Northeastern Minnesota has ilmenite-rich deposits associated with the gabbroic intrusive Duluth Complex (Figure 1). The Duluth Complex is perhaps best known for the deposits of copper-nickel (± platinum group elements) that were first recognized in the 1950s along its western margin, along the basal contact zones of gabbroic and anorthositic intrusives and older Precambrian rocks (Figure 2). Subsequent exploration mapping in the 1960s along this western margin revealed the presence of several younger ultramafic plugs that intruded into the much larger Duluth Complex units. These oxide-rich plugs are referred to as Oxide-bearing Ultramafic Intrusions (OUIs), with at least 13 OUI bodies outlined by limited drilling (Figure 2).

The oxide minerals within these OUI plugs are typically coarse-grained ilmenite (iron-titanium oxide) and titanium-bearing magnetite. Ilmenite is the most important ore of titanium, and exploration drilling programs that began in the 1970s have identified some of these OUIs as potential TiO₂ resources. Drilling to date is only sufficient to define TiO₂ resources for 3 of the bodies: Longnose (24 drillholes indicated 58 million tons averaging 16.6% TiO₂); Titac (36 drill holes inferred 45.1 million tons averaging 15% TiO₂); and Water Hen (37 drill holes, with a non-NI 43-101 compliant estimate of 62 million tons averaging 14% TiO₂).

Figure 1 Generalized bedrock geology map of Minnesota

Figure 2: Location of OUIs and Cu-Ni-PGE deposits in Northeastern Minnesota’s Duluth Complex
<table>
<thead>
<tr>
<th>Deposit</th>
<th>Drill Holes</th>
<th>Avg. TiO₂ Wt. %</th>
<th>Max. TiO₂ Wt. %</th>
<th>Avg. V (ppm)</th>
<th>Max. V (ppm)</th>
<th>Resources in Mt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longnose</td>
<td>27</td>
<td>12.49</td>
<td>30.37</td>
<td>1,325</td>
<td>4,400</td>
<td>58 Mt @ 16.6% TiO₂ (Indicated)</td>
</tr>
<tr>
<td>Water Hen</td>
<td>37</td>
<td>11.15</td>
<td>29.3</td>
<td>1,065</td>
<td>2,285</td>
<td>62 Mt @ 14% TiO₂ (not a NI 43-101 – compliant estimate)</td>
</tr>
<tr>
<td>Longear</td>
<td>3</td>
<td>18.06</td>
<td>50.5</td>
<td>580</td>
<td>3,590</td>
<td>?</td>
</tr>
<tr>
<td>Titac (Sec. 34)</td>
<td>32</td>
<td>15.66</td>
<td>26.74</td>
<td>2,610</td>
<td>4,035</td>
<td>45 Mt @ 15% TiO₂ (Inferred)</td>
</tr>
<tr>
<td>Sec. 17</td>
<td>6</td>
<td>33 analyses</td>
<td>14.66</td>
<td>790</td>
<td>950</td>
<td>?</td>
</tr>
<tr>
<td>Sec. 22</td>
<td>2</td>
<td>62 analyses</td>
<td>28.72</td>
<td>1,130</td>
<td>2,790</td>
<td>?</td>
</tr>
<tr>
<td>Skibo</td>
<td>9</td>
<td>18 analyses</td>
<td>25.28</td>
<td>165</td>
<td>220</td>
<td>?</td>
</tr>
<tr>
<td>Skibo South</td>
<td>1</td>
<td>3 analyses</td>
<td>12.6</td>
<td>1,100</td>
<td>1,346</td>
<td>?</td>
</tr>
<tr>
<td>Wyman Creek</td>
<td>4</td>
<td>10 analyses</td>
<td>28.65</td>
<td>?</td>
<td>540</td>
<td>?</td>
</tr>
<tr>
<td>Boulder Creek</td>
<td>2</td>
<td>8 analyses</td>
<td>19.09</td>
<td>4,630</td>
<td>8,125</td>
<td>?</td>
</tr>
<tr>
<td>Boulder Lake – North</td>
<td>3</td>
<td>6 analyses</td>
<td>35.2</td>
<td>4,045</td>
<td>6,835</td>
<td>?</td>
</tr>
<tr>
<td>Central Boulder Lake</td>
<td>1</td>
<td>no analyses</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Boulder Lake – South</td>
<td>3</td>
<td>2 analyses</td>
<td>16.03</td>
<td>?</td>
<td>787</td>
<td>?</td>
</tr>
</tbody>
</table>

TiO₂ and vanadium values in historic drill holes from the known OUIs. Note that most of the OUIs have been historically under sampled, and that in most of the table, the average TiO₂ listings are not calculated for ore zones and include an unknown proportion of lean ore and waste rock.

Mineralogy

In some groups of OUIs, ilmenite is the dominant oxide, whereas titanomagnetite is dominant in others (Fig. 3). Oxide content in the OUIs ranges from 15% to 100% in localized massive oxide zones. Thick massive oxide zones are common to the Longnose deposit, which has been described by BHP as being “The largest, highest grade deposit of near-pure ilmenite in North America.”

The OUIs are extremely low in deleterious co-products (U, Th, Zr, REEs) that are typically associated with currently-mined titanium placer deposits.

Copper-nickel minerals occur in varying amounts. At the Water Hen intrusion, it’s 2-5 modal percent, with predominant pyrrhotite with minor cubanite, chalcopyrite and pentlandite. At the Titac prospect, the intrusion contains up to five modal percent copper minerals (predominately chalcopyrite and bornite). This is significant enough to be considered an additional resource; Cardero Resource Corp, in a 2011 press release, identified the Titac North and Titac South targets as Iron-Titanium-Copper Deposits, with mineralized drill core intercepts displaying copper concentrations of 0.2 – 0.5 wt %.

Almost all of the OUIs are close to the surface and would be amenable to open pit mining with minimal stripping of overburden.

Figure 3: Photomicrographs of titanium ore:3a) subround ilmenite (reflected light); 3b) plagioclase, olivine and titanium oxides (polarized light); 3c) magnetite with ilmenite lamellae and ilmenite (reflected light). From NRRI (2010)
Resource Potential

Limited drilling to date has outlined at least 13 ilmenite-bearing OUI bodies along the western margin of the Duluth Complex (Figs. 2 & 5). Inferred and indicated resources have been defined by a NI-43-101-compliant estimate at only two of these locations. The roots/feeder conduits of the various OUIs have never been drilled and may contain significant PGE credits. In addition, it may also be possible that weathering during the Cretaceous may have produced titanium beach sands along the eastern shoreline of an inland sea (the shoreline could be located just west of the present-day Duluth Complex basal contact). The presence of a thick saprolite cap over the Water Hen OUI (Fig. 6) suggests that such a mechanism could have occurred during the Cretaceous.

Processing

Significant amounts of historical beneficiation work has been conducted on OUI titanium deposits by the Coleraine Minerals Research Lab, which is part of the Natural Resources Research Institute. While this work pre-dates the establishment of NI 43-101 standards, two independent NI 43-101 technical reports stated that this research was completed to high standards and would be useful in designing future beneficiation work (see Henderson and Ripke (2011) and Farrow and Johnson (2012)).

Pilot-scale Titanium Processing Project Secures $600k Funding in 2016

In February 2016, Minnesota’s Iron Range Resources and Rehabilitation Board (IRRRB) approved a $300,000 grant (matched by the University of Minnesota) to the Natural Resources Research Institute (NRRI), to develop a pilot-scale titanium processing plant at the NRRI’s Coleraine Minerals Lab.

The NRRI will work with Process Research Ortech to prove-out proprietary technology that produces a high-purity concentrate from titanium-bearing ore. The NRRI has already successfully processed more than 50 tons of material from the Longnose titanium deposit.

The IRRRB is a State of Minnesota development agency that provides grants to local government units, education institutions and non-profits to promote workforce development and sustainable communities. www.mn.gov/irrrb/
Governance and Infrastructure:
100 Years of Support for Mining

Minnesota offers exploration companies a well-educated work force and a safe, conflict free work zone within a politically stable democracy. Its titanium prospects are located near the Canadian border, within a part of the State that has a 100-year tradition of large-scale iron mining. The public school system owns 3.5 million acres of mineral rights, from which it receives mineral royalties. State policy supports mineral diversification. There is a moderate overall taxation policy in comparison to Ontario. The State of Minnesota has also demonstrated willingness to support nonferrous mineral exploration and development by funding technological research by agencies and academic groups.

For more information, contact:

Natural Resources Research Institute
University of Minnesota Duluth
5013 Miller Trunk Highway,
Duluth, MN 55811-1442
www.nrri.umn.edu

George Hudak, Director
Minerals-Metallurgy-Mining Program
(218) 720-4393
ghudak@d.umn.edu

Minnesota Geological Survey
2609 W Territorial Rd.
St. Paul, MN 55114-1057
www.mngs.umn.edu

Harvey Thorleifson, Director
(612) 627-4780 ext. 224
thorleif@umn.edu

Minnesota Department of Natural Resources
Division of Lands and Minerals
500 Lafayette Road
St. Paul, MN 55155-4045
www.dnr.state.mn.us

Jess Richards, Director
Division of Lands and Minerals
(651) 259-5379
jess.richards@state.mn.us

Dennis Martin, Manager,
Mineral Potential Section
(651) 259-5405
dennis.martin@state.mn.us

Minnesota Minerals Coordinating Committee
www.mcc.mn.gov

References and Supplemental Information

Natural Resources Research Institute (2010) *NRRI Titanium Brochure*.
