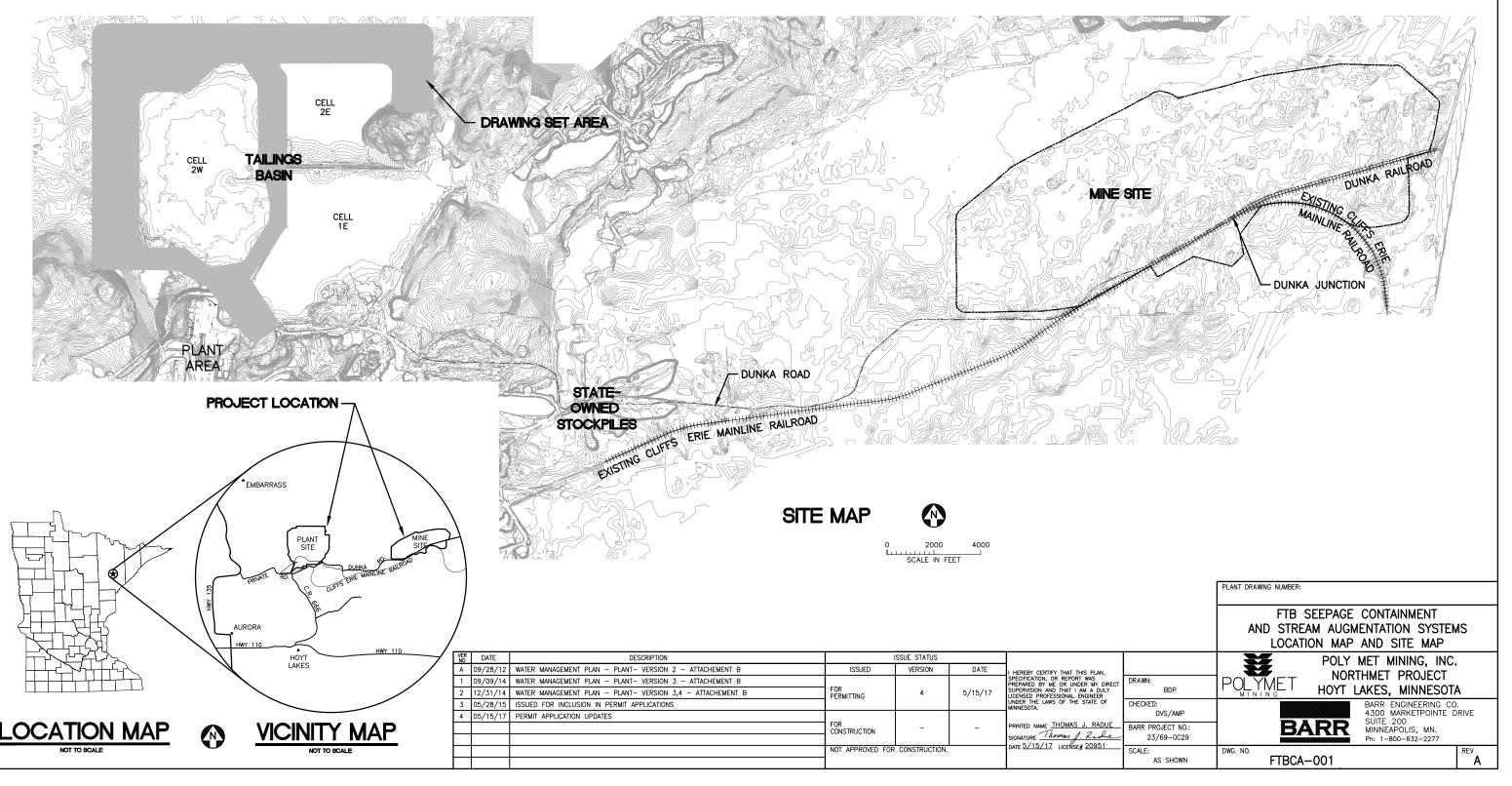
Appendix B

Permit Application Support Drawings

FTB Seepage Containment and Stream Augmentation Systems Permit Application Support Drawings Flotation Tailings Basin Permit Application Support Drawings FTB Seepage Containment and Stream Augmentation Systems Permit Application Support Drawings

Errata Sheet

Poly Met Mining, Inc. NorthMet Project


Permit Application Support Drawings: FTB Seepage Containment and Stream Augmentation Systems

July 2016 (version 2)

Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

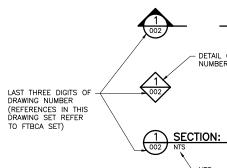
Drawing Sheet(s)	Change
FTBCA-002	A note 5 will be added to say: The term "stream augmentation" in this drawing set is synonymous with "surface water discharge"; these terms are used in the Water Appropriations Consolidated Permit Application and the NPDES/SDS Permit Application, respectively.
FTBCA-013, FTBCA-015	The cross slope on the perimeter access road surface will be revised so that it slopes entirely towards the FTB, instead of being crowned in the center.
FTBCA-013, FTBCA-015	To eliminate additional fill in wetlands, the monitoring wells located outside of the perimeter access road will be moved to within the road embankment.
FTBCA-004 through FTBCA-010	The final location and number of discharge locations to Unnamed Creek and Trimble Creek will be determined in permitting and final design.

POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS HOYT LAKES, MINNESOTA

GENERAL LEGEND

	EXISTING CONTOUR - MAJOR
	EXISTING CONTOUR - MINOR
1000	PROPOSED CONTOUR - MAJOR
	PROPOSED CONTOUR - MINOR
8	EXISTING POWER POLE
····	EXISTING RAILROAD
	EXISTING ROAD
	EXISTING TRAIL
	EXISTING STRUCTURES
\sim	TREE LINE
<u> </u>	WETLAND BOUNDARY
\rightarrow	EXISTING CULVERT
P	EXISTING PIPELINE
+ +	CUTOFF WALL ALIGNMENT
	OVERHEAD ELECTRIC
	SURFACE DRAINAGE
	PROPOSED DEWATERING PIPE
	PROPOSED DISCHARGE PIPELINE
	PROPOSED RETURN PIPELINE
\succ	PROPOSED CULVERT (NON-MINE WATER)
	PROPOSED SEEPAGE COLLECTION DRAIN
	PROPOSED STORMWATER DRAIN
0	PROPOSED MANHOLE
	PROPOSED RIP RAP
•	ROTASONIC BORING
۲	ROTASONIC BORING WITH PIEZOMETER
\diamond	SPT BORING
۲	SPT BORING WITH PACKER
Ŵ	FLOW METER
~	

ABBREVIATIONS


APPROX.	-	APPROXIMATE
CMP	-	CORRUGATED METAL PIPE
CPEP	-	CORRUGATED POLYETHYLENE PIPE
CY	-	CUBIC YARD
DR	-	DIMENSION RATIO
DWG	-	DRAWING
EL.	-	ELEVATION
ø	-	DIAMETER
FTB	-	FLOTATION TAILINGS BASIN
GCL	-	GEOSYNTHETIC CLAY LINER
HDPE	-	HIGH DENSITY POLYETHYLENE
HRF	-	HYDROMETALLURGICAL RESIDUE FACILITY
LDPE	-	LOW DENSITY POLYETHYLENE
LF	-	LINEAR FEET
LTVSMC	-	LTV STEEL MINING COMPANY
MCY	-	MILLION CUBIC YARDS
mil	-	ONE THOUSANDTH OF AN INCH
MIN	-	MINIMUM
MSL	-	MEAN SEA LEVEL
NTS	-	NOT TO SCALE
SCH.	-	SCHEDULE
SDR	-	STANDARD DIMENSION RATIO
TYP	-	TYPICAL
N-MH-XX	-	NORTH SECTION MANHOLE
NW-MH-XX	-	NORTHWEST SECTION MANHOLE
W-MH-XX	-	WEST SECTION MANHOLE
N-MH/PS-XX	-	NORTH SECTION MANHOLE/PUMP STATION
NW-MH/PS-XX	-	NORTHWEST SECTION MANHOLE
W-MH/PS-XX	-	WEST SECTION MANHOLE/PUMP STATION

SHEET INDEX

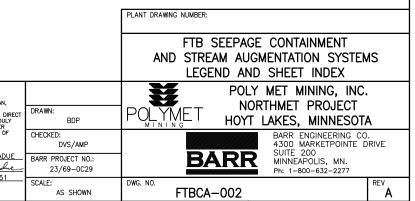
SHEET NO. TITLE

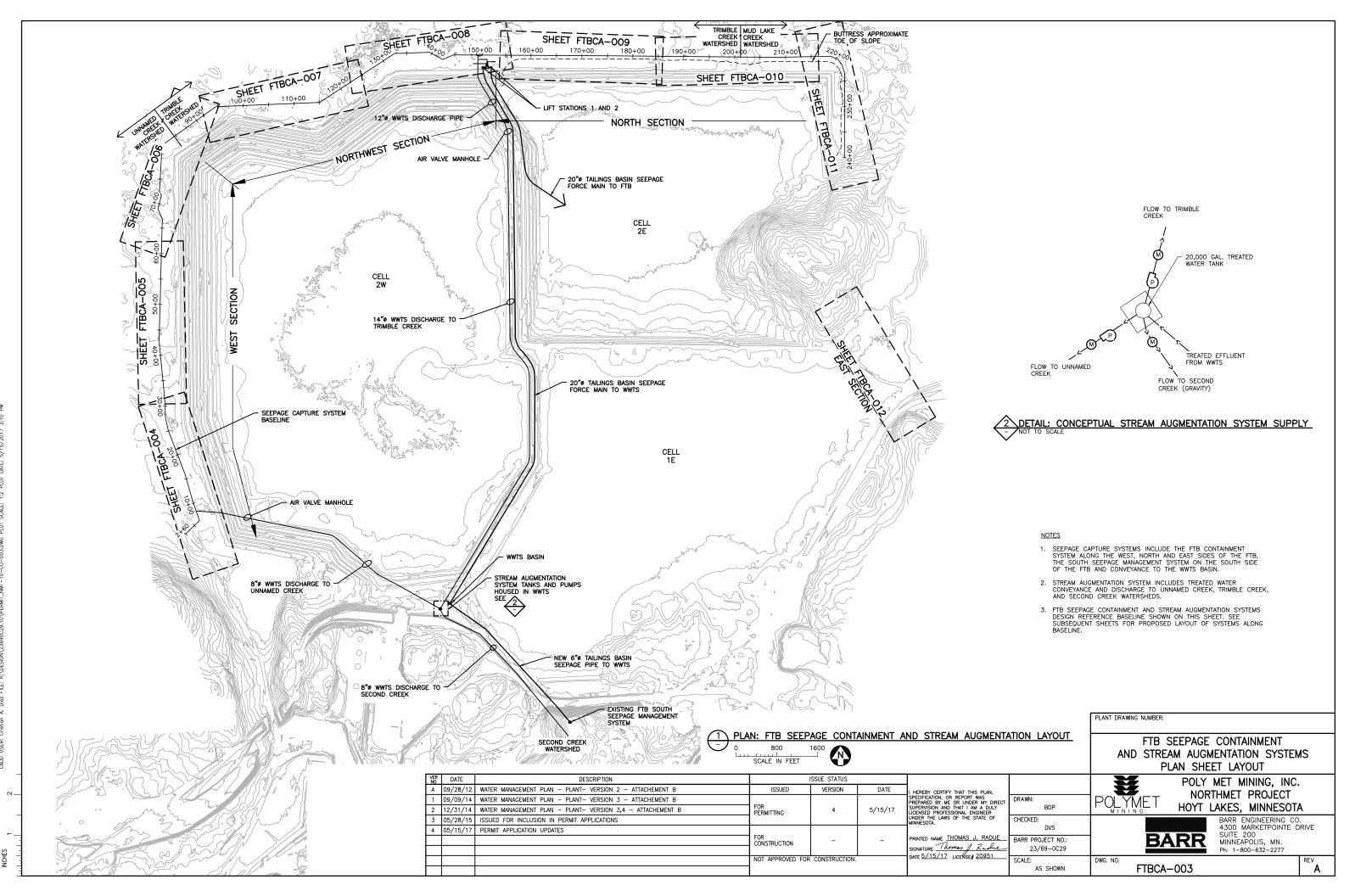
FTBCA-001 FTBCA-002 FTBCA-003 FTBCA-004	LOCATION MAP AND SITE MAP LEGEND AND SHEET INDEX PLAN SHEET LAYOUT PLAN AND PROFILE- STATION (
FTBCA-005	PLAN AND PROFILE- STATION 3
FTBCA-006	PLAN AND PROFILE- STATION 6
FTBCA-007	PLAN AND PROFILE- STATION 9
FTBCA-008	PLAN AND PROFILE- STATION 1
FTBCA-009	PLAN AND PROFILE- STATION 1
FTBCA-010	PLAN AND PROFILE- STATION 1
FTBCA-011	PLAN AND PROFILE- STATION 2
FTBCA-012	EAST SECTION PLAN & PROFILE
FTBCA-013	DETAILS
FTBCA-014	DETAILS
FTBCA-015	DETAILS
FIDUA-013	DETAILS

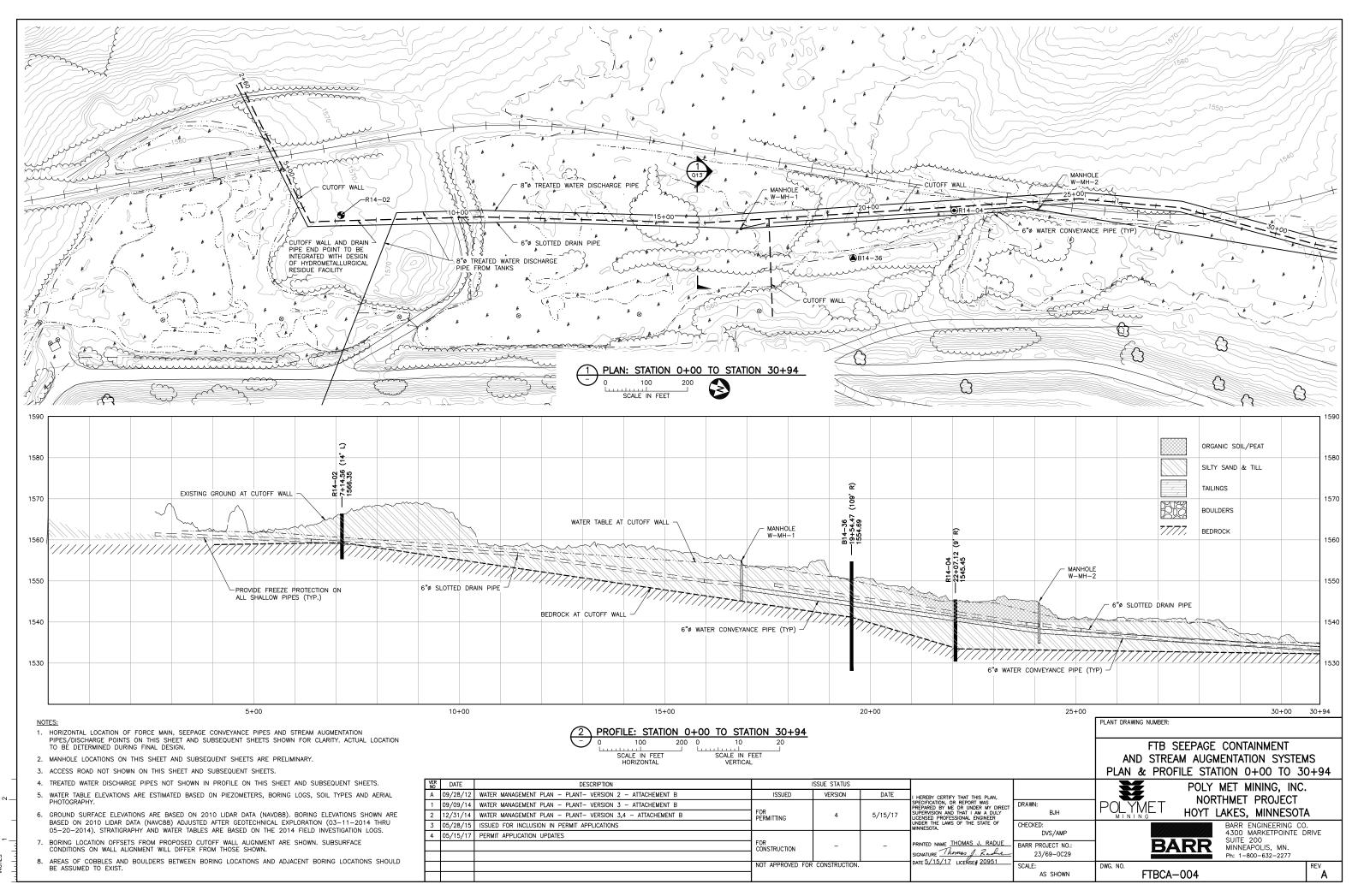
DRAWING NUMBERING

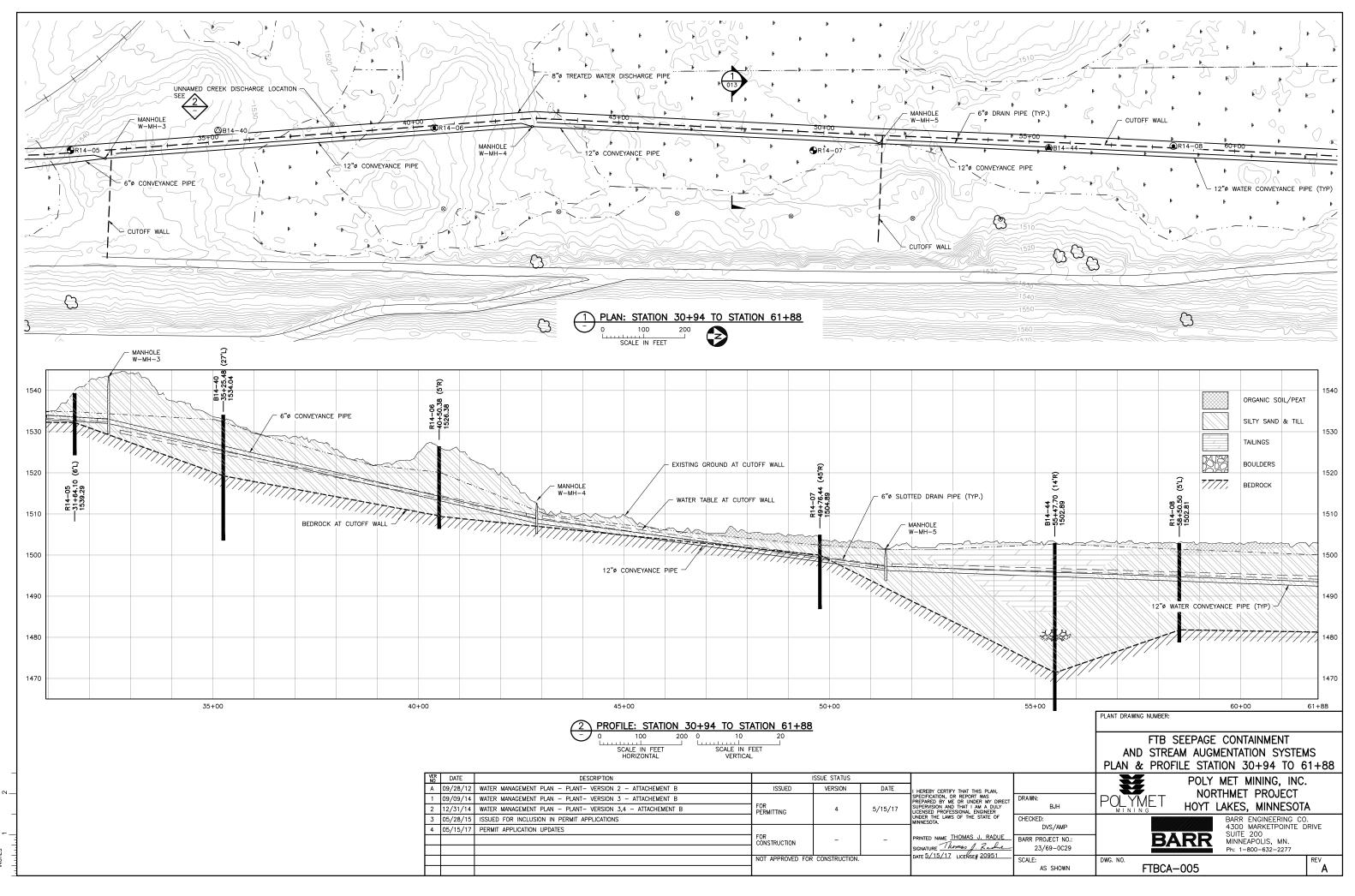
<u>NOTES</u>

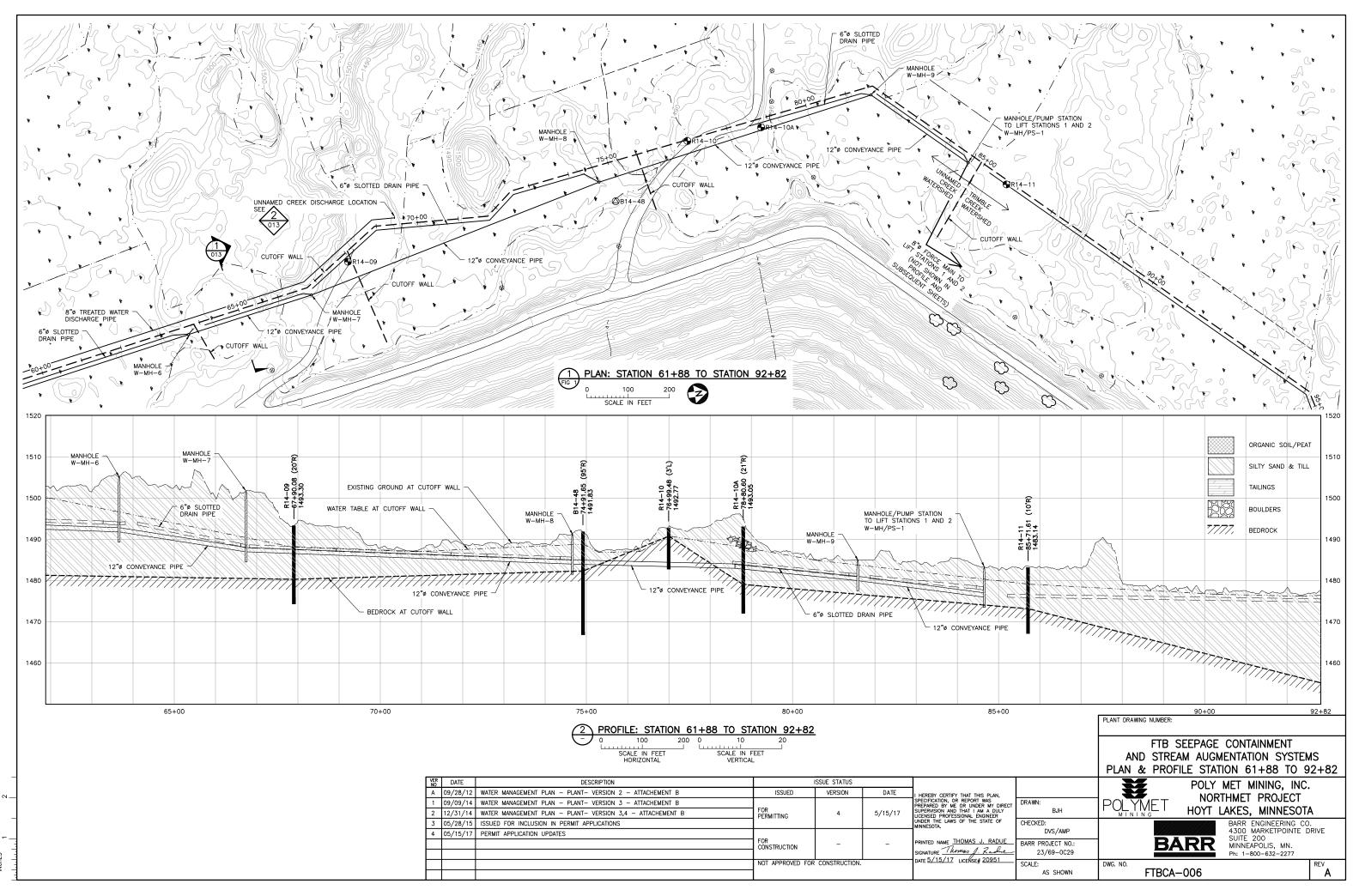
- 1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.
- 4. EXISTING TOPOGRAPHIC INFORMATION WAS UPDATED FOR AREAS SOUTH EAST OF COAL ASH LANDFILL AND EAST OF OUTCROP BETWEEN CELLS 1E AND 2E USING CONTOURS FROM DATA COLLECTED IN 1999.

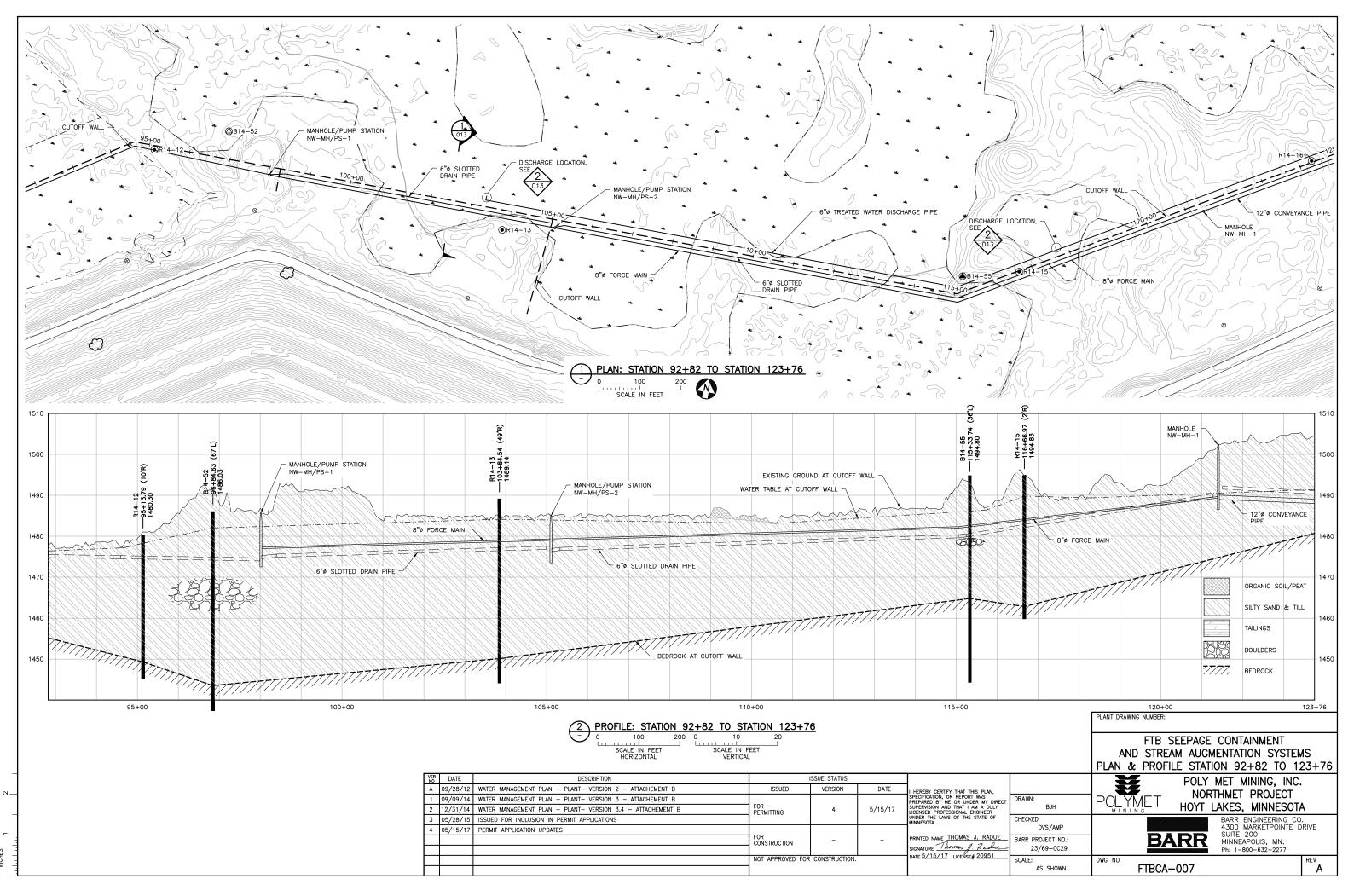

VEF NO	DATE	DESCRIPTION		ISSUE STATUS		
Α	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR PERMITTING	4	5/15/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
3	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				UNDER THE LAWS OF THE STATE OF MINNESOTA.
4	05/15/17	PERMIT APPLICATION UPDATES				1
			FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Rache DATE 5/15/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>57 157 17</u> LICENSE# <u>20951</u>

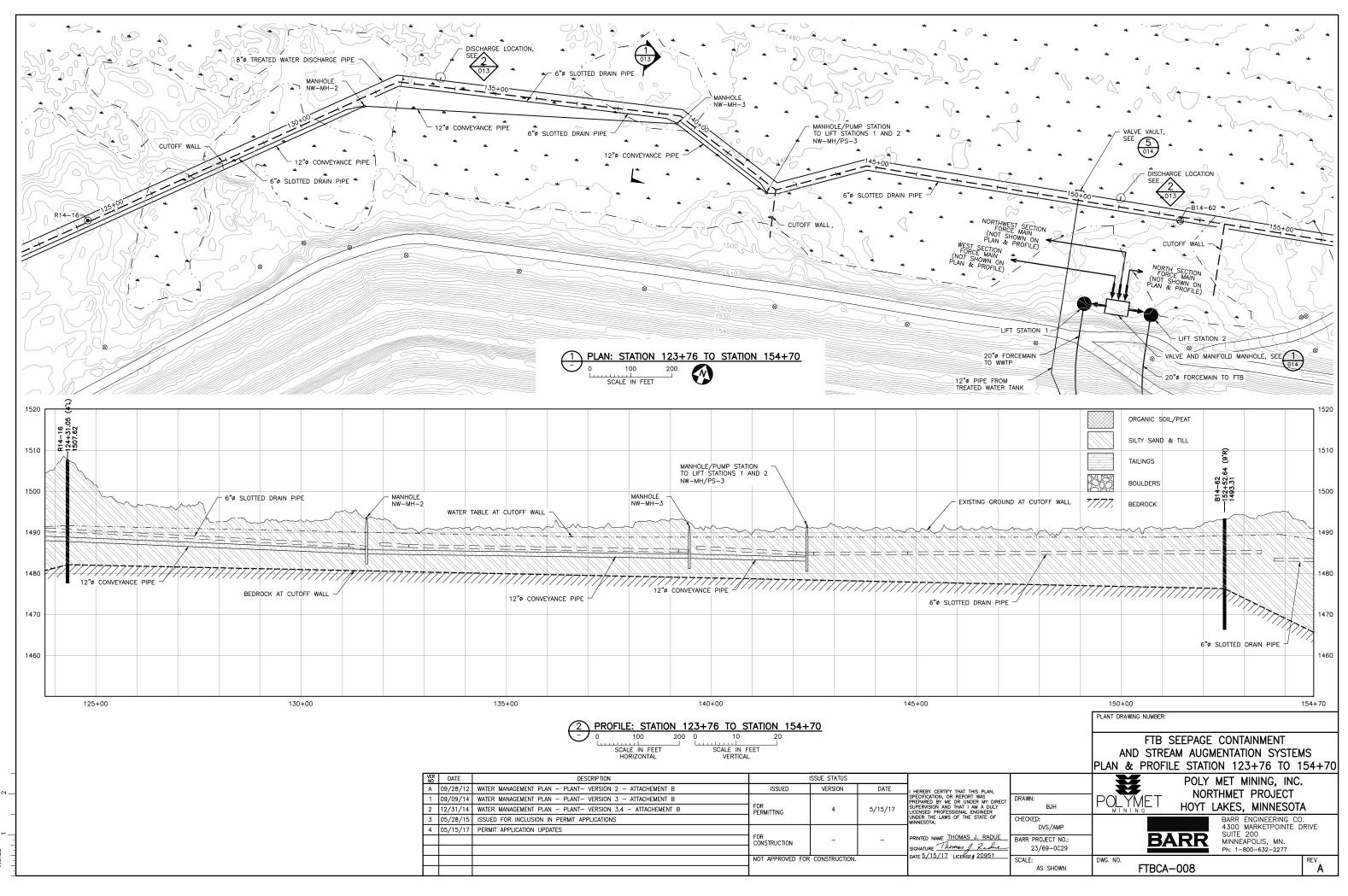

M

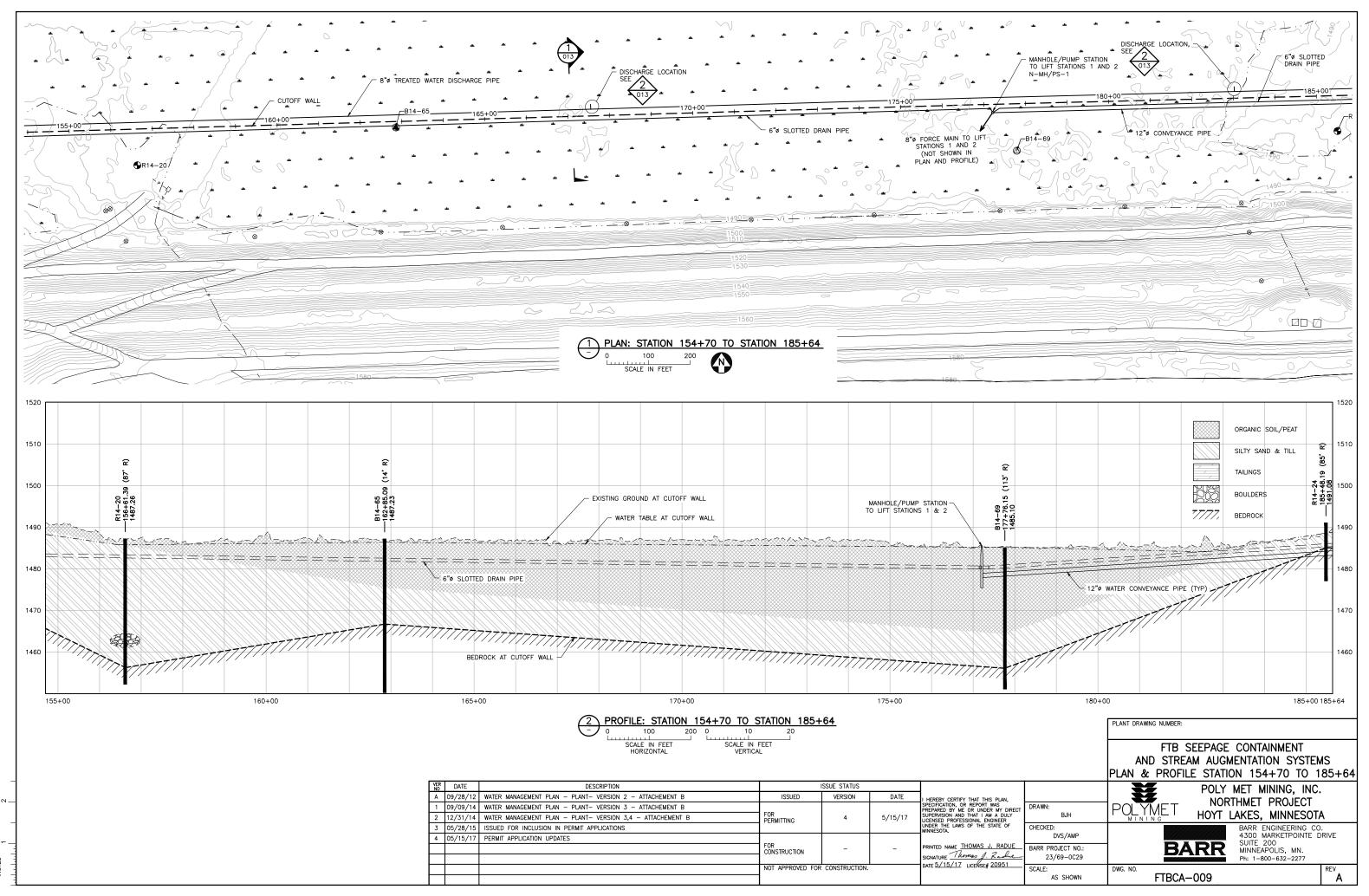

DN 0+00 TO STATION 30+94 DN 30+94 TO STATION 61+88 DN 61+88 TO STATION 92+82 DN 92+82 TO STATION 123+76 DN 123+76 TO STATION 154+70 DN 154+70 TO STATION 154+64 DN 185+64 TO STATION 216+58 DN 216+58 TO STATION 240+00 DFILE STATION 0+00 TO STATION 25+43

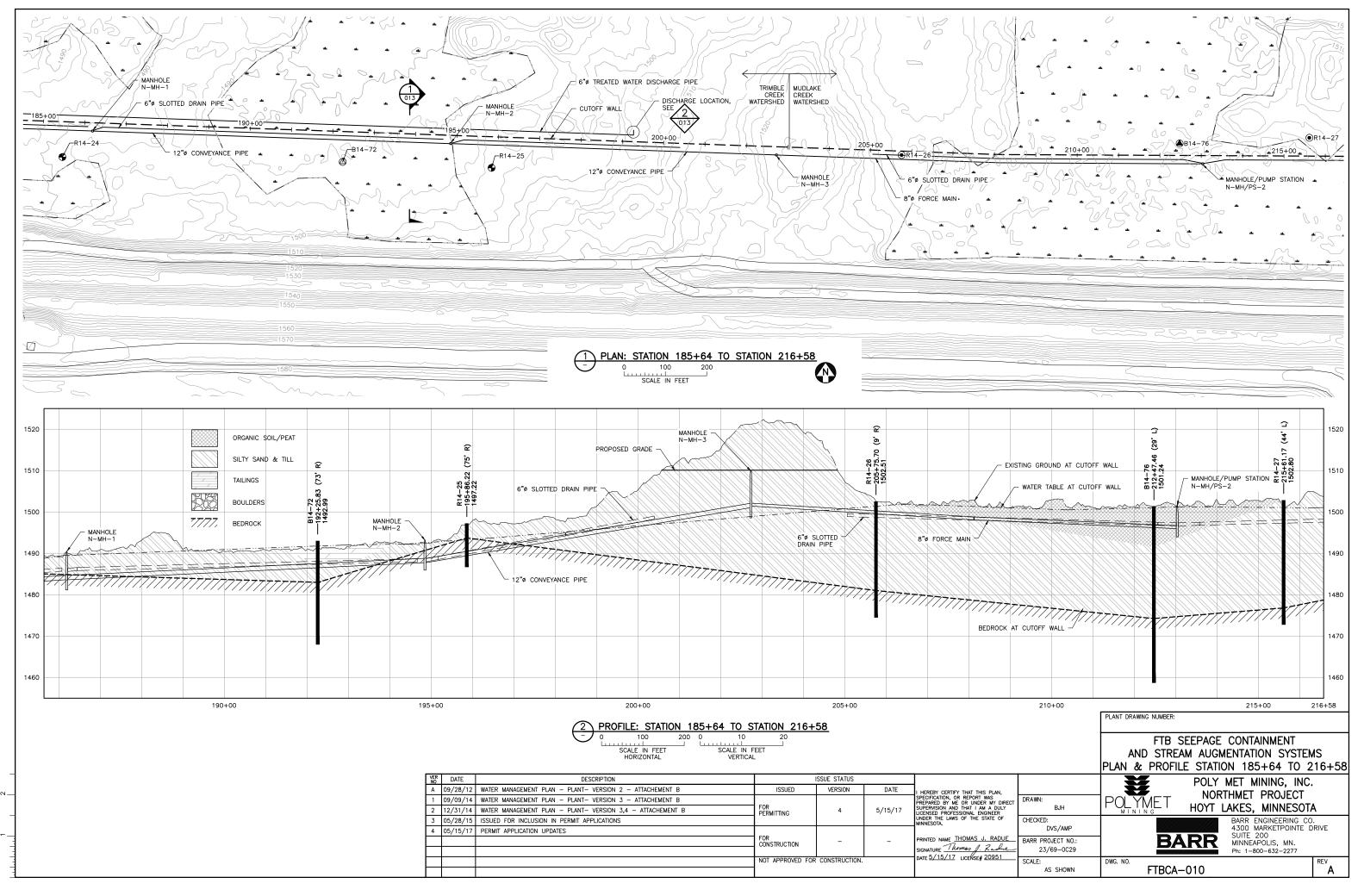

- DETAIL OR SECTION NUMBER, TYPICAL

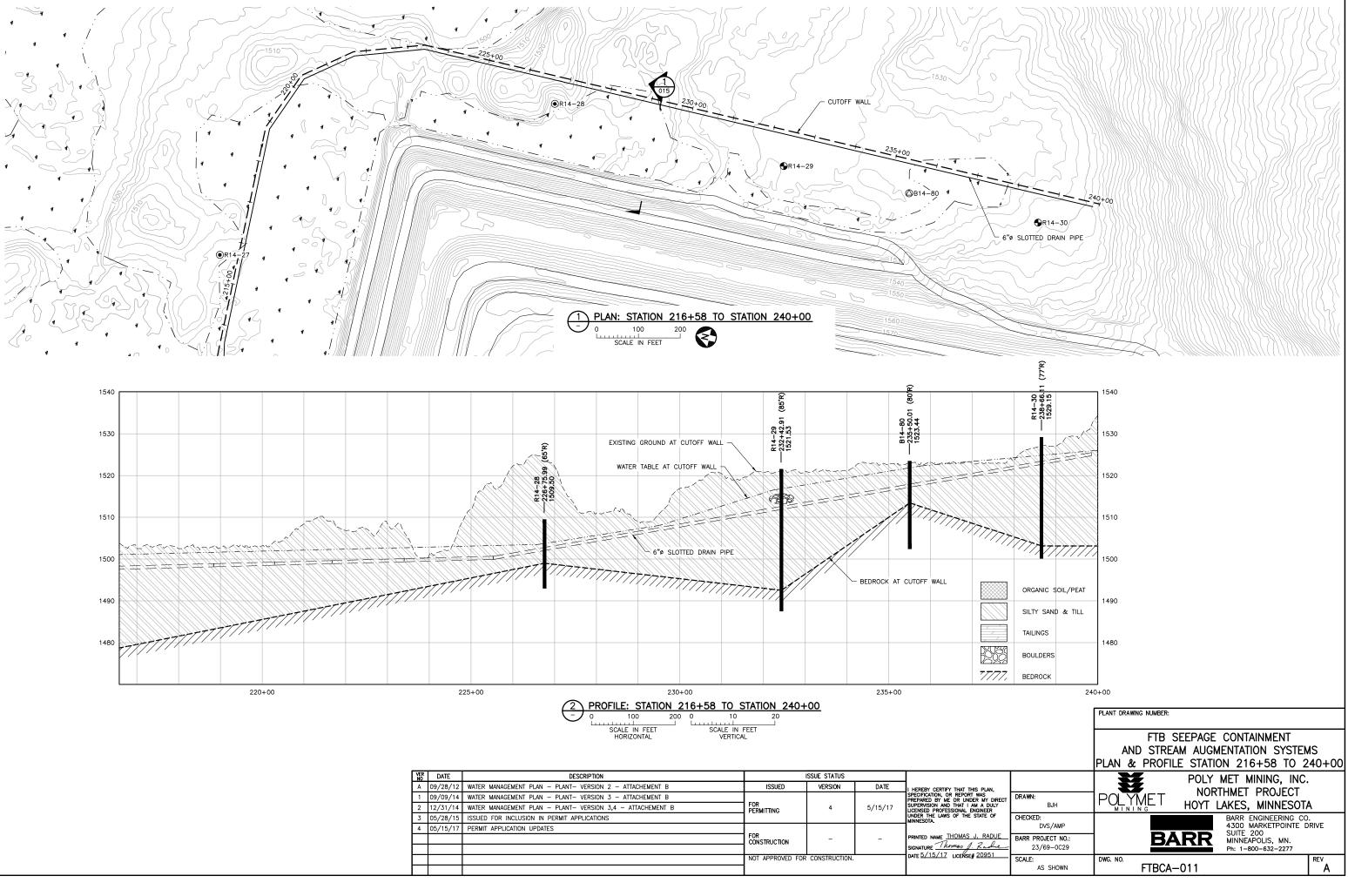

-NTS = NOT TO SCALE

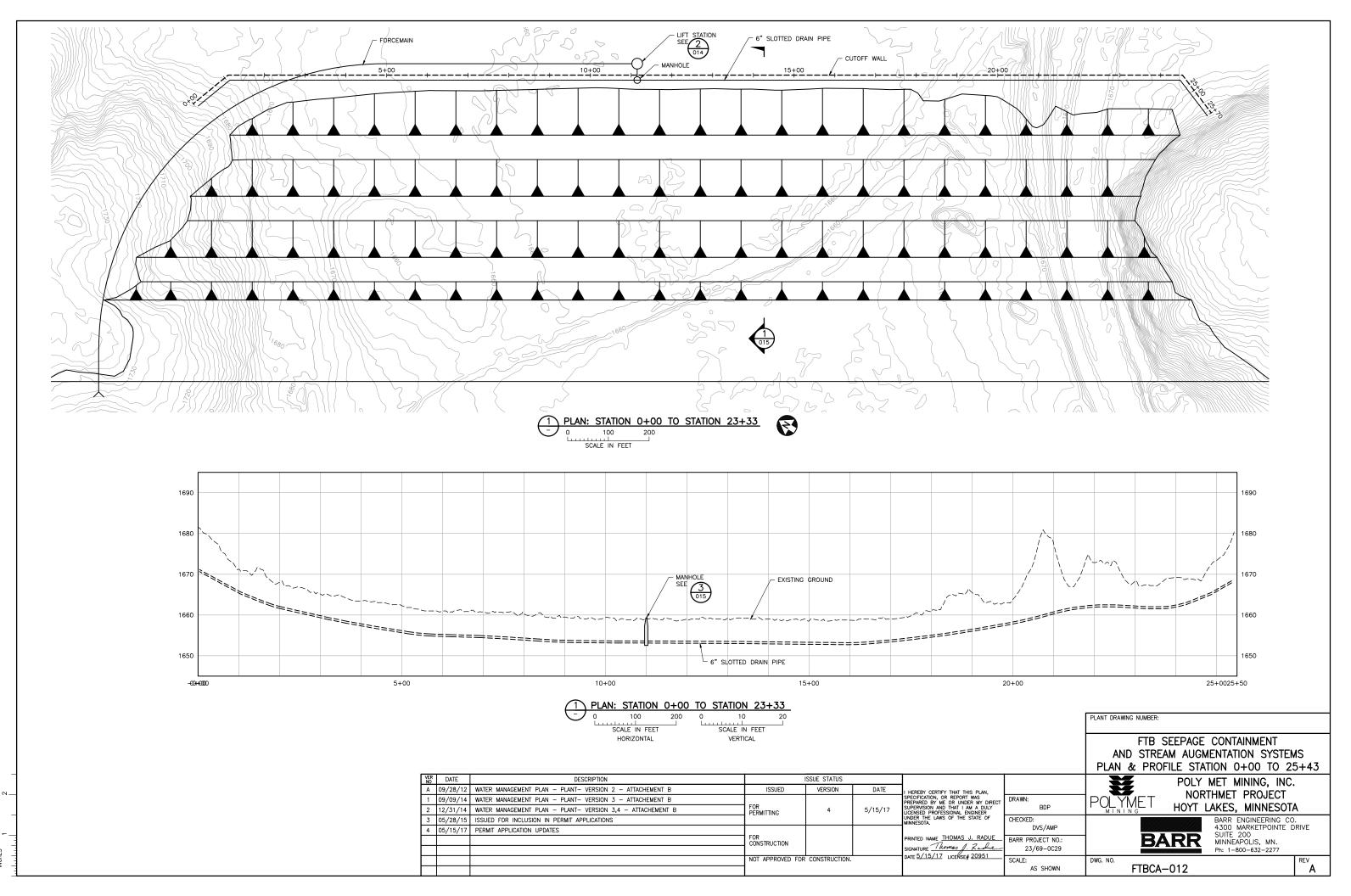


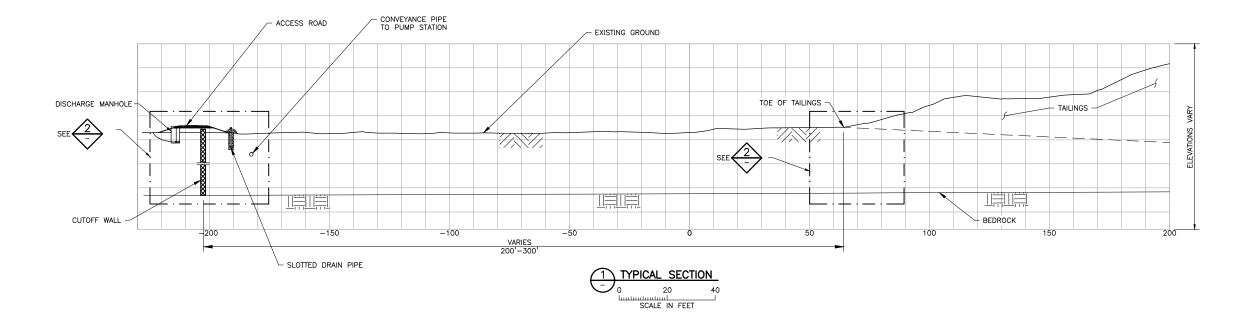


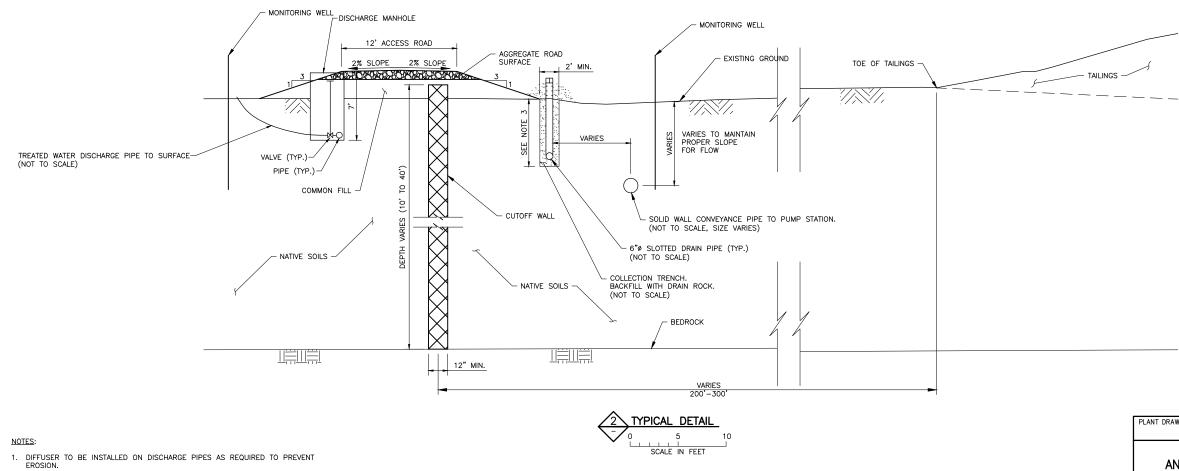




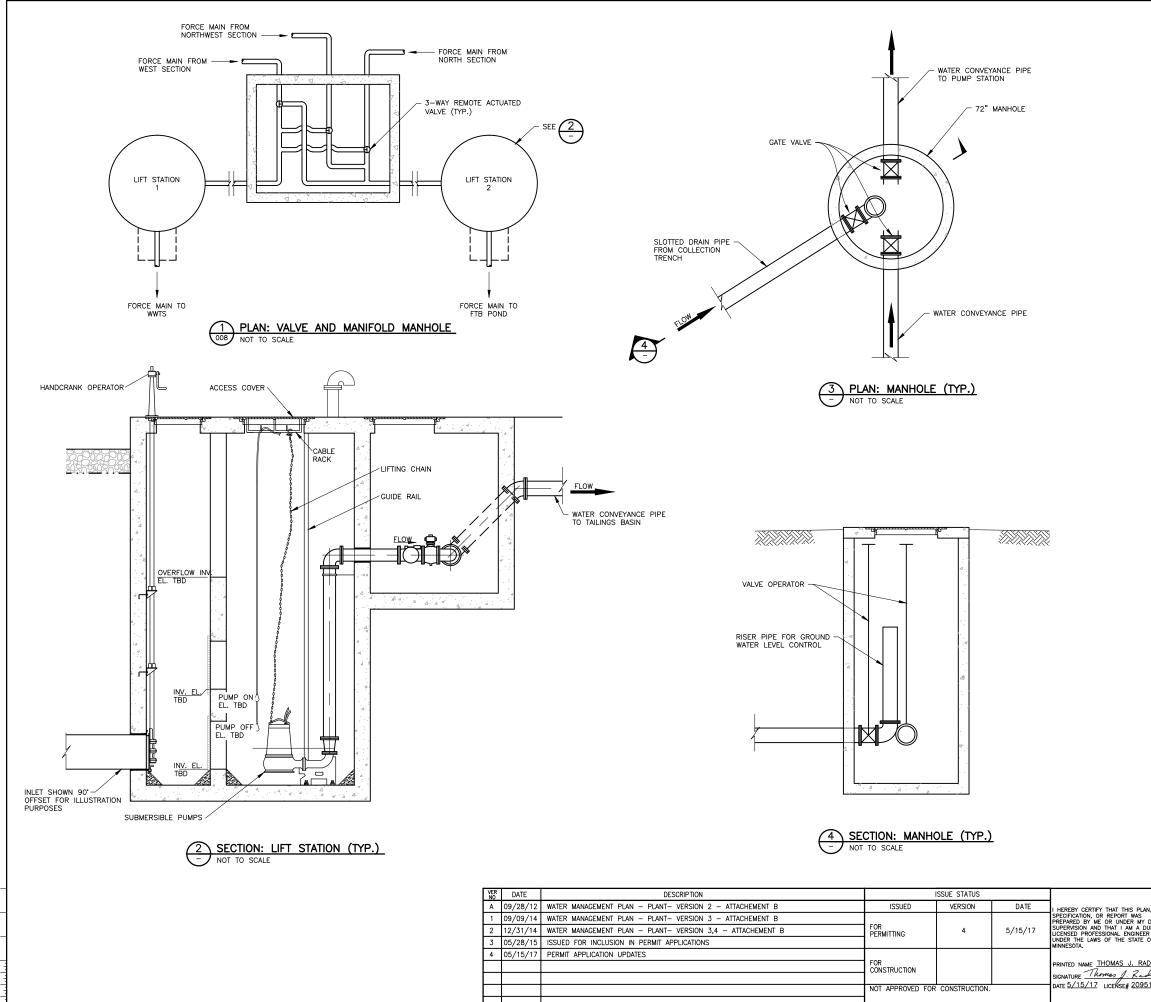


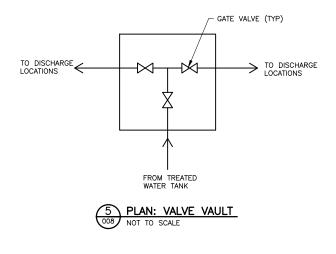



LES CADD USER: Cristian A. Dioz FILE: K:\DESIGN\23690C29.10\PERMIT_NMT-10-CU-009.DWG PLOT SCALE: 1:2 PLOT DATE: 5/15/2017 4:



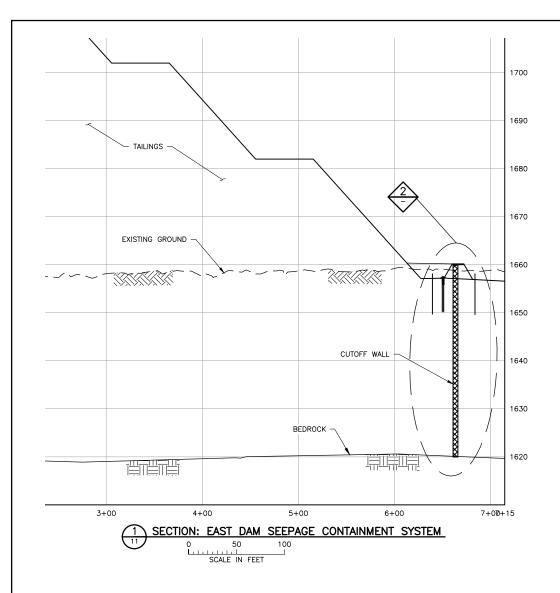
VER NO	DATE	DESCRIPTION		ISSUE STATUS		
Α	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR	4	5/15/17	SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
3	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				UNDER THE LAWS OF THE STATE OF MINNESOTA.
4	05/15/17	PERMIT APPLICATION UPDATES				
			FOR	-		PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Radu
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>5/15/17</u> LICENSE# 20951

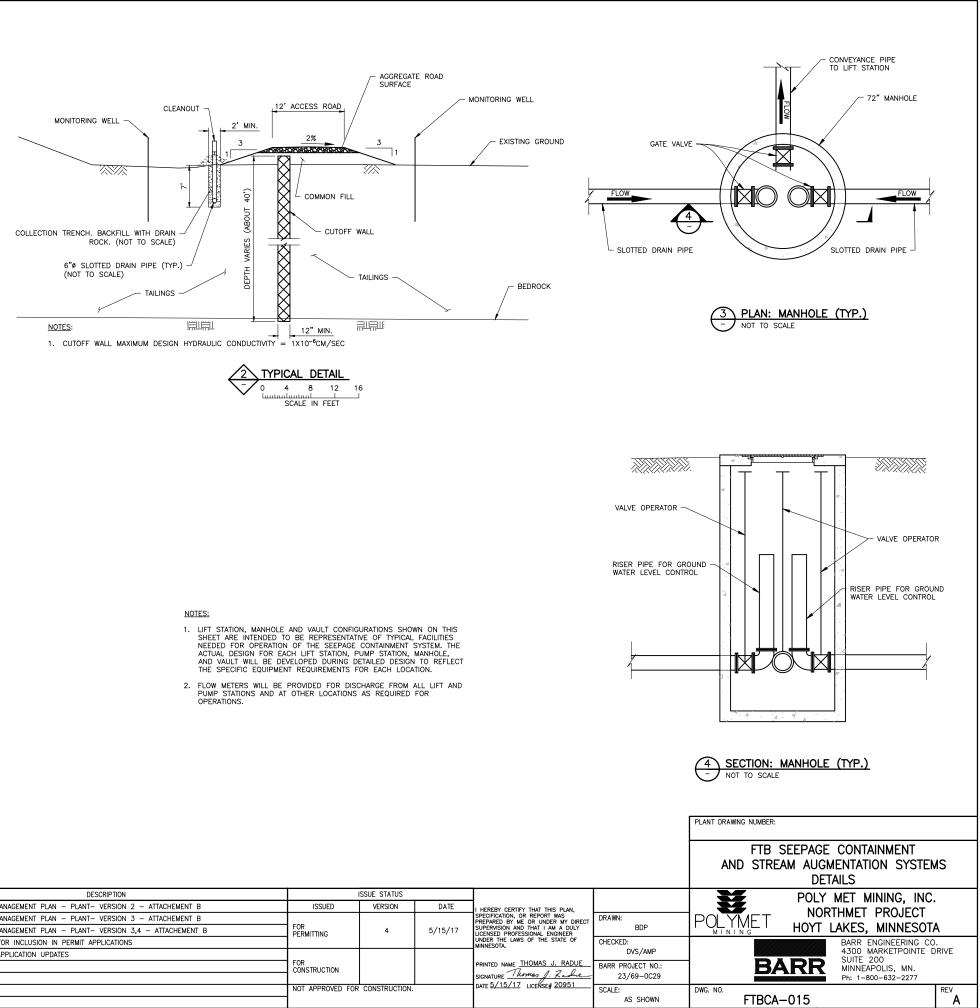




- 2. CUTOFF WALL MAXIMUM DESIGN HYDRAULIC CONDUCTIVITY = 1×10^{-6} CM/SEC
- 3. 7' TYPICAL BUT MAY BE LESS IN AREAS WITH SHALLOW BEDROCK

		TYPICAL DETAIL 0 5 CALE IN FEET	10 						SEEPAGE CONTAINMENT EAM AUGMENTATION SYSTEMS DETAILS
VER NO	DATE	DESCRIPTION		ISSUE STATUS					POLY MET MINING, INC.
Α	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,			NORTHMET PROJECT
1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	
2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B		4	5/15/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	BDP		HOYT LAKES, MINNESOTA
3	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:		BARR ENGINEERING CO.
4	05/15/17	PERMIT APPLICATION UPDATES					DVS/AMP		4300 MARKETPOINTE DRIVE SUITE 200
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE	BARR PROJECT NO .:	1 B /	ARR MINNEAPOLIS, MN.
						SIGNATURE Thomas J. Radue	23/69-0C29		Ph: 1-800-632-2277
			NOT APPROVED FO	R CONSTRUCTION.		DATE 5/15/17 LICENSE# 20951	SCALE:	DWG. NO.	REV
							AS SHOWN	FTBCA	–013 A

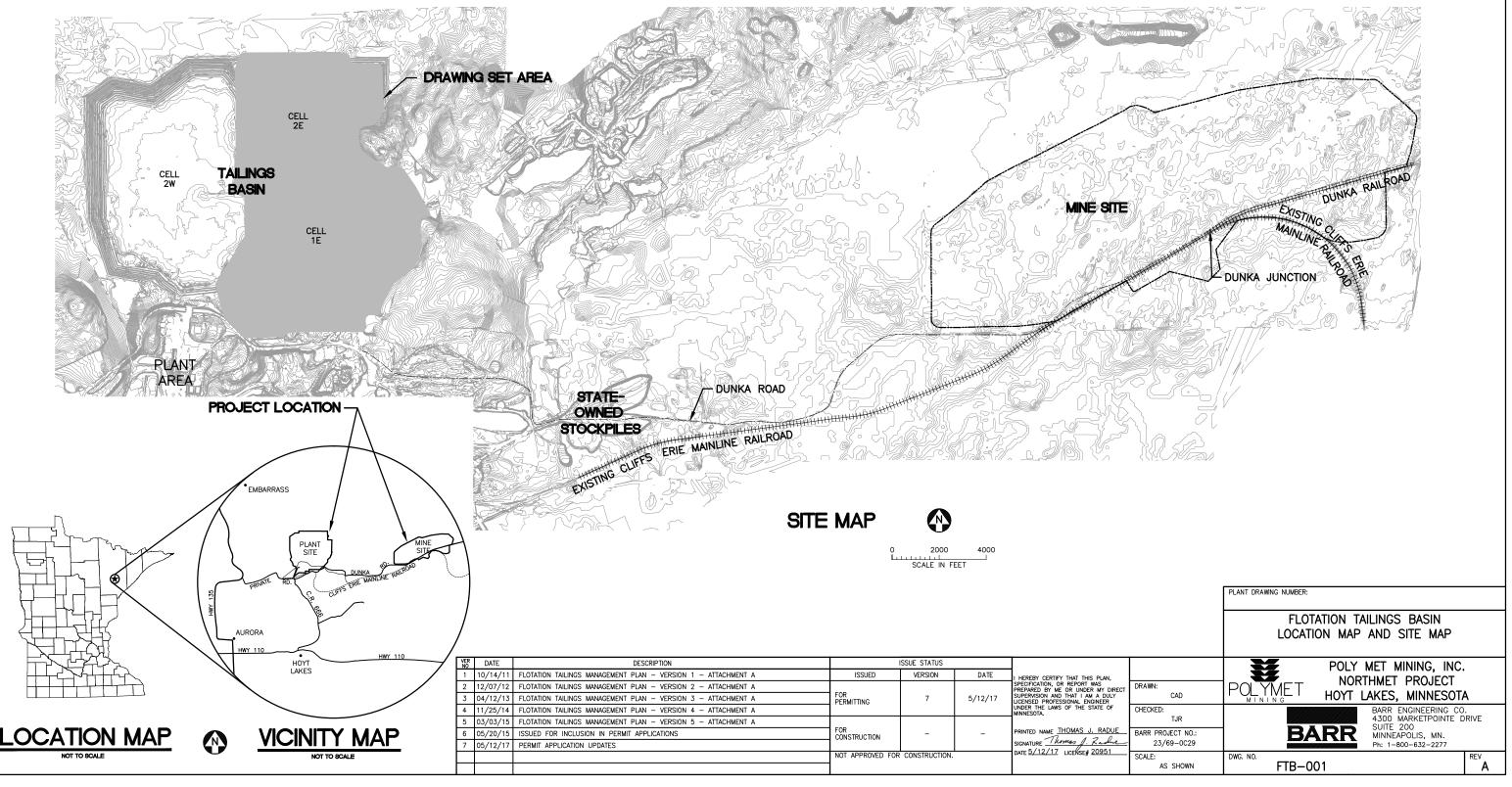




NOTES:

- LIFT STATION, MANHOLE AND VAULT CONFIGURATIONS SHOWN ON THIS SHEET ARE INTENDED TO BE REPRESENTATIVE OF TYPICAL FACILITIES NEEDED FOR OPERATION OF THE SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEMS. THE ACTUAL DESIGN FOR EACH LIFT STATION, PUMP STATION, MANHOLE, AND VAULT WILL BE DEVELOPED DURING DETAILED DESIGN TO REFLECT THE SPECIFIC EQUIPMENT REQUIREMENTS FOR EACH LOCATION FOR EACH LOCATION.
- 2. PUMP STATIONS WILL BE SIMILAR TO MANHOLE SHOWN IN 3 with small submersible pump,
- FLOW METERS WILL BE PROVIDED FOR DISCHARGE FROM ALL LIFT AND PUMP STATIONS AND AT OTHER LOCATIONS AS REQUIRED FOR OPERATIONS.

		PLANT DRAWING NUMBER:	
		FTB SEEPAGE CONTAINMENT AND STREAM AUGMENTATION SYSTEM DETAILS	IS
N, DIRECT ULY R	DRAWN: BDP	POLY MET MINING, INC. POLYMET HOYT LAKES, MINNESOTA	
OF DUE She	CHECKED: DVS/AMP BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
	SCALE: AS SHOWN	DWG. NO. FTBCA-014	REV A



	VER NO	DATE	DESCRIPTION		SSUE STATUS		
Γ	А	09/28/12	WATER MANAGEMENT PLAN - PLANT- VERSION 2 - ATTACHEMENT B	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
Γ	1	09/09/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3 - ATTACHEMENT B				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
Γ	2	12/31/14	WATER MANAGEMENT PLAN - PLANT- VERSION 3,4 - ATTACHEMENT B	FOR PERMITTING	4		SUPERVISION AND THAT I AM A DULY
Γ	3	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				UNDER THE LAWS OF THE STATE OF MINNESOTA.
- [4	05/15/17	PERMIT APPLICATION UPDATES				
Г				FOR			PRINTED NAME THOMAS J. RADUE
- [SIGNATURE Thomas J. Rachie
				NOT APPROVED FOR	CONSTRUCTION.		DATE <u>5/15/17</u> LICENSE# <u>20951</u>

Flotation Tailings Basin Permit Application Support Drawings

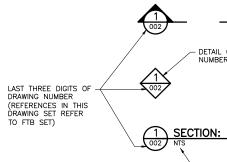
POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS FLOTATION TAILINGS BASIN HOYT LAKES, MINNESOTA

GENERAL LEGEND

	EXISTING CONTOUR - MAJOR
	EXISTING CONTOUR - MINOR
1000	PROPOSED CONTOUR - MAJOR
	PROPOSED CONTOUR - MINOR
8	EXISTING POWER POLE
····	EXISTING RAILROAD
	EXISTING ROAD
	EXISTING TRAIL
	EXISTING STRUCTURES
\sim	TREE LINE
	WETLAND BOUNDARY
\rightarrow	EXISTING CULVERT
P	EXISTING PIPELINE
0E	OVERHEAD ELECTRIC
OE	OVERHEAD ELECTRIC PROPOSED DAMS
OE	
	PROPOSED DAMS
DW	PROPOSED DAMS PROPOSED DEWATERING PIPE
DW D	PROPOSED DAMS PROPOSED DEWATERING PIPE PROPOSED DISCHARGE PIPELINE
DW D	PROPOSED DAMS PROPOSED DEWATERING PIPE PROPOSED DISCHARGE PIPELINE PROPOSED RETURN PIPELINE
DW D	PROPOSED DAMS PROPOSED DEWATERING PIPE PROPOSED DISCHARGE PIPELINE PROPOSED RETURN PIPELINE PROPOSED CULVERT (NON-MINE WATER)

ABBREVIATIONS

APPROX.	-	APPROXIMATE
СМР	-	CORRUGATED METAL PIPE
CPEP	-	CORRUGATED POLYETHYLENE PIPE
CY	-	CUBIC YARD
DR	-	DIMENSION RATIO
DWG	-	DRAWING
EL.	-	ELEVATION
F	-	DIAMETER
FTB	-	FLOTATION TAILINGS BASIN
GCL	-	GEOSYNTHETIC CLAY LINER
HDPE	-	HIGH DENSITY POLYETHYLENE
HRF	-	HYDROMETALLURGICAL RESIDUE FACILITY
LDPE	-	LOW DENSITY POLYETHYLENE
LF	-	LINEAR FEET
LTVSMC	-	LTV STEEL MINING COMPANY
MCY	-	MILLION CUBIC YARDS
mil	-	ONE THOUSANDTH OF AN INCH
MIN	-	MINIMUM
MSL	-	MEAN SEA LEVEL
NTS	-	NOT TO SCALE
SCH.	-	SCHEDULE
SDR	-	STANDARD DIMENSION RATIO
TYP.	-	TYPICAL


SHEET INDEX

SHEET NO. TITLE

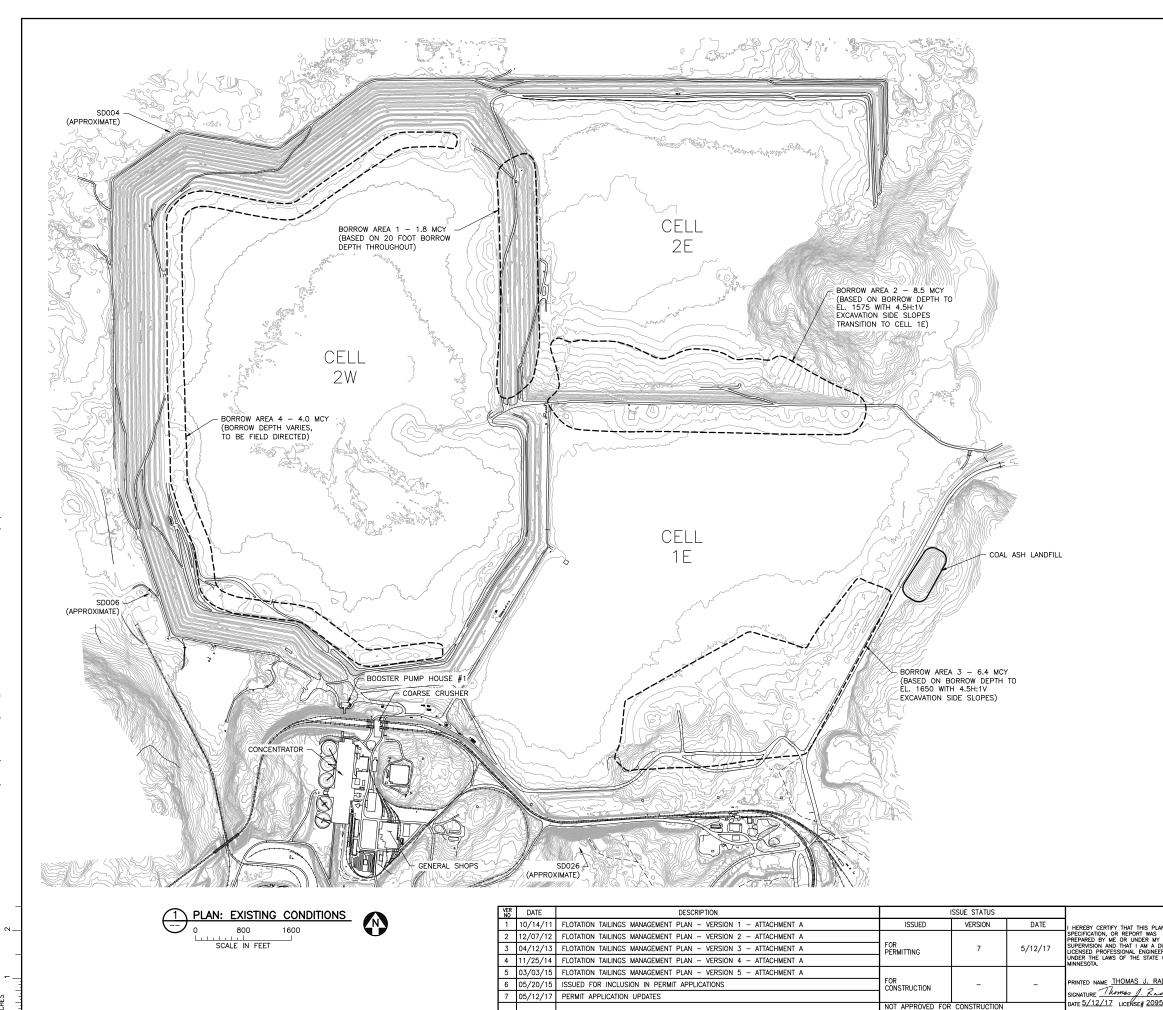
GENERAL DRAWINGS

FTB-001	LOCATION MAP AND SITE MAP
	LEGEND AND SHEET INDEX
	EXISTING CONDITIONS
FTB-004	LAYOUT MINE YEAR 20
FTB-005	LAYOUT MINE YEAR 1
FTB-006	LAYOUT MINE YEAR 5
FTB-007	LAYOUT MINE YEAR 7
	NORTH DAM - MINE YEAR 20 LAYOU
FTB-009	
	NORTH DAM - STAGED CONSTRUCTION
	EAST AND WEST DAMS - MINE YEAR
	EAST AND WEST DAMS - TYPICAL C
	SOUTH DAM - MINE YEAR 20 LAYOU
	SOUTH DAM - TYPICAL CROSS SECT
	EMERGENCY OVERFLOW CHANNEL -
	EMERGENCY OVERFLOW CHANNEL -
	EMERGENCY OVERFLOW CHANNEL - EMERGENCY OVERFLOW CHANNEL -
	PIPING LAYOUT CELL 2E
	PIPING LAYOUT CELL 1/2E
FTB-020	
	TRANSFER PUMP RAFT
	TAILINGS DISPOSAL DIFFUSER RAFT
	CLOSURE PLAN
110 024	

DRAWING NUMBERING

<u>NOTES</u>

- 1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.
- 4. EXISTING TOPOGRAPHIC INFORMATION WAS UPDATED FOR AREAS SOUTH EAST OF COAL ASH LANDFILL AND EAST OF OUTCROP BETWEEN CELLS 1E AND 2E USING CONTOURS FROM DATA COLLECTED IN 1999.
- 5. FLOTATION TAILINGS BASIN DESIGN WAS BASED ON CONTOURS FROM DATA COLLECTED IN 1999. PROPOSED DAM LAYOUTS MAY NOT EXACTLY MATCH THE EXISTING TOPOGRAPHY FROM 2010 LIDAR.


VER NO	DATE	DESCRIPTION		SSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DULY
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A		-		
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radie
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>

		PLANT DRAWING NUMBER:							
		FLOTATION TAILINGS BASIN LEGEND AND SHEET INDEX							
N, DIRECT DULY R OF	DRAWN: CAD	POLY MET MINING, INC. POLYMET HOYT LAKES, MINNESOTA	A .						
OF ADUE She	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277							
51	SCALE: AS SHOWN	DWG. NO. FTB-002	A						

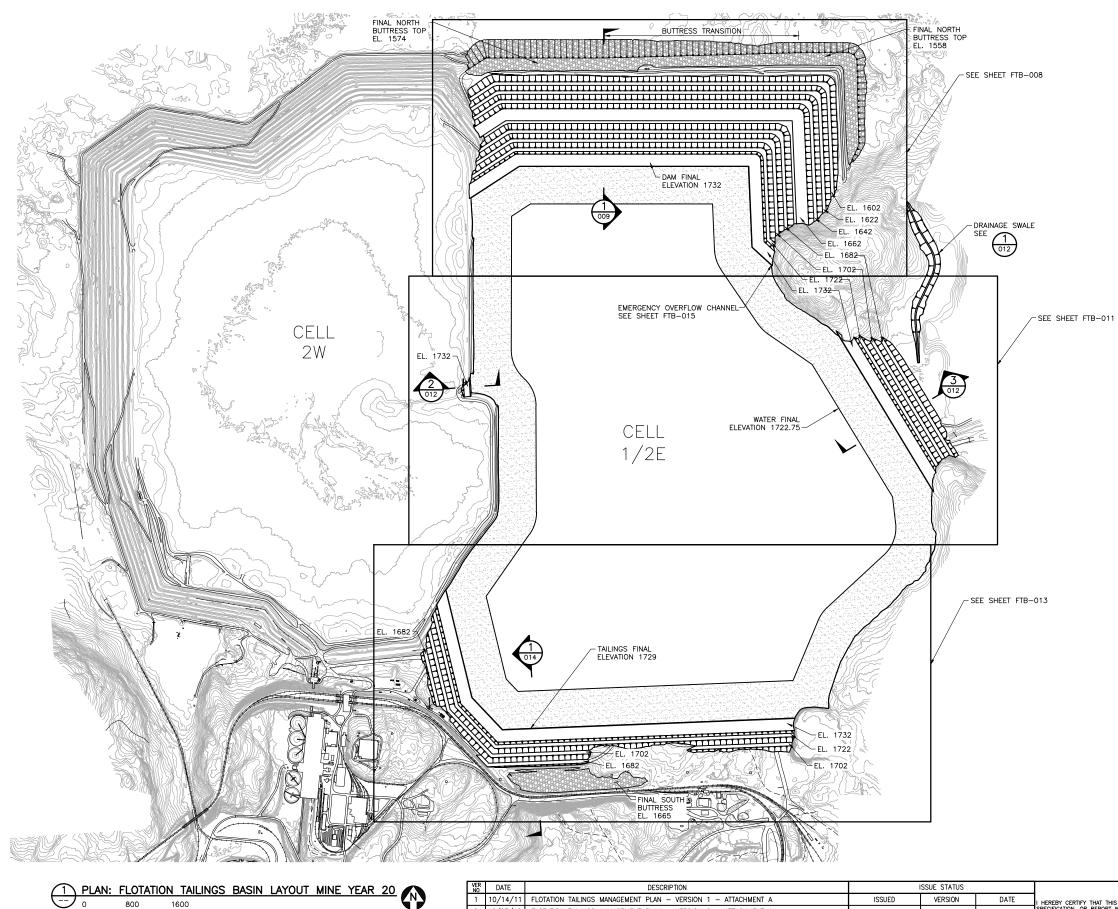
YOUT ECTION ECTION EAR 20 LAYOUT _ CROSS SECTIONS AND DRAINAGE SWALE YOUT ECTION — LAYOUT — SECTIONS — SECTIONS — DETAILS — SEQUENCING

- DETAIL OR SECTION NUMBER, TYPICAL

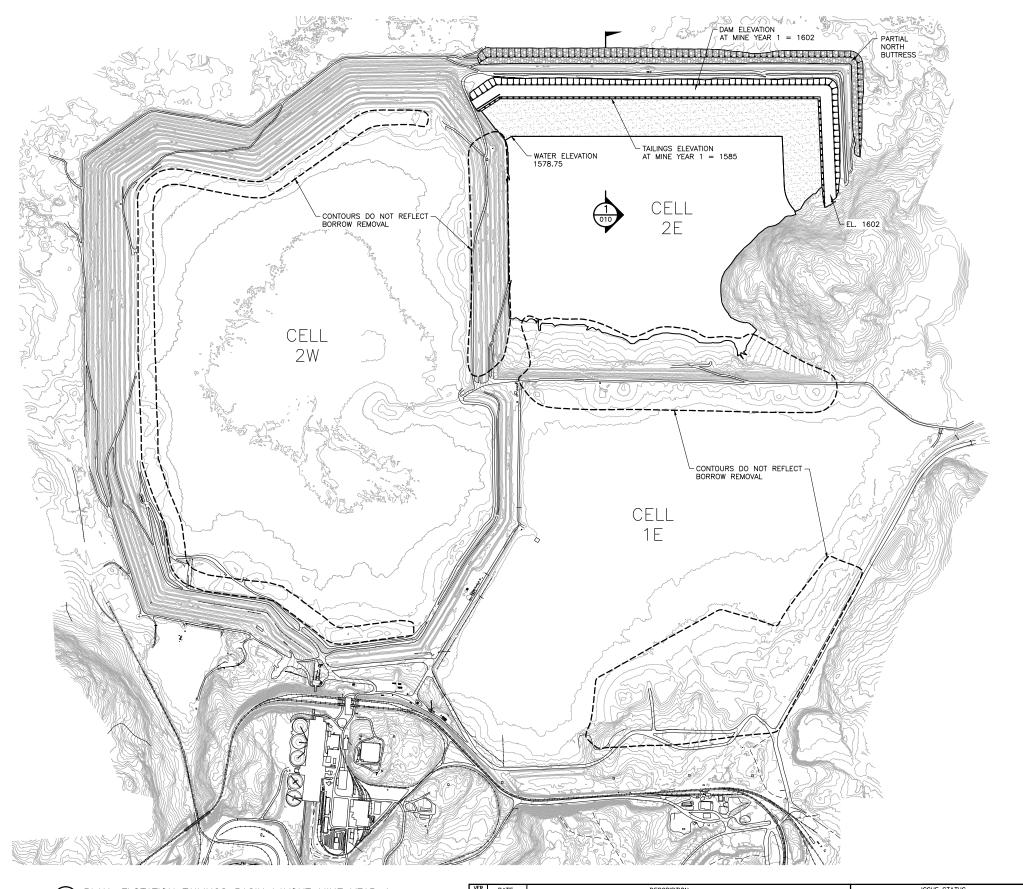
-NTS = NOT TO SCALE

7 05/12/17 PERMIT APPLICATION UPDATES

NOT APPROVED FOR CONSTRUCTION


		PLANT DRAWING NUMBER:	
		FLOTATION TAILINGS BASIN EXISTING CONDITIONS	
N, DIRECT DULY R OF	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
DUE	CHECKED: TJR BARR PROJECT NO.:	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN.	
<u>due</u> 51	23/69-0C29 SCALE: AS SHOWN	DWG. NO. FTB-003 REV	

3. COAL ASH LANDFILL TO BE RELOCATED TO HYDROMET RESIDUE FACILITY OR ALTERNATE PERMITTED FACILITY PRIOR TO TAILINGS DEPOSITION IN CELL 1E.

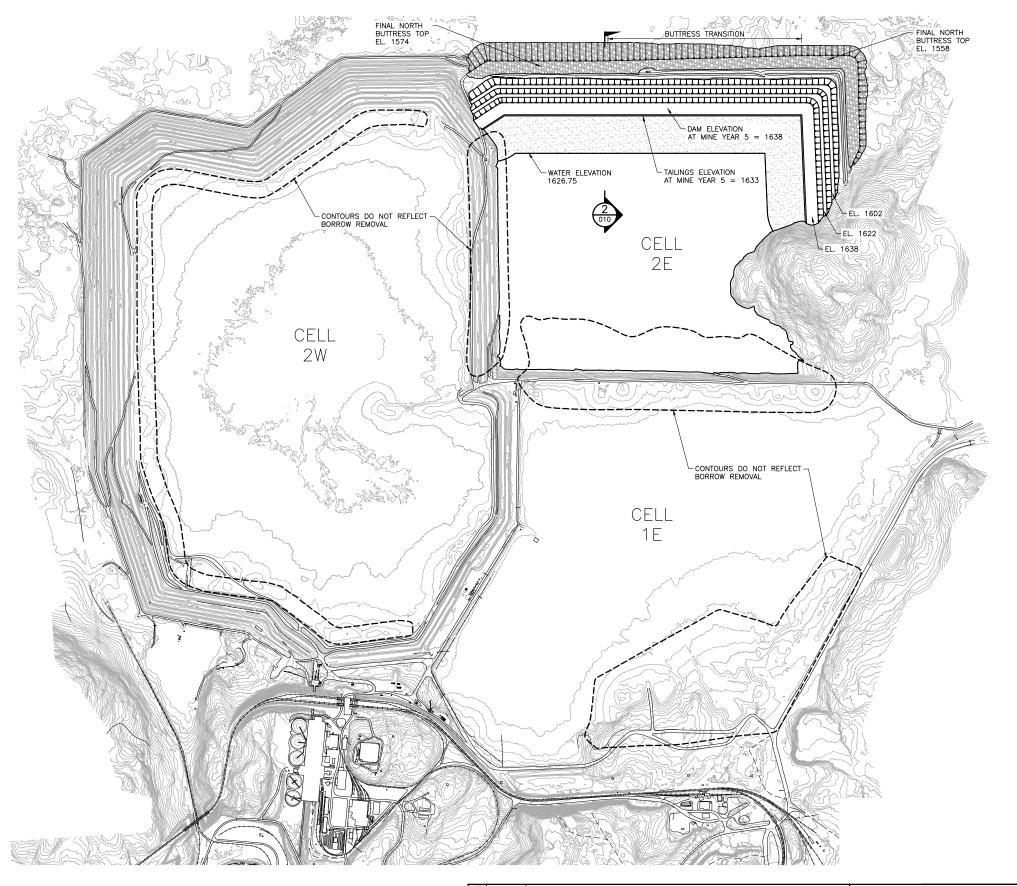

- 2. THE GENERAL BORROW SEQUENCING WILL BE: AREAS THAT WILL BE INUNDATED BY OPERATIONS AREAS NEAREST THE POINT OF USE REMAINING BORROW AREAS

NOTES:

1. CONTOURS DO NOT REFLECT BORROW REMOVAL.

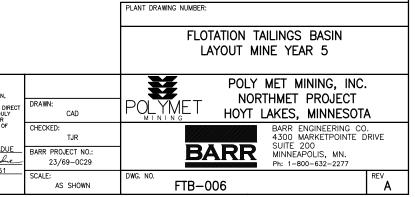
									ATION TAILINGS BASIN OUT MINE YEAR 20
PLAN: FLOTATION TAILINGS BASIN LAYOUT MINE YEAR 20	VER DATE	DESCRIPTION		ISSUE STATUS				M	POLY MET MINING, INC.
	1 10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN			
	2 12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL. ENGINEER UNDER THE LAWS OF THE STATE OF MINNESSTA.	DRAWN:		NORTHMET PROJECT
SCALE IN FEET	3 04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY	CAD		HOYT LAKES, MINNESOTA
	4 11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF	CHECKED:		BARR ENGINEERING CO.
	5 03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A					TJR		4300 MARKETPOINTE DRIVE
	6 05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE	BARR PROJECT NO .:		SUITE 200 MINNEAPOLIS, MN.
	7 05/12/17	PERMIT APPLICATION UPDATES	CONSTRUCTION			SIGNATURE Thomas J. Radue	23/69-0C29		Ph: 1-800-632-2277
			NOT APPROVED FO	R CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>	SCALE: AS SHOWN	DWG. NO.	

(1)	PLAN:	FLOTAT	ION	TAILINGS	BASIN	LAYOUT	MINE	YEAR	1	
9	0 	800	16	500 J						\mathbf{O}
	SC	ALE IN FEE	Т							

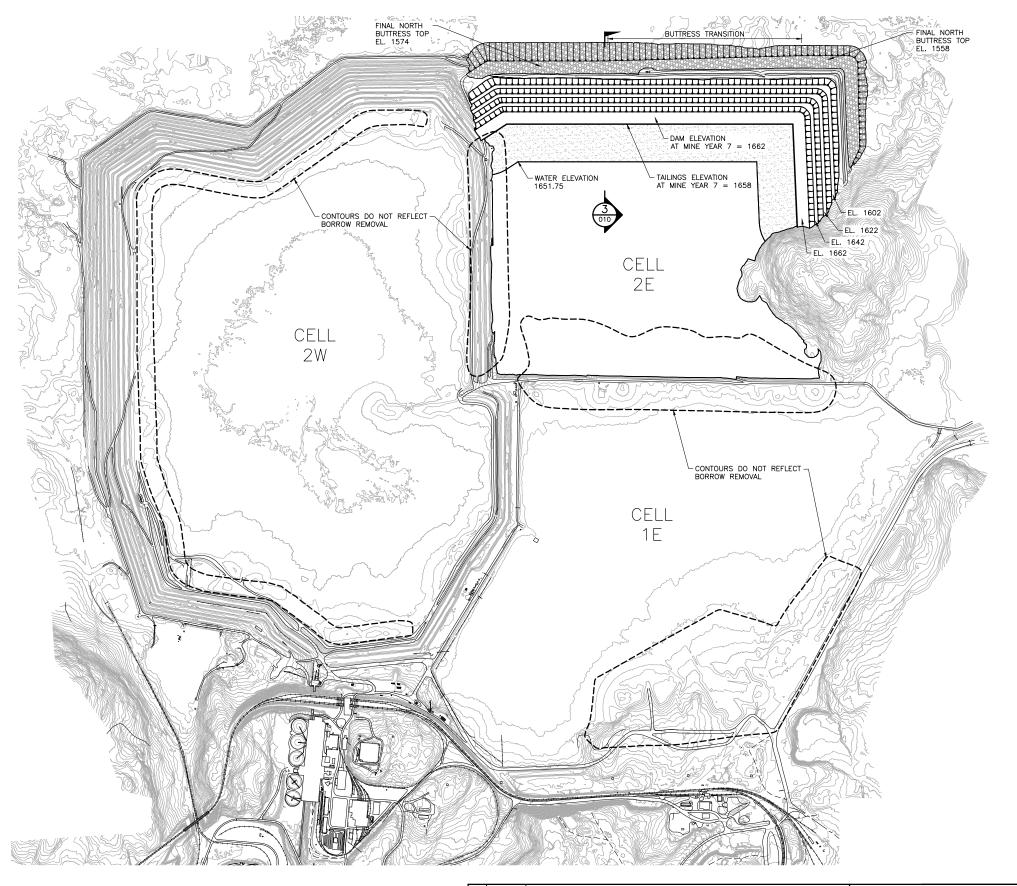

[VER NO	DATE	DESCRIPTION		ISSUE STATUS		
	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
	3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DULY
	4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
	6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
	7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rachie
_ [NOT APPROVED FOR	CONSTRUCTION		DATE 5/12/17 LICENSE# 20951

		FLOTATION TAILINGS BASIN LAYOUT MINE YEAR 1						
AN, 7 DIRECT DULY ER 3 OF	DRAWN: CAD	POLY MET MINING, INC. POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA						
ADUE	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277						
51	SCALE: AS SHOWN	DWG. NO. FTB-005						

PLANT DRAWING NUMBER:


2. CONSTRUCT NORTH BUTTRESS FOLLOWING THE SCHEDULE AND ELEVATIONS SPECIFIED IN THE FLOTATION TAILINGS MANAGEMENT PLAN.

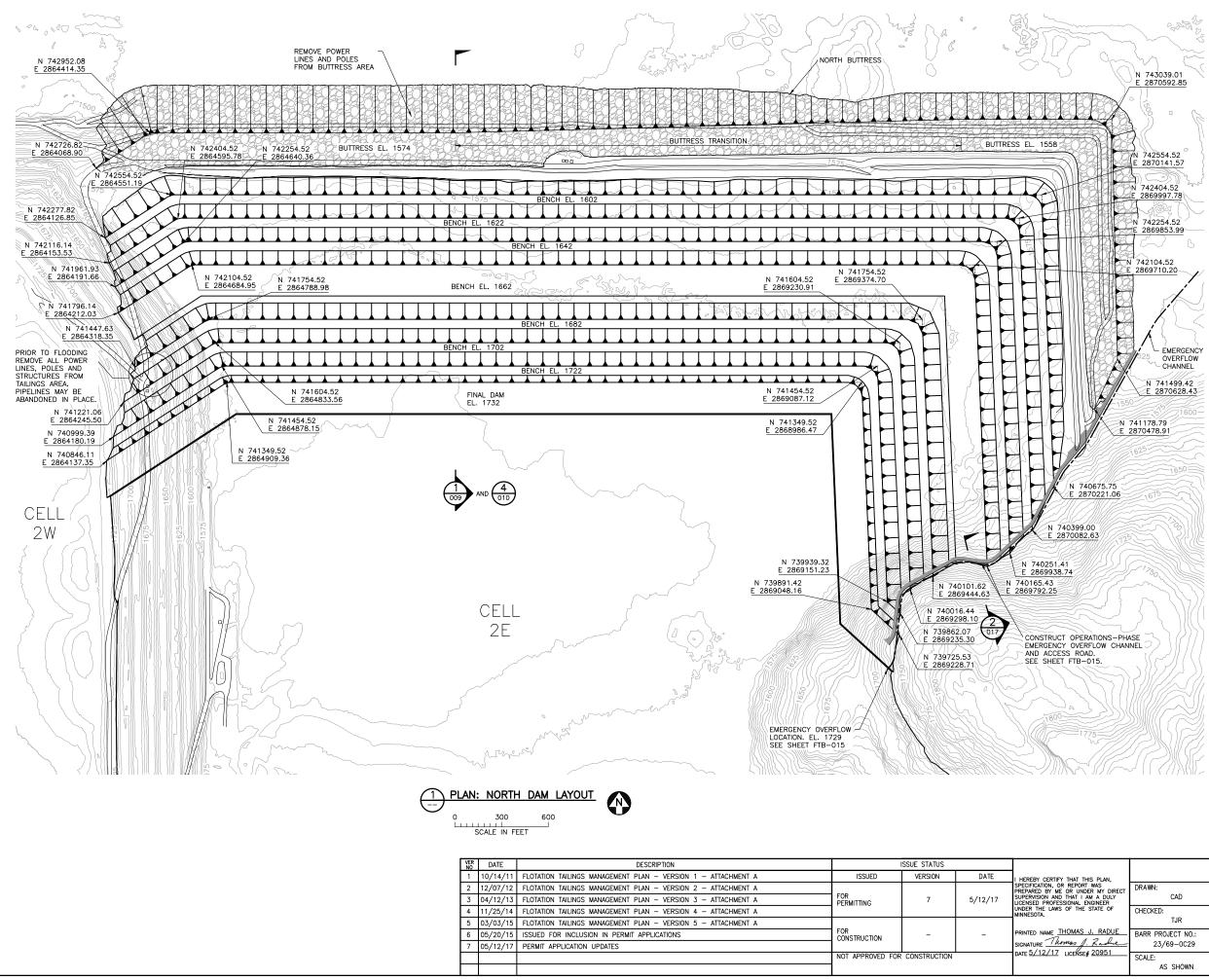
NOTES: 1. SEE SHEET FTB-015 FOR OPERATIONS-PHASE EMERGENCY OVERFLOW CHANNEL.



(1)	PLAN:	FLOTAT	ION 1	TAILINGS	BASIN	LAYOUT	MINE	YEAR	5	
	0	800	160	00						\mathbf{O}
	SC	ALE IN FEE	Т							

	/ER NO	DATE	DESCRIPTION		SSUE STATUS		
	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
	3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	7		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
	6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
	7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radie
Г				NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>
				1			

NOTES:

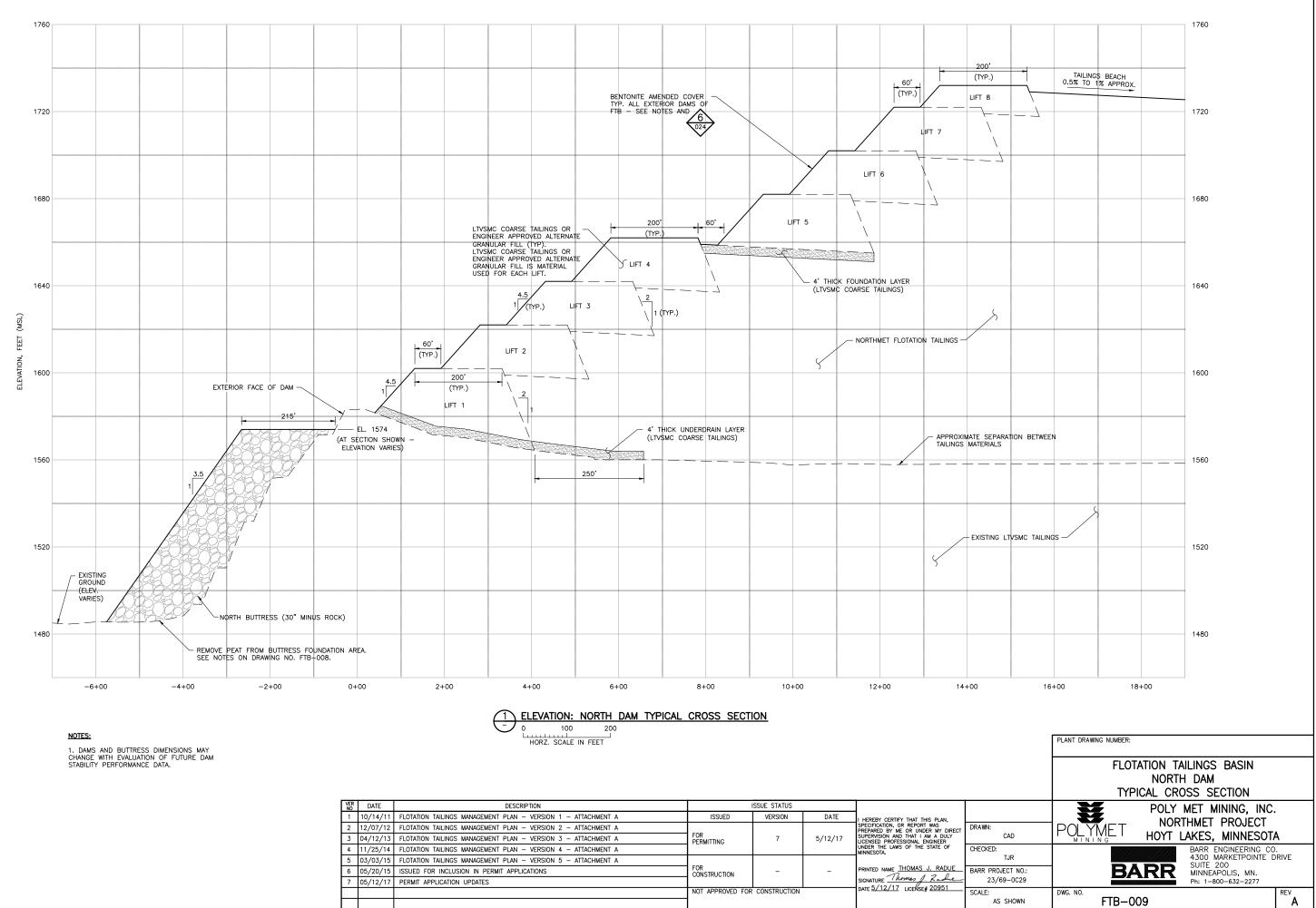

1	 PLAN:	FLOTATION	TAILINGS	BASIN	LAYOUT	MINE	YEAR	7	
1	 0		600						$\mathbf{\Theta}$
	SC	ALE IN FEET							

[VER NO	DATE	DESCRIPTION		SSUE STATUS		
	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
	3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DUI LICENSED PROFESSIONAL ENGINEER
	4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
	6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
	7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rachie
				NOT APPROVED FOR	CONSTRUCTION		DATE 5/12/17 LICENSE# 20951

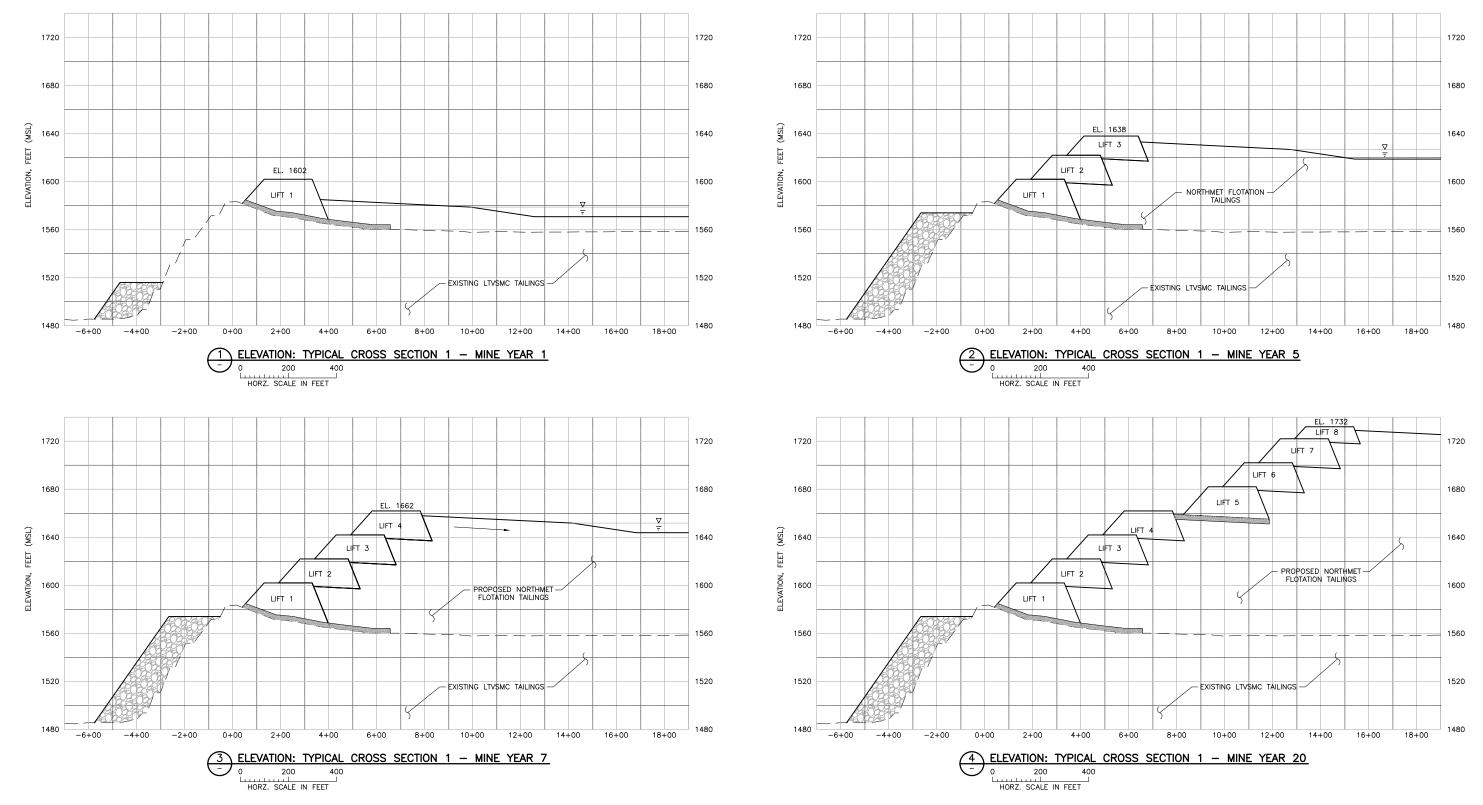
FLOTATION TAILINGS BASIN	
LAYOUT MINE YEAR 7	
POLY MET MINING, INC	C.
CAD CAL TIVIE I HOYT LAKES, MINNESO	TA
CHECKED. DARK EINGINEERING C	
TJR 4300 MARKETPOINTE SUITE 200	DRIVE
BARR PROJECT NO.: BARR MINNEAPOLIS, MN.	
51	
SCALE: DWG. NO. FTB-007	REV A

PLANT DRAWING NUMBER:

NOTES: 1. LAST YEAR BEFORE COMBINING CELLS 2E AND 1E FOR TAILINGS. 2. SEE SHEET FTB-015 FOR OPERATIONS-PHASE EMERGENCY OVERFLOW CHANNEL.


NOTES:

1. DAM ACCESS ROAD LOCATION IS APPROXIMATE. FIELD LOCATE TO PROVIDE PREFERRED SLOPE AND DRAINAGE.

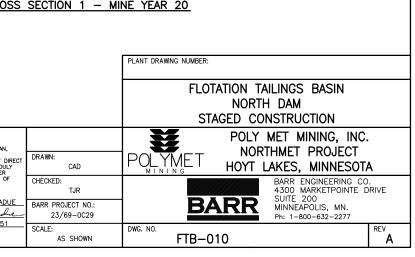

2. EXTEND ACCESS ROAD TO AREA 5 STOCKPILES AND TO PLANT (NOT SHOWN).

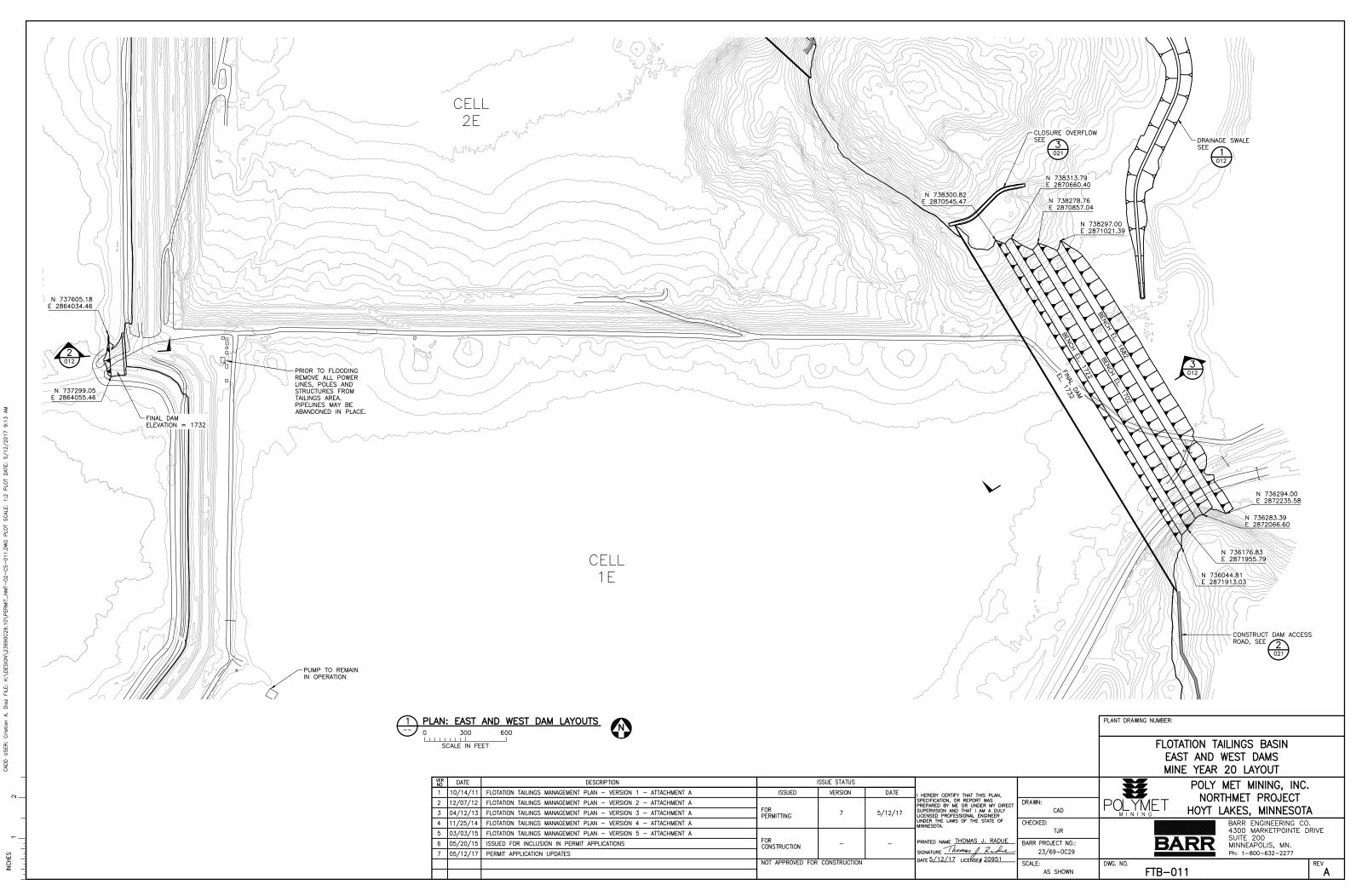
3. PEAT TO BE REMOVED FROM BUTTRESS FOUNDATION AREA UNDER THE DIRECTION OF A GEOTECHNICAL ENGINEER.

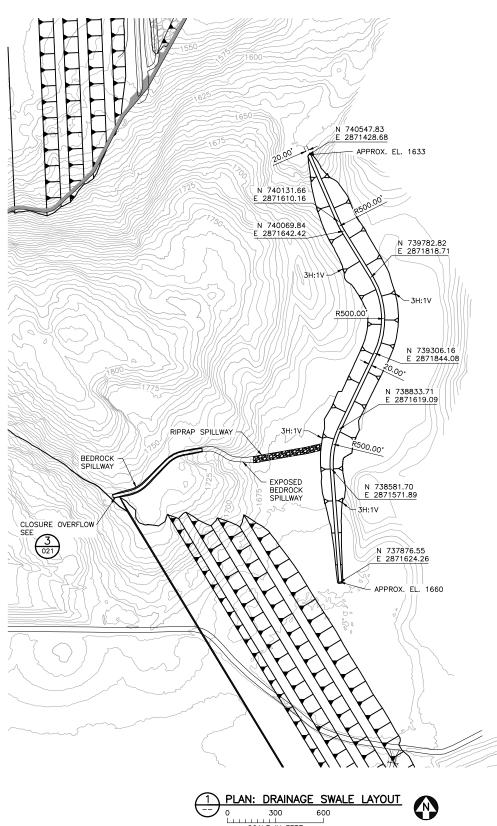
		PLANT DRAWING NUMBER:					
		FLOTATION TAILINGS BASIN NORTH DAM MINE YEAR 20 LAYOUT					
AN, DIRECT DULY ER OF	DRAWN: CAD	POLY MET MINING, INC. POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA					
ADUE_	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277					
51	SCALE: AS SHOWN	THE FTB-008 REV A					

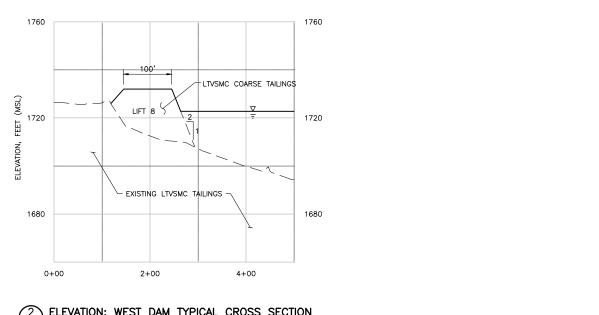
VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR	-		PRINTED NAME THOMAS J. RADUE
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rachie DATE 5/12/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION		DATE 37 127 17 LICENSE# 20951

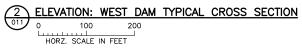
NOTE:

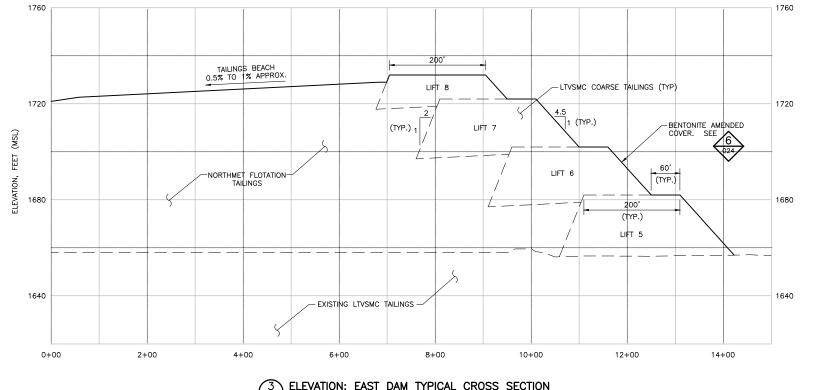

 DAM AND BUTTRESS DIMENSIONS MAY CHANGE WITH EVALUATION OF FUTURE DAM STABILITY PERFORMANCE DATA.


2. PLACE BENTONITE AMENDED SOIL COVER ON OUTSIDE FACE OF NEW DAMS.

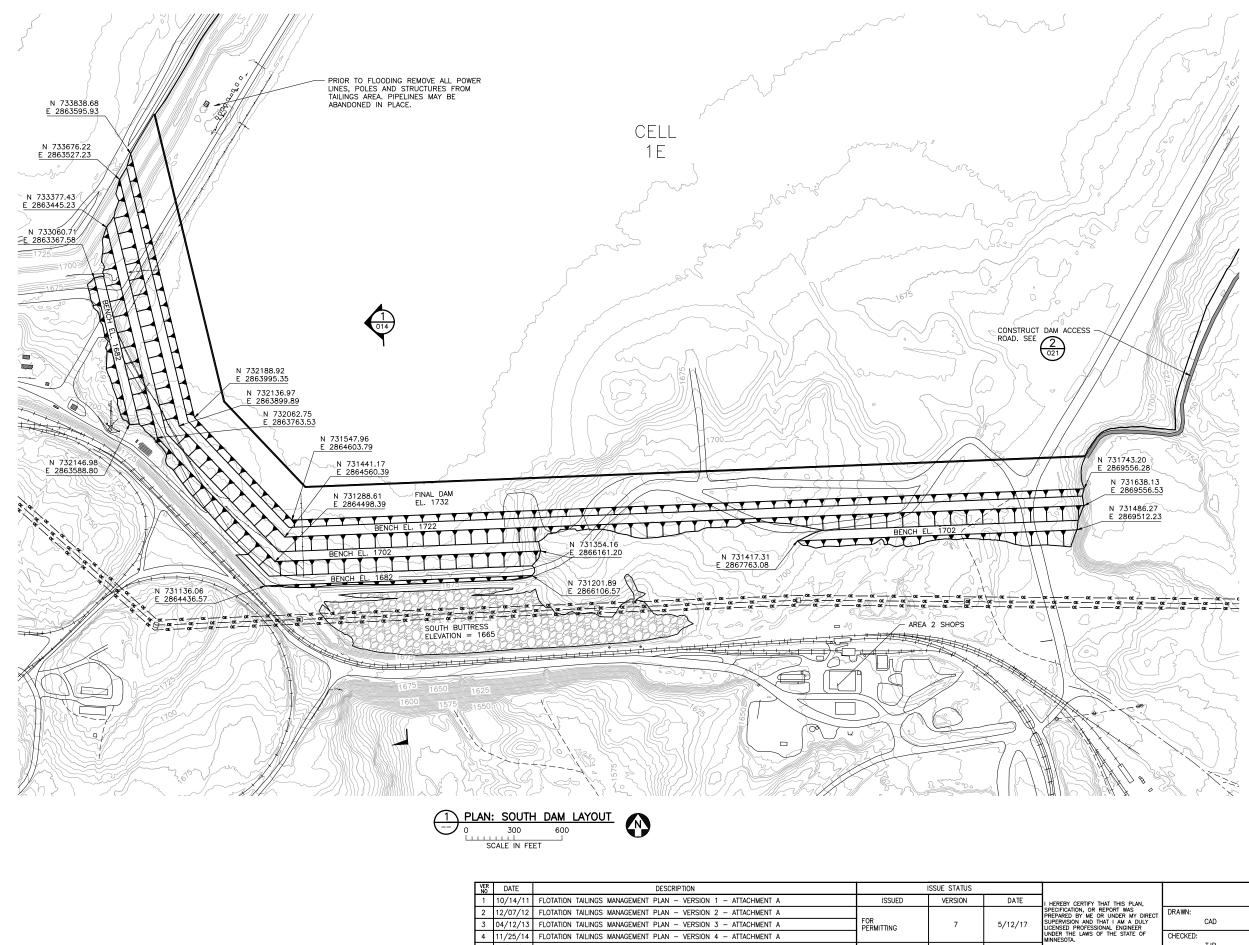

3. CONSTRUCT NORTH BUTTRESS FOLLOWING THE SCHEDULE AND ELEVATIONS TO BE SPECIFIED AT TIME OF CONSTRUCTION.


	VER NO	DATE	DESCRIPTION		SSUE STATUS		
Γ	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
- [2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
- [3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DULY
- [4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
- [5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
- [6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE
- [7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radie
Г				NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>


INCHES



3 011		DN: EAST DAM TYPICAL	CROSS SECTION	L	
				PLANT DRAWING NUMBER:	
				FLOTATION TAILINGS BAS EAST AND WEST DAMS TYPICAL SECTIONS AND DRAINAGE S	CROSS
TATUS				POLY MET MINING	, INC.
RSION 7	DATE 5/12/17	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	DRAWN: CAD	POLYMET NORTHMET PRO	
-	_	UNDER THE LAWS OF THE STATE OF MINNESOTA. PRINTED NAME <u>THOMAS J. RADUE</u> SIGNATURE <i>Thomas J. Radue</i>	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEE 4300 MARKETF SUITE 200 MINNEAPOLIS, Ph: 1-800-632-	POINTE DRIVE
TRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>	SCALE: AS SHOWN	DWG. NO. FTB-012	REV


	25			01	ىبىسىآ 🗧	100 200		
								PLANT DRAWING NUMBER:
								FLOTATION TAILINGS BASIN EAST AND WEST DAMS TYPICAL CROSS SECTIONS AND DRAINAGE SWALE
VER NO	DATE	DESCRIPTION		ISSUE STATUS				POLY MET MINING, INC.
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,		
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	CAD	TOL TIVIL I HOYT LAKES, MINNESOTA
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	BARR ENGINEERING CO.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				7	TJR	4300 MARKETPOINTE DRIVE SUITE 200
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE	BARR PROJECT NO .:	BARR SUITE 200 MINNEAPOLIS, MN.
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rache	23/69-0C29	Ph: 1-800-632-2277
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>	SCALE: AS SHOWN	DWG. NO. FTB-012 REV

NOTES:

1.CLOSURE OVERFLOW IS FOR EMERGENCY OVERFLOW ONLY UNTIL POND WATER QUALITY MEETS DISCHARGE WATER QUALITY REQUIREMENTS.

2. DAM DIMENSIONS MAY CHANGE WITH EVALUATION OF FUTURE DAM STABILITY PERFORMANCE DATA.

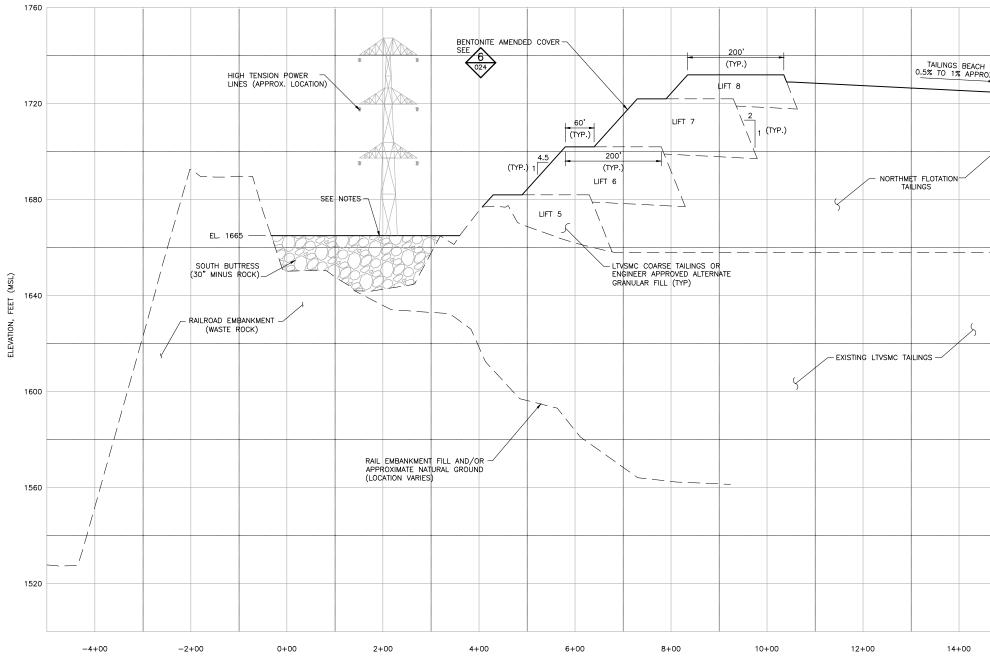
M

5 03/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A

FOR CONSTRUCTION

-

NOT APPROVED FOR CONSTRUCTION

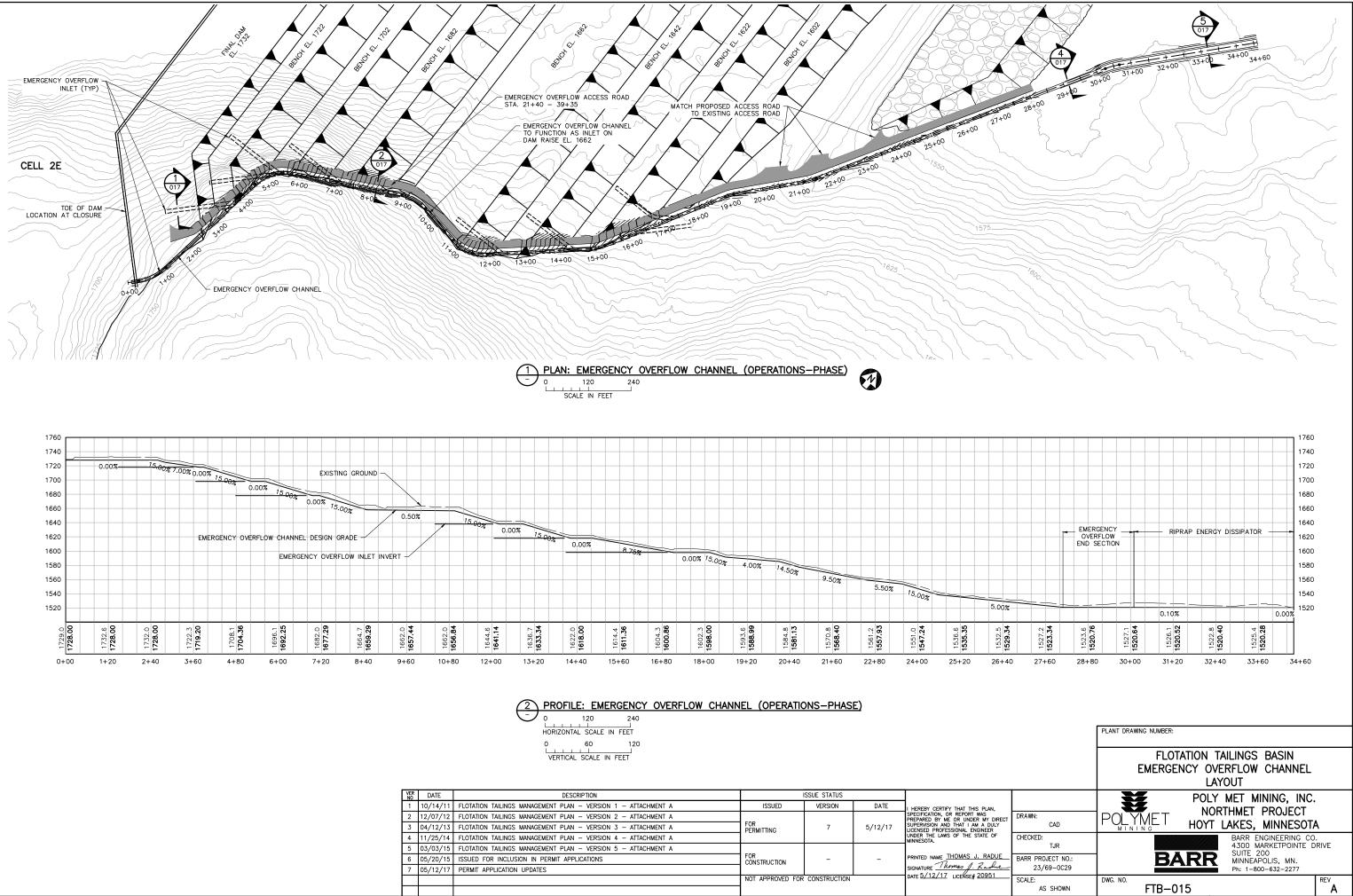

6 05/20/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS

7 05/12/17 PERMIT APPLICATION UPDATES

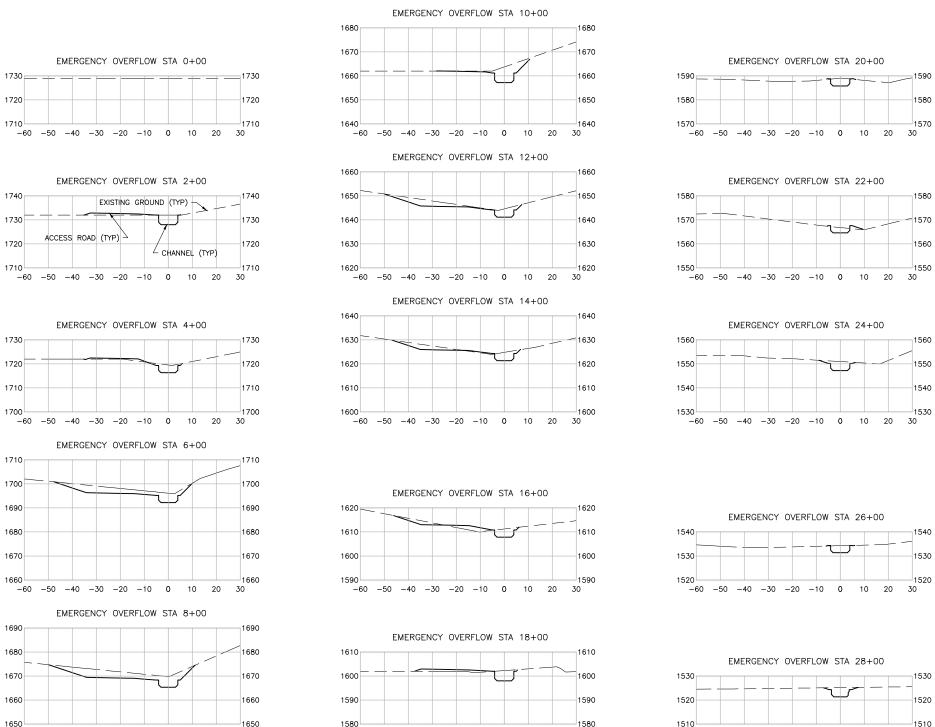
:22 NCHES

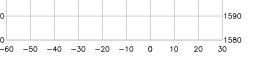
N

	PLANT DRAWING NUMBER:
	FLOTATION TAILINGS BASIN SOUTH DAM YEAR 20 LAYOUT
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED FROFESSIONAL ENGINEER	POLY MET MINING, INC. POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA
UNDER THE LAWS OF THE STATE OF CHECKED: MINNESOTA. TJR PRINTED NAME THOMAS J. RADUE BARR PROJECT NO.: SIGNATURE Thomas J. Radue 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277
DATE 5/12/17 LICEÑSE# 20951 SCALE: AS SHOWN	DWG. NO. FTB-013


NOTES:

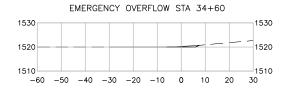
1. DAM DIMENSIONS MAY CHANGE WITH EVALUATION OF FUTURE PERFORMANCE DATA.

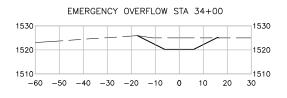

2. HIGH TENSION POWER LINES SHOWN FOR REFERENCE. TOWER FOUNDATIONS ARE LOCATED OUTSIDE OF THE AREA COVERED BY THE BUTTRESS.

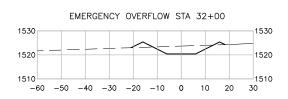

Image: Series of the series	1560 1520	
	1520	
$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	1520	
	1520	
	1520	
	1520	
2+00 4+00 6+00 8+00 10+00 12+00 14+00 16+00	00 18+00	
ſ	PLANT DRAWING NUMBER:	
	FLOTATION TAILINGS BASIN SOUTH DAM	
	FLOTATION TAILINGS BASIN	
DATE DESCRIPTION ISSUE STATUS	FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS	٧S
DATE DESCRIPTION ISSUE STATUS D/14/11 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A ISSUED VERSION DATE LIFERERY OFFICEY THAT THIS PLAN	FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLY MET MINING,	NS G, INC.
DATE DESCRIPTION DESCRIPTION SUBJECT ATTACHMENT A ISSUE STATUS D/14/11 FLOTATION TAILINGS MANAGEMENT PLAN – VERSION 1 – ATTACHMENT A ISSUED VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY DIRECT DIREC	FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLY MET MINING,	NS G, INC. JECT
DATE DESCRIPTION INCOMPANY DESCRIPTION INCOMPANY DESCRIPTION INCOMPANY DESCRIPTION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A ISSUED VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS PRESENCATION OR REPORT WAS PRESENTED AND REPORT WAS PRESENTED OR REPORT	FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLYMET MINING, NORTHMET PROJECT HOYT LAKES, MINNES	NS G, INC. JECT NESOTA
DATE DESCRIPTION SINCE STATUS DESCRIPTION SINCE STATUS DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME FOR UNDER MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A SPECIFICATION, OR REPORT WAS PREPARED BY ME FOR UNDER MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A PERMITTING TALLINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A PERMITTING TO UNDER THE LAWS OF THE STATE OF THE UNSON OF THE STATE OF	FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLY MET MINING, NORTHMET PROJECT HOYT LAKES, MINNET TJR	NS G, INC. JECT NESOTA ERING CO.
DATE DESCRIPTION ISSUE STATUS DATE DESCRIPTION DATE DESCRIPTION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A PORTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A PORTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A PERMITTING PERMI	CAD TJR ECT NO:: FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLY MET MINING, NORTHMET PROJEC HOYT LAKES, MINNER BARR ENGINEERIN 4300 MARKETPOIL SUITE 200 MINNEAPOLIS, MN	NS G, INC. JECT NESOTA ERING CO. POINTE DRIV
DATE DESCRIPTION SUBJECT ALLINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A 2/07/12 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A 2/07/12 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A 1/25/14 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A 1/25/14 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A 3/03/15 FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A	CAD TJR ECT NO:: FLOTATION TAILINGS BASIN SOUTH DAM TYPICAL CROSS SECTIONS POLY MET MINING, NORTHMET PROJEC HOYT LAKES, MINNER BARR ENGINEERIN 4300 MARKETPOIL SUITE 200 MINNEAPOLIS, MN	NS G, INC. JECT NESOTA ERING CO. POINTE DRIV MN.

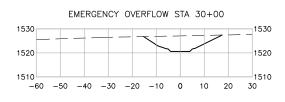
					1760	
ł ROX.					1720	
×						
					1680	
					1640	
					1600	
					1560	
					1520	
	16-	+00	18-	-00		

VED						
VER NO	DATE	DESCRIPTION		SSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radie
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>

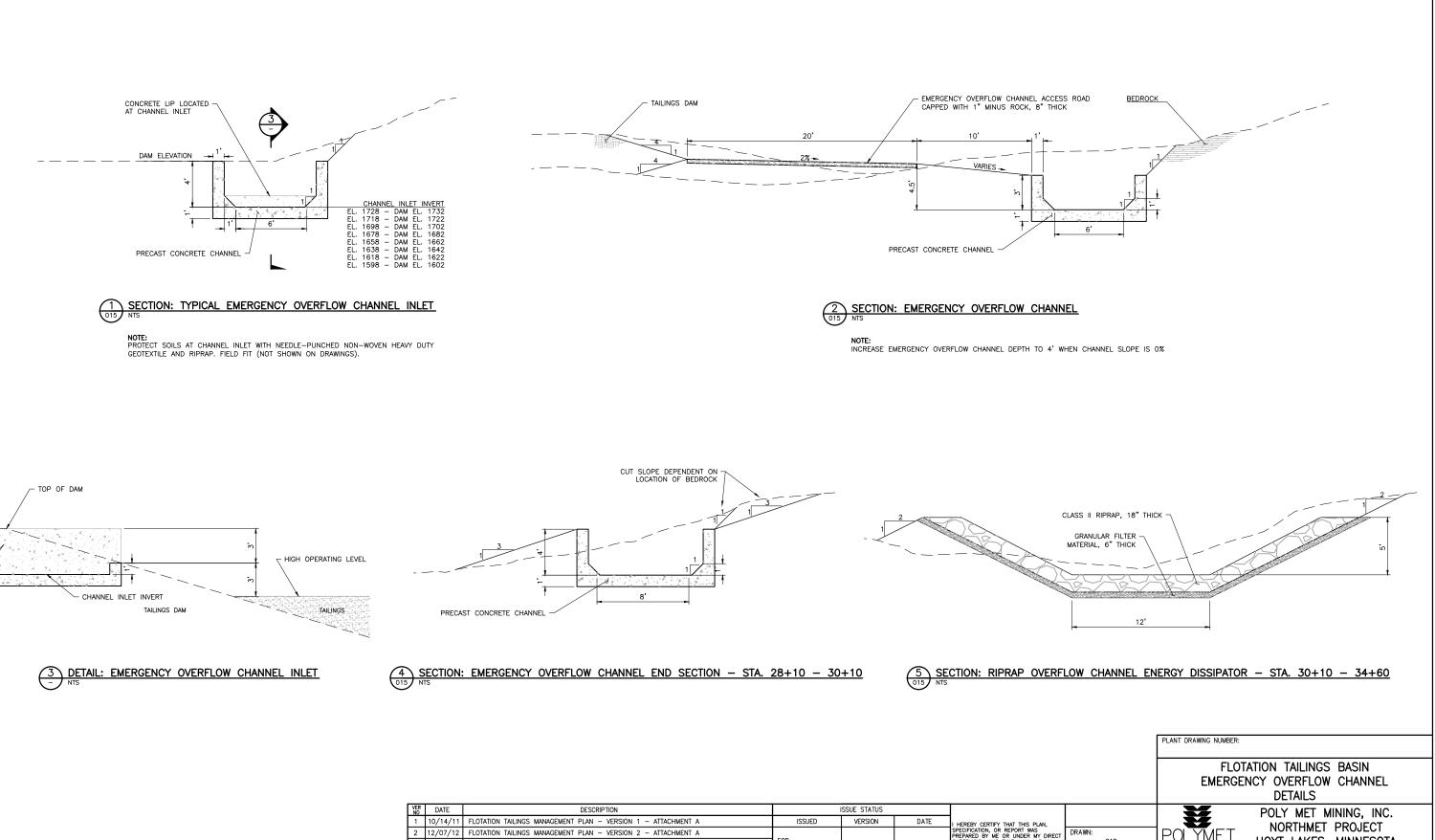


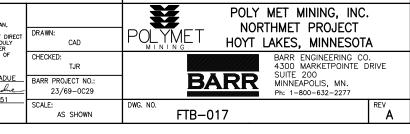


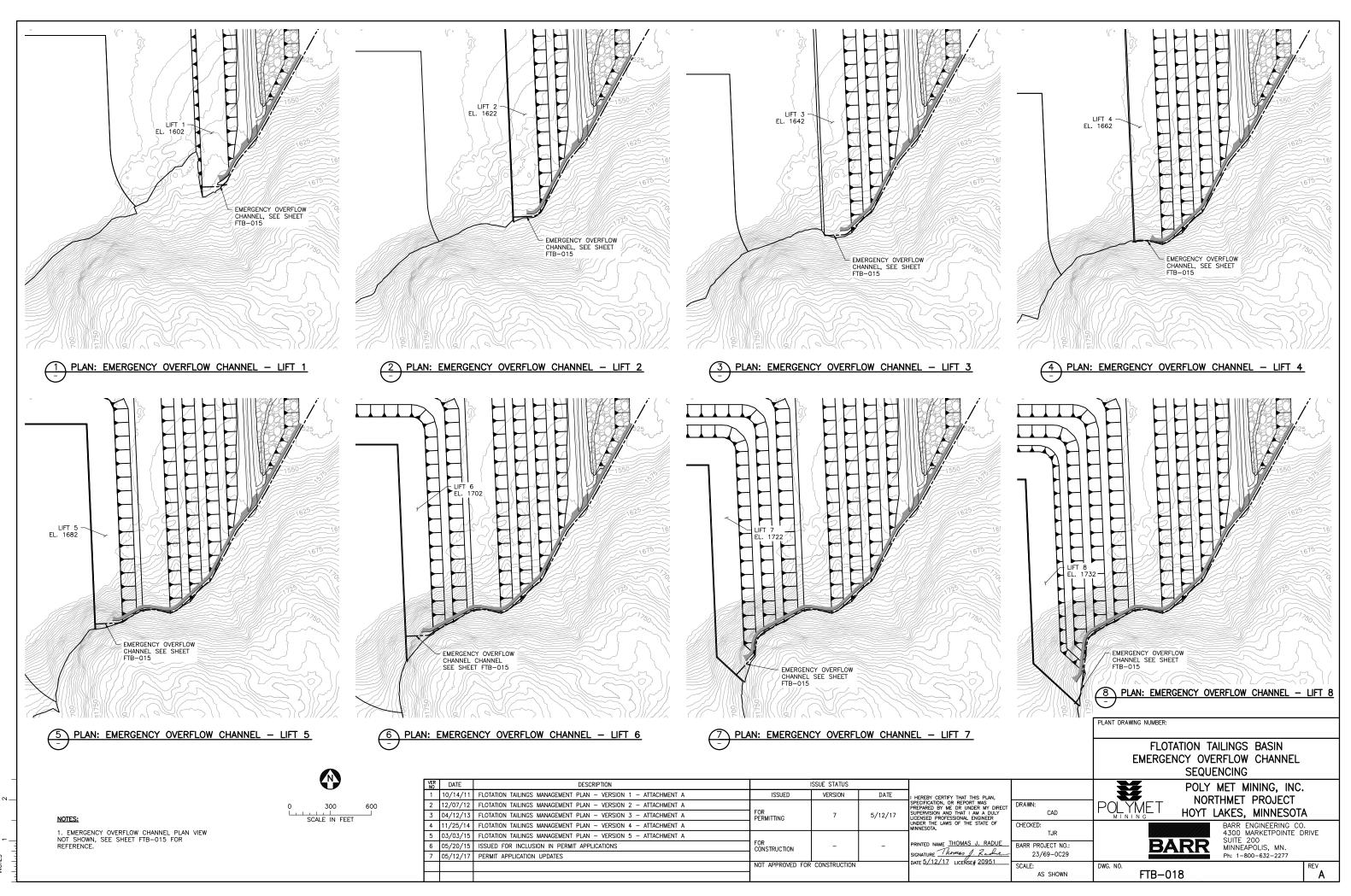

	1590 1580 —60	1580 1	520 510 -60 -50 -40 -	-30 -20 -1	0 0 10	1520 1510 20 30			
		$ \begin{array}{c c} \hline 1 \\ \hline 5 \\ \hline 0 \\ \hline 20 \\ \hline 40 \end{array} $	RFLOW CHANNI	<u>EL_</u>				PLANT DRAWING NUMBER:	
		SCALE IN FEET						FLOTATION TAILINGS BASIN EMERGENCY OVERFLOW CHANNEL SECTIONS	
VER NO	DATE	DESCRIPTION		ISSUE STATUS				POLY MET MINING, INC.	
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,			
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:		
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A		7	5/12/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	CAD		
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	BARR ENGINEERING CO.	
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A					TJR	4300 MARKETPOINTE DRIV	VE
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE	BARR PROJECT NO .:	BARR SUITE 200 MINNEAPOLIS, MN.	
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rache DATE 5/12/17 LICENSE# 20951	23/69-0C29	Ph: 1-800-632-2277	
			NOT APPROVED FOR	CONSTRUCTION		DATE 37 127 17 LICENSE# 20931	SCALE: AS SHOWN		EV.
							AS SHOWN	FTB-016	А

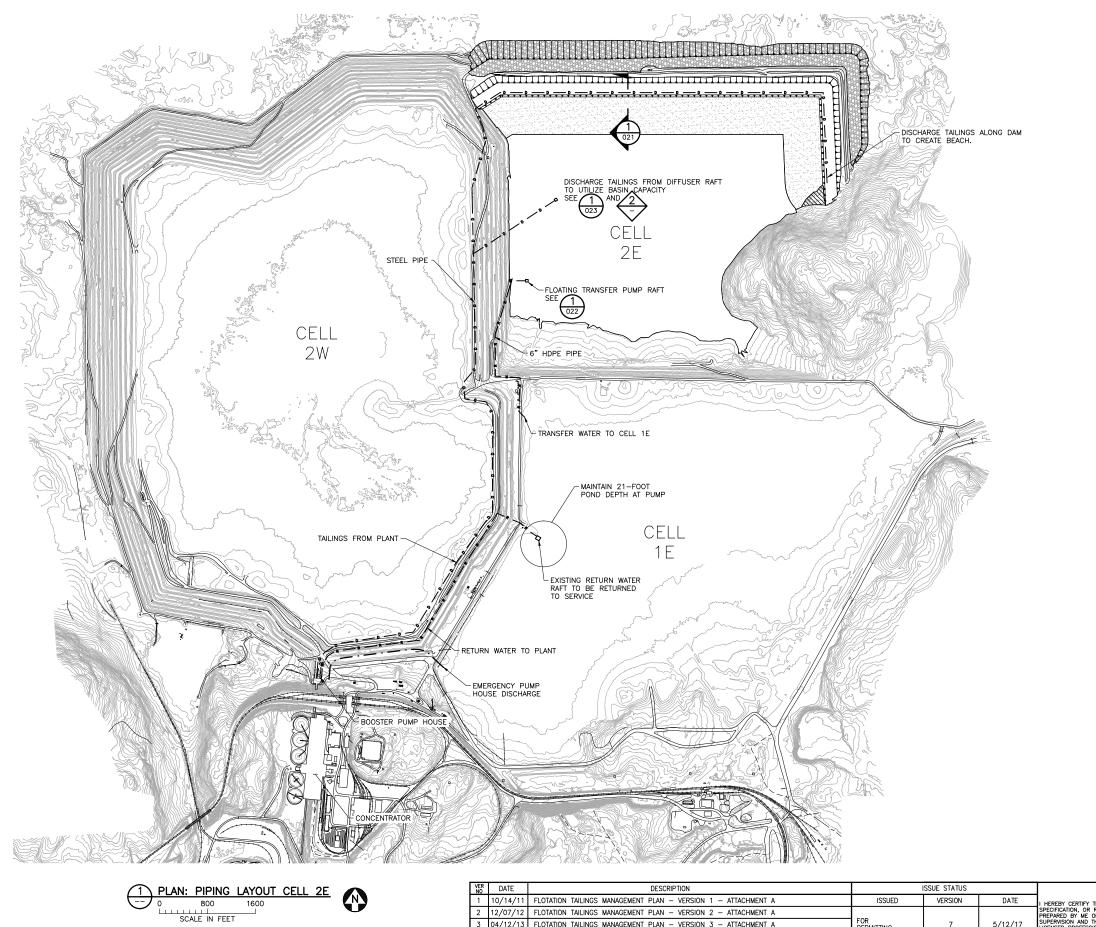

Ν.

-60 -50 -40 -30 -20 -10 0 10 20 30

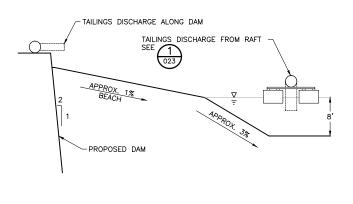


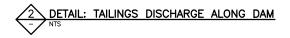




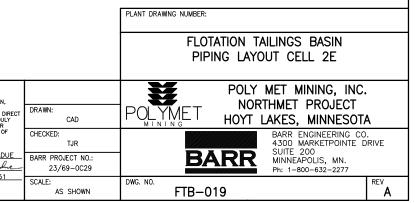

-1540

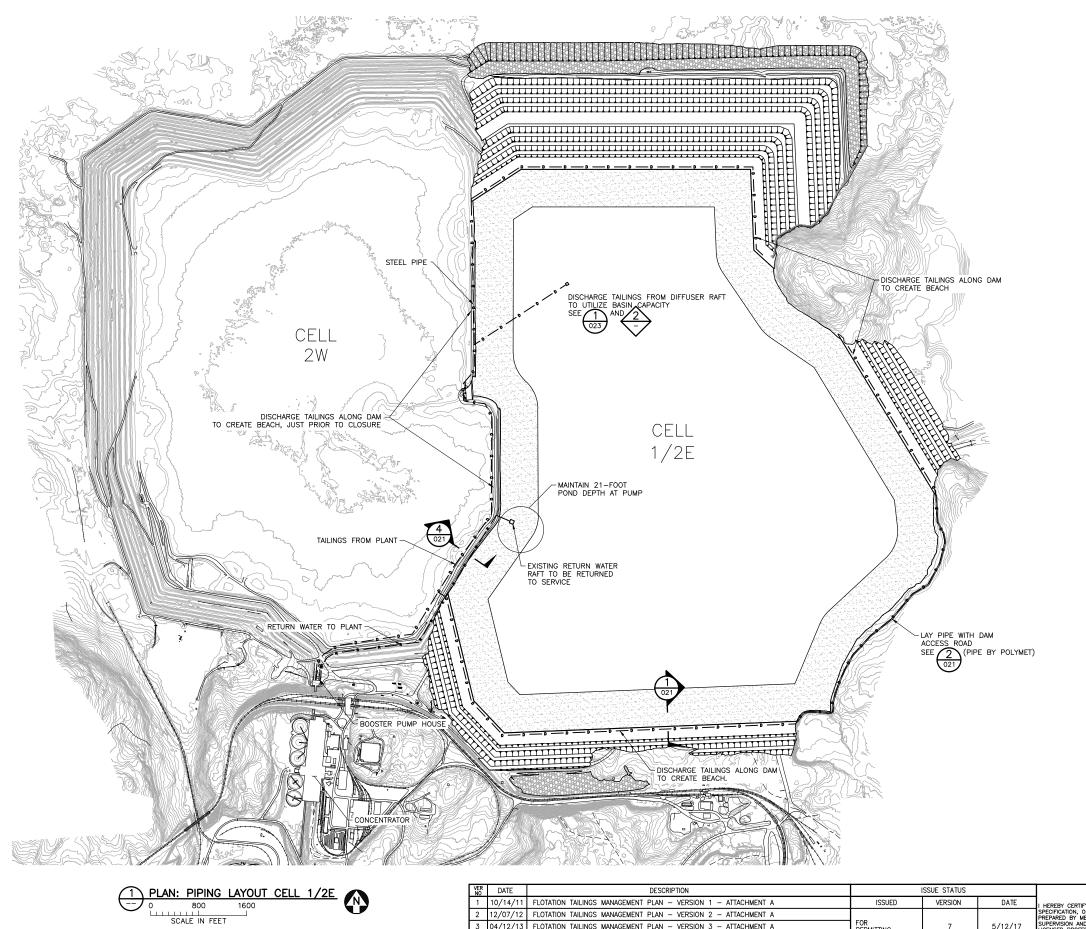
VE NO	DATE	DESCRIPTION		SSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADU
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rachie DATE 5/12/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION		DATE 3/ 12/ 17 LICENSE# 20931





VER NO	DATE	DESCRIPTION	-	SSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A	-			UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RADUE
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rache
			NOT APPROVED FOR	CONSTRUCTION		DATE 5/12/17 LICENSE# 20951


INCHES

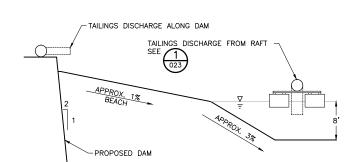


NOTES:

- 1. CONTOURS DO NOT REFLECT BORROW REMOVAL.
- 2. PIPELINE LOCATIONS ARE PRELIMINARY.

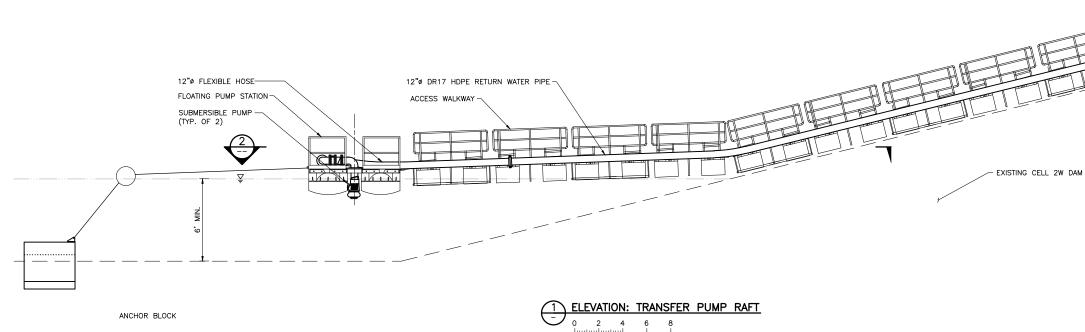
Γ	VER NO	DATE	DESCRIPTION		SSUE STATUS		
	1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
	3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
	6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
	7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radie DATE 5/12/17 LICENSE# 20951
				NOT APPROVED FOR	CONSTRUCTION		DATE 37 127 17 LICENSE# 20931

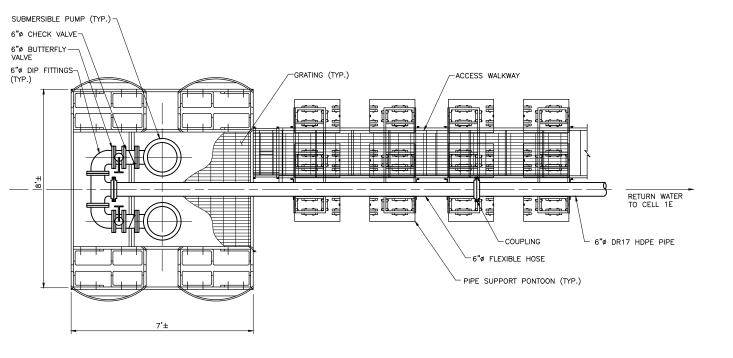
INCHES


		PLANT DRAWING NUMBER:
		FLOTATION TAILINGS BASIN PIPING LAYOUT CELL 1/2E
AN, ' DIRECT DULY ER OF	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA
OF ADUE S1	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277
51	SCALE: AS SHOWN	DWG. NO. FTB-020


1. PIPELINE LOCATIONS ARE PRELIMINARY.

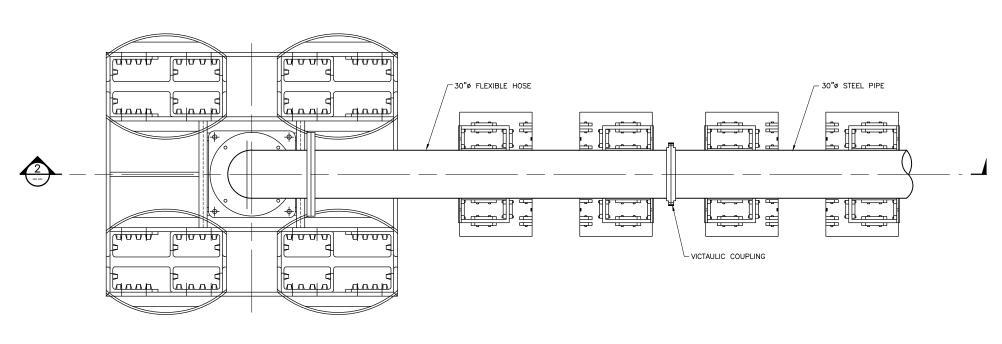
NOTES:



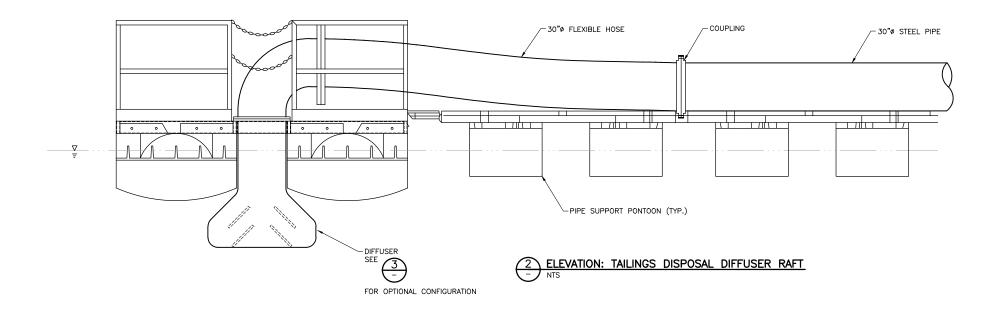


VER NO	DATE	DESCRIPTION	1	SSUE STATUS		
<u>NO</u>	10/14/11		ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR PERMITTING	7	5/12/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE OF MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADUE
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rache DATE 5/12/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION		DATE 37 12/ 17 LICENSE# 20931
						•

SCALE IN FEET

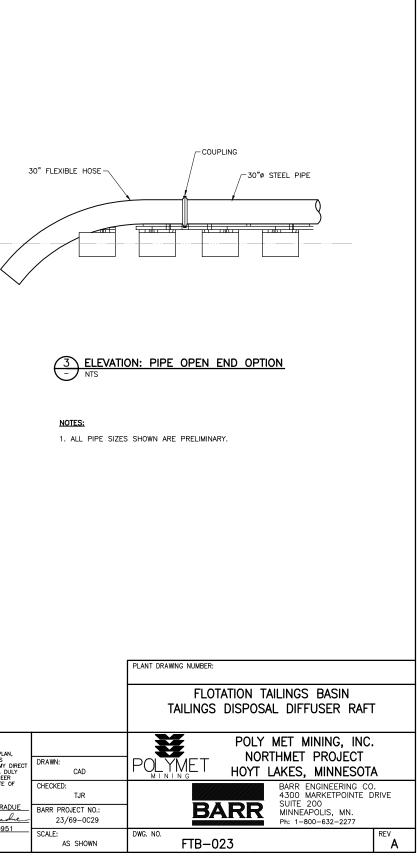

VER NO	DATE					
	DAIL	DESCRIPTION		SSUE STATUS		
1 1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2 1	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIF
3 0	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	7		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
4 1	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A	-			UNDER THE LAWS OF THE STATE OF MINNESOTA.
5 0	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6 0	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-		PRINTED NAME THOMAS J. RADU
7 0	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Radu
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>5/12/17</u> LICENSE# <u>20951</u>

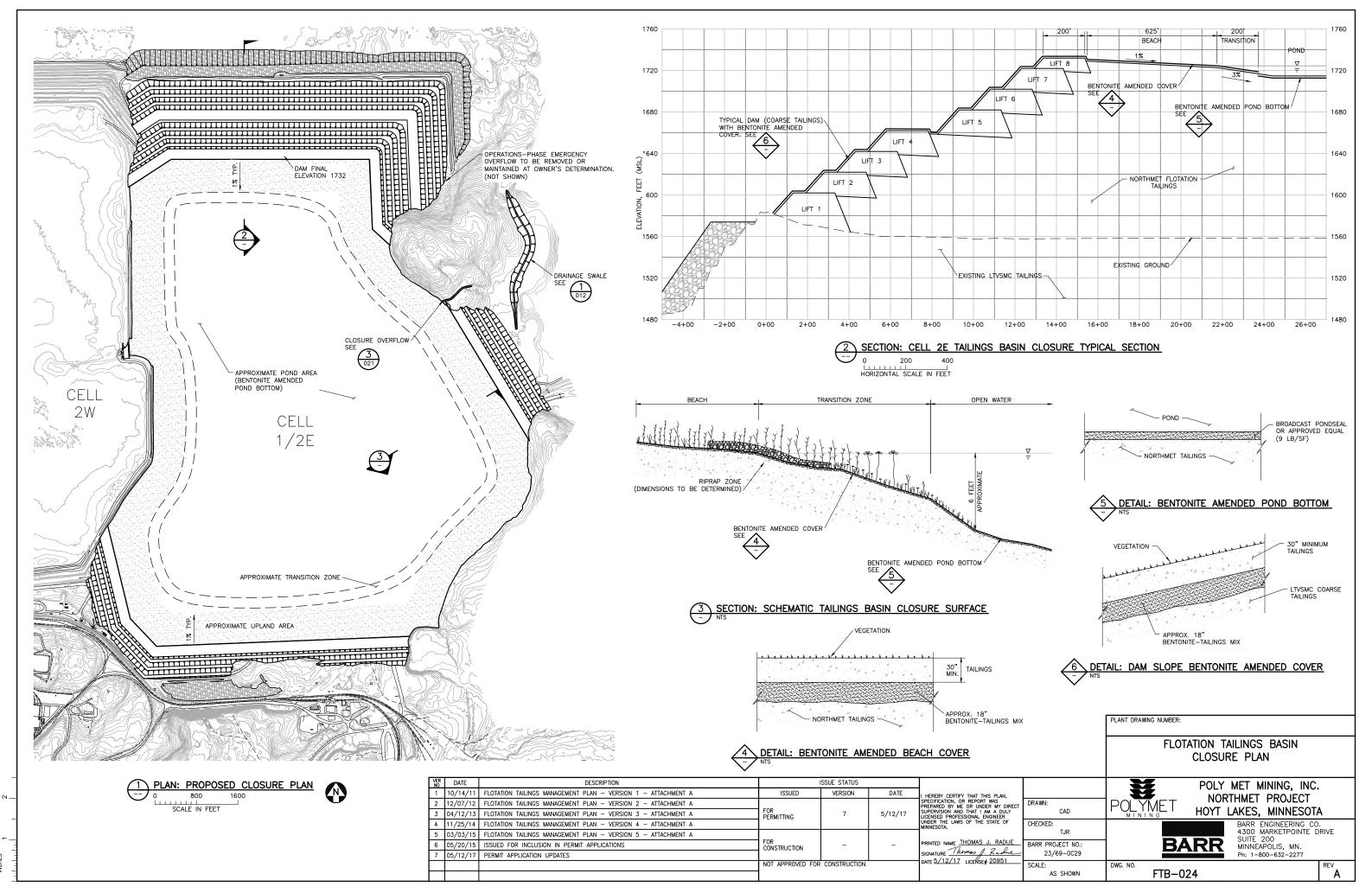
VE
VE
A


PLANT DRAWING NUMBER:

NOTES: 1. ALL PIPE SIZES SHOWN ARE PRELIMINARY.

FOR PIPE ALIGNMENT, 015 TO CELL 1E ANCHOR BLOCK




1 PLAN: TAILINGS DISPOSAL DIFFUSER RAFT

VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/14/11	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 1 - ATTACHMENT A	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	12/07/12	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 2 - ATTACHMENT A				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D
3	04/12/13	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 3 - ATTACHMENT A	FOR	7		SUPERVISION AND THAT I AM A DUI LICENSED PROFESSIONAL ENGINEER
4	11/25/14	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 4 - ATTACHMENT A				UNDER THE LAWS OF THE STATE O MINNESOTA.
5	03/03/15	FLOTATION TAILINGS MANAGEMENT PLAN - VERSION 5 - ATTACHMENT A				
6	05/20/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION	-	-	PRINTED NAME THOMAS J. RAD
7	05/12/17	PERMIT APPLICATION UPDATES				SIGNATURE Thomas J. Rack
			NOT APPROVED FOR	CONSTRUCTION		DATE 5/12/17 LICENSE# 20951

ş

Appendix C

Chemical Additives Safety Data Sheets

Appendix C Chemical Additives Safety Data Sheets July 2016

Contents

SIPX (Sodium Isopropyl Xanthate)	C-1
PAX (Potassium Amyl Xanthate)	C-6
MIBC (Methyl Isobutyl Carbinol, 100% Solution)	C-13
F-160-05 Frother	C-26
F-160-13 Frother	C-32
NALCO DVS4U038	C-38
Copper Sulfate Pentahydrate	C-48
MagnaFloc 10	C-58
MaganaFloc 455	C-68
Neo NS 6655	C-81
NALCO 83949	C-87
NALCO 9877 PULV	C-96
CMC (Carboxyl Methyl Cellulose) (Tennapress PE26)	C-107
Lime Slurry	C-111

00002610			SAFETY DATA S		Page 1
CHARLES TENR & Company/C		div of CHARLES	ES TENNANT & CO/C TENNANT & CO (CA N RD., TORONTO, O M9M 2G8	NÁDA) LTD	CACD
PRODUCT: SODIUM ISO	PROP	YL XANTHATE			
		(١	
		Q)	
Section (01: CHE		CT AND COMPA	NY IDENTIFICATION	
MANUFACTURERS		CHARLES TEN 34 CLAYSON WESTON, ON M9M 2G8	NNANT & COMPANY ROAD TARIO		
PRODUCT NAME CHEMICAL NAME: MATERIAL USE: CHEMICAL FAMILY: CHEMICAL FORMULA:		ORE PROCES	ROPYL XANTHATE I 3 "HAZARDOUS ING SING. RBONIC ACID DITHI		SOPROPYL XANTHATE.
CHEMICAL FORMULA: MOLECULAR WEIGHT:		NOT APPLICA	BLE.		
	Sect	tion 02: HAZARI	DS IDENTIFICATI	ON	
ROUTE OF ENTRY: SKIN CONTACT: SKIN ABSORPTION: EYE INHALATION INHALATION CHRONIC: INGESTION:		DUST OR VAF NOT AVAILAB DUST OR VAF BREATHING D AND CHEST D NOT AVAILAB CAN CAUSE O	PORS MAY BE IRRIT/ LE. PORS MAY IRRITATE DUST MAY IRRITATE DISCOMFORT. LE. GASTRO-INTESTINAI	ATING. CAUSES EYE BURNS. THE NOSE AND THROA _ IRRITATION, NAUSEA, \	
EFFECTS OF ACUTE EXPOSU EFFECTS OF CHRONIC EXPO	JRE: SURE:	REFER TO RC	AN CAUSE UNCONS DUTE OF ENTRY. DUTE OF ENTRY.	CIOUSNESS.	
Sectio	on 03: C	COMPOSITION/I	NFORMATION OI		
Hazardous Ingredients	%	Exposure Limit	C.A.S.#	LD/50, Route, Species	LC/50 Route, Species
SODIUM ISOPROPYL XANTHATE	>84	NOT AVAILABLE	140-93-2	ORAL RAT 250-2000mg/ Kg	NOT AVAILABLE
SODIUM HYDROXIDE	1.5	2 mg/m3 (CEILING) ACGIH	1310-73-2	140 - 340 MG/KG RAT ORAL	NOT AVAILABLE
ISOPROPANOL	0.5-1.0	400 ppm	67-63-0	ORAL RAT 5045 mg/kg DERMAL RABBIT 8.00 ml/kg	RAT 12000 ppm/8h
SODIUM SULFIDE	1			-	
	Se	ection 04: FIRST	AID MEASURES		
SKIN:		UNTIL CHEMI	CAL IS REMOVED W	ITH SOAP AND WATER. [EAS FOR 20 MINUTES OR DO NOT USE SOLVENTS.
EYE:		FLUSH CONT APART TO EN	ISURE IRRIGATION (USE. TER FOR 15 MINUTES. F DF ALL EYE TISSUE. IF IF	
INHALATION:		RESUSCITATI	FRESH AIR. GIVE AR ON (CPR) IF REQUI	RED. IF BREATHING IS DI	FFICULT, GIVE OXYGEN.
INGESTION:		IF CONSCIOU VICTIM RINSE NATURALLY, NOT GIVE AN	S:. GIVE A MINIMUM MOUTH THOROUG HAVE VICTIM LEAN UNCONSCIOUS PEF	HLY WITH WATER. IF VO	ICE VOMITING. HAVE MITING OCCURS RISK OF ASPIRATION. DO
NOTES TO PHYSICIAN:			SPECIFIC ANTIDOT	E. TREATMENT OF EXPC SYMPTOMS AND THE CL	

PRODUCT: SODIUM ISOPROPYL XANTHATE Section 04: FIRST AID N

Section	Section 04: FIRST AID MEASURES				
GENERAL ADVICE:	CONSULT A PHYSICIAN AND/OR THE NEAREST POISON CONTROL CENTRE FOR ALL BUT MINOR INSTANCES OF INHALATION OR SKIN CONTACT. AVOID HIGH LEVELS OF DUST, USE DUST MASK OR RESPIRATOR WHEN NECESSARY. PRECAUTIONS SHOULD ALWAYS BE TAKEN TO AVOID SKIN/EYE CONTACT WITH ANY CHEMICAL SUBSTANCE.				
Section	05: FIRE FIGHTING MEASURES				
MEANS OF EXTINCTION:	SOLID XANTHATES WHEN EXPOSED TO HEAT AND/OR MOISTURE CAUSES DECOMPOSITION, AND VAPOURS ARE VERY FLAMMABLE AND SPONTANEOUS COMBUSTION CAN RESULT. CARBON DIOXIDE. DRY CHEMICAL. WATER. SELF-CONTAINED, POSITIVE PRESSURE BREATHING APPARATUS AND PROPER				
FLASH POINT, F, COC AUTO IGNITION TEMPERATURE °C:	PROTECTIVE CLOTHING SHOULD BE WORN IN FIGHTING FIRES INVOLVING ANY CHEMICAL SUBSTANCE. HEAT WILL DECOMPOSE BOTH SOLID AND LIQUID XANTHATES YIELDING CARBON DISULPHIDE WHICH IS EXTREMELY FLAMMABLE AND TOXIC. NOT APPLICABLE30 °C FOR CARBON DISULPHIDE VAPOURS.				
T.D.G. FLAMMABLE CLASS: UPPER EXPLOSION LIMIT: LOWER EXPLOSION LIMIT: HAZARDOUS COMBUSTION PRODUCTS EXPLOSION DATA:	CLASS 4.2, SELF-HEATING SUBSTANCES.				
SENSITIVITY TO STATIC DISCHARGE: SENSITIVITY TO IMPACT: RATE OF BURNING: EXPLOSIVE POWER:	NOT AVAILABLE.				
Section 06:	ACCIDENTAL RELEASE MEASURES				
CLEAN-UP PROCEDURES, LEAK/SPILL:	IF IN THE LIQUID STATE:. STOP SPILL AT SOURCE. CONTAIN ANY SPILLED MATERIAL TO PREVENT DISCHARGE INTO THE ENVIRONMENT. ELIMINATE ALL SOURCES OF IGNITION. PERSONS NOT WEARING PROTECTIVE EQUIPMENT SHOULD BE EXCLUDED FROM THE AREA. ABSORB WITH INERT DRY MATERIAL. PUT INTO AN APPROVED METAL SALVAGE DRUM FOR DISPOSAL. IF IN THE SOLID STATE:. ELIMINATE ALL SOURCES OF IGNITION. RESTRICT ACCESS TO AREA UNTIL COMPLETION OF CLEAN-UP. ENSURE CLEAN-UP IS CONDUCTED BY TRAINED PERSONNEL ONLY. DO NOT TOUCH SPILLED MATERIAL. DO NOT USE WATER ON SPILLED MATERIAL AS HEAT WILL BE GENERATED. PUT SPILLED MATERIAL INTO APPROVED SALVAGE DRUMS FOR DISPOSAL. FLUSH CLEANED AREA WITH WATER, MAKING SURE NO WATER ENTERS XANTHATE CONTAINERS.				
Section	07: HANDLING AND STORAGE				
HANDLING PROCEDURES AND EQUIPMENT:	STORE SOLID XANTHATES UNDER COOL, DARK, DRY CONDITIONS. LIQUID PRODUCTS MUST BE KEPT COOL AND USED AS QUICKLY AS POSSIBLE. AVOID ALL SKIN CONTACT. AVOID CONTACT WITH EYES. AVOID BREATHING VAPOURS. EQUIPMENT SHOULD BE GROUNDED TO AVOID STATIC DISCHARGE. KEEP AWAY FROM HEAT, SPARKS, AND OPEN FLAME. USE NON-SPARKING TOOLS AND DO NOT SMOKE. USE PRECAUTION WHEN HANDLING OR SHIPPING ANY CHEMICAL SUBSTANCE. PROTECT AGAINST PHYSICAL DAMAGE.				
Section 08: FXPC	SURE CONTROLS/PERSONAL PROTECTION				
PROTECTIVE EQUIPMENT: GLOVES/TYPE: RESPIRATOR/TYPE:	WEAR IMPERVIOUS GLOVES (E.G. NEOPRENE, RUBBER). IF RESPIRATORY PROTECTION IS REQUIRED, INSTITUTE A COMPLETE RESPIRATORY PROTECTION PROGRAM INCLUDING SELECTION, FIT TESTING, TRAINING, MAINTENANCE AND INSPECTION. REFER TO THE CAS STANDARD 294.4-M1982 "SELECTION, CARE, AND USE OF RESPIRATORS" WHICH IS AVAILABLE FROM CANADIAN STANDARDS ASSOCIATION, REXDALE ONTARIO, M9W 1R3. IF VAPOURS ARE PRESENT, USE A NIOSH OR MSHA APPROVED RESPIRATOR FOR ACIDIC VAPOURS OR A SELF CONTAINED BREATHING APPARATUS. SEE M.S.D.S FOR MORE DETAIL ON THIS SECTION.				
FOOTWEAR/TYPE: CLOTHING/TYPE:	FACE SHIELD. SAFETY GLASSES WITH SIDE-SHIELDS.				

00002610

MATERIAL SAFETY DATA SHEET

PRODUCT: SODIUM ISOPROPYL XANTHATE

Section 08: EXPOSURE CONTROLS/PERSONAL PROTECTION

ENGINEERING CONTROLS:.....

.... EXPLOSION PROOF MECHANICAL VENTILATION TO LIMIT VAPOUR CONCENTRATION BELOW T.L.V.

Section 09: PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE: ODOUR/APPEARANCE: ODOUR THRESHOLD: VAPOUR PRESSURE: REL. VAPOUR DENSITY % VOLATILE:	NOT AVAILABLE. NOT APPLICABLE.
BY VOLUME BY WEIGHT	< 20.
EVAPORATION RATE: BOILING POINT °C: FREEZING POINT °C: pH: SPECIFIC GRAVITY: SOLUBILITY IN WATER (20 °C): COEFFICIENT WATER/OIL DIST:	NOT APPLICABLE. M.P. 150 - 250 (decomposes). >182 Deg C. 10% H2O 13 +/- 1. 1.263. SOLUBLE.

Section 10: STABILITY AND REACTIVITY

Section 11: TOXICOLOGICAL INFORMATION

	NOT AVAILABLE. SEE SECTION 3, HAZARDOUS INGREDIENTS. NOT AVAILABLE. SEE SECTION 3, HAZARDOUS INGREDIENTS. TLV FOR DUST: 2 mg/m3; TLV FOR VAPOURS FROM DECOMP.: 31 mg/m3 (see ACGIH).
IRRITANCY OF MATERIAL: SENSITIZING CAPABILITY OF MATERIAL: CARCINOGENICITY OF MATERIAL: REPRODUCTIVE EFFECTS:	IRRITÁNT. REFER TO ROUTE OF ENTRY, SECTION 3. NOT AVAILABLE.
REPRODUCTIVE TOXICITY: MUTAGENICITY: TERATOGENICITY & EMBRYOTOXICITY: SYNERGISTIC MATERIALS:	NOT AVAILABLE. NOT AVAILABLE.

Section 12: ECOLOGICAL INFORMATION

BIODEGRADABILITY	
ENVIRONMENTAL	

...... NOT AVAILABLE. NOT AVAILABLE. DO NOT ALLOW TO ENTER SOIL, WATERWAYS OR WASTE WATER. THIS PRODUCT MAY BE HARMFUL TO AQUATIC LIFE. .

Section 13: DISPOSAL CONSIDERATIONS

WASTE DISPOSAL, METHOD AND	
EQUIPMENT:	

ALL WASTE FROM THIS PRODUCT INCLUDING ALL EMPTY CONTAINERS MUST BE DISPOSED OF IN ACCORDANCE WITH MUNICIPAL, PROVINCIAL AND FEDERAL REGULATIONS.

Section 14: TRANSPORT INFORMATION

T.D.G. CLASSIFICATION: T.D.G. SHIPPING NAME:	
T.D.G. SHIPPING INFORMATION:	THE DANGEROUS GOODS ARE DESCRIBED IN ACCORDANCE WITH THE UN RECOMMENDATIONS.

MATERIAL SAFETY DATA SHEET

PRODUCT: SODIUM ISOPROPYL XANTHATE

Section 15: REGULATORY INFORMATION

	CLASS B DIV. 6. CLASS D DIV. 1 SUB. B. THIS PRODUCT HAS BEEN CLASSIFIED IN ACCORDANCE WITH THE HAZARD CRITERIA OF THE CPR AND THE MSDS CONTAINS ALL OF THE INFORMATION REQUIRED BY THE CPR.
Sectio	n 16: OTHER INFORMATION
MANUFACTURERS MSDS DATE: MSDS REVISION DATE: NOTES:	JULY 24, 2013.

NOTES	manufacturer, and where applicable, from other reliable sources such as CCOHS and RTECS. However, CHARLES TENNANT & COMPANY (CANADA) LTD. makes no warranties, expressed or implied, as to the accuracy, completeness or accuracy of the information contained herein, and shall not held liable (regardless of fault) to anyone directly or indirectly for damages or injuries in the use of this product arising out of or in connection with the accuracy, completeness or adequacy of such information. To promote safe handling, each customer or recipient should: (1) notify its employees, agents, contractors and others whom it knows or believes will use this material of the information in this MSDS and any other information regarding hazards or safety, (2) furnish this same information to each of its customers for the product; and (3) requests its customers to notify their employees, customers, and other users of the product of this information.
PREPARED BY PREPARATION DATE	

		H	Flottec SIPX Collector	cto	Ч Х
Flottec, LLC 338 West Main Street			WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIAL NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	IUST READ AND U S PRODUCT. DO N NER IN THE ENVIR JSE IRRITATION.	NDERSTAND THE VOT DISPOSE OF CONMENT. AVOID WEAR CHEMICAL
Boonton, New Jersey, USA 07005 TEL: +1.973.588.4717 • FAX: 1.973.588.4719	07005 K: 1.973.5	88.4719	CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR	R. USE ADEQUAT LD, LONG SLEE ER HANDLING, I	E VENTILATION. VE SHIRT AND DO NOT WEAR
PROPER SHIPPING NAME:			CONTAMINATED CLOTHING.		
XAN I HATES TECHNICAL NAME: SODIUM ISOPROPYL XANTHATE			CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	VITH PLENTY OF VITH PLENTY OF VASH EXPOSED SH D CLOTHING BEFO	WATER FOR AT WATER FOR AT KIN AREAS WITH RE REUSE.
ID No./HAZARD CLASS/PACKING GROUP/LABELS: UN3342 / 4.2 / II / SPONTANEOUSLY COMBUSTIBLE	KING GR	OUP/LABELS: Stible	STORAGE: HEATING OR OVEREXPOSURE TO MOISTURE OF SOLID XANTHATES OR HEATING OR AGING OF XANTHATE SOLUTIONS CAUSES SOME DECOMPOSITION TO POISONOUS AND FLAMMABLE CAPBON	SURE TO MOIST F XANTHATE SOL	URE OF SOLID UTIONS CAUSES
HMISI	HMIS RATINGS	S	DISULFIDE. STORAGE TANKS SHOULD HAVE CERTAIN DESIGN FEATURES FOR MAXIMUM SAFETY, AND THE VAPOR SPACE SHOULD BE FREE OF	HAVE CERTAIN DE	ESIGN FEATURES
Flottec SIPX Collector	ctor	КЕҮ	FIRE FIGHTING: USE CARBON DIOXIDE, DRY CHEMICAL, OR FOAM TO	IDE, DRY CHEMIC	AL, OR FOAM TO
HEALTH	2	4 = Severe	EXTINGUISH FIRES. AS IN ANY FIRE, WEAR SELF-CONTAINED BREATHING APPARATUS, POSITIVE PRESSURE, MSHA/NIOSH (APPROVED OR	N ANY FIRE, WEAR SELF-CONTAI PRESSURE, MSHA/NIOSH (INED BREATHING (APPROVED OR
FLAMMABILITY	2	3 = Serious	EQUIVALENT) AND FULL PROTECTIVE GEAR. SPILE CONTROL • SWEED UP INTO CONTAINEDS FOD DISDOSAL FUIGH	LR. DNITAINEDS EOD D	
REACTIVITY	2	2 = Moderate	SPILL AREA WITH WATER. USE APPROPRIATE CONTAINMENT TO AVOID	PRIATE CONTAINI	MENT TO AVOID
PERSONAL PROTECTION		1 = Slight	ENVIRONMENTAL CONTAMINATION.		
See Material Safety Data Sheet		0 = Minimal	ATTENTION EMPTY CONTAINERS MAY CONTAIN PRODUCT	GROSS Wt.	lbs. or kgs.
0.	1		RESIDUE INCLUDING FLAMMABLE OR EXPLOSIVE VAPOR. DO NOT CUT, PUNCTURE	TARE Wt.	lbs. or kgs.
140-93-2 Carbonodithioic ac	id, O-Isoprop)	Carbonodithioic acid, O-Isopropyl ester, sodium salt Sodium bydrovide	OR WELD ON CONTAINER. ALL LABLE WARNINGS SHOLLD BE OBSERVED UNTIL CONTAINER HAS BEEN THOROUGHLY CLEANED	NET Wt.	lbs. or kgs.
			OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	LOT No.	Insert Here
		IN CASE OF EMI	EMERGENGY CALL		

Chemtrec: North America 1.800.424 5300, International **1 703 527 3887**

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:	Flottec PAX Collector
SYNONYMS:	Potassium Amyl Xanthate, Potassium Isoamyl Xanthate
CHEMICAL FAMILY:	Alkyl xanthate salt
MOLECULAR FORMULA:	C6H12OS2K
MOLECULAR WEIGHT	203.4
MANUFACTURER:	Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA
PRODUCT INFORMATION:	Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com
EMERGENCY PHONE:	CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887
ISSUE DATE:	February 29, 2012

2. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS

COMPONENT	CAS No.	% (w/w)	OSHA (PEL)	ACGIH (TLV)	Carcinogen
Potassium sulfide	1312-73-8	~ 1	Not established	Not established	(3)
Carbonodithioic acid, O-(3-methylbutyl) ester, potassium salt	1928-70-1	> 90	Not established	Not established	531
Potassium hydroxide	1310-58-3	0 - 1	2 mg/m ³ (Ceiling)	2 mg/m ³ (Ceiling)	2

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE AND ODOR

Color:	Yellow-green
Appearance:	Pellets, flakes, or powder
Odor:	Disagreeable
	47400

STATEMENT OF HAZARD

DANGER!

SELF-HEATING MATERIAL MAY BE SPONTANEOUSLY COMBUSTIBLE MAY FORM EXPLOSIVE DUST-AIR MIXTURES HARMFUL IF ABSORBED THROUGH SKIN DUST IRRITATING CAUSES EYE AND SKIN IRRITATION

POTENTIAL HEALTH EFFECTS

EFFECTS / ROUTES OF EXPOSURE

The acute oral (rat) LD50 and dermal (rabbit) LD50 values are estimated to be >1,000 mg/kg and >500 mg/kg, respectively. Skin or eye contact with solutions of this product may cause moderate skin and eye irritation. Airborne dust may cause significant eye, skin or respiratory tract irritation. Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID MEASURES

the same state and the same state and the	
INGESTION:	If swallowed, call a physician immediately. Only induce vomiting at the instruction of a physician. Never give anything by mouth to an unconscious person.
SKIN CONTACT:	Remove contaminated clothing and shoes without delay. Wash immediately with plenty of water. Do not reuse contaminated clothing without laundering. Get medical attention if pain or irritation persists after washing or if signs and symptoms of overexposure appear.
EYE CONTACT:	Rinse immediately with plenty of water for at least 15 minutes. Obtain medical attention immediately.
INHALATION:	Remove to fresh air. If breathing is difficult, give oxygen. Obtain medical advice if there are persistent symptoms.

5. FIREFIGHTING MEASURES.

EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS

Extinguishing Media:	Use carbon dioxide, dry chemical or large quantities of water.
Protective Equipment:Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protectionEquipment:Clothing. See MSDS Section 8 (Exposure Controls/Personal Protection).	
Special Hazards:	Solid xanthates are stable when kept cool and dry. Exposure to heat and moisture can cause decomposition to flammable and explosive vapor of carbon disulfide. Since xanthates decompose in solution, even at room temperature, fire and explosion hazards can develop with aging.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS:	Where exposure level is not known, wear approved, positive pressure, self-contained respirator. Where exposure level is known, wear approved respirator suitable for level of exposure. Refer to Section 8 (Exposure Controls/Personal Protection) for appropriate personal protective equipment.
METHODS FOR CLEAN UP:	Sweep up into containers for disposal. Flush spill area with water.
ENVIRONMENTAL PRECAUTIONS:	Dispose of in accordance with EPA rules and regulations.

7. HANDLING AND STORAGE

HANDLING

Precautionary Measures :	Avoid excessive heat or moisture. Avoid contact with eyes, skin and clothing. Avoid breathing dust. Keep container closed. Wash thoroughly after handling. Use non-sparking tools and do not smoke when opening drum. Use with adequate ventilation. Contains finely divided material. Dust suspended in air may ignite with static discharge, sparks or flame. Equipment, including venting systems, should be grounded. Provide adequate ventilation in areas of use to remove dust. Wash contaminated clothing before reuse					
Special Handling Statements :	Minimize dust. Special precautions against fire and explosion must be observed in (1) pumping xanthate solutions, (2) draining mobile tanks, (3) cleaning mobile tanks, and (4) performing maintenance work on storage tanks and pipelines leading to and from tanks. Use non-sparking tools and do not smoke when opening drums of xanthate. DUST EXPLOSION HAZARD CLASS - 2 Handling of material should be in accordance with standards for venting of deflagrations (e.g. NFPA-68). If handled with flammable or combustible materials the explosion hazard may increase					
STORAGE	Heating or overexposure to moisture of solid xanthates or heating or aging of xanthate solutions causes some decomposition to poisonous and flammable carbon disulfide. Storage tanks should have certain design features for maximum safety, and the vapor space should be free of sources of ignition.					
Storage Temperature:	Store at <32.2 - 10 °C 90 - 50 °F Reason: Safety					

8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

ENGINEERINGWhere this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

PERSONAL PROTECTIVE EQUIPMENT

RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.
EYE PROTECTION:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.
SKIN PROTECTION:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.
ADDITIONAL ADVICE:	Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.

9. PHYSICAL AND CHEMICAL PROPERTIES

COLOR:	Yellow-green	-			
APPEARANCE:	Pellets, flakes, or powder				
ODOR:	Disagreeable				
BOILING POINT:	Not applicable				
MELTING POINT:	491 - 536°F; 255 - 280°C				
VAPOR PRESSURE:	Not applicable				
SPECIFIC GRAVITY:	Not available				
VAPOR DENSITY:	Not applicable				
% VOLATILE (BY WT.):	~ 1.5				
pH:	Not applicable				
SATURATION IN AIR (% by Vol):	Not applicable				
EVAPORATION RATE:	Not applicable				
SOLUBILITY IN WATER:	35 g/100 g at 20°C				
VOLATILE ORGANIC CONTENT:	Not available				
FLASH POINT:	Not applicable				
FLAMMABLE LIMITS (% BY VOL.):	Not applicable				
AUTO IGNITION TEMPERATURE:	>248°F; 120°C (value for carbon disulfide)				
DECOMPOSITION TEMPERATURE:	>267.8 - 536°F; 131 - 280°C				
PARTIAL COEFFICIENT (n-octanol/water):	Not available				
ODOR THRESHOLD:	See Section 2 for exposure limits				

10. STABILITY AND REACTIVITY

STABILITY:	Stable				
CONDITIONS TO AVOID:	Containers filled with this product should be kept closed when not in use. Keep container in a cool, well-ventilated area. Exposure of the solid xanthate to heat or moisture and heating or aging of xanthate solutions. Avoid prolonged exposure to heat; avoid strong acids, alkalies and oxidizing agents. Keep water and moist air out of container.				
POLYMERIZATION:	Will not occur				
CONDITIONS TO AVOID:	None known				
MATERIALS TO AVOID:	Strong oxidizing agents, acidic material. High temperatures				
HAZARDOUS DECOMPOSITION PRODUCTS:	Carbon disulfide, carbon monoxide, carbon dioxide, oxides of sulfur (includes sulfur di and tri oxides), hydrogen sulfide				

11. TOXICOLOGICAL INFORMATION

Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION Toxicological information on the regulated components of this product is as follows:

Potassium hydroxide has an acute oral (rat) LD50 value of 273 mg/kg. Acute overexposure to potassium hydroxide or dusts causes severe respiratory irritation. Potassium hydroxide is severely irritating to the eyes and skin.

Potassium sulfide may cause eye and skin irritation. Under acidic conditions, potassium sulfide can decompose to produce flammable poisonous hydrogen sulfide gas.

Potassium 3 methyl butyl xanthate has an estimated acute oral (rat) LD50 and acute dermal (rabbit) LD50 values of > 1,000 mg/kg and > 500 mg/kg, respectively, based on similar materials. Direct contact with this material may cause moderate eye and skin irritation. Airborne dust may cause significant eye, skin or respiratory tract irritation.

California Proposition 65 Warning (applicable in California only) - This product contains (a) chemical(s) known to the State of California to cause birth defects or other reproductive harm.

12. ECOLOGICAL INFORMATION

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material is not readily biodegradable.

All ecological information provided was conducted on a structurally similar product.

ALGAE TEST RESULTS

Test	Duration	Procedure	Species	Results	

FISH TEST RESULTS

Test	Duration	Procedure	Species	Results	
Acute toxicity, freshwater (OECD 203)	96 h r .		Rainbow Trout (Oncorhyncus mykiss)	> 10 - 100 mg/l	LC50

INVERTEBRATE TEST RESULTS

Test	Duration	Procedure	Species	Results	
Acute Immobilization (OECD 202)	48 hr.	-	Water Flea (Daphnia magna)	>1 - 10 mg/l	EC50

ACCUMULATION TEST RESULTS

Test	Duration	Procedure	Results

DEGRADATION

Test	Duration	Procedure	Results
Biodegradability	-	-	< 70 %
COMMENTS: Information based on structurally similar material			

13. DISPOSAL CONSIDERATIONS

RECOMMENDATIONS FOR THE PRODUCT:	In accordance with regulations for special waste, product must be taken, after pretreatment, to an authorized special waste incineration plant.				
RECOMMENDATIONS FOR PACKAGING:	Packaging that cannot be cleaned should be disposed of like the product.				
RECOMMENDED	Water				

CLEANSING AGENT:

14. Transportation Information

This section provides basic shipping classification information. Refer to appropriate transportation regulations for specific requirements.

U.S. DOT							
PROPER SHIPPING NAME:	XANTHATES	XANTHATES					
HAZARD CLASS	4.2						
PACKING GROUP:	II						
UN/ID NUMBER:	UN3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant	9					
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					
HAZARDOUS SUBSTANCE:	Not applicable						
COMMENTS:	Marine Pollutants - DOT re packagings transported by	quirement motor veh	specific to Mari cles, rail cars or	ne Pollutants do not apply to non-bulk aircraft.			
TRANSPORT CANADA							
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS	4.2						
PACKING GROUP:	п						
UN/ID NUMBER:	3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant	2					
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					
ICAO/IATA							
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS:	4.2						
PACKING GROUP:	п						
UN NUMBER:	3342						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible	3					
PACKING INSTRUCTIONS/	PASSENGER AIRCRAFT	415	15 kg				
MAXIMUM NET QUANTITY:	CARGO AIRCRAFT	417	50 kg				
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					
IMO	· · · · · · · · · · · · · · · · · · ·						
PROPER SHIPPING NAME:	XANTHATES						
HAZARD CLASS:	4.2						
UN NUMBER:	3342						
PACKING GROUP:	II						
TRANSPORT LABEL REQUIRED:	Spontaneously Combustible Marine Pollutant						
TECHNICAL NAME (N.O.S.):	Contains potassium amyl x	anthate					

15. REGULATORY INFORMATION

INVENTORY INFORMATION

United States (USA)	All components of this product are included on the TSCA Chemical Inventory or are not required to be listed on the TSCA Chemical Inventory.
Canada	This product contains components not on the Domestic Substances List. These components are on the Non- Domestic Substances List.
European Union (EU)	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) in compliance with Council Directive 67/548/EEC and its amendments.
Australia	All components of this product are included in the Australian Inventory of Chemical Substances (AICS) or are not required to be listed on AICS.
China	All components of this product are included on the Chinese inventory or are not required to be listed on the Chinese inventory.
Japan	All components of this product are included on the Japanese (ENCS) inventory or are not required to be listed on the Japanese inventory.
Korea	All components of this product are NOT included on the Korean (ECL) inventory.
Philippines	All components of this product are NOT included on the Philippine (PICCS) inventory.

OTHER ENVIRONMENTAL INFORMATION

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

Component	CAS NO.	% (w/w)	TPQ (lbs)	RQ (lbs)	S313	TSCA 12B
Carbon disulfide	75-15-0	~ 0.001	10,000	100	YES	YES

PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA

ACUTE (N)	CHRONIC (N)	FIRE (Y)	REACTIVE (Y)	PRESSURE (N)

16. OTHER INFORMATION

NFPA HAZARD RATING (National Fire Protection Association)

HEALTH - 2 -	Materials that, under emergency conditions, can cause temporary incapacitation or residual injury.
FIRE - 1 -	Materials that must be preheated before ignition can occur.
REACTIVITY - 1 -	Materials that in themselves are normally stable, but that can become unstable at elevated temperatures and pressures.

REASON FOR REVISION: Triennial review

Prepared By: F. Cappuccitti

Revised By: Cathy Yuen

IMPORTANT: The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	tion	Chemicals Technology	Flottec PAX Collector	to To	×.
Flottec LLC			WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIAL NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL	READ AND UN CODUCT. DO N IN THE ENVIRC IRRITATION. V	DERSTAND THE DT DISPOSE OF DIMENT. AVOID IEAR CHEMICAL
338 West Main Street Boonton • New Jersey, USA • 07005 TEL: +1.973.588.4717 / FAX: +1.973.588.4719 WEB SITE: www.flottec.com	070 +1.	005 973.588.4719	CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	USE ADEQUATE G SLEEVE SHIRT A O NOT WEAR C	VENTILATION. AND TROUSERS. CONTAMINATED
PROPER SHIPPING NAME:			— FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	I TO FRESH AI PLENTY OF \ H EXPOSED SK: DTHING BEFOR	R. IN CASE OF NATER FOR AT IN AREAS WITH E REUSE.
TECHNICAL NAME: POTASSIUM AMYL XANTHATE ID No./HAZARD CLASS/PACKING GROUP/LABELS:	SNI	GROUP/LABELS:	STORAGE: HEATING OR OVEREXPOSURE TO MOISTURE OF SOLID XANTHATES OR HEATING OR AGING OF XANTHATE SOLUTIONS CAUSES SOME DECOMPOSITION TO POISONOUS AND FLAMMABLE CARBON DISULFIDE. STORAGE TANKS SHOULD HAVE CERTAIN DESIGN FEATURES FOR MAXIMUM SAFETY, AND THE VAPOR SPACE SHOULD BE FREE OF SOURCES OF IGNITION.	E TO MOISTURE ANTHATE SOLUTIO AND FLAMMABL ERTAIN DESIGN FE OULD BE FREE OF 9	IRE OF SOLID TTONS CAUSES ABLE CARBON I FEATURES FOR OF SOURCES OF
UN3342 / 4.2 / 11 / 3FONTANEU03ET OC		WBU3 HBLE	- FIRE FIGHTING: USE WATER, CARBON DIOXIDE OR DRY CHEMICAL TO EXTINGUISH FIRES.	IOXIDE OR DR	Y CHEMICAL TO
Flottec PAX Collector		КЕҮ	SPILL CONTROL: SWEEP UP INTO CONTAINERS FOR DISPOSAL. SPILL AREA WITH WATER. USE APPROPRIATE CONTAINMENT TO ENVIRONMENTAL CONTAMINATION.	ALNERS FOR DI TE CONTAINM	SPOSAL. FLUSH ENT TO AVOID
НЕАLTH	2	4 = Severe			
FLAMMABILITY	1	3 = Serious	ATTENTION		lhe or kac
REACTIVITY	1	2 = Moderate	EMPTY CONTAINERS MAY CONTAIN PRODUCT RESIDUE TUCHDING		
PERSONAL PROTECTION		1 = Slight	FLAMMABLE OR EXPLOSIVE VAPOR. DO	TARE WT.	lbs. or kgs.
See Material Safety Data Sheet		0 = Minimal	CONTAINER. ALL LABEL WARNINGS SHOULD BE OBSERVED UNTIL CONTAINER	NET WT.	lbs. or kgs.
C.A.S. No. Component 928-70-1 Carbonodithioic acid, O-(3	3- meth	Component Carbonodithioic acid, O-(3- methylbutyl) ester, potassium salt	HAS BEEN THOROUGHLY CLEANED OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDEDAL BEGILLATIONS	LOT No.	Insert Here
1310-58-3 Potassium hydroxide 1310-73-8 Sodium sulfide	;	IN CASE OF EMER	EMERGENGY CALL CHEMTREC:		

IN CASE OF EMERGENGY CALL CHEMTREC: North America+1.800.424.93004International+1.703.527.3887

Revision No. 03

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Phodia

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

Product identifier

Trade name	:	METHYLISOBUTYLCARBINOL
Product name	:	methyl-2-pentanol
CAS-No.	:	108-11-2

Details of the supplier of the safety data sheet

Company :	Rhodia Poliamida e Especialidades Ltda Fazenda São Francisco, s/n CEP: 13140-000, Paulínia - SP Tel: (+55 19) 3874 8000	
Emergency telephone number :	MULTI LINGUAL EMERGENCY NUMBER (24/7)Europe/America/Africa: +44 1235 239 670 (UK)Middle East & Africa speaking Arabic : +44 1235 239 671 (UK)Asia Pacific: +65 3158 1074 (Singapore)China: +86 10 5100 3039 (Beijing)	
	Mercosul : (+55 19) 3874 9333	
E-mail address :	information.fds@eu.rhodia.com	

2. HAZARDS IDENTIFICATION

Classification

Classification (REGULATION (EC) No 1272/2008)

Flammable liquids, Category 3 Specific target organ toxicity - single exposure, Category 3 H226: Flammable liquid and vapour. H335: May cause respiratory irritation.

Classification (67/548/EEC,1999/45/EC)

Flammable Xi: Irritant R10: Flammable. R37: Irritating to respiratory system.

Label elements

Hazardous products which must be listed on the label:

• 603-008-00-8

4-methylpentan-2-ol

REGULATION (EC) No 1272/2008

Pictogram

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

Signal word	: Warning
Hazard statements	 H226 Flammable liquid and vapour. H335 May cause respiratory irritation.
Precautionary statements	 Prevention: P210 Keep away from heat/sparks/open flames/hot surfaces No smoking. P280 Wear protective gloves/ protective clothing/ eye protection/ face protection. Response: P303 + P361 + P353 IF ON SKIN (or hair): Remove/ Take off immediately contaminated clothing. Rinse skin with water/ shower. P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in position comfortable for breathing. P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resist foam for extinction. Storage: P403 + P235 Store in a well-ventilated place. Keep cool.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms

: methyl-2-pentanol Mibcol methyl isoamyl alcohol

Substance

CAS-No.

: 108-11-2

EINECS-No.

: 203-551-7

Information on Components and Impurities

Chemical Name	Identification number	Classification 67/548/EEC	Classification REGULATION (EC) No 1272/2008	Concentration [%]
4-methylpentan-2-ol	Index-No. : 603-008-00-8 CAS-No. : 108-11-2	R10 Xi; R37	H226 : Flammable liquids , Category 3 H335 : Specific target organ toxicity - single exposure , Category 3	>= 95 - < 99
4-methylpentan-2-one	Index-No. : 606-004-00-4 CAS-No. : 108-10-1 EINECS-No. : 203-550-1	F; R11 Xn; R20 Xi; R36/37 R66	H225 : Flammable liquids , Category 2 H332 : Acute toxicity , Category 4 H319 : Eye irritation , Category 2 H335 : Specific target organ toxicity - single exposure , Category 3	>= 1 - < 5

For the full text of the R-phrases mentioned in this Section, see Section 16. For the full text of the H-Statements mentioned in this Section, see Section 16.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

4. FIRST AID MEASURES

Description of necessary first-aid measures

General advice	: Show this safety data sheet to the doctor in attendance. First aider needs to protect himself. Place affected clothing in a sealed bag for subsequent decontamination.
Inhalation	 Move to fresh air in case of accidental inhalation of vapours or decomposition products. If breathing is irregular or stopped, administer artificial respiration. Consult a physician if necessary.
Skin contact	 Take off contaminated clothing and shoes immediately. Wash off immediately with plenty of water for at least 15 minutes. Consult a physician if necessary.
Eye contact	 Rinse with running water whilst keeping the eyes wide open (at least 15 minutes) If eye irritation persists, consult a physician
Ingestion	: Do NOT induce vomiting. Rinse mouth with water.

5. FIRE-FIGHTING MEASURES

Extinguishing media	
Suitable extinguishing media :	Foam Dry powder Carbon dioxide (CO2)
Unsuitable extinguishing media :	High volume water jet
Special hazards arising from the substance or r	nixture
Specific hazards during fire fighting :	Flammable liquid Vapour/air mixtures are explosive. Heating increases the inner pressure of the bottle, risk of explosion.
Advice for firefighters	
Special protective equipment for fire-fighters :	Personal protective equipment comprising: suitable protective gloves, safety goggles and protective clothing Wear self contained breathing apparatus for fire fighting if necessary.
Specific fire fighting methods :	Use appropriate means for fighting adjacent fires.
Further information :	Use extinguishing measures that are appropriate to local circumstances and

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

the surrounding environment. Cool containers / tanks with water spray.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	:	Evacuate personnel to safe areas. Mark the contaminated area with signs and prevent access to unauthorized personnel. Do not breathe vapour. Avoid contact with the skin and the eyes. Remove all sources of ignition. Keep away from flames and sparks. Do not smoke. Use personal protective equipment. Stop the leak. Turn leaking containers leak-side up to prevent the escape of liquid.
Environmental precautions	:	Dam up. Prevent product from entering drains. Try to prevent the material from entering drains or water courses. Local authorities should be advised if significant spillages cannot be contained.
Methods for Cleaning or Taking Up		
Recovery	:	Collect spillage. Pick up and transfer to properly labelled containers. Flammable product. Take all necessary precautions. Earth the containers and the equipment. Keep in suitable, closed containers for disposal.
Neutralization	:	Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13).
Decontamination/cleaning	:	Collect spillage. Pick up contaminated soil. Clean contaminated floors and objects thoroughly while observing environmental regulations. Pick up and transfer to properly labelled containers. Keep in suitable, closed containers for disposal. Contain spillage, soak up with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and transfer to a container for disposal according to local / national regulations (see section 13). Nonsparking tools should be used.
Disposal	:	Dispose of contents/ container to an approved waste disposal plant. The product should not be allowed to enter drains, water courses or the soil. Dispose of in accordance with local regulations.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

7. HANDLING AND STORAGE

Handling	
Technical measures	 Earth the equipment. Ground/bond container and receiving equipment. No smoking. Take measures to prevent the build up of electrostatic charge. Vapours may form explosive mixtures with air. Provide adequate ventilation. Provide sufficient air exchange and/or exhaust in work rooms. Electrical installations / working materials must comply with the technological safety standards. No sparking tools should be used.
Advice on safe handling and usage	 Provide adequate ventilation. Handle in accordance with good industrial hygiene and safety practice. Wear personal protective equipment. Avoid inhalation, ingestion and contact with skin and eyes.
Storage	
Technical Measures for storage	 The floor of the depot should be impermeable and designed to form a water- tight basin. Electrical installations / working materials must comply with the technological safety standards.
Storage conditions	
Recommended	 Keep away from open flames, hot surfaces and sources of ignition. Store in original container. Keep away from heat. Keep in a dry, cool and well-ventilated place. Store contents under inert gas. Keep under nitrogen.
Packaging Measures	
Packaging materials - Recommended	: Steel, Stainless steel
Packaging materials - To be avoided	: Plastic materials.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	Value type	Value	Update	Basis
4-methylpentan-2-one	TWA	20 ppm 83 mg/m3	2000-06-16	Europe. Commission Directive 2000/39/EC establishing a first list of indicative occupational exposure limit values
4-methylpentan-2-one	STEL	50 ppm 208 mg/m3	2000-06-16	Europe. Commission Directive 2000/39/EC establishing a first list of
		200 mg/mo		indicative occupational exposure limit values
	Indicative			

Personal protective equipment	
Respiratory protection	: Use a respirator with an approved filter if a risk assessment indicates this is necessary.
Hand protection	: Where there is a risk of contact with hands, use appropriate gloves The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it. Gloves must be inspected prior to use.
Eye protection	: Tightly fitting safety goggles
Skin and body protection	 Choose body protection according to the amount and concentration of the dangerous substance at the work place. Remove and wash contaminated clothing.
Hygiene measures	 Ensure that eyewash stations and safety showers are close to the workstation location. Use clean, well-maintained personal protection equipment. Wash hands before breaks and at the end of workday. When using do not eat, drink or smoke.
Protective measures	 The protective equipment must be selected in accordance with current CEN standards and in cooperation with the supplier of the protective equipment. Selection of appropriate personal protective equipment should be based on an evaluation of the performance characteristics of the protective equipment relative to the task(s) to be performed, conditions present, duration of use, and the potential hazards and/or risks that may occur during use.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

General advice

Dam up.

:

Prevent product from entering drains. Try to prevent the material from entering drains or water courses. Local authorities should be advised if significant spillages cannot be contained.

Rhodia

9.	PHYSICAL	AND	CHEMICAL	PROPERTIES

Appearance	
Form	: liquid
Physical state	: liquid
Colour	: colourless
Odour	: aromatic
Odour Threshold	: no data available
Safety data	
рН	: not applicable
Crystallization temperature	: -90 °C
Boiling point/boiling range	: 131,7 °C at 1.013,25 hPa
Flash point	: 44,8 °C closed cup
	54,5 °C open cup
Flammability (solid, gas)	: no data available
Autoignition temperature	: no data available
Oxidizing properties	: Non oxidizing material according to EC criteria
Water solubility	: 7 g/l partly miscible
Solubility in other solvents	: miscible with most organic solvents
Partition coefficient: n-octanol/water	: POW: 1,43
Vapour pressure	: 4,95 hPa at 20 °C
Henry's Constant	: 4,508962 Pa.m3/mol at 25 °C
Evaporation rate	: no data available
Relative vapour density	: 3,5
Density	: 0,807 g/cm3 at 20 °C

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

Oxidation/Reduction Potential	: no data available
Viscosity, dynamic	: no data available
Viscosity, kinematic	: no data available
Explosive properties	: no data available
Thermal decomposition	: no data available
Lower explosion limit	: 1,00 %(V)
Upper explosion limit	: 5,50 %(V)
Molecular Weight	: 102,17 g/mol

10. STABILITY AND REACTIVITY

Chemical stability :	Stable at room temperature. Stable under normal conditions.
Hazardous reactions	
Conditions to avoid :	Heat, flames and sparks. Prevent the build-up of electrostatic charge. Exposure to moisture.
Materials to avoid :	Acids Strong oxidizing agents
Decomposition products :	On combustion or on thermal decomposition (pyrolysis) releases: (Carbon oxides (CO + CO2)).
Other information :	With oxidizing agents possible.

11. TOXICOLOGICAL INFORMATION Acute toxicity	
Acute oral toxicity	: LD50 : 2.590 mg/kg - mouse Bibliography
	Symptoms: Vomiting, Flank pain, Kidney disorders, Liver disorders, Central nervous system depression, Vertigo, Impairment of vision
Acute inhalation toxicity	: Acute toxicity estimate : 733,33 mg/l Method: Calculation method
Acute dermal toxicity	: LD50 : 2.870 mg/kg - rabbit

SAFETY DATA SHEET		
according to Regulation (EC) No. 1907/2006		
according to Regulation (EC) No. 1907/2006 METHYLISOBUTYLCARBINOL		
Revision: 2.00 EU (EN)	Issuing date: 31.03.2011	
Acute toxicity (other routes of administration) Aspiration toxicity	: no data available : no data available	
Skin corrosion/irritation		
Skin irritation	: May cause skin irritation and/or dermatitis.	
Serious eye damage/eye irritation		
Eye irritation	: Irritating to mucous membranes May irritate eyes.	
Respiratory or skin sensitization		
Sensitisation	: no data available	
Repeated dose toxicity		
Repeated dose toxicity	: no data available	
ѕтот		
STOT - single exposure	: Toxicology Assessment: The substance or mixture is classified as specific target organ toxicant, single exposure, category 3 with respiratory tract irritation.	
STOT - repeated exposure	: no data available	
Carcinogenicity		
Carcinogenicity	: Not classifiable as a human carcinogen.	
Mutagenicity		
Genotoxicity in vitro Genotoxicity in vivo	no data availableno data available	
Reproductive toxicity		
Reproductive toxicity	: no data available	
Experience with human exposure		
Experience with human exposure : Inhalation	: Symptoms: Drowsiness Local irritation Dizziness Vomiting Diarrhoea.	

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

12. ECOLOGICAL INFORMATION

Ecotoxicity effects

Aquatic Compartment (including seding	iment)	
Toxicity to fish	: LC50 - 24 h : 360 mg/l - Carassius auratus (goldfish)	
Persistence and degradability		
Biodegradability		
Biodegradability	: Ultimate aerobic biodegradability Readily biodegradable.	
Ratio BOD/COD	: BOD type: BOD5 BOD/COD value: 82 %	
Bioaccumulation		
Partition coefficient: n-octanol/water	: Not potentially bioaccumulable	
Mobility		
Distribution among environmental compartments	: Product readily filters into the soil	
Known distribution to environmental compartments	: Ultimate destination of the product : Water	

13. DISPOSAL CONSIDERATIONS

Product Disposal

Advice on Disposal	Do not dispose of with domestic refuse. The product should not be allowed to enter drains, water courses or the soil. Dispose of in accordance with local regulations. Dispose of contents/ container to an approved waste disposal plant. Send to a licensed waste management company.
Advice on cleaning and disposal of packaging	
Advice	Do not re-use empty containers. Allow it to drain thoroughly. Empty remaining contents. Rinse with an appropriate solvent. Dispose of contents/ container to an approved incineration plant.
Other data	Dispose of in accordance with local regulations.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Rhodia

14. TRANSPORT INFORMATION

ADRUN number:Dangerous Good Description:Labels:Packing group:Tunnel restriction code:Class:Classification Code:Environmentally hazardous mark:Hazard identification No:	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III, (D/E) : 3 : (D/E) : 3 : F1 : NO : 30
RIDUN number:Dangerous Good Description:Labels:Packing group:Class:Classification Code:Environmentally hazardous mark:Hazard identification No:	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III : 3 : 11 : 3 : F1 : NO : 30
	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III, IMDG Code Segregation Group - Not Relevant : 3 : III : 3 mark) : NO : F-E, S-D
	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III
ADN / ADNRUN number:Dangerous Good Description:Labels:Packing group:Class:Classification Code:Environmentally hazardous mark	2053 UN 2053 METHYL ISOBUTYL CARBINOL, 3, III : 3 : 1II : 3 : F1 : NO

Note: The above regulatory prescriptions are those valid on the date of publication of this sheet. Given the possible evolution of transport regulations for hazardous materials, it would be advisable to check their validity with your sales office.

METHYLISOBUTYLCARBINOL

Revision: 2.00 EU (EN)

Issuing date: 31.03.2011

Phodia

15. REGULATORY INFORMATION

According to our knowledge, no specific regulatory information.

16. OTHER INFORMATION

Full text of R-phrases referred to under sections 2 and 3

R10	Flammable.
R11	Highly flammable.
R20	Harmful by inhalation.
R36/37	Irritating to eyes and respiratory system.
R37	Irritating to respiratory system.
R66	Repeated exposure may cause skin dryness or cracking.

Full text of H-Statements referred to under sections 2 and 3.

H225	Highly flammable liquid and vapour.
H226	Flammable liquid and vapour.
H319	Causes serious eye irritation.
H332	Harmful if inhaled.
H335	May cause respiratory irritation.

Full text of P-Statements referred to under sections 2 and 3.

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P303 + P361 + P353	IF ON SKIN (or hair): Remove/ Take off immediately all contaminated clothing.
	Rinse skin with water/ shower.
P304 + P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction.
P403 + P235	Store in a well-ventilated place. Keep cool.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. Such information is only given as a guidance to help the user handle, use, process, store, transport, dispose and release the product in satisfactory safety conditions and is not to be considered as a warranty or quality specification. It should be used in conjunction with technical sheets but do not replace them. Thus, the information only relates to the designated specific product and may not be applicable if such product is used in combination with other materials or in an other manufacturing process, unless otherwise specifically indicated. It does not release the user from ensuring he is in conformity with all regulations linked to its activity.

NB: In this document the numerical separator of the thousands is the "." (point), the decimal separator is "," (comma).

Warning

METHYLISOBUTYLCARBINOL

Flammable liquid and vapor - May cause respiratory irritation; or; May cause drowsiness or dizziness

Rhodia Poliamida e Especialidades Ltda.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking. - Wear protective gloves/protective clothing/eye protection/face protection. - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. - IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. - In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for extinction for extinction. - Store in a well-ventilated place. Keep cool.

Please refer to the original SDS for more information

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Flottec F160-05 Frother
Mixed polyglycol ethers
None
Mixture
Mixture
Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA
Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com
CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887
September 30, 2012

2. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS

 COMPONENT
 CAS No.
 % (w/w)
 OSHA (PEL)
 ACGIH (TLV)
 Carcinogen

 No Permissible
 Exposure Limits
 (PEL/TLV) have been established
 by OSHA or ACGIH
 Carcinogen

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE AND ODOR		
Color:	Dark brown	
Appearance:	Heavy liquid	
Odor:	Mild polyglycol ether odor	
STATEMENT OF HAZARD		
CAUTION!	MAY CAUSE EYE, SKIN AND MUCOUS MEMBBRANE IRRITATION	

POTENTIAL HEALTH EFFECTS

EFFECTS / ROUTES OF EXPOSURE

The acute oral (rat) LD50 and acute dermal (rabbit) LD50 values for this material are estimated to be >2000 mg/kg and >2000 mg/kg, respectively.

Direct contact with this material may cause mild eye and skin irritation.

Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID MEASURES		
INGESTION:	If swallowed, call a physician immediately. ONLY induce vomiting at the instructions of a physician. Never give anything by mouth to an unconscious person.	
SKIN CONTACT:	Remove contaminated clothing without delay. Flush skin thoroughly with water. Do not reuse clothing without laundering.	
EYES CONTACT:	Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.	
INHALATON:	Material is not expected to be harmful if inhaled. If inhaled, remove to fresh air.	

5. FIREFIGHTING MEASURES

EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS

Extinguishing Media

Use water spray, alcohol foam, carbon dioxide or dry chemical to extinguish fires.

Protective Equipment

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/personal Protection).

Special Hazards

Keep containers cool by spraying with water if exposed to fire.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS

Where exposure level is known, wear approved respirator suitable for level of exposure. Where exposure level is not known, wear approved, positive pressure, self-contained respirator. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/personal Protection). Wear impervious boots.

METHODS FOR CLEAN UP

Remove source of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

ENVIRONMENTAL PRECAUTIONS

Not available

7. HANDLING AND STORAGE

HANDLING

Precautionary Measures

Do not get in eyes, on skin, on clothing. Keep away from heat and flame. Wash thoroughly after handling.

Special Handling Statements

None Known

STORAGE

Do not store in aluminum, brass or copper. Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regulations and/or guidelines.

Storage Temperature: Room Temperature

Reason: Integrity

8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

ENGINEERING CONTROLS

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

PERSONAL PROTECTIVE EQUIPMENT

EYES:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.
SKIN:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.
RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.

ADDITIONAL ADVICE

Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.

9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARNCE AND ODOR:	Brown, typical polyglycol odor
BOILING POINT:	Not available
MELTING POINT:	Not available
VAPOR PRESSURE:	0.03 mmHG @ 20°C
SPECIFIC GRAVITY:	0.96 @ 20°C
VAPOR DENSITY:	>6 (air = 1)
% VOLATILE (BY WT.):	Not available
pH:	10; (5% aqueous solution)
SATURATION IN AIR (% by Vol):	Not applicable
EVAPORATION RATE:	Not applicable
SOLUBILITY IN WATER:	<5%
VOLATILE ORGANIC CONTENT:	Not available
FLASH POINT:	>263°F (128°C) MPCC
FLAMMABLE LIMITS (% BY VOL.):	Not available
AUTOIGNITION TEMPERATURE:	Not available
DECOMPOSITION TEMPERATURE:	Not available
PARTIAL COEFFICIENT (n-octanol/water):	Not available
ODOR TRESHOLD:	See Section 2 for exposure limits

10. STABILITY AND REACTIVITY

STABILITY:	Stable
CONDITIONS TO AVOID:	None known
POLYMERIZATION:	Will not occur
CONDITIONS TO AVOID:	None known
INCOMPATABILE MATERIALS:	Avoid contact with oxidizers, contact with isocyanates due to heat liberation, and strong acids. Corrosive to aluminum, brass, copper
HAZARDOUS DECOMPOSITION PRODUCTS:	Carbon dioxide; carbon monoxide; aldehydes; ketones; organic acids

11. TOXICOLOGICAL INFORMATION

Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION Toxicological information on the regulated components of this product is as follows:

This product contains no OSHA regulated (hazardous) components

12. ECOLOGICAL INFORMATION

This product is not classified as dangerous for the environment and is readily biodegradeable.

13. DISPOSAL CONSIDERATIONS			
RECOMMENDATIONS Dispose of product in accordance with local, state, and federal laws and regulations. Do no contaminate any lakes, streams, ponds, ground water or soil.			
RECOMMENDATIONS FOR PACKAGING:	DO NOT PRESSURIZE, CUT, WELD, BRAZE, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SURCES OF IGNINITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum re-conditioner, or properly disposed of.		
RECOMMENDED CLEANSING AGENT:	Water		

14. Transportation Information

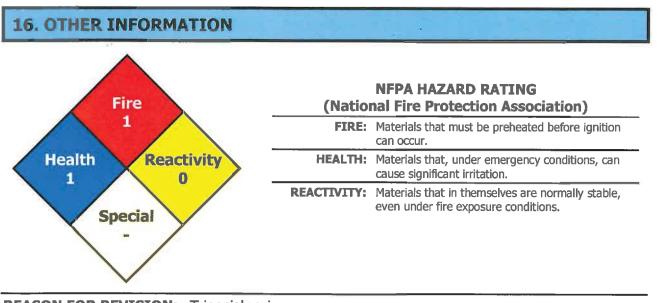
	D.O.T. Sh	ipping Ir	nformation	IMO Shipping Information	
SHIPPING NAME:	Not applicabl			Not applicable/Not regulated	
HAZARD CLASS	Not applicab	le		Not applicable	
PACKING GROUP:	Not applicabl	le		Not applicable	
UN/ID NUMBER:	Not applicab	le		Not applicable	
IMDG PAGE:	Not applicabl	le		Not applicable	
DOT HAZARDOUS SUBSTANCE:	Not applicabl	le		Not applicable	
TRANSPORT LABEL REQUIRED:	None require	d		None required	
	ICAO/IA	ΓΑ		Transport Canada	
SHIPPING NAME:	Not applicabl	e		Not applicable/Not regulated	
HAZARD CLASS:	Not applicabl	Not applicable		Not applicable	
SUBSIDIARY CLASS:	Not applicabl	Not applicable		Not applicable	
UN/ID NUMBER:	Not applicabl	Not applicable		Not applicable	
PACKING GROUP:	Not applicabl	Not applicable		Not applicable	
TRANSPORT LABEL REQUIRED:	Not applicabl	Not applicable		Not applicable	
PACKING INSTRUCTIONS/	PASSENGER	Not app.	Not app.	Netapplicable	
MAXIMIMUM NET QUANTITY:	CARGO			Not applicable	

ADDITIONAL TRANSPORTATION INFORMATION

Technical Name (N.O.S.): Not applicable/not regulated

15. REGULATORY INFORMATION

INVENTORY INFORMATION


United States (USA):	All components of this product are included on the TSCA Inventory in compliance with the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq.
Canada:	Components of this product have been reported to Environment Canada in accordance with subsection 25 of the Canadian Environmental Protection Act and are included on the Domestic Substances List.
European Union (EU):	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) or the "No Longer Polymer" list in compliance with Council Directive 67/548/EEC and its amendments.

OTHER ENVIRONMENTAL INFORMATION

The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA

Not applicable under SARA TITLE III

REASON FOR REVISION: Triennial review

Prepared By: F. Cappuccitti

Revised By: C. Yuen

IMPORTANT: The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	hemi	cals Technology	Flottec F160-05 Frother	Erother	0-05
Flottec, LLC 338 West Main Street Boonton, New Jersey 07005 • USA TEL: +1.973.588.4717 FAX: +1.973.588.4719	ŝА 973.	588.4719	WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIA NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	U MUST READ AN HIS PRODUCT. D AINER IN THE EN CAUSE IRRITATI	JD UNDERSTAND THE O NOT DISPOSE OF VVIRONMENT. AVOID ON. WEAR CHEMICAL
Website: www.flottec.com PROPER SHIPPING NAME: NOT REGULATED AS HAZARDOUS			CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	or. Use adeoua d, long sleeve (er handling. Do	TE VENTILATION. SHIRT AND D NOT WEAR
TECHNICAL NAME: Not Applicable ID No./HAZARD CLASS/PACKING GROUP/LABELS: NOT REGULATED AS HAZARDOUS	GRC)UP/LABELS:	FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE. STORAGE: STORF IN TIGHTLY CLOSED CONTAINERS IN A COOL WELL.	PERSON TO FRESI WITH PLENTY OI N. WASH EXPOSE ATED CLOTHING SED CONTALINES	H AIR. IN CASE OF F WATER FOR AT ED SKIN AREAS WITH BEFORE REUSE. S IN A COOL WFIL-
HMIS RATINGS	NGS		FIRE FIGHTING: USE WATER, DRY CHEMICAL, CARBON DIOXIDE, OR	Y CHEMICAL, CAR	BON DIOXIDE, OR
Flottec F160-05 Frother	<u> </u>	КЕҮ	"ALCOHOL" FOAM. SPILL CONTROL: CONTAIN SPILLS WITH SAND OR OTHER ABSORBENT	S WITH SAND OF	R OTHER ABSORBENT
НЕАLTH	1	4 = Severe	MATERIALS. DISPOSE OF SPILL MATERIAL IN APPROVED MANNER.	RIAL IN APPROVI	ED MANNER.
FLAMMABILITY	1	3 = Serious	ATTENTION	GROSS	
REACTIVITY	0	2 = Moderate	EMPTY CONTAINERS MAY CONTAIN PRODUCT RESIDUE INCLUDING		los.
PERSONAL PROTECTION		1 = Slight	FLAMMABLE OR EXPLOSIVE VAPOR. DO NOT CUT, PUNCTURE OR WELD ON CONTAINEP ALLIAREL WARNINGS	TARE WT.	.sd
See Material Safety Data Sheet		0 = Minimal			
C.A.S. No. Component Contains No Hazardous Ingredients	gredien	its	CUNIATINER HAS BEEN I HOROUGHLY CLEANED OR DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	NET WT.	lbs.
				LOT No.	
		IN CASE OF EMERC	IN CASE OF EMERGENGY CALL CHEMTREC		

North America + 1.800.424.9300 Minternational + 1.703.527.3887

Revision No. 03

Maximizing the Value of Flotation Chemicals Technology MATERIAL SAFETY DATA SHEET

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME: Flottec F160-13 Frother	
CHEMICAL FAMILY:	Mixed glycol, glycol ethers
SYNONYMS:	None
MOLECULAR FORMULA:	Mixture
MOLECULAR WEIGHT:	Mixture
MANUFACTURER:	Flottec, LLC • 338 West Main Street • Boonton, New Jersey 07005 • USA
PRODUCT INFORMATION:	Tel: +1.973.588.4717 • Fax: +1.973.588.4719 • Web Site: www.flottec.com
EMERGENCY PHONE:	CHEMTREC • North America: +1.800.424.9300 • International: +1.703.527.3887
ISSUE DATE:	April 30, 2012

2. COMPOSITION/INFORMATION ON INGREDIENTS

OSHA REGULATED COMPONENTS

 COMPONENT
 CAS No.
 % (w/w)
 OSHA (PEL)
 ACGIH (TLV)
 Carcinogen

 No Permissible
 Exposure Limits
 (PEL/TLV) have been
 established
 by OSHA or ACGIH

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

APPEARANCE AND ODOR

Color: Dark brown Appearance: Heavy liquid Odor: Mild polyglycol ether odor STATEMENT OF HAZARD

CAUTION! MAY CAUSE EYE, SKIN AND MUCOUS MEMBBRANE IRRITATION

POTENTIAL HEALTH EFFECTS

EFFECTS / ROUTES OF EXPOSURE

The acute oral (rat) LD50 and acute dermal (rabbit) LD50 values for this material are estimated to be >2000 mg/kg and >2000 mg/kg, respectively. Direct contact with this material may cause mild eye and skin irritation.

Refer to Section 11 for toxicology information on the regulated components of this product.

4. FIRST AID	MEASURES
INGESTION:	If swallowed, call a physician immediately. ONLY induce vomiting at the instructions of a physician. Never give anything by mouth to an unconscious person.
SKIN CONTACT:	Remove contaminated clothing without delay. Flush skin thoroughly with water. Do not reuse clothing without laundering.
EYES CONTACT: Rinse immediately with plenty of water for at least 15 minutes. Obtain medical advice if there are persistent symptoms.	
INHALATON:	Material is not expected to be harmful if inhaled. If inhaled, remove to fresh air.

5. FIREFIGHTING MEASURES

EXTINGUISHING MEDIA AND FIRE FIGHTING INSTRUCTIONS

Extinguishing Media

Use water spray, alcohol foam, carbon dioxide or dry chemical to extinguish fires.

Protective Equipment

Firefighters, and others exposed, wear self-contained breathing apparatus. Wear full firefighting protective clothing. See MSDS Section 8 (Exposure Controls/personal Protection).

Special Hazards

Keep containers cool by spraying with water if exposed to fire.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS

Where exposure level is known, wear approved respirator suitable for level of exposure. Where exposure level is not known, wear approved, positive pressure, self-contained respirator. In addition to the protective clothing/equipment in Section 8 (Exposure Controls/personal Protection). Wear impervious boots.

METHODS FOR CLEAN UP

Remove source of ignition. Cover spills with some inert absorbent material; sweep up and place in a waste disposal container. Flush spill area with water.

ENVIRONMENTAL PRECAUTIONS

Not available

7. HANDLING AND STORAGE

HANDLING

Precautionary Measures

Do not get in eyes, on skin, on clothing. Keep away from heat and flame. Wash thoroughly after handling.

Special Handling Statements

None Known

STORAGE

Do not store in aluminum, brass or copper. Areas containing this material should have fire safe practices and electrical equipment in accordance with applicable regulations and/or guidelines.

Storage Temperature: Room Temperature

Reason:

Integrity

8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

ENGINEERING CONTROLS

Where this material is not used in a closed system, good enclosure and local exhaust ventilation should be provided to control exposure.

PERSONAL PROTECTIVE EQUIPMENT

EYES:	Wear eye/face protection such as chemical splash proof goggles or face shield. Eyewash equipment and safety shower should be provided in areas of potential exposure.	
SKIN:	Avoid skin contact. Wear impermeable gloves and suitable protective clothing.	
RESPIRATORY PROTECTION:	Where exposures are below the established exposure limit, no respiratory protection is required. Where exposures exceed the established exposure limit, use respiratory protection recommended for the material and level of exposure.	

ADDITIONAL ADVICE

Food, beverage and tobacco products should not be carried, stored or consumed where this material is used. Before eating, drinking, or smoking, wash face and hands with soap and water.

9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARNCE AND ODOR:	Brown, typical polyglycol odor
BOILING POINT:	225°C
MELTING POINT:	Not available
VAPOR PRESSURE:	0.02 mmHG@20°C
SPECIFIC GRAVITY:	0.98 – 1.05@ 25°C
VAPOR DENSITY:	Not available
% VOLATILE (BY WT.):	Not available
pH:	10; (5% aqueous solution)
SATURATION IN AIR (% by Vol):	Not applicable
EVAPORATION RATE:	Not applicable
SOLUBILITY IN WATER:	Soluble
VOLATILE ORGANIC CONTENT:	Not available
FLASH POINT:	>220°F (104°C) MPCC
FLAMMABLE LIMITS (% BY VOL.):	Not available
AUTOIGNITION TEMPERATURE:	Not available
DECOMPOSITION TEMPERATURE:	Not available
PARTIAL COEFFICIENT (n-octanol/water):	Not available
ODOR TRESHOLD:	See Section 2 for exposure limits

10. STABILITY AND REACTIVITY

STABILITY:	Stable
CONDITIONS TO AVOID:	None known
POLYMERIZATION:	Will not occur
CONDITIONS TO AVOID:	None known
INCOMPATABILE MATERIALS:	Avoid contact with oxidizers, contact with isocyanates due to heat liberation, and strong acids. Corrosive to aluminum, brass, copper
HAZARDOUS DECOMPOSITION PRODUCTS: Carbon dioxide; carbon monoxide; aldehydes; ketones; organic ad	

11. TOXICOLOGICAL INFORMATION

Toxicological information for the product is found under SECTION 3: HAZARDS IDENTIFICATION Toxicological information on the regulated components of this product is as follows:

This product contains no OSHA regulated (hazardous) components

12. ECOLOGICAL INFORMATION

CLEANSING AGENT:

This product is not classified as dangerous for the environment and is readily biodegradeable.

13. DISPOSAL C	ONSIDERATIONS
RECOMMENDATIONS FOR THE PRODUCT:	Dispose of product in accordance with local, state, and federal laws and regulations. Do not contaminate any lakes, streams, ponds, ground water or soil.
RECOMMENDATIONS FOR PACKAGING:	DO NOT PRESSURIZE, CUT, WELD, BRAZE, DRILL, GRIND OR EXPOSE SUCH CONTAINERS TO HEAT, FLAME, SPARKS, STATIC ELECTRICITY, OR OTHER SURCES OF IGNINITION. THEY MAY EXPLODE AND CAUSE INJURY OR DEATH. Empty drums should be completely drained, properly bunged and promptly returned to a drum re-conditioner, or properly disposed of.
RECOMMENDED	Water

14. Transportation Information

	D.O.T. Sh	ipping Ir	nformation	IMO Shipping Information	
SHIPPING NAME:	Not applicab	le/Not regul	ated	Not applicable/Not regulated	
HAZARD CLASS	Not applicab	le		Not applicable	
PACKING GROUP:	Not applicab	le		Not applicable	
UN/ID NUMBER:	Not applicab	le		Not applicable	
IMDG PAGE:	Not applicab	le		Not applicable	
DOT HAZARDOUS SUBSTANCE:	Not applicab	le		Not applicable	
TRANSPORT LABEL REQUIRED:	None require	ed		None required	
	ICAO/IA	ΓΑ		Transport Canada	
SHIPPING NAME:	Not applicab	le		Not applicable/Not regulated	
HAZARD CLASS:	Not applicab	le		Not applicable	
SUBSIDIARY CLASS:	Not applicab	le		Not applicable	
UN/ID NUMBER:	Not applicabl	e	·	Not applicable	
PACKING GROUP:	Not applicabl	le		Not applicable	
TRANSPORT LABEL REQUIRED:	Not applicabl	le		Not applicable	
PACKING INSTRUCTIONS/	PASSENGER	Not app.	Not app.	Not applicable	
MAXIMIMUM NET QUANTITY:	CARGO	Not app.	Not app.		

ADDITIONAL TRANSPORTATION INFORMATION

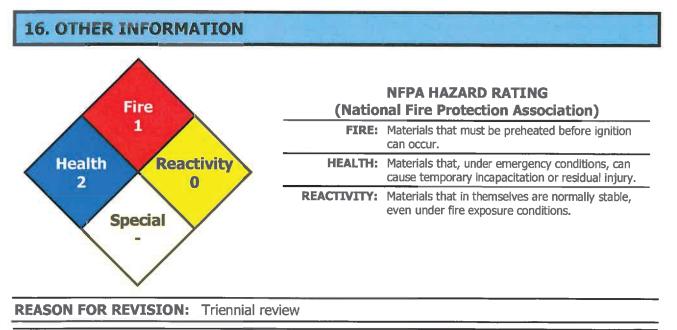
Technical Name (N.O.S.): Not applicable/not regulated

15. REGULATORY INFORMATION

INVENTORY INFORMATION

United States (USA):	All components of this product are included on the TSCA Inventory in compliance with the Toxic Substances Control Act, 15 U. S. C. 2601 et. seq.
Canada:	Components of this product have been reported to Environment Canada in accordance with subsection 25 of the Canadian Environmental Protection Act and are included on the Domestic Substances List.
European Union (EU):	All components of this product are included in the European Inventory of Existing Chemical Substances (EINECS) or the "No Longer Polymer" list in compliance with Council Directive 67/548/EEC and its amendments.

OTHER ENVIRONMENTAL INFORMATION


The following components of this product may be subject to reporting requirements pursuant to Section 313 of CERCLA (40 CFR 372), Section 12(b) of TSCA, or may be subject to release reporting requirements (40 CFR 307, 40 CFR 311, etc.) See Section 13 for information on waste classification and waste disposal of this product.

				- presses		
Component	CAS NO.	% (w/w)	TPQ (lbs)	RQ (lbs)	S313	TSCA 12B
Potassium Hydroxide	001310-58-3	0.1 - 1.0		1000		

PRODUCT CLASSIFICATION UNDER SECTION 311 OF SARA

Not applicable under SARA TITLE III

WHMIS Classification: D2B Eye and Skin irritant

Prepared By: F. Cappuccitti

Revised By: C. Yuen

IMPORTANT: The above information is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warrant, expressed or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular uses.

Maximizing the Value of Flotation Chemicals Technology	hemid	cals Technology	Flottec F160-13 Frother	160-1 Jer	S
Flottec, LLC 338 West Main Street Boonton, New Jersey 07005 • USA TEL: +1.973.588.4717 FAX: +1.973.588.4719	A 973.5	588.4719	WARNING: BEFORE HANDLING YOU MUST READ AND UNDERSTAND THE MATERIAL SAFETY DATA SHEET FOR THIS PRODUCT. DO NOT DISPOSE OF THIS MATERIA NOR THE EMPTY CONTAINER IN THE ENVIRONMENT. AVOID CONTACT WITH SKIN AND EYES, MAY CAUSE IRRITATION. WEAR CHEMICAL GOGGLES.	IST READ AND UNDERSTA PRODUCT. DO NOT DISPO: R IN THE ENVIRONMENT. SE IRRITATION. WEAR CH	ND THE SE OF AVOID EMICAL
Website: www.flottec.com PROPER SHIPPING NAME: NOT REGULATED AS HAZARDOUS			CAUTION: AVOID BREATHING VAPOR. USE ADEQUATE VENTILATION. WEAR SPLASH GOGGLES, FACE SHIELD, LONG SLEEVE SHIRT AND TROUSERS. WASH THOROUGHLY AFTER HANDLING. DO NOT WEAR CONTAMINATED CLOTHING.	ISE ADEQUATE VENTILATI NG SLEEVE SHIRT AND INDLING. DO NOT WEAR	ON.
TECHNICAL NAME: Not Applicable ID No./HAZARD CLASS/PACKING GROUP/LABELS:	GRO	UP/LABELS:	FIRST AID: IF INHALED, REMOVE PERSON TO FRESH AIR. IN CASE OF CONTACT, IMMEDIATELY FLUSH EYES WITH PLENTY OF WATER FOR AT LEAST 15 MINUTES. CALL A PHYSICIAN. WASH EXPOSED SKIN AREAS WITH SOAPY WATER. LAUNDER CONTAMINATED CLOTHING BEFORE REUSE.	ON TO FRESH AIR. IN CAS H PLENTY OF WATER FOR ASH EXPOSED SKIN AREA CLOTHING BEFORE REUS	EE OF AT S WITH E.
	NGS NGS		STORAGE: STORE IN TIGHTLY CLOSED CONTAINERS IN A COOL, WELL- VENTILATED PLACE.	CONTAINERS IN A COOL, V	VELL-
Flottec F160-13 Frother		КЕҮ	ALCOHOL FORT OF CONTAIN SPILE, ON CHEMICAL, CANDON FLOXIDL, ON "ALCOHOL FOAM. SDILL CONTROL · CONTAIN SPILE WITH SAMD OF OTHED APSODDENT	TH SAND OD OTHED ABSC	
НЕАLTH	2	4 = Severe	MATERIALS. DISPOSE OF SPILL MATERIAL IN APPROVED MANNER.	IN APPROVED MANNER.	
FLAMMABILITY	L	3 = Serious			
REACTIVITY	0	2 = Moderate			
PERSONAL PROTECTION		1 = Slight	ATTENTION EMPTY CONTAINERS MAY CONTAIN	GROSS WT.	
See Material Safety Data Sheet		0 = Minimal	PRODUCT RESIDUE INCLUDING FLAMMABLE OR EXPLOSIVE VAPOR. DO	TARE WT.	
1310-58-3 Potassium hydroxide			CONTAINER. ALL LABEL WARNINGS SHOULD BE OBSERVED UNTIL CONTAINER	NET WT.	
			DESTROYED, COMPLYING WITH LOCAL, STATE AND FEDERAL REGULATIONS.	LOT No.	
Revision No. 01 North Ame	rica-	IN CASE OF EMERG + 1.800.424.930	IN CASE OF EMERGENGY CALL CHEMTREC North America+1.800.424.9300 ³⁷ I nternational+1.703.527.3887	87	

SAFETY DATA SHEET

NALCO® DVS4U038

Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name	:	NALCO® DVS4U038			
Other means of identification	:	Not applicable.			
Recommended use	:	FROTHER			
Restrictions on use	:	Refer to available product literature or ask your local Sales Representative for restrictions on use and dose limits.			
Company	:	Nalco Company 1601 W. Diehl Road Naperville, Illinois 60563-1198 USA TEL: (630)305-1000			
Emergency telephone number	:	(800) 424-9300 (24 Hours) CHEMTREC			
Issuing date	:	09/29/2014			

Section: 2. HAZARDS IDENTIFICATION

GHS Classification

Flammable liquids Serious eye damage/eye irritation	: Category 4 : Category 1
Skin sensitization	: Category 1
Germ cell mutagenicity	: Category 2

GHS Label element Hazard pictograms

Hazard pictograms	
Signal Word	Danger
Hazard Statements	 Combustible liquid May cause an allergic skin reaction. Causes serious eye damage. Suspected of causing genetic defects.
Precautionary Statements	 Prevention: Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Keep away from heat/sparks/open flames/hot surfaces No smoking. Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. Contaminated work clothing should not be allowed out of the workplace. Wear protective gloves/ eye protection/ face protection. Use personal protective equipment as required. Response: IF ON SKIN: Wash with plenty of soap and water. IF IN EYES:

1/9

NALCO® DVS4U038

Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. IF exposed or concerned: Get medical advice/attention. Immediately call a POISON CENTER or doctor/ physician. If skin irritation or rash occurs: Get medical advice/ attention. Wash contaminated clothing before reuse. In case of fire: Use dry sand, dry chemical or alcohol- resistant foam for extinction. Storage: Store in a well-ventilated place. Keep cool. Store locked up. Disposal: Dispose of contents/ container to an approved waste disposal plant.						
Other hazards	: None known.					
Section: 3. COMPOSITION/IN	FORMATION C	ON INGREDIENTS				
Chemical Name C4-C16 Alcohols, Aldehydes, Alkane distn. residues Butanal	Esters	CAS-No. Proprietary Proprietary 123-72-8	Concentration: (%) 60 - 100 5 - 10 5 - 10			
Section: 4. FIRST AID MEASURES						
In case of eye contact	least 15 mir		ater, also under the eyelids, for at enses, if present and easy to do. tion immediately.			
In case of skin contact	Use a mild s	 Wash off immediately with plenty of water for at least 15 minutes. Use a mild soap if available. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention. 				
If swallowed	: Rinse mout	h. Get medical attention	if symptoms occur.			
If inhaled	: Remove to symptoms of		natically. Get medical attention if			
Protection of first-aiders	not put your	rself at risk of injury. If in	anger before taking action. Do doubt, contact emergency equipment as required.			
Notes to physician : Treat symptomatically.						
See toxicological information (Section 11)						
Section: 5. FIREFIGHTING M	EASURES					
Suitable extinguishing media		ishing measures that ar ces and the surrounding				
Unsuitable extinguishing media	: High volume	e water jet				

Suitable extinguishing media	:	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.
Unsuitable extinguishing media	:	High volume water jet
Specific hazards during firefighting	:	Not flammable or combustible.
Hazardous combustion products	:	Carbon oxides

SAFETY DATA SHEET

NALCO® DVS4U038

Special protective equipment for firefighters	:	Use personal protective equipment.		
Specific extinguishing methods	:	Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations. In the event of fire and/or explosion do not breathe fumes.		
Section: 6. ACCIDENTAL RE	ELE	ASE MEASURES		
Personal precautions, protective equipment and emergency procedures	:	Ensure adequate ventilation. Keep people away from and upwind of spill/leak. Avoid inhalation, ingestion and contact with skin and eyes. When workers are facing concentrations above the exposure limit they must use appropriate certified respirators. Ensure clean-up is conducted by trained personnel only. Refer to protective measures listed in sections 7 and 8.		
Environmental precautions	:	Do not allow contact with soil, surface or ground water.		
Methods and materials for containment and cleaning up	:	Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway. Do not flush into surface water or sanitary sewer system.		
Section: 7. HANDLING AND STORAGE				
Advice on safe handling	:	Do not breathe dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Wash hands thoroughly after handling. Use only with adequate ventilation.		
Conditions for safe storage : Keep out of reach of children. Keep container tig suitable labeled containers.		Keep out of reach of children. Keep container tightly closed. Store in suitable labeled containers.		
Suitable material	:	The following compatibility data is suggested based on similar product data and/or industry experience: Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.		
Unsuitable material	:	not determinednot determined		

Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Components	CAS-No.	Form of exposure	Permissible concentration	Basis
Butanal	123-72-8	TWA	25 ppm	WEEL

Engineering measures

: Effective exhaust ventilation system Maintain air concentrations below occupational exposure standards.

Personal protective equipment

NALCO® DVS4U038

Eye protection	:	Safety goggles Face-shield
Hand protection	:	Wear the following personal protective equipment: Standard glove type. Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.
Skin protection	:	Wear suitable protective clothing.
Respiratory protection	:	No personal respiratory protective equipment normally required.
Hygiene measures	:	Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling. Provide suitable facilities for quick drenching or flushing of the eyes and body in case of contact or splash hazard.

Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance	:	Liquid
Colour	:	Dark Amber
Odour	:	Alcoholic
Flash point	:	60.5 - 93.3 °C Method: Pensky-Martens closed cup
pН	:	no data available
Odour Threshold	:	no data available
Melting point/freezing point	:	no data available
Initial boiling point and boiling range	:	no data available
Evaporation rate	:	no data available
Flammability (solid, gas)	:	no data available
Upper explosion limit	:	no data available
Lower explosion limit	:	no data available
Vapour pressure	:	no data available
Relative vapour density	:	no data available
Relative density	:	0.85 (20.0 °C)
Density	:	7.0 lb/gal
Water solubility	:	immiscible
Solubility in other solvents	:	no data available
Partition coefficient: n- octanol/water	:	no data available
Auto-ignition temperature	:	no data available
Thermal decomposition	:	Carbon oxides
Viscosity, dynamic	:	no data available
Viscosity, kinematic	:	no data available

SAFETY DATA SHEET

NALCO® DVS4U038

VOC	: 92.5 %		
Section: 10. STABILITY AND	ACTIVITY		
Chemical stability	Stable under normal conditions.		
Possibility of hazardous	No dangerous reaction known under conditions of normal use.		
reactions Conditions to avoid	Extremes of temperature Heat, flames and sparks.		
Incompatible materials	Contact with strong oxidizers (e.g. chlorine, peroxides, chromates nitric acid, perchlorate, concentrated oxygen, permanganate) may generate heat, fires, explosions and/or toxic vapors.		
Hazardous decomposition products	Carbon oxides		
Section: 11. TOXICOLOGICA	NFORMATION		
Information on likely routes of exposure	Inhalation, Eye contact, Skin contact		
Potential Health Effects			
Eyes	Causes serious eye damage.		
Skin	May cause allergic skin reaction.		
Ingestion	Health injuries are not known or expected under normal use.		
Inhalation	Health injuries are not known or expected under normal use.		
Chronic Exposure	Suspected of causing genetic defects.		
Experience with human expo	re		
Eye contact	Redness, Pain, Corrosion		
Skin contact	Redness, Irritation, Allergic reactions		
Ingestion	No symptoms known or expected.		
Inhalation	No symptoms known or expected.		
Toxicity			
Product			
Acute oral toxicity	no data available		
Acute inhalation toxicity	no data available		
Acute dermal toxicity	no data available		
Skin corrosion/irritation	no data available		

NALCO® DVS4U038

Serious eye damage/eye irritation	: no data available
Respiratory or skin sensitization	: no data available
Carcinogenicity	: no data available
Reproductive effects	: no data available
Germ cell mutagenicity	: no data available
Teratogenicity	: no data available
STOT - single exposure	: no data available
STOT - repeated exposure	: no data available
Aspiration toxicity	: no data available
Components	
Acute oral toxicity	: C4-C16 Alcohols, Aldehydes, Esters LD50 rat: > 5,000 mg/kg

Section: 12. ECOLOGICAL INFORMATION

Ecotoxicity

Environmental Effects	:	Toxic to aquatic life.
Components		
Toxicity to fish	:	C4-C16 Alcohols, Aldehydes, Esters LC50 : 6 mg/l Exposure time: 96 h
Components		
Toxicity to daphnia and other aquatic invertebrates	:	Alkane distn. residues EC50 : 29.2 mg/l

Persistence and degradability

The organic portion of this preparation is expected to be inherently biodegradable.

Exposure time: 48 h

Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	:	5 - 10%
Water	:	30 - 50%

NALCO® DVS4U038

Soil

: 50 - 70%

The portion in water is expected to float on the surface.

Bioaccumulative potential

Component substances have a potential to bioaccumulate.

Other information

no data available

Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods	The product should not be allowed to enter drains, water courses or the soil. Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.
Disposal considerations	Dispose of as unused product. Empty containers should be taken to an approved waste handling site for recycling or disposal. Do not re-use empty containers.

Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

Land transport (DOT)

For Packages Less Than Or Equal To 119 Gallons:

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

For Packages Greater Than 119 Gallons:

:	COMBUSTIBLE LIQUID, N.O.S.
:	Butanal
:	NA 1993
:	COMBUSTIBLE LIQUID
:	III
	:

Air transport (IATA)

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

Sea transport (IMDG/IMO)

Proper shipping name	:	PRODUCT IS NOT REGULATED DURING
		TRANSPORTATION

SAFETY DATA SHEET

NALCO® DVS4U038

Section: 15. REGULATORY INFORMATION

EPCRA - Emergency Planning and Community Right-to-Know Act

CERCLA Reportable Quantity

This material does not contain any components with a CERCLA RQ.

SARA 304 Extremely Hazardous Substances Reportable Quantity

This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards	Fire Hazard Acute Health Hazard Chronic Health Hazard
SARA 302	: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
SARA 313	This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

INTERNATIONAL CHEMICAL CONTROL LAWS :

TOXIC SUBSTANCES CONTROL ACT (TSCA)

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

AUSTRALIA

All substances in this product comply with the National Industrial Chemicals Notification & Assessment Scheme (NICNAS).

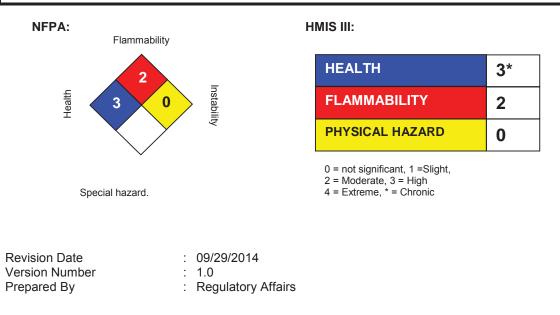
CHINA

This product contains substance(s) which are not in compliance with the Provisions on the Environmental Administration of New Chemical Substances and may require additional review.

JAPAN

This product contains substance(s) which are not in compliance with the Law Regulating the Manufacture and Importation Of Chemical Substances and are not listed on the Existing and New Chemical Substances list (ENCS).

KOREA


This product contains substance(s) which are not in compliance with the Toxic Chemical Control Law (TCCL) and may require additional review.

PHILIPPINES

This product contains substance(s) which are not in compliance with the Republic Act 6969 (RA 6969) and may require additional review.

Section: 16. OTHER INFORMATION

NALCO® DVS4U038

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

For additional copies of an MSDS visit www.nalco.com and request access.

An Ecolab Company	NALCO® DVS4U038	EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC	EPHONE): . Hours)
Nalco Company Corporate Administration 1601 West Diehl Road, NAPERVILLE, IL, USA	Danger! Combustible liquid May cause an allergic skin reaction. Causes serious eye damage. Suspected of causing genetic defects.	MATERIAL DVS NET WEIGHT	DVS4U038.91
630-305-1190 630-305-1000 U.S. DOT Shipping Name:		GENERATED 1/22	1/22/2015
NA1993 COMBUSTIBLE LIQUID, N.O.S., (Butanal), CBL, III	Prevention: Obtain special instructions before use., Do not handle until all safety precautions have been read and understood., Keep away from heat/sparks/open flames/hot surfaces No smoking., Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray., Contaminated work clothing should not be allowed out of the workplace., Wear protective gloves/ eye protection/ face protection., Use personal protective equipment as required.		
MARINE TRANSPORT (IMDG/IMO):	Response: IF ON SKIN: Wash with plenty of soap and water., IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing., IF exposed or concerned: Get medical advice/attention., Immediately call a POISON CENTER or doctor/ physician., If skin irritation or rash occurs: Get medical advice/attention., Wash contaminated clothing before reuse., In case of fire: Its dry send dry chemical or alcohol-resistant form for extinction.		
PRODUCT IS NOT REGULATED DURING TRANSPORTATION	Storage: Store in a well-ventilated place. Keep cool., Store locked up.	ATTENTION: For more information refer to the material safety data sheet. Empty containers may contain residual product	nation refer eet. Empty ual product
	Disposal: Dispose of contents/ container to an approved waste disposal plant.	DO NOT reuse containers unless properly reconditioned.	less properly

C-47

SAFETY DATA SHEET

Issue Date 02-May-2013	Revision Date 03-May-2013	Version 1	
1. PRODUCT AND COMPANY IDENTIFICATION			
Product Identifier Product Name	Copper Sulfate Pentahydrate		
Other Means of Identification SDS #	OBC-007		
UN/ID No Synonyms	UN3077 Blue Vitrol, Bluestone, Cupric Sulfate		
Recommended Use of the Chem Recommended Use	nical and Restrictions on Use For industrial use.		
Details of the Supplier of the Sa Manufacturer Address Old Bridge Chemicals, Inc. 554 Waterworks Rd. Old Bridge, NJ 08857	fety Data Sheet		
Emergency Telephone Number Company Phone Number Emergency Telephone	(732) 727-2225 (normal business hours) (800) 275-3924 (24 hour number) Chemtrec 1-800-424-9300 (North America) 1-703-527-3887 (Internatic	nal)	

2. HAZARDS IDENTIFICATION

Classification

Acute toxicity - Oral	Category 4
Acute toxicity - Dermal	Category 4

Signal Word Warning

Hazard Statements

Harmful if swallowed Harmful in contact with skin

Appearance Transparent blue crystals or blue powder

Physical State Solid

Odor Odorless

Page 1/9

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing

Precautionary Statements - Response

IF ON SKIN: Wash with plenty of soap and water Take off contaminated clothing and wash it before reuse Call a POISON CENTER or doctor/physician if you feel unwell IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell Rinse mouth

Precautionary Statements - Storage

Store locked up

Precautionary Statements - Disposal

Dispose of contents/container to an approved waste disposal plant

Other Hazards

Toxic to aquatic life

3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms

Blue Vitrol, Bluestone, Cupric Sulfate.

Chemical Name	CAS No	Weight-%
Copper sulfate pentahydrate	7758-99-8	100

4. FIRST AID MEASURES

First Aid Measures

Eye Contact	Rinse thoroughly with plenty of water for at least 15 minutes, lifting lower and upper eyelids. Consult a physician.
Skin Contact	IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing and wash it before reuse. Call a POISON CENTER or doctor/physician if you feel unwell.
Inhalation	Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.
Ingestion	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. Rinse mouth. Do NOT induce vomiting. Promptly drink large quantities of milk, egg white, gelatin solution, or if these are not available, drink large quantities of water. Never give anything by mouth to an unconscious person. Avoid alcohol.
Most Important Symptoms and Ef	fects. both Acute and Delayed

SymptomsCauses skin irritation. Repeated or prolonged contact may cause allergic dermatitis. May
cause irritation or burns on wet skin. May cause eye irritation. Irritates the digestive tract.
Abdominal discomfort. Inhalation of dust can result in irritation of nasal mucous membranes
and sometimes of the pharynx. On occasion ulceration with perforation of the nasal
septum.

Indication of any Immediate Medical Attention and Special Treatment Needed

Note to PhysiciansTreat symptomatically. Material may be corrosive. Possible mucosal damage may
contraindicate the use of gastric lavage. Measures against circulatory shock, respiratory
depression and convulsions may be necessary. Wilson's disease can be aggravated by
excessive exposure. Symptoms include nausea, vomiting, epigastria pain, diarrhea,
jaundice, and general debility.

5. FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, CO2 or water spray. Copper Sulfate does not burn nor will it support combustion.

Unsuitable Extinguishing Media If dry heated above 600 °C/ 1112 °F, SO2 is evolved. If water is used it will solubilize the Copper Sulfate and care should be taken to keep such water out of streams or other bodies of water.

Specific Hazards Arising from the Chemical

Not determined.

Hazardous Combustion Products If heated above 400°C/ 752°F product can decompose to emit toxic fumes of oxide and sulfur.

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions. Protective Equipment and Emergency Procedures

Personal Precautions Use personal protective equipment as required.

Methods and Material for Containment and Cleaning Up

Methods for Containment Prevent further leakage or spillage if safe to do so.

Methods for Cleaning Up Avoid the generation of dusts during clean-up. Wear NIOSH or MSHA approved respirator if dust will be generated. Dry sweep up, using a sweeping compound. Shovel spill material into plastic bags and seal with tape. Place in appropriate containers for disposal. Dispose of contents/container to an approved waste disposal plant. Prevent run off to storm sewers and ditches leading to natural waterways.

7. HANDLING AND STORAGE

Precautions for Safe Handling

Advice on Safe Handling Use personal protection recommended in Section 8. Wash face, hands and any exposed skin thoroughly after handling. Do not eat, drink or smoke when using this product. Wash thoroughly after handling before eating, drinking, smoking, or using toilet facilities. Wear protective gloves/protective clothing. Wash outside of gloves before removing. Wash and change into clean clothing as soon as possible.

Page 3/9

Conditions for Safe Storage. Including any Incompatibilities

Storage Conditions	Keep containers tightly closed in a dry, cool and well-ventilated place. Store locked up. Store away from reducing agents. Keep away from galvanized pipe, aluminum and nylon. Store in original containers. Place damaged containers in plastic bags. Iron and moisture should be avoided. With exposure to air it will oxidize and turn whitish.
Packaging Materials	Solutions are mildly corrosive to steel. Store in plastic or rubber or 304, 347 or 316 stainless steel.
Incompatible Materials	Aluminum powders. Acetylene. Hydroxylamine. Magnesium. Moisture. Contact with magnesium can generate dangerous levels of hydrogen gas.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Guidelines

Chemical Name	ACGIH TLV	OSHA PEL	NIOSH IDLH
Copper sulfate pentahydrate	TWA: 1 mg/m ³ Cu dust and mist	TWA: 1 mg/m ³ Cu dust and mist	
7758-99-8			mist TWA: 1 mg/m ³ Cu dust and mist

Appropriate Engineering Controls

Engineering Controls Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Eyewash stations. Showers.

Individual Protection Measures, such as Personal Protective Equipment

Eye/Face Protection	Wear safety glasses with side shields (or goggles).
Skin and Body Protection	Wear long-sleeved shirt, long pants, and shoes plus socks. Wear waterproof gloves. Discard clothing and other absorbent materials that have been drenched or heavily contaminated with product's concentrate. Do not reuse them. Keep and wash PPE separately from other laundry.
Respiratory Protection	If necessary, wear an approved respirator for dusts or mists: MSHA/NIOSH approved number prefix TC-21C, or a NIOSH approved respirator with any R, P or HE filter. Alternatively, provide respiratory protection in accordance with Paragraph 1910.134 of Title 29 of the Code of Federal Regulations.

General Hygiene Considerations Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State Appearance	Solid Transparent blue crystals or blue powder	Odor	Odorless
Color	Blue	Odor Threshold	Not determined
<u>Property</u> pH Melting Point/Freezing Point Boiling Point/Boiling Range Flash Point Evaporation Rate Flammability (Solid, Gas)	<u>Values</u> Not Applicable 110 °C / 230 °F 150 °C / 302 °F Not determined Not Applicable Not determined	<u>Remarks • Method</u>	

Page 4/9

Upper Flammability Limits	Not determined	
Lower Flammability Limit	Not determined	
Vapor Pressure	Not Applicable	
Vapor Density	Not Applicable	
Specific Gravity	2.284	
Water Solubility	22.37%	@ 0 °C / 32 °F
Solubility in Other Solvents	Soluble in methanol, glycerol and	
	slightly soluble in ethanol	
Partition Coefficient	Not determined	
Autoignition Temperature	Not determined	
Decomposition Temperature	Not determined	
Kinematic Viscosity	Not determined	
Dynamic Viscosity	Not determined	
Explosive Properties	Not determined	
Oxidizing Properties	Not determined	

10. STABILITY AND REACTIVITY

Reactivity

Not reactive under normal conditions.

Chemical Stability

Stable under recommended storage conditions.

Possibility of Hazardous Reactions

None under normal processing. Does not react with water.

Hazardous Polymerization Hazardous polymerization does not occur.

Conditions to Avoid

Keep out of reach of children. Solutions are mildly corrosive to steel. Store in plastic or rubber or 304, 347 or 316 stainless steel.

Incompatible Materials

Aluminum powders. Acetylene. Hydroxylamine. Magnesium. Moisture. Contact with magnesium can generate dangerous levels of hydrogen gas.

Hazardous Decomposition Products

Under normal conditions of storage and use, hazardous decomposition products should not be produced. If dry heated above 600° C/ 1112°F toxic sulfur may evolve.

11. TOXICOLOGICAL INFORMATION

Information on Likely Routes of Exposure

Product Information	
Eye Contact	Avoid contact with eyes.
Skin Contact	Harmful in contact with skin.
Inhalation	Avoid inhalation of dust.
Ingestion	Harmful if swallowed.

Component Information

Chemical Name	Oral LD50	Dermal LD50	Inhalation LC50
Copper sulfate pentahydrate 7758-99-8	= 472 mg/kg (Rat)	> 2 g/kg (Rat)	> 2.95 mg/L (Rat)

Information on Physical. Chemical and Toxicological Effects

Symptoms Please see section 4 of this SDS for symptoms.

Delayed and Immediate Effects as well as Chronic Effects from Short and Long-term Exposure

Carcinogenicity This product does not contain any carcinogens or potential carcinogens as listed by OSHA, IARC or NTP.

Numerical Measures of Toxicity

Not determined

12. ECOLOGICAL INFORMATION

Ecotoxicity

Very toxic to aquatic life with long lasting effects.

Chemical Name	Algae/aquatic plants	Fish	Toxicity to	Crustacea
			microorganisms	
Copper sulfate pentahydrate		0.66 - 1.15: 96 h Lepomis		0.147 - 0.227: 48 h Daphnia
7758-99-8		macrochirus mg/L LC50		magna mg/L EC50 Static
		semi-static 0.96 - 1.8: 96 h		
		Lepomis macrochirus mg/L		
		LC50 static 0.1478 - 0.165:		
		96 h Oncorhynchus mykiss		
		mg/L LC50 flow-through 0.09		
		- 0.19: 96 h Oncorhynchus		
		mykiss mg/L LC50 static		
		0.6752: 96 h Pimephales		
		promelas mg/L LC50 static		

Persistence and Degradability

Not determined

Bioaccumulation

Not determined

Mobility Not determined

Other Adverse Effects

Not determined

13. DISPOSAL CONSIDERATIONS

Waste Treatment Methods

Disposal of Wastes	Disposal should be in accordance with applicable regional, national and local laws and regulations. With prior approval the material can be returned to the manufacturer.
Contaminated Packaging	Disposal should be in accordance with applicable regional, national and local laws and regulations.

Chemical Name	California Hazardous Waste Status
Copper sulfate pentahydrate	Toxic
7758-99-8	

14. TRANSPORT INFORMATION

Note

Please see current shipping paper for most up to date shipping information, including exemptions and special circumstances.

When shipped domestically in non-bulk packages weighing less than 10 lbs., product is NOT REGULATED for ground transportation. The following DOT description for shipping as REGULATED only applies when shipping in packages containing more than 10 lbs. of

DOT

	product. When this is the case, drivers are required to have Hazmat Certification.
UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	
Reportable Quantity (RQ)	10 lbs
Marine Pollutant	This product contains a chemical which is listed as a severe marine pollutant according to DOT.
Emergency Response Guide Number	171

IATA

UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	III

IMDG

UN/ID No	UN3077
Proper Shipping Name	Environmentally Hazardous Substance, solid, n.o.s. (Cupric Sulfate)
Hazard Class	9
Packing Group	
Marine Pollutant	This product contains a chemical which is listed as a severe marine pollutant according to IMDG/IMO

15. REGULATORY INFORMATION

International Inventories

TSCA Listed

Legend:

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

US Federal Regulations

CERCLA

Chemical Name	Hazardous Substances RQs	CERCLA/SARA RQ	Reportable Quantity (RQ)
Copper sulfate pentahydrate 7758-99-8	10 lbs	10 lbs	10 lbs

SARA 311/312 Hazard Categories

Acute health hazard

Yes

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product contains a chemical or chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

Chemical Name	CAS No	Weight-%	SARA 313 - Threshold Values %
Copper sulfate pentahydrate - 7758-99-8	7758-99-8	100	1.0

CWA (Clean Water Act)

Component	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Copper sulfate pentahydrate 7758-99-8 (100)		Х		

US State Regulations

U.S. State Right-to-Know Regulations

Chemical Name	New Jersey	Massachusetts	Pennsylvania
Copper sulfate pentahydrate	Х		X
7758-99-8			

16. OTHER INFORMATION Health Hazards Flammability Instability Special Hazards Not NFPA determined Personal 3 0 0 HMIS **Health Hazards** Flammability **Physical Hazards** Protection Not 3 0 0 determined **Issue Date** 02-May-2013 **Revision Date** 03-May-2013 **Revision Note** New format

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

Page 9/9

Warning

COPPER SULFATE PENTAHYDRATE

Harmful in contact with skin - Harmful if swallowed

Do not eat, drink or smoke when using this product. - IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. - IF ON SKIN: Wash with plenty of soap and water. - Take off contaminated clothing and wash before reuse.

Old Bridge Chemicals, Inc.

Please refer to the original SDS for more information

Revision date : 2010/05/12 Version: 1.1 Page: 1/7 (30479152/SDU_GEN_US/EN)

1. Product and Company Identification

Company BASF CORPORATION 100 Campus Drive Florham Park, NJ 07932, USA 24 Hour Emergency Response Information CHEMTREC: 1-800-424-9300 BASF HOTLINE: 1-800-832-HELP

Registrant:

Chemical family:

polyacrylamide, anionic

2. Hazards Identification

Emergency overview

Signal word:	NOTICE!!
Colour:	off-white
Appearance:	powder
State of matter:	solid
Odour:	odourless
Health:	Dust may cause mechanical irritation to eyes and skin., May cause some irritation to the
	respiratory system if dust is inhaled.
Physical/Chemical	Slip hazard when wet.
hazards:	

Potential health effects

Primary routes of entry:

Eyes, Skin, Inhalation, Ingestion

3. Composition/Information on Ingredients

This material is classified as not hazardous under OSHA regulations.

4. First-aid Measures

Inhalation:

Remove to fresh air, if not breathing give artificial respiration. If breathing is difficult, give oxygen and get immediate medical attention.

Revision date : 2010/05/12

Version: 1.1

Skin:

Remove contaminated clothing. Wash affected skin with plenty of water, shower if necessary. Get medical attention if irritation occurs.

Eyes:

Immediately flush the eye(s) with lukewarm, gently flowing water for 15 minutes or until the chemical is removed. Get immediate medical attention if irritation persists.

Page: 2/7

(30479152/SDU GEN US/EN)

Ingestion:

Do not induce vomiting. If vomiting occurs naturally, have casualty lean forward to reduce the risk of aspiration. Seek medical attention immediately.

5. Fire-fighting Measures

Suitable extinguishing media:

water, water spray, foam, carbon dioxide, dry powder

Unsuitable Extinguishing Media:

If water is used, restrict pedestrian and vehicular traffic in areas where slip hazard may exist.

Hazardous combustion products:

Carbon and nitrogen oxides.

Hazards during fire-fighting:

Very slippery when wet.

Do not release chemically contaminated water into drains, soil or surface water. Sufficient measures must be taken to retain the water used for extinguishing. Dispose of contaminated water and soil according to local regulations.

Protective equipment for fire-fighting:

Wear self-contained breathing apparatus and chemical-protective clothing.

6. Accidental Release Measures

Cleanup:

Sweep up and shovel into suitable containers for disposal. Wear suitable protective equipment. Avoid raising dust. Should not be released into the environment.

7. Handling and Storage

<u>Handling</u>

General advice:

As with all industrial chemicals, use good industrial practices when handling. Avoid eye, skin, and clothing contact. Do not inhale. Do not taste or swallow. Use only with adequate ventilation.

Storage

General advice:

Keep containers tightly closed in a dry, cool and well ventilated place. Store between 0 - $35^{\circ}C$ (32 - $95^{\circ}F$)

Revision date : 2010/05/12 Version: 1.1

> for industrial use only <

8. Exposure Controls and Personal Protection

Engineering Controls:

Work in well ventilated areas. Do not breathe dust.

Personal protective equipment

Respiratory protection:

Wear a NIOSH-certified respirator as necessary.

Eye protection:

Safety glasses with side-shields (frame goggles) (EN 166)

Body protection:

Wear chemical resistant gloves and protective clothing.

General safety and hygiene measures:

There are no OSHA or ACGIH exposure guidelines available for component(s) in this product.

9. Physical and Chemical Properties

Colour:	off-white	
Form:	powder	
State of matter:	solid	
Odour:	odourless	
pH value:	4 - 9	(5 g/l)
Evaporation rate:		Not tested
Flash point:		Not applicable
Melting point:		Not applicable
Boiling point:		Not applicable
Vapour pressure:		Not applicable
Bulk density:	approx. 800 kg/m3	
Partitioning coefficient n- octanol/water (log Pow):		Not tested
Viscosity, dynamic:	approx. 1,000 mPa.s	(0.5 %(m))
Solubility in water: Autoignition:		Forms a viscous solution Not applicable

10. Stability and Reactivity

Stability:

Stable.

Conditions to avoid: Avoid extreme temperatures.

Substances to avoid: oxidizing agent

Possibility of Hazardous Reactions: No hazardous reactions if stored and handled as prescribed/indicated.

Hazardous decomposition products: No decomposition expected under normal storage conditions.

Revision date : 2010/05/12 Version: 1.1

11. Toxicological Information

Acute oral toxicity:

LD50 / oral / rat: > 5,000 mg/kg

Acute inhalation toxicity:

Not tested

Acute dermal toxicity:

dermal:

not determined

Skin irritation:

rabbit: non-irritant

Eye irritation:

: non-irritant

Skin Sensitization:

Sensitization / guinea pig: Non-sensitizing.

Subacute Toxicity:

not determined

Subchronic Toxicty:

not determined

Chronic toxicity:

(Rat) 2-year oral study showed no significant toxic effects.

Genetic toxicity:

Not determined.

Carcinogenicity:

None of the components in this product at concentrations greater than 0.1% are listed by IARC; NTP, OSHA or ACGIH as a carcinogen.

Reproductive toxicity:

not determined

Developmental toxicity/teratogenicity:

not determined

12. Ecological Information

Toxicity to fish:

Brachydanio rerio/96 h/LC50: > 100 mg/l (OECD 203/EC C.1) By analogy with a product of similar composition

Toxicity to aquatic invertebrates:

Daphnia magna/48 h/EC50: > 100 mg/l (OECD 202) By analogy with a product of similar composition

Toxicity to aquatic plants:

Scenedesmus subspicatus/72 h/IC50: > 100 mg/l (OECD 201/EC C. 3) By analogy with a product of similar composition

C-61

Revision date : 2010/05/12

Version: 1.1

Toxicity to microorganisms:

Not tested

Biodegradation:

Evaluation:

Not readily biodegradable.

Bioaccumulation:

Does not accumulate in organisms.

13. Disposal Considerations

Waste disposal of substance:

Dispose of in accordance with national, state and local regulations.

Resource Conservation and Recovery Act (RCRA): Not a hazardous waste under RCRA (40 CFR 261).

14. Transport Information

U.S. Department of Transportation

The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

Road transport:

Special shipping information:	Not classified as a dangerous good under transport regulations.
Air transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.
Inland-waterway transport:	
Special shipping information:	Not classified as a dangerous good under transport regulations.

15. Regulatory Information

US: Toxic Substances Control Act (TSCA):	All component(s) comprising this product are either exempt or listed on the TSCA inventory
Canada: Domestic Substances List (DSL):	All components either exempt or listed on the DSL

United States - Regulations

SARA Section 311/312 Hazard Communication Standard:

Acute Health:	Ν	Fire:	Ν
Chronic Health:	Ν	Reactivity:	Ν
		Sudden release of pressure:	Ν

SARA Section 313 Toxic Chemical List:

This product does not contain any components reportable under Sec 313 (40 CFR 372).

OSHA hazard category:

Revi	sion	da	ate	2	2010/05/12

Version: 1.1

This material is classified as not hazardous under OSHA regulations.

Toxic Substances Control Act (TSCA) Significant New Use Rule (SNUR):

This product is not subject to a Significant New Use Rule (SNUR).

Toxic Substances Control Act (TSCA) Section 5(e) Consent Orders:

This product is not subject to a Section 5(e) Consent Order.

Toxic Substances Control Act (TSCA) Section 5(f):

This product is not subject to a Section 5(f)/6(a) rule.

Toxic Substances Control Act (TSCA) Section 12(b) Export Notification:

No components listed.

Clean Air Act - Hazardous Air Pollutants (HAP):

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Listed

Clean Air Act 602 - Ozone Depleting Substances (ODS):

This product neither contains, nor was manufactured with, a Class I or Class II ozone depleting substance (ODS), as defined by the U.S. Clean Air Act Section 602 (40 CFR 82, Subpt. A, App. A+B).

Clean Water Act - Priority Pollutants (PP):

This product does not contain any priority pollutants listed under the U.S. Clean Water Act Section 307(2)(1) Priority Pollutant List (40 CFR 401.15).

Pennsylvania Right to Know:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Environmental hazard.
2-Propenamide	79-06-1	Listed

California Proposition 65 - Chemicals Known to the State to Cause Cancer:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Carcinogenic.

WARNING: This product contains a chemical known to the State of California to cause cancer.

International Regulations

Chemical Weapons Convention:

This product does not contain any component(s) listed under the Chemical Weapons Convention Schedule of Chemicals.

16. Other Information

MAGNAFLOC® 10 (US) is a registered trademark of BASF Corporation or BASF SE IMPORTANT: WHILE THE DESCRIPTIONS, DESIGNS, DATA AND INFORMATION CONTAINED HEREIN ARE PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE, IT IS PROVIDED FOR YOUR GUIDANCE ONLY. BECAUSE MANY FACTORS MAY AFFECT PROCESSING OR APPLICATION/USE, WE RECOMMEND THAT YOU MAKE TESTS TO DETERMINE THE SUITABILITY OF A PRODUCT FOR YOUR PARTICULAR PURPOSE PRIOR TO USE. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION SET FORTH, OR THAT THE PRODUCTS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT

Revision date : 2010/05/12 Version: 1.1 Page: 7/7 (30479152/SDU GEN US/EN)

INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF OUR TERMS AND CONDITIONS OF SALE. FURTHER, YOU EXPRESSLY UNDERSTAND AND AGREE THAT THE DESCRIPTIONS, DESIGNS, DATA, AND INFORMATION FURNISHED BY BASF HEREUNDER ARE GIVEN GRATIS AND BASF ASSUMES NO OBLIGATION OR LIABILITY FOR THE DESCRIPTION, DESIGNS, DATA AND INFORMATION GIVEN OR RESULTS OBTAINED, ALL SUCH BEING GIVEN AND ACCEPTED AT YOUR RISK.

Due to the merger of CIBA and BASF Group all Material Safety Data Sheets have been reassessed on the basis of consolidated information. This may have resulted in changes of the Material Safety Data Sheets. In case you have questions concerning such changes please contact us at the address mentioned in Section I.

END OF DATA SHEET

MAT NO: 56458981 Magnafloc® 10

Caution - Slippery when wet!

water with eyelids held open. Seek medical attention. INGESTION: Rinse mouth and then drink plenty of water. Do not induce vomiting. Immediate medical attention required. INHALATION: If difficulties occur after dust has FIRST AID: GENERAL: Remove contaminated clothing. SKIN: Wash thoroughly with soap and water. If rritation develops, seek medical attention. EYES: Wash affected eyes for at least 15 minutes under running exposure. Wear NIOSH-certified chemical goggles. Take precautionary measures against static discharges. May cause some eye irritation which should cease after removal of the product. May cause some irritation o the respiratory system if dust is inhaled, MAY CAUSE SKIN IRRITATION, This type of product has a lammable dust clouds may be formed in air. Use NIOSH approved respirator as needed to mitigate endency to create dust if roughly handled. It does not burn readily but as with many organic powders, been inhaled, remove to fresh air and seek medical attention.

slippery when wet. Wear a self-contained breathing apparatus. The degree of risk is governed by the burning substance and the fire conditions. Contaminated extinguishing water must be disposed of in accordance with N CASE OF FIRE: EXTINGUISHING MEDIA: dry powder, foam MAY BE EMITTED: carbon oxides nitrogen oxides The substances/groups of substances mentioned can be released in case of fire. Very official regulations.

N CASE OF SPILLS OR LEAKS: Use personal protective clothing. Do not discharge into drains/surface waters/groundwater. Spilled product which becomes wet or spilled aqueous solution create a hazard because of their slippery nature. Avoid raising dust.

EMPTY CONTAINERS: Dispose of in a licensed facility. Recommend crushing, puncturing or other means to prevent unauthorized use of used containers.

V1.7

Store in unopened original containers in a cool and dry place. Avoid wet, damp or humid conditions, temperature extremes HANDLING AND STORAGE: Breathing must be protected when large quantities are decanted without local exhaust ventilation. Handle in accordance with good industrial hygiene and safety practice. Forms slippery surfaces with water **DISPOSAL:** Must be disposed of or incinerated in accordance with local regulations.

N CĂSE OF CHEMICAL EMERGENCY: Call CHEMTREC day or night for assistance and information concerning spilled ATTENTION: Refer to our technical bulletin and material safety data sheet regarding safety, usage, application, hazards, RTK: Proprietary Copolymer TSRN 161090809-5200; urea 57-13-6; Water 7732-18-5; Proprietary Alcohol TSRN material, fire, explosive, and other chemical accidents. 800-424-9300 or 703-527-3887 outside the US. procedures and disposal of this product. Consult your supervisor for additional information. and ignition sources

161090809-5222

PROPER SHIPPING NAME: NOT REQUIRED

		PKG NO:1	VO:1
BASF CORPORATION		NET	<u>GROSS</u>
2301 WILROY RD.	БХ	25.0	25.2
CHEEDLV VV 22424 HCA			
JULL ULN, VA, 23434 UJA	LB	55.1	55.6

C-65

0	1	0	Х
Н	ш	R	٩

Technical Information

Page 1 of 2

Global Mining Solutions

TI/EVH 0050 e March 2013

Supersedes edition dated June 2010

® = registered trademark of BASF SE	Magnafloc	° 10
	Anionic flocculant	
Description	Magnafloc 10 is a very high mole flocculant supplied as a free flow	ecular weight, slightly anionic polyacrylamide ving granular powder.
Principal uses	Magnafloc 10 has found applicat operations including the following	tion in a wide variety of mineral processing g:
	 Acid leach CCD (uranium) Potash slimes clarification and Acid leach CCD (copper) Acid leach (zinc) Iron ore tailings clarification Base metal concentrates thick Thickening of coal tailings 	
	Dosage depends on application 2-200 g/tonne of dry substrate	
Typical properties	Physical form: Particle size: Bulk density: pH of 1 % solution at 25 °C: Viscosity at 25 °C:	Off-white granular powder 98 % < 1000 µm 0.7 g/cm ³ 6.5 See graph and table
	Apparent Viscosity-Con (Fann Viscometer-Shear 1200 1000 800 600 400 200 0 0.2 0.4 Magnafloc 10 Co	P Rate 5.11 sec ⁻¹)

Page 2 of 2

Application & Storage	Recommended solution concentrations:	
	Stock solution: Feed solution:	0.25–0.5% max. 0.025–0.1% max.
Shelf life	2 years from rece	ipt of goods
	Stock solution:	1-2 days
	Storage of polyme	er should be in a cool, dry place.
	Details on prepara representative.	ation and application can be obtained from a BASF

Magnafloc 10	Shear rate (sec ⁻¹)					
concentration (%)	5.11	10.22	170	340	511	1022
	Viscosity (cP)					
1.0	1100	700	126	87	74	63
0.5	5 350	250	48	35	29	24
0.25	5 200	125	24	18	15	12
0.10) 100	63	12	9	7	6
hipping & Handling	Magnafloc 10 pallet suitable intermediate can be obtain Corrosivity to aluminium an	e for export s big bags or l ned on reque	shipment. The oulk tanker. S est. standard ma	e product cal Specific detai terials of con	n also be sup Is of bag and istruction is lo	oplied via I tanker siz
echnical service	Advice and a the correct p by representa applications.	roduct and c	letermine the	best applica	ation can be p	orovided
lealth & Safety	Magnafloc 10 exhibits a very low order of oral toxicity and does not present any abnormal problems in its handling or general use.					
	Detailed infor use of the pro health and sa	oduct(s) deso	cribed in this			
Note	The data con and experien and applicati- carrying out t any guarante a specific pur portions, wei and do not c the responsik proprietary rig	ce. In view o on of our pro their own invo e of certain p rpose. Any d ghts etc. give onstitute the bility of the re	f the many fa boduct, these of estigations and properties, no escriptions, of en herein ma agreed cont ecipient of ou	actors that m data do not r nd tests; neit br the suitabil drawings, ph y change wit ractual qualit r products to	ay affect process elieve process ther do these lity of the pro otographs, d hout prior inf y of the prod o ensure that	cessing data imply duct for ata, pro- ormation luct. It is any
	March 2013					

BASF SE Global Mining Solutions 67056 Ludwigshafen, Germany www.basf.com/miningsolutions

Revision date : 12.05.2010 Version: 1.1

Page: 1/9 (30476016/SDU GEN US/EN)

1. Product and Company Identification

Company BASF CORPORATION 100 Campus Drive Florham Park, NJ 07932, USA 24 Hour Emergency Response Information CHEMTREC: 1-800-424-9300 BASF HOTLINE: 1-800-832-HELP

Registrant:

2. Hazards Identification

Emergency overview

Signal word:	CAUTION: !
Colour:	white
Appearance:	powder
State of matter:	solid
Odour:	ammonia-like
Health:	This product is an eye, skin and respiratory irritant.
Physical/Chemical	Slip hazard when wet., Organic powders may be capable of generating static discharges
hazards:	and creating explosive mixtures in air. Handle with caution., Refer to MSDS Section 7
	for Dust Explosion information.

Potential health effects

Primary routes of entry:

Eyes, Skin, Inhalation, Ingestion

Potential environmental effects

Releases to the environment are to be avoided.

3. Composition/Information on Ingredients

Chemical name	CAS Number	Content (Weight)	Hazardous
Urea	57-13-6	1.0 - 3.0 %	Y
Acrylamide Copolymerc	Trade Secret	86.0 - 90.0 %	Y
Hexanedioic-acid-	124-04-9	3.0 - 5.0 %	Y

This material is classified as hazardous under OSHA regulations.

Revision date : 12.05.2010 Version: 1.1

4. First-aid Measures

Inhalation:

Remove to fresh air, if not breathing give artificial respiration. If breathing is difficult, give oxygen and get immediate medical attention.

Skin:

If clothing is contaminated, remove and launder before reuse. After contact with skin, wash immediately with plenty of water and soap. Get medical attention if irritation occurs.

Eyes:

Immediately flush the eye(s) with lukewarm, gently flowing water for 15 minutes or until the chemical is removed. Get immediate medical attention if irritation persists.

Ingestion:

Do not induce vomiting. If vomiting occurs naturally, have casualty lean forward to reduce the risk of aspiration. Seek medical attention immediately.

5. Fire-fighting Measures

Suitable extinguishing media:

carbon dioxide, dry powder, foam

Unsuitable Extinguishing Media:

If water is used, restrict pedestrian and vehicular traffic in areas where slip hazard may exist.

Hazardous combustion products:

Carbon and nitrogen oxides.

Hazards during fire-fighting:

Standard procedure for chemical fires. Dust in sufficient concentration can result in an explosive mixture in air. Handle to minimize dusting and eliminate open flame and other sources of ignition.

Protective equipment for fire-fighting:

Wear self-contained breathing apparatus and chemical-protective clothing.

6. Accidental Release Measures

Cleanup:

Product becomes slippery and difficult to handle when wet. Sweep up and shovel into suitable containers for disposal. Avoid raising dust. Wear suitable protective equipment. Should not be released into the environment.

7. Handling and Storage

<u>Handling</u>

General advice:

Revision date : 12.05.2010 Version: 1.1

Page: 3/9 (30476016/SDU GEN US/EN)

As with all industrial chemicals, use good industrial practices when handling. Avoid eye, skin, and clothing contact. Do not inhale. Do not taste or swallow. Use only with adequate ventilation. Slip hazard when wet. Clean up spills promptly

Protection against fire and explosion:

Combustible powder. Avoid creating dusty conditions. - Grounding is required when emptying into a conductive container. - When flammable solvents are present, the container must be inerted or the system otherwise designed to prevent or contain an explosion. Seek expert advice. In addition, for products packaged in fused-lined (coated) fiberdrums, fiber drums with conductive liners, steel drums, steel pails, andType "C" FIBC (bulk bags), or other conductive the following instructions also apply: - Always ground this package before emptying. The user is responsible for designing the system to handle solid and ensuring proper training of employees in the system's use.

Storage

General advice:

Keep container tightly closed in a dry, cool and well-ventilated place. Avoid wet, damp or humid conditions, temperature extremes and ignition sources.

> for industrial use only <

8. Exposure Controls and Personal Protection

ORGANIC DUST	ACGIH	TWA value: 10 mg/m3 Inhalable particles.
		TWA value: 3 mg/m3 Respirable particles.
	OSHA	PEL: 5 mg/m3 Respirable fraction.
		PEL: 15 mg/m3 Total dust.
	Z1A	TWA value: 5 mg/m3 Respirable fraction.
		TWA value: 15 mg/m3 Total dust.
	OSHA	TWA value: 15 millions of particles per cubic foot of air Respirable fraction.
		TWA value: 50 millions of particles per cubic foot of air Total dust.
		TWA value: 5 mg/m3 Respirable fraction.
		TWA value: 15 mg/m3 Total dust.
Hexanedioic-acid- (124-04-9)	ACGIH	TWA value: 5 mg/m3

Exposure Guidelines

Engineering Controls:

Work in well ventilated areas. Do not breathe dust. Ensure good ventilation and local exhaust.

Personal protective equipment

Respiratory protection:

Wear a NIOSH-certified respirator as necessary.

Eye protection:

Revision date : 12.05.2010 Version: 1.1

Page: 4/9 (30476016/SDU GEN US/EN)

Wear safety goggles (chemical goggles) if there is potential for airborne dust exposures.

Body protection:

Wear chemical resistant gloves and protective clothing.

General safety and hygiene measures:

Eye wash station and safety shower should be available in immediate work area., Select additional protective equipment based upon potential for exposure.

9. Physical and Chemical Properties

Colour:	white	
Form:	powder	
State of matter:	solid	
Odour:	ammonia-like	
pH value:		Not tested
Evaporation rate:		Not tested
Flash point:		Not applicable
Melting point:		Not applicable
Boiling point:		Not applicable
Vapour pressure:		Not tested
Bulk density:	approx. 600 kg/m3	
Vapour density:		Not tested
Partitioning coefficient n-		Not applicable
octanol/water (log Pow):		
Viscosity, dynamic:		Not tested
% Volatiles:		not determined
Solubility in water:		Forms a viscous solution
Solubility in other		Not tested
solvents:		

10. Stability and Reactivity

Stability:

Stable.

Conditions to avoid: Avoid humidity. Avoid high temperatures. Avoid handling conditions that create dust. Avoid electro-static discharge. Avoid sources of ignition.

Substances to avoid: Strong oxidizing agents., (may degrade polymer)

Possibility of Hazardous Reactions: Product has a high minimum ignition energy; however, dust may be ignited under some conditions.

Hazardous decomposition products: No decomposition expected under normal storage conditions.

11. Toxicological Information

Acute oral toxicity:

LD50 / oral / rat: > 2,000 mg/kg

Acute inhalation toxicity:

Not determined.

Acute dermal toxicity:

dermal: Not tested

Revision date : 12.05.2010

Version: 1.1

Page: 5/9 (30476016/SDU_GEN_US/EN)

Skin irritation:

not determined

Information on: Urea

(Humans) Mild skin irritant.

Eye irritation:

Not determined.

Information on: Urea

: Irritant. (Humans)

Information on: Hexanedioic-acid-

(Rabbits) Severe Irritant.

Skin Sensitization:

not determined

Chronic toxicity: not determined

Subacute Toxicity:

not determined

Subchronic Toxicty:

Information on: Hexanedioic-acid-

Contains adipic acid, which exhibited the following - male and female rats exposed to adipic acid in the form of an aerosol dust (126 mcg/l) for 6 hours a day for 15 days showed no signs of toxicity.

Genetic toxicity:

Not determined.

 Information on: Hexanedioic-acid-
 Information on: Urea
Information on: Hexanedioic-acid-

Carcinogenicity:

None of the components in this product at concentrations greater than 0.1% are listed by IARC; NTP, OSHA or ACGIH as a carcinogen.

Information on: Hexanedioic-acid-

Information on: Urea

Revision date : 12.05.2010 Version: 1.1

Information on: Hexanedioic-acid-
Information on: Urea
Information on: Hexanedioic-acid-
genicity:
Information on: Hexanedioic-acid-
263 mg/kg on days 6 through 15 of gestation. No effects on maternal or fetal was observed
Information on: Urea
Information on: Hexanedioic-acid-
263 mg/kg on days 6 through 15 of gestation. No effects on maternal or fetal was observed

12. Ecological Information

Toxicity to fish:

Fish general (Pisces)/96 h/LC50: 1 - 10 mg/l

Toxicity to aquatic invertebrates:

48 h/EC50: 10 - 100 mg/l

Toxicity to aquatic plants:

/72 h/EC50: 1 - 10 mg/l

Toxicity to microorganisms:

Not tested

Biodegradation:

Not tested

Bioaccumulation:

Considered to be zero due to charge and high molecular weight

Revision date : 12.05.2010 Version: 1.1

13. Disposal Considerations

Waste disposal of substance:

Dispose of in accordance with national, state and local regulations.

Resource Conservation and Recovery Act (RCRA): Not a hazardous waste under RCRA (40 CFR 261).

14. Transport Information

U.S. Department of Transportation

The listed Transportation Classification does not address regulatory variations due to changes in package size, mode of shipment or other regulatory descriptors.

Road transport:

Special shipping information:	Not classified as a dangerous good under transport regulations.		
Air transport:			
Special shipping information:	Not classified as a dangerous good under transport regulations.		
Inland-waterway transport:			
Special shipping information:	Not classified as a dangerous good under transport regulations.		

15. Regulatory Information

US: Toxic Substances Control Act (TSCA):	All component(s) comprising this product are either exempt or listed on the TSCA inventory
Canada: Domestic Substances List (DSL):	All components either exempt or listed on the DSL

United States - Regulations

SARA Section 311/312 Hazard Communication Standard:

Acute Health:	Y	Fire:	Ν
Chronic Health:	Ν	Reactivity:	Ν
		Sudden release of pressure:	Ν

SARA Section 313 Toxic Chemical List:

No components listed.

OSHA hazard category:

This material is classified as hazardous under OSHA regulations.

Toxic Substances Control Act (TSCA) Significant New Use Rule (SNUR):

This product is not subject to a Significant New Use Rule (SNUR).

Toxic Substances Control Act (TSCA) Section 5(e) Consent Orders:

This product is not subject to a Section 5(e) Consent Order.

Toxic Substances Control Act (TSCA) Section 5(f):

This product is not subject to a Section 5(f)/6(a) rule.

Toxic Substances Control Act (TSCA) Section 12(b) Export Notification:

Revision date : 12.05.2010 Version: 1.1 Page: 8/9 (30476016/SDU GEN US/EN)

No components listed.

Clean Air Act - Hazardous Air Pollutants (HAP):

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Listed
This product does not contain any Hazardous Air Pollut	ants (HAP), as defined by the	he U.S. Clean Air Act
Section 112 (40 CFR 61).		

Clean Air Act 111 - Volatile Organic Compounds (VOC):

Chemical name	CAS Number	Notification
Urea	57-13-6	Listed
2-Propenamide	79-06-1	Listed
Hexanedioic-acid-	124-04-9	Listed

Clean Air Act 602 - Ozone Depleting Substances (ODS):

This product neither contains, nor was manufactured with, a Class I or Class II ozone depleting substance (ODS), as defined by the U.S. Clean Air Act Section 602 (40 CFR 82, Subpt. A, App. A+B).

Clean Water Act - Priority Pollutants (PP):

This product does not contain any priority pollutants listed under the U.S. Clean Water Act Section 307(2)(1) Priority Pollutant List (40 CFR 401.15).

Pennsylvania Right to Know:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Environmental hazard.
2-Propenamide	79-06-1	Listed
Hexanedioic-acid-	124-04-9	Environmental hazard.
Hexanedioic-acid-	124-04-9	Listed

California Proposition 65 - Chemicals Known to the State to Cause Cancer:

Chemical name	CAS Number	Notification
2-Propenamide	79-06-1	Carcinogenic.
WARNING: This product contains a chemical known to t	the State of California to	cause cancer.

California Proposition 65 - Chemicals Known to the State to Cause Reproductive Toxicity:

No components listed.

International Regulations

Chemical Weapons Convention:

This product does not contain any component(s) listed under the Chemical Weapons Convention Schedule of Chemicals.

16. Other Information

MAGNAFLOC® 455 (US) is a registered trademark of BASF Corporation or BASF SE IMPORTANT: WHILE THE DESCRIPTIONS, DESIGNS, DATA AND INFORMATION CONTAINED HEREIN ARE PRESENTED IN GOOD FAITH AND BELIEVED TO BE ACCURATE, IT IS PROVIDED FOR YOUR GUIDANCE ONLY. BECAUSE MANY FACTORS MAY AFFECT PROCESSING OR APPLICATION/USE, WE RECOMMEND THAT YOU MAKE TESTS TO DETERMINE THE SUITABILITY OF A PRODUCT FOR YOUR PARTICULAR PURPOSE PRIOR TO USE. NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE MADE REGARDING PRODUCTS DESCRIBED OR DESIGNS, DATA OR INFORMATION

Revision date : 12.05.2010

Version: 1.1

Page: 9/9 (30476016/SDU GEN US/EN)

SET FORTH, OR THAT THE PRODUCTS, DESIGNS, DATA OR INFORMATION MAY BE USED WITHOUT INFRINGING THE INTELLECTUAL PROPERTY RIGHTS OF OTHERS. IN NO CASE SHALL THE DESCRIPTIONS, INFORMATION, DATA OR DESIGNS PROVIDED BE CONSIDERED A PART OF OUR TERMS AND CONDITIONS OF SALE. FURTHER, YOU EXPRESSLY UNDERSTAND AND AGREE THAT THE DESCRIPTIONS, DESIGNS, DATA, AND INFORMATION FURNISHED BY BASF HEREUNDER ARE GIVEN GRATIS AND BASF ASSUMES NO OBLIGATION OR LIABILITY FOR THE DESCRIPTION, DESIGNS, DATA AND INFORMATION GIVEN OR RESULTS OBTAINED, ALL SUCH BEING GIVEN AND ACCEPTED AT YOUR RISK.

Due to the merger of CIBA and BASF Group all Material Safety Data Sheets have been reassessed on the basis of consolidated information. This may have resulted in changes of the Material Safety Data Sheets. In case you have questions concerning such changes please contact us at the address mentioned in Section I.

END OF DATA SHEET

MAGNAFLOC® 455 US

CAUTION:

The product can cause skin and eye irritation., May cause some irritation to the respiratory system if dust is 7 for Dust Explosion information. Caution - Slippery when wet! Combustible organic powder. Avoid creating nhaled., Avoid the formation and deposition of dust., Avoid sources of ignition. Refer to MSDS Section dusty conditions, dust build-up or formation of dust clouds. Avoid all sources of ignition: heat, sparks, open flame.

water with eyelids held open. Seek medical attention. INGESTION: Rinse mouth and then drink plenty of water. Do not induce vomiting. Immediate medical attention required. INHALATION: If difficulties occur after dust has FIRST AID: GENERAL: Remove contaminated clothing. SKIN: Wash thoroughly with soap and water. If rritation develops, seek medical attention. EYES: Wash affected eyes for at least 15 minutes under running been inhaled, remove to fresh air and seek medical attention.

slippery when wet. Wear a self-contained breathing apparatus. The degree of risk is governed by the burning substance and the fire conditions. Contaminated extinguishing water must be disposed of in accordance with N CASE OF FIRE: EXTINGUISHING MEDIA: dry powder, foam MAY BE EMITTED: carbon oxides nitrogen oxides The substances/groups of substances mentioned can be released in case of fire. Very official regulations.

N CASE OF SPILLS OR LEAKS: Use personal protective clothing. Do not discharge into drains/surface waters/groundwater. Spilled product which becomes wet or spilled aqueous solution create a hazard because of their slippery nature. Avoid raising dust.

EMPTY CONTAINERS: Dispose of in a licensed facility. Recommend crushing, puncturing or other means to prevent unauthorized use of used containers.

V1.7

HANDLING AND STORAGE: Breathing must be protected when large quantities are decanted without local exhaust **DISPOSAL:** Dispose of in accordance with national, state and local regulations.

Store in unopened original containers in a cool and dry place. Avoid wet, damp or humid conditions, temperature extremes ventilation. Handle in accordance with good industrial hygiene and safety practice. Forms slippery surfaces with water and ignition sources.

Avoid extreme heat.

IN CASE OF CHEMICAL EMERGENCY: Call CHEMTREC day or night for assistance and information concerning spilled ATTENTION: Refer to our technical bulletin and material safety data sheet regarding safety, usage, application, hazards, material, fire, explosive, and other chemical accidents. 800-424-9300 or 703-527-3887 outside the US. procedures and disposal of this product. Consult your supervisor for additional information.

RTK: Ethanaminium, N,N,N-trimethyl-2-[(1-oxo-2-propenyl)oxy]-, chloride, polymer with 2-propenamide 69418-26-4; Water 7732-18-5; adipic acid 124-04-9; urea 57-13-6; Ethanaminium, N,N,N-trimethyl-2-[(1-oxo-2-propenyl)oxy]-, chloride 44992-01-0; acrylamide 79-06-1

PROPER SHIPPING NAME: NOT REQUIRED

1:01	GROSS	0.0	0.0
~	NET		

5 D В

C-77

2	1	0	Х
Н	ш	R	Ъ

Technical Information

Page 1 of 3

Global Mining Solutions

TI/EVH 0058 e March 2013

Supersedes edition dated April 2011

® = registered trademark of BASF SE

Magnafloc® 455

flocculant supplied as a free flowing granular powder.

4. Base metal concentrates thickening and filtration

Magnafloc 455 is a high molecular weight slightly cationic polyacrylamide

Magnafloc 455 has found application in a variety of mineral processing

Dosage depends on application but normally lies in the range 2-200 g/tonne

Cationic flocculant

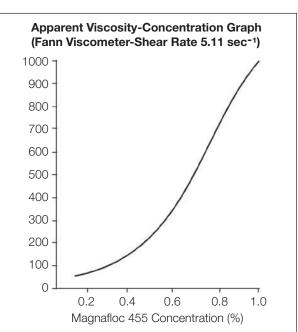
operations including the following:

2. Metal hydroxide thickening and filtration

1. Acid leach CCD (uranium)

3. Acid leach (zinc)

Description


Principal uses

Typical properties

Physical form: Particle size: Bulk density: pH of 1 % solution at 25 °C: Viscosity at 25 °C:

of dry substrate flocculated.

Off-white granular powder $98\% < 1400 \ \mu m$ 0.75 g/cm³ 4.0 See graph and table

Application & Storage	Recommended solution concentrations:		
		0.25–0.5 % max. 0.025–0.1 % max.	
	Recommended s	torage periods:	
	Solid: Stock solution:	up to two years 1-2 days	
	Storage of polym	er should be in a cool, dry place.	
	Details on prepara representative.	ation and application can be obtained from a BASF	

Magnafloc 455		Shear rate	(sec ⁻¹)				
concentration (%)		5.11	10.22	170	340	511	1022
		Viscosity (cP)				
	1.0	990	650	113	80	70	55
	0.5	200	150	30	27	24	19
	0.25	80	50	15	12	10	8
	0.10	50	25	6	5	5	4
echnical service		aluminium ar Advice and a the correct p	nd galvanised assistance in roduct and c atives of BAS	d equipment the running o determine the	terials of con should be ave of laboratory a best applica experienced ir	oided. and plant tes ition can be p	ts to selec provided
Health & Safety		abnormal pro ionic polyeled tant that pred	oblems in its ctrolytes the cautions are	handling or g product exhi taken where	I toxicity and general use. H bits toxicity to the product r ams and rive	However as w owards fish. I may come int	vith all cat- t is impor-
			oduct(s) des	cribed in this	any precautio leaflet can be		

Note

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed.

March 2013

BASF SE Global Mining Solutions 67056 Ludwigshafen, Germany www.basf.com/miningsolutions

MATERIAL SAFETY DATA SHEET

Page 1 of 5 Rev. Date: 6/09/2009

1. IDENTIFIC	ATION OF THE PRO	DUCT AND T	THE COMPAN	Y	
Product Name:		NS 6655			
Company:		Neo Solutions, Ir P.O. Box 26 Beaver, PA 1500			
Emergency Telephone N	umber:	(724) 728-1847		Fax:	(724) 728-3440
Product Use:		Process aid for in	dustrial applications	5.	
2. HAZARDS I	DENTIFICATION				
Appearance and Odor:	Form: Granula	r solid	Color: White	Odor:	None
Emergency Overview					
Aqueous solutions or pov	ders that become wet rende	r surfaces extreme	ly slippery.		
3. COMPOSIT	ION / INFORMATIO	N ON INGRE	DIENTS		
Identification:	Anionic water-soluble pol	ymer.			
Regulated Components:	None				
4. FIRST AID	MEASURES				
Inhalation:	No hazards which require	special first aid mo	easures.		
Skin contact:	Wash with water and soap as a precaution. In case of persistent skin irritation, consult a physician.				
Eye contact:	Rinse thoroughly with ple physician.	nty of water, also u	under the eyelids. In	n case of persis	tent eye irritation, consult a
Ingestion:	No hazards which require	special first aid mo	easures. The produc	t is not conside	red toxic based on studies

5. FIRE-FIGHTING MEASURES

on laboratory animals.

Unsuitable extinguishing media: None

Product Name:	NS 6655	Page 2 of 5 Rev. Date: 6/09/2009
Suitable extinguishing media:	Carbon dioxide (CO ₂). Foam. Dry powder. Water. Water spray.	
Special fire-fighting precautions:	Aqueous solutions or powders that become wet render surfaces extre	mely slippery.
Special protective equipment for firefighters:	No special protective equipment required.	
Flash point:	Not applicable	
Autoignition temperature:	Not applicable	

6. ACCIDENTAL RELEASE MEASURES

Personal precautions: No special precautions required.

Environmental precautions: As with all chemical products, **DO NOT** flush into surface water.

Methods for cleaning up: DO NOT flush with water. Clean up promptly by scoop or vacuum. Keep in suitable and closed containers for disposal. <u>After cleaning</u>, flush away traces with water.

7. HANDLING AND STORAGE

<u>Handling</u>

Safe handling advice:	Avoid contact with skin and eyes. Avoid dust formation. DO NOT breathe dust. Wash hands before breaks and at the end of workday.
Storage:	Keep in a cool, dry place (5 - 35° C).

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Limits

No exposure limits noted for ingredient(s).

Engineering measures

Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dusts.

Personal protection equipment

Respiratory protection:	Dust safety masks are recommended where concentration of total dust is more than 10 mg / m^3 .
Hand protection:	Rubber gloves.
Eye protection:	Safety glasses with side-shields. DO NOT wear contact lenses.

 Product Name:
 NS 6655
 Page 3 of 5

 Rev. Date: 6/09/2009

Skin and body protection:

Chemical resistant apron or protective suit if splashing or repeated contact with solution is likely.

Hygiene measure

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

9. PHYSICAL AND CHEMICAL PROPERTIES

- Form: Color: Odor: pH: Melting point (° C): Flash point (° C): Autoignition temperature (° C): Approx. bulk density: Water solubility: L_{og}P_{ow}:
- granular solid white none 4 - 9 @ 5 g/L Not applicable. Not applicable. 0.80 Completely miscible ~0

10. STABILITY AND REACTIVITY

Stability:	Hazardous polymerization does not occur. Stable.
Materials to avoid:	Oxidizing agents may cause exothermic reactions.
Hazardous decomposition products:	Thermal decomposition may produce: Nitrogen oxides (NOx). Carbon oxides (COx).

11. TOXICOLOGICAL INFORMATION

Acute toxicity

Skin:	The results of testing on rabbits showed this material to be non-toxic even at high dose levels.
Oral:	LD50 / oral / rat > 5000 mg / kg
Inhalation:	The product is not expected to be toxic by inhalation.
Irritation	
Skin:	The results of testing on rabbits showed this material to be non-irritating to the skin.
Eyes:	Testing conducted according to the Draize technique showed the material produces no corneal or iridial effects and only slight transitory conjuctival effects similar to those which all granular materials have on conjuctivae.

Sensitization

The results of testing on guinea pigs showed this material to be non-sensitizing.

Product Name:	NS 6655	Rev. Date: 6/09/2009
2	A two-year feeding study on rats did not reveal adverse health eff did not reveal adverse health effects.	fects. A one-year feeding study on dogs
12. ECOLOGICA	L INFORMATION	
Aquatic toxicity		
Toxicity to fish:	LC50 / 96 hours > 100 mg/L (OECD 203)	
Toxicity to daphnia:	LC50 / Daphnia m./ 48 hours > 100 mg/L (OECD 202)	
Toxicity to algae:	IC50 / Scenedesmus subspicatus / 72 hours > 100 mg/L $$	(OECD 201)
Environmental fate		
Persistence and degradabilit	ty Not readily biodegradable	
Hydrolysis:	Does not hydrolyze.	
$L_{og}P_{ow}$:	~0	

Page 4 of 5

Bioaccumulation: Does not bioaccumulate.

13. DISPOSAL CONSIDERATIONS

Disposal: Not classified as dangerous in the meaning of DOT regulations.

Contaminated packaging: Rinse empty containers with water and use the rinse water to prepare the working solution. Can be landfilled or incinerated, when in compliance with local, state/provincial and federal regulations.

14. TRANSPORT INFORMATION

Remarks: Not classified as dangerous in the meaning of transport regulations.

15. REGULATORY INFORMATION

US SARA Reporting Requirements

SARA Title III Sections

State Regulations

California Proposition 65 Information:

The following statement is made in order to comply with the California Safe Drinking Water and Toxic Enforcement Act of 1986. This product contains the following substance(s) known to the State of California to cause cancer: Acrylamide.

		1 age 5 61 5
Product Name:	NS 6655	Rev. Date: 6/09/2009
International Inventories		
USA (TSCA):	All components of this product are either listed on the inventory or are	e exempt from listing.
Australia (AICS):	All components of this product are either listed on the inventory or are	e exempt from listing.
Canada (DSL):	All components of this product are either listed on the inventory or are	e exempt from listing.
China (IECSC):	All components of this product are either listed on the inventory or are	e exempt from listing.
European Union		
(EINECS/ELINCS):	All components of this product are either listed on the inventory or are	e exempt from listing.
Japan (ENCS):	All components of this product are either listed on the inventory or are	e exempt from listing.
Korea (ECL):	All components of this product are either listed on the inventory or are	e exempt from listing.
Philippines (PICCS):	All components of this product are either listed on the inventory or are	e exempt from listing.

Page 5 of 5

16. OTHER INFORMATION

Person to contact: Product Manager

NFPA and HMIS Ratings

	NFPA	HMIS
Health	1	1
Flammability	1	1
Instability	0	
Physical Hazard		0

This MSDS was prepared in accordance with the following:

ISO 11014-1: Material Safety Data Sheet for Chemical Products

ANSI Z4000.1-2004; Material Safety Data Sheets - Preparation

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information, and belief at the date of its publication. The information given is designed only as a guide for safe handling, use, processing, storage, transportation, disposal, and release, and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process unless specified in the text.

			Label Elements	
Z U 66555	NFPA/HMIS®	FLAMMABILTY (RED)	<u>Hazard symbol(s):</u> none <u>Signal Word</u> : none	
	DEGREE OF HAZARD 4 = EXTREME 3 = HIGH 3 = HIGH 2 = MOOFRATE 2 = MOOFRATE 2 = MOOFRATE	1 0 REACTIVITY	Hazard statement(s): Aqueous solutions or powders that become wet render surfaces extremely slippery Drecontionaly Statement(s): none	
NEO-SOLUTIONS, INC. PO Box 26, Beaver, PA 15009 Emergency Phone Number 724-728-1847	1 = NJGHI 0 = NSGNIFICANT	SPECIAL	Preventionary adventeruts)	
DOT: Not classified as dangerous in the meaning of transport regulations.	nsport regulations.		Protection. P273 – Avoid release to the environment.	
First Aid Measures Inhalation: Move to fresh air. No hazards which require special first aid measures. Skin contact: Wash with water and soap as a precaution. Get medical attention if irritation develops and persists	aid measures. al attention if irritation		Response IF INHALED: P304+P341 – If breathing is difficult, remove victim to fresh air. IF ON SKIN: P302+352 – Wash with	
proughly with plenty of water, also	under the eyelids. Get medical		plenty of soap and water. IF IN EYES: P313+P337 – If eye	
Ingestion: Rinse mouth with water. DO NOT induce vomiting. No hazards which require first aid measures.	izards which require first		irritation persists: Get medical advice/attention.	
Fire-Fighting Measures Suitable extinguishing media: Water. Water spray. Foam. Dry powder. Carbon dioxide (CO ₂).	ler. Carbon dioxide		IF SWALLOWED: P301+P331 – Rinse mouth. Do NOT induce vomiting. Disposal	
Special fire-fighting precautions: Aqueous solutions or powders that become wet render surfaces extremely slippery. Special protective equipment for firefighters: No special protective equipment required. This product <u>MUST NOT</u> be discharged into drains.	ecome wet render uipment required.		P501 – Dispose of contents/container in an approved waste disposal plant.	
Accidental Release Personal precautions: No special precautions required. Environmental precautions: As with all chamical products DO NOT flush into surface water	ush into surface water	Fill Weight:	lbs.	
Methods for cleaning up: <u>DO NOT flush with water</u> . Clean up promptly by scoop or vacuum. Keep in suitable and closed containers for disposal. <u>After cleaning</u> , flush away traces with water.	ly by scoop or vacuum. Lish away traces with	Gross Weight:	lbs.	
Disposal		Lot Number:		
Disposal: Dispose of in accordance with local, state, provincial and federal regulations. Container: Can be landfilled or incinerated, when in compliance with local, state, provincial and federal regulations.	deral regulations. local, state, provincial	Fill Date:		
		Refer to cur	Refer to current SDS for further information.	

Section: 1. PRODUCT AND COMPANY IDENTIFICATION

Product name	:	OPTIMER® 83949
Other means of identification	:	Not applicable.
Recommended use	:	FLOCCULANT
Restrictions on use	:	Refer to available product literature or ask your local Sales Representative for restrictions on use and dose limits.
Company	:	Nalco Company 1601 W. Diehl Road Naperville, Illinois 60563-1198 USA TEL: (630)305-1000
Emergency telephone number	:	(800) 424-9300 (24 Hours) CHEMTREC
Issuing date	:	04/24/2014

Section: 2. HAZARDS IDENTIFICATION

GHS Classification

Not a hazardous substance or mixture.

GHS Label element

Precautionary Statements	 Prevention: Wash hands thoroughly after handling. Response: Specific measures: consult MSDS Section 4. Storage: Store in accordance with local regulations.

Other hazards

: None known.

Section: 3. COMPOSITION/INFORMATION ON INGREDIENTS

No hazardous ingredients

Section: 4. FIRST AID MEAS	SURES
In case of eye contact	: Rinse with plenty of water. Get medical attention if symptoms occur.
In case of skin contact	: Wash off with soap and plenty of water. Get medical attention if symptoms occur.
If swallowed	: Rinse mouth. Get medical attention if symptoms occur.
If inhaled	: Get medical attention if symptoms occur.
Protection of first-aiders	: In event of emergency assess the danger before taking action. Do not put yourself at risk of injury. If in doubt, contact emergency responders.Use personal protective equipment as required.
	1 / 8

Notes to physician : No specific measures identified.

See toxicological information (Section 11)

Section: 5. FIREFIGHTING MEASURES					
Suitable extinguishing media	:	Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.			
Unsuitable extinguishing media	:	None known.			
Specific hazards during firefighting.	:	Not flammable or combustible.			
Hazardous combustion products	:	Carbon oxides			
Special protective equipment for firefighters	:	Use personal protective equipment			
Specific extinguishing methods	:	Fire residues and contaminated fire extinguishing water must be disposed of in accordance with local regulations. In the event of fire and/or explosion do not breathe fumes.			
Section: 6. ACCIDENTAL RE	ELE	ASE MEASURES			
Personal precautions, protective equipment and emergency procedures	:	Refer to protective measures listed in sections 7 and 8.			
Environmental precautions	:	Do not allow contact with soil, surface or ground water.			
Methods and materials for containment and cleaning up	:	Stop leak if safe to do so. Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13). Flush away traces with water. For large spills, dike spilled material or otherwise contain material to ensure runoff does not reach a waterway.			
Section: 7. HANDLING AND	ST	ORAGE			
Advice on safe handling	:	Do not ingest. Wash hands thoroughly after handling. Use only with adequate ventilation.			
Conditions for safe storage	:	Keep out of reach of children. Keep container tightly closed. Store in suitable labeled containers.			
Packaging material	:	Suitable material: Keep in properly labelled containers.			
		Unsuitable material: not determined			
Section: 8 EXPOSURE CON	тр	OI S/PERSONAL PROTECTION			

Section: 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Components with workplace control parameters

Contains no substances with occupational exposure limit values.

Engineering measures	:	Good general ventilation should be sufficient to control worker exposure to airborne contaminants.			
Personal protective equipment					
Eye protection	:	Safety glasses			
Hand protection	:	Wear protective gloves. Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.			
Skin protection	:	Wear suitable protective clothing.			
Respiratory protection	:	No personal respiratory protective equipment normally required.			
Hygiene measures	:	Handle in accordance with good industrial hygiene and safety practice. Remove and wash contaminated clothing before re-use. Wash face, hands and any exposed skin thoroughly after handling.			

HUMAN EXPOSURE CHARACTERIZATION :

Based on our recommended product application and personal protective equipment, the potential human exposure is: Low

Section: 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance Colour Odour	::	Powder White Slight
Flash point	:	Not applicable.
рН	:	7.4, 0.3 % Method: ASTM E 70
Odour Threshold	:	no data available
Melting point/freezing point	:	no data available
Initial boiling point and boiling range	:	no data available
Evaporation rate	:	no data available
Flammability (solid, gas)	:	no data available
Upper explosion limit	:	no data available
Lower explosion limit	:	no data available
Vapour pressure	:	no data available
Relative vapour density	:	no data available
Relative density	:	no data available
Density	:	no data available
Water solubility	:	completely soluble
Solubility in other solvents	:	no data available
Partition coefficient: n- octanol/water	:	no data available

Auto-ignition temperature	:	no data available
Thermal decomposition	:	Carbon oxides
Viscosity, dynamic	:	no data available
Viscosity, kinematic	:	no data available
VOC	:	0.05 %

Section: 10. STABILITY AND REACTIVITY

Chemical stability	Stable under normal conditions.	
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal i	JSE.
	None known.	
Incompatible materials	Contact with strong oxidizers (e.g. chlorine, peroxides, chro nitric acid, perchlorate, concentrated oxygen, permangana generate heat, fires, explosions and/or toxic vapors.	,
Hazardous decomposition products	Oxides of carbon Oxides of nitrogen	

Section: 11. TOXICOLOGICAL INFORMATION

Information on likely routes of	:	Eye contact, Skin contact
exposure		

Potential Health Effects

Eyes	Health in	njuries are not known or expected under normal use.
Skin	Health in	njuries are not known or expected under normal use.
Ingestion	Health in	njuries are not known or expected under normal use.
Inhalation	Health in	njuries are not known or expected under normal use.
Chronic Exposure	Health in	njuries are not known or expected under normal use.

Experience with human exposure

Eye contact	:	No symptoms known or expected
Skin contact	:	No symptoms known or expected
Ingestion	:	No symptoms known or expected
Inhalation	:	No symptoms known or expected
Toxicity		
Toxicity <u>Product</u>		
	:	Acute toxicity estimate : > 5,000 mg/kg

OPTIMER® 83949

Acute dermal toxicity	: no data available
Skin corrosion/irritation	: no data available
Serious eye damage/eye irritation	: no data available
Respiratory or skin sensitization	: no data available
Carcinogenicity	: no data available
Reproductive effects	: no data available
Germ cell mutagenicity	: no data available
Teratogenicity	: no data available
STOT - single exposure	: no data available
STOT - repeated exposure	: no data available
Aspiration toxicity	: no data available

HUMAN HAZARD CHARACTERIZATION

Based on our hazard characterization, the potential human hazard is: Low

Section: 12. ECOLOGICAL INFORMATION

Ecotoxicity

Environmental Effects	:	This product has no known ecotoxicological effects.
Product		
Toxicity to fish	:	LC50 Zebra Danio: > 100 mg/l Exposure time: 96 hrs Test substance: Representative polymer tested in water with DOC
Toxicity to daphnia and other aquatic invertebrates.	:	LC50 Ceriodaphnia dubia: 56.1 mg/l Exposure time: 48 hrs Test substance: Product
		LC50 Daphnia magna: > 100 mg/l Exposure time: 48 hrs Test substance: Representative polymer tested in water with DOC
Toxicity to algae	:	no data available
Toxicity to daphnia and other aquatic invertebrates. (Chronic toxicity)	:	LOEC: 5 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia Test substance: Product
		EC50: 9.04 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia

Test substance: Product

EC25 / IC25: 4.58 mg/l Exposure time: 7 Days Species: Ceriodaphnia dubia Test substance: Product

Persistence and degradability

The organic portion of this preparation is expected to be poorly biodegradable.

Mobility

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models. If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	:	<5%
Water	:	5 - 10%
Soil	:	> 90%

The portion in water is expected to be soluble or dispersible.

Bioaccumulative potential

This preparation or material is not expected to bioaccumulate.

Other information

no data available

ENVIRONMENTAL HAZARD AND EXPOSURE CHARACTERIZATION Based on our hazard characterization, the potential environmental hazard is: Moderate

Based on our recommended product application and the product's characteristics, the potential environmental exposure is: Low

Section: 13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

Disposal methods	: Where possible recycling is preferred to disposal or incineration. If recycling is not practicable, dispose of in compliance with local regulations. Dispose of wastes in an approved waste disposal facility.
Disposal considerations	: Dispose of as unused product. Empty containers should be taken to an approved waste handling site for recycling or disposal. Do not re-use empty containers.

Section: 14. TRANSPORT INFORMATION

The shipper/consignor/sender is responsible to ensure that the packaging, labeling, and markings are in compliance with the selected mode of transport.

Land transport (DOT)

Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION		
Air transport (IATA)			
Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION		
Sea Transport (IMDG/IMO)			
Proper shipping name	: PRODUCT IS NOT REGULATED DURING TRANSPORTATION		
Section: 15. REGULATORY INFORMATION			

EPCRA - Emergency Planning and Community Right-to-Know Act

CERCLA Reportable Quantity

This material does not contain any components with a CERCLA RQ.

SARA 304 Extremely Hazardous Substances Reportable Quantity

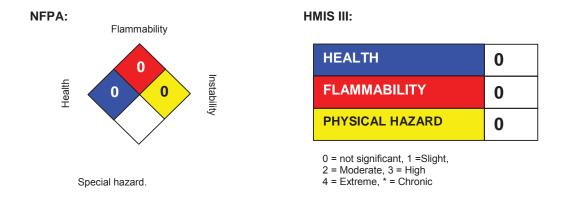
This material does not contain any components with a section 304 EHS RQ.

SARA 311/312 Hazards	No SARA Hazards
SARA 302	SARA 302: No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.
SARA 313	SARA 313: This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

California Prop 65

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

INTERNATIONAL CHEMICAL CONTROL LAWS :


TOXIC SUBSTANCES CONTROL ACT (TSCA) The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).

EUROPE

The substance(s) in this preparation are included in or exempted from the EINECS or ELINCS inventories

Section: 16. OTHER INFORMATION		

Due to our commitment to Product Stewardship, we have evaluated the human and environmental hazards and exposures of this product. Based on our recommended use of this product, we have characterized the product's general risk. This information should provide assistance for your own risk management practices. We have evaluated our product's risk as follows:

* The human risk is: Low

* The environmental risk is: Low

Any use inconsistent with our recommendations may affect the risk characterization. Our sales representative will assist you to determine if your product application is consistent with our recommendations. Together we can implement an appropriate risk management process.

Revision Date	:	04/24/2014
Version Number	:	1.0
Prepared By	:	Regulatory Affairs

REVISED INFORMATION: Significant changes to regulatory or health information for this revision is indicated by a bar in the left-hand margin of the SDS.

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

For additional copies of an MSDS visit www.nalco.com and request access.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME :

OPTIMER® 9877 PULV

APPLICATION :

COMPANY IDENTIFICATION :

Nalco Company

FLOCCULANT

1601 W. Diehl Road Naperville, Illinois 60563-1198

EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC

NFPA 704M/HMIS RATING

HEALTH : 0 / 1 FLAMMABILITY : 1 / 1 INSTABILITY : 0 / 0 OTHER : 0 = Insignificant 1 = Slight 2 = Moderate 3 = High 4 = Extreme * = Chronic Health Hazard

2. COMPOSITION/INFORMATION ON INGREDIENTS

Based on our hazard evaluation, none of the substances in this product are hazardous.

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

CAUTION

May cause irritation with prolonged contact.

Do not get in eyes, on skin, on clothing. Do not take internally. Avoid generating dusts. Do not breathe dust. Use with adequate ventilation. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water.

Wear suitable protective clothing.

May form explosive dust-air mixtures. Handling operations may generate combustible dust in the finely divided and suspended state. To reduce the potential for dust explosions and/or fire, do not permit dust to accumulate. Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. May evolve oxides of carbon (COx) under fire conditions. May evolve oxides of nitrogen (NOx) under fire conditions.

PRIMARY ROUTES OF EXPOSURE : Eye, Skin, Inhalation

HUMAN HEALTH HAZARDS - ACUTE :

EYE CONTACT :

May cause irritation with prolonged contact.

SKIN CONTACT :

May cause irritation with prolonged contact.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

INGESTION:

Not a likely route of exposure. There may be irritation to the gastro-intestinal tract with nausea and vomiting. May be harmful if swallowed.

INHALATION :

Irritant to respiratory system. If dust is generated, can cause mucous membrane irritation. Repeated or prolonged exposure may irritate the respiratory tract. A single brief inhalation exposure (minutes) is not likely to cause serious effects.

SYMPTOMS OF EXPOSURE :

Acute :

A review of available data does not identify any symptoms from exposure not previously mentioned. Chronic :

A review of available data does not identify any symptoms from exposure not previously mentioned.

AGGRAVATION OF EXISTING CONDITIONS :

A review of available data does not identify any worsening of existing conditions.

4. **FIRST AID MEASURES**

EYE CONTACT :

Immediately flush eye with water for at least 15 minutes while holding eyelids open. If only one eye is affected be sure to use care not to contaminate the other eye with the run-off. If irritation persists, repeat flushing. Get medical attention.

SKIN CONTACT :

Immediately wash with plenty of soap and water. Get medical attention.

INGESTION:

Do not induce vomiting without medical advice. If conscious, washout mouth and give water to drink. If reflexive vomiting occurs, rinse mouth and repeat administration of water. Get medical attention. If unconsious, do not give anything by mouth, place in the recovery position, check breathing and pulse. If necessary give artifical respiration.

INHALATION :

Remove to fresh air, treat symptomatically. Get medical attention.

NOTE TO PHYSICIAN :

Based on the individual reactions of the patient, the physician's judgement should be used to control symptoms and clinical condition.

5. FIRE FIGHTING MEASURES

FLASH POINT :

None

EXTINGUISHING MEDIA :

Foam, Dry powder, Carbon dioxide, Other extinguishing agent suitable for Class B fires Use extinguishing media appropriate for surrounding fire. Not expected to burn.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

UNSUITABLE EXTINGUISHING MEDIA : Water spray, Do not use water jets.

FIRE AND EXPLOSION HAZARD :

May form explosive dust-air mixtures. Handling operations may generate combustible dust in the finely divided and suspended state. To reduce the potential for dust explosions and/or fire, do not permit dust to accumulate. Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. May evolve oxides of carbon (COx) under fire conditions. May evolve oxides of nitrogen (NOx) under fire conditions.

SPECIAL PROTECTIVE EQUIPMENT FOR FIRE FIGHTING : In case of fire, wear a full face positive-pressure self contained breathing apparatus and protective suit.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS :

Restrict access to area as appropriate until clean-up operations are complete. Ensure adequate ventilation. Remove sources of ignition. Ensure clean-up is conducted by trained personnel only. Use personal protective equipment recommended in Section 8 (Exposure Controls/Personal Protection). Notify appropriate government, occupational health and safety and environmental authorities. Spill may be slippery.

METHODS FOR CLEANING UP :

For powder: Remove as much as possible with broom, scoop or vacuum, as the addition of water causes slippery floor conditions. Reclaim into recovery or salvage drums. Dispose of material in compliance with regulations indicated in Section 13 (Disposal Considerations).

ENVIRONMENTAL PRECAUTIONS :

Do not contaminate surface water.

7. HANDLING AND STORAGE

HANDLING :

Do not get in eyes, on skin, on clothing. Do not take internally. Use with adequate ventilation. Avoid generating dusts. Keep the containers closed when not in use. Ensure all containers are labeled. Use personal protective equipment recommended in Section 8 (Exposure Controls/Personal Protection). Empty product containers may contain product residue. Do not pressurize, cut, heat, weld, or expose containers to flame or other sources of ignition. Do not use, store, spill or pour near heat, sparks or open flame. Maintain good housekeeping practices.

STORAGE CONDITIONS :

Store in a cool well ventilated area away from direct sunlight. Store separately from oxidizers. Keep in dry place. Store away from heat and sources of ignition. Connections must be grounded to avoid electrical charges.

SUITABLE CONSTRUCTION MATERIAL :

Compatibility with Plastic Materials can vary; we therefore recommend that compatibility is tested prior to use.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

OCCUPATIONAL EXPOSURE LIMITS :

Exposure guidelines have not been established for this product. Available exposure limits for the substance(s) are shown below.

Substance(s)	Category:	ppm	mg/m3	Non-Standard Unit
Inhalable (Total Dust) Nuisance Particulates (Inhalable particles.)	ACGIH/TWA		10	Offic
Inhalable (Total Dust) Nuisance Particulates (Respirable particles.)	ACGIH/TWA		3	
Inhalable (Total Dust) Nuisance Particulates (Respirable fraction.)	OSHA Z1/PEL		5	
Inhalable (Total Dust) Nuisance Particulates (Total dust.) Inhalable (Total Dust) Nuisance Particulates (Respirable fraction.)	OSHA Z1/PEL Z3/TWA		15	15 MPPCF
Inhalable (Total Dust) Nuisance Particulates (Total dust.) Inhalable (Total Dust) Nuisance Particulates (Respirable	Z3/TWA Z3/TWA		5	50 MPPCF
fraction.) Inhalable (Total Dust) Nuisance Particulates (Total dust.)	Z3/TWA		15	

ENGINEERING MEASURES :

Use general ventilation with local exhaust ventilation. Local exhaust ventilation may be necessary when dusts or mists are generated.

RESPIRATORY PROTECTION :

Due to its low toxicity, the hazard potential associated with this material is relatively low. If dusts are generated, use an approved air-purifying respirator. A particulate cartridge may be used.

HAND PROTECTION :

When handling this product, the use of chemical gloves is recommended. The choice of work glove depends on work conditions and what chemicals are handled. Please contact the PPE manufacturer for advice on what type of glove material may be suitable. Gloves should be replaced immediately if signs of degradation are observed.

SKIN PROTECTION :

Wear chemical resistant apron, chemical splash goggles, impervious gloves and boots.

EYE PROTECTION :

Wear chemical splash goggles.

HYGIENE RECOMMENDATIONS :

Use good work and personal hygiene practices to avoid exposure. Keep a safety shower available. Keep an eye wash fountain available. Always wash thoroughly after handling chemicals. When handling this product never eat, drink or smoke. If clothing is contaminated, remove clothing and thoroughly wash the affected area. Launder contaminated clothing before reuse.

HUMAN EXPOSURE CHARACTERIZATION :

Based on our recommended product application and personal protective equipment, the potential human exposure is: High

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

9. PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE Powder

APPEARANCE White

ODOR Slight

SOLUBILITY IN WATERInsolublepH (1 %)5.5 - 7.5VOC CONTENT0 % Calculated

Note: These physical properties are typical values for this product and are subject to change.

10. STABILITY AND REACTIVITY

STABILITY : Stable under normal conditions.

HAZARDOUS POLYMERIZATION : Hazardous polymerization will not occur.

CONDITIONS TO AVOID :

Avoid extremes of temperature. Moisture Heat and sources of ignition including static discharges. Avoid generating dusts.

MATERIALS TO AVOID : Contact with strong oxidizers (e.g. chlorine, peroxides, chromates, nitric acid, perchlorate, concentrated oxygen, permanganate) may generate heat, fires, explosions and/or toxic vapors.

HAZARDOUS DECOMPOSITION PRODUCTS : Under fire conditions: Oxides of carbon, Oxides of nitrogen

11. TOXICOLOGICAL INFORMATION

No toxicity studies have been conducted on this product.

SENSITIZATION :

This product is not expected to be a sensitizer.

CARCINOGENICITY :

None of the substances in this product are listed as carcinogens by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP) or the American Conference of Governmental Industrial Hygienists (ACGIH).

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

HUMAN HAZARD CHARACTERIZATION :

Based on our hazard characterization, the potential human hazard is: Low

12. ECOLOGICAL INFORMATION

ECOTOXICOLOGICAL EFFECTS :

No toxicity studies have been conducted on this product.

MOBILITY :

The environmental fate was estimated using a level III fugacity model embedded in the EPI (estimation program interface) Suite TM, provided by the US EPA. The model assumes a steady state condition between the total input and output. The level III model does not require equilibrium between the defined media. The information provided is intended to give the user a general estimate of the environmental fate of this product under the defined conditions of the models.

If released into the environment this material is expected to distribute to the air, water and soil/sediment in the approximate respective percentages;

Air	Water	Soil/Sediment
<5%	< 5%	> 90%

The portion in water is expected to be soluble or dispersible.

BIOACCUMULATION POTENTIAL

This preparation or material is not expected to bioaccumulate.

ENVIRONMENTAL HAZARD AND EXPOSURE CHARACTERIZATION

Based on our hazard characterization, the potential environmental hazard is: Low Based on our recommended product application and the product's characteristics, the potential environmental exposure is: Moderate

If released into the environment, see CERCLA/SUPERFUND in Section 15.

13. DISPOSAL CONSIDERATIONS

If this product becomes a waste, it is not a hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA) 40 CFR 261, since it does not have the characteristics of Subpart C, nor is it listed under Subpart D.

As a non-hazardous waste, it is not subject to federal regulation. Consult state or local regulation for any additional handling, treatment or disposal requirements. For disposal, contact a properly licensed waste treatment, storage, disposal or recycling facility. Dispose of wastes in an approved incinerator or waste treatment/disposal site, in accordance with all applicable regulations. Do not dispose of wastes in local sewer or with normal garbage.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

14. TRANSPORT INFORMATION

The information in this section is for reference only and should not take the place of a shipping paper (bill of lading) specific to an order. Please note that the proper Shipping Name / Hazard Class may vary by packaging, properties, and mode of transportation. Typical Proper Shipping Names for this product are as follows.

LAND TRANSPORT :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

AIR TRANSPORT (ICAO/IATA) :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

MARINE TRANSPORT (IMDG/IMO) :

Proper Shipping Name :

PRODUCT IS NOT REGULATED DURING TRANSPORTATION

15. **REGULATORY INFORMATION**

This section contains additional information that may have relevance to regulatory compliance. The information in this section is for reference only. It is not exhaustive, and should not be relied upon to take the place of an individualized compliance or hazard assessment. Nalco accepts no liability for the use of this information.

NATIONAL REGULATIONS, USA :

OSHA HAZARD COMMUNICATION RULE, 29 CFR 1910.1200 : Based on our hazard evaluation, none of the substances in this product are hazardous.

CERCLA/SUPERFUND, 40 CFR 117, 302 : Notification of spills of this product is not required.

SARA/SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT OF 1986 (TITLE III) - SECTIONS 302, 311, 312, AND 313 :

SECTION 302 - EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355) : This product does not contain substances listed in Appendix A and B as an Extremely Hazardous Substance.

SECTIONS 311 AND 312 - MATERIAL SAFETY DATA SHEET REQUIREMENTS (40 CFR 370) : Our hazard evaluation has found that this product is not hazardous under 29 CFR 1910.1200.

Under SARA 311 and 312, the EPA has established threshold quantities for the reporting of hazardous chemicals. The current thresholds are: 500 pounds or the threshold planning quantity (TPQ), whichever is lower, for extremely hazardous substances and 10,000 pounds for all other hazardous chemicals.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

SECTION 313 - LIST OF TOXIC CHEMICALS (40 CFR 372) : This product does not contain substances on the List of Toxic Chemicals.

TOXIC SUBSTANCES CONTROL ACT (TSCA) :

The substances in this preparation are included on or exempted from the TSCA 8(b) Inventory (40 CFR 710)

FOOD AND DRUG ADMINISTRATION (FDA) Federal Food, Drug and Cosmetic Act :

When use situations necessitate compliance with FDA regulations, this product is acceptable under : 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods.

FEDERAL WATER POLLUTION CONTROL ACT, CLEAN WATER ACT, 40 CFR 401.15 / formerly Sec. 307, 40 CFR 116.4 / formerly Sec. 311 :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

CLEAN AIR ACT, Sec. 112 (40 CFR 61, Hazardous Air Pollutants), Sec. 602 (40 CFR 82, Class I and II Ozone Depleting Substances) :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

CALIFORNIA PROPOSITION 65 :

Substances listed under California Proposition 65 are not intentionally added or expected to be present in this product.

MICHIGAN CRITICAL MATERIALS :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

STATE RIGHT TO KNOW LAWS :

Substances listed under this regulation are not intentionally added or expected to be present in this product. Listed components may be present at trace levels.

NATIONAL REGULATIONS, CANADA :

WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM (WHMIS) : This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all the information required by the CPR.

WHMIS CLASSIFICATION : Not considered a WHMIS controlled product.

CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) : The substance(s) in this preparation are included in or exempted from the Domestic Substance List (DSL).

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

AUSTRALIA

All substances in this product comply with the National Industrial Chemicals Notification & Assessment Scheme (NICNAS).

CHINA

All substances in this product comply with the Provisions on the Environmental Administration of New Chemical Substances and are listed on the Inventory of Existing Chemical Substances China (IECSC).

EUROPE

The substances in this preparation have been reviewed for compliance with the EINECS or ELINCS inventories.

JAPAN

All substances in this product comply with the Law Regulating the Manufacture and Importation Of Chemical Substances and are listed on the Existing and New Chemical Substances list (ENCS).

KOREA

All substances in this product comply with the Toxic Chemical Control Law (TCCL) and are listed on the Existing Chemicals List (ECL)

PHILIPPINES

All substances in this product comply with the Republic Act 6969 (RA 6969) and are listed on the Philippines Inventory of Chemicals & Chemical Substances (PICCS).

16. OTHER INFORMATION

Due to our commitment to Product Stewardship, we have evaluated the human and environmental hazards and exposures of this product. Based on our recommended use of this product, we have characterized the product's general risk. This information should provide assistance for your own risk management practices. We have evaluated our product's risk as follows:

- * The human risk is: Low
- * The environmental risk is: Low

Any use inconsistent with our recommendations may affect the risk characterization. Our sales representative will assist you to determine if your product application is consistent with our recommendations. Together we can implement an appropriate risk management process.

This product material safety data sheet provides health and safety information. The product is to be used in applications consistent with our product literature. Individuals handling this product should be informed of the recommended safety precautions and should have access to this information. For any other uses, exposures should be evaluated so that appropriate handling practices and training programs can be established to insure safe workplace operations. Please consult your local sales representative for any further information.

REFERENCES

Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, American Conference of Governmental Industrial Hygienists, OH., (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.

PRODUCT

OPTIMER® 9877 PULV

EMERGENCY TELEPHONE NUMBER(S) (800) 424-9300 (24 Hours) CHEMTREC

Hazardous Substances Data Bank, National Library of Medicine, Bethesda, Maryland (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man, Geneva: World Health Organization, International Agency for Research on Cancer.

Integrated Risk Information System, U.S. Environmental Protection Agency, Washington, D.C. (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Annual Report on Carcinogens, National Toxicology Program, U.S. Department of Health and Human Services, Public Health Service.

Title 29 Code of Federal Regulations, Part 1910, Subpart Z, Toxic and Hazardous Substances, Occupational Safety and Health Administration (OSHA), (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.

Registry of Toxic Effects of Chemical Substances, National Institute for Occupational Safety and Health, Cincinnati, OH, (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Ariel Insight (An integrated guide to industrial chemicals covered under major regulatory and advisory programs), North American Module, Western European Module, Chemical Inventories Module and the Generics Module (Ariel Insight CD-ROM Version), Ariel Research Corp., Bethesda, MD.

The Teratogen Information System, University of Washington, Seattle, WA (TOMES CPS CD-ROM Version), Micromedex, Inc., Englewood, CO.

Prepared By : Product Safety Department Date issued : 08/28/2009 Version Number : 1.10

NALCO	OPTIMER® 9877 PULV
An Ecolab Company LOT NO. DENSITY NET WEIGHT	FLOCCULANT
FDA: 21 CFR 176.170 Components of paper and paperboard in contact with aqueous and fatty foods and 21 CFR 176.180 Components of paper and paperboard in contact with dry foods.	CAUTION! May cause irritation with prolonged contact. Do not get in eyes, on skin, on clothing. Do not take internally. Avoid generating dusts. Do not breathe dust. Use with adequate ventilation. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water. Wear suitable protective clothing.
	ATTENTION: For more information refer to the material safety data sheet. Empty containers may contain residual product. DO NOT reuse containers unless properly reconditioned.
NFPA HMIS	EMERGENCY TELEPHONE NUMBER(S): (800) 424-9300 (24 Hours) CHEMTREC
Degree of Hazard 4 = Extreme 3 = High 2 = Moderate 1 = Low 0 = Insignificant 0 = Insignificant 0 = Insignificant 0 = Conside Health Hazard 0 = Cons	Nalco Global Eqt Soln, Door 29 6233 West 65th Street, CHICAGO, IL, USA 60638 630-305-CHEM Material: 9877 PULV.02 Generated: 1/22/2015
U.S. DOT Shipping Name: PRODUCT IS NOT REGULATED DURING TRANSPORTATION MARINE TRANSPORT (IMDG/IMO): PRODUCT IS NOT REGULATED DURING TRANSPOI	T IS NOT REGULATED DURING TRANSPORTATION PRODUCT IS NOT REGULATED DURING TRANSPORTATION

C-106

00002365		SAFETY DAT		Page 1
CHARLES TENNANT & Company/Compagnie	div of CHARLES	ES TENNANT & C TENNANT & CO (N RD., TORONTC M9M 2G8	CANADA) LTD	CACD
PRODUCT: TENNAPRESS PE26				
Section 01: CHEM		CT AND COM	PANY IDENTIFICATI	ON
MANUFACTURERS	SUPPLIED BY P.O. BOX 3478 FORT SASKA ^T ALBERTA, CA T8L 2T4	TCHEWAN	MICALS	
PRODUCT NAME CHEMICAL NAME: MATERIAL USE: CHEMICAL FAMILY: CHEMICAL FORMULA: MOLECULAR WEIGHT:	(780) 992-1522 TENNAPRESS SODIUM CARI MINING CHEM CARBOHYDR/ NOT AVAILAB	S PE26 BOXYMETHYL CE MCALS. ATE. LE.	ELLULOSE (CAS NO. 900	14-32-4).
Sectio	on 02: HAZARI	DS IDENTIFIC	TION	
ROUTE OF ENTRY: SKIN CONTACT: SKIN ABSORPTION: EYE INHALATION INHALATION CHRONIC: INGESTION: EFFECTS OF ACUTE EXPOSURE: EFFECTS OF CHRONIC EXPOSURE:	NOT AVAILAB MAY CAUSE S SLIGHT IRRIT. NOT AVAILAB NOT AVAILAB NOT AVAILAB	LE. SLIGHT IRRITATIO ANT. LE. LE. LE.		
Section 03: CC	MPOSITION/I	NFORMATION	ON INGREDIENTS	
Hazardous Ingredients % I	Exposure Limit	C.A.S.#	LD/50, Route,Specie	es LC/50 Route, Species
SODIUM CARBOXYMETHYL 60-100 N CELLULOSE	IOT AVAILABLE	9004-32-4	ORAL RAT 27000 MG/KG	NOT AVAILABLE
Sec	tion 04: FIRST	AID MEASUR	ES	
SKIN: EYE: INHALATION: INGESTION: NOTES TO PHYSICIAN: GENERAL ADVICE:	REMOVE CON 15 MINUTES. I EYE TISSUE. I MEMOVE PER DEVELOP. NO EMERGEN NO SPECIAL F	ITACT LENSES, I FORCIBLY HOLD IF IRRITATION PE SON TO FRESH ICY CARE ANTIC FIRST-AID NEEDE	F WORN. FLUSH CONTIL EYELIDS APART TO EN ERSISTS GET MEDICAL . AIR. SEEK MEDICAL ATT IPATED. ED.	SURE IRRIGATION OF ALL
Section 05: FIRE FIGHTING MEASURES				
FLAMMABLE LIMITS IN AIR IF YES, UNDER WHICH CONDITIONS? MEANS OF EXTINCTION: SPECIAL PROCEDURES: FLASH POINT, F, COC AUTO IGNITION TEMPERATURE °C: T.D.G. FLAMMABLE CLASS: UPPER EXPLOSION LIMIT: LOWER EXPLOSION LIMIT: HAZARDOUS COMBUSTION PRODUCTS EXPLOSION DATA:	DUSTY COND WATER. CARE PROTECTIVE CHEMICAL SU NOT APPLICA IN APPROX. 370 IN AIR IS 0.150 NON REGULA NOT AVAILAB	ITIONS. 30N DIOXIDE. FC NED, POSITIVE F CLOTHING SHOU JBSTANCE. BLE. (UNDER DUSTY 0 KG/M3). TED. LE. LE.	PRESSURE BREATHING JLD BE WORN IN FIGHT CONDITIONS, WHEN TH	APPARATUS AND PROPER ING FIRES INVOLVING ANY
SENSITIVITY TO STATIC DISCHARGE: SENSITIVITY TO IMPACT: RATE OF BURNING: EXPLOSIVE POWER:	NOT AVAILAB NOT AVAILAB	LE. LE.	INDER DUSTY CONDITION	ONS.

00002365

MATERIAL SAFETY DATA SHEET

PRODUCT: TENNAPRESS PE26

Section 06: ACCIDENTAL RELEASE MEASURES

CLEAN-UP PROCEDURES, LEAK/SPILL:... AVOID OPEN FLAMES, SMOKING, FRICTION SPARKS, STATIC SPARKS, WELDING AND CUTTING TOOLS IN DUSTY SURROUNDINGS.

Section 07: HANDLING AND STORAGE

•

STORE IN A COOL AND DRY PLACE, FOR PRODUCT INTEGRITY. AVOID CREATING DUSTY CONDITIONS.

PROTECT AGAINST PHYSICAL DAMAGE. USE PRECAUTION WHEN HANDLING OR SHIPPING ANY CHEMICAL SUBSTANCE.

Section 08: EXPOSURE CONTROLS/PERSONAL PROTECTION

PROTECTIVE EQUIPMENT:

GLOVES/TYPE:	RUBBER.
	AN APPROVED DUST MASK IS RECOMMENDED UNDER DUSTY CONDITIONS.
EYE/TYPE:	SAFETY GLASSES.
FOOTWEAR/TYPE:	NOT REQUIRED.
CLOTHING/TYPE:	WEAR ADEQUATE PROTECTIVE CLOTHES.
OTHER/TYPE:	AN EYE WASH STATION AND SAFETY SHOWER SHOULD BE NEAR THE WORK
	AREA.
ENGINEERING CONTROLS:	GOOD GENERAL VENTILATION IS NORMALLY ADEQUATE.

Section 09: PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL STATE:	SOLID (POWDER).
ODOUR/APPEARANCE:	WHITE TO TAN.
ODOUR THRESHOLD:	NOT AVAILABLE.
VAPOUR PRESSURE:	NOT APPLICABLE.
REL. VAPOUR DENSITY.	NOT APPLICABLE.
% VOLATILE: BY VOLUME. BY WEIGHT. EVAPORATION RATE: BROWNING TEMPERATURE oC: BOILING POINT °C: FREEZING POINT °C: PH: SPECIFIC GRAVITY: SOLUBILITY IN WATER (20 °C): COEFFICIENT WATER/OIL DIST:	NOT AVAILABLE. NOT AVAILABLE. 227 (440 F). NOT AVAILABLE. NOT AVAILABLE. 6-12. 0.6-0.9. COMPLETE. NOT AVAILABLE.

Section 10: STABILITY AND REACTIVITY

CHEMICAL STABILITY: YES NO, WHICH CONDITIONS? COMPATIBILITY WITH OTHER SUBSTANCES:	YES UNDER NORMAL CONDITIONS OF LIGHT, PRESSURE AND TEMPERATURE.
YES NO. WHICH ONES?	NOT AVAILABLE.
REACTS VIOLENTLY WITH DECOMPOSITION:	

Section 11: TOXICOLOGICAL INFORMATION

SENSITIZING CAPABILITY OF MATERIAL: CARCINOGENICITY OF MATERIAL: REPRODUCTIVE EFFECTS: REPRODUCTIVE TOXICITY: MUTAGENICITY: TERATOGENICITY & EMBRYOTOXICITY: SYNERGISTIC MATERIALS:	NOT AVAILABLE. NOT AVAILABLE. SLIGHT. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE. NOT AVAILABLE.

00002365

MATERIAL SAFETY DATA SHEET

Page 3

PRODUCT: TENNAPRESS PE26

Section 12: ECOLOGICAL INFORMATION

BIODEGRADABILITY NOT AV/ ENVIRONMENTAL NOT AV/

Section 13: DISPOSAL CONSIDERATIONS

REGULATIONS.

Section 14: TRANSPORT INFORMATION

Section 15: REGULATORY INFORMATION

WHMIS CLASSIFICATION:	NOT A CONTROLLED PRODUCT. THIS MSDS IS PROVIDED AS A CUSTOMER
CPR COMPLIANCE	
	CRITERIA OF THE CPR AND THE MSDS CONTAINS ALL OF THE INFORMATION REQUIRED BY THE CPR.

Section 16: OTHER INFORMATION

MANUFACTURERS MSDS DATE: MSDS REVISION DATE: NOTE: PREPARED BY PREPARED BY	JUNE 20, 2014. The information on this Material Safety Data Sheet has been obtained from the manufacturer, and where applicable, from other reliable sources such as CCOHS and RTECS. However, CHARLES TENNANT & (COMPANY) CANADA LIMITED makes no warranties, expressed or implied, as to the accuracy, completeness or adequacy of the information contained herein, and shall not be held liable (regardless of fault) to anyone directly or indirectly for damages or injuries in the use of this product arising out of or in connection with the accuracy, completeness or adequacy of such information. Regulatory Affairs
	Jun20/14

Carboxymethylcellulose sodium salt

Harmful to aquatic life

Avoid release to the environment. - IF INHALED: Call a POISON CENTER or doctor/physician if you feel unwell. - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. - Dispose of contents/container in accordance with municipal, provincial and federal regulations.

Sigma Chemical Company

Please refer to the original SDS for more information

HIGH CALCIUM HYDRATED LIME

GRAYMONT

Section 1. Identification

GHS product identifier	: HIGH CALCIUM HYDRATED LIME
Other means of identification	: Hydrated Lime, Calcitic Hydrated Lime, Lime, Slaked lime, Lime Putty, Lime Slurry, Milk of Lime, Calcium Hydroxide.
Product code	: Not available.
Product type	: Solid.
Identified uses	
Neutralization, focculation, s	stabilization, absorption.
Supplier/Manufacturer	: GRAYMONT #200-10991 Shellbridge Way Richmond, BC V6X 3C6 Canada Phone: 1 604 207-4292 Toll free : 1 866 207-4292 Fax: 1 604 207-9014 Web Site: http://www.graymont.com/
Emergency telephone number (with hours of operation)	: CANUTEC (613-996-6666) CHEMTREC, US (800-424-9300 INTERNATIONAL: (703-527-3887)

Section 2. Hazards identification

OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	 SKIN CORROSION/IRRITATION - Category 2 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 1 CARCINOGENICITY (inhalation) - Category 1A SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Respiratory tract irritation) - Category 3 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) - Category 1
<u>GHS label elements</u> Hazard pictograms	
Signal word	: Danger
Hazard statements	 H318 - Causes serious eye damage. H315 - Causes skin irritation. H350 - May cause cancer if inhaled. H335 - May cause respiratory irritation. H372 - Causes damage to organs through prolonged or repeated exposure.

Precautionary statements

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com GRAYMONT

Section 2. Hazards identification

Prevention	 P201 - Obtain special instructions before use. P202 - Do not handle until all safety precautions have been read and understood.
	P281 - Use personal protective equipment as required.
	P280 - Wear protective gloves. Wear eye or face protection.
	P271 - Use only outdoors or in a well-ventilated area.
	P260 - Do not breathe dust. P270 - Do not eat, drink or smoke when using this product.
	P264 - Wash hands thoroughly after handling.
Response	: P314 - Get medical attention if you feel unwell.
	P308 + P313 - IF exposed or concerned: Get medical attention.
	P304 + P340 + P312 - IF INHALED: Remove victim to fresh air and keep at rest in a
	position comfortable for breathing. Call a POISON CENTER or physician if you feel unwell.
	P302 + P352 + P362 + P363 - IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing. Wash contaminated clothing before reuse. P332 + P313 - If skin irritation occurs: Get medical attention. P305 + P351 + P338 + P310 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER or physician.
Storage	: P401 - Store to minimize dust generation.
Disposal	: P501 - Dispose of contents and container in accordance with all local, regional, national and international regulations.
azards not otherwise cla	ssified (HNOC)
Physical hazards not otherwise classified	: None known.

(PHNOC)	
Health hazards not otherwise classified (HHNOC)	: None known.

Section 3. Composition/information on ingredients

Substance/mixture	: Mixture
Other means of	 Hydrated Lime, Calcitic Hydrated Lime, Lime, Slaked lime, Lime Putty, Lime Slurry, Milk
identification	of Lime, Calcium Hydroxide.

CAS number/other identifiers

CAS number	: Not applicable.
Product code	: Not available.

Ingredient name	%	CAS number
Calcium Hydroxide	90 - 100	1305-62-0
Crystalline silica, quartz	0.0001 - 1	14808-60-7

Crystalline silica has been found in some products at or above detection level 0.1%. Concentration is dependent upon limestone source.

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

C-112

Section 4. First aid measures

Description of necessary first aid measures

Eye contact	: Get medical attention immediately. Call a poison center or physician. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 20 minutes. Chemical burns must be treated promptly by a physician. Get medical attention immediately. Call a poison center or physician.
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If necessary, call a poison center or physician. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.
Skin contact	: Get medical attention immediately. Call a poison center or physician. Flush contaminated skin with plenty of water. Wash contaminated clothing thoroughly with water before removing it, or wear gloves. Continue to rinse for at least 20 minutes. Chemical burns must be treated promptly by a physician. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Ingestion	: Get medical attention immediately. Call a poison center or physician. Wash out mouth with water. Remove dentures if any. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Chemical burns must be treated promptly by a physician. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Most important symptoms/effects, acute and delayed

Potential acute health effects	5	
Eye contact	:	Causes serious eye damage.
Inhalation	:	May cause respiratory irritation.
Skin contact	:	Causes skin irritation.
Ingestion	:	No known significant effects or critical hazards.
Over-exposure signs/sympto	om	<u>s</u>
Eye contact	:	Adverse symptoms may include the following: pain watering redness
Inhalation	:	Adverse symptoms may include the following: respiratory tract irritation coughing burning sensation
Skin contact	:	Adverse symptoms may include the following: pain or irritation redness blistering may occur
Ingestion	:	Adverse symptoms may include the following: burning sensation abdominal cramps and pain vomiting

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

Section 4. First aid measures

Indication of immediate medical attention and special treatment needed, if necessary

Notes to physician	 Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled.
Specific treatments	: No specific treatment.
Protection of first-aiders	: No action shall be taken involving any personal risk or without suitable training. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Wash contaminated clothing thoroughly with water before removing it, or wear gloves.

See toxicological information (Section 11)

Section 5. Fire-fighting measures

Extinguishing media	
Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unsuitable extinguishing media	: None known.
Specific hazards arising from the chemical	: No specific fire or explosion hazard.
Hazardous thermal decomposition products	: None.
Special protective actions for fire-fighters	: No special measures are required.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions. protective equipment and emergency procedures

For non-emergency personnel	ecessary and unprotected led material. Provide adequ	ng any personal risk or without suitable training. Keep bersonnel from entering. Do not touch or walk through late ventilation. Wear appropriate respirator when on appropriate personal protective equipment.
For emergency responders	• •	ed to deal with the spillage, take note of any information in itable materials. See also the information in "For non-
Environmental precautions	•	rial and runoff and contact with soil, waterways, drains nt authorities if the product has caused environmental soil or air).
Methods and materials for co	ent and cleaning up	
Spill		a. Approach release from upwind. Prevent entry into

Move containers from spill area. Approach release from upwind. Prevent entry into sewers, water courses, basements or confined areas. Avoid dust generation. Do not dry sweep. Vacuum dust with equipment fitted with a HEPA filter and place in a closed, labeled waste container. Dispose of via a licensed waste disposal contractor. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

HIGH CALCIUM HYDRATED LIME

Section 7. Handling and storage

Precautions for safe handling

Protective measures	:	Put on appropriate personal protective equipment (see Section 8). Avoid exposure - obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Do not get in eyes or on skin or clothing. Do not ingest. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Empty containers retain product residue and can be hazardous.
Advice on general occupational hygiene	5	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	:	Store in accordance with local regulations. Store in original container protected from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10) and food and drink. Store to minimize dust generation. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

Section 8. Exposure controls/personal protection

Control parameters

United States

Occupational exposure limits

Ingredient name	Exposure limits
Calcium Hydroxide Crystalline silica, quartz	OSHA PEL (United States, 2/2013). TWA: 5 mg/m ³ 8 hours. Form: Respirable fraction TWA: 15 mg/m ³ 8 hours. Form: Total dust ACGIH TLV (United States, 4/2014). TWA: 5 mg/m ³ 8 hours. NIOSH REL (United States, 10/2013). TWA: 5 mg/m ³ 10 hours. MSHA PEL TWA 8/40 hours: 5 mg/m ³ OSHA PEL Z3 (United States, 2/2013). TWA: 10 mg/m ³ 8 hours. Form: Respirable TWA: 250 mppcf 8 hours. Form: Respirable NIOSH REL (United States, 10/2013). TWA: 0.05 mg/m ³ 10 hours. Form: Respirable dust ACGIH TLV (United States, 4/2014). TWA: 0.025 mg/m ³ 8 hours. Form: Respirable fraction MSHA PEL TWA 8/40 hours: 30 mg/m ³ (%SiO2)+2 mg/m ³ Form: Total dust 10 mg/m ³ (%SiO2)+2 mg/m ³ Form: Respirable dust

Canada

Occupational exposure limits			TWA (8 hours)			STEL (15 mins)			g		
Ingredient	List name	ppm	mg/m ³	Other	ppm	mg/m³	Other	ppm	mg/m ³	Other	Notations
Calcium dihydroxide	US ACGIH 4/2014	-	5	-	-	-		-	-	-	
AB	AB 4/2009	-	5	-	020	20	<u></u>	2	2	-	[3]
	BC 7/2013	-	5	-	0.00	-	72	-		-	
	ON 1/2013	-	5	<u> </u>	640	-	÷	2	2	-	
	QC 1/2014	-	5	7	0220	220	<u>10</u>	2	2	2	
AB 4/200 BC 7/201	US ACGIH 4/2014	-	0.025	-	0.00		.	=	=	-	[a]
	AB 4/2009	2	0.025	<u> </u>	640		÷2	2	2 ·	-	[b]
	BC 7/2013	-	0.025	-	070		7 .5		-	-	[C]
	ON 1/2013	-	0.1	-	-	-	-1	-	-	-	[a] [b] [c] [a]
	QC 1/2014	2	0.1	<u>-</u>	522	322		≅	<u> </u>	-	[d]

Section 8. Exposure controls/personal protection

[3]Skin sensitization

Form: [a]Respirable fraction [b]Respirable particulate. [c]Respirable [d]Respirable dust

Appropriate engineering controls	: Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapor or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits. Engineering controls may be required to control the primary or secondary risks associated with this product.
Environmental exposure controls	: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation.
Individual protection measu	<u>Ires</u>
Hygiene measures	: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.
Eye/face protection	: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: chemical splash goggles and/ or face shield. If inhalation hazards exist, a full-face respirator may be required instead.
Skin protection	
Hand protection	: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.
Body protection	 Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Other skin protection	 Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Respiratory protection	: Use a properly fitted, particulate filter respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator. Wear an appropriate NIOSH approved respirator if concentration levels exceed the safe exposure limits

Section 9. Physical and chemical properties

Appearance	
Physical state	: Solid. [Fine powder.]
Color	: White.
Odor	: Sweet, soil like odor.
Odor threshold	: Not available.
рН	: 12.45 [Sat. soln.] at 25°C
Melting point	: Not available.

KMK Regulatory Services

Tel:+1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

Section 9. Physical and chemical properties

Boiling point	:	Not available.
Flash point	:	Not applicable.
Evaporation rate	:	Not available.
Flammability (solid, gas)	5	Not applicable.
Lower and upper explosive (flammable) limits	:	Not applicable.
Vapor pressure	:	Not available.
Vapor density	:	Not available.
Relative density	:	2.3 to 2.4
Solubility	:	Not available.
Solubility in water	:	0.165 g/100 g at 20°C
Partition coefficient: n- octanol/water	:	Not available.
Auto-ignition temperature	:	Not applicable.
Decomposition temperature	:	540°C (1004°F)
Viscosity	:	Not available.
Volatility	:	Not available.
VOC (w/w)	:	0 % (w/w)

Section 10. Stability and reactivity

	· · · · · · · · · · · · · · · · · · ·
Reactivity	: No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: None.
Conditions to avoid	: Do not allow quicklime to come into contact with incompatible materials. e.g. Water, acids, reactive fluoridated compounds, reactive brominated compounds. reactive powered metals, organic acid anhydrides, nitro-organic compounds, reactive phosphorous compounds, interhalogenated compounds.
Incompatible materials	: Reactive or incompatible with the following materials: oxidizing materials and acids.
Hazardous decomposition products	: None.

Section 11. Toxicological information

Information on toxicological effects

Acute toxicity

Calcium Hydroxide

Product/ingredient name	Result		Species		Dos	e	Expo	sure
Calcium Hydroxide	LD50 Oral	_	Rat		7340 n	ng/kg	-	
Irritation/Corrosion	·	-						
Product/ingredient name	Result	Spec	ies	Score		Exposure		Observation

Rabbit

Tel: +1-888-GHS-7769 (447-7769) / +1-450-GHS-7767 (447-7767) www.kmkregservices.com www.askdrluc.com www.ghssmart.com

Eyes - Severe irritant

10 mg

Section 11. Toxicological information

Sensitization

There is no data available.

Carcinogenicity

Classification

Product/ingredient name	OSHA	IARC	NTP	ACGIH	EPA	NIOSH
Crystalline silica, quartz	-	1	Known to be a human carcinogen.	A2	<i>.</i>	+

Specific target organ toxicity (single exposure)

Name		Route of exposure	Target organs
Calcium Hydroxide	Category 3	Not applicable.	Respiratory tract irritation

Specific target organ toxicity (repeated exposure)

Name		Route of exposure	Target organs
Crystalline silica, quartz	Category 1		kidneys, respiratory tract and testes

: No known significant effects or critical hazards.

Aspiration hazard

Ingestion

There is no data available.

Information on the likely routes of exposure	1	Dermal contact. Eye contact. Inhalation. Ingestion.
Potential acute health effects		
Eye contact	:	Causes serious eye damage.
Inhalation	;	May cause respiratory irritation.
Skin contact	:	Causes skin irritation.

Symptoms related to the physical, chemical and toxicological characteristics

Eye contact	: Adverse symptoms may include the following: pain watering redness
Inhalation	: Adverse symptoms may include the following: respiratory tract irritation coughing burning sensation
Skin contact	: Adverse symptoms may include the following: pain or irritation redness blistering may occur
Ingestion	: Adverse symptoms may include the following: burning sensation abdominal cramps and pain vomiting

Delayed and immediate effects and also chronic effects from short and long term exposure Short term exposure

C-118

Section 11. Toxicological information

Potential immediate effects	: No known significant effects or critical hazards.
Potential delayed effects	: No known significant effects or critical hazards.
Long term exposure	
Potential immediate effects	: No known significant effects or critical hazards.
Potential delayed effects	: No known significant effects or critical hazards.
Potential chronic health eff	ects
General	: Causes damage to organs through prolonged or repeated exposure.
Carcinogenicity	: May cause cancer if inhaled. Risk of cancer depends on duration and level of exposure.
Mutagenicity	: No known significant effects or critical hazards.
Teratogenicity	: No known significant effects or critical hazards.
Developmental effects	: No known significant effects or critical hazards.
Fertility effects	: No known significant effects or critical hazards.

Numerical measures of toxicity

Acute toxicity estimates

There is no data available.

Section 12. Ecological information

Toxicity

Product/ingredient name	Result	Species	Exposure
Calcium Hydroxide	Acute LC50 33884.4 µg/L Fresh water	Fish - Clarias gariepinus - Fingerling	96 hours

Persistence and degradability

There is no data available.

Bioaccumulative potential		
There is no data available.		
<u>Mobility in soil</u>		
Soil/water partition coefficient (Koc)	:	Not available.

Other adverse effects : No known significant effects or critical hazards.

Section 13. Disposal considerations

Disposal methods : The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling empty containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Avoid dispersal of

HIGH CALCIUM HYDRATED LIME

Section 13. Disposal considerations

spilled material and runoff and contact with soil, waterways, drains and sewers.

Section 14. Transport information

	DOT	TDG	IMDG	IATA
UN number	Not regulated.	Not regulated.	Not regulated.	Not regulated.
UN proper shipping name	-	-	-	-
Transport hazard class(es)	-	-	-	-
Packing group	-	-	-	-
Environmental hazards	No.	No.	No.	No.
Additional information	-	-	-	-

AERG : Not applicable.

Special precautions for user : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

Transport in bulk according : Not available. to Annex II of MARPOL 73/78 and the IBC Code

Section 15. Regulatory information

U.S. Federal regulations	: TSCA 8(a) CDR Exempt/Partial exemption: Not determined
	United States inventory (TSCA 8b): Calcium Hydroxide is subject to inventory update reporting (IUR).
	RCRA classification: Calcium Hydroxide is not listed or classified.
	CWA-311 : Calcium Hydroxide has been withdrawn from the Clean Water Act (CWA) list of hazardous subtances. (11/13/79) (44FR65400).
	CERCLA: Calcium Hyrdoxide is not listed.
	FDA : Calcium Hydroxide has been determined as Generally Recognized As Safe (GRAS by FDA. See 21CFR184.1205. (CFR Title 21 Part 184 Direct food substances affirmed as generally recognized as safe).
Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs)	: Not listed
Clean Air Act Section 602 Class I Substances	: Not listed
Clean Air Act Section 602 Class II Substances	: Not listed

Section 15. Regulatory information

DEA List I Chemicals : Not listed

DEA List I Chemicals : Not listed

(Precursor Chemicals)

(Precursor Chemicals)

SARA 302/304

Composition/information on ingredients

No products were found.

SARA 304 RQ

: Not applicable.

SARA 311/312

Classification

: Immediate (acute) health hazard Delayed (chronic) health hazard

Composition/information on ingredients

Name	%		Sudden release of pressure		(acute) health	Delayed (chronic) health hazard
Calcium Hydroxide Crystalline silica, quartz		No. No.		No. No.	Yes. No.	No. Yes.

SARA 313

	Product name	CAS number	%
Form R - Reporting requirements	Not listed		7.1
Supplier notification	Not listed	-	-

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

State regulations

Massachusetts	;	The following components are listed: Calcium Hydroxide; Crystalline silica, quartz

New York

: None of the components are listed.

New Jersey Pennsylvania The following components are listed: Calcium Hydroxide; Crystalline silica, quartz
 The following components are listed: Calcium Hydroxide; Crystalline silica, quartz

California Prop. 65

WARNING: This product contains a chemical known to the State of California to cause cancer.

Ingredient name	Cancer		level	Maximum acceptable dosage level
Crystalline silica, quartz	Yes.	No.	No.	No.

<u>Canada</u>

<u>Canadian lists</u>

- **Canadian NPRI**
- None of the components are listed.None of the components are listed.

CEPA Toxic substances Canada inventory

- : All components are listed or exempted.
- International lists
- National inventory

GRAYMONT

Section 15. Regulatory information

Australia	: All components are listed or exempted.
China	: All components are listed or exempted.
Europe	: All components are listed or exempted.
Japan	: All components are listed or exempted.
Malaysia	: Not determined.
New Zealand	: All components are listed or exempted.
Philippines	: All components are listed or exempted.
Republic of Korea	: All components are listed or exempted.
Taiwan	: Not determined.

Section 16. Other information

Hazardous Material Information System (U.S.A.)

Health: 3 * Flammability: 0 Physical hazards: 1

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks Although HMIS® ratings are not required on SDSs under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered mark of the National Paint & Coatings Association (NPCA). HMIS® materials may be purchased exclusively from J. J. Keller (800) 327-6868.

The customer is responsible for determining the PPE code for this material.

National Fire Protection Association (U.S.A.)

Health : 3 Flammability : 0 Instability :

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

1

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

History

Date of issue mm/dd/yyyy Version	-	04/15/2015 1
Prepared by	:	KMK Regulatory Services Inc.
Key to abbreviations	:	ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification and Labelling of Chemicals IATA = International Air Transport Association IBC = International Air Transport Association IBC = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coefficient MARPOL 73/78 = International Convention for the Prevention of Pollution From Ships, 1973 as modified by the Protocol of 1978. ("Marpol" = marine pollution) UN = United Nations

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

122

Danger

HIGH CALCIUM HYDRATED LIME

Causes skin irritation - Causes serious eye damage - May cause cancer (state route of exposure if it is conclusively proven that no other routes of exposure cause hazard) - May cause respiratory irritation; or; May cause drowsiness or dizziness

GRAYMONT

Obtain special instructions before use. - Do not handle until all safety precautions have been read and understood. - Do not breathe dust/fume/gas/mist/vapours/spray. - Wash hands thoroughly after handling. - Do not eat, drink or smoke when using this product. - Use only outdoors or in a well- ventilated area. - Wear protective gloves/protective clothing/eye protection/face protection. -Use personal protective equipment as required. - IF ON SKIN: Wash with plenty of soap and water. - IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. - IF exposed or concerned: Get medical advice/attention. - Immediately call a POISON CENTER or doctor/physician. - Call a POISON CENTER or doctor/physician if you feel unwell. - Get medical advice/attention if you feel unwell. -If skin irritation occurs: Get medical advice/attention. - Take off contaminated clothing and wash before reuse. - Wash contaminated clothing before reuse. - Store to minimize dust generation. - D

Please refer to the original SDS for more information