Appendix H:

Sediment Quality Analysis

Lower Pool 2 Channel Management Study: Boulanger Bend to Lock and Dam No. 2 In July and August of 2015, the US Army Corps of Engineers (USACE), St. Paul District completed two sediment surveys of Boulanger Bend in lower pool 2 of the Upper Mississippi River (river miles 821-818). The purpose of the 2015 sediment surveys were to characterize the physical and chemical properties of the sediment for the Lower Pool 2 Channel Management Study: Boulanger Bend to Lock and Dam No. 2. The sample locations were randomly selected inside the footprint of the preferred alternative: The widening of the Boulanger Bend navigational channel and the placement of training structures outside of the channel (Figure 1). Below is a detailed description of the 2015 survey, including: sampling locations, depths, sampling methods, chemical and physical analyses, results and discussion.

2015 SURVEY

Sampling:

For the July survey, district staff drilled four boreholes and collected one composite sample per borehole. Two boreholes were located at the upstream section of the main channel dredge cut (boreholes 15-60M and 15-61M) and the other two boreholes were located inside the proposed upstream training structure (boreholes 15-58M and 15-59M). The composite samples were taken from roughly the upper 4 feet of surficial sediment for 15-60M and 15-61M and about the top two feet for 15-58M and 15-59M.

In early August 2015, 10 composite samples were collected from six new boreholes (four in the main channel cut and two inside the downstream training structure. The four main channel boreholes (15-67M, 15-69M, 15-71M and 15-72M) accounted for 8 composite samples, two samples from each hole (roughly split between a five foot upper sample and a 3 foot lower sample). The remaining two samples were from two boreholes inside the downstream training structure (15-68M and 15-70M), consisting of a single surficial 2.5 foot composite sample from each location.

A record of the boring depths and description of the material encountered are detailed in the boring logs shown in Figure 2.

All of the sediment samples from the July and August surveys were immediately processed after collection and sent on ice to ARDL, Inc., Mt Vernon, IL for physical and chemical analyses to determine grain size and contamination.

Analyses:

Metals, PCBs, pesticides, PAHs, cyanide, total organic carbon, percent moisture, percent solids, percent total volatile solids, selected inorganics and grain-size analyses were performed by ARDL, Inc. for each of the 14 composite samples plus 2 split QA/QC samples.

Results and Discussion:

The results of the grain size analyses showed that the sediment samples had a wide range of silt content. In general, finer material was found in samples that were: 1) inside the training structures, 2) further out from the channel centerline and 3) for the boreholes with multiple composite samples, the lower stratum samples were finer than their corresponding upper stratum samples. The samples with the least amount of silt was found in the furthest upstream boreholes, 15-60M and 15-61M. Table 1 shows the percentage of material that passed through the #200 sieve for each sample and their total organic carbon content (TOC). The role of sediment in chemical pollution is tied both to the particle size of sediment, and to the amount of particulate organic carbon associated with the sediment. Silt content is important, because finer material has more surface area for binding with contaminants, but as TOC increases, the affinity between the sediment and the contaminants also increases. As a result, greater TOC concentrations reduces the biological availability of many of the persistent, bioaccumulating and toxic organic contaminants, especially chlorinated compounds.

Sample ID	Percent of material passed through the #200 sieve	Total Organic Carbon mg/kg
P2-15-59M/1	97.2	14000
P2-15-58M/1	87.8	19000
P2/15-68M/1	81.6	19000
P2/15-71M/2	79.7	30000
P2/15-69M/2	77.3	27000
P2/15-70M/1	76.5	25000
P2/15-69M/1	75.5	35000
P2/15-71M/1	41.6	18000
P2/15-67M/2	32.1	12000
P2/15-72M/2	18.6	7000
P2/15-67M/1	17.7	6000
P2/15-72M/1	10.9	5400
P2-15-60M/1	3.9	1200
P2-15-61M/1	2.9	990

Table 1. Silt and Total Organic Carbon Composition of Composite Sediment Samples.

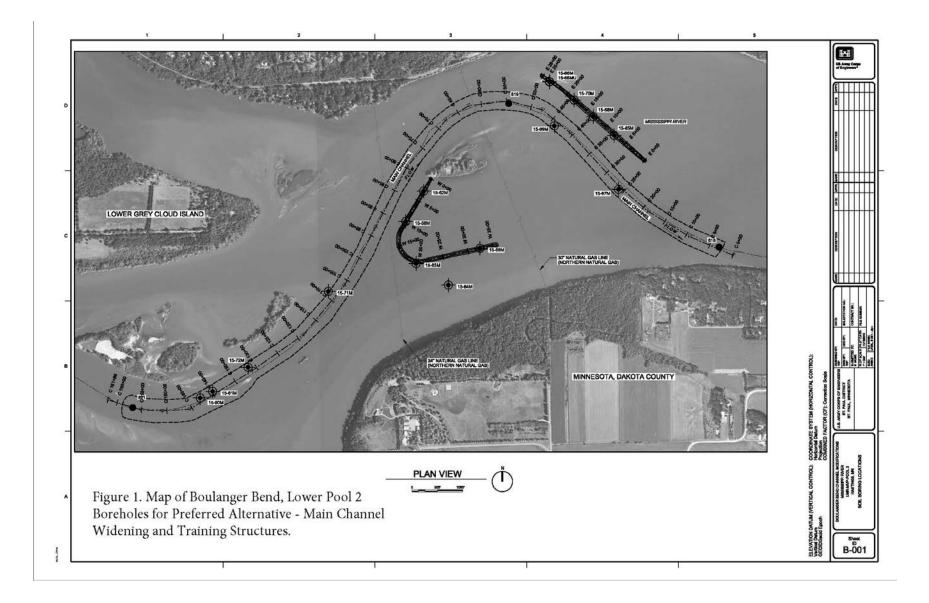
To ascertain the possible toxicity of the samples to the benthic environment, the chemical results were compared to the Minnesota Pollution Control Agency's (MPCA) sediment quality targets (SQTs) for the protection of sediment-dwelling organisms in Minnesota and the MPCA's Soil Reference Values (SRVs) that are used for upland placement suitability (Table 2). The SQTs consist of level I guidance for a high level of protection for benthic invertebrates and level II guidance for the moderate level of protection for benthic invertebrates.

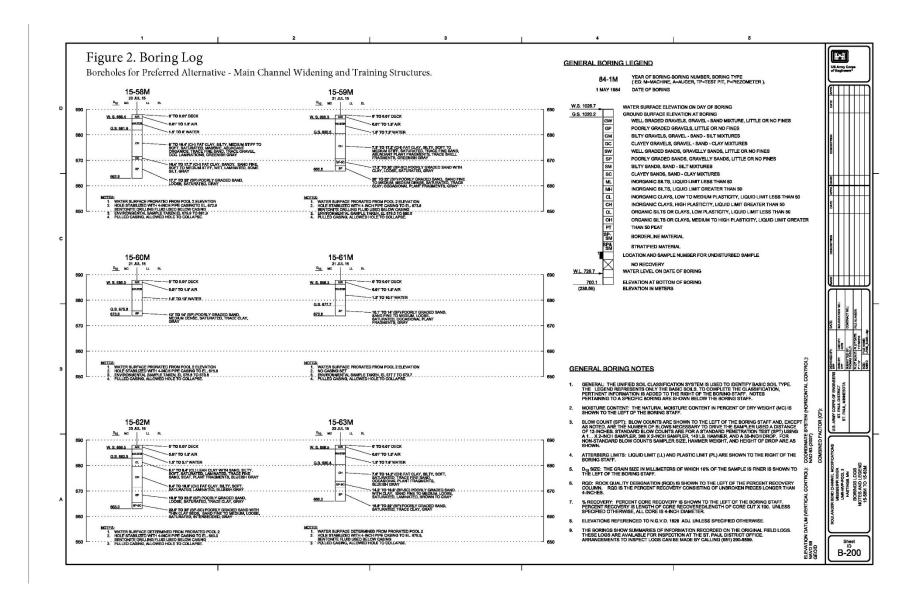
The three furthest upstream main channel dredge cut boreholes (15-60M,15-61M and 15-72M) were mostly sand, but 15-60M had a SQT I exceedance of acenaphthylene, 15-61M had SQT I exceedances of acenaphthylene, acenaphthene and benzo(a) anthracene and the upper subsample of 15-72M had exceedances of acenaphthylene, benzo(a) anthracene, pyrene and benzo(a)pyrene. However, all of these exceedances were only minimally above the SQT I guidelines.

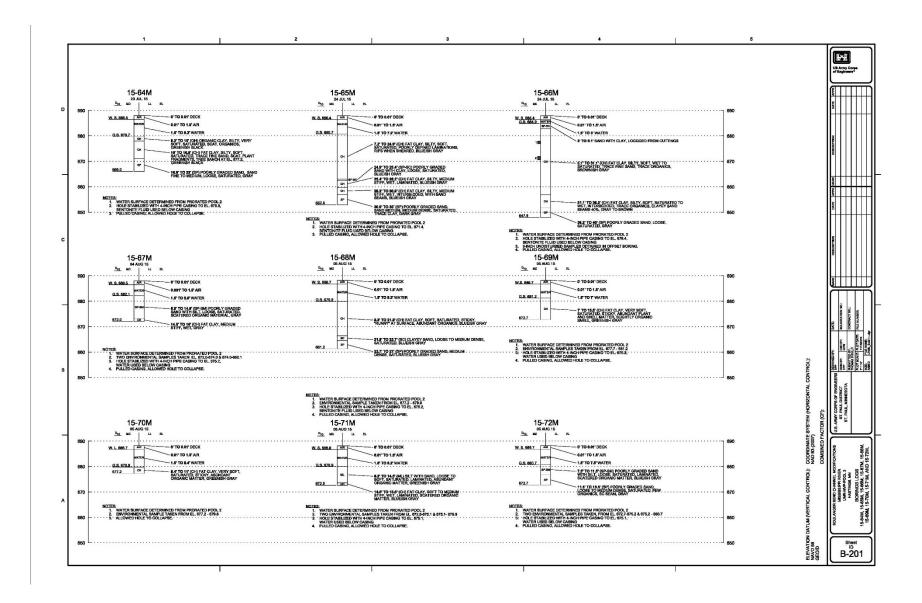
15-71M was the one sample collected in the middle portion of the dredge cut. This borehole was mainly composed of finer material. The high silt percentage in 15-71M is probably due to it being on the outside edge of the channel dredge cut where fines tend to buildup. In both the upper ~ 5 feet and the lower ~ 2.5 feet of the surficial sediment there were exceedances of several SQT I guidelines. 15-71M/1 had exceedances of acenaphthylene, acenaphthylene, benzo(a) anthracene and benzo(a)pyrene. 15-71M/2 had SQT I exceedances of acenaphthylene and cadmium.

The next downstream channel borehole is 15-69M. The silt percentage of the material found in both stratums of 15-69M were similar to the lower stratum of 15-71M at around 75%. SQT I exceedances found in 15-69M includes: acenaphthylene and cadmium in 15-69M/1 and acenaphthylene, acenaphthene and cadmium in 15-69M/2.

The furthest downstream borehole in the channel dredge cut was 15-67M. 15-67M had SQT I exceedances in just in the lower stratum that included acenaphthylene and acenaphthene.


Of the four boreholes (15-58M, 15-59M 15-68M and 15-70M) located in the two training structures, 15-70M was the most concerning. The other three had several SQT I exceedances, but 15-70M had SQT II exceedances for acenaphthylene and pyrene and recreational SRV exceedances for benzo(a)pyrene and cadmium.


The recommended future action related to sediment quality for this study is to engage the MPCA to determine if the results of the 2015 surveys are acceptable to continue pursuing the preferred alternative. And specifically, does the results of the existing testing allow the construction of training structures on sediment containing levels of pollutants above SQT II and SRVs and are there any issues with widening the main channel, which has some sediment with minimal SQT I exceedances.


References for Sediment Quality

Crane, J.L. and S. Hennes. 2007. Guidance for the use and application of sediment quality targets for the protection of sediment-dwelling organisms in Minnesota. Minnesota Pollution Control Agency, St. Paul, MN. MPCA Doc. No. tdr-gl-04. (http://www.pca.state.mn.us/index.php/view-document.html?gid=9163)

Crane, J.L., D.D. MacDonald, C.G. Ingersoll, D.E. Smorong, R.A. Lindskoog, C.G. Severn, T.A. Berger, and L.J. Field. 2002. Evaluation of numerical sediment quality targets for the St. Louis River Area of Concern. Arch. Environ. Contam. Toxicol. 43:1-10

Appendix H: Sediment Quality Analysis

Table 2. Analytical results and MPCA sediment guidelines

SEDIMENT Data	Units	Parameter	MPCA SQT1	MPCA SQT I	MPCA Res/Rec Soil Reference Value (SRV)	MPCA Comm/Ind Soil Reference Value (SRV)	Boulanger Cut	Boulanger Cut	Boulanger Cut	Boulanger Cut	Boulanger Cut	Boulanger Cut	Boulanger Cut									
Pool							2	2	2	2	2	2	2	2	2	2	2	Z	2	2	2	2
Sediment Surface Elev				Table 2. Results of Sediment			682.1	682.1	split 67M/1	679.9	split 68/M								681.9	680.5	675.8	677.7
Top of Sample Elev				Anayses			682.1	675	682.1	679.9	679.9	681.2 681.2	681.2 675.2	679.8 679.8	679.9 679.9	679.9 675.1	680.7 680.7	680.7 675.2	681.9	680.5	675.8	677.7
Bottom of Sample Elev Lab							675 ADRL, INC	572 ADRL, INC	675 ADRL, INC	677.2 ADRL INC	677.2 ADRL, INC	675.2 ADRL, INC	672.7 ADRL, INC	677.2 ADRL, INC	675.1 ADRL, INC	672.6 ADRL, INC	675.2 ADRL, INC	672.7 ADRL, INC	679.9 ADRL, INC	678 ADRL, INC	673.8 ADRL, INC	673.7 ADRL INC
Lab ID							008050-01	008050-02	008050-03	008050-04	008050-05	008050-05	008050-07	008050-08	008050-09	008050-10	006050-11	008050-12	008043-01	008043-02	008043-03	008043-04
Corps ID Date Collected							P2/15-67M/1 8/4/2015	P2/15-67M/2 8/4/2015	P2/15-67M/3 8/4/2015	P2/15-68M/1 8/5/2015	P2/15-68M/2 8/5/2015	P2/15-69M/1 8/5/2015	P2/15-69M/2 8/5/2015	P2/15-70M/1 8/5/2015	P2/15-71M/1 8/5/2015	P2/15-71 M/2 8/5/2015	P2/15-72/4/1 8/5/2015	P2/15-72M/2 8/5/2015	P2-15-58M/1 7/20/2015	P2-15-59M/1 7/21/2015	P2-15-60M/1 7/21/2015	P2-15-61/4/1 7/21/2015
	ug/kg	Acenaphthylene	5.9	130			5.65	9.29	2.22 J	93.9	90.9	8.9	8.7	285	9.36	10.9 J	19.3	3.41 J	ND	ND	9.25	11.5
	ug/kg	Acenaphthene	6.7 57	89 850	1300000 9500000	19000000 97000000	2.87 J 8.13	11.7 21.9	1.67 J 7.93	31.1 228	14 85.7	6.35 J 21. 2	22.1 26	70 747	7 17.7	6.45 J 14	4.23 41.0	1.78 J 5.03	ND ND	ND	2.34 J 25.7	7.37 43.6
	ug/kg ug/kg	Anthracene Fluoranthene	420	2200	510000	6700000	75.9	167	73.6	980	459	196	177	1320	212	172	190	57	1.52 J	1.02 J	128	171
	ug/kg	Pyrene	200	1500	44000		71.3	157	64.1	1380	564	176	176	1580	191	155	215	54.1	1.55 J	1.28 J	143	187
	ug/kg	Benzo(a) anthracen		1100			39.8	92	35.3	713	390	101	83.8	1060	111	82.2	155	25.8	ND	1.13 J	78.6	113
	ug/kg	Benzo(b)lluoranther					65.3	140	59	821	466	191	178	1400	219	175	203	58.1	1.61 J	1.82 J	97.9	144
	ug/kg ug/kg	Benzo(k)fluoranther Benzo(a)pyrene	e 150	1500	1000 ***	14000***	16.8 45.8	43.9 100	18 38.1	225 829	154	49.3 103	53.5 89.6	421	62.3 122	49.6 97.9	63.8 177	18 31.1	ND	ND	28.9 80.5	44.3 115
	ug/kg	Benzo(g,hi)perylen		1000	1000	14000	29	48.6	19.8	524	176	34.7	27.7	523	30.4	56.8	36.4	10.3	ND	ND	28.3	38.2
	ug/kg	Hexachlorobenzen					ND	ND	ND	ND	ND	ND	ND									
ic.	ug/kg	Chlordane trans ison					ND	ND	ND	ND	ND	ND	ND									
Organics	ug/kg	Chlordane cis isom	ar 3.2* 3.2	16* 31	7000 * 13000	75000 70000	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
ō	ug/kg ug/kg	P, P -DDE O, P -DDD	32	31	13000	70000	ND	ND	ND	ND	ND	ND	5.64									
	ug/kg	Dieldrin	1.9	62	110	1500	ND	ND	ND	ND	ND	ND	ND									
	ug/kg	O, P'-DDE					ND	ND	ND	ND	ND	ND	ND									
	ug/kg	O, P -DDT					ND	ND	ND	ND	ND	ND	ND									
	ug/kg ug/kg	P, P -000 P, P -001	4.9 4.2	28 63	19000 7300	100000 86000	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
	ug/kg	PCB 1016	4.2	0.5	7300	00000	ND	ND	ND	ND	ND	ND	ND									
	ug/kg	PCB 1248					ND	ND	ND	ND	ND	ND	ND									
	ug/kg	PCB 1254					ND	ND	ND	ND	ND	ND	ND									
	ug/kg	PCB 1260				8200	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND
	ug/kg mg/kg	Total PCBs Arsenio	60 9.8	65D 33	62D 9	8200 9	ND 1.5	2.5	1.7	ND 3	2.9	5.4	2.3	ND 2.2	ND ND	2.3	0.68	ND	2.8	3.9	ND ND	ND ND
	mg/kg	Cadmium	0.99	5	1.6	23	0.69	0.75	0.47	1.4	1.3	1.4	1.4	1.7	0.77	1.3	0.4	0.51	1.3	1.4	0.27	0.26
	mg/kg	Chromium	43	110	23000	100000	7.3	10.3	7.4	20.7	19.4	19.6	19.8	22.2	11.1	18.9	5.6	8.1	18.2	19	8.6	4.9
Metals	mg/kg	Copper	32	150	2200	33000	3.8	6.9	3.7	15.5	16.8	15.7	17.8	22.5	8	16.7	2.2	4.2	13.5	14.1	1.6	1.8
	mg/kg mg/kg	Lead Manganese	36	130	300 2100	700 21000	3.4	21.2	3.5	13.8 859	17.4	10.1 1230	10.5 1420	34 629	5.8 485	11.2 1090	2.8 176	3.9 358	6.8 1150	7.3 701	1.5	2 131
	mg/kg	Mercury	0.18	11	3.1 **	3.1	ND	ND	ND	0.16	0.21	ND	0.13	0.54	ND	ND	ND	ND	ND	ND	ND	ND
	mg/kg	Nickel	23	49	170	2600	5.9	8	5.6	16.2	14.9	16.4	15.9	14.8	8.9	15	4.6	5.7	19.1	19.5	4.9	3.6
	mg/kg	Zinc	120	460	4600	70000	21.3	35.3	25	65.1	73.4	75.1	73.6	113	37.1	72.3	15.9	22.7	72.1	80.8	11.4	14.3
	mg/kg mg/kg	Chromium (VI) Ammonia Nitrogen			11	57	ND 36.1	2.2 184	ND 34.8	5.4 154	2.7	6.6 488	4.5 506	3.4 326	ND 445	5 200	ND 72.1	ND 165	5.7 110	3.5 98	ND 12.4	ND 18.4
norganics	marka	Cyanide, Total			13	190	ND	ND	ND	ND ND	ND	+do ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND
	96	Moisture					22.3	26.3	21.4	32.9	32.8	48.5	44	40.6	31.5	44.4	22.3	23.3	33.1	33.5	20.5	22.1
	mg/kg	Phenol					ND	84	ND	ND	ND	ND	ND	ND								
eBi	mg/kg %	Phosphorus					377	181 73.7	317 78.6	687 67.1	524 67.2	749 51.5	633 56	632 59.4	502 68.5	634 55.6	336 77.7	341 76.7	480 66.9	505 66,5	284 79.5	235 77.9
<u>e</u>	76 96	Solids, Percent Solids, Total Volatil					77.7 ND	1.5	V8.6 ND	2.8	2.9	3.2	3.4	3.1	1.6	2.8	ND	ND	2.4	2.4	4.2	ND
	mg/kg	Total Kjeldahi Nitrog					508	697	259	1400	1500	2340	2420	2170	903	2140	137	458	1280	1200	99.6	ND
	mg/kg	Total Organic Carbo					5000	12000	6500	19000	19000	35000	27000	25000	18000	30000	5400	7000	19000	14000	1200	990
<i>3</i> °		coarse 4					100	100	100	100	100	100	100	99.9	100	100	100	100	100	100	99.9	99.9
FINER FINER	0	10					100 99.7	100	100 99.6	100 99.9	99.9 99.7	100 99.9	100 99.4	99.8 99.8	100	99.9 99.9	100 99.9	100 99.8	100 99.9	100 99,9	99.5 94.2	99.8 97.8
<u>с</u>	Ness	medium 40					99.7	99.8	99.6	99.9 99.6	99.2	99.7	98.6	99.7	99.7	99.8	98.7	96.7	99.5	99.3	72	57.a 89.7
	3,	fine 60					97	99.4	95.8	99	98.1	99	97.1	99.3	99.2	99.4	91	85.4	97.1	98.8	43	66.3
AAR	1.000	140					25.9	45.2	24.3	88.5	82.4	82.6	81.3	85.7	59.3	87.4	17	25.2	90	98.3	4.6	4
u.	SILT	clay 200					17.7	32.1	15.6	81.6	75.3	75.5	77.3	76.5	41.6	79.7	10.9	18.6	87.8	97.2	3.9	2.9

* Chlordane

** Mercury (inorganic)

*** Benzo[a]pyrene (BaP equivalents)

Level I SQT – Chemical concentrations which will provide a high level of protection for benthic invertebrates.

Level II SQT – Chemical concentration which will provide a moderate level of protection for benthic invertebrates.

2015 draft MPCA Res/Rec Soil Reference Value (SRV)

J - Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicate the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.