Aggregate Resource Evaluation of a Portion of the Talcot Wildlife Management Area, Cottonwood County, MN

Department of Natural Resources Division of Lands and Minerals William C. Brice, Director

Project 334-20 August 2004 Aggregate Resource Evaluation of a Portion of the Talcot Wildlife Management Area, Cottonwood County, MN

> Glenn D. Melchert August 2004

Minnesota Department of Natural Resources Division of Lands and Minerals William C. Brice, Director 500 Lafayette Road St. Paul, MN 55155-4045

Project 334-20

TABLE OF CONTENTS

LIST OF FIGURES

ACKNOWLEDGMENTS

Many persons contributed to different phases of this project. Bob Hobart and Dennis Martin, DNR Division of Lands and Minerals, and Mark Gulick, DNR Wildlife, and Tim Stahl, Jackson County, developed the idea. County highway engineers Tim Stahl and Gerry Engstrom of Jackson and Cottonwood Counties, respectively, coordinated sieve analyses and ground survey work. Neal Johnson, Jackson County, collected the topographic data. Mark Gulick and Judy Markl, managers at the Talcot WMA provided useful site-specific and logistical information and were responsive to questions. Ricco Riihiluoma, DNR, ably provided field assistance as the drill rig operator. Ricco also did some sieving. Sue Saban entered data and printed and assembled this report. The assistance all these people gave is sincerely appreciated.

EXECUTIVE SUMMARY

This report summarizes the results of an aggregate resource evaluation for about 112 acres within the Talcot Wildlife Management Area (WMA). The Minnesota Department of Natural Resources (DNR), Division of Wildlife (Wildlife), manages the WMA. DNR Wildlife requested that the evaluation be done with an emphasis on data collection to aid in setting a value for the resource and an emphasis on developing a mining and reclamation plan that incorporates Wildlife's post-mining goals.

The goal of reclamation during and after mining is for wildlife habitat with an emphasis on shallow water environments. This report includes supplemental information on the gravel deposit and recommendations for the reclaimed landscape emphasizing wildlife habitat.

The area evaluated occurs in the SW quarter of Section 7, T. 105N., R. 38W., Southbrook Township, southwestern Cottonwood County, MN (Figures 1 & 2). The Murray County line is contiguous with the western edge of the parcel. The Jackson County line is 4 miles south.

Findings

- □ Large diameter (10 inch) auger drilling (78 test holes) verified that aggregate occurs throughout the evaluation site (112 acres).
- □ The portion that would be mined (ultimate pit size) covers 103 acres, allowing for setbacks along the perimeter of the parcel.
- The overburden (stripping material) is topsoil with an average thickness of 2 feet (range 1-3.5 feet).
- The average depth to water table is 9 ft (range 2.5-14.5 feet) and slopes toward the northeast—toward the Des Moines River. These measurements represent a snap shot in time. The water table likely rises and falls over time due to variations in precipitation and seasonal conditions.
- Drilling identified two gravel deposits, labeled here as primary and secondary. The primary deposit occurs just beneath the topsoil. The secondary deposit typically occurs below a silt to clay layer below the primary deposit, and below the water table. It occurs in 12 test holes primarily near the eastern portion of the parcel.
- □ The primary gravel deposit averages 14 feet thick (range 2-20.5 feet).
- □ The secondary gravel deposit is a relatively small volume and averages 6 feet thick (range 2.5-10 feet). It occurs over 12 acres.
- Volume of the primary gravel deposit:
 - Above the water table: 950,000 cubic yards.
 - Below the water table: 1,050,000 cubic yards.
 - Grand total: **2,000,000 cubic yards.**
- □ The volume of the secondary gravel deposit is 100,000 cubic yards.
- □ The secondary gravel deposit is a resource that could be mined. Silt and/or clay overburden ranging in thickness from 1.5 to 3.5 feet overlie the secondary gravel. If the overlying silt

and clay are amenable to blending with the primary gravel, it is probable the secondary gravel could be mined. If not, future economics will dictate whether the silt and clay overburden will be removed to get at this gravel. It is not known at this time whether any, a portion of, or all of the secondary gravel will be mined.

- □ The mining and reclamation plan is written as though all of the primary gravel will be mined and none of the secondary gravel will be mined.
- □ *Gradations:* The primary deposit average is within MnDOT's recommendations for Class 5 material (Table 2, Figure 6).
 - The percent of crushable material (greater than ³/₄ inch) averages 8% (range 2-25%) by weight.
- *Quality:* Deleterious materials, which determine suitability for bituminous or concrete, at this site are primarily shale and are present in moderate amounts. Tests indicate roughly half of the primary deposit could meet MnDOT specifications for general purpose concrete (Table 2).
 - The evaluation site was separated into 4 quarters (Figure 3). Each quarter, except #2, was further divided into samples representing shallow (S) and deep (D) gravel (Figure 4). Tests indicate the shallow gravel (S) in quadrants 1, 2, and 3 is of high quality and meets MnDOT portland cement concrete general use specifications. The shallow gravel (S) begins beneath the topsoil, averages 8 feet in thickness, and represents the upper portion of the primary deposit. The deep gravel (D) has more shale than the shallow gravel (S) and therefore is of lower quality. The deep gravel (D) represents the lower portion of the primary deposit and 9 of the 12 holes that encountered the secondary deposit. Gravel (D) may not meet specifications for concrete.

Recommendations for Mining and Reclamation

- A special permanent mining buffer is established at the northeastern and northwestern corners of the mining area. This permanent buffer is set to guard against the possibility of the Des Moines River, during flood stage, flooding the pit via bank failure. It is important to maintain the 75 and 100-foot no disturbance buffers, so marking these two areas with permanent steel fence posts or equivalent is recommended.
- The mining area is divided into three phases, with each phase separated by a dike (Figure 7). Each phase will take a number of years to mine. After mining is complete, each will have a wetland separated from each other by the dikes. The wetland acreage will total about 87 acres.
- □ There is sufficient overburden topsoil on site to reclaim all the disturbed upland areas and backfill all of phase 1 resulting in a water depth of about 3 feet. Phases 2 and 3 will be deepwater wetlands after mining is complete unless fill is imported.
- A high priority should be given to stabilize from erosion the shorelines along the dikes that divide the three created wetlands. Some areas may receive high wave energy and experience will decide whether a topsoil application and seeding with ground cover is sufficient to prevent erosion. If not, other measures to control erosion and facilitate revegetation are recommended. Examples of measures to control erosion include using a front-end loader to

transplant sod patches from future mining areas and place them along the shorelines, placement of erosion blankets, and riprap.

- Mining at steeper than a 3:1 (horizontal to vertical) slope along the mine perimeter and then backfilling to restore a 3:1 or gentler slope is not recommended due to a shortage of backfill material. Alternatively, mining at steeper slopes would require imported fill to reestablish the gentler slopes.
- □ The mining plan assumes no dewatering occurs. The flood plain setbacks are established as though dewatering does not occur.

INTRODUCTION

The site evaluated is located within the Talcot Wildlife Management Area (WMA) and managed by the Minnesota Department of Natural Resources (DNR), Division of Wildlife (Wildlife). Wildlife desires to acquire nearby acreage to complement the WMA. Jackson County wishes to purchase gravel. The evaluation site was proposed as having sufficient aggregate quantities. DNR Wildlife requested that DNR Lands and Minerals conduct an aggregate evaluation of sufficient detail for an appraisal as a primary step of a process to negotiate a transaction agreeable to all parties.

The evaluation site covers about 112 acres in the SW quarter of Section 7, T. 105N., R. 38W., Southbrook Township, southwestern Cottonwood County, MN (Figure 1). The Murray County line is contiguous with the western edge of the parcel. The Jackson County line is 4 miles south.

Purpose

The site was evaluated to determine the extent, depth, quality and quantity of aggregate present to provide a basis for determining value and for developing a mining and reclamation plan. Jackson and Cottonwood Counties intend to use of the aggregate for roads.

This report includes the data, results of material tests, interpretations, modeled volume calculations, and a mining and reclamation plan. The mining and reclamation plan considers Wildlife's goal of shallow-water habitat for diving ducks as a primary post-mining land use.

Infrastructure

Road access to the parcel is excellent. County Road 15 (CR 47 in Murray County) is paved and bounds the southern edge of the parcel (Figure 2). This road leads westerly about 7 miles to US Hwy 59 and easterly about 17 miles to Windom and US Hwy 71. Paved roads lead southeasterly about 14 miles from the site to Heron Lake, MN and State Hwy 60. Low maintenance WMA roads bound the west and east boundaries of the parcel. The nearest municipalities include Dundee, about 4 miles to the south and Fulda, about 8 miles to the southwest.

Figure 1. Index map showing the location of the evaluation site.

Figure 2. A portion of the USGS 7.5 minute Heron Lake NW Quadrangle with the evaluation site indicated. The evaluation site covers about 112 acres within the Talcot Wildlife Management Area. The width of this map represents about 2.5 miles.

Dates of field work

Test holes were drilled between July 14 and July 25, 2003. Data for the topographic survey were collected on April 30, 2003.

GEOLOGIC SETTING

The Talcot WMA is in an area that has undergone numerous glacial advances in the last 2 million years. The aggregate deposit associated with the evaluation site is interpreted to be part of the last glacial advance in this area of the Des Moines lobe called the Bemis phase. This glacier originated in Canada and entered Northwestern Minnesota. The axis of the glacier generally followed the Red River Valley and then the Minnesota River Valley as it flowed southward. According to the Minnesota Geological Survey (Patterson, 1995), the Bemis moraine, which represents the maximum extent of this glacier, occurs 20 to 25 miles west southwest of the evaluation site. In this area, the Bemis moraine represents the southwestern flank of the glacier. The thickest part of the glacier was towards the Minnesota River Valley to the northeast.

As the glacier melted back, the ice, locally, receded towards the east-northeast. The glacier melted back at different rates and sometimes may have readvanced. One significant melting event allowed for floodwaters to channel along the present-day Des Moines River valley, which includes the evaluation site, and created a glacial outwash deposit. Flood flow concentrated here because the glacier was still present immediately to the northeast and there was higher topography to the southwest. Flood flow direction was from the northwest to the southeast. The aggregate in the evaluation site is part of this outwash deposit.

METHODS

Map interpretation

U. S. Geological Survey (USGS) Quadrangle maps (Heron Lake NW, Dundee, and Lime Creek) and digital orthophotos (DOQ's) were analyzed for geological interpretations and the identification of features and landforms on the property and vicinity.

Auger drilling

Auger drilling was used to determine the extent (edge), depth, and geology of the gravel deposit, and for collection of samples that were tested to determine texture (gradations) and quality. Seventy-eight test holes were drilled with a Mobile Drill Model B80 drill truck on loan from the Minnesota Department of Transportation (MnDOT). This is the same rig MnDOT uses to evaluate their aggregate deposits. The rig uses a ten-inch diameter auger on a 20-foot mast.

The geology of each hole was logged based on sediments retrieved with the auger and by recognizing distinguishing auger behavior. The drill and retrieve method was used. The drill operator regulated the auger's penetration rate to be approximately equal to the rotation speed of

the drill stem. Over spinning was avoided as much as possible. The auger was retrieved in 10foot increments typically. Allowances for sample lag on the auger were made when necessary. Samples were collected off the auger as it was retrieved and placed on a tarp. Large samples were mixed and split before bagging for gradation analyses. After mixing but prior to bagging, small representative samples were collected from each hole and placed in another bag for quality testing.

Depth to water table was measured to the nearest ¹/₄ foot by determining the water-mark on the auger stem. The water table measurements made here represent a snap shot in time. The water table likely rises and lowers over time due to longer-term variations in precipitation and climate.

Spacing of test holes followed a grid pattern of approximately 250 feet by 250 to 300 feet. East west transects were established about 250 feet apart and test holes were spaced at 250 to 300 feet along them (Figure 3). The entire area was drilled according to this pattern, except for two locations in the wetland in the north central portion of the parcel that were inaccessible and not drilled due to soft moist soils. Each test hole represents 20,000 to 30,000 cubic yards of material, on average.

Gradations and quality analysis

Gradation results are presented in a format that allows comparison to MnDOT's Class 5 guidelines. Cottonwood County, Jackson County, and DNR personnel, following MnDOT protocol, sieved and washed 91 aggregate samples from 71 test holes.

Spall and other deleterious materials were measured in seven representative samples and compared against the requirements for concrete and bituminous. These measurements give an indication if portions of the deposit may be of greater value than others.

The seven samples were obtained by dividing the evaluation site into quarters (Figure 3) and the aggregate deposit into two layers—a shallow layer (S) and a deep layer (D). The two layers were differentiated by texture. Layer S typically contained noticeably less coarse sand and fine pea gravel than layer D. Layer S averages 8 feet in thickness and represents the upper portion of the deposit. The two layers were sampled separately by quarters to give the seven samples. Layer D in the northwest quarter was too thin and discontinuous to obtain a large enough sample for testing (resulting in seven samples instead of eight).

GIS

Neal Johnson, Jackson County surveyor, captured approximately 540 points within the evaluation area along a grid of approximately 100 feet for a topographic survey. The average spacing between all survey points was 66 feet. The horizontal and vertical data were collected with a Leica 500 RTK survey grade GPS unit on April 30, 2003. The Jackson County NAD 83 coordinate system was used for the x-y (horizontal) location.

Figure 3. Distribution of test holes within the evaluation site. The site was divided into 4 quadrants to determine whether the quality of the aggregate (deleterious materials) varied across the parcel.

WGS 84 was the vertical datum used. Accuracy is +/-0.02 inches horizontal and +/-0.1-inch vertical. There were no nearby geodetic markers to tie the data to benchmarks, so the GPS unit captured a location (using the "find" feature) on a temporary benchmark. The accuracy of the "find" feature is 5-10 meters horizontal and 10-20 meters vertical. This means, for a data point, its GPS'd (field) location and elevation relative to a USGS Quad map may not match closely. The data relative to each other are very accurate, however. Horizontal accuracies are +/-0.02 inch and vertical is +/-0.1 inch. The horizontal coordinates were shifted 19 feet North and 24 feet West to obtain a good match with the base photo.

Coordinates of test holes and other features were captured with a Garmin 76S Map GPS unit with WAAS (Wide Area Augmentation System) differential correction on July 25, 2003. Approximate horizontal accuracy is 10 feet or better.

The color orthophoto backdrop used for analysis and some maps was from the Farm Services Administration (FSA). This photo was taken in the summer of 2002 as part of the National Agricultural Imaging Program (NAIP). The photo was scanned and digitally rectified at a resolution of approximately two meters.

Pit Perimeter

The pit perimeter was established upon the following facts. The right of way for County and Township roads are 50 and 33 feet, respectively, from the road centerline. Adding a 10 foot buffer to the right of ways, the pit perimeter along the south and west sides is about 60 feet and 43 feet from the road center lines, respectively. The pit perimeter on the east side is about 15 feet from the access road centerline, and on the north side about 10 feet south of the hedgerow (Figure 3).

Additional setbacks or buffers at the northwest and northeast corners were set for ecologic and safety reasons. The buffers are based on maintaining a safe separation distance, based on hydraulic gradient, between predicted water levels in the pit and potential maximum high-water levels of the Des Moines River during flood stage (based on the topographic spill points). The primary goal of these buffers is to keep the Des Moines River, during flood stage, from flooding the pit once mining starts. These buffers are discussed further in the "Mining and Reclamation Plan" section below.

Computer modeling

Modeling assumes that the test holes reasonably represent the character of the entire deposit and that drilling tested the perimeter of the evaluation site sufficiently to project the resource to the proposed pit boundaries.

This aggregate deposit is a blanket deposit with textural variations with depth in some places. In some places, the portion below the water table is sand or has lenses of silty clay that overlie deeper gravel. Prior to modeling, a distinction was made between the most likely mineable gravel interval, called the primary gravel, and deeper, saturated sand or gravel called the

secondary gravel deposit (Figure 4). Whether an interval of sand and gravel was considered primary or secondary was based on gradation data, geologic interpretation, and economic assumptions. Details of this distinction are in Appendix E.

Computer models of the land surface, and top and bottom of the mineable gravel interval, and the water table were generated using KRIGE and INVERSE algorithms with software from TECHBASE International. From these modeled surfaces, estimates of stripping volumes, gravel volumes above and below water, and depth of water were made. Gradation values for the +3/4", #4, #10, and minus #200 mesh sizes were also modeled.

The secondary gravel deposit was modeled for volume calculations, but not considered in the mining and reclamation plan. The secondary gravel occurs in 12 test holes (Figure 5).

The collar (ground) elevations for the test holes were estimated from the topographic survey data. First, the original topographic data were modeled with a kriging algorithm to a 25-foot grid. Then the elevations for each test hole were interpolated from the 4 closest points using an INVERSE modeling program.

Figure 4. This representative cross section explains the terminology of the primary and secondary gravel as used in this report. Within the primary gravel deposit, the dashed line distinguished between the shallow gravel (S) and the deep gravel (D). The shallow gravel (S) is better graded with more medium sand and pebbles. The deep gravel (D) is poorly graded, with more coarse sand and shale. The dotted line represents the water table.

Test hole #77 (see Figure 3) was excluded from modeling because there was not an accurate ground elevation for it. This is because it was outside the elevation survey grid and outside the

proposed mine. The purpose of the hole #77 was to determine the soils present in the buffer zone between the Des Moines River flood plain and the proposed mine.

Depth to water table measurements for six test holes, holes #2, 8, 22, 23, 28, and 65, were not included when modeling the water table. Water levels in these holes either were noted as approximate in the field notes or they were suspect as being perched because the levels were coincident with silt or clay layers.

RESULTS

Drilling Observations

Gravel occurred in every test hole. The gravel interval varies in thickness from one hole to the next. It is generally thinnest in the northwest part of the site and thickest in the southern one-third (Plate 2—Figure 4).

Drilling indicated that the basic stratigraphy of this site is as follows. Topsoil lies directly on the gravel and the gravel lies upon a clayey glacial

Figure 5. Test holes that encountered the secondary gravel deposit are indicated and labeled with their ID number. The ultimate pit extent is shaded in gray. Dashed lines indicate existing hedgerows.

till. The topsoil is considered overburden at this site and consists of mostly dark sandy loam and dark brown sandy silt. Topsoil ranges from 1 to 3.5 feet in thickness with an arithmetic average of 1.7 feet (modeled average is 1.7 ft).

Drilling identified two gravel deposits, a primary and a secondary. The primary deposit occurs just beneath the topsoil. The primary gravel deposit ranges from 2 to 20.5 feet in thickness with an arithmetic average of 13.9 feet (modeled average is 13.6 feet).

At the top of the primary deposit, several feet of pebbly gravel were encountered in most holes. Beneath the pebbly gravel, the deposit often varied between alternating layers of medium sand to gravel with occasional thin silty sand and gravel to clay zones.

Within the lower half of the primary deposit, most of the test holes showed a change in the texture of the sand. The upper part, which averages 8 feet in thickness, is rich in medium sand and usually contains more pebbles than the lower part and is here labeled shallow gravel. The lower part has noticeably more coarse sand and fine pea gravel than the upper part with varying amounts of rock and minimal fines and is labeled deep gravel. This was the basis for dividing the deposit into two layers—a shallow layer (S) and a deep layer (D)—for quality testing.

The secondary gravel deposit ranges from 2.5 to 10 feet in thickness with an arithmetic average of 5.8 feet (modeled average is 5.8 feet). The secondary deposit typically occurs below a fine sand, silt, or clay layer and below the water table. This gravel is similar to the primary gravel except it usually has less coarse aggregate and is more often associated with sand layers above or below. It occurs in 12 test holes primarily along the eastern quarter of the parcel (Figure 4). The mining and reclamation plan that follows later in this report does not consider mining the secondary deposit.

The depth to water table varies from 2.5 to 14.5 feet with an average depth of 8.7 feet (modeled depth of 8.2 feet). The water table slopes (gradient is approximately 0.002) to the northeast toward the Des Moines River.

Quantity

There are about 2,250,000 cubic yards of in-place gravel within the proposed pit outline representing the primary gravel deposit. Allowing for an undisturbed 3:1 slope along the pit perimeter, there are about 2,000,000 cubic yards of mineable aggregate. Slightly more than half of this is below water (Table 1).

The overburden totals about 250,000 cubic yards within the pit outline. The stripping ratio is about 13% or 1 foot of overburden to 8 feet of aggregate.

The mineable secondary deposit totals about 100,000 cubic yards.

Table 1. Modeled estimates of the quantity of gravel (bank measure, in-place volume) at the evaluation site. All volumes are rounded down to the nearest 50,000 cubic yards. The volume error is an estimate of potential error associated with the volume. It is based on the uncertainty of the data used for the calculations to derive the volumes for each layer. Volume is a 3-dimensional shape. A source of volume error is that the base of the aggregate varies between test holes. Good estimates exist for the top and edges of the deposit. NA = not analyzed.

Gravel Layer	Area	Acres	Feet of	Volume (cubic y	ards)	
	(square ft)		Material	Total Resource	With 3:1	Error
			(modeled	(within pit	Sloping	(+/-)
			estimate)	perimeter)		
Stripping-	4,485,600	103	1.7	250,000	NA	20
Topsoil						
Primary above	NA	NA	6.6	NA	950,000	20
water						
Primary below	NA	NA	7.1	NA	1,050,000	25
water						
Primary Total	4,485,600	103	13.6	2,250,000	2,000,000	20
Secondary	522,700	12	5.8	NA	100,000	30
below water						

Gradations and quality analysis

The average weighted gradation results for the primary and secondary gravel deposits are represented in Figure 6. For illustrative purposes, the data are plotted against MnDOT's typical requirements for Class 5 material. Both averages meet the gradation requirements. The data for the 1-inch sieve plot outside the range because these samples were not crushed prior to sieving and the MnDOT range is based on a crushed product. After crushing the results (curves) may be slightly different because the material larger than ³/₄ inch will be incorporated into the smaller sizes. Note: These are general guidelines that are useful for planning. Specific testing, if necessary, should be done for each pile of aggregate processed.

The gradation curves for the two deposits parallel each other with the secondary gravel plotting higher on the graph. The main difference between the two overall is the secondary deposit has less rock (is sandier) than the primary deposit.

Table 2 lists the data used to construct the graphs. Raw data from each test hole are presented in Appendix B.

Another criterion MnDOT uses for Class 5 is that at least 10% of the particles shall be crushed. The primary deposit has a better chance of meeting this than the secondary deposit.

Limited gradation data indicate the texture of the gravel deposit varies with depth. Two samples, one from the upper and one from the lower portion of the aggregate interval were collected for 18 test holes. Gradation results for these test holes indicate that most of the test holes (11 of 18) had 2 to 27% more crushable rock (+3/4 inch) in the upper roughly half of the interval as compared to the lower half. Three other test holes had 3 to 10% more crushable material in the lower half of the interval. The gradations for the upper and lower intervals were similar for the remaining four test holes. There was no discernable trend or distribution pattern to any of the above relationships.

Lab tests indicate the primary deleterious material, which determines quality or suitability for bituminous or concrete, at this site is shale. These tests indicated that the upper about 8 feet of the primary deposit, the shallow gravel (S), may meet MnDOT specifications for general purpose portland cement concrete if it is mined from quadrants 1, 2, or 3 (Table 3). The deep gravel (D) and all of the gravel in quadrant 4 has higher quantities of deleterious materials.

Weighted Gradations Compared to Class 5 (MnDOT)

Figure 6. Summary graph that shows the weighted average for the entire 103-acre primary and secondary deposits are within MnDOT's acceptable range for Class 5. This graph is intended to provide a point of reference to a familiar gravel product (Class 5). Specific projects may require material meeting a different gradation or even more than one. Percent passing refers to the proportion of the sample by weight that passes through a given sieve size. Note: Typically crushing operations are set up to crush all particles larger than ³/₄ inch (sometimes 1 inch) as the aggregate is processed.

Table 2. Weighted (by thickness) average gradations for the evaluated parcel. The sieve sizes get smaller moving to the right in the table. The values below each sieve size are the percent, by weight, of the total sample that falls through (passes) that sieve. The cutoff we use for the gravel fraction is material larger than the #10 sieve (2 millimeters). For the primary deposit, 59% of the sample, by weight, was smaller (passed through) the #10 sieve. Stated another way, the primary deposit has an average of 41% gravel (100-59=41). The three columns on the right show the percent of material retained (bigger) than the respective sieves. Values in parentheses represent the range for all the test holes or their composites if there was more than one sample per hole.

		Pe	ercent o	of Mater	ial Pas	Weight Percent Retained				
	1"	3/4"	3/8"	#4	#10	#40	#200	crushable +3/4"	+#4	gravel +#10
Primary Deposit Average	94	92	83	73	59	18	3.4	8 (2-25)	27 (17-53)	41 (28-62)
Secondary Deposit Average	97	95	88	77	63	30	4.2	5 (3-16)	23 (17-41)	37 (27-53)
Class 5 upper range	100	100	90	80	65	35	10	0	20	35
Class 5 lower range	100	90	50	35	20	10	3	10	65	80

Table 3. Laboratory test results for deleterious materials in the primary gravel deposit. All values are in percent, by weight. The primary gravel deposit was separated into 4 quarters. Each quarter, except #2, was further divided into two samples representing shallow (S) and deep (D) gravel layers. Tests indicate the shallow gravel (S) in quadrants 1, 2, and 3 is of high quality and meets DOT portland cement concrete general use specifications. The shallow gravel (S) begins just below the topsoil and has an average thickness of 8 feet. The deep gravel (D) has more shale than the shallow gravel (S) and therefore is of lower quality. It may not pass specifications for concrete, but is acceptable for non-concrete uses such as road base, for example. Items in the first column identified with a +1/2", + 4, or -4 refer to the portion of the sample retained on (larger than) a ½" sieve, a #4 sieve, and passing through (smaller than) a #4 sieve, respectively. Criteria for Class 5 base, bituminous, and concrete were taken from MnDOT specification #3138, #3139, and #3127, respectively.

	ĺ	Tal	cot Sa	mple C	Compo	site		MnDOT Specifications (maximum %)					
	R	esults	(%) by	v Quad	rant ar	nd Lay		Bi	tumin	ous	Con	crete	
Material	1-S	2-S	3-S	4-S	1-D	3-D	4-D	Class 5	Type 31	Type 41, 47	Type 61	General use	Bridge Super- structures
+1/2" shale	0	0	0	0.4	0	1.2	0					0.4	0.2
+#4 shale	0.2	0.3	0.1	0.6	0.8	0.9	0.4					0.7	0.3
Soft iron oxide	0	0	0	0	0	0	0					0.3	0.2
+1/2 total spall ^b	0	0	0.7	0.5	0.4	1.9	0.4					1.0	-
+#4 total spall ^b	0.5	1.2	1.2	1.5	1.8	1.3	1.3			2.5		1.5	0.3
Soft particles	0.3	0.2	0.1	0.7	0.5	0.1	2.4					2.5	2.5
Sum of spall, soft particles, clay lumps ^c	0.7	1.4	1.3	2.2	2.3	1.4	3.7					3.5	3.0
Carbonate	9.6	7.4	1.6	1.5	1.2	1.2	2.5					-	30
#4 Lightweight particles	0.2	0.2	0.2	0.4	0.7	0.6	0.7			5.0			
Total spall ^d	0.7	1.4	1.4	1.9	2.5	1.9	2.0	7 or 10 ^a	5.0		1.0	-	-

^a Maximum is 10% shale except when the part passing the 200 sieve exceeds 7%, the shale shall not exceed 7%.

^b Total spall includes shale, soft iron oxide, other iron oxide particles, unsound chert, pyrite, and other materials having similar characteristics. It excludes soft particles and clay lumps.

^c Clay lumps were not tested here. They are important in bituminous and concrete aggregate. Concrete aggregate is always washed during processing—that is the appropriate time to test this criterion. ^d Spall in the total sample (includes +#4 and -#4 fractions).

MINING AND RECLAMATION PLAN

Development of a mining plan requires consideration for production of a desired product or products, economics, scale and scope of operations, and reclamation. Every gravel deposit has its own unique geometry, variation in quality, and setting within the landscape, and each land manager has their own vision of how the final reclaimed landscape should look. Therefore, mining plans are unique for each pit. There are, however, five steps that are necessary for any mining activity. They are permitting, clearing, stripping, mining, and reclamation.

Overview

This mining plan encourages and anticipates that all of the aggregate resource identified as the primary deposit, including that below water, will be mined eventually. This plan is written as though the secondary gravel is not mined. Final discretion is left to negotiations between the land manager and the lessee or purchaser. Mining will occur in phases because of the large quantity of aggregate available relative to demand. This plan presents a basic design for mining of the gravel and for final reclamation.

Custom designs, specific pit management, and timing of reclamation plans for the site are left to the discretion of the land manager. Once mining is complete, the final reclaimed landscape goal is three wetlands separated by upland dikes. At least one and possibly two are proposed to have a water depth of about 3 feet and one will be deeper. All will have undulating shorelines with gentle slopes.

This gravel deposit occurs as a layer of sand and gravel of varying thickness and rock content buried just below the topsoil. Drilling has determined that the edges of the deposit extend beyond the pit boundary.

The aggregate in the primary deposit, as an overall average, meets Class 5 gradations. Some portions of the site, however, do not quite meet Class 5 gradations. This is addressed further in the mining section below.

Permitting

Generally the state is exempt from local permitting. However, if local zoning ordinances or other rules exist for borrow pits or extraction of aggregate, such as setbacks from roads or property lines, the land manager should be aware of and consider them when developing the pit plan. Currently, Cottonwood County zoning allows mining to the right-of-way of roads. FEMA maps indicate the 100-year flood plain of the Des Moines River is contiguous with the northeastern corner of the evaluation site and includes the wetland identified in the extreme northwest corner of the parcel. All proposed mining is outside this floodplain.

Permits likely are required, however, if water is drained or pumped from the pit or if wetlands are impacted (Appendix D). Pumping is not needed according to this plan. This plan considers

that one small wetland (approximately 0.3 acres), and one larger one (approximately 3 acres) in the north central part of the site will be lost to mining. Replacement of these wetlands may occur with part of the estimated 92 acres of wetlands that will be created by mining.

An Environmental Assessment Worksheet (EAW) is needed for this site since the ultimate pit size is more than 40 acres. This plan estimates the ultimate pit size will be 103 acres. An Environmental Impact Statement would be needed if the mine were 160 acres or more.

Site preparation/clearing

Brush and unmarketable timber may be reserved in piles for upland or under-water habitats, for visual screening, burned, or disposed of away from the proposed and future mining areas at the discretion of the land manager.

Each hedgerow may remain intact until mining approaches it. Leaving existing hedge rows will provide visual and sound barriers to the mining operation.

Stripping

Topsoil occurs over the aggregate everywhere and must be stripped prior to mining. Stripping shall occur in phases every one or two years to limit the total land disturbance. The topsoil may be stockpiled in broad mounds to minimize doughty conditions and wind erosion. These piles should be located outside of the area to be mined now or in the future, or spread on areas ready for permanent reclamation or placed in the water to backfill those areas already mined, depending on the phase of mining. The goal is to move the stripped material as few times as possible and also to place it as close as practical to where it will be ultimately spread during reclamation. Ideally, the stripped material should be placed in an adjacent area that is ready for reclamation–an area where the gravel is depleted or a decision was made to no longer mine that particular area. Most of the stripped material may be placed directly in adjacent mined out areas.

Topsoil piles that are not spread (for reclamation) in a timely fashion may be seeded with a cover (nurse) crop of oats (spring and summer seasons), winter wheat (fall season), or other species at the discretion of the land manager to minimize erosion and weed growth.

Stripping shall extend far enough past the expected tops of pit walls so that final or temporary sloping can be done during or at the close of active mining without incorporating topsoil or other deleterious materials into the slope where further mining will occur. After each mining season—probably the fall, the working face shall be sloped at 1:1 or gentler for safety.

Mining

A mining strategy is partly dependent on the scale, or annual production rate, of the mining operation. An operator who plans to mine 100,000 yards or more per year has greater opportunity and flexibility in utilizing the entire resource, especially when the deposit is variable, than someone who mines small quantities at a time. Regardless of the production, however, to

maximize the amount of gravel ultimately mined from this pit prior to final reclamation, one recommended approach is to start at one end of the parcel, and mine the entire deposit, from top to bottom, before advancing laterally. This technique removes the chance of cutting off access to parts of the deposit because of the water table. Where mining starts and the direction it advances should follow a logical sequence so that access to remaining aggregate always exists and that some permanent reclamation, if practical, may occur after each mining phase.

If details of the final reclaimed landscape desired are known, much of those landscaping goals can be met during mining resulting in economic savings and more efficient reclamation.

The desired **reclaimed landscape goal** for this site is shallow wetlands with gentle slopes along the shorelines. The water depth in the wetlands shall be 3 feet or shallower to promote habitat for diving waterfowl, along with many other wetland species, and at the same time minimize the chance that species of rough fish would become established.

The **mining goal** is to mine all of the primary aggregate deposit at the site. Mining will extend well below the water table over most of the site and up to about 14 feet deep in places. This plan proposes that excess topsoil stripping material be backfilled into those portions of the pools that are depleted of aggregate as mining progresses.

This plan recommends that a 30-foot wide corridor along the proposed dikes remain intact to serve as the core for the dikes. Along this corridor, mining would not go deeper than 3 feet above water. This provides a more stable condition as compared to mining the deep areas and then backfilling them to build the dikes. The amount of aggregate not mined along the 30-foot corridors is about 29,000 cubic yards. This quantity is well within the rounding errors of the total resource estimate and therefore does not affect the mineable quantities presented in this report (Table 1).

There is not enough stripping material at the site to completely backfill all areas to a water depth of 3 feet. As a compromise and to improve management opportunities, the site is partitioned into 3 areas divided by dikes (Figure 7). The dikes will not be mined deeper than 3 feet above the water table, so they are located where the aggregate either does not extend below water or where it extends a relatively short distance below water. Modeling predicts that there is sufficient stripping material (topsoil) to backfill all of phase 1 to a water depth of 3 feet, and reclaim the shoreline along the dikes and mine perimeter. This plan allows the dikes to extend about 3 feet above the water. The other two phases would be deep-water wetlands unless clean fill is imported to the site for backfill.

Figure 7. Locations of the three major wetland phases associated with mining. Approximate location and orientation of proposed dikes that separate each wetland are indicated in gray shading. The dikes are about 30 feet wide and placed in locations where the mining depth relative to the water table is relatively shallow or above water. The wide irregular dike between phases 1 and 2 is where mining is not expected to go below the water table resulting in an irregular low upland area.

To increase the potential of meeting the reclamation and mining goals, mining is proposed to start at the north end of the deposit, mine southward, and eventually finish at the southwestern end of the deposit adjacent to County Road 15 following the three phases as indicated in Figure 7. This plan will allow sufficient material to create a shallow-water wetland in phase 1. If imported material is allowed as backfill, over time, it may be possible to create a shallow wetland in phase 2 as well. As mining comes to a close, it is probable that much of phase 3 will be a deep-water habitat. Table 4 provides estimates of dimensions and backfill quantities needed for various conditions.

The mine footprint will be about 103 acres. After reclamation, up to about 16 acres will be above water (10.5 acres around perimeter, and 5.5 acres of dikes)

As mining progresses, the overburden shall be backfilled promptly into the mined out areas and along the pit perimeter. The pools created by excavating gravel from below the water table shall be backfilled as directed to a level within 3 feet of the water surface.

Modeling was based on the assumption that, along the pit perimeter, the mining slope will be 3:1 extending to the base of the gravel including that below water. Mining at steeper slopes along the mine perimeter and later backfilling to create the 3:1 slopes was not considered an option due to a shortage of backfill materials.

Water occurs from 2.5 to 14.5 feet below the surface and half of the aggregate lies below water. The deepest that mining would go below water is 14.7 feet. In the areas where the water table is relatively deep and aggregate extends deep below the water table, mining may occur in two stages. For example, the first stage would mine an area (100 foot swath, for example) to a depth of just above the water table to create a bench. Then concurrently, or afterwards, an excavator would mine the aggregate below the water table from the recently created bench. In those areas where the water table is near the surface, the entire gravel interval could be mined in a single operation. Dewatering is not needed with this mining technique.

Ditching from the pit to the river for any reason is not allowed. Dewatering the pit by pumping to facilitate mining is an option if the applicable permits are obtained.

This gravel deposit varies in texture both laterally and with depth, and has an undulating bottom. The base of the primary gravel ranges from 2.8 feet above the water table to 14.7 feet below water. In some places the upper part of the gravel is coarsest and in other places, the opposite is true. Variations with depth may be managed by mining the gravel deposit as a single lift from top to bottom. This allows for the varied layers of gravel and sand to be blended during the excavation phase. This creates the most uniform product, eliminates high grading, utilizes the entire resource, and is the quickest way to deplete sections of the pit for reclamation.

An exception to the idea of mining as a single lift could be if concrete aggregate is needed. Testing showed that the upper approximately 8 feet in quadrants 1, 2, and 3 (the NE, NW, and SW quarters) may meet the quality requirements for portland cement general purpose concrete, whereas the deeper aggregate in these quadrants does not. Figure 8 shows gradation results of the four worst test holes where the particle size gradations fall outside MnDOT's recommendations for Class 5 aggregate (see also Table 5). The graph shows there is a shortage of material larger than the #10 sieve (2 millimeter diameter). In other words, these samples are sand-rich, or "sandy".

All of these "sandy" holes occur apparently randomly on the eastern third of the proposed mining area. Most holes adjacent to these "sandy" holes do not have these deficiencies. It is anticipated that material from the "sandy" areas may be used in situations where Class 5 material is not necessary or they may be blended with materials nearby to make the desired aggregate product.

Table 4. Details on the three proposed created wetlands, designated as phases 1, 2, and 3, that will be created during the three major phases of the mining operation. There is enough topsoil overburden to create the wetland in phase 1 and topdress all the shoreline/upland areas, but not enough to also topdress the wetlands in phases 2 and 3. If it is desirable to use topsoil from on site as topdressing for the wetlands in phase 2 and 3, then about 90,000 cubic yards of imported fill are needed in phase 1 to replace the 90,000 cubic yards of topsoil needed to topdress (1 foot thick) the wetlands in phases 2 and 3. C.y. = cubic yards.

	Phase 1	Phase 2	Phase 3	Totals
Area (acres)	42	28	33	103
Estimated wet area (acres)	38	25	29	92****
Primary Gravel (c.y.)	755,000	590,000	680,000	
Secondary Gravel (c.y.)	83,000	24,000	3,600	
Available Topsoil overburden (c.y.)	120,000	69,000	93,000	282,000
Backfill to water depth of 2 feet (c.y.)	315,000	185,000	285,000	785,000
Backfill to water depth of 3 feet (c.y.)	255,000	150,000	240,000	645,000
Topsoil for uplands (1 foot thick)				25,000
(c.y.)				
Topsoil needed for 1 ft topdressing of		40,000	47,000	
phase 2 and 3 wetlands (c.y.)				
Quantity to import (c.y.)	0	150,000*	240,000*	
Primary gravel left in place for dikes	17,000	12,000	Nap	29,000**
3 ft high (c.y.)***				
Modeled Avg water elevation (ft)	1315.2	1316.4	1317.5	Nap

*The quantity for 1 foot of topdressing is included in this figure.

**Add 4,000 cubic yards for each additional foot of core dike height (about 2.4 acres).

*** A minimum of 30 foot wide undisturbed corridor to serve as the core of the dikes. The inplace gravel will project 3 feet above the water table. This will result in a more stable situation as compared to backfilling of soils into the deep areas to create the dike.

****This acreage includes about 5 acres of dikes and upland adjacent to the dikes.

Talcot Worst-Case Gradations Compared to Class 5 (MnDOT)

Figure 8. This graph shows 4 test holes with the poorest gradations as compared to MnDOT's gradations for Class 5 aggregate. Aggregate with lots of gravel and coarse particles (rock) will plot lower on this graph than aggregate comprised mostly of sand. Percent passing refers to the proportion of the sample, by weight, that passes through a particular sieve size.

Table 5. Samples from MnDOT's Class 5 limits	four te	est holes tha	t represent t	he poorest o	gradations in	the evaluat	ion area, as	compared to
		Percer	nt of Materia	al Passing	Each Resp	ective Siev	'e	
Test Hole	1"	3//"	3/8"	#1	#10	#40	#200	1

		1 01001	it of Materia	ar i usonig			0
Test Hole	1"	3/4"	3/8"	#4	#10	#40	#200
#2 (1.3-8.5 ft)	-	97	93	88	81	24	2.9
#2 (8.5-17 ft)	-	88	82	75	64	14	1.2
#2 combined	-	92	87	81	72	19	2.0
#44 (1-12 ft)	100	98	90	82	66	23	2.5
#68 (1.8-19 ft)	98	98	91	80	68	24	4.3
#71 (2-13 ft)	-	95	91	83	67	22	2.6
Class 5 upper limits	100	100	90	80	65	35	10
Class 5 lower limits	100	90	50	35	20	10	3

<u>Mining Buffers along the Des Moines River Floodplain</u>. The soil profile near the banks of the flood plain consists of sand and gravel (granular soils), so there is a risk of bank failure from a process called piping if mining occurs too close to the edge of the flood plain. The mining buffer

in the NW and NE corners of the parcel are set to guard against the possibility a flooding Des Moines River could cause bank failure from a mechanism called piping (not overtop) in these two locations and flood the pit. The Wildlife manger does not want a physical connection between the pit and the river system, so it is important to prevent this from happening.

When the Des Moines River floods, piping could occur when water on the riverside of the buffer strip seeps through the granular soils towards the pit. If the seepage velocity is high enough, the bank on the pit side will wash out and begin to erode towards the river. The seepage velocity (or the potential for piping) is dependent on the type of soil materials, the relative difference in water levels on either side of the buffer, and the width of the buffer.

To eliminate the chance of piping, no-disturbance buffers of 75 and 100 feet for the NW and NE corners, respectively, shall be maintained from the edge of the pit to the bank crest (see Table 6). This also assumes a 3H:1V slope on either side of the buffer. These buffers were set using a rule-of-thumb where, during maximum flood stage, the maximum phreatic surface (slope) between the floodwater and the water in the pit (water table) is about 10% or less. Stated another way, the slope of an imaginary line from the maximum flood stage projected to the water level in the pit should be 10 feet or less per 100 feet of distance. The exit velocity of the seepage waters was then determined using standard engineering methods using the buffer width and maximum difference in water levels. This number is 14%--low enough to prevent piping.

The granular soils in the NW buffer are siltier than in the NE, which lessens the chance of piping, so the greatest concern is on the NE area. Calculations for the NE example indicate an exit gradient of about 14% may occur under worst-case conditions, which is OK. This conclusion is based on the head differential indicated in the table and a permeability of k=1 ft/minute. If these parameters are found to be different, this should be reexamined.

Raising the banks in these two areas would be ineffectual because if the Des Moines River reached this level, much of the immediate countryside would already be flooded.

RECLAMATION

During mining or at the conclusion of each mining phase, areas where future mining will occur should undergo interim reclamation and permanent reclamation should occur where mining will not occur again.

General provisions.

Interim reclamation. Interim reclamation shall consist of sloping all pit faces or walls to provide a safe condition (recommended slope angles are 1:1, horizontal to vertical or gentler).

Table 6. Input parameters and calculations used to estimate the no-disturbance buffers for the northeast and northwest corners of the parcel. Potential maximum high-water levels are based on the topographic spill points at which the Des Moines River would spill onto the countryside.

See appendix XX for more information. This data does not allow for drawdown of the water in the pit during flood stage. If pumping occurs, additional safeguards will be necessary. An example of additional safeguard is placing an impermeable geomembrane (<= 25 mil thick) on the riverside of the buffer and covering it with 1 foot of soil.

	Northeast	Northwest
	Corner	Corner
Spillway elevation of the flood plain bank	1324.5	1322
Approximate water elevation	1312.5-1313.5	1314.5-1316
Difference between spillway and water elevation	11-12	6-7.5
Difference used	10****	7.5
Calculated no-disturbance buffer (slope = 0.10) *	100 feet	75 feet

Note: Assumed K = 1 ft/minute, graded granular soils.

* Using the formula: buffer distance (x) = difference in elevation between pit water and floodwater divided by 0.10. In the field, the buffer distance is measured from the closest point where floodwaters would encroach before overtopping the banks. The buffer width does not include the slope into the pit. ** The water table slopes to the northeast. Once the entire northern part of the pit has been mined, the water table will equalize across the pit to an intermediate level between approximately 1312.5 and 1316 feet.

****If the floodwaters reached an elevation of 1322 feet, the river would overtop the banks on the NW corner and flood everything. Therefore, 1322 feet, instead of 1324.5, is the critical elevation to use at the NE corner.

This includes the banks adjacent to water. The topsoil and overburden shall be stripped far enough past the expected pit edge to allow for proper sloping without incorporating overburden or other deleterious material into the slopes.

Permanent reclamation. All topsoil shall be retained for reclamation. All slopes along the pit perimeter shall be graded to a 3:1, horizontal to vertical, or gentler slope. The shoreline and shallow-water areas adjacent to the shoreline shall be graded to a 10:1 slope. The 10:1 slope shall project into the water at least 20 feet from shore. This is important for public safety, slope stability, and to create a larger littoral zone (shallow water). Materials such as overburden and fine sand that are not needed for the mining operation may be placed in parts of the water-filled areas to create a shallow-water habitat and to create islands. All disturbed areas shall be covered with about 12 inches of topsoil prior to seeding. Slopes should be covered with available clayand silt-rich overburden subsoils, if any, and then covered with topsoil.

This plan recommends that stripping materials (the sod layer) from the existing wetlands be transplanted immediately upon nearby shorelines or problem areas where mining is completed and quick establishment of vegetation is desired.

Haul roads, staging areas, and similar areas that undergo permanent reclamation may require preparation (loosening) of the soil prior to the addition of topsoil if they are highly compacted. All reclaimed areas above water shall be seeded at the direction of the land manager to minimize the spread of weedy species, minimize erosion, and accelerate the reclamation process.

Gates at the ends of the dikes and signage in certain areas may be needed to limit entry into sensitive areas by unauthorized vehicles.

Advice on creating wetlands and banking the acres of wetland created are available from personnel at the Minnesota Board of Water and Soil Resources (BWSR) and DNR Division of Ecological Services.

Four fact sheets on aggregate mining are attached in Appendix F. Additional information is presented in the publication by Cynthia G. Buttleman, 1992, "A Handbook for Reclaiming Sand and Gravel Pits in Minnesota", Minnesota Department of Natural Resources.

Leasing, reclamation, and mining recommendations are available from DNR Division of Lands and Minerals.

GLOSSARY

boulder- a stone (usually rounded) larger than 256 mm (10 inches) in diameter.

cobble- a stone larger than 64 mm (2.5 inches) and smaller than a boulder.

crevasse- a fissure or open break within glacial ice.

deleterious material– any material that detracts from the quality of a sand or gravel product, and if deleterious materials are present in sufficient quantities the gravel product may be unsuitable for particular uses. Common deleterious materials are shale, iron oxides, unsound chert, clay balls, and other soft particles.

drumlin– a streamlined hill or ridge of glacial deposits with its long axis paralleling the direction of flow of the former glacier

esker– serpentine ridges of sand and gravel. They form when streams occur on or in sediment-rich glaciers. When the ice eventually melts, the sediments in the streambed form a ridge.

feature– a physical phenomenon that exists on the earth's surface, such as a lake, valley, or hill.

GIS– stands for geographic information system. It is a computer system for the input, editing, storage, maintenance, analysis, and output of spatial information. Each type or category of data is commonly thought of as a separate layer of information.

GPS– stands for global positioning system. It is a satellite-based system which, in conjunction with a receiver, determines locations on the earth's surface.

granule- particles of rock between 2 mm (0.08 inch) and 4 mm (0.16 inch) in diameter.

gravel– an accumulation of granular material, usually deposited by running water, that contains sufficient pebbles and larger stones to be marketable as gravel. When listed as a percentage of gravel, it is a measurement or estimate of the amount of the material, by weight, that is larger than 2 mm (commonly described as plus #10 mesh or retained on the #10 mesh).

ice-contact feature– layered deposits or accumulations of material deposited in contact with melting glacier ice. Examples are kames and eskers.

kriging algorithm– A regular grid of cells is overlain the scattered drill data. Values for each cell are estimated by fitting a mathematical surface to the scattered data.

landform– any naturally occurring recognizable physical form or feature on the earth's surface, such as hill, valley, esker, plain, plateau, mountain.

overburden- material of any nature that overlies a deposit of useful material.

pebble- stones ranging in size from 4mm (0.16 inch) to 64 mm (2.5 inch) in diameter.

Appendix A: Test holes with location coordinates, feet of aggregate, and water table information.

Appendix B: Detailed geologic descriptions for each test hole.

Appendix C: Complete gradation data for each sample.

Appendix D: Aggregate quality data.

Appendix E: Notes on the criteria for classification of the aggregate deposit.

Appendix F: Four DNR fact sheets on aggregate mining.

Appendix A: Test holes with location coordinates, feet of aggregate, and water table information.

Test hole	collar elev ft	water elev ft	ft to water	primary anyl ft	ov burden ft	Jackson v ft	Jackson v ft	latitudo	lonatitude	x coord utm	v coord utm
1 000_11010	1325 1	1314 7	10.4	prinary_grvi_it	2 0	251671	103328	13 00619536	05 45505272	202056	y_coolu_ulli
2	1325.3	1014.7	10.4	15.7	13	251673	103020	43.90010330	-95.45505272	302000	4004000
3	1326.8	1316.8	10	16	1.0	251682	102060	43.90010130	-95.45500575	302790	4004004
4	1320.0	1316.8	123	16.8	1.0	251680	102300	43.90019077	-95.45044797	302744	4004000
	1331.2	1316 7	14.5	21.5	1.2	251009	102750	43.90020004	-95.45721016	302002	4004391
6	1330.3	1316.3	14.5	175	2.0	251701	102350	43.90023037	-95.45797775	302021	4004393
7	1329.6	1316.6	14	17.5	1.0	251705	102009	43.90023171	-93.43072009	302301	4804397
, 8	1328.0	1010.0	10	10.5	2.0	251703	102154	43.90021455	-95.45950767	302490	4004397
a	1327.6	1317 1	10.5	12 5	2.0	251700	101950	43.90021495	-95.40025277	302439	4004399
10	1327.6	1316.0	10.5	12.5	1.5	251710	101759	43.90021344	-95.40100009	302370	4004400
10	1322.0	1316.4	65	15	1.0	251700	101560	43.90019694	-95.40170277	302317	4864401
12	1324.6	1310.3	53	12 5	1.0	252700	101000	43.90092034	-95.40104004	302320	4004703
13	1325 5	1317.0	0.0 8 3	12.5	3.5	252707	101017	43.90095109	-95.46065627	302399	4864704
14	1324.6	1314.1	10.5	10	1.0	252711	102000	43.90697501	-95.45991045	302475	4804705
15	1322	1316.5	5.5	1/	1.0	252713	102322	43.90899799	-95.45695965	302000	4004700
16	1323 5	1315.2	0.0 8 3	5	1.0	252704	102001	43.90090237	-95.45795554	302032	4004701
17	1325 1	1313.2	11 3	75	2.0	252714	102021	43.90902140	-95.45704711	302703	4004703
18	1323.8	1314.3	95	7.5 6	1.0	252710	103004	43.90904409	-95.45012019	302779	4004703
19	1324.2	1313.2	11	20.5	1.5	252000	102226	43.90904701	-95.45510201	302037	4004701
20	1323 7	1313	10.7	20.5	2.5	253806	103220	43.91231701	-90.40009044	302033	4000000
20	1322.7	131/1 2	10.7	11 3	1.5	253690	102971	43.91220930	-95.45050130	302733	4000002
22	1320	1014.2	0	11.5	1.7	2538094	102729	43.91225302	-95.45747676	302001	4000000
23	1319.5			55	2.0	2530050	102477	43.91223139	-95.45645540	302000	4000000
24	1322 3	1313.6	87	12.5	2.0	253905	102230	43.91220000	-95.45957204	302329	4000000
25	1318.6	1314.4	4.2	12.5	1.5	2530913	101901	43.91220070	-95.40031790	302433	4000071
26	1327.6	1315.6	12	10	1.5	2510324	103304	43.91220021	-95.40120412	302362	4000070
27	1324.5	1316.7	78	13	1.5	251933	103304	43.90090210	-93.45310233	302030	4004403
28	1325.9	1010.7	7.0	16	2.0	251945	102807	43.90092372	-95.45013273	302112	4004400
29	1327.1	1310 1	8	15	2.0	251940	102556	43.90091291	-95.45704778	302090	4004409
30	1329.3	1316.8	125	15 5	2.0	251952	102313	43.90091944	-95.45799090	302022	4004472
31	1329	1317.5	11.5	19	2.0	251054	102010	43.90090343	-05 45082530	302340	4004472
32	1328.3	1317.8	10.5	10	2.5	251055	101824	43 00688027	-95.45900559	302470	4004474
33	1327.7	1318 7	10.5	11 5	1.5	251955	101568	43.90080927	-95.40077047	302399	4004475
34	1326.7	1318.2	85	11.0	1.0	251300	101550	43.90000430	-90.40174710	20221	4004477
35	1327.7	1317.9	0.5 Q 8	18.5	2.5	252203	101330	43.907555097	-95.40100191	302319	4004002
36	1327.7	1317 /	10.3	17.5	2.5	252199	102055	43.90755747	-95.40005711	202394	4004049
30	1327 0	1317.4	10.3	17.5	2.0	252190	102000	43.90756267	-90.40991099	302470	4004040
20	1206	1216	10	10.0	2.0	202192	102304	43.30750207	-90.4009/400	302340	4004040
20	1320	1315.0	10	17	1.0	202101	102000	43.90755074	-90.40000827	302021	4004541
39 39	1324.2	1314 5	9	12	1.0 1 A	202101	102003	43.90750974	-90.40/0///1	302098	4004541
40	1024.0	1014.0	10	17	1.0	202180	103055	43.90/30/11	-95.45012292	302//5	4804539

41	1328.1	1317.1	11	21	1.0	252174	103302	43.90756477	-95.45518365	302850	4864537	
42	1326.4	1315.9	10.5	22.5	1.0	252436	103309	43.90828243	-95.45517870	302853	4864616	
43	1326	1315.7	10.3	17	1.0	252435	103057	43.90826734	-95.45613105	302776	4864617	
44	1328.2	1316.7	11.5	9	1.0	252438	102804	43.90826306	-95.45709170	302699	4864619	
45	1325.5	1316.7	8.8	16	3.0	252442	102552	43.90826248	-95.45805026	302622	4864621	
46	1326	1317.5	8.5	12.5	2.0	252449	102305	43.90826851	-95.45898534	302547	4864624	
47	1327.7	1317.7	10	15.7	2.3	252442	102059	43.90823599	-95.45991976	302472	4864622	
48	1325.8	1317.1	8.7	15.7	1.3	252448	101807	43.90824077	-95.46087706	302395	4864625	
49	1324.2	1317.7	6.5	15.7	1.3	252456	101557	43.90825015	-95.46182614	302319	4864629	
50	1324.4	1318.1	6.3	18.5	1.5	253004	101582	43.90975554	-95.46176797	302329	4864796	
51	1323.3	1317.5	5.8	15	1.0	253004	101831	43.90976745	-95.46082224	302405	4864795	
52	1319.9	1316.9	3	11	1.5	253002	102075	43.90977424	-95.45989679	302479	4864793	
53	1322.2	1315.9	6.3	12.5	2.0	252993	102323	43.90976300	-95.45895550	302554	4864790	
54	1323.2	1315.9	7.3	16	2.0	252984	102575	43.90974943	-95.45799896	302631	4864786	
55	1322.5	1315.7	6.8	16	1.0	252980	102838	43.90975236	-95.45700110	302711	4864784	
56	1324	1316.5	7.5	8	1.0	252986	103086	43.90978010	-95.45606073	302787	4864785	
57	1325.6	1314.6	11	18.8	1.2	252975	103336	43.90976225	-95.45511198	302863	4864781	
58	1324.8	1315.3	9.5	9	2.5	253200	103333	43.91037949	-95.45513989	302863	4864849	
59	1324.1	1314.1	10	10.5	1.5	253223	103036	43.91042870	-95.45626634	302773	4864857	
60	1320.5	1314	6.5	9.3	1.7	253227	102738	43.91042450	-95.45739781	302682	4864860	
61	1319.9	1315.6	4.3	16.7	2.3	253231	102442	43.91042073	-95.45852216	302591	4864862	
62	1320.9	1318.4	2.5	5	1.5	253252	101979	43.91045426	-95.46028018	302450	4864870	
63	1325.9	1316.1	9.8	15	2.0	253248	101676	43.91042979	-95.46142976	302358	4864870	
64	1323.6	1317.6	6	12	2.0	253484	101592	43.91107259	-95.46176260	302333	4864942	
65	1321.6			4.8	1.2	253461	101885	43.91102239	-95.46065141	302422	4864934	
66	1318.6	1314.1	4.5	14.5	1.5	253464	102191	43.91104585	-95.45948775	302516	4864934	
67	1318.9	1315.1	3.8	15.2	2.8	253463	102722	43.91107159	-95.45747576	302678	4864932	
68	1323.5	1314.5	9	17.2	1.8	253467	103029	43.91109640	-95.45631101	302771	4864932	
69	1324.9	1313.6	11.3	13.2	1.8	253431	103316	43.91101141	-95.45522036	302859	4864920	
70	1324.5	1313.3	11.2	20.5	1.5	253666	103377	43.91166109	-95.45500327	302878	4864991	
71	1323.3	1313.5	9.8	11	2.0	253675	103082	43.91167039	-95.45612502	302788	4864995	
72	1321.5	1314.7	6.8	16	2.0	253702	102773	43.91172814	-95.45729907	302694	4865004	
73	1320.2	1315.2	5	11.2	1.8	253711	102482	43.91173828	-95.45840188	302605	4865008	
74	1322.1	1316.1	6	7.7	2.3	253691	102174	43.91166838	-95.45956830	302512	4865003	
75	1322.2	1315.7	6.5	15.2	1.8	253697	101884	43.91166997	-95.46066918	302423	4865006	
76	1320.4	1315.4	5	13.5	1.0	253682	101612	43.91161675	-95.46169932	302340	4865002	
77	1321.2	1314.2	7	18.2	2.8	254014	103409	43.91261461	-95.45490746	302889	4865097	
78	1321.7	1312.2	9.5	20	1.0	253933	103459	43.91239576	-95.45471015	302904	4865072	

Apper	ndix	B: G	eologic	descripti	ons o	f each	test hole.							
Test Hole ID	From (feet)	To (feet)	Water Table (feet)	Color	Fines (C, S, VS)	Grading (W, P)	Sediment	USCS Group Symbol	Layer	% Gravel (field estimate)	Dominant clast (inches)	Maximum clast (inches)	Moisture (d, m, w)	Comments
1	0	2		blk	S		sdy loam		topsoil				d	
1	2	6.5		brn	с	w	sd w/ grvl	SW	grvl_1	30	3/8	2.5		
1	6.5	9		brn	С	р	m sd	SP	sd	3	1/4	1/2		
1	9	10		brn	С	w	c sd	SW	sd	tr			w	
1	10	10.5	10.4	lt arv			lean/fat clay	CL-CH	silt 1					mottled rusty streaks, water level meas. 10 minutes after drlg
1	10.5	12		dk gry			lean/fat clay	CL-CH	silt_1	0				stiff
1	12	14		brn	-	р	f-m sd	SP	sd_2	tr			w	
1	14	15		gry		<u> </u>	silt/lean clay	ML-CL	clay	0				not till
					1									
2	0	1.3		blk	S		sdy loam		topsoil	5	3/8	2	d	
2	1.3	6		brn	С	w	sd w/ grvl	SW	grvl_1	20	1/4	3	d	silty in upper
2	6	8.5		brn	С	w	c sd w/ occ grvl	SW	grvl_1	10	1/8	1/2		finer in upper
														stiff drlg at 6-9", small cobbles at 8.5-10', water
2	8.5	11		org	s	w	f grvl	GW-GM	grvl_1	55	3/8-1	4	w	at ~10.5'
2	11	14.5		brn	с		c sd w/ f grvl	SW	grvl_1	35	1/8-1/4	1.5	w	
2	14.5	17		gry	c		c sd w/ f grvl	SW	grvl_1	30	1/8	1/2	w	
2	17	18		brn gry	C	p	m sd	SP	sd	tr		1/8	w	tite drlg 17-19', lower foot is finer
2	18	21.5		blue gry	С	р	vf sd & silt	SP-ML	sd	0			W	
L														
3	0	1		blk			sdy loam		topsoil		_			
3	1	4.5		org brn	c	W	sd w/ grvl	SW	grvl_1	40	3/8-1.5	2.5	l	silty in top 1'
3	4.5	5.5		org brn	c	р	m sd w/ grvl	SP	grvl_1	20		3/4	ļ	
3	5.5	8		lt brn	c	р	m sd	SP	grvl_1	tr		3/4		iron streaks at 5.5-7
3	8	10.5	10	gry brn	c	w	c sd w/ grvl	SW	grvl_1	20	1/8	1/2	w	
3	10.5	15		brn gry	C	w	c sd w/ f grvl	SW	grvl_1	40	1/4	1/2	W	coarser w/ depth
3	15	17		brn gry	C	W	f grvi	GW	grvi_1	55	3/8	1	W	c sd, some silt
3	17	21.5		blue			till-fat clay	СН	clay		4			SUIT
		10		1.11.					44.44.4.1					
4		1.2		DIK	+	 	say loam	CIA/		10	0/0.1		1	h: 9/ of emishable 1 1 5" nobble in unperf
4	1.2	5		org brn	C	W	sa w/ grvi	SVV	grvi_i	40	3/8-1	2		hi % of crushable 1-1.5 pebble in upper it.
4	5	10.5		hrp	C	p w	ni su	SM CM	I	U 50	2/9	1		ine drug 5-10
4	105	10.5	10.0	bro		w		SW-GW	I	50	3/0	<u> </u>		
4	10.5	12.5	12.3				su a givi	MI-CI	givi_i		3/6		VV W	soft red strocks
4	12.5	14		ht gry		<u>Р</u>	ed & f and	SW-GW	givi_i	50	1/4-1/2		VV \\/	and
4	14	21		blue		n vv	vf sd - f sd		ivii		1/4-1/2		**	
4	21	215		blue grav		<u> Р </u>	till-fat clay		clay	tr				white carb grains
[*	21	21.3		Dide glay		1	in-iai ciay		ciay	u	-		<u> </u>	
5	0	15		blk		+	sdy loam		tonsoil	+			h	loess
5	15	2		velbrn	-	n	fsd		topsoil	10	1/8	1/2	u u	subsoil? Transition into grvl
5	2	5		ora brn			sd w/ f and	SW	arvl 1	40	1/2	25	b	Suboon. Handhori into givit.
Ľ	1			Joig bill		1 1		000	I		1/2	<u> </u>	<u> </u>	<u></u>

Hole ID (feet) (feet) (feet) (C, S, VS) (W, P) Group Symbol (field estimate) clast (inches) clast (inches) (d, m, w) 5 5 8 0 rg c w sd w/ grvl SW grvl_1 20 1/8-1/4 1 d rx at 5-6.5' 5 8 10 It brn c w sd w/ grvl SW grvl_1 20 1/8 1 d 5 10 15 14.5 gry brn c w sd w/ grvl SW grvl_1 40 1/4 1.5 m 5 15 18 gry brn c w cd k f grvl SW grvl_1 40 1/4 1 w 5 18 21 It gry c w cd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 6 0 1.5 blk <	
Image: Symbol Symbol estimate) (inches) 5 5 8 org c w sd w/ grvl SW grvl_1 20 1/8-1/4 1 d rx at 5-6.5' 5 8 10 It brn c w sd w/ grvl SW grvl_1 20 1/8-1/4 1 d rx at 5-6.5' 5 8 10 It brn c w sd w/ grvl SW grvl_1 20 1/8 1 d rx at 5-6.5' 5 10 15 14.5 gry brn c w sd w/ grvl SW grvl_1 40 1/4 1.5 m 5 15 18 gry brn c w cs d & f grvl SW grvl_1 45 1/4 1 w 5 18 21 It gry c w cs d & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr tr to	
5 5 8 org c w sd w/ grvl SW grvl_1 20 1/8-1/4 1 d rx at 5-6.5' 5 8 10 It brn c w sd w/ grvl SW grvl_1 20 1/8 1 d rx at 5-6.5' 5 10 15 14.5 gry brn c w sd w/ f grvl SW grvl_1 40 1/4 1.5 m 5 15 18 gry brn c w csd & f grvl SW-GW grvl_1 45 1/4 1 w 5 18 21 It gry c w csd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr - - - - - - - - - - <td></td>	
5 8 10 It brn c w sd w/ grvl SW grvl_1 20 1/8 1 d 5 10 15 14.5 gry brn c w sd w/ f grvl SW grvl_1 40 1/4 1.5 m 5 15 18 gry brn c w csd & f grvl SW-GW grvl_1 45 1/4 1 w 5 18 21 It gry c w csd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 21 23.5 yel gry c w csd w/ occ grvl SW-GW grvl_1 50 1/4 1/2 w 5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr - - - - - - - - - - - -	
5 10 15 14.5 gry brn c w sd w/ f grvl SW grvl_1 40 1/4 1.5 m 5 15 18 gry brn c w c sd & f grvl SW-GW grvl_1 45 1/4 1 w 5 18 21 It gry c w c sd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 6 0 1.5 blue gry till-fat clay CH clay tr -	
5 15 18 gry brn c w c sd & f grvl SW-GW grvl_1 45 1/4 1 w 5 18 21 It gry c w c sd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr	
5 18 21 It gry c w c sd w/ occ grvl SW grvl_1 10 1/8 3/8 w 5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr - 6 0 1.5 blk - - - - - 6 1.5 8.5 org brn c w sd & grvl SW-GW grvl_1 45 1/2 2 d best crushable material so far 6 8.5 10 It brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2 d	
5 21 23.5 yel gry c w sd & pea grvl SW-GW grvl_1 50 1/4 1/2 w 5 23.5 26 blue gry till-fat clay CH clay tr	
5 23.5 26 blue gry till-fat clay CH clay tr Image: Constraint of the clay tr 6 0 1.5 blk Image: Constraint of the clay tr Image: Constreinter of the clay tr	
o blk o o 6 0 1.5 blk blk blk 6 1.5 8.5 org brn c w sd & grvl SW-GW grvl_1 45 1/2 2 d best crushable material so far 6 8.5 10 It brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2 d	
6 0 1.5 blk - topsoil - d 6 1.5 8.5 org brn c w sd & grvl SW-GW grvl_1 45 1/2 2 d best crushable material so far 6 8.5 10 It brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2 d	
6 1.5 8.5 org brn c w sd & grvl SW-GW grvl_1 45 1/2 2 d best crushable material so far 6 8.5 10 It brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2 d	
6 8.5 10 It brn c p sd w/ occ grvl SP grvl_1 10 1/2 d occ grvl sd w/ occ grvl SP grvl_1 10 1/2 d occ grvl sd w/ occ grvl SP grvl_1 10 1/2 d occ grvl sd w/ occ grvl s	
6 10 17 14 hrp c w m-c sd w/ and SW and 1 20 1/8 3/4 w some coarser lavere	
6 17 19 m s w ed & f and $SW-GW$ and 1 50 1/4 2 w some coal set agers	
6 10 215 blue any tillfat law CH clay	
I U I.3 Dir. Suy loan Tuppoint T 1.5 2 yellbar 2 n althuf dd	
1 1.3 2 yet bit 5 p Sitty 150 tubboli 3 u 7 2 5 ord by ord by<	
7 2 3 org bin c w su wright Sw giv_1 30 3/0 1 u upper -2 sit sity	
7 10 0rg 0rm C W SulWirgrv SW grv_1 25 3/8 2	
7 10 12 While C P misu SP givin U U U U U U U U U U U U U U U U U U U	
7 12 15.5 13 gryprn C w Csu & rgrvi Sw-Gvy grvi_1 45 1/4 1 w inning upward sequence	
varied layers, basal foot has yel-org c	ranules
7 15.5 20.5 gry brn c w c sd w f grvi SW grvi_1 40 1/4 3/4 w	· · · · · · · · · · · · · · · · · · ·
7 20.5 21.5 Dlue till-fat clay CH clay tr	
8 0 2 blk topsoil tr	
8 2 4 brn c w sd w/ grvi SW grvi_1 40 1/4 1	
8 4 6 It brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2	
8 6 11 org brn c w sd w/ f grvl SW grvl_1 20 1/8 1.5	
8 11 13 gry brn c p silt to m sd ML-SP grvL1 0 water at ~13'	
pea grvl, pebbles at 13-14', generally	coarsens
8 13 16 gry brn c w f grvl GW grvl_1 60 1/4-1/2 3 w w/ depth	
8 16 21 blue gry till-fat clay CH clay upper 6" has yel brn carb granules	-
9 0 1.5 blk topsoil topsoil	
9 1.5 6 brn red c w sd & c grvl SW-GW grvl_1 45 3/4 3 good crushable - best so far	
9 6 10 red brn c p sd w/ occ grvl SP grvl_1 10 1/8 1/2 layers	
9 10 14 10.5 gry brn c w c sd w/ f grvl SW grvl_1 25 1/4 1 w yel org stained granules at base	
9 14 15.5 blue p silt ML silt_1 0	
10 0 1 blk sdy loam topsoil 5	
10 1 9 org brn c w sd & f grvl SW-GW grvl_1 50 1/2-1 3	
10 9 10 It brn c p sd w/ occ arvl SP arvl 1 10 1/8 1/8 w	
10 10 16 10.7 dk brn gry c w c sd w/ f grvl SW grvl 1 30 1/8 1 finer in btm	
10 16 21 blue grv till-fat clav CH clav	

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Laver	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C. S.	(W, P)		Group		(field	clast (inches)	clast	(d. m. w)	
		(,	()		VS)	(,.,		Symbol		estimate)		(inches)		
				1						,				
11	0	0.5		blk	1		tonsoil		tonsoil					1" pebbles on surface
11	0.5	1		dk brn	e		silty f sd w/ and		topsoil					
	0.0					+	Sitty i Sa W/ givi		10000		· · · · · · · · · · · · · · · · · · ·			nebbles conc in upper 1': varied lavers
11	4	44	65	orghrp			ed & and	SW CW	and 1	50	2/4	25	dhu	crupphing at 6.9'
11	44	15	0.5			VV	su a givi	SW-GW	i	45	0/4	2.0	<u>u</u> /w	
11	10	17		gringry		V	f and 8 and	SW-GW	I	45	3/0	4 5	VV	
	15	1/		grn gry	C	W	I GIVI & C SU	5W-GW	I	45	3/8	1.5	W	
<u> </u>	17	21.5		blue gry			tili-tat clay	CH	clay					
		0.5												·
12	0	3.5					sdy/silty loam		topsoil	5			,	
12	3.5	9	5.25	yel brn	S	W	sd & f grvi	SW-GM	grvl_1	50	3/4	1.5	m/w	some +1" pebbles
12	9	11		gry	C	р	sd w/ occ grvl	SP	grvl_1	10	1/4	1.5	W	occ pebbles
12	11	16		grn gry	c	W	f grvl	GW	grvl_1	55	3/8	1.5	W	c sd, pebbles at base
12	16	20		blue			till-fat clay	СН	clay					Tite drlg at 18-20'
13	0	1		blk					topsoil]				
13	1	4		org brn	c	w	sd w/ grvl	SW	grvl_1	40	1/2	2		
13	4	6.5		lt brn	С	р	m sd w/ occ grvl	SP	grvl_1	15	1/4	1/2		
13	6.5	11	8.3	brn gry	С	р	sd w/ occ grvl	SP	grvl_1	15	1/4	1.5		varied sd & pea grvl layers
13	11	14		gry	С	w	c sd & f grvl	SW-GW	grvl_1	50	1/4	1		
13	14	15		gry brn	С	р	m sd w/ occ grvl	SP	grvl_1	15	1/4	1		· · · · · · · · · · · · · · · · · · ·
13	15	17		gry	С	w	sd w/ occ grvl	SP	arvi 1	10	1/4	1/2		sand is graded
13	17	20		blue	1	1	till-fat clav	СН	clav	tr			1	sparse granules
						1		· · · · · · · · · · · · · · · · · · ·				-		
14	0	1		blk	-		grvlv loam		topsoil	15	3/8		1	
14	1	3		brn	s	w	farvl	GW	arvl 1	55	3/8	2		
14	3	6		lt brn	c	n	m sd	SP	arvl 1	tr	0,0			
14	6	7.5		hrn	s	w	arvl	GW-GM	arvl 1	60	1/2-1	2		
14	7.5	11	10.5	ary brn	VS	w	clavev grvl	GC	silt 1	75	1/4	1.5		stiff aryly till
14	11	12		org brn	C C	w	arvl	GW		70	1/4	2	1	pea gryl
14	12	15		brn gn/	C	n	med	SP	ord	10	1/4	<u></u>		iron staining at 15'
14	15	19.5		dk red-brn	C C		med	SP SP	ed	tr	1/8	1/8		2-3' of iron staining
14	10.5	21.5		uk reu-bitt		<u>р</u>	eilt/fat clay	ML-CH	olav			1/0		mixed lavore
	13.5	21.5	······································				Silvial Gay	WIL-OIT	Clay					
15		4		blk			anduloom		topooil	10	1/0			10000
10			EE	DIK	+			CIM CIM		10	1/2	4 5		
10		3.5	5.5	bm-bm org	C C	W		SW-GW	I	50	3/8	1.5		f no o mad
15	5.5	15		brn gry	C	W	c sa & t grvi	SW-GW		45	1/8-1/4	1		r pea grvi
15	15	21		DIUE	C C	<u> </u>	vī sa	52	sa	<u> </u>	ļ		<u> </u>	
	-				1									
16	0	2		DIK			sdy loam		topsoil					loess
16	2	5		org brn	C	p	sd w/ grvl	SP	grvl1	20	1/8	1		silty in upper 1'
16	5	7		org brn	С	w	sd w/ f grvl	SW	grvl_1	40	3/8	1.5		
16	7	9	8.3	gry	VS		f sd, silt & till		silt_1					sticky
16	9	11		gry brn	VS	w	slty sd & grvl	SM-GM	grvl_2	45	1/2	1	w	sticky

est ole ID	From (feet)	To (feet)	Water Table (feet)	Color	Fines (C, S,	Grading (W, P)	Sediment	USCS Group	Layer	% Gravel (field	Dominant clast (inches)	Maximum clast	Moisture (d, m, w)	Comments
					VS)			Symbol		estimate)		(inches)		
_														Lower ft is yel org stained, spin on rock at 14
5	11	14		gry brn	S	W	f grvl	GW	grvl_2	55	1/4	1	W	refusal
				l. D.										
7	0	1		DIK dlaban					topsoli	40	1/0			
7		3			S	W	sa w/ grvi	500-5101	grvi_i	40	1/2	1.5		······································
	5	5 0 E		bin org			c su w/ r grvi	500	I	40	2/9	1.5		
7	95	0.0				p	loan clay		ilt_1	20	3/0	2		1 75" ribbon, no granulas
/	0.5	1/	11.2	It brp			med			5	1/4	1.5	-	1.75 hobor, no granules
7	1/	15	11.5	ora	0	<u>Р</u> W	c ed & f and	SW-CM		50	1/4	1.0	· · · · · ·	
7	14	17.5		org		VV N/	c su a r yrvi	SW-GM		50	1/0			
7	17 5	195		lt anv		vv	c su a r yrvi	MI		0	1/0	1		
7	18.5	20		any	Ve)A/	silty ed & f and	SM-GM	2	50	3/0			
'	20	21 5		blue on		vv	till-fat clay				3/0			3/8" carb granules
	20	21.5		Dide giy			un lat clay		uay					oro carb granules
2	0	15		blk			tonsoil		toneoil				- d	
	15	25		brn any			sd w/ arvl	SW		40		25	b h	
2	2.5	5		brn org			c sd w/ arvl	SW		35	1/2	35	<u> </u>	· · · · · · · · · · · · · · · · · · ·
	5	75		orgbro			c sd w/ grvl	SW		20	1/2	1	d	crunching at 5-8' damp at 7.5'
3	7.5	10	95	ary			silt	MI	silt 1	0		'	<u> </u>	arn brn lower 1'
3	10	11	0.0	arv	VS	w	silty arvl	GM	silt 1	50	1/4	1		muddy sticky
3	11	17.5		brn arv	с. С	w	f arvl	GW	and 2	55	1/8-1/4	1		pea gryl coarser at base. Yel org at base
8	17.5	20		blue			till-fat clav	СН						
									0,00				1	
3	0	2.5		blk					topsoil					
3	2.5	3.5		brn blk	s	w	sd & arvl	SW-GW	arvl 1	45				rocky at 2'
)	3.5	5		brn ora	c	w	sd w/ arvl	SW-GW	arvl 1	35	3/4-1	3	d	sandier in lower ft
)	5	10.5		brn	C C	D	sd w/ occ arvl	SP	arvl 1	15	1/8	1/2	d/m	
3	10.5	15	11	arv brn	c	w	c sd & f arvl	SW-GW	arvl 1	45	1/8	2.5	W	coarser w/ depth
	15	21		arv brn	c	w	c sd & f arvl	SW-GW	arvl 1	50	1/8-1/4	1	w	
9	21	23		ary brn	с	w	f arvl	GW	arvl 1	55	3/8	1.5	w	
9	23	26		<u> </u>			till-fat clay	СН	clay					v stiff drlg 24-26
)	0	1.5		blk			topsoil		topsoil					······································
0	1.5	4		brn	с	w	sd & grvl	SW-GW	grvl_1		1/2	1	d	sdy in lower
5	4	5		brn	С	w	c sd w/ grvl	SW	grvl_1	20	1/4	1	d	
0	5	9		brn	С	w	c sd w/ f grvl	SW	grvl_1	35	1/4	1	m	
)	9	9.5		red	s	w	grvl	GW-GM	grvl_1	55	1	2.5	m	resistant layer at 9-9.5'
)	9.5	10.5		white gry	С	р	f-m sd	SP	grvl_1	0	l		m	mostly qtz
)	10.5	14	10.7	lt grn gry	С	р	f-m sd	SP	grvl_1	0			w	sharp lower contact
)	14	16.5		brn gry	S	w	c sd & f grvl	SW-GM	grvl_1	50	1/8	1.5	w	
0	16.5	18		blue			fat clay	СН	clay	0				not till, top is olive color, 2.5" ribbon
0	18	21.5		brn gry	С	р	m sd	SP	sd_2	tr	1/8	1/8		
1	0	1.7		blk			topsoil		topsoil					grvly at lower 9"
Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
----------	--------	--------	-------------	------------	------------	----------	---------------------	----------	---------	-----------	----------------	----------	-----------	--
Hole ID	(feet)	(feet)	(feet)		(C. S.	(W, P)		Group		(field	clast (inches)	clast	(d. m. w)	
		· ·			VS)			Symbol		estimate)	, <i>,</i> ,	(inches)		
21	1.7	3		org brn	s	w	sd w/ grvl	SW-SM	grvl_1	35	3/8	1.5	d	
21	3	4.5		brn	с	q	m sd w/ occ arvl	SP	arvl 1	10	1/8	1/2	d	· · · · · · · · · · · · · · · · · · ·
21	4.5	5.5		ora	с	w	sd w/ arvl	SW	arvl 1	30	1/2	2	m	······································
21	5.5	10	8	brn	с	w	sd w/f arvl	SW	arvl 1	35	1/8-1/4	1	m/w	c sd at 8.5-10'
21	10	13		brn	с	w	sd w/ f arvl	SW	arvl 1	30	1/8	3/4		blk & rusty org stain layer at ~ 12.5'
21	13	15		ary brn	c	p	f-m sd	SP	sd	3		1/2		
21	15	19		brn & arv	s	n	mixed silt f & m sd	<u> </u>	sd	tr				one 6" cobble in muddy matrix at base
21	19	21		blue	<u>+</u>	<u>۳</u>	till-fat clay	СН	clay	·····				numerous carb granules
<u> </u>							tim fat olay		oluy					indificious care grandice
22	0	3		blk			sdy loam		tonsoil				d	
22	3	5		brn	6)M/	sd & and	SW-GM		50	1//	15	d/m	
22	5	55		lt brn	- <u>-</u>		silt w/ occ and	MAL NAL	ilt_1	15	1/4	1/2		water at 5'
22	5	0.5			VS	P	andy oilt 2 m od		i	15	1/4	1/2	VV	
22	5.5	9		gry	vs		giviy siit & in su	DIAL ON	Sill_1	25	1/2		W	
22	9	10		ory	s						1/2	3	W	Ann annount in share in stilling and a
22	10	13		olive/blue	<u> </u>		till-clay	CL-CH	clay	tr				top several inches is olive color
22	0	2		blk			silt loam		topsoil	tr				
23	2	55		org.brp	-	14/	c cd & and	SW SM	and 1	45	1/2	2		water at 4 5'
23	55	75		any bro	3			SM GM	i	45	1/2	2		water at ~4.5
20	5.5	1.5		gry bin	VS	W			I	45	1/4	2		muduy, some sicky
23	1.5	10		Diue			un-clay		ciay					
		4.5			<u> </u>			<u> </u>	1	<u> </u>				
24		1.5		DIK			say loam		topsoli		414			peddies in lower 6"
24	1.5	4		nna	C	W	c sa w/ grvi	SW	grvi_1	25	1/4	1	<u>a</u>	
24	4	5		yei brn	C	p	r-m sa	SP	grvi_1	tr	1/0			
24	5	10	8.7	brn	S	W	sa & grvi	SW-GM	grvi_1	45	1/2	2		
24	10	10.5		org brn	vs	W	silty sd & grvi	SM-GM	grvi_1	50	1/2	1.5		
24	10.5	14		org brn	S	W	f grvl	GW-GM	grvi_1	55	3/4	2		variable silt content
24	14	15.5		gry	L		till-fat clay	СН	clay					stiff, upper few inches is brn
25	0	1.5		blk					topsoil					
25	1.5	7	4.2	yel brn	VS	W	silty sd w/ grvl	SM		40	1/2	2		sticky
25	7	9.5		blue	VS	W			grvl_1					
25	9.5	10.5		blue	c	w	c sd & f grvl	SW-GW	_grvl_1	50	3/8	1.5		c-sd layers
25	10.5	12.5		blue	s	W	f grvl	GW-GM	grvl_1	55	1/2	1		variable sands
25	12.5	15.5		blue			till-fat clay	СН	clay					carb granules
				1										
26	0	1.5		blk			sdy loam		topsoil					
26	1.5	5		yel brn	S	w	grvl	GW-GM	grvl_1	70	1	2		good
26	5	6		lt brn	С	w	c sd w/ grvl	SW	grvl_1	20	1/8			
26	6	10		lt brn	c	w	sd w/ occ grvl	SW	grvl_1	15	1/8	1/2		
26	10	16	12	gry brn	С	р	sd	SP	grvl_1	3	1/8	1	I	occ thin f grvl & m sd layers
26	16	20.5		gry brn	С	w	f grvl	GW	grvl_1	60	1/8-1/4	1		
26	20.5	21.5		blue			silt/lean clay	ML-CL	clay					
	1													
27	0	2		blk		<u> </u>	sdy silt		topsoil					

Test	From	To	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group	,	(field	clast (inches)	clast	(d, m, w)	
	, <i>,</i>	l` í	()		VS)			Symbol		estimate)		(inches)		
27	2	6		org brn	c	w	c sd & f grvl	sw-Gw	grvi 1	45	3/8	1.5		
27	6	9.5	7.8	brn	с	p	sd w/ occ grvl	SP	arvl 1	15	3/8	3/4		
27	9.5	11.5		arv brn	с	w	c sd & arvl	SW-GW	arvl 1	45	1/8-1/4	1		
27	11.5	15		ora	S	w	farvl	GW-GM	arvl 1	60	3/8	2		pea grvl
27	15	15.5		blue			till-clav	CL	clav					
						· · · · ·								
28	0	2		blk			silty loam		topsoil					some arvl at base
28	2	4.5		brn ora	s	w	sd & arvl	SW-SM	aryl 1	45	1/2	2	b	
28	4.5	11.5		lt brn	c	w	sd w/ occ f grvl	SW	arvl 1	10	3/8	1/2	d	wet at 10', scattered thin f grvl
28	11.5	13.5		ary arn	c	w	farvl	GW	arvl 1	60	1/4	1.5	w	
28	13.5	14.5		blue			till-clay	CI	arvl 1				·····	6" silt over till
28	14.5	15.5		blue ary	VS	W	silty sd & aryl	SM-GM		50	1/2	15		muddy
28	15.5	18		ora	s	w	fand	GW-GM	arvl 1	55	1/2	1.0		inddy
28	18	20		blue			till-fat clay	CH	i		1/2	· · ·		diamicton
		20							olay					
29	0	2		blk			silty sdy loam		topsoil					firm
29	2	75		brn org		W/	sd w/ ap/	SW	anyl 1	40	3/8-3/4	2	h	
29	75	10	8	brn	6	w	c sd & f arvl	SW-GM		50	1/4	1	W	
29	10	17	0	brn any		14/	c sd & f grvl	SW-GW	$\frac{g_1v_1}{g_1v_1}$	45	3/8	15	10/	
20	17	21.5		blue		~~	till-fat clay	CH			0/0	1.0	~~~~	stiff numerous carb granules
23	17	21.5		Dide					Ciay			······		stin, numerous carb granues
30	0	2		blk			loamy sd		topeoil				Ч	
30	2	5		brn org	e	W/	sd & and	SW-SM	anyl 1	45	3/4	3	4	
30	5	12		lt bro			sd w/ ap/	SW		40	3/9 & 1	25	4	ora at 12'
30	12	17.5	12.5	an/ brn	0	>**	sd w/ grvi	SW		-40	1/4	1.5	<u>u</u> w	
30	17.5	21.5	12.5	blue			till-fat clay				1/4	1.5		ctiff emooth drig
	17.5	21.5		Dide					Ciay					
21	0	-		blk		<u> </u>	sdy loam		topsoil					
31	1	25		velbro			andy silt	MI		20		15	d	hard firm
21	25	5		org bro	v3 		sd w/f and	SIM		20	1/4-3/4	1.5	d	
21	2.5	10		brp rod		VV 14/	sd w/ rgivi	SW	givi_i	40	2/9 2/4	2	d	
01	10	10	11 5	binneu It any		<u>vv</u>		SW CIM	i	40	3/8-3/4	2	<u>u</u>	
01	15	10		it gry			f and	SVV-GVV	ivii	45	1/4-1/2	4 5		
01	15	20			G	<u>v</u>	till fat alou		IVII	60	1/0-1/4	1.5	vv	· · · · · · · · · · · · · · · · · · ·
31	20	21		Diue			lill-lat clay		ciay					
20				bll	}	<u> </u>	ailt loom	┨	tonooil	+			<u> </u>	
32	0	1					siit ioam	M	topson					SUIT
32		2.5							I		0/0.1/0			
32	2.5	5.5				W W	su w/ grvi	SW		35	3/8-1/2	0/4		
32	5.5	8.5	10 5		C	W		SW	grvi_1	15	1/4	3/4		· · · · · · · · · · · · · · · · · · ·
32	8.5	11	10.5	brn red	C	W	sa w/ grvl	SW	grvi_1	30	3/8	2		
32	11	15		orn gry	C C	W	i grvi	GW	grvi_1	60	1/4-3/8	1.5		crunching at 11-12'+
32	15	17		yel brn			c sd & t grvl	SW-GW	grvl_1	50	1/8-1/4	1		yel staining
32	17	21		blue		<u> </u>	till-fat clay	СН	clay				ļ	
						ļ								
33	0	1.5		blk			sdy loam		topsoil			1		

Test	From	To	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group	•	(field	clast (inches)	clast	(d, m, w)	
		` '			VS)			Symbol		estimate)		(inches)		
33	1.5	2.5		dk brn	s	р	sd w/ grvl		topsoil	20	3/8-1/2	1	d	
									······································					rx at 3-4', greater than 50% of pebbles are not
33	2.5	5		org brn	с	w	sd & grvl	SW-GW	grvl_1	45	1/2-1	2.5	d	carb
33	5	9	9	org brn	с	w	sd & c grvl	SW-GW	grvl_1	45	3/8+	2.5		numerous pebbles
33	9	13		ary	С	w	c sd w/ f grvl	SW	grvl 1	25	1/8	3/4	w	
33	13	14		vel gry	c	w	c sd w/ f grvl	SW	grvl_1	40	1/8-1/4	1	w	
33	14	15		blue			till-fat clay	СН	clay					firm
										1				
34	0	2	·····	blk			sdy loam	++	topsoil				d	
34	2	3		blk			loamy gryl	1	topsoil	25?		2	d	
34	3	6		lt brn	с	w	sd & grvl	SW-GW	arvl 1	45	3/4	1.5	d	
34	6	8		brn red	c	w	sd & arvi	SW-GW	arvl 1	45	1/2	2	d	
34	8	10	8.5	ary	s	w	c sd & arvi	SW-GM	arvl 1	50		3	w	numerous pebbles
34	10	14	0.0	ary to org ary	C C	w	c sd & f grvl	SW-GW	arvl 1	45	1/4-3/8	1.5	w	silty and coarser at base
34	14	15		blue			till-fat clay	СН		1				
					1					1				
	1							++	·····					basal 1/2' has numerous pebbles (approx 1")
35	0	25		blk					topsoil					
35	25	5		hrn	0	w	sd w/ aryl	SW	arvl 1	35	1/2	2	Ь	
35	5	q		red hrn		w	sd w/ aryl	SW	arvl 1	35	3/8	3	<u> </u>	
35	9	10	9.8	brn gry	c	w	c sd & f grvl	SW-GW	arvl 1	50	1/4	1	w	· · · · · · · · · · · · · · · · · · ·
35	10	15	0.0	ary	<u> </u>	w	fand	GW	arvl 1	55	1/4-3/8	1	w	
35	15	21		brn an/	e	W	f and	GW-GM		60	1/8-3/8	1	W	
35	21	215		blue			till-fat clay	CH	i		1/0/0/0	·		
00	1	21.0					tim fat onay		Oidy		· · · · · · · · · · · · · · · · · · ·			······································
36	0	25		hik	·····		sdy loam	+	tonsoil	tr				
36	25	2.5		brn		14/	sd w/ ap/	SW	and 1	25	1/2-2	25	<u>н</u>	crunch rocke at 2.5-1
26	2.5	10		brn to gn/			sd w/ grvi	SW SD	i	10	1/2-2	1/2	 	
30	10	19.5	10.2	an(<u>р</u>		SW_GW	i	50	1/0	1/2	111	coarsens down
36	185	20	10.5	blue		 	eilty ed w/ and	SW-GW	i	40	1/4	1.5	30/	eli sticky
26	20	20		blue	<u>vs</u>		till fat clay			- 40		1.5	~~~	
	20	20.5		Diue		1			Ciay					
27	0	2		bik			edy loam		toncoil					
27	2	5		orabro		34/	sdy loan	SW	and 1	35	3/8-1	2		
27	<u> </u>	10		an bro				SVV CD	I	20	1/0	1/2		wat at 10 ¹
27	10	10	10	gry brn		P W		SF SW_GW		15	1/0	1/2		coarser w/ depth
07	10	175	. 10		<u> </u>	W	f and	GW GM	i	45	2/9	1/5		coarser w/ depth
07	15	17.5		org brn	<u> </u>	w		Gw-Givi		55	3/8	1/5		
3/	17.5	20		blue			lill-fat clay		clay					
				L. 12.		+			40000					
38				DIK		1		0.44	topsoil		4/0			
38		4		Inn	C	W	sa w/ grvi	SW		40	1/2	2		
38	4	5		red	c	W	sa & grvi	SW-GW	1	45	3/4	1.5		
38	5	8		red brn	C	w	sd w/ occ grvl	SW	grvl_1	15	1/8	1/2		
38	8	10	10	gry brn	C	w	sd w/ grvl	SW	grvl_1	20	1/4	3/4		
38	10	15		gry brn		W	sd w/ grvl	SW	grvl_1	20	1/8	1		silty at 13-15'

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Laver	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C. S.	(W. P)		Group	,	(field	clast (inches)	clast	(d, m, w)	
	((,	(,		VS)	(,,		Symbol		estimate)	,	(inches)	(-)·· , ,	
38	15	18		ary brn	s	w	sd w/ aryl	SW-SM	arvl 1	25	1/8-1/4	1		coarser at lower 1', vel stain in lower 2'
38	18	20.5		blue			till-fat clay	CH				•		
	10	20.0		Dide					onay					
30	0	15		blk			sdy loam		tonsoil				h	
39	15	4		brn	s	w	sd w/ grvl	SW-SM	arvl 1	40	1/2	2	d	
30	4	6		any brn		w	c sd & f and	SW-GW	arvl 1	45	3/8	1	<u>ь</u>	
39	6	8		brn red	C C	w	sd w/ aryl	SW	arvl 1	30	3/8	1	<u> </u>	
39	8	10	9	any brn	C C	w	c sd w/ f arvl	SW	arvl 1	40	1/8	1	w	
39	10	13.5	Ŭ	brn arv	s	w	c sd & f and	SW-GM	arvl 1	50	1/4	1	w	
30	13.5	16.5		blue			lean clay w/ gr/l	CL	silt 1	30		25	w	flow tillsoft_sandy_mostly friable
39	16.5	10.0		blue any	VS		sd & and	SM-GM	and 2	50	1/2	2.0	w	
39	18	19		org brn	V 0	W/	sd & and	SW-GM	arvl 2	50	1/2	1.5	w	
39	19	21.5		blue			till-fat clay	CH			172		d	firm *
		21.0			+		in fat only		olay				<u> </u>	
40	0	1		blk			loamy sd		tonsoil				h	loose
40	1	15		brn blk	9	W	sd & and	SW-GM	arvl 1	50	1/2	2	d	pebbly bard
40	15	3		brn	6	W	sd & grvi	SW-GM	$\frac{g(v)_1}{av/1}$	50	1/2	25	d	nebbly
40	3	5		lt brn	- -	n	sd w/ arvl	SP		20	1/8	1/2	d d	
40	5	9		brn		W W	sd w/ grvl	SW	arvl 1	25	1/0	1	b b	,
40	9	10	10	any brn	5	w	c sd & f arvl	SW-SM	anyl 1	45	1/8-3/8	1.5	m	
40	10	15	10	gry brn		W	c sd w/ f grvl	SW	i	40	1/8-3/8	1.0	W	
40	15	18		gry brn		W	farvl	GW-GM	an/i 1	55	3/8	1	w	· · · · · · · · · · · · · · · · · · ·
40	18	20		blue	3	**	till-fat clay	CH	i		0,0			top 3" is alive calar
	10	20					tin fat olay		Cidy					
41	0	1		hlk			loamy sd		tonsoil				d	loose
41	1	5		brn		W	sd & and	SW-GM		50	1/4-1	2	d	nebbly finer in lower
41	5	10		orabro	- C	\\/	sd w/ f and	SW	and 1	20	1/4-3/8	15	m	
41	10	12	11	org brn	С С	\vv	sd w/ ap/	SW		35	1/4	1.5		100
41	12	13	<u> </u>	any			till2-clay					1.0		stiff
41	13	15.5		lt arv	9	n	sd w/ occ ap/l	SP-SM	arvl 1	15	3/8	1	W	
41	15.5	18		lt gry	9	w w		SW-GM		50	3/8	1	w	
41	18	19		ary			silt/lean clay	MI -CI	arvl 1	0	0,0			soft olive color in upper
41	19	22		brn ary	s	n	c sd & f aryl	SP-GM		50	3/8	1	w	
41	22	26			+	W	till-fat clay	CH		2		•		
		20		9.7			tin hat only		olay					
42	0	1		blk	-		loamy sd		topsoil			-	h	loose
42	1	5		brn	s	w	sd w/ ap/l	SW-SM	arvl 1	35	1/4-1	25	h	pehhly
42	5	115	10.5	brn org	C C	w	sd & f avl	SW-GW	arvl 1	45	1/4	4	d	moist at 10'
42	115	12		lt arv	+ ~	**	silt	MI	arvl 1	tr		+ <u>+</u>		
42	12	14			- C	n	sd w/ occ and	SP		15	1/8	1/2	w	coarser at 14-15'
42	14	15					sd w/ arvl	SW-SM	arvi_1	30	1/4	15	W	
42	15	17		brn any	6	14/	fand	GW-GM	i	55	1/4	1.5	14/	· · · · ·
12	17	10		blue and	10		f ed to eilt	SM-M		<u> </u>	1/4	1.5	VV \\\/	
12	10	22 5		bro and	v3	<u>Р</u> Ш	f and	GW-ML	<u></u> 1	55	1/4	1 1	VV \\/	<u>}</u>
42	10	20.0		blue	+	VV				00	1/4	1/2	VV	
172	1 20.0	20.3		Dide			un-iai Ulay		uay	4		1/2	1	

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Laver	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C. S.	(W. P)		Group	,	(field	clast (inches)	clast	(d, m, w)	
	1	1			VS)			Symbol		estimate)		(inches)		
										<u> </u>		····· • •		
43	0	1		blk			loamv sd		topsoil				d	loose
43	1	5		brn	s	w	sd & arvi	SW-SM	arvl 1	45	1/2-3/4	3	d	pebbly
43	5	10		brn ary	C	w	sd w/ arvl	SW	arvl 1	25	1/4-3/8	3	d	org at approx 7'
43	10	13	10.3	2	6	w	c sd w/ and	SW-SM	arvi 1	40	1/8-1/4	1/2	w	
43	13	13.5		olive any			silt/lean clay	ML-CI	an/l 1	0		.,		stiff
43	13.5	10.0		lt brp gry	e	n	m sd w/ occ and	SP-SM	and 1	15		3/4	10/	
12	10.0	19		vel and		<u>Р</u> W		SW-SM		15	1//	1	m-W	coarser at base
43	10	21.5		blue	3	**	till-fat clay	CH			1/-+	•	111-44	etiff
+0	10	21.5		Diue			tin-lat clay		Ciay			· · ·		500
44	0			blk			loomy od		topooil				4	10000
44	1	- 1		Dik			Idaniy Su	CIM CM	copson and 1		1/0	1 5	u d	firm
44		3		DIN	S	W		SW-GIVI	grvi_i	50	1/2	1.5	a	
44	3	5		org prn	C	w	c sa w/ grvi	500	grvi_1	20	1/4		a	
44	5	8.5		org brn	C	р	m sa w/ occ grvi	SP		15	1/2	3/4	a	
44	8.5	10		org brn	S	W	sa w/ grvi	SW-SM	grvi_1	30	3/8	1		
44	10	12	11.5	gry brn	C	p	m sd w/ occ grvl	SP	sd	10	3/8	1/2	W	
44	12	13		olive			lean clay	CL	silt_1	0				
44	13	15.5		dk blue gry			vf sd, silt & lean clay		silt_1	tr				some pebbles in lean clay
44	15.5	17		org brn	VS	W	silty sd & grvl	SM-GM	grvl_3	50	3/4	3	w	muddy
44	17	21.5		gry			sdy silt & clay	ML-CL	clay	tr				sdy zones
45	0	3		blk					topsoil				d	dk brn in lower 9"
45	3	5		brn	с	W	sd w/ gvl	SW	grvl_1	40	1/2	2	d	pebbly
45	5	8.5		org	С	w	sd w/ grvl	SW	grvl_1	20	3/8	1.5	d	varied sand layers
45	8.5	10	8.8	brn gry	c	w	c sd & f grvl	SW-GW	grvl_1	45	1/4	3/4	w	
45	10	19		gry	S	w	f grvl	GW-GM	grvl_1	55	1/8-3/8	1	W	uniform, yel staining & coarser in lower 2'
45	19	21.5		gry	s	р	vf sd & silt	ML	clay	0				
46	0	2		blk			sdy loam		topsoil				d	
46	2	5		brn	s	w	sd w/ grvl	SW-SM	grvl_1	30	3/4	3	d.	pebbly
46	5	9.5	8.5	brn	с	р	sd w/ occ gvl	SP	grvl_1	15	1/4	1	d/w	varied layers
46	9.5	10		It gry	1		silt/lean clay	ML-CL	grvl 1	tr			w	sticky-stiff
46	10	14.5		brn gry	s	w	f grvl	GW-GM	arvl 1	55	1/4	1	w	
46	14.5	15		brn/blue	с	p	f-m sd	SP	sd	0				upper 3" is brn
46	15	22		blue	vs	p	lean clay-f sd w/ occ grvl	CL-SP	clav	10		2	w	occ soft arvly till, siltier w/ depth
46	22	26		blue		· · · ·	till-fat clay	СН	clay					
						1								
47	0	2.3		blk			loamy sd		topsoil	tr			b	loose
47	2.3	5		brn	s	w	sd & avl	SW-SM	arvl 1	45	3/4	3	- h	crunch rx 3-5', sdy in top ft, pebbly
47	5	9	L	ora hrn	C C	w	sd w/ f arvl	SW	arvi 1	30	1/2	15	m	1 cobble at approx. 8'
47	ă	12	10	lt arv			m sd w/ occ ap/l	SP		10	3/8		w/	
47	12	14	10				c sd & f and	SW-GM	i	50	1/4	3//	34/	sharp upper contact
47	11	15					ed w/ and	SD. SM	ivii	20	1/4	1/2	¥¥ 347	
47	14	10		yol and		μ <u>ν</u>		SIN CM	i	E0	1/4	1/2	VV	
47	10	21 5	<u> </u>	blue	<u> </u>	VV	till fot olov				1/0-3/0		V	firm
4/	10	21.5	l	loine	1	1	juii-iai ciay		ciay	1		1	L	

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group	-	(field	clast (inches)	clast	(d, m, w)	
	. ,				VS)			Symbol		estimate)		(inches)		
			· · · · · · · · · · · · · · · · · · ·		1									
48	0	1.3		blk	1		loamv sd		topsoil					loose
48	1.3	7.5		ora brn	S	w	sd w/ arvl	SW-SM	arvl 1	40	1	2		
48	75	11	87	lt arv	C	n	m sd w/ occ arvl	SP	arvl 1	15	3/8	1		fines upward
48	11	17		ora brn	6	<u>P</u>		SW-GM		50	3/8			
18	17	21.5		blue			till-fat clay	CH	i		1/4-3/8			
	17	21.5		Diue					Cidy	<u> </u>	174-070			
10	0	10		blk			loomy od		topooil				d	
49	10	1.5		brn	+		Idaniy Su	CIAL CAA	and 1	40	2/4		4	
49	1.3	5.5	0.5	DM	S	W	sd w/ grvi	5W-5W	I	40	3/4	2		peoply - crunching
49	5.5	10	0.5	gry orn	C	W	sa w/ grvi	SVV	grvi_1	40	1/8-3/8	1.5	a/w	
49	10	14		org gry	S	<u></u> W	sa w/ f grvi	SW-SM		35	1/8-1/4	1	W	4" silt layer
49	14	17		brn gry	S	w	c sd & f grvl	SW-GM	grvl_1	50	3/8	1	W	
49	17			blue			till-fat clay	СН	clay					firm
								<u> </u>						
50	0	1.5		blk			sdy loam		topsoil					loose
50	1.5	7	6.3	brn	s	w	sd w/ grvl	SW-SM	grvl_1	35	3/4	1.5		
50	7	13		gry brn	S	w	sd w/ grvl	SW-SM	grvl_1	30	3/4	2		some c sd & grvl zones
50	13	14		gry			till-fat clay	CH	grvl_1	3				stiff-firm
50	14	20		gry	S	w	sd & grvl	SW-GM	grvl_1	50	3/4	2.5		
50	20	21.5					till-fat clay	CH	clay					firm - white carb granules
51	0	1			1				topsoil				d	· · ·
51	1	4.5		vel brn	s	w	sd w/ arvl	SW-SM	arvl 1	20	3/8	1.5	d	
51	4.5	6	5.8	vel brn	s	w	sd w/ f arvl	SW-SM	arvl 1	30	1/4	1.5	d	
51	6	75		vel brn	5	w	sd w/ arvl	SW-SM	arvl 1	20	1/4	3	w	
51	75	10.5		velary	VS	W	sd w/ grvl	SM		20	3/8	25	w	
51	10.5	13		ora	e 10	W	and	GW-GM		60	1/2	1.5	14/	
51	12	16		brp gp/				SW-SM		45	2/8	1.5	14/	
<u> </u>	10	10		Dirigiy				010-0101	givi_i	40	3/0	1	VV	Trafere to grid part enhytetaling _11 in this lange
F 4	10	04		hine and					برمام	*50	**//	*0		refers to grvi part only totaling ~1 in thickness
51	16	_ 21		blue gry			Interbedded till & sitty grvi		ciay	50	1/4	2	W	
	-													· · · ·
52		1.5		DIK		<u> </u>	siity ioam	011 011	topsoil			011	Į	Sticky
52	1.5	4.5	3	gry brn	s	W	sa w/ occ grvl	SW-SM	grvi_1	15	1/4	3/4		
52	4.5	10		brn gry	VS	W	silty grvl	GM	grvl_1	60	3/4	2		occ thin silt (flow till) layers, muddy
52	10	12.5		brn gry	s	W	c sd & f grvl	SW-GM	grvl_1	50	1/8-1/4	1.5	<u> </u>	
52	12.5	15		blue gry			till-lean clay	CL	clay	tr				flow till - firmer at base
53	0	2		blk			loamy sd		topsoil				d	loose, pebbles in lower part
53	2	7	6.3	brn	S		sd & grvl	SW-SM	grvl_1	45	1/2	2	d	pebbles
53	7	8		gry	1		till-clay	CL	grvl_1					stiff
53	8	14		brn to org	VS	w	silty grvl	GM	grvl_1	55	1	2.5	w	
53	14	14.5			s	w	c sd & f grvl	SW-GM	grvl_1	50	1/4	1	w	
53	14.5	15.5		blue		1	till-fat clav	СН	clav			-	1	stiff
					1	<u> </u>							<u> </u>	
54	0	2		blk	+		sdy loam	1	tonsoil				Ь	
- · ·	, V	-	I		1		100111	1	10000	L	1	1	<u>м</u>	

•

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Laver	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(CS	(WP)		Group		(field	clast (inches)	clast	(d m w)	
1.010 12		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()		VS)	(,.)		Symbol		estimate)		(inches)	(,,)	
54	2	Λ		brn	,	34/	ed & any	SW-GM	and 1	50	2/4	2.5	d	pobbly
54		6		bro	3		su & giv.	OW-CIVI				2.5	4	and in lower th
54	4	0	70		<u> </u>	vv T		00		30	1/4		<u>u</u>	
54	0	8	1.3	gry	C	p		SP	grvi_i	20			W	
54	8	10		gry	c	W	t grvl	GW	grvl_1	55	1/4	1.5	W	·
54	10	15		gry	C	W	c sd & f grvl	SW-GW	grvl_1	45	1/4	1	W	varied layers
54	15	18		brn gry	С	w	f grvl	GW	grvl_1	55	3/8	1.2	w	coarser in lower
54	18	21.5		blue			till-fat clay	CH	clay					firm
55	0	1		blk			sdy loam		topsoil				d	loose
55	1	6		brn	s	w	farvl	GW-GM	arvl 1	55	3/8-1/2	1.5	d	not pebbly
55	6	10	6.8	ary brn	с	w	sd & f arvl	SW-GW	arvl 1	50	1/4	1.2	d/w	······································
55	10	15		ary brn	С	w	c sd & f arvl	SW-GW	arvi 1	45	1/8	1	w	
55	15	17		velary	c C	w	farvl	GW	arvl 1	55	3/8	15	w	
55	17	21.5		hlue			till-fat clay	СН	i		0/0	1.0		etiff
1 55		21.0		Dide					Ciay					300
56	0	4		blk			sdy loam	++	topooil			ļ	d	
50	1			bro			sdy loan	C)M		40	1/0	0.5	<u>u</u>	onumb much 0 El
50		5.5	75			VV		SW SW		40	1/2	2.5	<u>u</u>	crunch ix at 2-5
50	5.5	9	7.5	gry om	C	w		SVV	grvi_i	15	1/8	3/4	a	·····
50	9	12		brn to blue			tili-clay		SIIT_1				<u> </u>	
56	12	15		brn gry	S	W	sd w/ grvl	SW-SM	grvl_2	35	1/4	2	W	
56	15	18.5		brn gry	C	W	f grvl	GW	grvl_2	55	1/4	1.5	W	
56	18.5	20.5		blue			till-fat clay	СН	clay					stiff
57	0	1.2		blk			sdy loam		topsoil				d	
57	1.2	4.5		gry brn	c	w	sd w/ grvl	SW	grvl_1	25	1/4	2	d	
57	4.5	7		org	С	w	sd & grvl	SW-GW	arvl 1	50			d	
57	7	9		brn	c	q	m sd w/ occ grvl	SP	arvi 1	10	1/8	1/2	d	fines upward
57	9	10		ora	с	w	sd & f arvl	SW-GW	arvl 1	45	3/8	1.5	m	······································
57	10	15	11	ary brn	С	w	c sd & f arvl	SW-GW	arvl 1	50	1/4	2.5	w	
57	15	20		lt arv	c	w	c sd & f and	SW-GW		50	1/8-1/4	2	W	
57	20	21.5		blue			till-fat clay	CH			1/0 //4	6 ~		ctiff
	<u> </u>	2.1.0		Dide					Cidy					Still
50	0	25		blk			sdy loam		topooil		· · · · · · · · · · · · · · · · · · ·		4	
50	25	2.5 1 E		bro		147	od w/ and	SIM CM		25	1/4		u d	
50	2.5	4.5		DITI	5	vv	su w/ givi	377-3IVI		35	1/4		u a	£;
58	4.5	5.5		brn	C	p	m sa w/ occ grvi	SP	grvi_1	10	1/2		a	tines upward
58	5.5	7.5		lt brn	c	W	c sa w/ f grvi	SW	grvi_1	25	1/8	1/2	a	
														grind rx at 8-10', pebbly - coarsest so far, one 1
58	7.5	11.5	9.5	org	S	w	c grvl	GW-GM	grvl_1	55	1-2	3	m	1.5" shale pebble
58	11.5	13		gry blue			till-clay	CL	silt_1					stiff
58	13	15		gry brn	С	р	f-m sd	SP	grvl_2	0			w	
58	15	18		gry brn	С	р	m sd w/ occ grvl	SP	grvl_2	15	1/8-1/4	1/2	w	
58	18	22		gry brn	С	w	c sd & f grvl	SW-GW	arvl 2	45	1/4	2	w	coarser down
58	22	26.5		blue			till-fat clav	СН	clav	1	- <u>i</u>	1		stiff
												·		
				+				1		<u> </u>				
L	1	1						l		1	1	I		1

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group		(field	clast (inches)	clast	(d, m, w)	
					VS)			Symbol		estimate)		(inches)		
59	0	1.5		blk			sdy		topsoil				d	grvly
59	1.5	6		brn	s	w	sd & grvl	SW-GM	grvl_1	50	3/4	2	d	rx 3-5'
59	6	9		lt brn	С	р	m-c sd w/ occ grvl	SP	grvl_1	10	1/4	1/2	m	
59	9	12	10	lt brn	с	w	c sd & f grvl	SW-GW	grvl_1	50	3/8	1.5	w	
59	12	14		brn gry/gry			till-fat clay	CH	silt_1					stiff
59	14	15		gry brn	С	р	m sd w/ occ grvl	SP	grvl_2	10	1/4		w	
59	15	17.5		gry brn	С	w	m sd w/ f grvl	SW	grvl_2	25	1/8	1	w	
59	17.5	19.5		org	с	w	c sd & f grvl	SW-GW	grvl 2	50	3/8	1	w	
59	19.5	21.5		blue			till-fat clay	СН	clay					
				1			1							
60	0	1.7		blk			sdy loam		topsoil				d	
60	1.7	5		brn	s	w	c sd & f arvl	SW-SM	arvl 1	45	1/8	1/2	d	
60	5	9.5	6.5	org brn	с	w	c sd & f grvl	SW-GW	arvl 1	50	3/8	2		silty at 9.5'
60	9.5	10		arv	_		vf sd & silt	SP-ML	arvl 1	0				
60	10	11		brn	s	w	sd & f arvl	SW-GM	arvl 1	45	1/4	1	w	
60	11	13	· · · · · · · · ·	vel arv	VS	D	vf sd. silt and lean clav	SM-CL	silt 1	tr				
60	13	15.5		ora, blk, arv	S	w	sd & arvl	SW-GM	arvl 2	50	1/2	1	w	some is muddy
60	15.5	17		vel brn	с	w	c sd w/ arvl	SW	arvl 2	20	1/8	1/2	w	
60	17	20.5		blue			till-fat clav	CH	clav					stiff
								+						
61	0	2.3		blk			silty loam		topsoil					some nebbles
61	2.3	5	4.3	arv brn	vs	w	arvi	GM	arvl 1	55	1/2	2.5	m	pebbly
61	5	10		orabrn	s	w	arvl	GW-GM	arvl 1	60	1	3	w	nebbly
61	10	15		brn	s	w	sd w/ avl	SW-SM	arvl 1	30	3/8	2.5	w	finer in lower, org layer at approx 13'
61	15	19		ary brn	c	w	c sd & arvl	SW-GW	arvl 1	50	3/8	25	w	fines upward, some silty zones
61	19	21.5		blue ary	-		till-fat clay	CH			0,0			stiff
				jud g. j		<u> </u>	tim fait only		<u> </u>					
62	0	1.5							tonsoil					
62	1.5	5	2.5	vel brn	vs	w	sd & arvl	SM-GM		50	3/4	2	w	
62	5	65		vel hrn	vs	w	sd & and	SM-GM	an/l 1	50	1	25	w	nebbly
62	6.5	8.5		ary brn-blue		n	till- gryly lean clay	CL	silt 1	30	3/4	2	w	v muddy sticky
62	8.5	10.5		ary	s	w	sd & arvl	SW-GM	anyl 2	50	3/8	25	w	r muddy, olloky
62	10.5	12		brn ary	C C	w	m-c sd	SW	arvl 2	5	1/8	1/4	w	
62	12	15	<u> </u>	blue	1		till-fat clav	CH	clav	†				stiff
<u> </u>									Oldy					
63	0	2		hlk			sdy loam		topsoil				h	
63	2	65		org brn	6	W	sd & c and	SW-GM	and 1	50	15		<u>н</u>	ry pebbly finer in lower ft
63	65	7.5		lt arv	<u> </u>		silt	MI		0	1.0		<u> </u>	
63	7.5	10	9.8	org		w	and	GW-GM	and 1	60	12	2	m	dense-tough drlg
63	10	12.5		brn any	0	w	sd & arvl	SW-GW	1	45	3/8-1/2	2	111	one 3/4" shale
63	12.5	15		brn gry	<u> </u>	W NN	c sd w/ and	SW	i	25	3/8	<u>د</u> ۱	¥¥ 14/	Une 3/4 Shale
63	15	17		vel & arv	C		c sd & f and	SW-GW	ivii	45	1/4	3//	14/	val stained
63	17	20		hlue		**	till-fat clay	CH	i	-+5	1/4	0/4	VV	yer stanted
	11	_20				<u> </u>	Iminat Glay		Ciay					Sun
64	0	2		blk	+	<u> </u>	sdy loam		tonsoil					
<u> </u>	<u> </u>	<u>~</u>	1		I				topaoli		1		i	<u> </u>

Test	From	To	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group	,	(field	clast (inches)	clast	(d, m, w)	
	l` íl	· · /	· · /		VS)	, ,		Symbol		estimate)		(inches)		
64	2	4.5		brn	s	w	sd w/ grvl	SW-SM	arvl 1	40	1	3		
64	4.5	5		lt gry			till-lean clay	CL	grvl 1					soft- friable
64	5	10	6	vel brn	s	w	sd & grvl	SW-GM	arvl 1	50	3/8	3		siltiest at top
64	10	14		vel org	s	w	f arvl	GW-GM	arvi 1	55	1/4	1.5		
64	14	18.5		blue			till-fat clav	СН	 clav					
				-										
65	0	1.2		blk			sdy loam		topsoil				d	
65	1.2	5.5		ora brn	с	w	sd w/ arvi	SW	arvi 1	40	3/4	2.5	d	rx at 2'
65	5.5	6		brn	с	q	m sd w/ occ arvl	SP	arvl 1	10	1/8		d	rx at 8-9'
65	6	9.5		lt arv			till-lean clay w/ grvl	CL	silt 1	40	1/2	1.5	m	soft grvly till, friable, water at ~7'
65	9.5	12		arv	vs		silty arvl	GM	arvl 2	55	3/4	2	w	muddy gryl, cleaner w/ depth
65	12	15		blue			till-fat clav	СН	clav					stiff
66	0	1.5		blk			silt loam		topsoil				m	
66	1.5	9	4.5	ora brn	s	w	c arvl	GW-GM	arvl 1	55	2	4	m/w	·····
66	9	13		ary brn	s	w	c sd w/f arvl	SW-SM	arvl 1	25	1/4	1/2	w	
66	13	15		blue	c	D D	sd	SP	arvi 1	5	1/4		w	
66	15	16		blue	c	W	sd & f arvl	SW-GW	arvl 1	45	1/4	1	w	
66	16	20		blue			till-fat clay	СН	 clav			•		occ softer 1" arvl zones
								0.1	0.00					
67	0	2.8		blk			silt loam		tonsoil					
67	28	7	3.8	dk brn	s	w	sd & arvt	SW-SM	anyl 1	45	1	4	w	almost muddy
67	7	9	0.0	lt arv	<u> </u>		silt & vf sd	ML-SP		0	•			some is sticky no ribbon
67	9	10		ary	s	w	sd w/ aryl	SW-SM		40	1/2	15	w	
67	10	18		ary	C	w	c sd w/ arvl	SW		30	1/2	3/4	w	
67	18	21		blue	<u> </u>		till-fat clay	СН		25	1/8	15	10/	
<u> </u>		<u> </u>		2.00			in fat only		oidy			1.0		· · · · · · · · · · · · · · · · · · ·
68	0	18							tonsoil				h	
68	1.8	6		brn	C	w	sd w/ f arvl	SW	aryl 1	25	3/8	15	h	
68	6	9		hrn	C C	W	sd w/ occ grvl	SW	arvl 1	15	1/4	1	b b	
68	9	13	9	brn gry	C C	W	c sd w/ and	SW	arvl 1	30	1/8	1/2	w	fines un
68	13	16		brn gry	C	n	m sd	SP		5	1/8	3/4	w	4" silt laver at top
68	16	19		arv	C C	W	sd w/ f gryl	SW		30	1/4	15	w	f gryl at base
68	19	21.5		blue			till-fat clay	СН			1/ -	1.0		
<u> </u>	10	21.0				• • • • • • • • • • • • • • • • • • • •	the fact only		City					
69	0	18		hlk			loamy sd		tonsoil				b	loose
69	1.8	6		orabrn		w/	sd w/ and	SW-SM	and 1	40	3/8-1/2	2	d	
69	6	85		lt brn		n	m sd w/ occ ary	SP		10	3/8	1/2	4	······································
69	85	10		ary brn		W W	sd w/ arvl	SW		25	3/8	1	d d	
60	10	15	11.2	gry brn		147	c cd w/ f and	SW		40	1/4	1	<u>u</u>	cooreor ed at donth
60	15	175	11.5			V	fat clav	Cu	ilt_1	40 tr	1/4		vv	v stiff
60	17 5	21 =		brp and			ed		i		1/0			v sun
60	21 5	21.3		brn gry		μ μ	o cd w/f and	OF CW	2	U 40	1/0			
60	21.3	23		blue	C				givi_2	40	1/4	1.5	W	Oll die voels in till ie. It han fuule te
09	23	20.5		Diue			un-rat clay		ciay	·	l			3 UIA FOCK IN TILL IS IT DEN T XIN IS
	1			1									1	

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Laver	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group	,	(field	clast (inches)	clast	(d, m, w)	
		(,	(/		VS)			Symbol		estimate)		(inches)		
70	0	1.5		blk		1	sdy loam		topsoil				d	
70	1.5	4		lt brn	с	w	sd w/ grvl	SW	grvl_1	40	3/4	3	d	
70	4	5		org	с	р	m sd	SP	grvl_1	tr			d	org stain
70	5	9		org brn	s	w	sd & grvl	SW-SM	grvl 1	45	1/2-1	2	d	
70	9	10		arv	с	w	c sd w/ arvl	SW	arvl 1	35	1/8	1/2	m	
70	10	15	11.2	brn arv	c	w	c sd & arvl	SW-GW	arvl 1	45	1/4	1	w	coarser down
	1													small 1/2" broken sh. Varied grvl content, 98%
70	15	22		brn arv	c	w	c sd w/ arvi	SW	arvi 1	40	1/8	1	w	less than 1/4"
70	22	26		blue			till-fat clay	СН	clav					
				1										
71	0	2		blk	-		loamv sd		topsoil				d	loose
71	2	4.5		brn	s	w	sd w/ arvl	SW-SM	arvl 1	40	3/4	3	d	pebbly
71	4.5	7		ora	c	D	m sd	SP	arvl 1	tr			d	
71	7	10	9.8	org brn	s	w	sd w/ occ arvi	SW-SM	arvl 1	15	1/4	1.5	m	· · · · · · · · · · · · · · · · · · ·
71	10	11.5		arv	c		f-m sd	SP	arvl 1	tr			w	
71	11.5	13		brn arv	c	w	c sd w/ f arvl	SW	arvl 1	35	1/8	1	w	
71	13	15		hlue			lean clay	CL	silt 1	0				soft - 2" ribbon
71	15	17.5		brn gry	c	n	f-m sd	SP	arvl 2	tr	1/8	1/4	w	
71	17.5	25		brn gry	C	w	c sd & f arvl	SW-GW	arvl 2	50	3/8	1.5	w	vel staining
71	25	26		blue			till-fat clay	CH						stiff
						1			ulay					
72	0	2		blk			sdv loam		topsoil			·····	d	
72	2	5	<u> </u>	brn	s	w	sd w/ f grvl	SW-SM	arvi 1	40	3/8	1	d	
72	5	7.5	6.8	orgbrn	s	n	sd w/ occ arvl	SP-SM	arvl 1	15	1/2	1.5	d	· · · · · · · · · · · · · · · · · · ·
72	75	10		brn arv	s	w	sd & arvl	SW-GM	arvi 1	50	3/8	1	w	sli muddy
72	10	12		lt arv			silt/lean clay	MI -CI	arvi 1	0				smears
72	12	13		ary hrn	- C	<u> </u>	fsd	SP		tr			w	
72	13	15		gry brn		W		SW-SM	arvi 1	45	3/8	3	W	
72	15	18	· · · · ·	gry bill		W		SW-GM		50	3/8	15	w	1/2" shale fragment
72	18	21.5		blue			till-fat clay	CH	r			1.0		
<u></u>		21.0							olay					
73	0	1.8		blk	+		sdyloam		tonsoil				b	
73	1.8	6	5	brn	6	w	c sd w/ and	SW-SM	arvl 1	40	3/8-3/4	3	d/w	
73	6	7		brn			m sd	SP-SM	arvl 1	tr	0/0 0/4		w	· · · · · · · · · · · · · · · · · · ·
73	7	13		brn an		W	sd w/ f op/	SW-SM		25	1/8-1/2	25	W	
73	13	15.5		blue	3	**	till-fat clay	CH			1/0 1/2	2.0		stiff
/5		10.0		Dide	···				olay				<u> </u>	
74	0	23		blk			sdy loam		tonsoil					
74	23	7.5	6	org.brn	-	w	sd w/ arvl	SW-SM	arvl 1	40	1/2-1	25	m	3" v siltv grvl laver at 4' (stiff_friable)
74	7.5	1.0	<u> </u>	org any		W	c sd w/ f grvl	SW	arvl 1	40	1/8	1.5	w	
74	10	13.5	<u> </u>	ary		n	If-m sd	SP	i	tr	1/0	1.0	··	
74	125	10.0		blue		<u>+ </u>	f-m sd	SP	 ed	tr			1	
74	10.5	21		blue			till-fat clay		clay		+			upper balf is soft
<u>/ 4</u>	10	21		Dide					Ciay	+				apper traine solt
75		10		blk		+	loamy sd		toneoil					
1/5		1.0	1	DIV.		1	noarny su		iopsoli	I	1		I	10036

Test	From	То	Water Table	Color	Fines	Grading	Sediment	USCS	Layer	% Gravel	Dominant	Maximum	Moisture	Comments
Hole ID	(feet)	(feet)	(feet)		(C, S,	(W, P)		Group		(field	clast (inches)	clast	(d, m, w)	
					VS)			Symbol		estimate)		(inches)		
75	1.8	7.5	6.5	brn	с	w	c sd & grvl	SW-GW	grvl_1	45	1/4-3/8	3	d/w	wet - 6'
75	7.5	9		lt brn & blue			till-lean clay	CL	grvl_1					upper & lower is soft
75	9	11		brn	С	w	sd	SW	grvl_1	5	1/8	1/4	w	
75	11	15		brn gry	С	w	c sd & f grvl	SW-GW	grvl_1	50	1/4	2	w	
75	15	17		brn gry	С	w	c sd & f grvl	SW-GW	grvl_1	50	3/8	2	w	
75	17	20		blue			till-fat clay	СН	clay					stiff, clay-rich
76	0						edu loom		topooil				d	
76	1	4.5		brn			sd & and	SW-GW	and 1	45	3/8	2.5	d/m	nebbly - no binder
76	4.5	8	5	brn any		0	c sd w/ f and	SP		40	1/8-1/4	13	- U/111 - W/	y loose occ sm pebbles
76	8	12		ora	e e	w w	sd & arvl	SW-GM	$\frac{g_iv_i_1}{g_iv_i_1}$	50	3/8-3/4	2	W	grind ry at 8-9' pebbly almost muddy
76	12	14.5		brn any	6	w	sd & and	SW-GM	arvl 1	50	3/8	15	W	less silty than above scattered pebbles
76	14.5	20		blue	†	<u> </u>	till-fat clay	CH	i		0,0	1.0		firm stiff
	1.0			Dide					olay					
77	0	2.8		blk			sdy loam		topsoil				d	
77	2.8	7		brn	с	w	sd w/ grvl	SW	grvl_1	25	1/4-2"	2.5	d	pebble layer at 4'
														fine pea grvl, occ pebbles, varied layers, 6" m
77	7	10	7	brn	с	р	c sd w/ f grvl	SP	grvl_1	35	1/4	2.5	w	sd layer
77	10	18		brn gry	С	w	c sd & f grvl	SW-GW	grvl_1	50	1/8-3/8	2	w	rare pebbles - loose
77	18	21		brn gry	c		c sd w/ occ grvl	SW	grvl_1	15	1/4	3/8	w	loose
78	0	1		blk			sdy loam		topsoil				d	
78	1	7		org brn	С	w	sd w/ grvl	SW	grvl_1	25	3/8-1/2	2	d	varied sd layers
78	7	10	9.5	lt brn	C	w	sd w/ grvl	SW	grvl_1	40	1/4	1.5	w	occ pebbles
78	10	21		brn gry	С	W	c sd w/ f grvl	SW	grvl_1	35	1/8-1/4	1	w	uniform - one 4" m sd layer

Appendix C: Gradation Data

					Percent by	weight of to	tal sample	passing res	pective sie	ves			H//talco	ot/sieve_talco	t_fnl.xls
Sample #	Test			Feet of	1"	3/4"	5/8"	1/2"	3/8"	#4	#10	#20	#40	#80	#200
	Hole ID	From	То	material	25mm	19mm	16mm	12.5mm	9.5mm	4.75mm	2.0mm	0.85mm	0.425mm	0.18mm	0.075mm
33420.01001	1	2	6.5	4.5		92	91	88	85	75	63	42	19	7	4.4
33420.02002	2	1.3	8.5	7.2		97	96	95	93	88	81	57	24	6	2.9
33420.02003	2	8.5	17	8.5		88	87	85	82	75	64	41	14	5	1.2
33420.03004	3	1	17	16		96	94	92	88	77	61	41	21	5	2.3
33420.04005	4	1.2	18	15.3		93	92	89	86	76	65	42	17	6	4.4
33420.05006	5	2	23.5	21.5		90	89	87	85	75	62	42	18	4	2.5
33420.06007	6	1.5	19	17.5		85	83	80	77	67	58	41	18	5	2.5
33420.07008	7	2	10	8		91	88	86	83	73	56	33	15	4	2.6
33420.07009	7	10	20.5	10.5		99	98	96	93	82	69	52	32	9	2.0
33420.08010	8	2	16	12		98	96	93	90	79	66	44	22	7	4.0
33420.09011	9	1.5	14	12.5		88	87	85	83	76	59	38	17	7	2.8
33420.10012	10	1	16	15		90	88	86	83	75	61	37	13	3	1.9
33420.11013	11	1	17	16		95	94	90	86	73	62	43	22	5	3.2
33420.12014	12	3.5	16	12.5		93	90	86	82	69	55	33	16	6	4.5
33420.13015	13	1	17	16		93	91	88	85	76	65	48	26	5	2.9
33420.14016	14	1	7.5	6.5		89	87	84	81	72	64	54	39	15	4.6
33420.15018	15	1	15	14		97	96	93	90	78	59	30	11	4	2.5
33420.16019	16	2	14	10		95	93	91	87	74	60	40	20	8	5.4
33420.17020	17	1	8.5	7.5		91	89	86	82	67	50	28	10	5	3.7
33420.17021	17	11	20	9		93	92	90	86	74	65	52	37	10	5.2
33420.18022	18	1.5	7.5	6		91	90	88	86	76	63	37	13	5	3.4
33420.18023	18	11	17.5	6.5		97	95	93	91	79	56	29	16	5	3.9
33420.19024	19	2.5	23	20.5		90	88	86	84	76	57	34	13	4	2.1
33420.20025	20	1.5	16.5	15	×	92	91	89	87	79	69	52	33	9	2.2
33420.21026	21	1.7	13	11.3		91	90	88	86	77	66	48	23	4	2.6
33420.23027	23	2	7.5	5.5		91	89	87	83	71	61	43	17	5	3.2
33420.24028	24	1.5	14	12.5		94	92	89	84	70	59	38	» 15	3	1.3
33420.25029	25	1.5	12.5	11		93	92	91	88	81	68	43	26	12	7.7
33420.26030	26	1.5	10	8.5		91	89	83	80	68	50	30	13	5	4.0
33420.26031	26	10	20.5	10.5		97	96	94	92	84	72	48	18	3	1.5
33420.27032	27	2	15	13		94	93	91	88	78	65	46	21	6	2.9
33420.28033	28	2	13.5	11.5		95	94	91	88	78	66	50	21	5	3.1
33420.28034	28	15.5	18	2.5		98	97	94	90	74	54	29	12	6	5.2
33420.30036	30	2	17.5	15.5	91	88	86	84	80	70	57		16	3	2.1
33420.31037	31	2.5	20	17.5	95	93	91	88	84	73	57		14	4	2.0
33420.34040	34	3	14	11	97	94	91	87	82	70	58		23	9	6.7
33420.35041	35	2.5	21	18.5	90	87	83	81	77	67	54		16	4	2.2
33420.36042	36	2.5	20	17.5	94	91	89	85	80	68	54		20	6	2.9
33420.37043	37	2	17.5	15.5	96	93	91	88	84	72	51		11	4	3.1
33420.38044	38	1	18	17	99	96	94	92	89	80	63		17	4	2.3
33420.39045	39	1.5	13.5	12	89	86	80	76	69	54	40		14	7	5.2

33420.40048	40	1.5	18	16.5	93	89	87	84	80	70	55		12	4	2.2	
33420.41050	41	13	22	9	97	96	94	91	87	75	59		27	8	5.6	
33420.44053	44	1	12	11	100	98	97	94	90	82	66		23	5	2.5	
33420.45054	45	З	19	16		96	94	93	90	78	56	37	11	3	3.0	
33420.46056	46	15	22	7	96	90	83	75	64	46	44		40	33	19.7	
33420.47058	47	9	18	9	99	98	96	94	91	81	57		25	3	0.7	
33420.49060	49	1.3	5.5	4.2		88	84	78	72	59	54	36	13	6	3.0	
33420.56070	56	1	9	8	97	95	93	90	84	74	55		9	3	1.8	
33420.56071	56	12	18.5	6.5	98	97	95	93	89	74	59		21	6	3.2	
33420.57073	57	10	20	10	97	96	95	93	88	74	52		12	2	1.2	
33420.58075	58	13	22	9	97	96	95	93	91	83	73		44	12	4.6	
33420.61080	61	2.3	19	16.7	93	84	80	76	69	56	43		11	5	3.2	
33420.62081	62	1.5	6.5	5	94	91	85	79	69	50	38		18	12	9.0	
33420.63082	63	2	10	8	88	81	77	73	67	54	43		16	9	5.6	
33420.63083	63	10	17	7	95	90	84	80	74	61	48		12	6	4.5	
33420.64084	64	2	14	12	81	75	71	65	58	47	38		13	7	5.4	
33420.66087	66	9	16	7	98	96	95	93	89	79	65		21	4	2.3	
33420.67088	67	2.8	7	4.2		81	79	76	74	68	56	35	17	5	2.7	
33420.69091	69	1.8	15	13.2	96	94	92	89	85	75	60		16	5	3.3	
33420.70092	70	1.5	10	8.5	88	84	82	78	73	63	52		15	5	3.4	
33420.71094	71	2	13	11		95	95	93	91	83	67	52	22	5	2.6	
33420.71095	71	15	25	10	99	98	97	95	91	81	65		30	6	2.3	
33420.73098	73	1.8	13	11.2		89	88	85	83	72	56	32	19	6	2.5	
33420.74099	74	2.3	10	7.7		86	84	81	78	67	57	38	13	5	1.9	
33420.75100	75	1.8	7.5	5.7	87	78	75	72	67	54	32		7	4	2.8	
33420.76102	76	1	14.5	13.5	96	94	92	88	82	69	49		9	4	2.9	
Class 5 maximu	m				100	100			90	80	65		35		10.0	
Class 5 minimur	n				100	90			50	35	20		10		3.0	

Appendix C: Gradation data

					Percent	by weigh	t of total	sample p	assing re	espective	sieves									H//taicot	/sieve_talc	ot_fnl.xis
Sample #	Test			Feet of	3"	2.5"	2"	1.5"	1.25"	1"	3/4"	5/8"	1/2"	3/8"	#4	#10	#16	#30	#40	#50	#100	#200
	Hole ID	From	To	material	75mm	63mm	50mm	37.5mm	31.5mm	25mm	19mm	16mm	12.5mm	9.5mm	4.75mm	2.0mm	1.18mm	0.60mm	0.425mm	0.30mm	0.15mm	0.075mm
33420.29035	29	2	17	15	100	100	100	99	99	98	96	95	93	90	79	66	53	29	18	11	6	3.6
33420.32038	32	2.5	17	14.5	100	100	97	96	95	93	90	87	85	82	72	59	48	25	15	9	5	2.6
33420.33039	33	2.5	14	11.5	100	100	98	96	96	93	89	88	86	81	75	62	51	30	16	8	4	2.8
33420.42051	42	1	23.5	22.5	100	100	100	99	98	97	95	94	92	88	79	59	45	25	17	10	7	4.6
33420.46055	46	2	15	13	100	100	100	99	99	96	93	90	87	83	70	61	53	40	28	18	13	5.7
33420.47057	47	2.3	9	6.7	100	100	99	97	95	93	90	88	85	82	73	62	52	35	23	12	7	4.6
33420.48059	48	1.3	17	15.7	100	96	96	94	93	92	88	85	82	78	67	55	47	33	21	12	6	4.1
33420.49061	49	5.5	17	11.5	100	100	100	100	100	99	97	95	93	89	79	64	52	30	18	11	10	3.4
33420.50062	50	1.5	13	11.5	100	100	99	99	98	96	93	90	87	84	75	64	54	30	17	11	10	5.7
33420.50063	50	14	20	6	100	100	98	98	98	96	94	92	89	84	74	60	50	34	21	11	6	4.0
33420.51064	51	1	16	15	100	100	98	98	97	96	93	91	89	85	76	63	55	40	27	16	8	5.3
33420.53066	53	2	14.5	11.5	100	100	94	93	91	86	81	79	75	69	60	45	37	24	16	12	9	6.5
33420.54067	[.] 54	2	8	6	100	100	100	100	98	92	83	81	78	75	65	55	46	26	15	10	9	4.6
33420.57072	57	1.2	10	8.8	100	100	100	100	99	99	99	97	95	93	85	74	61	33	16	8	4	3.3
33420.58074	58	2.5	11.5	9	100	100	96	91	90	89	88	86	84	82	71	56	43	23	15	10	6	4.4
33420.59076	59	1.5	12	10.5	100	100	100	99	98	96	94	92	89	86	71	57	45	23	12	7	5	3.5
33420.60078	60	1.7	9.5	7.8	100	100	100	100	100	99	97	96	93	89	81	64	50	24	13	8	7	4.8
33420.65085	65	9.5	12	2.5	100	100	100	95	94	90	84	80	75	68	59	47	39	26	20	16	12	9.8
33420.66086	66	1.5	9	7.5	100	100	100	86	79	74	69	66	62	57	47	38	33	21	16	13	9	5.9
33420.68090	68	1.8	19	17.2	100	100	100	100	99	98	98	96	94	91	80	68	58	38	24	14	7	4.3
33420.70093	70	10	22	12	100	100	100	99	99	98	97	96	94	90	75	56	43	23	13	7	3	2.1
33420.72096	72	2	10	8	100	100	100	100	98	97	95	94	91	87	79	67	55	31	19	12	10	7.7
33420.72097	72	12	18	6	100	100	97	93	90	88	85	83	80	75	67	55	45	32	26	22	16	8.1
33420.75101	75	9	17	8	100	100	100	100	98	96	95	93	90	85	72	53	38	21	14	9	7	4.6
Class 5 mayim										100	100			90	80	65			35			10.0
Class 5 minim	um									100	00			50	35	20			10			3.0
Glass 5 millinn	un									100	30			50	35	20			10			0.0

Appendix D:

A gareg	BRAUN INTERTEC	SEP 2 2 2003	Braun Intertec Cor 11001 Hampshire , Minneapolis, MN 5	porationPhone:952.995.2000Avenue SFax:952.995.202055438Web:braunintertec.com
Aggieg	ate resultg	DIVISION OF LANDS & MINER/	LS I	
Date :	9/18/03		Project Number : B	L-03-01029
Client :	Glenn Melche MN Departme Division of La 1525 Third Av Hibbing	ert P.G. ent of Natural Resources ands and Minerals venue East MN 55746	Project : A	ggregate Quality Testing
	Lab ID :	8791 Background In	formation	
	Sample Numb	per: 33420-1A	Specification :	
	Date Sampled	l:	Classification :	Granular Material
	Date Submitte	ed: 9/10/03	Test Method :	MnDOT
	Date Tested :	9/18/03	Sampled by :	Client
	Sample Locat	ion :	Source :	Talcot Pit
		Properties	Test Results	Spec's
		Shale MnDOT 1209		Specs
		+1/2"	0.0	
		+#4 Total	0.2	
		Soft Iron Oxide MnDOT 1209	0.0	
		Total Spall Excluding Soft Part's & Cla	y Balls	
		+1/2" MnDOT 1209	0.0	
		+#4 lotal	0.5	
		Clay Balls and Lumps MnDOT 1209	0.3	
		Sum of Spall, Soft particles .Clay balls	07	
		Carbonate Content MnDOT 1209	9.6	
		Lightweight Particles ASTM C123	0.2	

Braun Intertec Corporation

Dallas D. Miner

Aggregate Lab Coordinator Providing engineering and environmental solutions since 1957

BRAUN

Aggregate Testing

9/18/03

Lab ID :

Date :

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438
 Phone:
 952.995.2000

 Fax:
 952.995.2020

 Web:
 braunintertec.com

Project Number : BL-03-01029

Project : Aggregate Quality Testing

Granular Material

MnDOT

Talcot Pit

Client

Client : Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

8792

Background	Information
------------	-------------

Specification : Classification :

Test Method :

Sampled by :

Source :

Sample Number :	33420-1B
Date Sampled :	
Date Submitted :	9/10/03
Date Tested :	9/18/03
Sample Location :	

Properties	Test Results	Spec's
Shale MnDOT 1209		-
+1/2"	0.0	
+#4 Total	0.8	
Soft Iron Oxide MnDOT 1209	0.0	
Total Spall Excluding Soft Part's & Clay Balls		
+1/2" MnDOT 1209	0.4	
+#4 Total	1.8	
Soft Particles MnDOT 1209	0.5	
Clay Balls and Lumps MnDOT 1209		
Sum of Spall, Soft particles, Clay balls	2.3	
Carbonate Content MnDOT 1209	1.2	
Lightweight Particles ASTM C123	0.7	
	~	

Sincerely, Braun Intertec Corporation

Dallas D. Miner

Aggregate Lab Coordinator

Providing engineering and environmental solutions since 1957

Remarks: CC:

Aggregate Testing

Date :

9/18/03

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438

Phone: 952.995.2000 952.995.2020 Fax: Web: braunintertec.com

Project Number : BL-03-01029

Project : Aggregate Quality Testing

Client: Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

Lab ID :	8793	Background Information	
Sample Number :	33420-2A	Specification :	
Date Sampled :		Classification :	Granular Material
Date Submitted :	9/10/03	Test Method :	MnDOT
Date Tested :	9/18/03	Sampled by :	Client
Sample Location	:	Source :	Talcot Pit

	Properties	Test Results	Spec's	
	Shale MnDOT 1209		-	
	+1/2"	0.0		
	+#4 Total	0.3		
	Soft Iron Oxide MnDOT 1209	0.0		
	Total Spall Excluding Soft Part's & Clay Balls			
	+1/2" MnDOT 1209	0.0		
	+#4 Total	1.2		
	Soft Particles MnDOT 1209	0.2		
	Clay Balls and Lumps MnDOT 1209			
	Sum of Spall, Soft particles ,Clay balls	1.4		
	Carbonate Content MnDOT 1209	7.4		
	Lightweight Particles ASTM C123	0.2		
·				
<u> </u>				<u> </u>
Remarks:		C'		
		Braun Interfec	Corporation	
		19.11. 19	2	
		Vauue V.	man	

Dallas D. Miner Aggregate Lab Coordinator

Providing engineering and environmental solutions since 1957

Aggregate Testing

9/18/03

Date :

CC:

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438

Phone: 952.995.2000 952.995.2020 Fax: Web: braunintertec.com

Project Number: BL-03-01029

Project : Aggregate Quality Testing

Client: Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

Lab ID :	8794	Background Information	
Sample Number :	33420-3A	Specification :	
Date Sampled :		Classification :	Granular Material
Date Submitted :	9/10/03	Test Method :	MnDOT
Date Tested :	9/18/03	Sampled by :	Client
Sample Location	:	Source :	Talcot Pit

	Properties	Test Results	Spec's
	Shale MnDOT 1209		
	+1/2"	0.0	
	+#4 Total	0.1	
	Soft Iron Oxide MnDOT 1209	0.0	
	Total Spall Excluding Soft Part's & Clay Balls		
	+1/2" MnDOT 1209	0.7	
	+#4 Total	1.2	
	Soft Particles MnDOT 1209	0.1	
	Clay Balls and Lumps MnDOT 1209		
	Sum of Spall, Soft particles ,Clay balls	1.3	
	Carbonate Content MnDOT 1209	1.6	
	Lightweight Particles ASTM C123	0.2	
Remarks:			
CC		Sincerely.	

Braun Intertec Corporation

Dallas D. Miner

Aggregate Lab Coordinator Providing engineering and environmental solutions since 1957

Aggregate Testing

9/18/03

Date :

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438
 Phone:
 952.995.2000

 Fax:
 952.995.2020

 Web:
 brauninfertec.com

Project Number : BL-03-01029

Project : Aggregate Quality Testing

Client : Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

Lab ID :	8795	Background Information	
Sample Number :	33420-3B	Specification :	
Date Sampled :		Classification :	Granular Material
Date Submitted :	9/10/03	Test Method :	MnDOT
Date Tested :	9/18/03	Sampled by :	Client
Sample Location :		Source :	Talcot Pit

	Properties	Test Results	Spec's
	Shale MnDOT 1209		-
	+1/2"	1.2	
	+#4 Total	0.9	
	Soft Iron Oxide MnDOT 1209	0.0	
	Total Spall Excluding Soft Part's & Clay Balls		
	+1/2" MnDOT 1209	1.9	
	+#4 Total	1.3	
	Soft Particles MnDOT 1209	0.1	
	Clay Balls and Lumps MnDOT 1209		
	Sum of Spall, Soft particles ,Clay balls	1.4	
	Carbonate Content MnDOT 1209	1.2	
	Lightweight Particles ASTM C123	0.6	
-			
Demontra			
Remarks:		Cincoroly	
		Braun Intertec	Corporation
		Eller P	Un

Dallas D. Miner Aggregate Lab Coordinator

Providing engineering and environmental solutions since 1957

Aggregate Testing

9/18/03

Date :

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438
 Phone:
 952.995.2000

 Fax:
 952.995.2020

 Web:
 braunintertec.com

Project Number : BL-03-01029

Project : Aggregate Quality Testing

Client : Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

Lab ID :	8796	Background Information	
Sample Number :	33420-4A	Specification :	
Date Sampled :		Classification :	Granular Material
Date Submitted :	9/10/03	Test Method :	MnDOT
Date Tested :	9/18/03	Sampled by :	Client
Sample Location	•	Source :	Talcot Pit

	Properties	Test Results Spec's	
	Shale MnDOT 1209		
	+1/2"	0.4	
	+#4 Total	0.6	
	Soft Iron Oxide MnDOT 1209	0.0	
	Total Spall Excluding Soft Part's & Clay Balls		
	+1/2" MnDOT 1209	0.5	
	+#4 Total	1.5	
	Soft Particles MnDOT 1209	0.7	
	Clay Balls and Lumps MnDOT 1209		
	Sum of Spall, Soft particles ,Clay balls	2.2	
	Carbonate Content MnDOT 1209	1.5	
	Lightweight Particles ASTM C123	0.4	
	L]
Remarks:		~	
CC:		Sincerely, Braun Intertec Corporation	

Calles Of Them Dallas D. Miner

Aggregate Lab Coordinator Providing engineering and environmental solutions since 1957

Aggregate Testing

Date :

9/18/03

Braun Intertec Corporation 11001 Hampshire Avenue S Minneapolis, MN 55438
 Phone:
 952.995.2000

 Fax:
 952.995.2020

 Web:
 braunintertec.com

Project Number: BL-03-01029

Project : Aggregate Quality Testing

Client : Glenn Melchert P.G. MN Department of Natural Resources Division of Lands and Minerals 1525 Third Avenue East Hibbing MN 55746

Lab ID :	8797	Background Information	
Sample Number :	33420-4B	Specification :	
Date Sampled :		Classification :	Granular Material
Date Submitted :	9/10/03	Test Method :	MnDOT
Date Tested :	9/18/03	Sampled by :	Client
Sample Location	:	Source :	Talcot Pit

Properties Test Results Spec's	
Shale MnDOT 1209	
+1/2" 0.0	
+#4 Total 0.4	
Soft Iron Oxide MnDOT 1209 0.0	
Total Spall Excluding Soft Part's & Clay Balls	
+1/2" MnDOT 1209 0.4	
+#4 Total 1.3	
Soft Particles MnDOT 1209 2.4	
Clay Balls and Lumps MnDOT 1209	
Sum of Spall, Soft particles ,Clay balls 3.7	
Carbonate Content MnDOT 1209 2.5	
Lightweight Particles ASTM C123 0.7	
Remarks:	

Callan O. mine Dallas D. Miner

Aggregate Lab Coordinator Providing engineering and environmental solutions since 1957

Appendix E. Notes on the criteria for classification of the aggregate deposit

This large aggregate resource is a blanket deposit with about half of it occurring below the water table. In some places, the portion below the water table is sand or has lenses of silty clay that overlie gravel (Figure 5). It is more difficult to mine below the water table so, given the expanse of the deposit, it is probable that some of the deeper less desirable aggregate may not be mined. Therefore, rather than quantifying the entire resource between the topsoil and the glacial till, efforts were made to distinguish those deeper intervals below the water table that are less likely to be mined.

In some test holes, the lowest portion of the aggregate deposit was poorly graded sand. In these instances, the mineable gravel interval ended just above the sand interval.

In twelve test holes, a relatively thick silt and clay layer occurred within the sand and gravel interval. In these instances, the gravel interval was split into primary and secondary gravels. The bottom of the primary gravel was marked at the top of the silt/clay layer and the secondary gravel was marked as the interval beneath the silt/clay layer.

Primary criteria for placement of gravels into the secondary gravel were based on how deep it occurred, whether it was below the water table, and its relative thickness with respect to the amount of sand or clay above them. If the clay layer was 1.5 feet or thicker, and the ratio of the clay thickness to the underlying aggregate was 50% or higher, then the aggregate below was assigned to the secondary gravel.

Three occurrences of thin, deeply buried gravels that are 1.5 feet thick or less and are overlain by relatively thick sand or silt/clay are noted in the drilling logs and cross sections as "grvl_3" and not considered for volume or any other resource estimates.

Appendix F:

SIZE AND SCOPE OF AGGREGATE MINING OPERATIONS VARY

There is a wide variability in the size and scope of aggregate mining operations in Minnesota. Some are active only for one season to serve road construction projects. Others are long-term sites that operate continuously over several years. The materials being mined and the mining methods also vary greatly. Some operations mine unconsolidated sand and gravel materials left by glaciers; others produce crushed rock blasted from bedrock. Some operations mine within the groundwater table and others remain above the water table. There are various types of auxiliary facilities used at an aggregate operation, such as crushers, wash plants and asphalt plants. Permits required for aggregate mining depend on the size, scope and location of the operation.

LOCAL PERMITS

Counties, townships or municipalities have the primary authority for regulating extractive uses like aggregate mining. In many counties, aggregate mining requires a Conditional Land Use Permit (CLUP) from the county planning and zoning office. A township or municipality may also require a permit in addition to (or instead of) a county permit. Local permits are generally required for new operations that exceed a certain threshold of activity, or for expansion of an existing operation. The threshold for triggering a permit varies from one county to the next and may be related to area, production volumes, or length of time. Operations that were active before the effective date of a required permit may be exempt.

Local permits may address issues such as: hours of operation, noise, traffic, dust, and reclamation. Performance bonds or some other form of financial assurance may be required. The term of local permits can vary from one year to the life of the mine. Increasingly, local authorities are requiring a mining and reclamation plan along with the permit. For more information on the local permits required for aggregate mining, contact the local county zoning or planning office.

STATE PERMITS

In general, state agencies have no regulatory role in administering or reviewing local permits. Depending on the size and scope of the mining operation, however, some state and federal permits may apply to certain aggregate mining operations.

Minnesota Department of Natural Resources (DNR)

<u>Water Appropriation Permit</u> A permit from the Department of Natural Resources - Division of Waters may be required if there is a need to appropriate water as part of the mining operation. Appropriation permits are required for activities such as pit dewatering or aggregate washing plants that consume water at a rate of 10,000 gallons per day or 1,000,000 gallons per year. Contact: Jim Japs (651) 297-2835

<u>Work in the Bed of Protected Waters Permit.</u> If the mining activity will impact a protected body of water, a *Work in the Bed of Protected Waters* permit may also be needed. For more information about these permits, contact the area hydrologist at the local area DNR office (see the website at http://www.dnr.state.mn.us/waters/resources/index.html for the closest office, or call the general number for the division (651) 296-4800) or contact Ron Anderson at the DNR central office, Division of Waters, St. Paul, at (651) 296-0520.

<u>Burning Permit</u>. A burning permit may also be required if the applicant needs to burn brush from clearing and stripping operations. Burning permits are available at many locations throughout the state. For more information, contact your local DNR office: http://www.dnr.state.mn.us/ regions/

<u>Shorelands, Floodplains, Wild and Scenic Rivers.</u> DNR is responsible for three other programs established by law which might affect certain aggregate operations. The Shoreland Management Act, the Floodplain Management Act, and the Minnesota Wild and Scenic Rivers Act, are "land use" or "zoning" type laws that require the DNR to institute minimum statewide development standards for shoreland, floodplains and on certain rivers designated as Wild and Scenic Rivers. These standards must then be adopted through local zoning or land use ordinance. The shoreland regulations, for example, require that aggregate mining be a permissible land use within a given shoreland zoning use district. If it is a permissible use, a plan must be prepared that addresses dust, noise, hours of operation, possible pollutant discharges, erosion control, mitigation of environmental impacts, and reclamation. The law allows local units of government to be more restrictive than the minimum standards. For information on how these regulations might affect a specific operation within a shoreland, floodplain or wild and scenic river, contact your local county planning and zoning office.

Minnesota Board of Water and Soil Resources (BWSR)

<u>Wetland Permit.</u> The Wetland Conservation Act requires a permit for certain activities that impact wetlands. The Act requires that the project proposer follow a sequence of development steps that includes avoiding impacts to wetlands, minimizing unavoidable impacts, and mitigating for the loss of wetlands due to a specific regulated activity. The overall authority for the Wetlands Conservation Act is through the Minnesota Board of Water and Soil Resources (BWSR) with implementation through a local governmental unit. For more information, contact BWSR (central office) at (651) 296-3767 or contact your local Soil and Water Conservation District Office: http://www.bwsr.state.mn.us/

Minnesota Pollution Control Agency (MPCA)

<u>Fuel and Hazardous Materials Management.</u> The containment, storage, recycling and disposal of used oil, lubricants, antifreeze, paint, solvents, vehicle clean wastes, recovered Freon, asbestos, PCBs, shop wastes and other hazardous materials must be in compliance with MPCA requirements. For more information, contact MPCA (general number) at (800) 657-3864 or (651) 296-6300.

<u>Liquid Storage Tanks.</u> Management of liquid storage tanks, whether above ground or underground must be in compliance with MPCA requirements. For more information, contact MPCA.

<u>Air Quality</u> Aggregate mining facilities must meet minimum standards for dust and noise. Crushing operations may have to meet federal standards for emissions of particulates from processing equipment. Depending on production capacity, an air emission permit may be required. For more information, contact MPCA at (651) 282-6143 or (800) 657-3938.

<u>Water Quality.</u> The following activities at aggregate operations require a water quality permit from MPCA:

- Discharge from washing plants that leave the mine, whether by gravity flow or pumping.
- Pumping or siphoning out a mine to create a dewatering discharge.
- Storm water runoff from mine stockpiles and pit walls, as well as from equipment like rock crushers, hot mix asphalt, and concrete production plants.
- Generation of wastewater by air emission control systems.

For more information, contact MPCA at (651) 296-7238.

FEDERAL PERMITS

U.S. Army Corps of Engineers (COE)

<u>Section 404 Permit.</u> The Army Corps of Engineers is a federal agency that regulates the discharge of dredged or fill material within waters or wetlands. At aggregate mining operations, activities in wetlands that might trigger a 404 permit include mining activities, the construction of access roads, building sites, storage areas, or water retention ponds. Each county has its own project manager. General information is available from the District Office of the Army Corps of Engineers at (651) 290-5375.

ENVIRONMENTAL REVIEW

Environmental Quality Board (EQB)

<u>Environmental Review.</u> Rules developed by the state Environmental Quality Board determine when environmental review is needed for development projects. Environmental review in the form of an Environmental Assessment Worksheet (EAW) is required when an aggregate mining operation is expected to exceed 40 acres in size to a mean depth of 10 feet. Environmental Impact Statements (EIS) are mandatory for operations exceeding 160 acres. EAWs can be conducted on a discretionary basis if a proposed project is below the mandatory threshold under certain conditions. The EQB rules specify the governmental unit that is responsible for completing environmental review. For aggregate mining proposals, completing environmental review is the responsibility of local government, most often the county planning or zoning office in which the proposed project is located. For more information about environmental review, contact EQB at (800) 657-3794 or (651) 296-8253 or the local county zoning and planning office.

WHAT IS A MINING PLAN?

A mining plan is a combination of maps and written information that describes every aspect of the proposed operation from inventory of the gravel resource to post-mining management of the site. The mining plan describes activities to be conducted at the mine site over the life of the operation. A mining plan is prepared before mining begins, often as a requirement for a permit.

The purpose of a mining plan is to ensure environmentally sound mining, including leaving the area in a safe, nonpolluting condition, and preserving as much land value as possible. A mining plan may consider view, noise, dust, hours of operation, traffic, final reclamation, and many other concerns. The requirements and provisions of plans vary with the local authority.

Because there is market fluctuation in the aggregate industry, the mining plan must be sufficiently flexible to accommodate such changes. The plan should be updated to reflect operating plan changes. Many operating permits also require updates. A mining plan ensures that activities progress according to a general concept that includes site reclamation.

A mining plan aids the cost efficiency and minimizes the environmental impact of the site. It allows for early identification of environmental concerns, efficient removal of the aggregate, and cost-effective reclamation. Through planning, materials can be placed in the appropriate location during stripping operations. Areas requiring fill material can be identified. Final landforms can be constructed during active mining.

ARE MINING PLANS REQUIRED FOR AGGREGATE OPERATIONS?

Currently, there is no state or federal mining permit in Minnesota that requires aggregate operators to submit a mining plan or to reclaim the site after mining. Aggregate mining operations are reviewed at the local unit of government-county, township or municipality, not at the state or federal level. Zoning ordinances and land use planning are employed to control mining operations. The local permits frequently address view, noise, dust, hours of operation, traffic, and final reclamation. Increasingly, local aggregate operation permits require a mining plan.

WHAT INFORMATION IS INCLUDED IN A MINING PLAN?

A mining plan is geared to the size and scope of the project. Small projects generally will require a simpler plan; larger operations will need a more elaborate one. Aggregate mining operations share certain characteristics, but each one is unique and needs a mining plan tailored to its site. The information needed for a mining plan generally includes the following: Inventory of the aggregate resource including the shape, extent and depth of the aggregate deposit and its relationship to the groundwater.

General knowledge of the aggregate deposit is important. The best available information about the deposit must be collected from water well logs, existing surveys or maps, and previous testing work in the area. The most complete inventory data is obtained from drilling or test pitting on the site, but such data is not always available or necessary. Additional site specific work may be needed.

Characteristics of the deposit will determine in part the layout of the mine, the sequence for mine development, and the plan for how to blend the various aggregate materials to meet specifications. Economic considerations likely to influence the rate of mining should also be discussed in the plan, such as the thickness of the overburden, the quality of the aggregate, and haul distance.

Assessment of pre-mining conditions, including current land uses, ownership, infrastructure, previous excavations, existing vegetation and water features among others

An "assessment of pre-mining conditions" describes the setting before mining begins. This may include, among other things: the direction of flow in surface waters; the depth to and direction of groundwater flow; location of buildings and other infrastructure (roads, wells), existing land uses, presence of endangered species and cultural resources. An assessment can identify and mitigate environmental problems and public concerns associated with the project.

Description of mining methods including processing methods

A description of mining methods addresses how the resource will be mined and processed, and describes any proposed mitigation measures. This could include proposed operation hours, how complaints will be addressed, specific erosion control measures to be used, or how screening will be utilized.

Discussion on the staging and sequencing of operations

This discussion is closely linked with the above and is directed at how the mining operation will develop over time. Some mining operations remove the resource in several discreet stages over a short period of time, and others mine it in one stage for a longer period of time. The staging of operations has implications for reclamation. Can reclamation be accomplished progressively throughout the operation or is it best accomplished at the end of active mining?

Proposed reclamation, schedule, and post-mining management

Proposed reclamation describes the intended end uses of the site. Reclamation can consist of simply stabilizing slopes or it can include steps to restore wildlife habitats or preparation of the land for residential construction. When an operator has an end use goal in mind, mining activities like clearing, stripping, stockpiling, and landform construction can be directed toward the planned reclamation throughout the mining phase.

WHAT DOES A MINING PLAN LOOK LIKE?

Mining plans typically employ maps, an effective way to convey the needed information. The vicinity of a proposed operation is often shown on a topographic quadrangle map at a scale of 1:24,000. Specifics of the plan for mining the site are most often depicted on a more detailed plan view map. Proposed features of the mining operations (such as stripping areas, cuts, excavations, processing facilities, roads, stockpiles, ditches, berms, water control structures, etc.) and reclamation features (screened areas, areas to be revegetated, final slopes and grades, etc.) can be depicted on the detailed map. Vertical details are shown with contour lines and cross sections. A series of sequential maps can illustrate how operations will proceed over time. A base map with overlays can effectively show the proposed stages of the operation

WHAT IS RECLAMATION?

Reclamation, at its most basic level, is a process that results in a safe and non-polluting mining site that will retain some land value. For example, gravel operations may be graded after closure to remove hazardous steep slopes. Revegetation, erosion control, and site cleanup are included in basic reclamation operations.

Sometimes reclamation is employed to prepare a site for a subsequent use ("end use") after mining operations are completed. For example, if the planned end use of a site is for green space, landscaping may be used to restore the site to a state that is aesthetically pleasing, or if the site will be used for residential development, areas may be left unfilled to prepare for installation of water and sewer connections.

A mining plan, when required, would normally include a description of post-mining management necessary to support the end use. It would also identify the party responsible for conducting it.

IS RECLAMATION OF AGGREGATE MINING SITES REQUIRED?

Currently, there is no state or federal mining permit in Minnesota that requires aggregate mining operations to be reclaimed. Reclamation at active aggregate mining sites is most often addressed in a local permit or through leasing agreements between landowners and mining companies. The most extensive review of aggregate mining operations takes place at the local unit of government –county, township or municipality. In Minnesota, there are 87 counties, 1,792 townships and 853 cities. Each of these entities has the authority to regulate aggregate mining through zoning ordinances and land use planning. Operating concerns such as view, noise, dust, hours of operation, traffic, and final reclamation are frequently addressed in local permits. There are differ-

ences in the ways in which local governments regulate aggregate mining and final reclamation. The standards for reclamation vary by county, township, and city.

RECLAMATION IS A PUBLIC CONCERN

Aggregate mining is the most common form of mining in Minnesota. Because aggregate is relatively inexpensive to mine but expensive to transport, most operations are located close to where the resource will be used. As a result, aggregate sites are found in every county and are highly visible along roadways. There are an estimated 4,000 gravel pits and 1,500 rock quarries in Minnesota.

Whether in populated areas or in rural settings across the state, aggregate mining is often regarded as an unwelcome neighbor. Conflicts between aggregate mining and other land uses are escalating. At the same time, the need for aggregate materials for construction projects and infrastructure is increasing commensurate with the strong economy and burgeoning population in Minnesota. Reclamation is a key concern voiced by the public.

RECLAMATION AT ACTIVE MINING OPERATIONS

Methods used to reclaim active operations can differ greatly from those used to reclaim abandoned sites. Although the precise numbers change yearly, an estimated 1,500 of the 4,000 gravel pits and about 150 of the 1,500 quarries are active operations where public concerns are usually addressed through a local permit. For active operations, final reclamation is most often considered in a local permit or through leasing agreements between landowners and mining companies.

RECLAMATION AT ABANDONED OR INACTIVE MINING OPERATIONS

Prior to the 1980s, reclamation of aggregate mining sites was not a routine practice. Today, there are an estimated 2,500 gravel pits and 1,350 rock quarries in Minnesota that are either permanently abandoned or intermittently active and often fall outside the regulatory authority of the counties. Problems associated with these sites may include: 1) safety concerns such as steep pit walls and deep water, 2) colonization by noxious weeds and other unwanted vegetation, and 3) unauthorized activities such as illegal dumping, target shooting, off-road vehicle use, and parties. There are increased problems at unreclaimed sites.

Abandoned sites are difficult to reclaim. When reclaimed, the results can be disappointing compared to reclamation done at the time of mine closure as part of a mining plan. There may be no responsible party and/or no money to do reclamation on abandoned sites. Costs to reclaim these sites may be higher because unwanted vegetation must be cleared and landforms reconstructed. Topsoil is needed for revegetation, and often the topsoil has been removed from unreclaimed sites.

AGGREGATE MATERIAL TAX

In Minnesota, a possible funding source for reclaiming abandoned pits on public land is the Aggregate Material Tax (Minn. Stat 298.75) which is a production tax on the removal of aggregate material. At present, 23 of the 87 counties in Minnesota have authority to collect the tax. In

1998, three townships in St. Louis County were authorized to collect the tax. In 1999, a total of \$2,885,716 was collected by those counties and townships. The tax imposed on operators is ten cents per cubic yard. According to the statute, 90 percent of the tax is distributed to county or township road funds and the remaining 10 percent is allocated to individual county reserve funds for restoring abandoned pits or quarries on public land in those counties that collect the tax.

The reserve funds have not been frequently used for reclamation in part because few proposals have been identified. There is relatively little experience in the public or private sector in reclaiming aggregate sites that have been abandoned for a long period of time.

To add to the existing expertise and experience in the state, the DNR Division of Lands and Minerals initiated and managed several reclamation projects involving abandoned aggregate sites on public lands in northwestern Minnesota using partnerships and revenue generated by the aggregate material tax. This work is an effort to develop cost effective methods for reclaiming active and abandoned aggregate sites using conventional and native plant materials.

Using Native Prairie Species for Reclaiming Aggregate Mining Sites

Fact Sheet 4 January 2001

Prepared by the Minnesota Department of Natural Resources Division of Lands and Minerals 500 Lafayette Road St. Paul, MN 55155-4045 http://www.dnr.state.mn.us/lands_and_minerals/ Contact: (651) 296-4807

WHAT IS PRAIRIE?

"Prairie," in the simplest of terms, is a community of plants. Prairie plants are specially adapted to the climate and conditions found in western and southern Minnesota including extremes of temperature and weather, and high winds. Before European settlement 150 years ago, prairie covered much of southwestern and western and northwestern Minnesota. The extreme conditions and constant grazing by bison kept competing plants to a minimum. Prairie plants have long roots that hold the soil in place and allow the plants to survive drought. They are perennial, surviving the winter.

There are several different types of prairie in the Midwest. The tallgrass (or mesic) prairie, common in areas of moderate soil moisture levels, was typically found in western Minnesota where prairie grasses sometimes grew six feet high. Prior to European settlement, almost the entire Red River Valley consisted of tallgrass prairie.

USING PRAIRIE SPECIES FOR RECLAMATION

At depleted aggregate mining sites in areas where tallgrass prairie occurs, it is reasonable to consider revegetating with native prairie plants. Certain key characteristics of prairie plants make them a good choice for former mining sites. Because they are perennial, native prairie grasses, once established, can provide a long-term cover that is self-sustaining and requires little maintenance. Mowing may be needed, and prescribed burning is recommended on a rotation starting three or four years after planting.

Although a former aggregate site restored with native species offers many benefits, it does not restore native prairie. Restoring more than a fraction of the species found in a native prairie is beyond present capabilities because seed sources are not readily available in commercial quantities for all prairie species.

In places where tallgrass prairie does not occur, and in certain other locations, native prairie plants may be inappropriate for reclamation projects. Most warm-season prairie grass seed germinate late, most need prolonged moisture and warm soil. Areas seeded with native prairie plants may not germinate until the spring after initial seeding. Warm-season prairie grasses establish an extensive root system during the first year. The top growth is limited to small leaves that can be difficult to identify. Full scale plants develop during the second year. To compensate for slow establishment of prairie plants, a cover crop of wheat or oats can be planted along with the native seeds. Cover crops grow quickly, providing protection for the slower establishing native species. In addition, cover crops tend to die off rapidly, within one or two years, and therefore do not compete with more permanent native cover.

The slow initial growth of native plantings makes them less effective in erosion-prone locations. They are, therefore, not recommended on steep slopes composed of erodible soils. In addition to possible problems with slow development, prairie seed can be relatively expensive and can be difficult to find. Sometimes, a specially-adapted seed drill is needed for large areas. Adequate site preparation and regular weed control are essential for establishment. Due to the increasing popularity of native prairie plantings, however, these difficulties are quickly being overcome. Although the initial costs may be higher, the long term benefits of native plantings are great. Provided below are basic guidelines for planting native species.

GENERAL GUIDELINES

Site preparation:

Native plantings need a firm weed-free seed bed. Several herbicide applications followed by disking or mowing may be necessary on sites where vegetation is already established.

Seed source:

Seed harvested from as close to the project site as possible will preserve genetic characteristics and establish the vegetation types best adapted to the site.

Seed mixture and seeding rate:

The seed mixture and the seeding rate used for a reclamation project should be selected based on the site characteristics. In general, a diverse mix of grasses and forbs will provide the best results at a seeding rate in the range of 15 lbs/acre to 30 lbs/acre. If seed is harvested from a nearby site and used for reclamation, an analysis of the seed harvest should be conducted and additional seeding may be needed to complement the planting. Seed purchased from vendors can be blended to contain a diversity of species. The Minnesota Department of Transportation (Mn/DOT) has developed several general seed mixes for use on roadsides and ditches. The mixes are a baseline that can be modified as appropriate for local conditions. For more information on native species seed mixes, consult Mn/DOT's Year 2000 Standard Specifications for Construction, or contact Mn/DOT at (651) 284-3750.

Seeding method:

Native seed can be planted using a specially adapted drill that accommodates the light fluffy native seed. The final planting depth should be 1/2 to1 inch and maximum row spacing of about 8 inches, at right angles to surface drainage. An alternative to drilling is to till the site and broad-cast the seed. Planting depth should be from 1/4 to 1/2 inch. After seeding, the site should be dragged with a rake or harrow and packed. Hand seeding is a good method for small areas.

Hydroseeding is an acceptable seeding method on steep slopes or other areas inaccessible to a seed drill. Hydroseeding is not recommended if the weather is hot and dry.

Cover crop:

A cover crop can be seeded with native seed mixtures. The type of cover crop depends on the season. Some possible cover crops are oats at a rate of 20 lbs/acre in the spring plantings, winter wheat at 20 lbs/acre for fall plantings, and annual rye grass at 10 lbs/acre for dormant seedings.

Timing:

Native grasses should be planted from May 1 to June 30. Seeding may be done in the fall, but the seeding rates should be increased slightly to account for seed mortality over the winter. Many species of wildflowers require a cold period to break dormancy and are best seeded late in the fall. If seeded in the spring, they may not be seen until the second year after planting. Seedling plants can be used to add diversity to the plantings. Some desirable species are difficult to propagate from seed and are only available as seedlings.

Maintenance:

During the first growing season, if the cover crop or annual weeds reach 18 inches or more in height, the site should be mowed to a height not less than 6 inches with a rotary mower. Prescribed burns can be implemented on a three to five year rotation starting the third or fourth year after planting. Fall having is an alternative in areas where burning is not possible.

For more information:

Contact your local DNR area office, local Natural Resource Conservation Service office, or the U.S. Fish and Wildlife Service.
Cross Sectional Profile Across theTalcot Aggregate Deposit

This map shows the extent of the evaluation site, test holes, approximate extent of wetlands within the evaluation site, and the proposed maximum extent of the pit. The salmon colored dashed lines indicate the locations of the dikes that will separate the three wetlands that will be created by mining. The background photo was taken in 2002.

Minnesota Department of Natural Resources

Division of Lands and Minerals

William C. Brice, Director

Talcot WMA

Plate 2

103200

Project 334-20

(part of SW/4 Section 7, T 105N, R 38W)

101600

102000

Control Control

102800

102400

Figure 1. Topographic map of the existing condition. Elevation in feet, WGS 84 datum, not tied to a benchmark. Contour interval = 1 foot.

Figure 2. Contour map of the modeled water table based on test hole data. Darker blues indicate deeper/lower elevation. Contour interval = 1 foot.

Figure 4. The approximate depth of water after mining and prior to placement of backfill. The lightest areas are shallow water or above water after mining. The negative contour values indicate elevation above water. Contour interval = 2 feet.

Note for all figures: The heavy black line indicates the proposed pit perimeter. The purple lines indicate locations of the dikes. Filled black circles indicate locations of test holes. See plate 1 for test hole id. The reference coordinate system is Jackson County NAD83.

Minnesota Department of Natural Resources

Division of Lands and Minerals

William C. Brice, Director

Figure 1. Variations in thickness of the overburden (stripping) across the site. Darker colors indicate thicker areas. Sample spacing may be too large to define any trends, if they exist. Contour interval = 1 ft.

Figure 2. Variations in thickness of the primary gravel deposit across the site. The orange colors indicate where the gravel is thicker and the green colors indicate where the gravel is thinner. Contour interval = 2 feet.

Talcot WMA (part of SW/4 Section 7, T 105N, R 38W)

weight based on sieve data. Orange colors indicate where this value is highest and the green colors indicate where it is lowest. Contour interval = 3%.

Figure 4. Distribution of the percent of aggregate, by weight, retained on the #4 sieve. The yellow to orange colors indicate where this value is highest and the dark green colors indicate where this value is lowest. Contour interval is 5%.

Note for all figures: The heavy black line indicates the proposed pit perimeter. The purple lines indicate locations of the dikes. Filled gray circles indicate locations of test holes. See plate 1 for test hole id. The reference coordinate system is Jackson County NAD83.

Figure 3. Distribution of the percent crushable (+3/4 inch) aggregate by

MnDNR Project 334-20

Plate 3

Figure 5. Distribution of the percent of aggregate by weight retained on the #10 sieve. The orange colors indicate where this value is highest and the green color indicates where it is lowest. Contour interval = 5%.

Figure 6. Distribution of the percent of fines by weight passing the #200 sieve. The yellow colors indicate where this value is the highest and the green colors indicate where it is the lowest. Contour interval = 1.0%.