Project 373 Vermilion Greenstone Gold New Results from Drill Holes

Barry Frey Research Scientist 2

Minnesota Department of Natural Resources Division of Lands & Minerals October 1, 2008

Work with citizens to conserve/manage State's natural resources

Provide outdoor recreation opportunities

Provide for commercial uses of natural resources to create sustainable quality of life

Previously Unrecognized Gold-Bearing Intervals in Archived Vermilion Drill Core

	Au				
	Mineralization	Semi-quantitative			
Prospect	Туре	XRF Au Interval	Au Association		
Raspberrv	Intrusion Hosted	To 230 ppm Au	Pb (galena), Quartz veins, Rutile; Fe, As, Mn. Cr. Se, Sn		
	Shear zone		Pb (galena), Quartz		
	related		veins, Rutile?; Pb,		
Raspberry	(remobilization?)	To 67 ppm Au	Ag, Se		
			Fe Oxide to Sulfide-		
	Algoma BIF		graphite transition;		
Foss Lake	related Au	To 28 ppm Au	As, Ba, Pb		
	Shear zone		Pyrite; Hg, As, Cu,		
Foss Lake	related	To 16 ppm Au	Cr, Mo		
Eagles Nest	Shear zone		Pyrite; Mn, Sr, Ba,		
Shear	related	To 9 ppm Au	Mo?, Cu?		
			Sphalerite,		
	Volcanic Hosted		pyrrhotite?; Cr, Zn,		
Murray Shear	Massive Sulfide	To 148 ppm Au	Sb, Cd, Hg		

Vermilion Greenstone

Specific Results

Raspberry Prospect

- Variably porphyritic, calcareous granodiorite with mafic groundmass and fractures intruding mafic volcanics(?)
- Au associated with rutile, quartz and galena, and locally elevated base metals

Vermilion Greenstone

Specific Results

Raspberry Prospect

- Also Au remobilized along shears/ quartz veins
- Intrusion contains
 fluorescent orange-red-pink
 calcite with Mn activator
- Intrusion anomalous in barium and strontium locally

Raspberry Prospect Drill Holes

NATURAL RESOURCE

Example Semi-quantitative XRF Chemistry for DDH R-9 and R-11 All values in parts per million (ppm)

DDH	Footage	ROCK	As	Se	Мо	Ag	Au	Pb
R-9	141.7	QZ vn	18693	984	<lod< td=""><td><lod< td=""><td>230</td><td>269529</td></lod<></td></lod<>	<lod< td=""><td>230</td><td>269529</td></lod<>	230	269529
R-9	141.7	QZ vn	7368	441	<lod< td=""><td><lod< td=""><td>104</td><td>113093</td></lod<></td></lod<>	<lod< td=""><td>104</td><td>113093</td></lod<>	104	113093
R-9	141.7	QZ vn	<lod< td=""><td>82</td><td><lod< td=""><td>213</td><td>101</td><td>39463</td></lod<></td></lod<>	82	<lod< td=""><td>213</td><td>101</td><td>39463</td></lod<>	213	101	39463
R-9	141.7	Granodiorite	<lod< td=""><td><lod< td=""><td>35</td><td>99</td><td>48</td><td>14632</td></lod<></td></lod<>	<lod< td=""><td>35</td><td>99</td><td>48</td><td>14632</td></lod<>	35	99	48	14632
R-9	141.9	QZ vn	6746	454	<lod< td=""><td><lod< td=""><td>143</td><td>143579</td></lod<></td></lod<>	<lod< td=""><td>143</td><td>143579</td></lod<>	143	143579
R-11	80.4	Granodiorite/Qtz vein	<lod< td=""><td>400</td><td>17568</td><td>537</td><td>126</td><td>224991</td></lod<>	400	17568	537	126	224991
R-11	80.4	Granodiorite/Qtz vein	<lod< td=""><td>374</td><td>16568</td><td>433</td><td>119</td><td>210053</td></lod<>	374	16568	433	119	210053
R-11	80.4	Granodiorite/Qtz vein	<lod< td=""><td><lod< td=""><td>621</td><td>166</td><td>116</td><td>69287</td></lod<></td></lod<>	<lod< td=""><td>621</td><td>166</td><td>116</td><td>69287</td></lod<>	621	166	116	69287
R-11	80.4	Granodiorite/Qtz vein	<lod< td=""><td>113</td><td>51</td><td>172</td><td>52</td><td>89476</td></lod<>	113	51	172	52	89476
R-11	80.5	Granodiorite/Qtz vein	1686	261	442	368	42	157421
R-11	81.0	Sheared Qtz vein	<lod< td=""><td><lod< td=""><td>545</td><td><lod< td=""><td>37</td><td>11297</td></lod<></td></lod<></td></lod<>	<lod< td=""><td>545</td><td><lod< td=""><td>37</td><td>11297</td></lod<></td></lod<>	545	<lod< td=""><td>37</td><td>11297</td></lod<>	37	11297
R-11	576.3	Early, complex QZ vn	139	<lod< td=""><td><lod< td=""><td><lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<></td></lod<>	<lod< td=""><td>62</td><td><lod< td=""></lod<></td></lod<>	62	<lod< td=""></lod<>
		Early, complex QZ vn -						
R-11	576.5	Altered Granodiorite	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>7147</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>7147</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>54</td><td>7147</td></lod<></td></lod<>	<lod< td=""><td>54</td><td>7147</td></lod<>	54	7147
		Qz vn in metabasalt						
R-11	613.5	(deformed, sheared)	<lod< td=""><td>30</td><td><lod< td=""><td>133</td><td>67</td><td>14619</td></lod<></td></lod<>	30	<lod< td=""><td>133</td><td>67</td><td>14619</td></lod<>	133	67	14619

Raspberry Prospect

Raspberry Prospect

DDH R-9 anomalous semi-quantitative Au XRF values are from previously unassayed portions of core

Highest previous laboratory assay was 6800 ppb for the two foot interval of 55 - 57'

DDH R-11 at 80.9' shows typical rutile needles in vein quartz. Horizontal field of view is about 3 mm. XRF verified associated high Ti contents.

Galena in DDH R-11 at 80.4' with 12.6mm horizontal field of view. Note interstitial Pb mineralization and vein vugs (boiling?).

Microprobe Back Scattered Image (BSI) of DDH R-9 at 141.7 -141.8'; showing galena grains (light grey)

Twinned rutile grain BSI from DDH R-9 at 92.8 - 92.9'. Darker portion has less Fe, W, Si; but more V than lighter portions.

Vermilion Greenstone Specific Results Foss Lake Prospect

- Previously unrecognized Au in graphitic sulfide BIF transition in DDH 6314-36-1
- Au associated with pyrite, As, Pb, Co, Mn, graphite

Vermilion Greenstone Specific Results – Foss Lake Prospect

- Semi-quantitative XRF Au in sheared altered tuff in DDH 6314-36-2
- Au associated with pyrite, Cr (fuchsite?), Cu, Co, Mn, As

Foss Lake Prospect

NATURAL RESOURCE

Example semi-quantitative XRF Chemistry for DDH 6314-36-1 and 6314-36-2 All values in parts per million (ppm)

DDH	Footage	ROCK	Cr	Cu	As	Ag	Au	Hg	Pb
6314-36-2	95.4	Sheared altered felsic tuff	335	374	39	106	16	11	12
6314-36-2	95.4	Sheared altered felsic tuff	<lod< td=""><td>1706</td><td>46</td><td>86</td><td>11</td><td>10</td><td>15</td></lod<>	1706	46	86	11	10	15
6314-36-2	95.4	Sheared altered felsic tuff	363	375	28	93	10	15	11
6314-36-2	95.4	Sheared altered felsic tuff	322	262	23	50	9	11	8
6314-36-2	95.4	Sheared altered felsic tuff	<lod< td=""><td>2885</td><td>33</td><td>108</td><td>9</td><td>10</td><td>16</td></lod<>	2885	33	108	9	10	16
6314-36-1	312.0	Chert-Silicate?-Sulfide? BIF	<lod< td=""><td>467</td><td>778</td><td><lod< td=""><td>16</td><td><lod< td=""><td>81</td></lod<></td></lod<></td></lod<>	467	778	<lod< td=""><td>16</td><td><lod< td=""><td>81</td></lod<></td></lod<>	16	<lod< td=""><td>81</td></lod<>	81
6314-36-1	312.2	Chert-Silicate?-Sulfide? BIF	<lod< td=""><td>117</td><td>552</td><td><lod< td=""><td>10</td><td><lod< td=""><td>37</td></lod<></td></lod<></td></lod<>	117	552	<lod< td=""><td>10</td><td><lod< td=""><td>37</td></lod<></td></lod<>	10	<lod< td=""><td>37</td></lod<>	37
6314-36-1	312.4	Interlaminated Chert- Graphite	<lod< td=""><td>188</td><td>1237</td><td><lod< td=""><td>28</td><td colspan="2">28 <lod< td=""></lod<></td></lod<></td></lod<>	188	1237	<lod< td=""><td>28</td><td colspan="2">28 <lod< td=""></lod<></td></lod<>	28	28 <lod< td=""></lod<>	
6314-36-1	314.0	Chert-Silicate-Graphite BIF	<lod< td=""><td>339</td><td>2119</td><td><lod< td=""><td>25</td><td><lod< td=""><td>219</td></lod<></td></lod<></td></lod<>	339	2119	<lod< td=""><td>25</td><td><lod< td=""><td>219</td></lod<></td></lod<>	25	<lod< td=""><td>219</td></lod<>	219
6314-36-1	314.0	Interlaminated Chert- Graphite	<lod< td=""><td>217</td><td>1083</td><td><lod< td=""><td>18</td><td><lod< td=""><td>178</td></lod<></td></lod<></td></lod<>	217	1083	<lod< td=""><td>18</td><td><lod< td=""><td>178</td></lod<></td></lod<>	18	<lod< td=""><td>178</td></lod<>	178
6314-36-1	314.0	Interlaminated Chert- Graphite	<lod< td=""><td>549</td><td>1317</td><td><lod< td=""><td>15</td><td><lod< td=""><td>235</td></lod<></td></lod<></td></lod<>	549	1317	<lod< td=""><td>15</td><td><lod< td=""><td>235</td></lod<></td></lod<>	15	<lod< td=""><td>235</td></lod<>	235
6314-36-1	314.0	Chert-Silicate-Graphite BIF	<lod< td=""><td>557</td><td>1568</td><td><lod< td=""><td>14</td><td><lod< td=""><td>180</td></lod<></td></lod<></td></lod<>	557	1568	<lod< td=""><td>14</td><td><lod< td=""><td>180</td></lod<></td></lod<>	14	<lod< td=""><td>180</td></lod<>	180

Foss Lake Prospect

Vermilion Greenstone

Specific Results

"Murray Shear" Prospect

- Previously unrecognized Au in *some* exhalative sphalerite laminae in DDH SXL-1 and SXL-4
 Au associated with pyrite,
 - Au associated with pyrite, Cr, Zn, Cd, Co, Cu, Sb; broken to brecciated recrystallized chert or quartz "veins"

Murray Shear

Example semi-quantitative XRF Chemistry for DDH SXL-1 and SXL-4

All values in parts per million (ppm)

DDH	Footage	ROCK	Cr	Cu	Zn	As	Cd	Sb	Au	Pb
SXL-4	143.10	Sph lam??	7782	<lod< td=""><td>833821</td><td><lod< td=""><td>1400</td><td>374</td><td>76</td><td><lod< td=""></lod<></td></lod<></td></lod<>	833821	<lod< td=""><td>1400</td><td>374</td><td>76</td><td><lod< td=""></lod<></td></lod<>	1400	374	76	<lod< td=""></lod<>
		Rexlized chert-qz								
SXL-4	144.20	vn w/ sph blebs	10324	<lod< td=""><td>1140016</td><td><lod< td=""><td>2017</td><td>475</td><td>103</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1140016	<lod< td=""><td>2017</td><td>475</td><td>103</td><td><lod< td=""></lod<></td></lod<>	2017	475	103	<lod< td=""></lod<>
SXL-4	248.05	Alt felsic-int? tuff	7920	46869	851540	259	1673	315	111	34
SXL-4	248.05	Alt felsic-int? tuff	7086	53094	890629	209	1855	431	84	<lod< td=""></lod<>
SXL-4	248.05	Alt felsic-int? tuff	7717	42868	819657	327	1610	322	82	36
SXL-4	297.00	Alt fels-int tuff	5534	1242	638306	<lod< td=""><td>1155</td><td>211</td><td>73</td><td>83</td></lod<>	1155	211	73	83
SXL-4	297.03	Alt fels-int tuff	8191	<lod< td=""><td>880042</td><td><lod< td=""><td>1495</td><td>211</td><td>109</td><td>63</td></lod<></td></lod<>	880042	<lod< td=""><td>1495</td><td>211</td><td>109</td><td>63</td></lod<>	1495	211	109	63
		Chlor alt fels-int								
SXL-4	412.10	tuff	9147	4723	969477	<lod< td=""><td>1764</td><td>371</td><td>119</td><td>418</td></lod<>	1764	371	119	418
		Chlor alt fels-int								
SXL-4	412.20	tuff	6868	5609	765007	<lod< td=""><td>1346</td><td>238</td><td>85</td><td>276</td></lod<>	1346	238	85	276
		Alt int-fels? tuff;								
SXL-4	432.63	stringer 2	9990	11315	1084534	<lod< td=""><td>2041</td><td>537</td><td>113</td><td>382</td></lod<>	2041	537	113	382
		Alt int-fels? tuff;								
SXL-4	432.65	stringer 2	7146	41349	827282	61	1628	433	74	439
		Alt int-fels? tuff;								
SXL-4	432.87	stringer 2	8383	227	935882	<lod< td=""><td>1716</td><td>318</td><td>114</td><td>306</td></lod<>	1716	318	114	306
		Tuffaceous sphal-								
SXL-1	231.00	py layer	9705	974	1017226	<lod< td=""><td>2983</td><td>607</td><td>132</td><td><lod< td=""></lod<></td></lod<>	2983	607	132	<lod< td=""></lod<>
		Tuffaceous sphal-								
SXL-1	231.00	py layer	5821	1405	634850	<lod< td=""><td>1957</td><td>336</td><td>67</td><td><lod< td=""></lod<></td></lod<>	1957	336	67	<lod< td=""></lod<>
		Tuffaceous sphal-								
SXL-1	231.03	py layer	6594	1142	729365	<lod< td=""><td>2259</td><td>477</td><td>79</td><td><lod< td=""></lod<></td></lod<>	2259	477	79	<lod< td=""></lod<>
SXL-1	258.70	Sphalerite Lamina	10618	<lod< td=""><td>1182505</td><td><lod< td=""><td>1649</td><td>365</td><td>148</td><td><lod< td=""></lod<></td></lod<></td></lod<>	1182505	<lod< td=""><td>1649</td><td>365</td><td>148</td><td><lod< td=""></lod<></td></lod<>	1649	365	148	<lod< td=""></lod<>
		Sph lam/stringer								
		w/ disrupted								
SXL-1	258.90	qz/chert	6202	<lod< td=""><td>675831</td><td><lod< td=""><td>1069</td><td>232</td><td>86</td><td><lod< td=""></lod<></td></lod<></td></lod<>	675831	<lod< td=""><td>1069</td><td>232</td><td>86</td><td><lod< td=""></lod<></td></lod<>	1069	232	86	<lod< td=""></lod<>

Murray Shear

DDH SXL-1

XRF Au ppm vs Footage

Plot of semi-quantitative XRF Au ppm versus footage for DDH SXL-1. The number of analyses at a given footage is an approximate measure of the observed sulfide amount

DDH SXL-1

XRF Au ppm and Cu/Zn vs Footage

Plot of semi-quantitative XRF Au ppm versus footage for DDH SXL-1.

Copper values are highest in cross-cutting stringers, typically found below the exhalative sphalerite and Au laminae

Thicker Au bearing sphalerite - pyrrhotite lamina and thinner lamina without Au from DDH SXL-1 @ 231-231.08'. Note centimeter scale and brecciated quartz within laminae.

Au bearing sphalerite - pyrrhotite lamina stringer with variable pyrite (recrystallized?) and chalcopyrite from DDH SXL-4 @ 432.4-433'. Note centimeter scale.

Picture from DDH SXL-1 @ 256.3' showing mixed sphalerite, pyrrhotite, and mixed sulfide stringer(?).

Picture from DDH SXL-1 @ 174' showing sphalerite lamina and other features with 2 different illuminations

Murray Shear Prospect

Picture from DDH SXL-1 @ 172.6' showing sphalerite lamina and other features with 2 different illuminations

Murray Shear Prospect

Picture from DDH SXL-1 @ 300.35' showing silicate-pyrite-sphalerite clasts or amygdales with 2 different illuminations

Murray Shear Prospect

Picture from DDH SXL-1 @ 264.8' showing black chlorite altered glass and interstitial sphalerite.

Vermilion Greenstone

Specific Results

"Eagles Nest Shear" Prospect

Some semi-quantitative XRF Au previously unrecognized.

Au associated with pyrite, rutile, Hg, Ti, Fe, Ag; small variable amounts of Mo, Se, Cr.

Eagles Nest Shear

DDH FM-5 Eagles Nest Shear

DDH	Footage	ROCK	COMMENT	Ti	Cr	Fe	Со	Cu	Se	Mo	Ag	Au
			Interstitial calcite-									
			flow breccia or top?;									
FM-5	94.10	Maf flow	Au 3ppm XRF	<lod< td=""><td><lod< td=""><td>10397</td><td><lod< td=""><td>246</td><td><lod< td=""><td>69</td><td><lod< td=""><td>3</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>10397</td><td><lod< td=""><td>246</td><td><lod< td=""><td>69</td><td><lod< td=""><td>3</td></lod<></td></lod<></td></lod<></td></lod<>	10397	<lod< td=""><td>246</td><td><lod< td=""><td>69</td><td><lod< td=""><td>3</td></lod<></td></lod<></td></lod<>	246	<lod< td=""><td>69</td><td><lod< td=""><td>3</td></lod<></td></lod<>	69	<lod< td=""><td>3</td></lod<>	3
		Large qz										
		w/goethite-py-										
FM-5	176.20	Fe carb vn	Py rich, ser, no goeth	7670	346	201838	1523	61	17	47	73	9
		Large qz										
		w/goethite-py-							_			
FM-5	176.20	Fe carb vn	Py rich, ser, no goeth	5460	231	92965	850	15	8	126	59	4
		Large qz	Py rich, ser									
		w/goethite-py-	shear/flattened									
		Fe carb vn and	volcaniclasts, no									
	477.40	sericite-py	goeth; trace dark		170				_			
FM-5	177.10	altered tuff	basemetal? grains	10604	458	35668	520	66	5	54	27	3
		o										
		within										
	210.70	porpnyry; center		27057	424	00225	240	27				,
FIVI-5	219.70	on py grain	XRF 6 ppm Au	27957	431	88325	340	3/	11	14	<lod< td=""><td>0</td></lod<>	0
		Oz voin contact										
		brocciatod										
		porphyry: contor										
		on different ny										
FM-5	219 70	arain		39017	498	67620	285	79	11	<1 0D	<1.0D	6
1 101 0	217.70	Oz vein contact		0/01/	470	0/020	200			LOD	LOD	U
		within										
		brecciated										
		porphyry: no										
		large py grains.										
		but same slip										
FM-5	219.70	surface		3876	244	158567	679	1426	8	34	148	7

Example semi-quantitative XRF chemistry from DDH FM-5. Au in uppermost footage was previously unrecognized. All analytical values in parts per million (ppm). Pervasively altered sericite-quartz-pyrite mylonitic felsic tuff from DDH FM-5 @ 181.4' associated with Au mineralized fault

Quartz vein with Fe carbonate and rutile and minor pyrite from DDH FM-5 @ 172.8' associated with Au mineralized fault

Mylonitic felsic tuff with local fuchsite altered lapilli from DDH FM-5 @ 247.1'

Sheared, altered porphyry intrusive or crystal tuff(?) from DDH FM-5 @ 187.1' associated with Au mineralized fault

Project 373 Vermilion Greenstone

Activities

- > Reviewed existing data
- Logged selected drill cores from identified prospects

Used semi-quantitative hand-held XRF to screen previously unassayed drill core intervals for mineralization

> Used digital microscope to evaluate mineral associations in selected drill core intervals

Selected 270 sample intervals for third-party quantitative geochemical analysis

Presented data in usable formats

Activity Review existing data • Previous published data is variable in both amounts and elements analyzed

Historical log quality varies

Activity

Current Core Logging

Digital format, standardized
 lithology codes

 Pre-metamorphic protolith is accentuated

 More detailed information now moved to XRF comments

Activity

Used semi-quantitative, hand-held XRF

 Semi-quantitative "Point" analyses

Analysis Window is round shaped .76 cm²

 Scale is useful for traversing alteration fronts or veins
 Remember when analyzing and comparing results

Activity Used semiquantitative XRF Gold emphasis Sulfides targeted Other gold related features targeted Target lithologic differences, including veining and alteration

Activity Use of hand-held XRF XRF Data usage Parts per Million (PPM) results are semi-quantitative Our instrument gives data for Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sn, Sb, Ba, Au, Hg, Pb

Activity

Use of hand-held XRF XRF Data usage • XRF semi-quantitative data is best used comparatively as internal data sets

 Comparison with other, non-point chemistry data must be done *cautiously*

Activity

Used digital microscope

Lower power usually used

 Higher power, more surface preparation is needed

Activity

Choose assay, microprobe, and/or other samples

Assay

Complement existing data

 Analyze for extended suite of elements

 Analyze single lithologies if possible

Activity

Selected 270 samples for microprobe and/or thirdparty geochemical analysis

Microprobe

- Complement existing data
- Use semi-quantitative XRF as guide where useful

 Try to answer specific questions, balance with microprobe constraints

Activity

- Presented data in usable formats
- PowerPoint[®] summaries
- Excel[®] spreadsheet files
- ✤ Word[®] text documents
- Images are JPEG format

Limited Geographic
Information System (GIS)
"Shape" files are available

Vermilion Greenstone – Where was the work done?

Vermilion Greenstone – Where was the work done?

PROJECT 373 DRILL HOLES LOGGED

NATURAL RESOURCE

Enhanced Aeromagnetic Background Courtesy of Dave Dahl, MnDNR

Vermilion Greenstone Framework of Gold Models

Vermilion Greenstone Framework of Gold Models

Raspberry Prospect Foss Lake Prospect Eagles Nest Shear Murray Shear

1. Shear-related lode gold

Typically related to 2nd order shears

Often associated with schist, quartz, pyrite, sericite, arsenopyrite, fuchsite, ankerite, mercury

Vermilion Greenstone Framework of Gold Models

Raspberry Prospect

Foss Lake Prospect Eagles Nest Shear Murray Shear

Associated with magmatic fluids/ alteration, porphyries, fractures, minor base-metals

Vermilion Greenstone Framework of Gold Models

Raspberry Prospect Foss Lake Prospect Eagles Nest Shear *Murray Shear*

1. Shear-related lode gold

2. Intrusion hosted gold

3. VHMS related gold

Au related to exhalative or sub-seafloor basemetal mineralization

Often associated with chert or siliceous tuff caps

Vermilion Greenstone

Framework of Gold Models

Raspberry Prospect Foss Lake Prospect Eagles Nest Shear Murray Shear

- Shear-related lode gold
- 2. Intrusion hosted gold
- 3. VHMS gold

4. Banded Iron Formation (BIF) related gold

Typically sulfidation of iron exhalative chemical sediment

Often at transitions from one BIF type to another BIF type

Creation of ArcView GIS files of existing chemistry data

Logs for samples from 30 "Drill Holes" Some older samples may be iron mine or outcrop samples

Laboratory rock chemistry for 63 samples

Additional 270 samples to be analyzed

Probe work including 70 analyses on 12 samples from 4 drill holes

160 digital microscope images

The "Gold Rush" of 1865 eventually led to the mining of about 100 million tons of iron ore from Soudan and Ely, Minnesota. Since that time, gold exploration has occasionally emerged, but to no avail. Hopefully this work will add a few more puzzle pieces to bring the dream of 1865 to fruition.

barry.frey@dnr.state.mn.us 218-231-8484 mndnr.gov

